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Preface

LEDA (Library of Efficient Data Types and Algorithms) is a C++ library of combinatorial
and geometric data types and algorithms. It offers

Data Types, such as random sources, stacks, queues, maps, lists, sets, partitions, dictionar-
ies, sorted sequences, point sets, interval sets,. . . ,

Number Types, such as integers, rationals, bigfloats, algebraic numbers, and linear alge-
bra.

Graphs and Supporting Data Structures, such as node- and edge-arrays, node- and edge-
maps, node priority queues and node partitions, iteration statements for nodes and edges,
. . . ,

Graph Algorithms, such as shortest paths, spanning trees, flows, matchings, components,
planarity, planar embedding,. . . ,

Geometric Objects, such as points, lines, segments, rays, planes, circles, polygons,. . . ,
Geometric Algorithms, such as convex hulls, triangulations, Delaunay diagrams, Voronoi

diagrams, segment intersection,. . . , and
Graphical Input and Output.

The modules just mentioned cover a considerable part of combinatorial and geometric com-
puting as treated in courses and textbooks on data structures and algorithms [AHU83,
dBKOS97, BY98, CLR90, Kin90, Kle97, NH93, Meh84b, O’R94, OW96, PS85, Sed91,
Tar83a, van88, Woo93].

From a user’s point of view, LEDA is a platform for combinatorial and geometric com-
puting. It providesalgorithmic intelligencefor a wide range of applications. It eases a
programmer’s life by providing powerful and easy-to-use data types and algorithms which
can be used as building blocks in larger programs. It has been used in such diverse ar-
eas as code optimization, VLSI design, robot motion planning, traffic scheduling, machine
learning and computational biology. The LEDA system is installed at more than 1500 sites.

xi



xii Preface

We started the LEDA project in the fall of 1988. The project grew out of several consid-
erations.

• We had always felt that a significant fraction of the research done in the algorithms
area was eminently practical. However, only a small part of it was actually used. We
frequently heard from our former students that the intellectual and programming effort
needed to implement an advanced data structure or algorithm is too large to be
cost-effective. We concluded thatalgorithms research must include implementation if
the field wants to have maximum impact.

• We surveyed the amount of code reuse in our own small and tightly connected research
group. We found several implementations of the same balanced tree data structure.
Thus there was constant reinvention of the wheel even within our own small group.

• Many of our students had implemented algorithms for their master’s thesis. Work
invested by these students was usually lost after the students graduated. We had no
depository for implementations.

• The specifications of advanced data types which we gave in class and which we found
in text books, including the one written by one of the authors, were incomplete and not
sufficiently abstract to allow to combine implementations easily. They contained
phrases of the form: “Given a pointer to a node in the heap its priority can be
decreased in constant amortized time”. Phrases of this kind imply that a user of a data
structure has to know its implementation. As a consequence combining
implementations is a non-trivial task. We performed the following experiment. We
asked two groups of students to read the chapters on priority queues and shortest path
algorithms in a standard text book, respectively, and to implement the part they had
read. The two parts would not fit, because the specifications were incomplete and not
sufficiently abstract.

We started the LEDA project to overcome these shortcomings by creating a platform for
combinatorial and geometric computing.LEDA should contain the major findings of the
algorithms community in a form that makes them directly accessible to non-experts having
only limited knowledge of the area. In this way we hoped to reduce the gap between research
and application.

The LEDA system is available from the LEDA web-site.

http://www.mpi-sb.mpg.de/LEDA/leda.html

A commercial version of LEDA is available from Algorithmic Solutions Software GmbH.

http://www.algorithmic-solutions.de

LEDA can be used with almost any C++ compiler and is available for UNIX and WIN-
DOWS systems. The LEDA mailing list (see the LEDA web page) facilitates the exchange
of information between LEDA users.
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This book provides a comprehensive treatment of the LEDA system and its use. We treat
the architecture of the system, we discuss the functionality of the data types and algorithms
available in the system, we discuss the implementation of many modules of the system, and
we give many examples for the use of LEDA. We believe that the book is useful to five
types of readers: readers with a general interest in combinatorial and geometric computing,
casual users of LEDA, intensive users of LEDA, library designers and software engineers,
and students taking an algorithms course.

The book is structured into fourteen chapters.

Chapter 1, Introduction, introduces the reader to the use of LEDA and gives an overview
of the system and our design goals.

Chapter 2, Foundations, discusses the basic concepts of the LEDA system. It defines key
concepts, such as type, object, variable, value, item, copy, linear order, and running time,
and it relates these concepts to C++. We recommend that you read this chapter quickly
and come back to it as needed. The detailed knowledge of this chapter is a prerequisite for
the intensive use of LEDA. The casual user should be able to satisfy his needs by simply
modifying example programs given in the book. The chapter draws upon several sources:
object-oriented programming, abstract data types, and efficient algorithms. It lays out many
of our major design decisions which we call LEDA axioms.

Chapters 3 to 12 form the bulk of the book. They constitute a guided tour of LEDA.
We discuss numbers, basic data types, advanced data types, graphs, graph algorithms, em-
bedded graphs, geometry kernels, geometry algorithms, windows, and graphwins. In each
chapter we introduce the functionality of the available data types and algorithms, illustrate
their use, and give the implementation of some of them.

Chapter 13, Implementation, discusses the core part of LEDA, e.g., the implementa-
tion of parameterized data types, implementation parameters, memory management, and
iteration.

Chapter 14, Documentation, discusses the principles underlying the documentation of
LEDA and the tools supporting it.

The book can be read without having the LEDA system installed. However, access to
the LEDA system will greatly increase thejoy of reading. The demo directory of the
LEDA system contains numerous programs that allow the reader to exercise the algorithms
discussed in the book. The demos give a feeling for the functionality and the efficiency of
the algorithms, and in a few cases even animate them.

The book can be read from cover to cover, but we expect few readers to do it. We wrote
the book such that, although the chapters depend on each other as shown in Figure A, most
chapters can be read independently of each other. We sometimes even repeat material in
order to allow for independent reading.

All readersshould start with the chapters Introduction and Foundations. In these chapters
we give an overview of LEDA and introduce the basic concepts of LEDA. We suggest that
you read the chapter on foundations quickly and come back to it as needed.



xiv Preface

Numbers

Geometry Kernels

Geometry Algorithms

Foundations

Graphs

Embedded Graphs Graph Algorithms

Basic Data Types

Advanced Data Types

Windows

Implementation Documentation

GraphWin

Introduction

Figure A The dependency graph between the chapters. A dashed arrow means that partial
knowledge is required and a solid arrow means that extensive knowledge is required.
Introduction and Foundations should be read before all other chapters and Implementation and
Documentation can be read independently from the other chapters.

The chapter on basic data types (list, stacks, queues, array, random number generators,
and strings) should also be read by every reader. The basic data types are ubiquitous in the
book.

Having read the chapters Introduction, Foundations and Basic Data Types, the reader
may take different paths depending on interest.

Casual users of LEDAshould read the chapters treating their domain of interest, and
intensive users of LEDAshould also read the chapter on implementation.

Readers interested in Data Structuresshould read the chapters on advanced data types,
on implementation, and some of the sections of the chapter on geometric algorithms. The
chapter on advanced data types treats dictionaries, search trees and hashing, priority queues,
partitions, and sorted sequences, and the chapter on implementation discusses, among other
things, the realization of parameterized data types. The different sections in the chapter on
advanced data types can be read independently. In the chapter on geometric algorithms we
recommend the section on dynamic Delaunay triangulations; some knowledge of graphs
and computational geometry is required to read it.

Readers interested in Graphs and Graph Algorithmsshould continue with the chapter
on graphs. From there one can proceed to either the chapter on graph algorithms or the
chapter on embedded graphs. Within the chapter on graph algorithms the sections can be
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read independently. However, the chapter on embedded graphs must be read from front to
rear. Some knowledge of priority queues and partitions is required for some of the sections
on graph algorithms.

Readers interested in Computational Geometrycan continue with either the chapter on
graphs or the chapter on geometry kernels. Both chapter are a prerequisite for the chapter on
geometric algorithms. The chapter on geometry kernels requires partial knowledge of the
chapter on numbers. The chapter on geometric algorithms splits into two parts that can be
read independently. The first part is on convex hulls, Delaunay triangulations, and Voronoi
diagrams, and the second part is on line segment intersection and polygons.

Geometric algorithms are dull without graphical input and output. The required knowl-
edge is provided by the chapter on windows. The section on the Voronoi demo in the
chapter on geometric algorithms gives a comprehensive example for the interplay between
geometric data types and algorithms and the window class.

Readers interested in Algorithm Animationshould read the chapter on windows and
graphwin, the section on animating strongly connected components in the chapter on graph
algorithms, the section on the Voronoi demo in the geometric algorithms chapter, and study
the many programs in the xlman subdirectory of the demo directory.

Readers interested in Software Librariesshould read the chapters on foundations, on
implementation, and on documentation. They should also study some other chapters at
their own choice.

Readers interested in developing a LEDA Extension Packageshould read the chapters on
implementation and documentation in addition to the chapters related to their domain of
algorithmic interest.

For all the algorithms discussed in the book, we also derive the required theory and give
the proof of correctness. However, sometimes our theoretical treatment is quite compact
and tailored to our specific needs. We refer the reader to the textbooks [AHU83, Meh84b,
Tar83a, CLR90, O’R94, Woo93, Sed91, Kin90, van88, NH93, PS85, BY98, dBKOS97] for
a more comprehensive view.

LEDA is implemented in C++ and we expect our readers to have some knowledge of it.
We are quite conservative in our use of C++ and hence a basic knowledge of the language
suffices for most parts of the book. The required concepts include classes, objects, tem-
plates, member functions, and non-member functions and are typically introduced in the
first fifty pages of a C++ book [LL98, Mur93, Str91]. Only the chapter on implementation
requires the reader to know more advanced concepts like inheritance and virtual functions.

The book contains many tables showingrunning times. All running times were deter-
mined on an ULTRA-SPARC with 300 MHz CPU and 256 MByte main memory. LEDA
and all programs were compiled with CC (optimization flags -DLEDACHECKING OFF
and -O).

We welcomefeedbackfrom our readers. A book of this length is certain to contain errors.
If you find any errors or have other constructive suggestions, we would appreciate hearing
from you. Please send any comments concerning the book to
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ledabook@mpi-sb.mpg.de

For comments concerning the system use

ledares@mpi-sb.mpg.de

or sign up for the LEDA discussion group. We will maintain a list of corrections on the
web.

We received financial support from a number of sources. Of course, our home institu-
tions deserve to be mentioned first. We started LEDA at the Universit¨at des Saarlandes in
Saarbrücken, in the winter 1990/1991 we both moved to the Max-Planck-Institut f¨ur Infor-
matik, also in Saarbr¨ucken, and in the fall of 1994 Stefan N¨aher moved to the Martin-Luther
Universität in Halle. Our work was also supported by the Deutsche Forschungsgemein-
schaft (Sonderforschungsbereich SFB 124 VLSI-Entwurf und Parallelit¨at und Schwerpunk-
tprogramm Effiziente Algorithmen und ihre Anwendungen), by the Bundesministerium f¨ur
Forschung und Technologie (project SOFTI), and by the European Community (projects
ALCOM, ALCOM II, ALCOM-IT, and CGAL).

Discussions with many colleagues, bug reports, experience reports (positive and nega-
tive), suggestions for changes and extensions, and code contributions helped to shape the
project. Of course, we could not have built LEDA without the help of many other persons.
We want to thank David Alberts, Ulrike Bartuschka, Christoph Burnikel, Ulrich Finkler,
Stefan Funke, Evelyn Haak, Jochen K¨onemann, Ulrich Lauther, Andreas Luleich, Math-
ias Metzler, Michael M¨uller, Michael Muth, Markus Neukirch, Markus Paul, Thomas Pa-
panikolaou, Stefan Schirra, Christian Schwarz, Michael Seel, Jack Snoeyink, Ken Thornton,
Christian Uhrig, Michael Wenzel, Joachim Ziegler, Thomas Ziegler, and many others for
their contributions.

Special thanks go to Christian Uhrig, the chief officer of Algorithmic Solutions GmbH,
to Michael Seel, who is head of the LEDA-group at the MPI, and to Ulrich Lauther from
Siemens AG, our first industrial user.

Evelyn Haak typeset the book. Actually, she did a lot more. She made numerous sug-
gestions concerning the layout, she commented on the content, and she suggested changes.
Holger Blaar, Stefan Funke, Gunnar Klau, Volker Priebe, Michael Seel, Ren´e Weißkircher,
Mark Ziegelmann, and Joachim Ziegler proof-read parts of the book. We want to thank
them for their many constructive comments. Of course, all the remaining errors are ours.

Finally, we want to thank David Tranah from Cambridge University Press for his support
and patience.

We hope that you enjoy reading this book and that LEDA eases your life as a programmer.

Stefan Näher
Halle, Germany
April, 1999

Kurt Mehlhorn
Saarbrücken, Germany

April, 1999
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Introduction

In this chapter we introduce the reader to LEDA by showing several short, but powerful,
programs, we give an overview of the structure of the LEDA system, we discuss our design
goals and the approach that we took to reach them, and we give a short account of the
history of LEDA.

1.1 Some Programs

We show several programs to give the reader a first impression of LEDA. In each case we
will first state the algorithm and then show the program. It is not essential to understand the
algorithms in full detail; our goal is to show:

• how easily the algorithms are transferred into programs and

• how natural and elegant the programs are.

In other words,

Algorithm + LEDA = Program.

The directory LEDAROOT/demo/book/Intro (see Section 1.2) contains all programs dis-
cussed in this section.

1.1.1 Word Count
We start with a very simple program. Our task is to read a sequence of strings from standard
input, to count the number of occurrences of each string in the input, and to print a list of
all occurring strings together with their frequencies on standard output. The input is ended
by the string “end”.

1
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In our solution we use the LEDA typesstring and dictionary arrays (d arrays). The
parametrized data type dictionary array (d array<I, E>) realizes arrays with index typeI
and element typeE . We use it with index typestringand element typeint.

〈word count.c〉�
#include <LEDA/d_array.h>

#include <LEDA/string.h>

main()

{ d_array<string,int> N(0);

string s;

while ( true )

{ cin >> s;

if ( s == "end" ) break;

N[s]++;

}

forall_defined(s,N) cout << "\n" << s << " " << N[s];

}

We give some more explanations. The program starts with the include statement for dic-
tionary arrays and strings. In the first line of the main program we define a dictionary
arrayN with index typestring and element typeint and initialize all entries of the array to
zero. Conceptually, this creates an infinite array with one entry for each conceivable string
and sets all entries to zero; the implementation of darrays stores the non-zero entries in
a balanced search tree with key type string. In the second line we define a strings. The
while-loop does most of the work. We read a strings; if the string is equal to “end”, we
break from the loop. Otherwise, we increment the entryN [s] of the arrayN by one. The
iterationforall defined(s, N) in the last line successively assigns all strings tos for which
the corresponding entry ofN was touched during execution. For each such string, the string
and its frequency are printed on the standard output. A new line is used for each pair. On
input

stefan

stefan

kurt

end

the program will print

kurt 1

stefan 2

1.1.2 Shortest Paths
Dijkstra’s shortest path algorithm [Dij59] takes a directed graphG = (V, E), a nodes ∈ V ,
called the source, and a non-negative cost function on the edgescost : E → R≥0. It
computes for each nodev ∈ V the distance froms, see Figure 1.1. A typical text book
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Figure 1.1 A shortest path in a graph. Each edge has a non-negative cost. The cost of a path is
the sum of the cost of its edges. The source nodes is indicated as a square. For each node the
length of the shortest path froms is shown.

presentation of the algorithm is as follows (we will prove the correctness of the algorithm
in Section 6.6):

set dist(s) to 0.

set dist(v) to infinity for v different from s.

declare all nodes unreached.

while there is an unreached node

{ let u be an unreached node with minimal dist-value. (*)

declare u reached.

forall edges e = (u,v) out of u

set dist(v) = min( dist(v), dist(u) + cost(e) )

}

The text book presentation will then continue to discuss the implementation of line (*). It
will state that the pairs{(v, dist(v)); v unreached} should be stored in a priority queue, e.g.,
a Fibonacci heap, because this will allow the selection of an unreached node with minimal
distance value in logarithmic time. It will probably refer to some other chapter of the book
for a discussion of priority queues.

We next give the corresponding LEDA program; it is very similar to the pseudo-code
above. In fact, after some experience with LEDA you should be able to turn the pseudo-
code into code within a few minutes.

〈DIJKSTRA.c〉�
#include <LEDA/graph.h>

#include <LEDA/node_pq.h>

void DIJKSTRA(const graph &G, node s,

const edge_array<double>& cost,

node_array<double>& dist)

{ node_pq<double> PQ(G);

node v; edge e;

forall_nodes(v,G)
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{ if (v == s) dist[v] = 0; else dist[v] = MAXDOUBLE;

PQ.insert(v,dist[v]);

}

while ( !PQ.empty() )

{ node u = PQ.del_min();

forall_out_edges(e,u)

{ v = target(e);

double c = dist[u] + cost[e];

if ( c < dist[v] )

{ PQ.decrease_p(v,c); dist[v] = c; }

}

}

}

We give some more explanations. We start by including the graph and the node priority
queue data types. The functionDIJKSTRAtakes a graphG, a nodes, anedgearray cost,
and anodearray dist. Edge arrays and node arrays are arrays indexed by edges and nodes,
respectively. We declare a priority queuePQ for the nodes of graphG. It stores pairs
(v, dist[v]) and is initially empty. Theforall nodes-loop initializesdistandPQ. In the main
loop we repeatedly select a pair(u, dist[u]) with minimal distance value and then iterate
over all out-going edges to update distance values of neighboring vertices.

We next incorporate the shortest path program into a small demo. We generate a random
graph withn nodes andm edges and choose the edge costs as random number in the range
[0 .. 100]. We call the function above and report the running time.

〈dijkstra time.c〉�
〈DIJKSTRA.c〉
main()

{ int n = read_int("number of nodes = ");

int m = read_int("number of edges = ");

graph G;

random_graph(G,n,m);

edge_array<double> cost(G);

node_array<double> dist(G);

edge e; forall_edges(e,G) cost[e] = ((double) rand_int(0,100));

float T = used_time();

DIJKSTRA(G,G.first_node(),cost,dist);

cout << "\n\nThe shortest path computation took " <<

used_time(T) << " seconds.\n\n";

}

On a graph with 10000 nodes and 100000 edges the computation takes less than a second.

1.1.3 Curve Reconstruction
The reconstruction of a curve from a set of sample points is an important problem in com-
puter vision. Amenta, Bern, and Eppstein [ABE98] introduced a reconstruction algorithm
which they called CRUST. Figure 1.2 shows a point set and the curves reconstructed by
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Figure 1.2 A set of points in the plane and the curve reconstructed by CRUST. The figure was
generated by the program presented in Section 1.1.3.

their algorithm. The algorithmCRUSTtakes a listS of points and returns a graphG.
CRUST makes use of Delaunay diagrams and Voronoi diagrams (which we will discuss in
Sections 10.4 and 10.5) and proceeds in three steps:

• It first constructs the Voronoi diagramVD of the points inS.

• It then constructs a setL = S ∪ V , whereV is the set of vertices ofVD.

• Finally, it constructs the Delaunay triangulationDT of L and makesG the graph of all
edges ofDT that connect points inS.

The algorithm is very simple to implement1.

〈crust.c〉�
#include <LEDA/graph.h>

#include <LEDA/map.h>

#include <LEDA/float_kernel.h>

#include <LEDA/geo_alg.h>

void CRUST(const list<point>& S, GRAPH<point,int>& G)

{

list<point> L = S;

GRAPH<circle,point> VD;

VORONOI(L,VD);

1 In 97 the authors attended a conference, where Nina Amenta presented the algorithm. We were supposed to give
a presentation of LEDA later in the day. We started the presentation with a demo of algorithm CRUST.
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// add Voronoi vertices and mark them

map<point,bool> voronoi_vertex(false);

node v;

forall_nodes(v,VD)

{ if (VD.outdeg(v) < 2) continue;

point p = VD[v].center();

voronoi_vertex[p] = true;

L.append(p);

}

DELAUNAY_TRIANG(L,G);

forall_nodes(v,G)

if (voronoi_vertex[G[v]]) G.del_node(v);

}

We give some explanations. We start by including graphs, maps, the floating point geometry
kernel, and the geometry algorithms. In CRUST we first make a copy ofS in L. Next
we compute the Voronoi diagramVD of the points inL. In LEDA we represent Voronoi
diagrams by graphs whose nodes are labeled with circles. A nodev is labeled by a circle
passing through the defining sites of the vertex. In particular,VD[v].center( ) is the position
of the nodev in the plane. Having computedVD we iterate over all nodes ofVD and add
all finite vertices (a Voronoi diagram also has nodes at infinity, they have degree one in our
graph representation of Voronoi diagrams) toL. We also mark all added points as vertices
of the Voronoi diagram. Next we compute the Delaunay triangulation of the extended point
set in G. Having computed the Delaunay triangulation, we collect all nodes ofG that
correspond to vertices of the Voronoi diagram in a listvlist and delete all nodes invlist from
G. The resulting graph is the result of the reconstruction.

We next incorporate CRUST into a small demo which illustrates its speed. We generaten
random points in the plane and construct their crust. We are aware that it does really make
sense to apply CRUST to a random set of points, but the goal of the demo is to illustrate the
running time.

〈crust time.c〉�
〈crust.c〉
main()

{ int n = read_int("number of points = ");

list<point> S;

random_points_in_unit_square(n,S);

GRAPH<point,int> G;

float T = used_time();

CRUST(S,G);

cout << "\n\nThe crust computation took " <<

used_time(T) << " seconds.\n\n";

}

For 3000 points the computation takes less than a second.
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1.1.4 A Curve Reconstruction Demo
We use the program of the preceding section for a small interactive demo.

〈crust demo.c〉�
#include <LEDA/window.h>

〈crust.c〉
main()

{ window W; W.display();

W.set_node_width(2); W.set_line_width(2);

point p;

list<point> S;

GRAPH<point,int> G;

while ( W >> p )

{ S.append(p);

CRUST(S,G);

node v; edge e;

W.clear();

forall_nodes(v,G) W.draw_node(G[v]);

forall_edges(e,G) W.draw_segment(G[source(e)], G[target(e)]);

}

}

We give some more explanations. We start by including the window type. In the main
program we define a window and open its display. A window will pop up. We state that we
want nodes and edges to be drawn with width two. We define the listS and the graphG
required for CRUST. In each iteration of the while-loop we read a point inW (each click of
the left mouse button enters a point), append it toS and compute the crust ofS in G. We
then drawG by drawing its vertices and its edges. Each edge is drawn as a line segment
connecting its endpoints. Figure 1.2 was generated with the program above.

1.1.5 Discussion
We hope that you are impressed by the programs which we have just shown you. In each
case only a few lines of code were necessary to achieve complex functionality and, more-
over, the code is elegant and readable. We conclude that LEDA is ideally suited for rapid
prototyping as summarized in the equation

Algorithm + LEDA = Program.

The data structures and algorithms in LEDA are efficient. For example, the computation
of shortest paths in a graph with 10000 nodes and 100000 edges and the computation of the
crust of 3000 points took less than a second each. Thus

Algorithm + LEDA = Efficient Program.
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Acknowledgements acknowledgements

README information about LEDA

INSTALL this file

CHANGES most recent changes

FIXES bug fixes since last release

LEPS/ LEDA extension packages

Manual/ user manual

Makefile make script

confdir/ configuration directory

lconfig configuration command

cmd/ commands

incl/ include directory

src/ source files

demo/ demo programs

test/ test programs

data/ data files

Figure 1.3 The top level of the LEDA root directory. Depending on the version of LEDA that is
installed at your system, some of the files may be missing or empty.

1.2 The LEDA System

The LEDA system can be downloaded from the LEDA web-site.

http://www.mpi-sb.mpg.de/LEDA/leda.html

A commercial version of LEDA is available from Algorithmic Solutions Software GmbH.

http://www.algorithmic-solutions.de

At both places you will also find an installation guide.

Figure 1.3 shows the top level of the LEDA directory; some files may be missing or empty
depending on the version of LEDA that is installed at your system. We use LEDAROOT to
denote the path name of the LEDA directory. In this section we will discuss essential parts
of the LEDA directory tree.

README and INSTALL tell you how to install the system. In the remainder of this
section all path-names will be relative to the LEDA root directory.

1.2.1 The Include Directory
The include directoryincl/LEDA contains:

• all header files of the LEDA system,

• subdirectorytemplates for the template versions of network algorithms,

• subdirectorygeneric for the kernel independent versions of geometric algorithms,

• subdirectoryimpl for header files of different implementations of dictionaries and
priority queues,
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• subdirectorythread for the classes needed to make LEDA thread-safe,

• subdirectorysys for the classes that adapt LEDA to different compilers and systems,
and

• subdirectoriesbitmaps andpixmaps for bitmaps and pixel maps.

1.2.2 The Source Code Directory
The source code directorysrc contains the source code of LEDA. If you have downloaded
an object code package, as you probably have, this directory will be empty. Otherwise, it
has one subdirectory for each of the major parts of LEDA: basic data types, numbers, dictio-
naries, priority queues, graphs, graph algorithms, geometry kernels, geometry algorithms,
windows, . . . .

1.2.3 The LEDA Manual
The directoryManual contains the LATEX-sources of the LEDA manual. You may make the
manual by typing “make” in this directory. This requires that certain additional tools are
installed at your system. Alternatively, and we recommend the alternative, you may down-
load the LEDA manual from our web-site. There are two versions of the LEDA manual
available on our web-site:

• A paper version in the form of either a ps-file or a dvi-file.

• An HTML-version.

1.2.4 The Demo Directory
The directorydemo contains demos. All demos mentioned in this book are contained in
either the subdirectoryxlman or the subdirectorybook. We call the demos in the former
directory xlman-demos.

All xlman-demos have a graphical user interface and can be accessed through the xlman-
utility, see Section 1.2.5. Of course, one can also call them directly in directory xlman. You
will find many screenshots in this book; many of them are screenshots of xlman-demos.

The demos in thebook-directory typically have an ASCII-interface and demonstrate run-
ning times. The book-directory is structured according to the chapters of this book.

1.2.5 Xlman
Xlman gives you on-line access to the xlman-demos and the LEDA manual (if xdvi is in-
stalled at your system). Figure 1.4 shows a screenshot of xlman.

1.2.6 LEDA Extension Packages
LEDA extension packages (LEPs) extend LEDA into particular application domains and
areas of algorithmics not covered by the core system. Anybody may contribute a LEDA
extension package. At the time of writing this there are LEDA extension packages for:
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Figure 1.4 A screen shot of xlman. The upper text line shows the name of a LEDA manual
page, and the lower text line shows the name of an LEP manual page (this line may be missing in
your installation). The six buttons at the bottom have the following functionality: on-line access
to manual pages, printing manual pages, running LEDA demos, access to LEDA documents,
xlman configuration, and exit. Some of the functionality relies on other tools, e.g., xdvi, and may
be missing on your system.

• abstract Voronoi diagrams (by Michael Seel),

• higher-dimensional geometry (by Kurt Mehlhorn, Michael M¨uller, Stefan N¨aher,
Stefan Schirra, Michael Seel, and Christian Uhrig),

• dynamic graph algorithms (by David Alberts, Umberto Nanni, Guilio Pasqualone,
Christos Zaroliagis, Pippo Cattaneo, and Guiseppe F. Italiano),

• graph iterators (by Marco Nissen and Karsten Weihe),

• external memory computations (by Andreas Crauser),

• PQ-trees (by Sebastian Leipert), and

• SD-trees (by Peter Hilpert).

LEDA extension packages must satisfy a set of basic requirements which guarantee com-
patibility with the LEDA philosophy; the requirements are defined on our web-page.

1.3 The LEDA Web-Site

The LEDA web-site (http://www.mpi-sb.mpg.de/LEDA/leda.html) is an important
source of information about LEDA. We mentioned already that it allows you to download
the most recent version of the system and the manual. It also gives you information about
the people behind LEDA and latest news, and it contains pointers to other systems which
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are either built on top of LEDA or which we have used successfully together with LEDA.
We will discuss some of these systems in the next section.

1.4 Systems that Go Well with LEDA

Although LEDA covers many aspects of combinatorial and geometric computing, it cannot
cover all of them. In our own work we therefore also use other systems.

In the realm of exact solution of NP-complete problems we use LEDA together with
ABACUS, a branch-and-cut framework for polyhedral optimization, and with CPLEX and
SoPLEX, two solvers for linear programs. ABACUS was developed by Michael J¨unger,
Stefan Reinelt, and Stefan Thienel.

For graph drawing we use AGD, a library of automatic graph drawing, and GDToolkit , a
toolkit for graph drawing. AGD is a joint effort of Petra Mutzel’s group at the MPI, Stefan
Näher’s group in Halle, and Michael J¨unger’s group in Cologne. GDToolkit was developed
by Guiseppe Di Battista’s group in Rome. We say a bit more about AGD and GDToolkit in
Section 8.1.

For computational geometry we also use CGAL, a computational geometry algorithms
library. CGAL is a joint effort of ETH Zürich Freie Universit¨at Berlin, INRIA Sophia
Antipolis, Martin-Luther Universit¨at Halle-Wittenberg, Max-Planck-Institut f¨ur Informatik
and Universität des Saarlandes, RISC Linz Tel-Aviv University, and Universiteit Utrecht.
We will say more about CGAL in Section 9.11.

1.5 Design Goals and Approach

We had four major goals for the design of LEDA:

• Ease of use.

• Extensibility.

• Correctness.

• Efficiency.

We next discuss our four goals and how we tried to reach them.

We wanted the library to reduce the gap between the algorithms community and the “rest
of the world” and thereforeease of usewas a major concern. We wanted the library to be
useable without intimate knowledge of our field of research; a basic course in data structures
and algorithms should suffice. We also wanted the data types and algorithms of LEDA to
be useable without any knowledge of their implementation.
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We invented the item concept, see Section 2.2, as an abstraction of the concept of “pointer
to a container in a data type” and used it for the specification of all container-based data
types. We formulated rules (see Chapter 2) that capture key concepts, such as copy con-
structor, assignment, and compare functions, uniformly for all data types. We introduced a
powerful graph type, see Chapter 6, which supports the natural and elegant formulation of
graph and network algorithms and is also the basis for many of the geometric algorithms.

Ease of use also means easy access to information. The LEDA manual, see Chapter 14,
gives precise and readable specifications for the LEDA data types and algorithms. The
specifications are short (typically not more than a page), general (so as to allow several
implementations) and abstract (so as to hide all details of the implementation). All spec-
ifications follow a common format, see Section 2.1. We developed tools that support the
production of manual pages and documentations. Finally, we wrote this book that gives a
comprehensive view of LEDA.

Combinatorial and geometric computing is a diverse area and hence it is impossible for
a library to provide ready-made solutions for all application problems. For this reason it is
important that LEDA is easily extensible and can be used as a platform for further software
development. LEDA itself is a good example for theextensibilityof LEDA. The advanced
data types and algorithms discussed in Chapters 5, 7, 8, and 10 are built on top of the basic
data types introduced in Chapters 3, 4, 6, and 9. The basic data types in turn rest on a
conceptual framework described in Chapter 2 and the implementation principles discussed
in Chapter 13.

Incorrect software is hard to use at best and dangerous at worst. We underestimated
the difficulties of achievingcorrectness. After all, any publication in our area proves the
correctness of the described algorithms and going from a correct algorithm to a correct
program is tedious and time-consuming, but hardly an intellectual challenge. So we thought,
when we started the project. We now think differently.

Many of the algorithms in LEDA are quite intricate and therefore difficult to implement
correctly. Programmers make mistakes and we are no exception. How do we guard against
errors? Many of our implementations are carefully documented (this book contains many
examples), we test extensively, as does our large user community, and we have recently
adopted the philosophy that programs should give sufficient justification for their answers
to allow checking, see Section 2.14. We have developed program checkers for many of our
programs.

The correct implementation of geometric programs was particularly difficult, as the the-
oretical underpinning was insufficient. Geometric algorithms are typically derived under
two simplifying assumptions: (1) the underlying machine model is thereal RAM which
can compute with real numbers in the sense of mathematics and (2) inputs are in general
position. However, the number typesint anddoubleoffered by programming languages are
only crude approximations of real numbers and practical inputs are frequently degenerate.
Our approach is to formulate geometric algorithms such that they work for all inputs, see
Chapter 10, and to realize the real RAM (as far as it is needed for computational geometry)
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by exact number types, see Chapter 4, and an exact and yet efficient geometry kernel, see
Chapter 9.

Efficiencywas our fourth design goal. It may surprise some readers that we list it last.
However, efficiency without correctness is meaningless and efficiency without ease of use
is a questionable blessing. We achieve efficiency by the use of efficient algorithms and their
careful implementation.

Our implementations are usually based on the asymptotically most efficient algorithms
known for a particular problem. In many cases we even implemented different algorithmic
approaches. For example, there are several shortest path, matching, and flow algorithms,
there are several convex hull, line segment intersection, and Delaunay diagram algorithms,
and there are several realizations of dictionaries and priority queues. In the case of data
types, the implementation parameter mechanism allows the convenient selection of an im-
plementation. For example, the declarations

dictionary<string,int> D1;

dictionary<string,int,skip list> D2;

declareD1 as a dictionary fromstring to int with the default implementation and select the
skip list implementation forD2.

The description of many algorithms leaves considerable freedom for the implementor,
i.e., a description typically defines a family of algorithms all with the same asymptotic worst
case running time and leaves decisions that do not affect worst case running time to the
implementor. The decisions may, however, dramatically affect the running time on inputs
that are not worst case. We have carefully explored the available opportunities; Sections 7.6
and 7.10 give particularly striking examples. We found it useful to concentrate on the best
and average case after getting the worst case “right”.

LEDA has its own memory manager. It provides efficient implementations of thenew
anddeleteoperators.

How efficient are the programs in LEDA? We give many tables of running times in this
book which show that LEDA programs are able to solve large problem instances. We made
comparisons, see Tables 1.1 and 1.2, and other people did, see for example [Ski98, Ski].
The comparisons show that our running times are competitive, despite the fact that LEDA
is more like a decathlon athlete than a specialist for a particular discipline.

1.6 History

We started the project in the fall of 1988. We spent the first six months on specifications and
on selecting our implementation language. Our test cases were priority queues, dictionaries,
partitions, and algorithms for shortest paths and minimum spanning trees. We came up
with the item concept as an abstraction of the notion “pointer into a data structure”. It
worked successfully for the three data types mentioned above and we are now using it
for most data types in LEDA. Concurrently with searching for the correct specifications
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Number of list entries: 100000

LIST<INT> LEDA STL

build list 0.020 sec 0.040 sec

pop and push 0.030 sec 0.030 sec

reversing 0.020 sec 0.030 sec

copy constr 0.050 sec 0.050 sec

assignment 0.020 sec 0.040 sec

clearing 0.000 sec 0.020 sec

sorting 0.130 sec 0.400 sec

sorting again 0.140 sec 0.330 sec

merging 0.030 sec 0.080 sec

unique 0.080 sec 0.080 sec

unique again 0.000 sec 0.010 sec

iteration 0.000 sec 0.000 sec

-------------------------------------

total 0.520 sec 1.110 sec

LIST<CLASS> LEDA STL

build list 0.090 sec 0.030 sec

pop and push 0.100 sec 0.030 sec

reversing 0.070 sec 0.030 sec

copy constr 0.140 sec 0.060 sec

assignment 0.120 sec 0.030 sec

clearing 0.080 sec 0.020 sec

sorting 0.770 sec 0.510 sec

sorting again 0.900 sec 0.380 sec

merging 0.200 sec 0.090 sec

unique 0.250 sec 0.100 sec

unique again 0.010 sec 0.000 sec

iteration 0.010 sec 0.000 sec

-------------------------------------

total 2.740 sec 1.280 sec

Table 1.1 A comparison of the list data type in LEDA and in the implementation of the Standard
Template Library [MS96] that comes with the GNU C++ compiler. The upper part compares
list<int> and the lower part compareslist<class>, where the objects of typeclassrequire several
words of storage. LEDA lists are faster for small objects and slower for large objects. This table
was generated by the program stlvs leda in LEDAROOT/demo/stl. You can perform your own
comparisons if your C++ compiler comes with an implementation of the STL. All running times
are in seconds.

we investigated several languages for their suitability as our implementation platform. We
looked at Smalltalk, Modula, Ada, Eiffel, and C++. We wanted a language that supported
abstract data types and type parameters (polymorphism) and that was widely available.
We wrote sample programs in each language. Based on our experiences we selected C++

because of its flexibility, expressive power, and availability.
A first publication about LEDA appeared in the conferences MFCS 1989 and ICALP

1990 [MN89, NM90]. Stefan N¨aher became the head of the LEDA project and he is the
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Type of network LEDA CG

random (4000 nodes 28000 edges) 0.31 0.11

CG1 (8002 nodes 12003 edges) 9.26 4.20

CG2 (8002 nodes 12001 edges) 0.11 0.73

AMO (4001 nodes 7998 edges) 0.05 1.74

Table 1.2 A comparison of the maxflow implementation in LEDA and the one by Cherkassky
and Goldberg [CG97, CG]. The latter implementation is generally considered the best code
available. We used four different kinds of graphs: random graphs and graphs generated by three
different generators. The generators CG1 and CG2 were suggested by Cherkassky and Goldberg
and the generator AMO was suggested by Ahuja, Magnanti, and Orlin. The generators are
discussed in detail in Section 7.10. All running times are in seconds. You may perform your own
experiments by running the program flowtest in LEDAROOT/demo/book/Intro and following
the instructions given in MAXFLOWREADME in the same directory.

main designer and implementer of LEDA. Progress reports appeared in [MN92, N¨ah93,
MN94b, MN95, BKM+95, MNU97, MN98b].

In the second half of 1989 and during 1990 Stefan N¨aher implemented a first version
of the combinatorial part (= data structures and graph algorithms) of LEDA (Version 1.0).
Then there were releases 2.0, 2.1, 2.2, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7. With the
appearance of this book we will release version 4.0. Each new release offered new func-
tionality, increased efficiency, and removed bugs.

LEDA runs on many different platforms (Unix, Windows, OS/2) and with many different
compilers.

In early 1995 LEDA Software GmbH was founded to market a commercial version of
LEDA. Christian Uhrig became the Chief Executive Officer. The company was renamed
to Algorithmic Solutions Software GmbH in late 1997 to reflect the fact that it not only
markets LEDA, but also other systems like, for example, AGD and CGAL, and that it also
develops algorithmic solutions for specific needs.

The research version is used at more than 1500 academic and research sites. Try the web-
sitehttp://www.mpi-sb.mpg.de/LEDA/DOWNLOADSTAT to find out whether the system
is already in use at your site.
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Foundations

We discuss the foundations of the LEDA system. We introduce some key concepts, such as
type, object, variable, value, item, and linear order, we relate these concepts to our imple-
mentation base C++, and we put forth our major design decisions. A superficial knowledge
of this chapter suffices for a first use of LEDA. We recommend that you read it quickly and
come back to it as needed.

The chapter is structured as follows. We first discuss the specification of data types. Then
we treat the concept “copy of an object” and its relation to assignment and parameter pass-
ing by value. The other kinds of parameter passing come next and sections on iteration
statements follow. We then tie data types to the class mechanism of C++. Type param-
eters, linear orders, equality, hashed types, and implementation parameters are the topics
of the next sections. Finally, we discuss some helpful small functions, management, error
handling, header and implementation files, compilation flags, and program checking.

2.1 Data Types

The most important concept is that of adata typeor simply type. A type T consists of a
set ofvalues, which we denoteval(T ), a set ofobjects, which we denoteobj(T ), and a
set of functions that can be applied to the objects of the type. An object may or may not
have aname. A named object is also called avariable and an object without a name is
called ananonymous object. An object is a region of storage that can hold a value of the
corresponding type.

The set of objects of a type varies during execution of a program. It is initially empty,
it grows as new objects are created (either by variable definitions or by applications of the
newoperator), and it shrinks as objects are destroyed.

16
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The values of a type form a set that exists independently of any program execution. We
define it using standard mathematical concepts and notation. When we refer to the values
of a type without reference to an object, we also useelementor instance, e.g., we say that
the number 5 is a value, an element, or an instance of typeint.

An object always holds a value of the appropriate type. The object is initialized when
it is created and the value may be modified by functions operating on the object. For an
objectx we usex also to denote the value ofx . This is a misuse of notation to which every
programmer is accustomed to.

In LEDA the specification (also called definition) of a data type consists of four parts:
a definition of the instances of the type, a description of how to create an object of the
type, the definition of the operations available on the objects of the type, and information
about the implementation. In the LEDA manual the four parts appear under the headers
Definition, Creation, Operations, and Implementation, respectively. Sometimes, there is
also a fifth section illustrating the use of the data type by an example. As an example we
give the complete specification of the parameterized data typestack<E> in Figure 2.1.

2.1.1 Definition
The first section of a specification defines the instances of the data type using standard
mathematical concepts and notation. It also introduces notation that is used in later sections
of the specification. We give some examples:

• An instance of typestring is a finite sequence of characters. The length of the
sequence is called thelengthof the string.

• An instance of typestack<E> is a sequence of elements of typeE . One end of the
sequence is designated as itstopand all insertions into and deletions from a stack take
place at its top end. The length of the sequence is called thesizeof the stack. A stack
of size zero is calledempty.

• An instance of typearray<E> is an injective mapping from an intervalI = [a .. b] of
integers into the set of variables of typeE . We call I the index set andE the element
type of the array. For an arrayA we useA(i) to denote the variable indexed byi , a ≤ i
≤ b.

• An instance of typeset<E> is a set of elements of typeE . We callE the element type
of the set;E must be linearly ordered. The number of elements in the set is called the
sizeof the set and a set of size zero is calledempty.

• An instance of typelist<E> is a sequence of list items (predefined item typelist item).
Each item contains an element of typeE . We use〈x〉 to denote an item with contentx .

Most data types in LEDA areparameterized, e.g., stacks, arrays, lists, and sets can be used
for an arbitrary element typeE and we will later see that dictionaries are defined in terms
of a key type and an information type. A concrete type is obtained from a parameterized
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Stacks (stack)

1. Definition

An instanceS of the parameterized data typestack<E> is a sequence of elements of data
typeE , called the element type ofS. Insertions or deletions of elements take place only at
one end of the sequence, called the top ofS. The size ofS is the length of the sequence, a
stack of size zero is called the empty stack.

2. Creation

stack<E> S; declares a variableS of typestack<E>. S is initialized with the
empty stack.

3. Operations

E S.top( ) returns the top element ofS.
Precondition: S is not empty.

void S.push(E x) addsx as new top element toS.

E S.pop( ) deletes and returns the top element ofS.
Precondition: S is not empty.

int S.size( ) returns the size ofS.

bool S.empty( ) returns true ifS is empty, false otherwise.

void S.clear( ) makesS the empty stack.

4. Implementation

Stacks are implemented by singly linked linear lists. All operations take timeO(1), except
clear which takes timeO(n), wheren is the size of the stack.

Figure 2.1 The specification of the typestack<E>.

type by substituting concrete types for the type parameter(s); this process is calledinstan-
tiation of the parameterized type. Soarray<string> are arrays of strings,set<int> are sets
of integers, andstack<set<int> ∗ > are stacks of pointers to sets of integers. Frequently, the
actual type parameters have to fulfill certain conditions, e.g., the element type of sets must
be linearly ordered. We discuss type parameters in detail in Section 2.8.

2.1.2 Creation
We discuss how objects are created and how their initial value is defined. We will see that
an object either has a name or is anonymous. We will also learn how the lifetime of an
object is determined.

A named object(also called variable) is introduced by a C++ variable definition. We give
some examples.
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string s;

introduces a variables of typestringand initializes it to the empty string.

stack<E> S;

introduces a variableS of typestack<E> and initializes it to the empty stack.

b stack<E> S(int n);

introduces a variableS of typeb stack<E> and initializes it to the empty stack. The stack
can hold a maximum ofn elements.

set<E> S;

introduces a variableS of typeset<E> and initializes it to the empty set.

array<E> A(int l,int u);

introduces a variableA of typearray<E> and initializes it to an injective function
a : [l .. u] −→ obj(E). Each object in the array is initialized by the default initialization of
type E ; this concept is defined below.

list<E> L;

introduces a variableL of type list<E> and initializes it to the empty list.

int i;

introduces a variable of typeint and initializes it to some value of typeint.
We always give variable definitions in their generic form, i.e., we use formal type names

for the type parameters (E in the definitions above) and formal arguments for the arguments
of the definition (int a, int b, and int n in the definitions above). Let us also see some
concrete forms.

string s("abc"); // initialized to "abc"

set<int> S; // initialized to empty set of integers

array<string> A(2,5); // array with index set [2..5],

// each entry is set to the empty string

b stack<int> S(100); // a stack capable of holding up to 100

// ints; initialized to the empty stack

The most general form of a variable definition in C++ is

T<T1,...,Tk> y(x1,...,xl).

It introduces a variable with namey of typeT<T1,..., Tk> and uses argumentsx1, . . . ,xl to
determine the initial value ofy. HereT is a parameterized type withk type parameters and
T1, . . . , Tk are concrete types. If any of the parameter lists is empty the corresponding pair
of brackets is to be omitted.

Two kinds of variable definitions are of particular importance: the definition with default
initialization and the definition with initialization by copying. Adefinition with default
initialization takes no argument and initializes the variable with thedefault valueof the
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type. The default value is typically the “simplest” value of the type, e.g., the empty string,
the empty set, the empty dictionary, . . . . We define the default value of a type in the section
with header Creation. Examples are:

string s; // initialized to the empty string

stack<int> S; // initialized to the empty stack

array<string> A; // initialized to the array with empty index set

The built-in types such aschar, int, float, double, and all pointer types are somewhat an
exception as they have no default value, e.g., the definition of an integer variable initializes
it with some integer value. This value may depend on the execution history. Some compilers
will initialize i to zero (more generally, 0 casted to the built-in type in question), but one
should not rely on this1.

We can now also explain the definition of an array. Each variable of the array is initialized
by the default initialization of the element type. If the element type has a default value (as
is true for all LEDA types), this value is taken and if it has no default value (as is true for
all built-in types), some value is taken. For example,array<list<E> > A(1, 2) definesA as
an array of lists of element typeE . Each entry of the array is initialized with the empty list.

A definition with initialization by copyingtakes a single argument of the same type and
initializes the variable with a copy of the argument. The syntactic form is

T<T1,...,Tk> y(x)

wherex refers to a value of typeT<T1,..., Tk>, i.e., x is either a variable name or more
generally an expression of typeT<T1,..., Tk>. An alternative syntactic format is

T<T1,...,Tk> y = x.

We give some examples.

stack<int> P(S); // initialized to a copy of S

set<string> U(V); // initialized to a copy of V

string s = t; // initialized to a copy of t

int i = j; // initialized to a copy of j

int h = 5; // initialized to a copy of 5

We have to postpone the general definition of what constitutes a copy to Section 2.3 and give
only some examples here. A copy of an integer is the integer itself and a copy of a string is
the string itself. A copy of an array is an array with the same index set but new variables.
The initial values of the new variables are copies of the values of the corresponding old
variables.

LEDA Rule 1 Definition with initialization by copying is available for every LEDA type. It
initializes the defined variable with a copy of the argument of the definition.

1 The C++ standard defines that variables specified static are automatically zero-initialized and that variables
specified automatic or register are not guaranteed to be initialized to a specified value.
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How long does a variable live? Thelifetimeof a named variable is either tied to the block
containing its definition (this is the default rule) or is the execution of the entire program (if
the variable is explicitly defined to be static). The first kind of variable is calledautomatic
in C++ and the second kind is calledstatic. Automatic variables are created and initialized
each time the flow of control reaches their definition and destroyed on exit from their block.
Static variables are created and initialized when the program execution starts and destroyed
when the program execution ends.

We turn toanonymous objectsnext. They are created by the operatornew; the operator
returns a pointer to the newly created object. The general syntactic format is

new T<T1,...,Tk> (x1,...,xl);

whereT is a parameterized type,T1, . . . , Tk are concrete types, andx1, . . . , xl are the
arguments for the initialization. Again, if any of the argument lists is empty then the cor-
responding pair of brackets is omitted. The expression returns a pointer to a new object of
typeT<T1,..., Tk>. The object is initialized as determined by the argumentsx1, . . . , xl. We
give an example.

stack<int> *sp = new stack<int>;

defines a pointer variablespand creates an anonymous object of typestack<int>. The stack
is initialized to the empty stack andsp is initialized to a pointer to this stack.

The lifetime of an object created bynew is not restricted to the scope in which it is
created. It extends till the end of the execution of the program unless the object is explicitly
destroyed by thedeleteoperator;deletecan only be applied to pointers returned bynewand
if it is applied to such a pointer, it destroys the object pointed to. We say more about the
destruction of objects in Section 2.3.

2.1.3 Operations
Every type comes with a set of operations that can be applied to the objects of the type. The
definition of an operation consists of two parts: the definition of its interface (= syntax) and
the definition of its effect (= semantics).

We specify theinterface of an operationessentially by means of the C++ function dec-
laration syntax. In this syntax the result type of the operation is followed by the operation
name which in turn is followed by the argument list specifying the type of each argument.
The result type of an operation returning no result isvoid. We extend this syntax by pre-
fixing the operation name by the name of an object to which the operation is being applied.
This facilitates the definition of the semantics. For example

void S.insert(E x);

defines the interface of the insert operation for typeset<E>; insert takes an argumentx of
type E and returns no result. The operation is applied to the set (with name)S.

E& A[int i];

defines the interface of the access operation for typearray<E>. Access takes an argument
i of type int and returns a variable of typeE . The operation is applied to arrayA.
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E S.pop();

defines the interface of the pop operation for typestack<E>. It takes no argument and
returns an element of typeE . The operation is applied to stackS.

int s.pos(string s1);

defines the interface of theposoperation for typestring. It takes an arguments1 of type
stringand returns an integer. The operation is applied to strings.

Thesemantics of an operationis defined using standard mathematical concepts and no-
tation. The complete definitions of our four example operations are:

void S.insert(E x) addsx to S.

E& A[int i ] returns the variableA(i). Precondition: a ≤ i ≤ b.

E S.pop( ) removes and returns the top element ofS. Precondition: S is not
empty.

int s.pos(string s1) returns−1 if s1 is not a substring ofs and returns the minimal
i , 0 ≤ i ≤s.length( )−1, such thats1 occurs as a substring ofs
starting at positioni , otherwise.

In the definition of the semantics we make use of the notation introduced in sections
Definition and Creation. For example, in the case of arrays the section Definition introduces
A(i) as the notation for the variable indexed byi and introducesa andb as the array bounds.

Frequently, an operation is only defined for a subset of all possible arguments, e.g., the
pop operation on stacks can only be applied to a non-empty stack. Thepreconditionof
an operation defines which conditions the arguments of an operation must satisfy. If the
precondition of an operation is violated then the effect of the operation is undefined. This
means thateverything can happen. The operation may terminate with an error message or
with an arbitrary result, it may not terminate at all, or it may result in abnormal termination
of the program. Does LEDA check preconditions? Sometimes it does and sometimes it does
not. For example, we check whether an array index is out of bounds or whether a pop from
an empty stack is attempted, but we do not check whether itemit belongs to dictionaryD
in D.inf (it). Checking the latter condition would increase the running time of the operation
form constant to logarithmic and is therefore not done. More generally, we do not check
preconditions that would change the order of the running time of an operation. All checks
can be turned off by the compile-time flag-DLEDA CHECKING OFF.

All types offer the assignment operator. For typeT this is the operator

T& operator=(const T&).
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The assignment operator is not listed under the operations of a type since all types have it
and since its semantics is defined in a uniform way as we will see in Section 2.3.

Our implementation base C++ allows overloading of operation and function names and
it allows optional arguments. We use both mechanisms. Anoverloaded function name
denotes different functions depending on the types of the arguments. For example, we have
two translate operations for points:

point p.translate(vector v);

point p.translate(double alpha,double dist);

The first operation translatesp by vectorv and the second operation translatesp in direction
alphaby distancedist.

An optional argumentof an operation is given a default value in the specification of the
operation. C++ allows only trailing arguments to be optional, i.e., if an operation hask
arguments,k ≥ 1, then the lastl, l ≥ 0, may be specified to be optional. An example is the
insert operation into lists. IfL is a list<E> then

list item L.insert(E x,list item it, int dir = after)

insertsx before (dir == before) or after (dir == after) item it into L. The default value of
dir is after, i.e., L.insert(x, it) is equivalent toL.insert(x, it, after).

2.1.4 Implementation
Under this header we give information about the implementation of the data type. We name
the data structure used, give a reference, list therunning timeof the operations, and state
thespace requirement. Here is an example.

The data type list is realized by doubly linked linear lists. All operations take constant
time except for the following operations:searchand rank take linear timeO(n), item(i)
takes timeO(i), bucketsort takes timeO(n + j − i) andsort takes timeO(n · c · logn)
wherec is the time complexity of the compare function.n is always the current length of
the list. The space requirement is 16+ 12n bytes.

It should be noted that the time bounds do not include the time needed for parameter
passing. The cost of passing a reference parameter is bounded by a constant and the cost
of passing a value parameter is the cost of copying the argument. We follow the custom to
account for parameter passing at the place of call.

Similarly, the space bound does not include the extra space needed for the elements con-
tained in the set, it only accounts for the space required by the data structure that realizes the
set. The extra space needed for an element is zero if the element fits into one machine word
and is the space requirement of the element otherwise. This reflects how parameterized data
types are implemented in LEDA. Values that fit exactly into one word are stored directly in
the data structure and values that do not fit exactly are stored indirectly through a pointer.
The details are given in Section 13.1.

The information about the space complexity allows us to compute the exact space require-
ment of a list of sizen. We give some examples. A set of typelist<int> andlist<list<int> ∗ >
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requires 16+ 12n bytes since integers and pointers fit exactly into a word. A list of type
list<list<int> > where thei -th list hasni elements, 1≤ i ≤ n, requires 16+ 12n +∑

1≤i≤n(16+ 12ni) bytes.
The information about time complexity is less specific than that for space. We only give

asymptotic bounds, i.e., bounds of the formO( f (n)) where f is a function ofn. A bound of
this form means that there are constantsc1 andc2 (independent ofn) such that the running
time on an instance of sizen is bounded byc1 + c2 · f (n). The constantsc1 andc2 are
not explicitly given. An asymptotic bound does not let us predict the actual running time
on a particular input (asc1 andc2 are not available); it does, however, give a feeling for
the behavior of an algorithm asn grows. In particular, if the running time isO(n) then
an input of twice the size requires at most twice the computing time, if the running time is
O(n2) then the computing time at most quadruples, and if it isO(logn) then the computing
time grows only by an additive constant asn doubles. Thus asymptotic bounds allow us to
extrapolate running times from smaller to larger problem instances.

Why do we not give explicit values for the constantsc1 andc2? The answer is simple, we
do not know them. They depend on the machine and compiler which you use (which we do
not know) and even for a fixed machine and compiler it is very difficult to determine them,
as machines and compilers are complex objects with complex behavior, e.g., machines have
pipelines, multilevel memories, and compilers use sophisticated optimization strategies. It
is conceivable that program analysis combined with a set of simple experiments allows
one to determine good approximations of the constants, see [FM97] for a first step in this
direction.

Our usual notion of running time is worst-case running time, i.e., if an operation is said
to have running timeO( f (n)) then it is guaranteed that the running time is bounded by
c1 + c2 · f (n) for every input of sizen and some constantsc1 andc2. Sometimes, running
times are classified as being expected (also called average) or amortized. We give some
examples.

The expected access time for maps is constant. This assumes that a random set is stored
in the map.

The expected time to construct the convex hull ofn points in 3-dimensional space is
O(n logn). The algorithm is randomized.

The amortized running time ofinsertanddecreaseprio in priority queues is constant and
the amortized running time ofdeletemin is O(logn).

In the remainder of this section we explain the terms expected and amortized. Anamor-
tized time bound is valid for a sequence of operations but not for an individual operation.
More precisely, assume that we execute a sequenceop1, op2, . . . , opm of operations on an
object D, whereop1 constructsD. Let ni be the size ofD before thei -th operation and
assume that thei -th operation has amortized costO(Ti (ni )). Then the total running time
for the sequenceop1, op2, . . . ,opm is

O(m +
∑

1≤i≤m

Ti (ni)),



2.1 Data Types 25

i.e., a summation of the amortized time bounds for the individual operations yields a bound
for the sequence of the operations. Note that this does not preclude that thei -th operation
takes much longer thanTi (ni ) for somei , it only states that the entire sequence runs in the
bound stated. However, if thei -th operation takes longer thanTi (ni) then the preceding
operations took less than their allowed time.

We give an example: in priority queues (with the Fibonacci heap implementation) the
amortized running time ofinsert and decreaseprio is constant and the amortized cost
of deletemin is O(logn). Thus an arbitrary sequence ofn insert, n deletemin, andm
decreaseprio operations takes timeO(m + n logn).

We turn toexpectedrunning times next. There are two ways to compute expected running
times. Either one postulates a probability distribution on the inputs or the algorithm is
randomized, i.e., uses random choices internally.

Assume first that we have a probability distribution on the inputs, i.e., ifx is any conceiv-
able input of sizen then prob(x) is the probability thatx actually occurs as an input. The
expected running timēT (n) is computed as a weighted sum̄T (n) = ∑

x prob(x) · T (x),

wherex ranges over all inputs of sizen and T (x) denotes the running time on inputx .
We refer the reader to any of the textbooks [AHU83, CLR90, Meh84b] for a more detailed
treatment. We usually assume theuniform distribution, i.e., if x andy are two inputs of the
same size thenprob(x) = prob(y). It is time for an example.

The expected access time for maps is constant. Amap<I, E> realizes a partial function
m from some typeI to some other typeE ; the index typeI must be either the typeint or
a pointer or item type. LetD be the domain ofm, i.e., the set of arguments for whichm is
defined. The uniform distribution assumption is then that all subsetsD of I of sizen are
equally likely. The average running time is computed with respect to this distribution.

Two words of caution are in order at this point. Small average running time does not
preclude the possibility of outliers, i.e., inputs for which the actual running time exceeds
the average running time by a large amount. Also, average running time is stated with
respect to a particular probability distribution on the inputs. This distribution is probably
not the distribution from which your inputs are drawn. So be careful.

A randomizedalgorithm uses random choices to control its execution. For example, one
of our convex hull algorithms takes as input a set of points in the plane, permutes the points
randomly, and then computes the hull in an incremental fashion. The running time and
maybe also the output of a randomized algorithm depends on the random choices made.
Averaging over the random choices yields the expected running time of the algorithm. Note
that we are only averaging with respect to the random choices made by the algorithm, and
do not average with respect to inputs. In fact, time bound of randomized algorithms are
worst-case with respect to inputs. As of this writing all randomized algorithms in LEDA
are of the so-calledLas Vegasstyle, i.e., their output is independent of the random choices
made. For example, the convex hull algorithm always computes the convex hull. If the
output of a randomized algorithm depends on the random choices then the algorithm is
calledMonte Carlostyle. An example of a Monte Carlo style randomized algorithm is the
primality tests of Solovay and Strassen [SS77] and Rabin [Rab80]. They take two integersn



26 Foundations

ands and test the primality ofn. If the algorithms declaren non-prime thenn is non-prime.
If they declaren prime then this answer is correct with probability at least 1−2−s , i.e., there
is chance that the answer is incorrect. However, this chance is miniscule (less than 2−100

for s = 100). The expected running time isO(s log3 n).

2.2 Item Types

Item types are ubiquitous in LEDA. We have dicitems (= items in dictionaries), pqitems
(= items in priority queues), nodes and edges (= items in graphs), points, segments, and
lines (= basic geometric items), and many others. What is an item?

Items are simply addresses of containers and item variables are variables that can store
items. In other words, item types are essentially C++ pointer types. We say essentially,
because some item types are not implemented as pointer types. We come back to this point
below.

A (value of type)dic item is the address of a diccontainer and a (value of type)point
is the address of a pointcontainer. A diccontainer has a key and an information field
and additional fields that are needed for the data structure underlying the dictionary and a
point container has fields for thex- andy-coordinate and additional fields for internal use.
In C++ notation we have as a first approximation (the details are different):

class dic container

{ K key;

I inf;

// additional fields required for the underlying data structure

}

typedef dic container* dic item;

class point container

{ double x, y;

// additional fields required for internal use

}

typedef point container* point;

// Warning: this is NOT the actual definition of point

We distinguish betweendependentand independentitem types. The containers corre-
sponding to a dependent item type can only live as part of a collection of containers, e.g.,
a dictionary-container can only exist as part of a dictionary, a priority-queue-container can
only exist as part of a priority queue, and a node-container can only exist as part of a graph.
A container of an independent item type is self-sufficient and needs no “parent type” to
justify its existence. Points, segments, and lines are examples of independent item types.
We discuss the common properties of all item types now and treat the special properties of
dependent and independent item types afterwards. We call an item of an independent or
dependent item type an independent or dependent item, respectively.

An item is the address of a container. We refer to the values stored in the container as
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attributesof the item, e.g., a point has anx - and ay-coordinate and a dicitem has a key
and an information. We have functions that allow us to read the attributes of an item. For a
point p, p.xcoord( ) returns thex-coordinate of the point, for a segments, s.start( ) returns
the start point of the segment, and for a dicitem it which is part of a dictionaryD, D.key(it)
returns the key of the item. Note the syntactic difference: for dependent items the parent
object is the main argument of the access function and for independent items the item itself
is the main argument.

We will systematically blur the distinction between items and containers. The previous
paragraph was the first step. We write “a point has anx-coordinate” instead of the more
verbose “a point refers to a container which stores anx-coordinate” and “a dicitem has a
key” instead of the more verbose “a dicitem refers to a container that stores a key”. We also
say “a dicitem which is part of a dictionaryD” instead of the more verbose “a dicitem that
refers to a container that is part of a dictionaryD”. We will see more examples below. For
example, we say that an insertD.insert(k, i) into a dictionary “adds an item with keyk and
informationi to the dictionary and returns it” instead of the more verbose “adds a container
with key k and informationi to the dictionary and returns the address of the container”.
Our shorthand makes many statements shorter and easier to read but can sometimes cause
confusion. Going back to the longhand should always resolve the confusion.

We said above that item types are essentially C++ pointer types. The actual implemen-
tation may be different and frequently is. In the current implementation of LEDA all de-
pendent item types are realized directly as pointer types, e.g., the typedic item is defined
asdic container∗, and all independent item types are realized as classes whose only data
member is a pointer to the corresponding container class.

The reason for the distinction is storage management which is harder for containers asso-
ciated with independent item types. For example, a dictionary-container can be returned to
free store precisely if it is either deleted from the dictionary containing it or if the lifetime of
the dictionary containing it ends. Both situations are easily recognized. On the other hand,
a point-container can be returned to free store if no point points to it anymore. In order to
recognize this situation we make every point-container know how many points point to it.
This is called a reference count. The count is updated by the operations on points, e.g., an
assignmentp = q increases the count of the container pointed to byq and decreases the
count of the container pointed to byp. When the count of a container reaches zero it can be
returned to free store. In order to make all of this transparent to the user of typepoint it is
necessary to encapsulate the pointer in a class and to redefine the pointer operations assign-
ment and access. This technique is known under the namehandle typesand is discussed in
detail in Section 13.7.

All item types offer the assignment operator and the equality predicate. Assume thatT
is an item type and thatit1 andit2 are variables of typeT . The assignment

it1 = it2;

assigns the value ofit2 to it1 and returns a reference toit1. This is simply the assignment
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between pointers. In the case of handle types the assignment has the side effect of updating
the reference counters of the objects pointed to byit1 andit2.

The equality predicate (operatorbool operator== (constT & , constT & )) is more sub-
tle. For dependent item types it is the equality between values (i.e., pointers) but for inde-
pendent item types it is usually defined differently. For example, two points in the Euclidean
plane are equal if they agree in their Euclidean coordinates.

point p(2.0,3.0); // a point with coordinates 2.0 and 3.0

point q(2.0,3.0); // another point with the same coordinates

p == q; // evaluates to true

Note thatp andq are not equal as pointers. They point to distinct point-containers. How-
ever, they agree in their Euclidean coordinates and therefore the two points are said to be
equal. For independent item types we also have theidentitypredicate (realized by function
bool identical(constT & , constT & )). It tests for equality of values (i.e., pointers). Thus
identical(p, q) evaluates to false. We summarize in:

LEDA Rule 2

(a) For independent item types the identity predicate is equality between values. The equal-
ity predicate is defined individually for each item type. It is usually equality between
attributes.

(b) For dependent item types the equality predicate is equality between values.

2.2.1 Dependent Item Types
Many advanced data types in LEDA are defined as collections of items, e.g., a dictionary is
a collection of dicitems and a graph is defined in terms of nodes and edges. This collection
usually has some combinatorial structure imposed on it, e.g., it may be arranged in the form
of a sequence, or in the form of a tree, or in the form of a general graph. We give some
examples.

An instance of typedictionary<K , I> is a collection of dicitems, each of which has an
associated key of typeK and an associated information of typeI . The keys of distinct items
are distinct. We use〈k, i〉 to denote an item with keyk and informationi .

An instance of typelist<E> is a sequence of listitems, each of which has an associated
information of typeE . We use〈e〉 to denote an item with informatione.

An instance of typesortseq<K , I> is a sequence of seqitems, each of which has an
associated key of typeK and an associated information of typeI . The key typeK must
be linearly ordered and the keys of the items in the sequence increase monotonically from
front to rear. We use〈k, i〉 to denote an item with keyk and informationi .

An instance of typegraph is a list of nodes and a list of edges. Each edge has a source
node and a target node. We use(v, w) to denote an edge with sourcev and targetw.

An instance of typepartition is a collection of partitionitems and a partition of these
items into so-calledblocks.

In all examples above an instance of the complex data type is a collection of items. This
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collection has some combinatorial structure: lists and sorted sequences are sequences of
items, the items of a partition are arranged into disjoint blocks, and the nodes and edges of a
graph form a graph. The items have zero or more attributes: dicitems and seqitems have a
key and an information, an edge has a source and a target node, whereas a partitionitem has
no attribute. An attribute either helps to define the combinatorial structure, as in the case
of graphs, or associates additional information with an item, as in the case of dictionaries,
lists, and sorted sequences. The combinatorial structure is either defined by referring to
standard mathematical concepts, such as set, sequence, or tree, or by using attributes, e.g.,
an edge has a source and a target. The values of the attributes belong to certain types; these
types are usually type parameters. The type parameters and the attribute values may have to
fulfill certain constraints, e.g., sorted sequences require their key type to be linearly ordered,
dictionaries require the keys of distinct items to be distinct, and the keys of the items in a
sorted sequence must be monotonically increasing from front to rear.

Many operations on dictionaries (and similarly, for the other complex data types of
LEDA) have items in their interface, e.g., aninsert into a dictionary returns an item, and
a changeinf takes an item and a new value for its associated information. Why have we
chosen this design which deviates from the specifications usually made in data structure text
books? The main reason is efficiency.

Consider the following popular alternative. It defines a dictionary as a partial function
from some typeK to some other typeI , or alternatively, as a set of pairs fromK ×I , i.e.,
as the graph of the function. In an implementation each pair(k, i) in the dictionary is
stored in some location of memory. It is frequently useful that the pair(k, i) cannot only
be accessed through the keyk but also through the location where it is stored, e.g., we may
want to lookup the informationi associated with keyk (this involves a search in the data
structure), then compute with the valuei a new valuei ′, and finally associate the new value
with k. This either involves another search in the data structure or, if the lookup returned
the location where the pair(k, i) is stored, it can be done by direct access. Of course, the
second solution is more efficient and we therefore wanted to support it in LEDA.

We provide direct access through dicitems. A dicitem is the address of a dictionary
container and can be stored in a dicitem variable. The key and information stored in a
dictionary container can be accessed directly through a dicitem variable.

Doesn’t this introduce all the dangers of pointers, e.g., the potential to change information
which is essential to the correct functioning of the underlying data structure? The answer
is no, because the access to dictionary containers through dictionary items is restricted,
e.g., the access to a key of a dictionary container is read-only. In this way, items give the
efficiency of pointers but exclude most of their misuse, e.g., given a dicitem its associated
key and information can be accessed in constant time, i.e., we have the efficiency of pointer
access, but the key of a dicitem cannot be changed (as this would probably corrupt the
underlying data structure), i.e., one of the dangers of pointers is avoided. The wish to have
the efficiency of pointer access without its dangers was our main motivation for introducing
items into the signatures of operations on complex data types.
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Let us next see some operations involving items. We use dictionaries as a typical exam-
ple. The operations

dic item D.lookup(K k);

I D.inf(dic item it);

void D.change inf(dic item it,I j);

have the following semantics:D.lookup(k) returns the item2, sayit, with keyk in dictionary
D, D.inf (it) extracts the information fromit, and a new informationj is associated with
it by D.changeinf (it, j ). Note that only the first operation involves a search in the data
structure realizingD and that the other two operations access the item directly.

Let us have a look at the insert operation for dictionaries next:

dic item D.insert(K k,I i);

There are two cases to consider. IfD contains an itemit whose key is equal tok then the
information associated withit is changed toi andit is returned. IfD contains no such item,
then anewcontainer, i.e., a container which is not part in any dictionary, is added toD,
this container is made to contain(k, i), and its address is returned. In the specification of
dictionaries all of this is abbreviated to

dic item D.insert(K k, I i) associates the informationi with the keyk. If there is an
item 〈k, j〉 in D then j is replaced byi , else a new item
〈k, i〉 is added toD. In both cases the item is returned.

For any dependent item type the set of values of the type contains the special valuenil3.
This value never belongs to any collection and no attributes are ever defined for it. We
use it frequently as the return value for function calls that fail in some sense. For example
D.lookup(k) returnsnil if there is no item with keyk in D.

Containers corresponding to dependent item types cannot exist outside collections. As-
sume, for example, that the container referred to by dicitem it belongs to some dictionary
D and is deleted fromD by D.del item(it). This removes the container fromD and destroys
it. It is now illegal4 to access the fields of this container.

LEDA Rule 3 It is illegal to access the attributes of an item which refers to a container
that has been destroyed or to access the attributes of the item nil.

In the definition of operations involving items this axiom frequently appears in the form
of a precondition.

I D.inf (dic item it) returns the information of itemit.
Precondition: it must belong to dictionaryD.

2 The operation returnsnil if there is no item with keyk in D.
3 Recall that all dependent item types are pointer types internally.
4 Of course, as in ordinary life, illegal actions can be performed anyway. The outcome of an illegal action is hard to

predict. You may be lucky and read the values that existed before the container was destroyed, or you may be
unlucky and read some random value, or you might get caught and generate a segmentation fault.
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2.2.2 Independent Item Types
We now come to independent item types. Points, lines, segments, integers, rationals, and
reals are examples of independent item types. We discuss points.

A point is an item with two attributes of type double, called thex- andy-coordinate of the
point, respectively5. We use(a, b) to denote a point withx -coordinatea andy-coordinate
b.

Note that we are not saying that a point is a pair of doubles. We say: a point is an item
and this item has two double attributes, namely the coordinates of the point. In other words,
a point is logically a pointer to a container that contains two doubles (and additional fields
for internal use). This design has several desirable implications:

• Assignment between points takes constant time. This is particularly important for
types where the attributes are large, e.g., arbitrary precision integers.

• Points can be tested for identity (= same pointer value) and for equality (= same
attribute values). The identity test is cheap.

• The storage management for points and all other independent item types is transparent
to the LEDA user.

We have functions to query the attributes of a point:p.xcoord( ) returns thex-coordinate
and p.ycoord( ) returns they-coordinate. We also have operations to construct new points
from already constructed points, e.g.,

point p.translate(double a,double b);

returns a new point(p.xcoord( ) + a, p.ycoord( ) + b), i.e., it returns an item with attributes
p.xcoord( ) + a and p.ycoord( ) + b. It is important to note thattranslatedoes not change
the pointp. In fact, there is no operation on points that changes the attributes of an already
existing point. This is true for all independent item types.

LEDA Rule 4 Independent item types offer no operations that allow to change attributes;
the attributes are immutable.

We were led to this rule by programs of the following kind (which is not a LEDA pro-
gram):

q = p;

p.change x(a); // change x-coordinate of p to a

After the assignmentq and p point to the same point-container and hence changingp’s x-
coordinate also changesq ’s x-coordinate, a dangerous side-effect that can lead to errors that
are very hard to find6. We therefore wanted to exclude this possibility of error. We explored
two alternatives. The first alternative redefines the semantics of the assignment statement to
mean component-wise assignment and the second alternative forbids operations that change

5 There are also points with rational coordinates and points in higher dimensional space.
6 Both authors spent many hours finding errors of this kind.
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attributes. We explored both alternatives in a number of example programs, adopted the
second alternative7, and casted it into the rule above.

A definition of an independent item always initializes all attributes of the item. For
example,

point p(2.0,3.0);

point q; // q has coordinates but it is not known which.

defines a pointp with coordinates(2.0, 3.0) and a pointq. The coordinates of pointq are
defined but their exact value is undetermined. This is the same convention as for built-in
types.

LEDA Rule 5 The attributes of an independent item are always defined. In particular,
definition with default initialization initializes all attributes. A type may specify the initial
values but it does not have to.

We explored alternatives to this rule. For example, we considered the rule that the initial
value of an attribute is always the default value of the corresponding type. This rule sounds
elegant but we did not adopt it because of the following example. We mentioned already
that the default value of typedoubleis undefined and that the default value of typerational
is zero. Thus a point with rational coordinates (typerat point) would be initialized to the
origin and a point with floating point coordinates (typepoint) would be initialized to some
unspecified point. This would be confusing and a source of error. The rule above helps to
avoid this error by encouraging the practice that objects of an independent item type are to
be initialized explicitly.

2.3 Copy, Assignment, and Value Parameters

We now come to a central concept of C++ and hence LEDA, the notion of acopy. Its
importance stems from the fact that several other key concepts are defined in terms of it,
namely assignment, creation with initialization by copying, parameter passing by value,
and function value return. We give these definitions first and only afterwards define what
it means to copy a value. At the end of the section we also establish a relation between
destruction and copying.

We distinguish between primitive types and non-primitive types. All built-in types, all
pointer types, and all item types are primitive. For primitive types the definition of a copy
is trivial, for non-primitive types the definition is somewhat involved. Fortunately, most
LEDA users will never feel the need to copy a non-primitive object and hence can skip the
non-trivial parts of this section.

We start by defining assignment and creation with initialization by copying in terms of
copying. This will also reveal a close connection between assignment and creation with

7 This does not preclude the possibility that other examples would have led us to a different conclusion.
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initialization. The designers of C++ decided that definition with initialization is defined
in terms of copy and we decided that assignment should also be defined in terms of copy.
Observe that C++ allows one to implement the assignment operator for a class in an arbitrary
way. We decided that the assignment operator should have a uniform semantics for all
LEDA types.

LEDA Rule 6 An assignmentx = A assigns a copy of the value of expressionA to the
variablex .

C++Axiom 1 A definitionT x = A creates a new variablex of typeT and initializes it with
a copy of the value ofA. An alternative syntactic form isT x(A). The statementnew T(A)

returns a pointer to a newly created anonymous object of typeT . The object is initialized
with a copy of the value ofA.

The axioms above imply that the code fragmentsT x; x = A andT x = A are equiv-
alent, i.e., creation with default initialization followed by an assignment is equivalent to
creation with initialization by copying8. The next axiom ties parameter passing by value
and value return to definition with initialization and hence to copying.

C++ Axiom 2
a) A value parameter of typeT and namex is specified asT x. Let A be an actual param-
eter, i.e.,A is an expression of typeT . Parameter passing is equivalent to the definitionT

x = A.
b) Let f be a function with return typeT and letreturn A be a return statement in the
body of f ; A is an expression of typeT . Function value return is equivalent to the definition
T x = A wherex is a name invented by the compiler.x is called a temporary variable.

Now that we have seen so many references to the notion of copy of a value, it is time to
define it. A copy of a natural number is simply the number itself. More generally, this is
true for all so-calledprimitive types.

LEDA Rule 7

(a) All built-in types, all pointer types, and all item types are primitive.
(b) A copy of a value of a primitive type is the value itself.

We conclude, that the primitive types behave exactly like the built-in types and hence
if you understand what copy, assignment, parameter passing by value, and function value
return mean for the built-in types, you also understand them for all primitive types. For
non-primitive types the definition of a copy is more complex and making a copy is usually
a non-constant time operation. Fortunately, the copy operation for non-primitive types is
rarely needed. We give the following advice.

Advice: Avoid assignment, initialization by copying, parameter passing by value, and

8 This assumes that both kinds of creations are defined for the typeT .
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function value return for non-primitive types. Also exercise care when using a non-primitive
type as an actual type parameter.

// read on, if you plan to use any of the statements below

L1 = L2; // L1 and L2 are lists

int f(list<int> A); // non-primitive value parameter

list<int> f(); // non-primitive return value

dictionary<string,list<int> > D; // non-primitive type parameter

The values of non-primitive types exhibit structure, e.g., a value of typestack<E> is a
sequence of elements of typeE , a value of typearray<E> is a set of variables of typeE
indexed by an interval of integers, and a value of typelist<E> is a sequence of list items
each with an associated element of typeE . Therefore, non-primitive types are also called
structured. A copy of a value of a structured type is similar but not identical to the original
in the same sense as the Xerox-copy of a piece of paper is similar but not identical to the
original; it has the same content but is on a different piece of paper.

We distinguish two kinds of structured types,item-basedandnon-item-based. A struc-
tured type is called item-based if its values are defined as collections of items. Dictionaries,
sorted sequences, and lists are examples of item-based structured types, and arrays and
sets are examples of non-item-based structured types. We also saysimple-structuredtype
instead of non-item-based structured type.

LEDA Rule 8

(a) A valuex of a simple-structured type is a set or sequence of elements or variables of
some typeE . A copy ofx is a component-wise copy.

(b) A copy of a variable is a new variable of the same type, initialized with a copy of the
value of the original.

We give some examples. Copying the stack(1, 4, 2) produces the stack(1, 4, 2), copying
an array<int> with index set [1.. 3] means creating three new integer variables indexed
by the integers one to three and initializing the variables with copies of the values of the
corresponding variable in the original, and copying astack<dictionary<K , I> ∗ > produces
a stack with the same length and the same pointer values. The following code fragment
shows that a copy of a value of a structured type is distinct from the original.

array<int> A(0,2);

array<int> B = A;

int* p = A[0];

int* q = B[0];

p == q; // evaluates to false

We next turn to item-based structured types.

LEDA Rule 9 A value of an item-based structured type is a structured collection of items
each of which has zero or more attributes. A copy of such a value is a collection of new
items, one for each item in the original. The combinatorial structure imposed on the new
items is isomorphic to the structure of the original. Every attribute of a new item which
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does not encode combinatorial structure is set to a copy of the corresponding attribute of
the corresponding item in the original.

Again we give some examples. Copying alist<E> of length 5 means creating five new
list items, arranging these items in the form of a list, and setting the contents of thei -th
new item, 1≤ i ≤ 5, to a copy of the contents of thei -th item in the original. To copy
a graph (typegraph) with n nodes andm edges means creatingn new nodes andm new
edges and creating the isomorphic graph structure on them. To copy aGRAPH<E1, E2>9

means copying the underlying graph and associating with each new node or edge a copy of
the variable associated with the corresponding original node or edge. According to LEDA
Rule 8 this means creating a new variable and initializing it with a copy of the value of the
old variable.

The programming language literature sometimes uses the notions ofshallowanddeep
copy. We want to relate these notions to the LEDA concept of a copy. Consider a structure
nodecontainerconsisting of a pointer to a node container and a pointer to some other type.

class node container

{ node container* succ;

E* content;

}

Such a structure may, for example, arise in the implementation of a singly linked list; one
pointer is used for the successor node and the other pointer is used for the the content,
i.e., the list has typelist<E ∗ > for some typeE . A shallow copy of a node is a new node
whose two fields are initialized by component-wise assignment. A deep copy of a node is
a copy of the entire region of storage reachable from the node, i.e., both kinds of pointers
are followed when making a deep copy. In other words, a shallow copy follows no pointer,
a deep copy follows all pointers. Our notion of copying is more semantically oriented.
Copying alist<E ∗ > of n items means creatingn new items (this involves following the
successor pointers), establishing a list structure on them, and setting the content attribute of
each item to a copy of the contents of the corresponding item in the original. Since the type
E∗ is primitive (recall that all pointer types are primitive) this is tantamount to setting the
contents of any new item to the contents of the corresponding old item. In particular, no
copying of values of typeE takes place. In other words, when making a copy of alist<E ∗ >
we follow successor pointers as if making a deep copy, but we do not follow theE∗ pointers
as if making a shallow copy.

Parameter passing by value involves copying. Since most arguments to operations on
complex data types have value parameters, this has to be taken into account when read-
ing the specifications of operations on data types. Consider, for example, the operation
D.insert(k, i) for dictionaries. It takes a keyk and an informationi , adds a new item〈k, i〉
to D and returns the new item10. Actually, this is not quite true. The truth is that the new

9 A GRAPH<E1, E2> is a graph where each node and edge has an associated variable of typeE1andE2,
respectively.

10 We assume for simplicity, thatD contains no item with keyk.
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item contains a copy ofk and a copy ofi . For primitive types a value and a copy of it are
identical and hence the sentence specifying the semantics ofinsertcan be taken literally. For
non-primitive types copies and originals are distinct and hence the sentence specifying the
semantics ofinsert is misleading. We should say “adds a new item〈copy ofk, copy ofi〉 to
D” instead of “adds a new item〈k, i〉 to D”. We have decided to suppress the words “copy
of” for the sake of brevity11. The following example shows the effect of copying.

dictionary<string,dictionary<int,int> > M;

dictionary<int,int> D;

dic item it = D.insert(1,1);

M.insert("Ulli",D);

M.lookup("Ulli").inf(it); // illegal

D.change inf(it,2);

M.lookup("Ulli").access(1); // returns 1

D.insert(2,2);

M.lookup("Ulli").lookup(2); // returns nil

The insertion ofD into M stores a copy ofD in M. The itemit belongs toD but not to the
copy of D. Thus querying itsinf -attribute in the copy ofD returned byM.lookup(”Ulli ” )
is illegal. The operationD.changeinf (it, 2) changes theinf -attribute ofit to 2; this has no
effect on the copy ofD stored inM and hence the access operation in the next line returns
1. Similarly, the second insertion intoD has no effect on the copy and hence the lookup in
the last line returnsnil.

When the lifetime of an object ends it isdestructed. The lifetime of a named object ends
either at the end of the block where it was defined (this is the default rule) or when the
program terminates (if declared static). The life of an anonymous object is ended by a call
of delete. We need to say what it means to destruct an object. For LEDA-objects there is a
simple rule.

LEDA Rule 10 When a LEDA-object is destructed the space allocated for the object is
freed. This is exactly the space that would be copied when a copy of the object were made.

2.4 More on Argument Passing and Function Value Return

C++ knows two kinds of parameter passing, by value and by reference. Similarly, a function
may return its result by value or by reference. We have already discussed value arguments
and value results. We now review reference arguments and reference results and at the
end of the section discuss functions as arguments. This section contains no material that is

11 In the early versions of LEDA only primitive types were allowed as type parameters and hence there was no need
for the words “copy of”. When we allowed non-primitive types as type parameters we decided to leave the
specification ofinsertand many other operations unchanged and to only make one global remark.
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specific for LEDA; it is just a short review of reference parameters, reference results, and
function arguments in C++.

The specification of a formal parameter has one of the three forms:

T x (value parameter of typeT ),
T& x (reference parameter of typeT ),
const T& x (constant reference parameter of typeT ).

The qualifierconst in the last form specifies that it is illegal to modify the value of the
parameter in the body of the procedure. The compiler attempts to verify that this is indeed
the case. LetA be the actual parameter corresponding to formal parameterx . Parameter
passing is tantamount to the definitionT x = A in the case of a value parameter and to the
definitionT& x = A in the case of a reference parameter. We already know the semantics
of T x = A: a new variablex of typeT is created and initialized with a copy of the value of
expressionA. The definitionT& x = A does not define a new variable. Rather it introduces
x as an additional name for the object denoted byA. Note that the argumentA must denote
an object in the case of a reference parameter. In either case the lifetime ofx ends when the
function call terminates.

Argument passing by reference must be used for parameters whose value is to be changed
by the function. For arguments that are not to be changed by the function one may use either
a value parameter12 or a constant reference parameter. Note, however, that passing by value
makes a copy of the argument and that copying a “large” value, e.g., a graph, list, or array,
is expensive. Moreover, we usually want the function to work on the original of a value and
not on a copy. We therefore advise to specify arguments of non-primitive types either as
reference parameters or as constant reference parameters and to use value parameters only
for primitive types. In our own code we very rarely pass objects of non-primitive type by
value. If we do then we usually add the comment: “Yes, we actually want to work on a
copy”.

An example for the use of a constant reference parameter is

void DIJKSTRA(const graph& G, node s, const edge array<int>& cost,

node array<int>& dist, node array<edge>& pred)

This function13 takes a graphG, a nodes of G, a non-negative cost function on the edges of
G, and computes the distance of each vertex from the source (indist). Also for each vertex
v 6= s, pred[v] is the last edge on a shortest path froms to v. The constant qualifiers ensure
thatDIJKSTRAdoes not changeG andcost(although they are reference parameters). What
would happen if we changedG to a value parameter? Well, we would pass a copy ofG
instead ofG itself. Since a copy of a graph has new nodes and edges,s is not a node of
the copy andcost is not defined for the edges of a copy. The function would fail ifG was
passed by value. Thus, it is essential thatG is passed by reference.

Parameter passing moves information into a function and function value return moves

12 It is legal to assign to a variable that is defined as a value parameter. Such an assignment does not affect the value
of the actual parameter.

13 See Section 6.6 for a detailed discussion of this function.
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information out of a function. Consider the call of a functionf with return typeT or T &
for some typeT and assume that the call terminates with the return statementreturn A.
The call is equivalent to the definition of a temporaryt which is initialized with A, i.e.,
return A amounts to eitherT t = A or T& t = A. The temporary replaces the function
call.

Let us go through an example. LetT be any type. We define four functions with the four
combinations of return value and parameter specification.

T f1(T x) { return x; }

T f2(T& x) { return x; }

T& f3(T& x) { return x; }

T& f4(T x) { return x; }

// illegal, since a reference to a local variable is returned

Let y andz be objects of typeT . The statement

z = f1(y);

copiesy three times, first fromy to the formal parameterx (value argument), then fromx
to a temporaryt (value return), and finally fromt to z (assignment). In

z = f2(y);

y is copied only twice, first fromy to a temporary (value return) and then from the tempo-
rary intoz (assignment).

z = f3(y);

copiesy once, namely fromy into z (assignment). Sincef3 returns a reference to an object
of typeT it can also be used on the left-hand side of an assignment. So

f3(y) = z;

assignsz to y.
Some operations takefunctions as arguments. A function argumentf with result typeT

and argument typesT1, . . . ,Tk is specified as

T(*f)(T1,T2,...,Tk)

The∗ reflects the fact that a pointer to the function is passed. As a concrete example let us
look at the bucket sort operation on lists with element typeE :

void L.bucket sort(int i,int j,int(*f)(E&));

requires a functionf with a reference parameter of typeE that maps each element ofL into
[i .. j ]. It sorts the items ofL into increasing order according tof , i.e., item〈x〉 is before
〈y〉 after the call if eitherf (x) < f (y) or f (x) = f (y) and〈x〉 precedes〈y〉 before the
call.
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2.5 Iteration

For many data types, LEDA offersiteration macrosthat allow to iterate over the elements
of a collection. These macros are similar to the C++ for-statement. We give some examples.
For all item-based types we have

forall items(it,D)

{ /* the items in D are successively assigned to it */ }

This iteration successively assigns all items inD to it and executes the loop body for each
one of them. For lists and sets we also have iteration statements that iterate over elements.

// L is a list<point>

point p;

forall(p,L)

{ /* the elements of L are successively assigned to p */ }.

For graphs we have statements to iterate over all nodes, all edges, all edges adjacent to a
given node,. . . , for example:

forall nodes(v,G)

{ /* the nodes of G are successively assigned to v*/ }

forall edges(e,G)

{ /* the edges of G are successively assigned to e*/ }

forall adj edges(e,v)

{ /* all edges adjacent to v are successively assigned to e */ }

It is dangerous to modify a collection while iterating over it. We have

LEDA Rule 11 An iteration over the items in a collectionC must not add new items toC.
It may delete the item under the iterator, but no other item. The attributes of the items inC
can be changed without restriction.

We give some examples:

// L is a list<int>

// delete all occurrences of 5

forall(it,L)

if ( L[it] == 5 ) L.del(it);

forall(it,L)

if ( L[it] == 5 ) L.del(L.succ(it)); // illegal

// add 1 to the elements following a 5

forall(it,L)

if ( L[it] == 5 ) L[L.succ(it)]++;

forall(it,L)

L.append(1); // infinite loop

// G is a graph;

//add a new node s and edges (s,v) for all nodes of G

node s = G.new node();

node v;

forall nodes(v,G) if (v != s) G.new edge(s,v);
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The iterations statements in LEDA are realized by macro expansion. This will be dis-
cussed in detail in Section 13.9. We give only one example here to motivate the rule above
and the rules to follow. Theforall itemsloop for lists

forall items(it,L) { <<body>> }

expands into a C++ for-statement. The expansion process introduces a new variableloopit
of type list item and initializes it with the first item ofL; a distinct variable is generated
for every loop by the expansion process. In each iteration of the loop,loopit is assigned to
it, loop it is advanced, and the loop body is executed. The loop terminates whenit has the
valuenil.

for (list item loop it = (L).first item();

it = loop it, loop it = (L).next item(loop it), it; )

{ <<body>> }

The fact that we use macro expansion to reduce the forall-loop to a C++ for-loop has two
consequences.

LEDA Rule 12 Break and continue statements can be used in forall-loops.

We give an example.

list item it;

forall items(it,L) if ( L[it] == 5 ) break;

if ( it ) // there is an occurrence of 5 in L

else // there is no occurrence of 5 in L

There is second consequence which is less pleasing. Consider

edge e;

forall(e,G.all edges()) { <<body>> }

where the functionG.all edges( ) returns a list of all edges ofG. The expansion process
will generate

for (list item loop it = (G.all edges()).first item();

it=loop it,loop it=(G.all edges()).next item(loop it),it;)

{ <<body>> }

and hence the functionG.all edges( ) is called in every iteration of the loop. This is certainly
not what is intended.

LEDA Rule 13 The data type argument in an iteration statement must not be a function
call that produces an object of the data type but an object of the data type itself.

The correct way to write the loop above is

list<edge> E = G.all edges();

edge e;

forall(e,E) { <<body>> }
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or even simpler

forall edges(e,G) { <<body>> }

2.6 STL Style Iterators

STL (Standard Template Library [MS96]) is a library of basic data types and algorithms
that is part of the C++ standard. STL has a concept callediterators that is related to, but
different from LEDA’s item concept. In STL the forall-items loop for alist<int> is written
as

for (list<int>::iterator it = L.begin(); it != L.end(); it++)

{ <<body>> }

In the loop body the content of the iterator can be accessed by∗it; in LEDA one writesL[it]
to access the content ofit.

Many LEDA data structures offer also STL style iterators. This feature is still experi-
mental and we refer the user to the manual for details.

2.7 Data Types and C++

LEDA’s implementation base is C++. We show in this section how abstract data types can
be realized by theclass mechanismof C++. We do so by giving a complete implementation
of the data type stack which we specified at the beginning of this chapter. We also give
the reader a first impression of LEDA’s structure and we introduce the reader to Lweb and
noweb.

A C++ class consists ofdata membersandfunction members. The data members define
how the values of the class are represented and the function members define the operations
available on the class. Classes may be parameterized. We now define a parameterized class
stack<E> that realizes the LEDA data type with the same name.

〈stack.c〉�
template <class E> // E is the type parameter of stack

class stack

{ private:

〈data members〉
public:

〈function members〉
};
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Figure 2.2 Lweb: lweave transforms a file source.lw into a file source.tex; notangle extracts
program files. Lweb is a dialect of noweb [Ram94].

The definition of a class consists of a private part and a public part; the private part is only
visible within the class and the public part is also visible outside the class. We declare the
data members private to the class and hence invisible outside the class. This emphasizes the
fact that we are defining an abstract data type and hence it is irrelevant outside the class how
a value is represented in the machine and how the operations are implemented. To further
emphasize this fact we give an implementation of stacks in this section that is different
from the one actually used in LEDA. The function members are the interface of the class
and hence public.

It is time to give more information about Lweb.Lweb is the literate programming tool
which we use to produce manual pages, implementation reports, and which we used to
produce this book. It is dialect ofnoweb[Ram94]. It allows us to write a program and
its documentation into a single file (usually with extension .lw) and offers two utilities to
produce two views of this file, one for a human reader and one for the C++ compiler:lweave
typesets program and documentation and creates a file with extension .tex which can then
be further processed using TEX and LATEXandnotangleextracts the program and puts it into
a file (usually with extension .c or .cc or .h). Figure 2.2 visualizes the process.

We postpone the discussion of lweave to Chapter 14 and only discuss notangle here. A
noweb-file14 consists of documentation chunks and code chunks. A documentation chunk
starts with@ followed by a blank or by a carriage return in column one of a line and a code
chunk starts with〈name of chunk〉= in column one of a line. Code chunks are given names.
If several chunks are given the same name they are concatenated. Code chunks are referred
to by 〈name of chunk〉.

In this section we have already defined a chunk〈stack.c〉. It refers to chunks〈data mem-
bers〉 and〈function members〉 which will be defined below. The command

notangle -Rstack.c Foundations.lw > stack.c

will extract the chunkstack.c (the “R” stands for root) from the file Foundations.lw (the
name of the file containing this chapter) and write it into stack.c.

We come back to stacks. We represent astack<E> by a C++ array A of type E and two
integersszandn with n < sz. The arrayA has sizeszand the stack consists of elements

14 As far as notangle is concerned there is no difference between a noweb-file (usually with extension .nw) and a
Lweb-file.
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A[0], A[1], . . . , A[n] with A[n] being the top element of the stack. The stack is empty if
n = −1.

〈data members〉�
E* A;

int sz;

int n;

The function members correspond to the operations available on stacks. We start with
the constructors. There are two ways to create a stack:stack<E> S creates an empty stack
andstack<E> S(X) creates a stack whose initial value is a copy ofX . The corresponding
function members are the so-calleddefault constructorand so-calledcopy constructor, re-
spectively. In C++ a constructor has the same name as the class itself, i.e., the constructors
of classT have nameT . The default constructor has no argument and the copy constructor
has a constant reference argument of typeT .

〈function members〉�
stack() // default constructor

{ /* we start with an array of ten elements */

A = new E[10];

sz = 10;

n = -1;

}

stack(const stack<E>& X) // copy constructor

{ sz = X.sz;

A = new E[sz];

n = X.n;

for(int i = 0; i <= n; i++) A[i] = X.A[i];

}

We give some more functions:emptyreturnstrue if the stack is empty,top returns the top
element of a non-empty stack,pushadds an element to a stack,pop deletes an element
from a non-empty stack and returns it, and= performs assignment. We lettop check its
precondition and call an error-handler when it is violated. However,popdoes not check its
precondition. Recall that LEDA does not promise to check all preconditions.

〈function members〉+�
int empty() { return (n == -1); }

E top()

{ if ( n == -1) error_handler(1,"stack::top: stack is empty");

return A[n];

}

E pop() { return A[n--]; }

A pushfirst checks whether there is still room in the array. If not, it doubles the size ofA.
In either case it increasesn and assignsx to the new top element of the stack.
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〈function members〉+�
void push(const E& x)

{ if (n + 1 == sz)

{ sz = 2 * sz;

E* B = A;

A = new E[sz];

for (int i = 0; i <= n; i++) A[i] = B[i];

delete[] B;

}

A[++n] = x;

}

An assignment first checks for the trivial assignmentS = S, then destroys the old value of
the left-hand side, copies the right-hand side into the left-hand side, and finally returns a
reference to the left-hand side.

〈function members〉+�
stack<E>& operator=(const stack<E>& X)

{ if (this != &X)

{ delete[] A;

sz = X.sz;

A = new E[sz];

n = X.n;

for (int i=0; i<=n; i++) A[i] = X.A[i];

}

return (*this);

}

When the lifetime of a stack ends the arrayA needs to be deleted.

〈function members〉+�
~stack() { delete[] A; }

This completes the definition of classstack<E>. The class essentially realizes the data type
stack<E> as defined on page 18; we invite the reader to complete the implementation by
writing the code forclear.

Our implementation of the stack data type wastes space. Imagine that we perform 1000
pushes followed by 1000 pops. The pushes will increase the size ofA to at least 1000 butA
does not shrink again during the pops. The LEDA implementation of stacks uses space in
a more thrifty way; its space requirement is proportional to the number of elements in the
stack.

In this section we gave the reader a first impression of how the data types of LEDA are
implemented in C++. Chapter 13 gives the details.
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2.8 Type Parameters

Most data types in LEDA are parameterized. We have lists over an arbitrary element type
E and dictionaries over any linearly ordered key typeK and any information typeI . Any
class that provides a certain small set of functions can be used as an actual type argument:
one must be able to create a variable of the type and initialize it either with the default value
(default constructor) or with a copy of an already existing value (copy constructor). One
must be able to perform assignment (operator=), to read a value of the type from an input
stream (functionRead), and to print a value onto an output stream (functionPrint). Finally,
when the lifetime of an object ends one must be able to destruct it (destructor). Sometimes,
type arguments need to have additional abilities. Linearly ordered types have to support
comparisons between their elements, hashed types have to support hashing, and numerical
types have to support arithmetic.

LEDA Rule 14 Any actual type argument must provide the following six functions:
a default constructor T::T()

a copy constructor T::T(const T&)

an assignment operator T& T::operator=(const T&)

a read function void Read(T&,istream&)

a print function void Print(const T&,ostream&)

a destructor T::~T().

A linearly ordered type must in addition provide
a compare function int compare(const T&,const T&).

A hashed type must in addition provide
a hash function int Hash(const T&)

an equality operator bool operator ==(const T&,const T&).

A numerical type must in addition have the basic arithmetic functions addition, subtraction,
and multiplication, and the standard comparison operators.

We have already discussed the default constructor, the copy constructor, the destructor,
and the assignment operator. The functionsReadandPrint read an object of typeT from
an input stream and print it to an output stream, respectively. Equality and the functions
compare, Hashare discussed in the next section and number types are discussed in Chap-
ter 4. We next give the complete definition of a linearly ordered classpair.

〈definition of class pair〉�
class pair

{ double x, y;

public:

pair() { x = y = 0; }

pair(const pair& p) { x = p.x; y = p.y; }

friend void Read(pair& p,istream& is) { is >> p.x >> p.y; }

friend void Print(const pair& p,ostream& os)

{ os << p.x << " " << p.y; }

friend int compare(const pair&,const pair&);

};
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int compare(const pair& p,const pair& q)

{ if (p.x < q.x) return - 1;

if (p.x > q.x) return 1;

if (p.y < q.y) return - 1;

if (p.y > q.y) return 1;

return 0;

}

We need to make two remarks about the definition of the classpair. (1) The functionsRead,
Print, andcompareare not member functions of the class, but global functions. They are
declared as friends ofpair so that they can access the private data of the class. (2) We did
not define two of the required functions, namely the assignment operator and the destructor
∼pair. The reason is that C++ will generate them automatically. More precisely, if no
copy constructor, assignment operator, or destructor is defined then the default version is
used. The default version copies component-wise, assigns component-wise, and destructs
component-wise, respectively. Thus the definition of the copy constructor could also be
omitted from classpair.

The typepair can be used as the key type in a dictionary, i.e., we may define

dictionary<pair,int> D;

What happens if one uses a classT as an actual type parameter without defining one
of the required functions (that are not generated automatically)? The C++ compiler will
produce an error message that it cannot match certain functions. For example, the compiler
used by the first author produces

LEDA/dictionary.h:52: no match for

` IO ostream withassign & << const pair & '

when given the following program

〈parameterizeddata type test.c〉�
#include <LEDA/dictionary.h>

class pair

{ double x;

double y;

public:

pair() { x = y = 0; }

pair(const pair& p) { x = p.x; y = p.y; }

};

main(){

dictionary<pair,int> D;

}



2.9 Memory Management 47

2.9 Memory Management

LEDA provides an efficientmemory management systemthat is used for all node, edge,
and item types and that can easily be customized for user-defined classes by means of
theLEDA MEMORY macro. One simply has to add the macro callLEDA MEMORY(T) to the
definition of classT . This call createsnewanddeleteoperators for the classT that rely on
LEDA’s memory manager. The main advantages over the built-innewanddeleteoperators
are:

• Memory is allocated in big chunks and thus frequent and costly calls to the memory
allocator are avoided.

• Memory returned by thedeleteoperator is reused by later calls of thenewoperator,
i.e., the manager provides garbage collection.

The implementation of LEDA’s memory manager is discussed in Section 13.8. The defi-
nition of our classpair now reads as follows. We advise the reader to follow this scheme in
the definition of his classes.

〈refined definition of class pair〉�
class pair

{ private:

double x, y;

public:

pair() { x = y = 0; }

/* pair uses the default versions of copy constructor,

assignment operator, and destructor */

friend void Read(pair& p,istream& is) { is >> p.x >> p.y; }

friend void Print(const pair& p,ostream& os)

{ os << p.x << " " << p.y; }

friend int compare(const pair&,const pair&);

LEDA_MEMORY(pair);

};

2.10 Linearly Ordered Types, Equality and Hashed Types

Algorithms frequently need to compare objects: a geometric algorithm may have to deter-
mine whether one line is above another line at a certainx-value, a sorting algorithm needs
to compare the objects it is supposed to sort, and a shortest path algorithm needs to compare
the lengths of two paths. Also, many data types such as dictionaries, priority queues, and
sorted sequences need to compare the objects of their key type. The appropriate mathemat-
ical concept is a linear order.

A binary relation≤ (less than or equal) on a setS is called alinear order if the following
three conditions hold for allx, y, z ∈ S:
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• x ≤ x (reflexivity).

• x ≤ y andy ≤ z impliesx ≤ z (transitivity).

• x ≤ y or y ≤ x (anti-symmetry).

Note that the “or” in the third condition is not exclusive. We may havex ≤ y andy ≤ x
even if x and y are distinct. Here is an example. For non-vertical linesg andh, define
g ≤ h if the intersection ofg with the y-axis is below or equal to the intersection ofh with
the y-axis. Theng ≤ h andh ≤ g iff g andh intersect they-axis in the same point.

We call x andy equivalentif x ≤ y andy ≤ x and we say thatx is strictly less thany
and writex < y or y > x if x ≤ y andx andy are not equivalent. Note that for any two
elementsx andy exactly one of the following three relations holds:x is strictly less thany,
x is equivalent toy, or y is strictly less thanx .

In LEDA, a functionint cmp(constT & , constT & ) is said to realize a linear order on the
typeT if there is a linear order≤ on T such that for allx andy in T

cmp(x, y)


< 0, if x < y
= 0, if x is equivalent toy
> 0, if x > y

LEDA Rule 15 A typeT is calledlinearly orderedif the function

int compare(const T&,const T&)

is defined for the typeT and realizes a linear order onT . If compare(x, y) returns zero for
two objectsx and y then they are calledcompare-equivalentor simplyequivalent.

Note that we have adopted the syntactic convention that the function with the name
comparedefines the order onT . This is in line with similar conventions already used in
C++, e.g., that constructors have the same name as the type.

For many primitive data types a functioncompareis predefined and defines the so-called
default orderingof the type. The default ordering is the usual “less than or equal” for the
numerical types, the lexicographic ordering for strings, and the lexicographic ordering of
the Cartesian coordinates for points. For all other typesT there is no default ordering, and
the user has to define the functioncompareif a linear order onT is required. We already
gave an example in the preceding section.

A weaker concept than linear orders is equivalence relation. A binary relationR defines
anequivalence relationon a setS if the following three conditions hold for allx, y, z ∈ S:

• x Rx (reflexivity).

• x Ry andy Rz impliesx Rz (transitivity).

• x Ry implies y Rx (symmetry).
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We have already seen an equivalence relation, namely compare-equivalence. The relation
R defined byx Ry if compare(x, y) == 0 defines an equivalence relation. We also require

LEDA Rule 16 If the equality operator

bool operator==(const T&,const T&)

is defined for a classT then it defines an equivalence relation onT . We callx and y equal
if x == y evaluates to true.

We requireno relationship between equality and compare-equivalence, i.e., two objects
may be equal but not compare-equivalent or compare-equivalent but not equal. However,
for all LEDA types with predefinedcompareand== the two notions agree. On the other
hand, there are applications where it is natural to distinguish between the two concepts.
For example, a plane sweep algorithm for line segment intersection (cf. Section 10.7.2)
compares segments by they-coordinate of their intersection with a vertical sweep line and
thus two segments can be compare-equivalent without being equal.

We next turn to hashed types. A hashed typeT must provide the equality operator and
the functionint Hash(constT & ). Of course, the hash function should not tell objects apart
that are equal.

LEDA Rule 17 For any hashed type and any objectsx and y of typeT : if x == y then
Hash(x) == Hash(y).

There is one further point that we have to make. Recall that, for example, a dictionary
stores copies of keys (and informations) and that for structured types a copy of a value is
distinct from the original. It is possible to write compare functions and equality operators
that distinguish between a value and a copy of the value. This would lead to a disaster, e.g.,
a lookup in a dictionary would fail to find a stored key. We therefore have

LEDA Rule 18 A value and a copy of a value must be compare-equivalent and equal.

For primitive types, this axiom is trivially fulfilled since a copy is identical to the original.
In some situations it is useful to have more than one linear order for a typeT . For

example, we might want to have two dictionariesD1 andD2 with key typepair. In D1 the
pairs are to be ordered by the lexicographic ordering of their Cartesian coordinates and in
D2 by the lexicographic ordering of their polar coordinates. The dictionaryD1 is easy to
define. We simply write

dictionary<pair,int> D1,

but how can we define the second dictionary? After all, we have the syntactic convention
that the function with the namecomparedefines the order on a type. There are two solutions,
one old and one added recently.

The first solution is to define an equivalent type with the alternative ordering. The code
sequence
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int pol cmp(const point& x,const point& y)

{ /* compute lexicographic ordering by polar coordinates */ }

DEFINE LINEAR ORDER(point,pol cmp,pol point);

dictionary<pol point,int> D2;

first defines the ordering by polar coordinates and then defines a typepol point by a call
to theDEFINE LINEAR ORDER macro. The typepol point is equivalent to the typepoint,
in particular, a polpoint can be assigned to a point and vice versa. However, the ordering
on the typepol point is given by the functionpol cmp. The last line defines the desired
dictionaryD2.

The second solution makes the linear order an additional argument of any data type that
requires a linearly ordered type, e.g.,

dictionary<point,int> D(pol cmp);

declares a dictionaryD that uses the functionpol cmpfor comparing points.
Instead of passing a function to the dictionary, one can also pass a class which has a

function operator and is derived from the classledacmpbase. This variant is helpful when
the compare function depends on a global parameter. We give an example. More examples
can be found in Sections 10.7.2 and 10.3. Assume that we want to compare edges of a graph
GRAPH<point, int> (in this type every node has an associated point in the plane; the point
associated with a nodev is accessed asG[v]) according to the distance of their endpoints.
We write

〈compareexample〉�
class cmp_edges_by_length: public leda_cmp_base<edge> {

const GRAPH<point,int>& G;

public:

cmp_edges_by_length(const GRAPH<point,int>& g): G(g){}

int operator()(const edge& e, const edge& f) const

{ point pe = G[G.source(e)]; point qe = G[G.target(e)];

point pf = G[G.source(f)]; point qf = G[G.target(f)];

return compare(pe.sqr_dist(qe),pf.sqr_dist(qf));

}

};

main(){

GRAPH<point,int> G;

cmp_edges_by_length cmp(G);

list<edge> E = G.all_edges();

E.sort(cmp);

}

The classcmpedgesby lengthhas a function operator that takes two edgese and f of a
graphG and compares them according to their length. The graphG is a parameter of the
constructor. In the main program we definecmp(G) as an instance ofcmpedgesby length
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and then passcmpas the compare object to the sort function oflist<edge>. In the implemen-
tation of the sort function a comparison between two edges is made by writingcmp(e, f ),
i.e., for the body of the sort function there is no difference whether a function or a compare
object is passed to it.

The example above illustrates a nice feature of literate programming. We gave a named
program chunk that illustrates a concept of LEDA. Of course, we want to make sure that the
program fragment is correct and hence we want to execute it. To this effect we enclose it
into a larger program chunk which we can extract and compile. We usually do not show the
enclosing program chunk, i.e., we enclose it into a LATEX command\ignore that makes it
invisible to LATEXby expanding to the empty string. We show the construction once:

\ignore{

<<compare_test.c>>=

#include <LEDA/graph.h>

#include <LEDA/point.h>

<<compare_example>>

@ }%end ignore

2.11 Implementation Parameters

Some data types in LEDA, e.g., dictionary, priority queue, darray, and sorted sequence,
come with several implementations. A user of such a data type can choose a particular
implementation by giving the name of the implementation as an additional parameter, e.g.,
d array<I, E, skiplist> selects the skiplist implementation of dictionary arrays. Note that
the type name now starts with an underscore. This is necessary since C++ does not allow us
to overload templates. The following program uses the skiplist implementation of dictionary
arrays to count word occurrences in the input stream.

#include <LEDA/d array.h>

#include <LEDA/impl/skiplist.h>

main()

{ d array<string,int,skiplist> N(0);

// d array<string,int> N(0) selects default implementation

string s;

while (cin >> s) N[s]++;

forall defined(s,N) cout << s << " " << N[s] << endl;

}

The types with and without implementation parameter are closely related.
Any type T<T1,..., Tk, xyzimpl> is derived (in the C++ sense of the word) from the

corresponding “normal” parameterized typeT<T1,..., Tk>. This allows us, for example, to
pass an instance of typeT<T1,..., Tk, xyzimpl> as an argument to a function with a formal
parameter of typeT<T1,..., Tk>&, a feature that allows us to execute even pre-compiled
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algorithms with different implementations of data types. We give an example. We define a
procedurewordcountthat has a parameter of typed array<string, int>.

void word count(d array<string,int>& N)

{ string s;

while (cin >> s) N[s]++;

forall defined(s,N) cout << s << " " << N[s] << endl;

}

Any implementation of darrays can be passed towordcount.

d array<string,int> N1(0);

word count(N1);

d array<string,int,skiplist> N2(0);

word count(N2);

The section “Implementation Parameters” of the LEDA manual surveys the implementa-
tion parameters currently available. Section 13.6 discusses the realization of implemen-
tation parameters. The latter section also describes how a LEDA user may add his own
implementation of a data type to the system.

2.12 Helpful Small Functions

There are a number of small, but helpful, functions. We mention some of them here and
refer the reader to the section “Miscellaneous Functions” of the LEDA manual for the full
list.

int i = read int("i = ");

prints “i = ” (more generally, its string argument) on standard output and then reads an
integer from standard input. Similar functions exist to read strings, character, and doubles.

The functionusedtime is very helpful for running time experiments. For example, the
chunk

float T = used time(); // sets T to the current cpu time

// an experiment

cout << used time(T);

// sets T to the current cpu time and returns the difference

// to the previous value of T

// another experiment

cout << used time(T);

will print the cpu time used in each of two experiments.
The function

void print statistics();
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prints a summary of the currently used memory. For example, the program

〈memorystatistic〉�
list<point> L;

{ for (int i = 0; i < 100000; i++) L.append(point());

list<point> L1 = L;

}

print_statistics();

produces

STD_MEMORY_MGR (memory status)

+--------------------------------------------------+

| size used free blocks bytes |

+--------------------------------------------------+

| 12 100000 100214 294 2402568 |

| 20 27 381 1 8160 |

| 40 100002 77 493 4003160 |

+--------------------------------------------------+

| time: 0.53 sec space: 6300.92 kb |

+--------------------------------------------------+

The statistics tell us that space for a total of 100000+ 100214 records of size 12 bytes
(= list nodes), for a total of 27+ 381 records of size 20, and for a total of 100002+ 77
records of size 40 (= points) was allocated. It also gives information on which of these
records are currently used and which are free. In our example, the records for the nodes of
L and the points inL are still allocated and the records for the nodes ofL1 have already
been freed. Observe that the program allocates space for 200000 list nodes, but only for
100000 structures to contain representations of points; read Section 2.2.2 to understand
why. Space is allocated in blocks of 8160 bytes. The next to last column shows the number
of allocated blocks for the structures of the different sizes and the last column shows the
space consumption in bytes. Our program required about 6.3 megabytes. It ran for 0.53
seconds.

The functions

T leda min(const T& a, const T& b);

T leda max(const T& a, const T& b);

void leda swap(T& a, T& b);

return the minimum, the maximum, and swap the values of their arguments, respectively.
They can be used for any typeT .

Finally, the function

double truncate(double x, int k = 10);
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returns a double whose mantissa is truncated afterk − 1 bits after the binary point, i.e., if
x 6= 0 then the binary representation of the mantissa of the result has the form d.dddddddd,
where the number of d’s is equal tok.

2.13 Error Handling

The error handler

error handler(int i, char* s);

writess to the diagnostic output (cerr) and terminates the program abnormally ifi 6= 0. The
function

leda assert(bool b, int i, char* s);

calls error handler(i, s) if b is falseand has no effect otherwise. Users can provide their
own error handling functionhandlerby calling

set error handler(handler);

After this function callhandler is used instead of the default error handler.handlermust
be a function of typevoid handler(int, char∗). The parameters are replaced by the error
number and the error message, respectively.

2.14 Program Checking

Programming is an error-prone task. How do we make sure that the programs in LEDA are
correct? We take the following measures:

• We start from correct algorithms as described in the large literature on data structures
and algorithms.

• We try to document our programs carefully. This book contains many examples of
carefully documented programs. We try to document so carefully that we can show
our programs around and give them to colleagues to read. Don Knuth coined the name
“literate programming” for this style of programming.

• We test extensively and our large user community tests.

• We use program checking [SM90, BK89, BLR90, MNS+96].

In this section we concentrate on the last item. Consider a programP that computes a
function f . We call P checkableif for any inputx it returnsy, the alleged value off (x),
and maybe additional informationI that makes it easy to verify that indeedy = f (x). By
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easy to verify we mean two things. Firstly, there must be a simple programC (a checking
program) that, givenx , y, andI , checks whether indeedy = f (x). The programC should
be so simple that its correctness is “obvious”. Secondly, the running time ofC on inputs
x , y, and I should be no larger than the running time ofP on x . This guarantees that the
checking programC can be used without severe penalty in running time.

We give some examples.
Consider a program that takes anm × n matrix A and anm vectorb and is supposed to

check whether the linear systemA·x = b has a solution. As stated, the program is supposed
to return a boolean value indicating whether the system is solvable or not. This program is
not checkable. In order to make it checkable, we extend the interface.

On inputA andb the program returns either:

• “the system is solvable” and a vectorx such thatA · x = b or

• “the system is unsolvable” and a vectorc such thatcT · A = 0 andcT · b 6= 0.

The extended program is easy to check. If it answers “the system is solvable”, we check
that A · x = b and if it answers “the system is unsolvable”, we check thatcT · A = 0 and
cT · b 6= 0. Thus the check amounts to a matrix-vector and a vector-vector product which
are fast and also easy to program. We leave it as an exercise to prove that the vectorc exists,
when the system is solvable, and only remark that Gaussian elimination will produce it.

The second example is planarity testing. The task is to decide whether a graph is planar.
A witness of planarity is a planar embedding and a witness of non-planarity is a Kuratowski
subgraph. The details can be found in Section 8.7. The planarity test played an important
role in the development of LEDA. A first implementation of it was added to LEDA in 1991.
The implementation had been tested on a small number of graphs. In 1993 we were sent
a graph together with a planar drawing of it. However, our program declared the graph
non-planar. It took us some days to discover the bug. More importantly, we realized that
a complex question of the form ”is this graph planar” deserves more than a yes-no answer.
We adopted the thesis that

a program should justify (prove) its answers in a way
that is easily checked by the user of the program.

By now many functions in LEDA justify their answers and come with checkers, see Sec-
tions 5.5.3, 10.3, 10.4.3, 10.4.6, 10.5.3, and all sections in Chapter 7.

What do we gain by program checking?
First, the answer of a program can be verified for any single problem instance. This is

much less than program verification which gives a guarantee for all problem instances, but
it is assuring.

Second, a user of a program can develop trust in the program with little intellectual
investment. A user of a linear systems solver does not need to understand the intricacies
of Gaussian elimination. For any program run, she can convince herself of the correctness
of the computation by a simple matrix-vector and vector-vector product. The program for
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the latter two tasks is so simple, that it is even conceivable to verify them formally. See
[BSM97] for a first example of a verified checker.

Third, a developer of a program can give compelling evidence of its correctness with-
out revealing any details of the implementation. It suffices to publish the interface of the
functions, to define what constitutes a witness, and to publish the checking program.

Fourth, program checking allows us to use a potentially incorrect program as if it were
correct. If a program operates correctly on a particular instance, fine, and if it operates
incorrectly, it is caught by the checker. Thus, if all subroutines of a functionf are checked,
no checker of a subroutine fires, and an error occurs during the execution off , the error
must be in f . This feature of program checking is extremely useful during the debugging
phase of program development.

Fifth, program checking supports testing. Traditionally testing is restricted to problem
instances for which the solution is known by other means. Program checking allows one to
test onany instance. For example, we use the following program (among others) to check
our algorithm to compute maximal matching in graphs (see Section 7.7).

for (int n = 0; n < 100; n++)

for (int m = 0; m < 100; m++)

{ random graph(G,n,m); // random graph with n nodes and m edges

list<edge> M = MAX CARD MATCHING(G,OSC);

CHECK MAX CARD MATCHING(G,M,OSC);

}

Sixth, a checker can only be written if the problem at hand is rigorously defined. We
noticed that some of our specifications contained hidden assumptions which were revealed
during the design of the checker. For example, an early version of our biconnected compo-
nents algorithm assumed that the graph contains no isolated nodes.

The papers [SM90, BS94, SM91, BSM97, BS95, BSM95, SWM95, BK89, BLR90,
BW96, WB97, AL94, MNS+96, DLPT97] contain further material on program checking.

2.15 Header Files, Implementation Files, and Libraries

The specifications of all LEDA types and algorithms are contained in the header files in
directory LEDAROOT/incl/LEDA. In order to use a particular LEDA type or algorithms
one must include the appropriate header file.

#include <LEDA/list.h> // to use lists

#include <LEDA/dictionary.h> // to use dictionaries

#include <LEDA/point.h> // to use points

#include <LEDA/graph alg.h> // to use the graph algorithms

#include <LEDA/geo alg.h> // to use the geometric algorithms

The implementations of all LEDA data types and algorithms are contained in the .c-files
collected in the various subdirectories of LEDAROOT/src. They are pre-compiled into
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four libraries (libL.a, libG.a, libP.a, libWx.a) which can be linked with C++ application
programs. The section “Using LEDA” of the LEDA manual describes how this is done.

2.16 Compilation Flags

The compilation flag -DLEDACHECKING OFF turns off all checking of preconditions.
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Basic Data Types

The basic data typesstack, queue, list, array, random number, tuple, andstringare ubiqui-
tous in computing. Most readers are probably thoroughly familiar with them already. All
sections of this chapter can be read independently.

3.1 Stacks and Queues

A stackis a last-in-first-out store for the elements of some typeE and a queue is a first-in-
first-out store. Both data types store sequences of elements of typeE ; they differ in the set
of operations that can be performed on the sequence. In a stack one end of the sequence is
designated as thetop of the stack and all queries and updates on a stack operate on the top
end of the sequence. In aqueueall insertions occur at one end, therear of the queue, and
all deletions occur at the other end, thefront of the queue. The definitions

stack<E> S;

queue<E> Q;

define a stackS and a queueQ for the element typeE , respectively. Both structures are
initially empty. The following operations are available on stacks. Ifx is an object of type
E then the insertionS.push(x) addsx as the new top element. We can inspect the contents
of a stack:S.top( ) returns the top element andS.pop( ) deletes and returns the top element.
Of course, both operations are illegal ifS is empty. The callS.empty( ) returnstrue if the
stack is empty andfalseotherwise andS.size( ) returns the number of elements in the stack.
So S.empty( ) is equivalent toS.size( ) == 0. All elements of a stack can be removed by
S.clear( ).

We illustrate stacks by a program to evaluate a simple class of expressions. The character
1 is an expression and ifE1 and E2 are expressions then(E1 + E2) and (E1 ∗ E2) are

58
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expressions. Thus,(1 + 1) and((1 + 1) ∗ (1 + (1 + 1))) are expressions, but 1+ 1 and
(1+ 2) are not. The former is not an expression since it is not completely bracketed and the
latter is not an expression since we only allow the constant 1 as an operand. We will ask
you in the exercises to evaluate more complex expressions. There is a simple algorithm to
evaluate expressions. It uses two stacks, astack<int> S to hold intermediate results and a
stack<char> Op to hold operator symbols. Initially, both stacks are empty. The expression
is scanned from left to right. Letc be the current character scanned. Ifc is an open bracket,
we do nothing, ifc is a 1, we push it ontoS, if c is a + or ∗, we push it ontoOp, and
if c is a closing bracket, we remove the two top elements fromS, sayx and y, and the
top element fromOp, sayop, and push the valuex op y onto S. When an expression is
completely scanned, its value is the top element ofS, in fact, it is the only element inS.
The following program assumes that a well-formed expression followed by a dot is given
on standard input. It prints the value of the expression onto standard output.

〈stackdemo.c〉�
#include<LEDA/stack.h>

main()

{ char c;

stack<int> S; stack<char> Op;

while ( (c = read_char("next symbol = ")) != '.' )

{ switch(c)

{ case '(' : break;

case '1' : { S.push(1); break; }

case '+' : { Op.push(c); break; }

case '*' : { Op.push(c); break; }

case ')' : { int x = S.pop(); int y = S.pop();

char op = Op.pop();

if ( op = '+' ) S.push(x+y); else S.push(x*y);

break;

}

}

}

cout << "\n\nvalue = " << S.pop() << "\n\n";

}

On input((1+1)∗ (1+ (1+1))) this program prints 6, on input(1+ (1+1)) it prints 3, and
on input() it crashes because it attempts to pop from an empty stack. This is bad software
engineering practice and we will ask you in the exercises to remedy this shortcoming.

We turn to queues. The two ends of a queue are called thefront and therear of the queue,
respectively. An insertionQ.append(x) appendsx at the rear,Q.top( ) returns the front
element, andQ.pop( ) deletes and returns the front element. Of course, the latter two calls
requireQ to be non-empty. The functionQ.empty( ) checks for emptiness andQ.size( )

returns the number of elements in the queue.Q.clear( ) removes all elements from the
queue.
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Queues and stacks are implemented as singly linked lists. All operations take constant
time exceptclear, which takes linear time. The space requirement is linear. LEDA also
offers bounded queues and stacks, for example,

b stack<E> S(n);

defines a stackS that can hold up ton elements. Bounded stacks and queues are imple-
mented by arrays and hence always use the same amount of space independently of the
actual number of elements stored in them. They are preferable to unbounded queues and
stacks when the maximal size is known beforehand and the number of elements stored in
the data structure is always close to the maximal size.

In the remainder of this section we show how to implement a queue by two stacks. This
is to demonstrate the versatility of stacks, to illustrate that the same abstract data type can be
implemented in many ways, to give an example of an amortized analysis of a data structure,
and to amuse the user; it is not the implementation of queues used in LEDA. We use two
stacksSfront and Srear and split the queue into two parts: Ifa1, . . . , am is the current
content ofSfrontandb1, . . . , bn is the current contents ofSrearwith am andbn being the
top elements, respectively, thenam, . . . , a1, b1, . . . , bn is the current contents of the queue.
Appending an element to the queue is realized by pushing it ontoSrear. Popping an element
from the queue is realized by popping an element fromSfront. If Sfrontis empty, we first
move all elements fromSrearto Sfront(by popping fromSrearand pushing ontoSfront).
Note that this will reverse the sequence as it should be.

〈strangequeue.h〉�
#include <LEDA/stack.h>

template<class E>

class queue {

stack<E> Sfront, Srear;

public:

queue<E>(){ } // initialization to empty queue

void append(const E& x){ Srear.push(x); }

E pop()

{ if ( Sfront.empty() )

{ while ( !Srear.empty() ) Sfront.push(Srear.pop()); }

if ( Sfront.empty() ) error_handler(1,"queue: pop from empty queue");

return Sfront.pop();

}

bool empty() { return Sfront.empty() && Srear.empty(); }

int size() { return Sfront.size() + Srear.size(); }

};

It is interesting to analyze the time complexity of this queue implementation. We claim
that a sequence ofn queue operations takes total timeO(n). To see this we note first that
the constructor and the operationsappend, empty, andsizerun in constant time. Apop
operation may take an arbitrary amount of time. More precisely, it takes constant time
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5 3 1 5 2

first last

Figure 3.1 A list of five integers.

plus time proportional to the number of elements moved fromSrearto Sfront. Since each
element is moved at most once fromSrearto Sfront, we incur a constant cost per element for
moving elements fromSrearto Sfront. We conclude that the time spent in allpopoperations
is linear.

Exercises for 3.1
1 Implement the typestack.
2 Implement the typequeue.
3 Extend the expression evaluator such that it complains about illegal inputs.
4 Extend the expression evaluator such that it can handle arbitrary integers as operands.
5 Extend the expression evaluator such that it can handle expressions that are not com-

pletely bracketed. The usual precedence rules should be applied, i.e.,a + b ∗ c is in-
terpreted as(a + (b ∗ c)). More specifically, the evaluator should be able to handle all
expressions that are generated by the following four rules:

A factor is either an integer or a bracketed expression.
A term is either a factor or a factor times a term.
An expression is either a term or a term plus an expression.
That’s all.

3.2 Lists

Lists are a simple, yet powerful, data type. It is difficult to implement a combinatorial or
geometric algorithm without using lists. Moreover, the implementation of several LEDA
data types, e.g., stacks, queues, and graphs, is based on lists. In this section we discuss lists
for unordered and ordered element types, we sketch the implementation of lists, and in the
final subsection we treat singly linked lists.

3.2.1 Basics
list<E> L;

declares a listL for elements of typeE and initializes it to the empty list. Generally, a list
L over element typeE (type list<E>) is a sequence of items (of predefined typelist item),
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each holding an element of typeE . Figure 3.1 shows a list of integers. It consists of five
items shown as rectangular boxes. The contents of the first item is 5, the contents of the
second item is 3, and so on. We call the number of items in a list the length of the list
and use〈x〉 to denote an item with contentsx . Lists offer an extremely rich repertoire of
operations.

L.empty();

checksL for emptiness. Let’s assume thatL is non-empty. Then

E x = L.head();

list item it = L.first();

assign the contents of the first item ofL to x and the first item toit. Please pause for a
moment to grasp the difference.L.first( ) returns the first item andL.head( ) returns the
contents of the first item. Thus, ifL is the list of Figure 3.1, the value ofx is now 5 and the
value ofit is the first box. The content of the item (box)it can be accessed byL.contents(it)
or L[it]. So

x == L.contents(it)

evaluates totrueand so do

3 == L.contents(L.succ(L.first());

L.last() != L.first();

nil == L.pred(L.first());

L.tail() == L[L.cyclic pred(L.first())];

L.last() == L.cyclic pred(L.first()).

We need to explain these expressions a bit further. For a listL, L.head( ) and L.tail( )

return the contents of the first and last item ofL, respectively (5 and 2 in our example) and
L.first( ) andL.last( ) return the first and last item ofL, respectively (the first and the fifth
box in our example). The items in a list can be viewed as either arranged linearly or arranged
cyclically. The operationssuccandpredsupport the linear view of a list and the operations
cyclicsuccandcyclicpredsupport the cyclic view. Thus, ifit is an item of a listL different
from the last item thenL.succ(it) returns the successor item ofit and L.succ(L.last( ))

returnsnil and if it is different from the first item thenL.pred(it) returns the predecessor
item of it andL.pred(L.first( )) returnsnil. L.cyclicpred(it) andL.cyclicsucc(it) return the
cyclic predecessor and successor, respectively, where the cyclic predecessor of the first item
is the last item. So in the next to last expression above both sides evaluate to the contents of
the last item ofL and in the last expression both sides evaluate to the last item ofL.

We further illustrate the use of items by the member functionprint. It takes two argu-
ments, an output streamO and a characterspaceand prints the elements of a list separated
by spaceonto O. The default value ofspaceis the space character. It requires that the type
E offers a functionPrint(x, O) that prints an objectx of typeE ontoO, see Section 2.8 for
a discussion of thePrint-function for type parameters.

template<class E>

void list<E>::print(ostream& O, char space = " ")

{ list item it = first();
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while ( it != nil )

{ Print(contents(it),O);

if ( it != last item() ) O << space;

it = succ(it);

}

}

Note howit steps through the items of the list. It starts at the first item. In the general step,
we first print the contents ofit and then advanceit to its successor item. We do so untilit
falls off the list.

Iterating over the items or elements of a list is a very frequently occurring task and there-
fore LEDA offers corresponding iteration macros. The iteration statements

forall(x,L) << body >>

and

forall items(it,L) << body >>

step through the elements and items ofL, respectively, and executebody for each one of
them. Thus,

list item it;

forall items(it,L) Print(L[it],cout);

E x;

forall(x,L) Print(x,cout);

prints the elements ofL twice. Theforall itemsloop is a macro that expands into

for (list item loop it = L.first();

it = loop it, loop it = L.next item(loop it), it; )

{ << body >> }

and theforall loop is a macro that essentially expands into

for ( list item it = L.first(); it; it = L.succ(it) )

{ x = L[it];

<< body >>;

}

As one can see from the expansions both iteration statements work in time proportional to
the length of the list. However, since the assignmentx = L[it] may be a costly operation
(if E is a complicated type) it is usually more efficient to use theforall itemsloop. The fact
that the iteration statements for lists (and any other LEDA data type, for that matter) are
realized as macros is a possible source for programming errors; we adviseto never write
forall items(it, f ( )), where f is a function that produces a list, see Sections 2.5 and 13.9
for details.

Next, we turn to update operations on lists.

L[it] = x;

changes the contents of the itemit and



64 Basic Data Types

L.append(x);

adds a new item〈x〉 after the last item ofL and returns the item. We may store the item for
later use:

list item it = L.append(x);

The operations

L.del item(it);

L.pop();

L.Pop();

remove the itemit, the first item, and the last item ofL, respectively. Each operation returns
the contents of the item removed. So we may writex = L.pop( ). The program fragment

list<int> L;

L.append(5);

L.append(3);

list item it = L.append(1);

L.append(5);

L.append(2);

builds the list of Figure 3.1 and assigns the third item ofL to it. SoL[it] evaluates to 1 and
L.del item(it) removes the third item fromL, i.e., L consists of four items with contents 5,
3, 5, and 2, respectively, after the call.

Two lists L andL1 of the same type can be combined by

L.conc(L1,dir);

wheredir determines whetherL1 is appended to the rear end (dir = LEDA::after) or front
end (dir = LEDA::before) of L; beforeandafter are predefined constants. As a side effect,
concclears the listL1. The listsL andL1 must be distinct list objects. A listL can be split
into two parts. Ifit is an item ofL then

L.split(it,L1,L2,dir);

splits L before (dir = LEDA::before) or after (dir = LEDA::after) item it into listsL1 and
L2. The listsL1 andL2 must be distinct list objects. It is allowed, however, that one of them
is equal toL. If L is distinct fromL1 andL2 thenL is empty after the split.Split andconc
take constant time. Givensplit andconc, it is easy to write a functionsplice1 that inserts a
list L1 after itemit into a list L. If it = nil, L1 is added to the front ofL.

if ( it == nil )

L.conc(L1,LEDA::before);

else

{ list<E> L2;

L.split(it,L,L2,LEDA::after);

L.conc(L1,LEDA::after);

L.conc(L2,LEDA::after);

}

1 spliceis a member function oflists and so there is no need to define it at the user level. We give its
implementation in order to illustratesplit andconc.
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Theapplyoperator applies a function to all elements of a list, i.e., iff is a function defined
for objects of typeE then

L.apply(f);

performs the callf (x) for all items〈x〉 of L. The elementx is passed by reference. For
example, ifL is a list of integers then

void incr(int& i) { i++; }

L.apply(incr);

increases all elements ofL by one. apply takes linear time plus the time for the function
calls.

LEDA provides many ways to reorder the elements of a list.

L.reverse items();

reverses the items inL and

L.permute();

randomly permutes the items ofL. Both functions take linear time and both functions
are good examples to illustrate the difference between items and their contents. The call
L.reverseitems( ) does not change the set of items comprising the listL and it does not
change the contents of any item, it changes the order in which the items are arranged in the
list. The last item becomes the first, the next to last item becomes the second, and so on.
Thus,

list item it = L.first();

L.reverse items();

bool b = ( it == L.last() );

assignstrue to b.
For contrast, we give a piece of code that reverses the contents of the items but leaves the

order of the items unchanged. It makes use of a functionledaswapthat swaps the contents
of two variables of the same type. We use two itemsit0 andit1 which we position initially
at the first and last item ofL. We interchange their contents and advance both of them. We
do so as long as the items are distinct andit0 is not the successor ofit1. The former test
guarantees termination for a list of odd length and the latter test guarantees termination for
a list of even length. If the list is empty the first and the last item arenil and the former test
guarantees that the loop body is not entered.

/* this is not the implementation of reverse items */

list item it0 = L.first();

list item it1 = L.last();

while ( it0 != it1 && it0 != L.succ(it1) )

{ leda swap(L[it0],L[it1]);

it0 = L.succ(it0);

it1 = L.pred(it1);

}
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The above code implements

L.reverse().

We turn to sorting. We will discuss general sorting methods in the next section and
discuss bucket sorting now. Iff is an integer-valued function onE then

L.bucket sort(f);

sortsL into increasing order as prescribed byf . More precisely,bucketsort rearranges the
items ofL such that thef -values are non-decreasing after the sort and such that the relative
order of two items with the samef -value is unchanged by the sort. Such a sort is called
stable. For an example, assume that we applybucketsort to the listL of Figure 3.1 with f
the identity function. This will make the third item the first item, the fifth item the second
item, the second item the third item, the first item the fourth item, and the fourth item the
fifth item. bucketsort takes timeO(n + r − l), wheren is the length of the list andl andr
are the minimum and maximum value off (e) ase ranges over the elements of the list.

We give an application of bucket sort. Assume thatL is a list of edges of a graphG
(typelist<edge>) and thatdfsnumis a numbering of the nodes ofG (typenodearray<int>).
Our goal is to reorderL such that the edges are ordered according to the number of the
source of the edge, i.e., all edges out of the node with smallest number come first, then all
edges out of the node with second smallest number, and so on. For an edgee of a graph
G, G.source(e) returns the source node of the edge and hencedfsnum[G.source(e)] is the
number of the source of the edge. We define a functionord that, given an edgee, returns
dfsnum[G.source(e)] and then callbucketsort with this function.

int ord(edge e){ return dfs num[G.source(e)]; };

L.bucket sort(ord);

3.2.2 Lists for Ordered Sets
Recall that a typeE is linearly ordered if the functionint compare(constE& , constE& ) is
defined and establishes a linear order onE , cf. Section 2.10. For lists over linearly ordered
element types additional operations are available.

list item L.search(E x);

searches for an occurrence ofx in L. It usescompareto comparex with the elements
of L. If x occurs inL, the leftmost occurrence is returned and ifx does not occur inL,
nil is returned. The running time ofsearchis proportional to the distance of the leftmost
occurrence ofx from the front of the list. We next show how to usesearchin a primitive
but highly effective implementation of thesetdata type, the so-calledself-organizing list
implementation. We realize a set over typeE (type soset<E>) as a list overE and use
searchto realize thememberoperation; the prefix “so” stands for self-organizing. We will
make the member operation more effective by rearranging the list after each successful
access. We use the operationmoveto front(it) that takes an itemit of a list, removes it from
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its current position, and makes it the first element of the list. The effect of moving each
accessed item to the front of the list is to collect the frequently accessed items near the
front of the list. Since the access time in a list is linear in the distance from the front, this
strategy keeps the expected access time small. We refer the reader to [Meh84a, III.6.1.1]
for the theory of self-organizing lists and turn to the implementation. We derivesoset<E>
from list<E> and accordingly define asosetitemas a new name for alist item. We realize
the membership test bysearchfollowed bymoveto front (if the search was successful), we
realizeinsert by a membership test followed by append (if the membership test returned
false). The other member functions are self-explanatory.

〈so set.h〉�
#include <LEDA/list.h>

typedef list_item so_set_item;

template <class E>

class so_set: private list<E>{

public:

bool member(const E& e)

{ list_item it = search(e);

if (it) { move_to_front(it); }

return ( it != nil );

}

void insert(const E& e) { if (!member(e)) append(e); }

so_set_item first() const { return list<E>::first(); }

so_set_item succ(so_set_item it) const { return list<E>::succ(it); }

E contents(so_set_item it) const { return list<E>::contents(it); }

};

We give an application of our new data type. We read the file containing the source of this
chapter, insert all its words into asoset, and finally print the first thirty words in the set.

〈so setdemo〉�
main(){

so_set<string> S;

file_istream I("datatype.lw");

string s;

float T = used_time();

while ( I >> s ) S.insert(s);

cout << "time required = " << used_time(T);

so_set_item it = S.first();

for (int i = 0; i < 30; i++)

{ cout << (i % 5 == 0 ? "\n" : " ") << S.contents(it);

it = S.succ(it);

}

}



68 Basic Data Types

The output of this program is:

time required = 13.58

} \end{exercises} respectively. and $s$

of length the are $m$

$n$ where $O(n+m)$ time in

runs program that Show substring

a is $p$ if only

success this @ else p.length())

As expected, we see frequent English words, because the move-to-front-heuristic tends to
keep them near the front of the list, and words that occurred near the end of the text, because
they were accessed last.

We turn to merging and sorting. Ifcmpdefines a linear order on the element type ofL
then

L.sort(cmp); L1.sort(cmp);

L.merge(L1,cmp)

sortsL andL1 according to the linear order and then merges the two sorted lists. If we call
the functions without thecmp-argument

L.sort(); L1.sort();

L.merge(L1);

the default order on the element type is used. Merging two lists of lengthn andm, respec-
tively, takes timeO(n + m) and sorting a list ofn elements takes expected timeO(n logn).
Let us verify this fact experimentally. We start withn equal to 128000 and repeatedly dou-
ble n. For each value ofn we generate a list of lengthn, make two copies of the list and
merge them, and we permute the items of the list and then sort the list. For each value of
n we outputn, the measured running time for the merge and the sort, respectively, and the
running time divided byn andn logn, respectively.

〈sort mergetimes〉�
main()

{ int min, max;

〈sort merge times: read max〉
for (int n = min; n <= max; n = 2*n)

{ list<int> L;

for (int j = 0; j < n; j++) L.append(j);

list<int> L1 = L;

list<int> L2 = L;

float T1 = used_time();

L1.merge(L2);

T1 = used_time(T1);

L.permute();

float T2 = used_time();

L.sort();
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Merging Sorting

n time normalized time normalized

128000 0.07 0.547 0.64 0.425

256000 0.15 0.586 1.35 0.423

512000 0.3 0.586 3.15 0.468

1024000 0.58 0.566 6.31 0.445

Table 3.1 The table produced by the experiment. All running times are in seconds. The
normalized time is the 106T/n in the case of merging and 106T/(n logn) in the case of sorting.
The normalized time of sorting grows slowly. This is due to the increased memory access time
for larger inputs. You can produce your own table by running sortmergetimes.

Figure 3.2 The list L before and after the call ofpermute.

T2 = used_time(T2);

〈sort merge times: produce table〉
}

}

Table 3.1 shows the outcome of the experiment. Does it confirm our statement that the
running time of merge is2(n) and that the running time of sort is2(n logn)? In the case of
merging one may say yes, since the numbers in the third column of our table are essentially
constant, however, in the case of sorting the answer is a definite no, since the numbers in
the last column of our table certainly grow. Why is this so? The explanation lies in the
influence of cache memory on the running time of algorithms.

The internal memory of modern computers is organized hierarchically. There are at least
two levels of internal memory, a small and very fast first-level memory (usually called
cache) and a larger and slower second-level memory (usually called main memory). On
many machines the hierarchy consists of more than two levels, see [HP90] for an excellent
account of computer architecture. In the example above we first allocate a list ofn items:
this puts the items consecutively into storage. Then we change the order of the items in the
list randomly. This leaves the items where they are and changes the links, i.e., afterpermute
the links jump around widely in memory, see Figure 3.2. The job ofsort is to untangle this
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Build Traverse Permute Traverse

0.59 0.16 2.77 0.44

Table 3.2 Illustration of cache effects on running time: We built a list of 1000000 items,
traversed it, permuted it, and traversed it again. You may perform your own experiments with the
cacheeffects demo.

mess. In doing so, it frequently has to access items that are not in the fastest memory. This
explains the last column of our table, at least qualitatively.

Next, we attempt a quantitative explanation. Consider the following program:

list<int> L;

for (int i = 0; i < 1000000; i++) L.append(i);

// L.permute();

float T = used time();

list item it = L.first();

while (it != nil) it = L.succ(it);

cout << used time(T);

We make the following assumptions (see [HP90] for a justification): It takes ten machine
instructions to execute one iteration of the while-loop. Memory is organized in two levels
and the first level can hold 10000 items. An access to an item that is in first level is serviced
immediately and an access to an item that is not in the first level costs an additional twenty
machine cycles. An access to an item in second level moves this item and the seven items
following it in second-level memory from second-level memory to first-level memory. An
access to an item that is not in first-level memory in called acache miss.

What behavior will we see? First assume that the list is permuted. Since the first level
memory can hold only 10000 items it is unlikely that the successor of the current item is also
in memory. We should therefore expect that each iteration of the loop takes thirty machine
cycles, ten for the instructions executed in the loop and twenty for the transport of an item
into fast memory. Next assume that the list is not permuted. Now we will incur the access
time for slow memory only once in eight iterations and hence eight iterations will take a
total of 100 machine cycles. In contrast, the eight iterations will take a total of 240 machine
cycles on the permuted list. Thus, permuting the list will make the program about 2.4 times
slower for largen. Forn = 10000 we will see no slowdown yet, as the entire list fits in fast
memory. For very largen we will see a slowdown of 2.4 and for intermediaten we will see
a slowdown less than 2.4.

Table 3.2 shows actual measurements.

3.2.3 The Implementation of Lists
Lists are implemented as doubly linked lists. Each item corresponds to a structure (type
dlink) with three fields, one for the contents of the item and one each for the predecessor
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and the successor item, and the list itself is realized by a structure (typedlist) containing
pointers to the first and last item of the list and additional bookkeeping information. The
space requirement of a list ofn items is 16+ 12n bytes plus the space needed for the
elements of the list. The contents of an item is either stored directly in the item (if it fits
into four bytes) or is stored through a pointer, i.e., thee-field of adlink either contains the
contents of the item or a pointer to the contents of the item. In the former case there is no
extra space needed for the elements of the list and in the latter case additional space forn
objects of typeE is needed (hereE denotes the type of the objects stored in the list). All of
this is discussed in detail in the chapter on implementation.

〈storage layout for lists〉�
typedef dlink* list_item;

class dlink {

dlink* succ;

dlink* pred;

GenPtr e; // for the contents of the item

// space: 3 words = 12 bytes

};

class dlist {

dlink* h; // head

dlink* t; // tail

link* iterator // iterator, historical

int count; // length of list

// space: four words = 16 bytes

〈member functions of class dlist〉
};

There is no space to show the implementations of all member functions. We show only the
implementation of bucket sort. The implementation is very low-level and therefore hard to
understand.Bucketsort assumes that a functionord and integersi and j are given such
thatord maps the elements of the list into the range [i .. j ]. It uses an arraybucketof linear
lists; bucket[i ] points to the end of thei -th bucket list as shown in Figure 3.3. Initially,
all bucket lists are empty. The algorithm runs through the items of the list to be sorted,
computes for each itemx the indexk = ord(x → e) of the bucket into which the item
(recall thatx → e contains the object stored in itemx) belongs, and appends the item to the
appropriate bucket. Afterwards, it joins all bucket lists into a single list. This is done from
right to left.

〈list: bucket sort〉�
void dlist::bucket_sort(int i, int j)

{

if (h == nil) return; // empty list

int n = j-i+1;

register list_item* bucket = new list_item[n+1];

register list_item* stop = bucket + n;
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Figure 3.3 Illustration of bucket sort. We have two non-empty buckets. The list items are shown
as rectangular boxes, successor pointers go from left to right, and predecessor pointers go from
right to left. The pointers from the bucket array to the rears of the bucket lists are shown
vertically.

register list_item* p;

register list_item q;

register list_item x;

for(p = bucket; p <= stop; p++) *p = 0;

while (h)

{ x = h;

h = h->succ;

int k = ord(x->e);

if ( k >= i && k <= j )

{ // add x at end of k-th bucket

p = bucket + k - i;

x->pred = *p;

if (*p) (*p)->succ = x;

*p = x;

}

else

error_handler(1,"bucket_sort: value out of range") ;

}

for(p = stop; *p == 0; p--);

// now p points to the end of the rightmost non-empty bucket

// make it the new tail of the list.

t = *p;

t->succ = nil;

for(q = *p; q->pred; q = q->pred);

// now q points to the start of this bucket

// link buckets together from right to left:

// q points to the start of the last bucket

// p points to end of the next bucket

while( --p >= bucket )

if (*p)

{ (*p)->succ = q;

q->pred = *p;

for(q = *p; q->pred; q = q->pred);

}
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h = q; // head = start of leftmost non-empty bucket

delete[] bucket;

}

Aren’t you glad that one of us wrote this program?

3.2.4 Singly Linked Lists
LEDA also offers singly linked lists (typeslist) in which each item only knows its successor.
They require space 16+ 8n bytes but offer a smaller repertoire of operations. Singly linked
lists are used to implement stacks and queues.

Exercises for 3.2
1 Implement queues by singly linked lists.
2 Implement more operations on lists, e.g.,concor merge.
3 Write a procedure that reverses the order of the items in a list.
4 Extend the data typesosetto a dictionary. Realize a dictionary fromK to I as a list of

pointer to pairs (list<two tuple<K , I> ∗ >). Then proceed in analogy to the text.
5 (Topological sorting) LetL be a list of pairs of integers in the range from 1 ton. Compute

an ordering of the integers 1 ton such that if(x, y) is any pair in the list thenx precedes
y in the ordering, or decide that there is no such ordering. So ifn is 4 andL is (2, 1),
(1, 4), (3, 4) then 2, 3, 1, 4 is a possible ordering. Hint: 2 can go first because it does not
appear as the second component of any pair.

6 Redo the calculation for the slowdown due to cache misses for the case that an iteration
of the loop takes 100 clock cycles instead of ten.

7 Find out what a cache miss costs on the machine that you are using.

3.3 Arrays

Arrays are what they are supposed to be: collections of variables of a certain typeE that
are indexed by either an interval or a two-dimensional box of integers. The declarations

array<string> A(3,5);

array<string> B(10);

array2<int> C(1,2,4,6);

define two one-dimensional arrays and one two-dimensional arrays:A is a one-dimensional
array of strings with index set [3.. 5], B is a one-dimensional array of strings with index
set [0.. 9], andC is a two-dimensional array of integers with index set [1.. 2] × [4 .. 6],
respectively. Each entry is initialized with the appropriate default value. So each entry ofA
andB is initialized to the empty string and each entry ofC is initialized to some integer.

We use the standard C++ subscript operator for the selection of variables in one-dimensional
arrays. SoA[4] evaluates to the variable with index 4 inA. For two-dimensional arrays we
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need to use round brackets since C++ does not allow the use of angular brackets with two ar-
guments. SoC(1, 5) evaluates to the variable with index(1, 5) in C. Arrays check whether
their indices are legal (this can be turned off by the compiler flag-DLEDA_CHECKING_OFF)
and hence we get an error in the following assignment:

A[6] = "Kurt" // "ERROR array:: index out of range"

An array knows its index set. The callsA.low( ) and A.high( ) return the lower and upper
index bound ofA, respectively. For two-dimensional arrays we have the corresponding
functionslow1, high1, low2, andhigh2.

We illustrate arrays by two sorting functions: straight insertion sort and merge sort. Both
operate on anarray<E> A and assume that the element typeE is linearly ordered by the
functioncompare, see Section 2.10. We use [l .. h] to denote the index range ofA. Straight
insertion sort follows a very simple strategy; it sorts increasingly larger initial segments of
A. Assume that we have already sorted an initial segmentA[l], . . . , A[i − 1] of A for some
i . Initially, i = l + 1. In the incremental step we addA[i ] to the sorted initial segment by
inserting it at the proper position. We determinej with A[ j ] ≤ A[i ] < A[ j + 1], move
A[ j + 1], . . . , A[i − 1] one position to the right, and putA[i ] into A[ j + 1], see Figure 3.4.
Straight insertion sort is a stable sorting method. Its running time is quadratic.

〈straight insertionsort〉�
template<class E>

void straight_insertion_sort(array<E>& A)

{ int l = A.low();

int h = A.high();

for (int i = l + 1; i <= h; i++)

{ E x = A[i];

int j = i - 1;

while ( j >= l && compare(x,A[j]) < 0 )

{ A[j+1] = A[j];

j--;

}

A[j+1] = x;

}

}

We turn to merge sort. It is much more efficient than straight insertion sort and runs in
time O(n logn) on an array of sizen. The underlying strategy is also simple. Merge sort
operates in phases. At the beginning of thek-th phase,k ≥ 0, the array is partitioned into
sorted blocks of size 2k. These blocks are paired and any pair is merged into a single sorted
block. In the program below we useK to denote 2k and we use an auxiliary arrayB with
the same index set asA. In even phases the merge step reads fromA and writes intoB, and
in odd phases the roles ofA and B are interchanged. In this way the data moves back and
forth betweenA andB. If it ends up inB at the end ofmergesort, we need to copy it back
to A. We use a boolean variableevenphasethat is true iff the next phase is even. The actual
merging is done by the functionmerge. A call merge(X, Y, i, K , h) takes the blocks ofX
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1 2 2 4 7 8 3 9 1 2
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j i

Figure 3.4 We insertA[i ] into the already sorted initial segment by inserting it into the proper
position, say positionj + 1, and moving elementsA[ j + 1], . . . , A[i − 1] one element to the
right.

starting at positionsi andi + K , respectively, and merges them into the block ofY starting
at positioni and having the combined size of the two blocks to be merged. The last element
of the two blocks to be merged is to be found at positionh; this information is important if
the size ofA is not a power of two.

〈mergesort〉�
〈merge routine〉
template<class E>

void merge_sort(array<E>& A)

{ int l = A.low(); int h = A.high(); int n = h - l + 1;

array<E> B(l,h);

bool even_phase = true;

for (int K = 1; K < n; K = 2*K)

{ for (int i = l; i <= h; i = i + 2*K)

{ if ( even_phase ) merge(A,B,i,K,h);

else merge(B,A,i,K,h);

}

even_phase = !even_phase;

}

if ( !even_phase )

{ for (int i = l; i <= h; i++) A[i] = B[i]; }

}

It remains to definemerge(X, Y, i, K , h). Our goal is to fill the block ofY starting at
position i and extending to positionm wherem = min(i + 2K − 1, h) from the two
blocks ofX starting at positionsi andi + K , respectively. The two blocks inX extend to
ml = min(i + K − 1, h) andm, respectively. We maintain one index in each of the three
blocks to control the merging process: The indexj indicates the position inY that is to
be filled next and the indicesil andih point to the smallest remaining elements in the two
blocks ofX . We always move the smaller ofX [il ] and X [ih] to Y [ j ]. We break ties in favor
of X [il ]. This makes merge sort a stable sorting method.
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n 2 4 8 16 32 64 128 256

insertion sort 0.83 3.27 13.5

merge sort 0.03 0.06 0.14 0.29 0.66 1.28 2.85 5.99

insertion sort 0.47 1.74 7.07

merge sort 0.02 0.03 0.09 0.17 0.38 0.78 1.66 3.49

member function 0.01 0.01 0.03 0.07 0.15 0.3 0.6 1.33

Table 3.3 Running times of our sorting routines and the member functionsort. All running
times are in seconds and for an array of 1000n integers. Insertion sort and merge sort have been
compiled without and with the flag-DLEDA CHECKING OFF. You may produce you own table by
calling arraysort times.

〈merge routine〉�
#include <LEDA/misc.h> // to include Min

template<class E>

void merge(array<E>& X, array<E>& Y, int i, int K, int h)

{ int il = i; int ih = i + K;

int ml = Min(i + K - 1,h); int m = Min(i + 2*K - 1,h);

for (int j = i; j <= m ; j++)

{ if ( ih <= m && ( il > ml || compare(X[ih],X[il]) < 0 ) )

{ Y[j] = X[ih]; ih++; }

else

{ Y[j] = X[il]; il++; }

}

}

Table 3.3 shows the running times of our two sorting procedures in comparison to the mem-
ber functionsort for the task of sorting an array ofn ints. Observe how the running time
of insertion sort explodes. Since its running time grows proportional ton2, it quadruples
whenevern is doubled. In contrast, the running time of the two other methods isO(n logn)

and hence basically doubles whenevern is doubled. The member functionsort beats our
implementation of merge sort because it exploits the fact that the objects to be sorted are
ints, see Section 13.5.

Arrays are implemented by C++ arrays. There are important differences, however:

• The index sets may be arbitrary intervals of integers and arrays check whether their
indices are legal. The index check can be turned off by the compiler flag
-DLEDA_CHECKING_OFF.

• The entries of an array are initialized to the default value of the entry type.

• An assignmentA = B assigns a copy ofB to A, i.e., A is made to have the same
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number of variables asB and these variables are initialized with copies of the values
of the corresponding variables inA. Thus, it is perfectly legal to assign an array of size
100 to an array of size 5.

• One-dimensional arrays offer some additional higher level functions which we discuss
next.

We can reorder the elements of a one-dimensional array according to a linear order on
the typeE . The linear order may either be the default order of the type or be given by a
compare function. Thus,

A.sort();

sorts the entries of our arrayA according to the lexicographic ordering on strings. On a
sorted array we may use binary search.

A.binary search("Stefan");

returns the indexi ∈ [3 .. 5] containing"Stefan" if there is such an index and returns
A.low( ) − 1 if there is no such index. We can permute the entries of an array by

A.permute();

The space required for an array ofn elements isn times the space required for an object of
type E . All access operations on arrays take constant time,sort takes timeO(n logn) and
binarysearchtakes timeO(logn).

In many applications one needs arrays with large but sparsely used index sets, e.g., we
may have 104 indices in the range from 0 to 109. In this situation it would be a complete
waste of space and time to allocate an array of 109 elements and therefore a different data
structure is called for. The data typesmapandh array are appropriate. They will be dis-
cussed in Section 5.1.

Exercises for 3.3
1 Implement other sorting routines for arrays. Candidates are bubble sort, shell sort, heap

sort, quick sort, and others.
2 Implement the typearray by C++ arrays.
3 (Sparse arrays) Use lists to realize arrays whose index ranges are the integers from 0

to 220. Call the typesparsearray<E>. The constructor for the class should have an
argument of typeE . All elements of the array are initialized with this value. The time
efficiency of your method is not important. However, the space requirement should be
proportional to the number of indices for which the subscript operator was executed.

3.4 Compressed Boolean Arrays (Type intset)

Boolean arrays are often used to represent sets. In this situation one also wants to perform
the set operationsunion, intersection, andcomplementbesides the usual operations on ar-
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rays (read the value of an entry or set the value of an entry). The data typeint setprovides
these operations in a space- and time-efficient way. It stores boolean arrays as bit-vectors,
i.e., λ entries are stored in a single word on a machine with word sizeλ, and it uses the
parallelism available at the word level to perform the set operations forλ entries in a single
machine instruction. A speed-up of aboutλ is thus obtained for the set operations. On the
other hand, reading or setting a single entry takes slightly longer than for an array.

int set S(n),T(n),R(n);

definesS, T , and R as subsets of [0.. n − 1] and initializes them to the empty set; the
alternative definitionint setS(a, b) definesS as a subset of [a .. b]. If x is an integer with
0 ≤ x ≤ n − 1 then

S.insert(x);

S.del(x);

S.member(x);

insertsx into S, deletesx from S, and tests for membership ofx , respectively.S.clear( )

makesS the empty set. The set operations union, intersection, and complement are denoted
by the corresponding logical operator. So

S = T | R;

S = T & R;

S = ~T;

assigns the union ofT and R, the intersection ofT and R, and the complement ofT to
S, respectively. We also have the shorthandsS |= R for S = S | R and S &= R for
S = S & R. Note that the shorthands are more efficient than the verbose versions since the
verbose versions first construct a temporary object and then copy that object into the left-
hand side (except if your compiler is clever). The space requirement of intsets isO(n/λ);
insert, del, andmembertake timeO(1), and the other operations take timeO(n/λ).

As an application of compressed boolean arrays we give an algorithm for the multiplica-
tion of boolean matrices that runs in timeO(n3/λ). Let A andB be boolean matrices with
index sets [0.. n − 1] × [0 .. n − 1], and letC be their product, i.e.,

C(i, k) =
n−1∨
j=0

A(i, j ) ∧ B( j, k)

for all i andk. The obvious method to obtainC from A and B takes timeO(n3). We can
obtain a faster algorithm by observing that for eachi , 0 ≤ i < n, thei -th row of C is the
bit-wise or of certain rows ofB, namely those that are selected by thei -th row of A. If
we represent the rows ofB andC as compressed arrays we obtain each row ofC in time
O(n2/λ) and hence can multiply two matrices in timeO(n3/λ).

We give the details. First we compute a compressed version ofB.

array<int set*> B compressed(0,n-1);

int i;

for (i = 0; i < n; i++)
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{ B compressed[i] = new int set(0,n-1);

for (int j = 0; j < n; j++)

if ( B(i,j) ) B compressed[i]->insert(j);

}

Next we perform the multiplication. We compute each row first in compressed form and
then expand it intoC.

int set compressed row(0,n-1);

for (i = 0; i < n; i++)

{ for (int j = 0; j < n; j++)

if (A(i,j)) compressed row |= *B compressed[j];

for (j = 0; j < n; j++)

C(i,j) = compressed row.member[j];

compressed row.clear();

}

Exercise for 3.4
1 Compare the method described above with the following variant of the traditional method.

for (int i = 0; i < n; i++)

for (int k = 0; k < n; k++)

{ C(i,k) = false;

for (int j = 0; j < n; j++)

if ( A(i,j) && B(j,k) )

{ C(i,k) = true;

break;

}

}

How do the two algorithms perform whenA andB contain only zeros and ones, respec-
tively? Is there a way to combine the advantages of both methods?

3.5 Random Sources

We frequently need random values in our programs. Arandom sourceprovides an un-
bounded stream of integers in some range [low .. high], wherehigh and low are ints with
low ≤ high andhigh− low < 231. The size restriction comes from the fact that the imple-
mentation of random sources useslongs. The definition

random source S(7,319);

defines a random sourceS and sets its range to [7.. 319]. Ranges of the form [0.. 2p] are
particularly useful. Therefore we have also the definition

random source S(p);
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that sets the range to [0.. 2p−1] (1 ≤ p ≤ 31 is required) and the definitionrandomsourceS
that sets the range to [0.. 231 − 1]. The random sourcerand int is already defined in the
header filerandom.h; it has range [0.. 231− 1]. A random value is extracted from a source
by the operator�. So

S >> x >> y;

extracts two integers in the range [low .. high] and assigns them tox and y; this assumes
that x and y are defined as ints. Note that we are using the C++ input stream syntax for
random sources, i.e.,S � x assigns tox and returns a reference toS.

We may also extract characters, unsigned integers, bools, and doubles from a random
source. For the first three types this works as follows: first an integer from the range
[low .. high] is extracted and then this integer is converted to the appropriate type. Thus,
if b is a boolean variable thenS � b extracts a truth value. Note that the value ofb is not
uniformly distributed ifhigh− low + 1 is an odd number. In particular, iflow = 0 and
high = 2 then we should expect the valuefalseabout twice as often as the valuetrue (as 0
and 2 are converted tofalseand only 1 is converted totrue). Werecommendto extract char-
acters and boolean values only from sources whose range spans a power of two. If a source
S is asked for a doubled by S � d then a random integeru ∈ [0 .. 231 − 1] is extracted
andu/(231 − 1) is assigned tod, i.e., the value assigned tod lies in the unit interval.

The range of a random source can be changed either permanently or for a single oper-
ation: The operationsS.setrange(low, high) and S.setrange(p) change the range ofS to
[low .. high] and [0.. 2p − 1], respectively, andS(low, high) andS(p) change the range for
a single operation and return an integer in [low .. high] and [0.. 2p − 1], respectively.

Of course, the stream of integers generated by a random source is only pseudo-random.
It is generated from aseedthat can either be supplied by the user (byS.setseed(s)) or
is generated automatically from the internal clock. If a seed is supplied then the source
behaves deterministically; this is particularly useful during debugging. If no seed is supplied
the sequence produced depends on the time of the day.

In the remainder of this section we describe several uses and the implementation of ran-
dom sources.

A Chance Experiment: We use random sources for a chance experiment that is relevant to
the analysis of merge sort for secondary memory; see [Moo61] and [Knu81, section 5.4.1].
Assume that we have to sort a setS that is too large to fit into main memory. Merge sort
for external memory approaches this problem in two phases. In the first phase it partitions
S and sorts each subset and in the second phase it merges the sorted subsets (usually called
runs). Of course, it is desirable that the number of runs produced in the first phase is kept
small, or in other words, that the runs produced in the first phase are long. Assume thatM
elements ofS can be kept in main memory. Then runs of lengthM can be produced by
readingM elements into main memory and sorting them. Longer runs can be produced by
a method calledreplacement selection. This method partitions its internal memory into a
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priority queueQ and a reservoirR that can together storeM elements. The production of
runs starts by readingM elements into the priority queue. A run is generated by repeated
selection of the minimum elementQ min from Q. This element is added to the current run
(and written to secondary memory) and the spot freed in main memory is filled by the next
elementx from S. If x is smaller thanQ min then x is added toR and it is added toQ
otherwise. We continue untilQ becomes empty. When this is the case, the elements inR
are moved toQ and the production of the next run starts. Each run produced by replacement
selection has length at leastM. The two extreme situations arise whenS is sorted: ifS is
sorted in descending order then each run has exactly lengthM and if S is sorted in ascending
order then a single run will be produced.

The program below simulates the behavior of replacement selection for a setS of random
doubles. We maintain a priority queueQ and a stackS. We initialize Q with M random
doubles andR to the empty stack. Then we start the production of runs. In each iteration
we remove the smallest elementQ min from Q and then produce a new random doublex .
If x < Q min we addx to Q, and we add it toR otherwise. WhenQ is empty we move all
elements fromR to Q and start the production of the next run. For each run we record the
quotient of the length of the run andM.

〈runlength〉�
main(){

int M, n;

〈read M and n〉
p_queue<double,int> Q; // second type parameter is not used

stack<double> R;

random_source S;

double x;

int i;

for (i = 0; i < M; i++) { S >> x; Q.insert(x,0); }

array<double> RL(1,n); // RL[i] = length of i-th run

for (i = 1; i <= n; i++)

{ // production of i-th run

int runlength = 0;

while ( !Q.empty() )

{ double Q_min = Q.del_min(); runlength++ ;

S >> x;

if (x < Q_min) R.push(x);

else Q.insert(x,0);

}

RL[i] = (double)runlength / M;

while ( !R.empty() ) Q.insert(R.pop(),0);

}

〈produce table runlength〉
}

Table 3.4 shows the output of a sample run; we usedM = 105. The length of thei -th run
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Round Length Round Length Round Length Round Length

1 1.717 6 1.998 11 2 16 2.001

2 1.95 7 1.998 12 2 17 2.002

3 1.998 8 2.002 13 1.999 18 1.992

4 2.002 9 1.997 14 2.002 19 2

5 1.996 10 2 15 2 20 2.003

Table 3.4 Run formation by replacement selection, we usedM = 105 andn = 20. You may
perform your own experiments by calling program runlength.

seems to converge to 2M asn grows. We refer the reader to [Moo61] and [Knu81, section
5.4.1] for a proof of this fact.

We give a second interpretation of the chance experiment above. Consider a circular
track on which a snow plow is operating. When the snow plow starts to operate there are M
snow flakes on the track (at random locations). In every time unit the snow plow removes
one snow flake and one new flake falls (at a random location). We compute how many snow
flakes the snow plow removes in its i-th circulation of the track.

Random Permutations and Graphs: We show how to generate more complex random
objects, namely random permutations and random graphs.

Let A be an array. We want to permute the elements ofA randomly. Leta0, . . . , an−1 be
the elements ofA. We can generate a random permutation of these elements by selecting a
random element and putting it into the last position of the permutation, selecting a random
element from the remaining elements and putting it into the next to last position of the
permutation, and so on. In the program below we realize this process in-place. We keep an
index j into A, initially j = n −1. We maintain the invariant that the elements in position 0
to j have not been selected for the permutation yet and that positionsj + 1 ton − 1 contain
the part of the permutation that has been produced so far. In order to fill the next position
of the permutation we choose a random integeri in [0 .. j ] and interchangeA[i ] and A[ j ].
We obtain

random source S;

for (int j = n - 1; j >= 1; j--) leda swap(A[j],A[S(0,j)]);

whereledaswapinterchanges its arguments. The method just described is used in operation
permute( ) of typesarray andlist.

Our next task is to generate a random graph withn nodes andm edges. This is very
easy. We start with an empty graphG, then addn nodes toG, and finally choosem pairs
of random nodes and create an edge for each one of them. A node can be added to a graph
G by G.newnode( ). This call also returns the newly added node. We store the nodes in an
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array<node> V . In order to add a random edge we choose two random integers, sayl and
k, in [0 .. n − 1] and then add the edge fromV [l] to V [k] to G.

random source S;

graph G; //empty graph

array<node> V(0,n-1);

for (int i = 0; i < n; i++) V[i] = G.new node();

for (int i = 0; i < m; i++)

G.new edge( V[S(0,n-1)] , V[S(0,n-1)] );

The program above realizes the functionrandomgraph(G, n, m). LEDA also offers func-
tions to generate other types of random graphs, e.g., random planar graphs. We discuss
these generators in later chapters.

Non-Uniform Distributions: We show how to generate integers according to an arbitrary
discrete probability distribution. The method that we are going to describe is called the
alias-methodand has been invented by Walker [Wal77]. Letw[0 .. n − 1] be an array of
positive integers. For alli , 0 ≤ i < n, we interpretw[i ] as the weight ofi . Our goal is to
generatei with probabilityw[i ]/W , whereW = w[0] + . . . + w[n − 1]. We start with the
simplifying assumption thatn dividesW and letK = W/n. We will remove this restriction
later. We viewW as ann by K arrangement of squares,n columns ofK squares each and
labelw[i ] squares byi for all i , 0 ≤ i ≤ n, see Figure 3.5. In order to generate an integer we
select a random square and return its label. This makes the generation of a random integer a
constant time process. The drawback of this method is that it requires spaceW . The space
requirement can be improved toO(n) by observing that there is always a labeling of the
squares such that at most two different labels are used in any column. This can be seen
as follows. Call a weightsmall if it is less than or equal toK and call it large otherwise.
Clearly, there is at least one small weight. Letw[i ] be an arbitrary small weight. Ifw[i ]
is equal toK then we assign an entire column toi and if w[i ] is less thanK then we take
an arbitrary large weight (there must be one!), sayw[ j ], and assignw[i ] squares toi and
K − w[i ] squares toj . We also reducew[ j ] by K − w[i ]. In either case, we have reduced
the number of weights by one and are left withn − 1 weights whose sum isK (n − 1).
Proceeding in this way we label each column by at most two numbers.

We still need to remove the assumption thatn dividesW . We redefineK asK = dW/ne
and add an additional weightw[n] = K (n + 1) − W . This yieldsn + 1 weights whose
sum is equal toK (n + 1). We can now construct a labeling as described above. We also
need to modify the generation process slightly, because it is now possible that the number
n is generated. When this happens we declare the generation attempt a failure and repeat.
The probability of success isW/(K (n + 1)) and hence the expected number of iterations
required isK (n + 1)/W . We need to bound this quantity. We haveW ≥ n since each
weightw[i ] it at least one and we haveK n < W + n and henceW > (K − 1)n by the
definition of K . Thus if K = 1 thenK (n + 1)/W ≤ (n + 1)/n ≤ 2 and if K ≥ 2 then
K (n + 1)/W ≤ K (n + 1)/((K − 1)n) ≤ 4. In either case we conclude that the expected
number of iterations required is bounded by 4.
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Figure 3.5 Illustration of alias-method. We haven = 5, w = (3, 4, 14, 3, 1), andK = 5. The
labeling shown is succinctly encoded by the vectorsT = (3, 4, 5, 3, 1), L = (0, 1, 2, 3, 4), and
U = (2, 2, , 2, 2): for each columnj the lowestTj squares are labeledL j and the highest
K − Tj squares are labeledU j .

We turn to an implementation. We define a classrandomvariate. Its constructor takes an
array<int> w of non-negative integers and index range [l .. h] and sets up the vectorsT , L,
andU and the integerK defined above. Its member functiongenerategenerates any integer
i ∈ [l .. h] with probabilityw[i ]/W whereW = ∑

i w[i ].

〈definition of class randomvariate〉�
class random_variate{

array<int> T, L, U;

int l, h, n, K;

public:

random_variate(const array<int>& w) { 〈random variate: constructor〉 }

int generate() { 〈random variate: generate〉 }

};

The constructor operates in two phases. In the first phase we compute the total weightW ,
the numbern of non-zero weights, the integerK , and an arrayarray<int> u(l, h + 1) with
the additional weightu[h + 1] = K (n + 1) − W .

〈random variate: constructor〉�
l = w.low(); h = w.high();

int W = 0;

array<int> u(l,h+1);

n = 0; // number of non-zero weights

int i;

for (i = l; i <= h; i++)

{ W += u[i] = w[i];

if ( u[i] < 0 )

error_handler(1,"random variate: negative weight");

if ( u[i] > 0 ) n++;

}
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if ( n == 0 ) error_handler(1,"random_variate: no non-zero weight");

K = W/n + (W % n == 0? 0 : 1);

u[h + 1] = K*(n+1) - W; n++;

In the second phase we set up the arraysT , L, andU . We use two stacksSmallandLarge:
In Smallwe store all alli such thatu[i ] is small and inLargewe store alli such thatu[i ]
is large. We store the labeling in three arraysT , L, andU such that for every columnc,
0 ≤ c ≤ n − 1, squares 1 toT [c] are labeledL[c] and squaresT [c] + 1 to K are labeled
U [c].

〈random variate: constructor〉+�
stack<int> Small,Large;

for (i = l; i <= h + 1; i++)

{ if ( u[i] == 0 ) continue;

if ( u[i] <= K ) Small.push(i);

else Large.push(i);

}

U = T = L = array<int>(n);

for (int c = 0; c < n; c++)

{ int i = Small.pop();

T[c] = u[i];

L[c] = i;

if ( u[i] < K )

{ int j = Large.pop();

U[c] = j;

u[j] -= (K-u[i]);

if ( u[j] <= K ) Small.push(j); else Large.push(j);

}

}

The generator chooses a randomrow and a randomcolumnand looks up the table entry
defined by this row and column. If the table entry is different fromh + 1, it is returned.
Otherwise the process is repeated.

〈random variate: generate〉�
int r;

do { int row = rand_int(1,K);

int column = rand_int(0,n-1);

r = (row <= T[column] ? L[column] : U[column]);

}

while (r == h + 1);

return r;

Random Walks in Graphs (Simulating Markov Chains): We give an application of class
randomvariate. We perform a random walk on a graph. LetG = (V, E) be a directed graph
and for each edgee let w[e] be a non-negative weight. We start our walk in an arbitrary
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node ofG and move according to the following rule: Suppose that we are currently in node
v and lete0, . . . ,ed−1 be the edges out ofv. We follow edgeei with probability proportional
to w[ei ] for all i , 0 ≤ i < d. If there is no edge out ofv the walk terminates. We define a
classmarkovchainthat allows us to simulate such a process.

〈definition of class markovchain〉�
class markov_chain {

graph& G;

int N;

node_array<int> visits;

node vcur;

node_array<array<node> > neighbors;

node_array<random_variate*> variate;

public:

markov_chain(const graph& g, const edge_array<int>& w,

node s = nil): G(g)

{ 〈markov chain: constructor〉 }

void step(int T = 1) { 〈markov chain: step〉 }

int number_of_visits(node v) { return visits[v]; }

〈markov chain: further member functions〉
};

The constructor takes a graphG, an edge array of weights, and a start vertex. If no start
vertex is specified the first node ofG is taken as the start vertex. The functionstep(T ) per-
formsT steps of the random walk and the functionnumberof visits(v) returns the number
of visits to nodev. We give the details below.

The constructor sets up the required data structures. We build two data structures for each
nodev: anarray<node> neighbors[v] that stores for eachi , 0 ≤ i < outdeg(v), the target
of the i -th edge out ofv and a random variatevariate[v] that producesi with probability
proportional to the weight of thei -th edge out ofv. We set up both data structures by scan-
ning through the edges out ofv, collecting the target of the edges out ofv in neighbors[v]
and their weights in a temporary arrayweights. Then we use the latter array to construct the
random variate forv.

〈markov chain: constructor〉�
N = 0;

visits = node_array<int>(G,0);

vcur = s; if ( s == nil) vcur = G.first_node();

neighbors = node_array<array<node> >(G);

variate = node_array<random_variate*>(G);

node v; edge e;

forall_nodes(v,G)

{ if (G.outdeg(v) == 0) continue;

neighbors[v] = array<node>(G.outdeg(v));

array<int> weights(G.outdeg(v));

int i = 0;
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Figure 3.6 A graph with two nodes. The edge probabilities are shown next to each edge.

forall_adj_edges(e,v)

{ neighbors[v][i] = G.target(e);

weights[i] = w[e];

i++;

}

variate[v] = new random_variate(weights);

}

Given these data structures it is easy to performT steps of the walk. If the outdegree of the
current node is zero we stay put. Otherwise, we generate a neighbor at random and move
to the neighbor.

〈markov chain: step〉�
if (T <= 0 ) return;

for (int i = 0; i < T; i++)

{ if ( G.outdeg(vcur) == 0) return;

vcur = neighbors[vcur][variate[vcur] -> generate()];

visits[vcur]++;

N++;

}

Let us perform a random walk on the graph shown in Figure 3.6.

〈randomwalk example〉�
main(){

graph G;

node v0 = G.new_node();

node v1 = G.new_node();

edge e00 = G.new_edge(v0,v0); edge e01 = G.new_edge(v0,v1);

edge e10 = G.new_edge(v1,v0); edge e11 = G.new_edge(v1,v1);

edge_array<int> weight(G);

weight[e00] = 2; weight[e01] = 1;

weight[e10] = 1; weight[e11] = 1;

while( true )

{ int N = read_int("number of steps = ");

markov_chain M(G,weight);

M.step(N);

cout << "# of visits of v0 = " << M.number_of_visits(v0) <<"\n";

cout << "# of visits of v1 = " << M.number_of_visits(v1) <<"\n";

}

}
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n 1 10 100 1000 10000 100000 1000000 10000000

v0 0 3 63 570 6058 60180 600704 6003568

v1 1 7 37 430 3942 39820 399296 3996432

Table 3.5 The statistics of a random walk on the graph of Figure 3.6. Each column gives the
number of visits to both nodes in the firstn steps of the walk. You may perform your own
experiments by calling randomwalk.

Table 3.5 shows a sample output of this program. There is a simple analytical explanation
for the output based on the theory of Markov chains, see [KSK76] for an introduction to
Markov chains. Letpi,n be the relative frequency of nodei during the firstn steps of the
random walk. It is known that thepi,n converge to so-called stationary probabilitiesπi and
that the stationary probabilities satisfy a system of linear equations directly related to the
transition graph. For each nodej there is an equation expressingπ j as a sum over all edges
directed intoj . The contribution to this sum of an edge(i, j ) is qi j · πi , whereqi j is the
transition probability of the edge. In our example we obtain:

π0 = 2/3 · π0 + 1/2 · π1

π1 = 1/3 · π0 + 1/2 · π1.

This system has solutionπ0 = 6/10 andπ1 = 4/10. In Table 3.5 we see the convergence
of the visit frequencies to the stationary probabilities.

Dynamic Random Variates: We generalize the classrandomvariate to a class called
dynamicrandomvariatewhich offers an additional operationsetweightthat allows the user
to change weights dynamically. More precisely, ifR is a dynamic random variate with
weight vectorw andi is in the index range ofw thensetweight(i, g) changesw[i ] to g; g
is an arbitrary non-negative integer. The generation process of dynamic random variates is
less efficient than the one for (static) random variates; it takes timeO(logn), wheren is the
size of the index range ofw.

The implementation is fairly simple. We put the weights into the leaves of a balanced
binary tree withn leaves andn − 1 internal nodes. In each node we store the sum of the
weights of the leaves in its subtree. In particular,W = ∑

i w[i ] is stored in the root of
the tree. A weight change amounts to updating the weights along one leaf to root path. In
order to generate a random variate we choose a random integers in [0 .. W − 1]. If s is
less than the total weight of the left subtree, we proceed recursively to the left subtree and
if s is larger or equal to the total weight of the left subtree, we subtract the weight of the
left subtree and proceed recursively to the right subtree. In this way, changing a weight and
generating a random variate takes time proportional to the height of the tree. If a balanced
tree is used the height isO(logn).

A particularly simple implementation results when the nodes of the tree are numbered
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Figure 3.7 A tree with five leaves and a total of nine nodes. The number of each node is shown.
The children of nodei have numbers 2i and 2i + 1.

with the integers 1 to 2n − 1 in preorder, i.e., the root is given the number 1, the children
of the node with numberi , 1 ≤ i < n have numbers 2i and 2i + 1, and the leaves are
numberedn to 2n −1. See Figure 3.7 for an example. The parent of nodei , 2 ≤ i ≤ 2n −1
has numberbi/2c.

In the implementation we use anarray<int> u with index range [1.. 2n − 1] to store the
tree.

〈definition of class dynamicrandomvariate〉�
class dynamic_random_variate{

private:

array<int> u;

int n, h, l;

public:

dynamic_random_variate(const array<int>& w)

{ 〈dynamic random variate: constructor〉 }

int generate() { 〈dynamic random variate: generate〉 }

int set_weight(int i, int g) { 〈dynamic random variate: set weight〉 }

};

The constructor stores the weight vectorw in the entriesn to 2n − 1 of u and then fills
each entryui , n − 1 ≥ i ≥ 1 as the sum of the entries of its children.
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〈dynamic random variate: constructor〉�
l = w.low(); h = w.high(); n = h - l + 1;

u = array<int>(1,2*n - 1);

int i;

for (i = 0; i < n ; i++)

{ u[n + i] = w[l + i];

if ( u[n + i] < 0 ) error_handler(1,"dynamic variate: negative weight");

}

for (i = n - 1; i > 0; i--)

u[i] = u[2*i] + u[2*i + 1];

if (u[1] == 0 ) error_handler(1,"dynamic variate: no non-zero weight");

The generator chooses a random integers in [0 .. W − 1] and then walks down a path
in the tree. When the walk reaches nodei , s is a random integer in [0.. u[i ] − 1]. If i is
a leaf we returnl + (i − n) since the leaf numberedi corresponds to entryl + (i − n) of
weight vectorw. If i is not a leaf ands < u[2i], we proceed to child 2i and ifs ≥ u[2i], we
subtractu[2i] from s and proceed to child 2i + 1.

〈dynamic random variate: generate〉�
int s = rand_int(0,u[1] - 1);

int i = 1;

while ( i < n )

{ int j = 2*i;

if ( s < u[j] )

i = j;

else

{ i = j + 1;

s -= u[j];

}

}

return l + i - n;

In order to change weighti to g we walk the path from leafn + (i − l) to the root and
change all entries ofu along the path bydelta= g − u[i ]. The old value ofu[i ] is returned.

〈dynamic random variate: set weight〉�
int ui = u[i];

i = n + (i - l);

int delta = g - u[i];

if ( g < 0 ) error_handler(1,"dynamic variate: negative weight");

while (i > 1)

{ u[i] += delta;

i = i/2;

}

u[1] += delta;

if ( u[1] == 0 ) error_handler(1,"dynamic variate: no positive weight");

return ui;
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n Static Dynamic

100 32.02 52.7

10000 41.07 90.34

Table 3.6 Running time of random variate generation: We set up a weight vector withn entries
and then generated 107 random variates according to it. We used classesrandomvariateand
dynamicrandomvariate.
You can make your own experiments using the randomvariatedemo.

Table 3.6 illustrates the speed of our two methods for generating random variates. Surpris-
ingly, theO(logn) method is faster than the constant time method.

Dynamic Markov Chains: The use of dynamic random variates instead of static random
variates in Markov chain data type yields a dynamic Markov chain data type which also
supports the change of edge weights.

Simulating a Supermarket Check-Out: We use dynamic random variates to simulate a
supermarket check-out. We consider a supermarket withn check-out stations. We assume
that there is a queue (maybe empty) in front of every check-out station and useq[i ] to
denote the queue length in front of thei -th check-out station. Servicing a customer at a
check-out station takes either 1 (probability 2/3) or 2 (probability 1/3) time units. Thus the
average servicing time is 4/3 time units.

We assume that 3n/4 customers arrive at every time unit. Customers tend to choose
check-out stations with short queues. We assume that a customer chooses queuei with
probability proportional to 1/(1 + q[i ]).

In the program we define random variatesR and S; S is a static random variate which
models the distribution of service times andR is a dynamic random variate which yields
check-out stations. InR we usebM/(1 + q[i ])c as the weight ofi , whereM is a large
constant. In each time step we first generate 3n/4 customers. For each customer we choose
the service length by callingS.generate( ) and the service station by callingR.generate( ).
We update the queue lengths after each generation of a customer.

We collect all customers requiring short service in a listshortserviceand all customers
requiring long service in a listlongservice. After having generated the new customers we
service all customers inshortservice, update queue lengths appropriately, and move all
customers inlongserviceto shortservice.

〈supermarket check-out〉�
array<int> q(n);

array<int> w(n);

int M = 10000;

for (int i = 0; i < n; i++) { q[i] = 0; w[i] = M; }
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dynamic_random_variate R(w);

array<int> w1(1,2); w1[1] = 2; w1[2] = 1;

random_variate S(w1);

list<int> short_service, long_service;

for (int t = 0; t < T; t++)

{ for (int k = 0; k < 3*n/4; k++)

{ int i = R.generate(); q[i]++; R.set_weight(i,M/(1 + q[i]));

if ( S.generate() == 1)

short_service.append(i);

else

long_service.append(i);

}

int i;

forall(i,short_service)

{ q[i]--; R.set_weight(i,M/(1 + q[i])); }

short_service.clear();

short_service.conc(long_service);

〈report queue lengths〉
}

Implementation of random source: Our implementation of random sources follows the
description in [Knu81, Vol2, section 3.2.2]. We first give the mathematics and then the
program. Internally, we always generate a sequence of integers in the range [0.. 231 − 1].
We define 32 unsigned longsX0, X1, . . . , X31 by

X0 = seed

and

Xi = (1103515245· Xi−1 + 12345) modm

for 1 ≤ i ≤ 31. Herem = 232. We extend this sequence by

Xi = (Xi−3 + Xi−32) modm

for i ≥ 32. In this way an infinite sequenceX0, X1, . . . of unsigned longs is obtained.
Following [Knu81, Vol2, section 3.2.2], we discard the first 320 elements of this sequence
(they are considered as a warm-up phase of the generator) and we also drop the right-most
bit of each number (since it is the least random). Thus, thei -th number output by the
internal generator is

(X[i + 320] >> 1) & 0x7fffffff.

We next show how to generate a number uniformly at random in [low .. high]. Let X be a
number produced by the internal generator. Thenlow+X mod(high−low+1) is a number in
the range [low .. high]. However, this number is not uniformly distributed (consider the case
wherelow = 0 andhigh = 231 − 2 and observe that in this case the number 0 is generated
with probability twice as large as any other number). We therefore proceed differently. Our
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approach is based on the observation that ifX is a random number in [0.. 231−1] andp is an
integer less than 32 thenX mod 2p is a random number in [0.. 2p−1]. Letdiff = high− low
and letp be such that 2p−1 ≤ diff < 2p. We generate random numbersX using the internal
source untilX mod 2p ≤ diff and then outputlow + X mod 2p. Since 2p−1 ≤ diff at most
two X ’s have to be tried on average. The complete program follows.

〈generation of a random number in [low..high]〉�
int diff = high - low;

/* compute pat = 2^p - 1 with 2^{p-1} <= diff < 2^p */

unsigned long pat = 1;

while (pat <= diff) pat <<= 1;

pat--;

/* pat = 0...01...1 with exactly p ones.

Now, generate random x in [0 .. pat]

until x <= diff and return low + x */

unsigned long x = internal_source() & pat;

while ( x > diff) x = internal_source() & pat;

return (int)(low + x);

Exercises for 3.5
1 Add an operator� to the typerandomsourcethat allows you to extract a random point

in the two-dimensional unit square.
2 Consider the following program.

int i,j,x;

array<int> A(0,n-1);

for (i = 0; i < n; i++)

{ while (true)

{ x = rand int(0,n-1);

for (j = 0; j < i && x != A[j]; j++) ; // empty body

if (j == i) break;

}

A[i] = x;

}

a) Does it generate a random permutation of the integers 0 ton − 1?
b) What is the expected running time of the program?

3 Change the random graph generator such that it generates graphs without self-loops, i.e.,
no edges(v, v), and without parallel edges, i.e., no two edges with the same source and
target.

4 Let d0, . . . ,dn−1 be non-negative integers whose sum is even. Generate a random undi-
rected graph where nodei has degreedi for all i , 0 ≤ i < n. Hint: Create an arrayA of
length 2m = ∑

i di , write the integeri into di entries ofA for all i , permuteA, and then
generate the edge(A[2 j ], A[2 j + 1]) for all j , 0 ≤ j < m.

5 Balls and bins: Thrown balls randomly intom bins, i.e, choosen random integers in the
range [0.. m −1] and tabulate how often each number is chosen. Perform the experiment
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with n = 106 andm = 100,m = 1000, . . . ,m = 106. If you want to understand the
outcome of the experiment analytically consult [MR95].

6 Use classesrandomvariate andsoset to perform the following experiment. Letw be
any vector ofn non-negative integers withw0 ≥ w1 ≥ . . . ≥ wn−1. Store the integers
0 to n − 1 in asosetand performN access operations. For eachi , 0 ≤ i < n access
i with probability proportional towi . Determine the total cost of all accesses where the
cost of an access is the distance of the accessed item from the front of the list (you need
to modify soset::memberslightly in order to get this information) and compare it to
C = N

∑
i wi(i + 1)/W whereW = ∑

i wi . Note thatC is the expected cost of the
accesses if the list were arranged in order of decreasing weight.

3.6 Pairs, Triples, and such

A tuple is an aggregation of variables of arbitrary types. LEDA offers two-tuples, three-
tuples, and four-tuples. We use two-tuples as our running example in this section. For any
typesA andB and objectsa andb belonging to these types the declarations

two tuple<A,B> p;

two tuple<A,B> q(a,b);

define a two-tuplep and a two-tupleq, respectively. The components ofp are initialized
to the default values ofA andB, respectively, and the components ofq are initialized with
copies ofa andb, respectively. The operationsfirst andsecondreturn the two variables
contained in a two-tuple. So we may write

a = p.first();

p.second() = b;

The operators==, �, � and the functionscompareandHashare defined for two-tuples.
They assume that the corresponding functions are defined for the component types. The
operators� and � read and write a two-tuple, respectively, the operator== realizes
component-wise equality,compareamounts to the lexicographic ordering of two-tuples and
Hashreturns the bitwise exclusive or of the hash values of the components. All of these
functions and operators are defined as template functions. For example,

template <class A, class B>

int compare(const two tuple<A,B>& p, const two tuple<A,B>& q)

{ int s = compare(p.first(),q.first());

if (s != 0) return s;

return compare(p.second(),q.second());

}

If one uses two-tuples in a situation that requires the compare function for two-tuples, e.g.,
if one defines alist<twotuple<int, int> > L and then callsL.sort( ), it is wise to give the
compiler a hint that it should make the compare function fortwotuple<int, int>. In the
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following program this is done by defining a variablep of type twotuple<int, int> and
callingcompare(p, p).

〈two tuple test〉�
main()

{ list< two_tuple<int,int> > L;

two_tuple<int,int> p;

compare(p,p); // dummy compare

L.sort();

}

3.7 Strings

A string is a sequence of characters, where a character is an element of the C++ typechar.
The number of characters in a string is called the length of the string and the characters in
a string are numbered starting at zero. Sou is the character at position one inKurt. The
string of length zero is called the empty string; it is the default value of the type. Strings are
related to thechar∗ type of C++. There are, however, two significant differences:

• The value of a variable of type string is a sequence of characters, it is not a pointer. In
particular, assignment and parameter passing by value work properly for strings.
Strings are a primitive type, see Section 2.3.

• Strings offer a large number of additional operations, e.g., pattern matching, substring
replacement, and comparison according to the lexicographic ordering. We have to
admit, however, that some programming languages, e.g., PERL and AWK, offer much
more elaborate string classes.

Let us see strings at work.

string s("Stefan");

defines a string variables and initializes it with the value"Stefan".

string t = s + s;

defines another string variablet and initializes it to"StefanStefan"; the operator+ is the
concatenation operation on strings. The expressiont (2, 5) returns the substring oft starting
at position 2 and ending at position 5. Since we start counting at 0 this is the string"efan".
We can also search for the occurrence of one string in another string: Ifa andb are strings
thena.pos(b) searches for an occurrence ofb in a. If b does not occur ina thenposreturns
−1 and ifb does occur then it returns the first position ina at whichb occurs. Thus

t.pos("efa");
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returns 2, i.e., the first position int at which an occurrence of"efa" starts, andt.pos(“Kurt”)
returns−1. Another useful operation on strings is substring replacement. It comes in sev-
eral forms:a.replace(i, j, b) returnsa(0, i − 1) + b + a( j + 1, a.length( ) − 1), i.e., b is
substituted for the substringa(i, j ), anda.replace(b1, b2, n) replaces then-th occurrence
of b1 in a by b2, and finallya.replaceall(b1, b2) replaces all occurrences ofb1 in a by b2.
It is important to notice that all three versions do not change the stringa. Rather, they return
a new string. So after

string u = t.replace(2,5,"Kurt");

string v = t.replace(s,"Kurt",2);

we have a stringu with value"StKurtStefan", i.e., the substring oft starting at position
2 and ending at position 5 is replaced by"Kurt", and a stringv with value"StefanKurt",
i.e., the second call ofreplacereturns a string in which the second occurrence ofs in t is
replaced by"Kurt".

The operator< realizes the lexicographic ordering of strings. So

(t < (s + s + s ));

evaluates to true since"StefanKurt" precedes"StefanStefanStefan" in the lexico-
graphic ordering of strings. Many other operations on strings can be found in the manual.

Strings are implemented by C++ character vectors. All operations on strings that do not
involve pattern matching take linear time. Pattern matching takes quadratic time. More
precisely, it takes timeO(nm) in the worst case to search for a string of lengthm in a string
of lengthn. There areO(n + m) pattern matching algorithms, see for example [CLR90].

3.8 Making Simple Demos and Tables

This book contains many tables. For many of these tables there is also a corresponding
demo which allows the reader to perform experiments on his or her own. We wanted to
have a single program that handles both cases. In this section we describe the IO-interface
used in these programs.

The program below serves as the randomvariatedemo and also produces Table 3.6.
It makes all its input and output throughIO interface I . The program can be executed
in two modes: in book-mode it produces a table2 and in demo-mode it realizes the ran-
dom variatedemo. The demo-mode is the default and the book-mode is selected at compile-
time by compiling with the flag-DBOOK3.

2 This book is typeset using LATEX and hence the program generates a sequence of LATEX-commands that produce a
table.

3 An alternative design would be to use an integer variable to distinguish between the cases and set the variable
through a command line argument.
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〈randomvariate demo.c〉�
#include <LEDA/random_variate.h>

#include <LEDA/IO_interface.h>

main()

{ IO_interface I("Random Variates");

I.write_demo("This demo illustrates the speed of classes \

random variate and dynamic random variate. \nYou will be asked \

to input integers n and N. We set up the weight vector w with \

w[2] = 2, w[3] = 3, ..., w[n+1] = n + 1 and generate N random \

variates according to this weight vector.");

int n, N;

n = I.read_int("n = ",100);

N = I.read_int("N = ",100000);

if ( n < 1 ) error_handler(1,"n must be at least one");

#ifdef BOOK

N = 10000000;

for (n = 100; n <= 10000; n = n*n)

{ I.write_table("\n ", n);

#endif

array<int> w(2, 1 + n);

array<double> Rfreq(2,n+1), Qfreq(2,n+1);

int W = 0; int i;

for (i = 2; i < n + 2; i++) { W += w[i] = i; Qfreq[i] = Rfreq[i] = 0; }

dynamic_random_variate R(w);

random_variate Q(w);

float T = used_time(); float UT;

for (i = 0; i < N; i++) Qfreq[Q.generate()]++;

UT = used_time(T);

I.write_demo("static random variate, time = ",UT);

I.write_table(" & ",UT);

for (i = 0; i < N; i++) Rfreq[R.generate()]++;

UT = used_time(T);

I.write_demo("dynamic random variate, time = ",UT);

I.write_table(" & ",UT, " \\\\ \\hline");

I.write_demo("We report some frequencies.");

for (i = n + 1; i >= Max(2,n - 3); i--)

{ I.write_demo("relative frequency, i = ",i);

I.write_demo(0,", w[i]/W = ",((double)w[i])/W);

I.write_demo(1,"generated freq, static variate = ", Qfreq[i]/N);

I.write_demo(1,"generated freq, dynamic variate = ", Rfreq[i]/N);

}

#ifdef BOOK

}

#endif

}

The output statements come in two kinds:write tableandwrite demo. The output state-
mentwrite xxx produces output when executed inxxx-mode and produces no output oth-
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erwise. Thus, the introductory text that explains the demo is output in demo-mode, but is
suppressed in book-mode. The output statements come in different forms:

I.write xxx(string mes);

I.write xxx(string mes, double T, string mes2 = "");

I.write xxx(string mes, int T, string mes2 = "");

I.write xxx(int k, string mes);

I.write xxx(int k, string mes, double T, string mes2 = "");

I.write xxx(int k, string mes, int T, string mes2 = "");

The first form outputs the stringmesand the second and the third form output the stringmes,
followed by the numberT , followed by the optional stringmes2. The output is preceded by
an empty line. The last three forms allow a finer control over the positioning of the output;
the output is preceded byk line feeds, i.e., withk = 0 the output is printed on the same line
as the previous output, withk = 1 the output is printed on a new line, and withk = 2 the
output is preceded by an empty line.

The input statement

int I.read int(string mes, int n = 0);

returnsn in book-mode and asks for an integer input with promptmesin demo-mode.
The precision of the output of double-values is controlled by a precision parameterp. It

is set to 4 by default and can be changed by

I.set precision(int prec);

We come to the implementation. It is quite simple.

〈IO interface〉�
〈definition of IOinterfacebook〉
〈definition of IOinterfacedemo〉
#ifdef BOOK

#define IO_interface IO_interface_book

#else

#define IO_interface IO_interface_demo

#endif

We define classesIO interfacebookandIO interfacedemoin the obvious way (see LEDA-
ROOT/incl/LEDA/IO interface.h for the details) and defineIO interfaceas one of them
depending on the compile-time flag.
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Numbers and Matrices

Numbers are at the origin of computing. We all learn about integers, rationals, and real
numbers during our education. Unfortunately, the number typesint, float, anddoublepro-
vided by C++ are only crude approximations of their mathematical counterparts: there are
only finitely many numbers of each type and for floats and doubles the arithmetic incurs
rounding errors. LEDA offers the additional number typesinteger, rational, bigfloat, and
real. The first two are the exact realization of the corresponding mathematical types and
the latter two are better approximations of the real numbers. Vectors and matrices are one-
and two-dimensional arrays of numbers, respectively. They provide the basic operations of
linear algebra.

4.1 Integers

C++ provides the integral typesshort, int, and long. All three types come in signed and
unsigned form. Letw be the word size of the machine and letm = 2w. Most current
workstations havew = 32 orw = 64. Unsigned ints and signed ints usew bits, shorts use
at most that many bits, and longs use at least that many bits.

The unsigned integers consist of the integers between 0 andm − 1 (both inclusive) and
arithmetic is modulom.

The signed integers form an interval [MININT,MAXINT], whereMININT andMAXINT are
predefined constants; under UNIX they are available in the systems filelimits.h. On most
machines signed integers are represented in two’s complement. ThenMININT= −2w−1 and
MAXINT = 2w−1 − 1. The conversion from signed ints to unsigned ints adds a suitable mul-
tiple of m so as to bring the number into the interval [0.. m −1]. If numbers are represented

99
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in two’s complement this conversion does not change the bit pattern. The conversion from
unsigned int to signed int is machine dependent.

An arithmetic operation on signed integers may produce a result outside the range of
representable numbers; one says that the operation underflows or overflows. The treatment
of overflow and underflow is implementation dependent, in particular, it is not guaranteed
that they lead to a runtime error, in fact they usually do not. On the author’s workstations
the summationMAXINT + MAXINT has result−2, since adding 011. . .1 to itself yields
11. . .10, which is the representation of−2 in two’s complement. We give an example of
the disastrous effect that an undetected overflow might have.

Some network algorithms are easier to state if the integers are augmented by the value
∞. For example, in a shortest path algorithm it is convenient to initialize the distance
labels to∞. In an implementation it is tempting to useMAXINT as the implementation of
∞ and to forget that it does not quite have the properties of∞. In particular,MAXINT +
1 = MININT on the author’s workstations which is drastically different from mathematics’
∞+1 = ∞. This difference led to the following error in one of the first author’s programs1.
He implemented Dijkstra’s shortest path algorithm (its working is discussed in Section 6.6)
as follows:

void DIJKSTRA(const graph& G, node s, const edge array<int>& cost,

node array<int>& dist)

{ node pq PQ(G);

node v; edge e;

forall nodes(v,G) dist[v] = MAXINT;

dist[s] = 0;

forall nodes(v,G) PQ.insert(v,dist[v]);

while (!PQ.empty())

{ node v = PQ.delete min();

forall adj edges(e,v)

{ node w = G.target(e);

if (dist[v] + cost[e] < dist[w])

{ dist[w] = dist[v] + cost[e];

PQ.decrease p(w,dist[w]);

}

}

}

}

This program works fine when all nodes are reachable froms and all edge costs are in
[0 .. MAXINT/n], wheren is the number of nodes ofG. However, consider the execution on
the graph shown in Figure 4.1. When nodev is removed from the queue, we havedist[v] =
dist[w] = MAXINT. We computeMAXINT + 1 which isMININT and hence decreasew’s
distance toMININT, a serious error. A correct implementation inserts onlys into the queue
initially and replaces the innermost block by

1 The second author insists that he has never made this particular mistake.
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s v w
1

Figure 4.1 An example, where the naive use ofMAXINT as a substitute for∞ in Dijkstra’s
algorithm has a disastrous effect.

int c = dist[v] + cost[e];

if (dist[w] == MAXINT) PQ.insert(w,c);

else PQ.decrease p(w,c);

dist[w] = c;

We come to the LEDA typeinteger. It realizes the mathematical type integer. The arith-
metic operations+, −, ∗, /, +=, −=, ∗=, /=, − (unary),++, −−, the modulus operation
(%, %=), bitwise AND (&&, && =), bitwise OR (||, ||=), the complement operator (∼),
the shift operators (�, �), the comparison operators<, ≤, >, ≥, ==, !=, and the stream
operators are available. These operations never overflow and always yield the exact result.
Of course, they may run out of memory. The following program computes the product of
the firstn integers.

integer factorial(int n) // computes 1 * 2 * ... * n

{ integer fac = 1; //automatic conversion from int

for (int i = 2; i <= n; i++) fac = fac*i;

return fac;

}

Integers also provide some useful mathematical functions, e.g.,sqrt(a) returnsb√ac, log(a)

returnsblogac, andgcd(a, b) returns the greatest common divisor ofa andb. We refer the
reader to the manual pages for a complete listing.

Integers are essentially implemented by a vector of unsigned longs. The sign and the
size are stored in extra variables. The implementation of integers is very efficient and com-
pares well with other implementations. This is particularly true on SPARC machines since
we have implemented several time critical functions not only in C++ but also in SPARC
assembler code. When integers are used on SPARC machines the faster assembler code is
executed. The running time of addition is linear and the running time of multiplication is
O(L log 3), whereL is the length of the operands. The following program verifies the latter
fact experimentally. It repeatedly squares an integern and measures the time needed for
each squaring operation. In each iteration it prints the current length ofn (= number of
binary digits), the time needed for the iteration and the quotient of the running time of this
and the previous iteration.

〈multiplication times〉�
main()

{ integer n;

〈multiplication times: read n〉
int i;
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n Running time T/T prev

167587 0.63 3

335173 1.88 2.984

670346 5.74 3.053

1340691 17.43 3.037

Table 4.1 The time required to multiply twon bit integers. The multiplication times demo
allows you to perform your own experiments.

for (i = 0; i < 11; i++) n = n * n;

float T_prev = 0;

for (i = 0; i <= 5; i++)

{ float T = used_time();

n = n * n;

T = used_time(T);

〈multiplication times: report times〉
T_prev = T;

}

}

Table 4.1 shows a sample output of this program. Sincen is squared in each iteration,
its lengthL essentially doubles in each iteration. Thus, if the running time of an iteration
is c · Lα for some constantsc andα then the running time of the next iteration isc · (2L)α

and hence the quotient isc · (2L)α/(c · Lα) = 2α. The measured quotient is about 3. Thus,
α ≈ log 3.

Integers are used a lot in LEDA’s geometric algorithms. We briefly hint at the use now
and treat it in detail in Chapter 9. Consider three pointsp, q, andr in the plane and letl
denote the line throughp andq and oriented fromp to q. For any points uses1 ands2 to
denote its Euclidean coordinates. The test of whetherr lies to the right ofl, on l, or to the
left of l is tantamount to determining the sign of the determinant∣∣∣∣∣∣

1 1 1
p1 q1 r1

p2 q2 r2

∣∣∣∣∣∣ .
If the coordinates of our points are floating point numbers and the determinant2 is evaluated

2 Note that the determinant is zero if and only if the third column is a linear combination of the first two columns,
i.e., if there are realsλ andµ such thatλ + µ = 1 andr = λp + µq. In other words, ifr = p + µ(q − p) for
someµ. This shows that the determinant is zero if and only ifr lies on the line throughp andq. We still need to
argue that the sign distinguishes the two half-planes defined by the line. Consider two pointsr andr ′ and the line
segment fromr to r ′. The value of the determinant changes continuously as one moves fromr to r ′ and hence
assumes value 0 ifr andr ′ lie on different sides of the line and does not assume value 0 ifr andr ′ lie on the same
side of the line. Since the determinant is a linear function we conclude that the two sides of the line are
distinguished by the sign of the determinant.
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with floating point arithmetic we may incur rounding error and determine the sign of the de-
terminant incorrectly. This is a frequent source of error in the implementation of geometric
algorithms, as we will see in Sections 4.4 and 9.6 . If the coordinates are integers then the
determinant can be evaluated exactly and the correct sign can be determined. This feature
facilitates the correct implementation of geometric algorithms enormously.

Exercises for 4.1
1 Write a procedurerandominteger(int L) that returns a random integer of lengthL.
2 The greatest common divisor of two numbersx andy with x ≥ y ≥ 0 can be computed

by the recursion gcd(x, y) = x if y = 0 and gcd(x, y) = gcd(y, x mody) if y > 0.
Implement this algorithm, run it on integers of various lengths, and count the number
of recursive calls. Relate the number of recursive calls to the length ofy. Prove that
the number of recursive calls is at most proportional to the length ofy. Hint: Assume
x > y and letx0 = x andx1 = y. For i > 1 andxi−1 6= 0 let xi = xi−2 modxi−1.
Let xk = 0 be the last element in the sequence just defined. Relate this sequence to the
gcd-algorithm. Show thatxk−1 > 0 andxi−2 ≥ xi−1 + xi for i < k. Conclude thatxk− j

is at least as large as thej -th Fibonacci number.
3 The standard algorithm for multiplying twoL-bit integers has running timeO(L2).

LEDA uses the so-called Karatsuba-method ([KO63]) that runs in timeO(L log 3). In
order to multiply two numbersx andy it writes x = x1 ·2L/2+ x2 andy = y1 ·2L/2+ y2,
wherex1, x2, y1, and y2 haveL/2 bits. Then it computesz = (x1 + x2) · (y1 + y2)

and observes thatx · y = x1 · y1 · 2L + (z − x1y1 − x2y2) · 2L/2 + x2y2. In this way
only three multiplications ofL/2-bit integers are needed to multiply twoL-bit integers.
The standard algorithm requires four. Implement Karatsuba’s algorithm and time it as
described in the text. Compare to the member functionoperator∗.

4 In program〈multiplication times.c〉 let n old be the value ofn before the assignment
n = n ∗ n. Extend the program such that it also computesn/n old andsqrt(n) in each
iteration. Measure the execution times and compute quotients of successive execution
times. Try to explain your findings.

5 Develop algorithms for integer division and integer square root based on Newton’s iter-
ation.

4.2 Rational Numbers

A rational number is the quotient of two integers. Well, that is the mathematical definition
and it is also the definition in LEDA. The arithmetic operations+, −, ∗, /, +=, −=,
∗=, /=, − (unary),++, −− are available on rationals. In addition, there are functions
to extract the numerator and denominator, to cancel out the greatest common divisor of
numerator and denominator, to compute squares and powers, to round rationals to integers,
and many others.

LEDA’s rational numbers are not necessarily normalized, i.e., numerator and denomina-
tor of a rational number may have a common factor. A callp.normalize( ) normalizesp.
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This involves a gcd-computation to find the common factor in numerator and denominator
and two divisions to remove them. Since normalization is a fairly costly process we do
not do it automatically. It is, however, advisable to do it once in a while in a computation
involving rational numbers.

Exercises for 4.2
1 Write a program to solve linear systems of equations using Gaussian elimination. Use

rational numbers as the underlying number type. Make two versions of the program: in
one version you keep all intermediate results in reduced form by callingx.normalize( )

for each intermediate result and in the other version you make no attempt to keep the
numbers normalized. Run examples and determine the lengths of the numerators and
denominators in the solution vector.

2 Investigate the question raised in the first item theoretically. Assume that all coefficients
of the linear system are integers of length at mostL and letn be the number of equations
in the system. Show that the entries of the solution vector can be expressed as rational
numbers in which the lengths of the numerator and the denominator are bounded by a
polynomial inn and L. (Hint: Show first that the value of ann by n determinant of
a matrix with integer entries of absolute value at most 2L is bounded byn!2nL . Then
use Cramer’s rule to express the entries of the solution vector as quotients of determi-
nants.) Extend the result to all intermediate results occurring in Gaussian elimination.
Conclude that Gaussian elimination has running time polynomial inn andL if all inter-
mediate values are normalized. Why does this not imply that Gaussian elimination runs
in polynomial time without normalization of intermediate results?

3 Implement Gaussian elimination with floating point arithmetic. Find examples where
the result of the floating point computation deviates widely from the exact result. Use
the program of the first item to compute the exact result.

4.3 Floating Point Numbers

Floating point numbers are the computer science version of mathematics’ real numbers.
C++ offers single (typefloat) and double (typedouble) precision floating point numbers and
LEDA offers in addition arbitrary precision floating point numbers (typebigfloat). Floating
point arithmetic on most workstations adheres to the so-called IEEE floating point stan-
dard [IEE87], which we review briefly.

A floating point number consists of a signs, a mantissam, and an exponente. In double
formats has one bit,m consists of 52 bitsm1, . . . , m52, ande consists of the remaining 11
bits of a double word. The number represented by the triple(s, m, e) is defined as follows:

• e is interpreted as an integer in [0.. 211 − 1] = [0 .. 2047].

• If m1 = . . . = m52 = 0 ande = 0 then the number is+0 or−0 depending ons.

• If 1 ≤ e ≤ 2046 then the number iss · (1 +∑
1≤i≤52 mi 2−i) · 2e−1023.
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• If somemi is non-zero ande = 0 then the number iss ·∑1≤i≤52 mi2−i2−1023. This is
a so-called denormalized number.

• If all mi are zero ande = 2047 then the number is+∞ or −∞ depending ons.

• In all other cases the triple represents NaN ( = not a number).

The largest positive double (except for∞) is MAXDOUBLE = (2 − 2−52) · 21023 and the
smallest positive double isMINDOUBLE = 2−52 · 2−1023. Both constants are predefined in
the systems filevalue.h. Arithmetic on floating point numbers is only approximate. For
example,

float x = 123456789;

cout << (x + 1) - x;

will output 0 and not 1, the reason being that a nine-digit decimal number does not fit into
a single precision floating point number. Thus,cout � x will not reproduce 123456789.
Although floating point arithmetic is inherently inexact, the IEEE standard guarantees that
the result of any arithmetic operation is close to the exact result, usually as close as possible.
Consider, for example, an additionx + y. If one of the arguments is NaN or the addition
has no defined result, e.g.,−∞ + ∞, then the result is NaN. Otherwise letz be the exact
result. If |z| > MAXDOUBLE, as for example, in∞ + (−5) or in MAXDOUBLE+ 1, the result
is ±∞, if z < MINDOUBLE then the result is zero, and ifMINDOUBLE ≤ z ≤ MAXDOUBLE

then the result is a floating point numberz̃ which is closest toz. In particular,

|z − z̃| ≤ 2−53|z̃|
since the error is at most 1 in the 53rd position after the binary point. The numbereps =
2−53 is frequently called theprecisionof double precision floating point arithmetic.

There is a rich body of literature on floating point arithmetic, see, for example, [DH91,
Gol90, Gol91]. We do not pursue the properties of floats and doubles any further and turn
to bigfloats instead.

The LEDA typebigfloatextends the built-in floating point types. The mantissam and the
exponente of a bigfloat are arbitrary integers (typeinteger) and the number represented by
a pair(m, e) is m · 2e. In addition, there are the special values±0 , ±∞, and NaN ( = not
a number). Arithmetic on bigfloats is governed by two parameters: themantissa lengthand
therounding mode. Both parameters can either be set globally or for a single operation.

bigfloat::set global prec(212);

bigfloat::set rounding mode(TO ZERO);

sets the mantissa length to 212 and the rounding mode toTO ZERO. The arithmetic on
bigfloats is defined as follows: letz be the exact result of an arithmetic operation. The
mantissa of the result is obtained by roundingz to the prescribed number of binary places
as dictated by the rounding mode. The available rounding modes areTO NEAREST (round to
the nearest representable number ),TO P INF (round towards positive infinity),TO N INF

(round towards negative infinity),TO ZERO (round towards zero),TO INF (round away from
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zero), andEXACT. For example3, if the mantissa length is 3 andz = 54371 then the rounded
value ofz is

54400 if the rounding mode isTO NEAREST or TO P INF or TO INF, is
54300 if the rounding mode isTO N INF or TO ZERO, and is
54371 if the rounding mode isEXACT.

The rounding modeEXACT applies only to addition, subtraction, and multiplication. In this
mode the precision parameter is ignored and no rounding takes place. Since the exponents
of bigfloats are arbitrary integers, arithmetic operations never underflow or overflow. How-
ever, exceptions may occur, e.g., division by zero or taking the square root of a negative
number. They are handled according to the IEEE floating point standard, e.g., 5/0 evaluates
to ∞, −5/0 evaluates to−∞, ∞ + 5 evaluates to∞, and 0/0 evaluates to NaN.

The following inequality captures the essence of bigfloat arithmetic. Ifz is the exact
result of an arithmetic operation andz̃ is the computed value then

|z − z̃| ≤ 2−prec|z̃|,
whereprecis the mantissa length in use. With rounding modeTO NEAREST the error bound
is 2−prec−1|z̃|.

We illustrate bigfloats by a program that computes an approximation of Euler’s number
e ≈ 2.71. Letm be an integer. Our goal is to compute a bigfloatz such that|z − e| ≤ 2−m .
Euler’s number is defined as the value of the infinite series

∑
n≥0 1/n!. The simplest strategy

to approximatee is to sum a sufficiently large initial fragment of this sum with a sufficiently
long mantissa, so as to keep the total effect of the rounding errors under control. Assume
that we compute the sum of the firstn0 terms with a mantissa length ofprec bits for still to
be determined values ofn0 andprec, i.e., we execute the following program.

bigfloat::set rounding mode(TO ZERO);

bigfloat::set precision(prec);

bigfloat z = 2;

integer fac = 2;

int n = 2;

while (n < n0)

{ // fac = n! and z approximates 1/0! + ... + 1/(n-1)!

z = z + 1/bigfloat(fac);

n++; fac = fac * n;

}

Let z0 be the final value ofz. Thenz0 is the value of
∑

n<n0
1/n! computed with bigfloat

arithmetic with a mantissa length ofprec binary places. We have incurred two kinds of
errors in this computation: a truncation error since we summed only an initial segment of
an infinite series and a rounding error since we used floating point arithmetic to sum the
initial segment. Thus,

|e − z0| ≤ |e −∑
n<n0

1/n!| + |∑n<n0
1/n! − z0|

3 We use decimal notation instead of binary notation for this example.
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=
∑
n≥n0

1/n! + |∑n<n0
1/n! − z0|

The first term is certainly bounded by 2/n0! since, for alln ≥ n0, n! = n0! ·(n0+1)·. . .·n ≥
n0! · 2n−n0 and hence

∑
n≥n0

1/n! ≤ 1/n0! · (1 + 1/2 + 1/4 + . . .) ≤ 2/n0!. What can
we say about the total rounding error? We observe that we use one floating point division
and one floating point addition per iteration and that there aren0 − 2 iterations. Also, since
we set the rounding mode toTO ZERO the value ofz always stays belowe and hence stays
bounded by 3. Thus, the results of all bigfloat operations are bounded by 3 and hence each
bigfloat operation incurs a rounding error of at most 3· 2−prec. Thus

|e − z0| ≤ 2/n0! + 2n0 · 3 · 2−prec.

We want the right-hand side to be less than 2−m−1; it will become clear in a short while why
we want the error to be bounded by 2−m−1 and not just 2−m . This can be achieved by making
both terms less than 2−m−2. For the first term this amounts to 2/n0! ≤ 2−m−2. We choosen0

minimal with this property and observe that if we use the expressionfac.length( ) < m + 3
as the condition of our while loop then thisn0 will be the final value ofn; fac.length( )

returns the number of bits in the binary representation offac. Fromn0! ≥ 2n0 and the fact
thatn0 is minimal with 2/n0! ≤ 2−m−2 we concluden0 ≤ m + 3 and hence 6n02−prec ≤
6(m + 3) · 2−prec ≤ 2−m−2 if prec ≥ 2m; actually,prec ≥ m + log(m + 3) + 5 suffices.
The following program implements this strategy and computesz0 with |e − z0| ≤ 2−m−1.

We could outputz0, butz0 is a number with 2m binary places and hence suggests a quality
of approximation which we are not guaranteeing. Therefore, we roundz0 to the nearest
number with a mantissa length ofm + 3 bits. Sincez0 ≤ 3 this will introduce an additional
error of at most 3· 2−m−3 ≤ 2−m−1. We conclude that the program below computes the
desired approximation of Euler’s number. This program is available as Eulerdemo.

〈Euler demo〉�
main(){

int m;

〈Euler: read m〉
bigfloat::set_precision(2*m);

bigfloat::set_rounding_mode(TO_ZERO);

bigfloat z = 2;

integer fac = 2;

int n = 2;

while ( fac.length() < m + 3 )

{ // fac = n! and z approximates 1/0! + 1/1! + ... + 1/(n-1)!

z = z + 1/bigfloat(fac);

n++; fac = fac * n;

}

// |z - e| <= 2^{m-1} at this point

z = round(z,m+3,TO_NEAREST);

〈Euler: output z〉
}
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Exercises for 4.3
1 Computeπ with an error less than 2−200.
2 Assume that fori , 1 ≤ i ≤ 8, xi is an integer with|xi | ≤ 220. Evaluate the expression

((x1 + x2) · (x3 + x4)) · x5 + (x6+ x7) · x8 with double precision floating point arithmetic.
Derive a bound for the maximal difference between the exact result and the computed
result.

4.4 Algebraic Numbers

The data typereal is LEDA’s best approximation to mathematics’ real numbers. It supports
exact computation withk-th roots for arbitrary natural numberk, the rational operators+,
−, ∗, and/, and the comparison operators==, !=, <, ≤, ≥, and>. Let us see a small
example.

real x = (sqrt(17) - sqrt(12)) * (sqrt(17) + sqrt(12)) - 5;

cout << sign(x);

Note that the exact value of the expression definingx is 0. The distinctive feature of reals is
thatsign(x) actually evaluates to zero. More generally, ifE is any expression with integer
operands and operators+, −, ∗, /, and function callssqrt(x) androot(x, k) wherex is a
real andk is a positive integer then the data type real is able to determine the sign ofE . We
want tostress that reals compute the sign of an expression in the mathematical senseand
not the sign of an approximation of an expression. This is in sharp contrast to the evaluation
of an expression with floating point arithmetic. Floating point arithmetic incurs rounding
error and hence, in general, cannot compute the sign of an expression correctly.

Why are we so concerned about the sign of expressions?The reason is that many pro-
grams contain conditional statements that branch on the sign of an expression and that such
programs may go astray if the wrong decision about the sign is made. We give two exam-
ples, both arising in computational geometry. Further examples can be found in Section 9.6.

In the first example we consider the lines

l1 : y = 9833· x/9454 and l2 : y = 9366· x/9005.

Both lines pass through the origin and the slope ofl1 is slightly larger than the slope ofl2,
see Figure 4.2. Atx = 9454· 9005 we havey1 = 9833· 9005= 9366· 9454+ 1 = y2 + 1.

The following program runs through multiples of 0.001 between 0 and 1 and computes
the correspondingy-valuesy1 andy2. It compares the twoy-values and, if the outcome of
the comparison is different than in the previous iteration, printsx together with the current
outcome.

int last comp = -1;

float a = 9833; float b = 9454;

float c = 9366; float d = 9005;
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x

l1
l2

Figure 4.2 The linesl1 andl2: Both lines pass through the origin andl1 is slightly steeper than
l2.

for (float x = 0; x < 1; x = x + 0.001)

{ float y1 = a*x/b; float y2 = c*x/d; // l1 is steeper

int comp = (y1 < y2? -1 : (y1 == y2? 0 : +1));

if (comp != last comp)

{ cout <<"\nAt " << x << ": ";

if (comp == -1) cout << "l1 is below l2";

if (comp == 0) cout << "l1 intersects l2";

if (comp == +1) cout << "l1 is above l2";

}

last comp = comp;

}

Clearly, we should expect the program to print:

At 0.000: l1 intersects l2

At 0.001: l1 is above l2

Well, the actual output on the first author’s workstation contains the following lines4:

At 0.000: l1 intersects l2

At 0.003: l1 is above l2

At 0.004: l1 intersects l2

At 0.005: l1 is above l2

At 0.008: l1 intersects l2

At 0.009: l1 is below l2

...

At 0.993: l1 intersects l2

At 1.000: l1 is below l2

4 If the program is run on the same author’s notebook, it produces the correct result. The explanation for this
behavior is that on the notebook double precision arithmetic is used to implement floats. According to the C++

standard floats must not offer more precision than doubles; they are not required to provide less. You may use the
braided lines demo to find out how the program behaves on your machine.
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0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Figure 4.3 y1 is equal toy2 for x = 0.001· i andi equal to 0, 1, and 2, is larger fori equal to 3,
is equal fori equal to 4, is larger fori equal to 5, 6, and 7, is equal fori equal to 8, and is smaller
for i equal to 9.

l1 l2

Figure 4.4 Lines as step functions and their multiple intersections.

We conclude that the lines intersect many times and are interlaced as shown in Figure 4.3.
Observe that floating point arithmetic gives the wrong relationship betweeny1 and y2 not
only for x close to zero but even for fairly large values ofx . Thus the lines behave very
differently from mathematical lines. Lyle Ramshaw coined the nameverzopfte Geraden
(braided lines)for the effect. Figure 4.4 explains the effect. The typefloat consists of only
a finite number of values and hence a line is really a step function as shown in the figure.
The width of the steps of our two linesl1 andl2 are distinct and hence the lines intersect.

The problem of braided lines is easily removed by the use of an exact number type; e.g.,
if float is replaced byrational in the program above, the output becomes what it should be:



4.4 Algebraic Numbers 111

Figure 4.5 The Voronoi diagram of two linesl1 andl2 and a pointp. The Voronoi diagram
consists of parts of the angular bisector ofl1 andl2 and of parts of the parabolas defined byp
andl1 andl2, respectively. The Voronoi vertices are centers of circles passing through the point
and touching the lines.

0/1: l1 intersects l2

1/1000: l1 is above l2

The second example goes beyond rational arithmetic and arises in the computation of
Voronoi diagrams of line segments and points. Voronoi diagrams of line segments will
be discussed in Section 10.5.5, and we assume for this paragraph that the reader has an
intuitive understanding of Voronoi diagrams. Fori , 1 ≤ i ≤ 2, let li : ai x + bi y + ci = 0
be a line in two-dimensional space and letp = (0, 0) be the origin, cf. Figure 4.5. There
are two circles passing throughp and touchingl1 andl2. These circles have centersv1,2 =
(xv1,2/zv, yv1,2/zv) where5

xv1,2 = a1c2 + a2c1 ±
√

2c1c2(
√

N + D)

5 The reader may compute these coordinates by solving the following equations forxv/zv andyv/zv .

(xv/zv)2 + (yv/zv)2 = (a1xv/zv + b1yv/zv + c1)
2/(a2

1 + b2
1)

(xv/zv)2 + (yv/zv)2 = (a2xv/zv + b2yv/zv + c2)
2/(a2

2 + b2
2)
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yv1,2 = b1c2 + b2c1 ± sign(S)

√
2c1c2(

√
N − D)

zv =
√

N − a1a2 − b1b2

andS = a1b2 + a2b1, N = (a2
1 + b2

1)(a
2
2 + b2

2), andD = a1a2 − b1b2; in these expressions
the+ in ± corresponds tov1 and the− corresponds tov2. Consider now a third linel and
let v be one ofv1 or v2. The test of whetherl intersects the circle centered atv is crucial
for most algorithms computing Voronoi diagrams. Consider, for example, an incremental
algorithm that adds the lines and points one by one and updates the diagram after every
addition. Assume that such an algorithm has already constructed the diagram forp, l1 and
l2 and next wants to addl. In the updated diagram the vertexv will not exist if l intersects
the interior of the circle centered atv, v will exist and have degree four ifl touches the
circle centered atv, andv will exist and have the same incident edges ifl does not intersect
the circle centered atv. The question of whetherl intersects, touches, or misses the circle
centered atv is tantamount to comparingdist(v, p) with dist(v, l). We may also compare
the squares of these numbers instead. The square ofdist(v, p) is (x2

v + y2
v)/z2

v and the square
of dist(v, l) is (axv/zv + byv/zv + c)2/(a2 + b2). In other words, we need to compute the
sign of the expression

R = (axv + byv + czv)
2 − (a2 + b2)(x2

v + y2
v).

The following procedure takes inputsa1, b1, . . . , c and pm ∈ {−1, +1} and performs this
comparison;pm is used to select one ofv1 andv2.

int INCIRCLE(integer a1, integer b1, integer c1, integer a2,

integer b2, integer c2, integer a, integer b, integer c, int pm)

{ real RN = sqrt((a1 * a1 + b1 * b1) * (a2 * a2 + b2 * b2));

real A = a1 * c2 + a2 * c1;

real B = b1 * c2 + b2 * c1;

real C = 2 * c1 * c2;

real D = a1 * a2 - b1 * b2;

real S = a1 * b2 + a2 * b1;

real xv = A + pm * sqrt(C * (RN + D));

real yv = B + pm * sign(S) * sqrt(C * (RN - D));

real zv = RN - (a1 * a2 + b1 * b2);

real P = a * xv + b * yv + c * zv;

real R = P * P - (a * a + b * b) * (xv * xv + yv * yv);

return sign(R);

}

How do reals work?The sign computation is based on the concept of aseparation bound.
A separation bound for an expressionE is aneasily computablenumbersep(E) such that

val(E) 6= 0 implies|val(E)| ≥ sep(E),

whereval(E) denotes the value ofE . Thus|val(E)| < sep(E) impliesval(E) = 0. Given
a separation bound there is a simple strategy to determine the sign ofval(E):
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• Compute an approximationA of val(E) with |A − val(E)| < sep(E)/2 by evaluating
E with bigfloatarithmetic with sufficient mantissa length. The required mantissa
length can be determined by an error analysis in the same way, as we determined the
mantissa length required for the computation of Euler’s number with an error less than
2−m in the preceding section. We stress that this error analysis is automated in the data
typereal and is invisible to the user.

• If |A| ≥ sep(E)/2 then return the sign ofA and if |A| < sep(E)/2 then return zero.

The correctness of this approach can be seen as follows:
If |A| ≥ sep(E)/2 then|A − val(E)| < sep(E)/2 implies thatval(E) and A have the

same sign.
If |A| < sep(E)/2 then|A − val(E)| < sep(E)/2 implies |val(E)| < sep(E). Thus,

val(E) = 0 by the definition of a separation bound.

Next, we give the separation bound that is used in LEDA. First, we need to define pre-
cisely what we mean by an expression. For simplicity, we deal only with expressions with-
out divisions, althoughrealsalso handle divisions. An expressionE is an acyclic directed
graph (dag) in which each node has indegree at most two, in which each node of indegree 0
is labeled by a non-negative integer, each node of indegree 1 is labeled either by− (unary
minus) or byrootk for some natural numberk, and each node of indegree 2 is labeled by
either a+ or a∗. Figure 4.6 shows an expression. We define thedegree deg(E) of E as the
product of thek ’s over all nodes labeled by root operations. The expression of Figure 4.6 has
degree 4. We define theboundb(E) of E as the value of the expressionÊ which is obtained
from E by removing all nodes labeled with a unary minus and connecting their input node
directly to their outputs. In our example, we haveb(E) = (

√
17+ √

12)(
√

17+ √
12) + 5.

Theorem 1 ([BFMS97])Let E be an expression. Then val(E) ≤ b(E) and either

val(E) = 0 or |val(E)| ≥ b(E)1−deg(E).

We give a proof of a special case. Assume thatA, B, andC are natural numbers. How close
to zero canA

√
B − C be, if non-zero? We have

|A
√

B − C | = |A
√

B − C | · (A
√

B + C)/(A
√

B + C)

= |A2B − C2|/(A
√

B + C)

≥ 1/(A
√

B + C),

where the last inequality follows from the assumption that the value of our expression is
different from zero and from the fact thatA2B − C2 is an integer. The expression above
has degree 2 and itsb-value is equal toA

√
B + C. Thus, the derived bound corresponds

precisely to the statement of the theorem.
It is worthwhile to restate the theorem in terms of the binary representation ofval(E).

Let L = logb(E). Then|val(E)| ≤ 2L and, ifval(E) 6= 0, |val(E)| ≥ 2L·(1−deg(E)). Thus,
if val(E) 6= 0, then the binary representation ofval(E) either contains a non-zero digit in
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+

∗

+ +

−

√√

17 12 5

−

Figure 4.6 An expression dagE . The expression has degree 4 and computes
(
√

17+ √
12) · (√17− √

12) − 5.

the L digits before the binary point or a non-zero digit in the first(deg(E) − 1) · L digits
after the binary point. Conversely, if all of these digits are zero thenval(E) is zero. In the
sequel we will rephrase this statement as: It suffices to inspect the firstdeg(E) · L bits of
the binary representation ofval(E).

We give two applications of the theorem above. They are illustrated by the two real
number demos, respectively.

First, letx be an arbitrary integer and consider the expression

E1 = (
√

x + 5 + √
x)(

√
x + 5 − √

x) − 5.

Thendeg(E1) = 4 andb(E1) < 4(x + 5)+ 5. Let L1 = log(4(x + 5)+ 5). By the theorem
above it therefore suffices to inspect the first 4L1 bits of the binary representation ofval(E1)

in order to determine its sign. So ifx has 100 binary digits it certainly suffices to inspect
412 digits ofval(E1). This is illustrated by the program below. It asks for an integerL
and then constructs a random integerx with L decimal digits. It then computes the signs of
E1 + 5 andE1.
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L 80 160 320 640 1280 2560 5120

A 0.01 0.01 0.03 0.05 0.14 0.41 1.47

B 0.04 0.07 0.21 0.66 2.24 8.03 29.73

Table 4.2 The running times for computing the signs ofA = (
√

x + 5 + √
x)(

√
x + 5 − √

x)

andB = A − 5 for x being a random integer withL decimal digits. Note that the time for
computing the sign ofA is much smaller than the time for computing the sign ofB. This reflects
the fact that a crude approximation ofA allows us to conclude thatA is positive and that about
4L digits of B need to be computed in order to allow the conclusion thatB is zero. You may
perform your own experiments by calling the first real number demo.

〈real demo1〉�
〈real demo1: read L〉
integer x = 0;

while (L > 0)

{ x = x*10 + rand_int(0,9);

L--;

}

float T = used_time();

real X = x;

real SX = sqrt(X);

real SXP = sqrt(X+5);

real A = (SXP + SX) * (SXP - SX);

real B = A - 5;

int A_sign = A.sign(); float TA = used_time(T);

int B_sign = B.sign(); float TB = used_time(T);

〈real demo1: output signs and report running times〉

Table 4.2 shows the running times of this program forL = 80, 160, 320, and so on.
Next, consider the expression

E2 = (22k + 1)2−k − 2,

i.e., the number 2 is squaredk times, 1 is added , square roots are takenk times, and finally
2 is subtracted. This yields a number slightly above 0. In fact6,

val(E2) = (22k + 1)2−k − 2 = 2((1 + 2−2k
)2−k − 1)

= 2(exp(2−k ln(1 + 2−2k
)) − 1) ≈ 2(exp(2−k2−2k

) − 1)

≈ 2(1 + 2−k2−2k − 1) = 21−k−2k
,

i.e., the first non-zero bit in the binary expansion ofval(E2) is aboutk+2k positions after the
binary point. What does the theorem above say? We havedeg(E2) = 2k andb(E2) ≤ 5 and
hence by the theorem it suffices to inspect the first 2k log 5 bits of the binary representation

6 We use the estimates ln(1 + x) ≈ x andex ≈ 1 + x for x close to zero.
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of val(E2). That’s an overestimate by about a factor of two. The following program chunk
illustrates this example. It asks for an integerk and then computes the sign of the expression
E2. It also shows thebigfloatapproximation ofE2 that is computed in the sign computation.

〈real demo2〉�
int k = I.read_int("k = ");

float T = used_time();

real E = 2;

int i;

for (i = 0; i < k; i++) { E = E*E; }

E = E + 1;

for (i = 0; i < k; i++) { E = sqrt(E); }

E = E - 2;

I.write_demo("The sign of E is ",E.sign(),".");

I.write_demo("This took ",used_time(T)," seconds.");

I.write_demo("An approximation of E: " + to_string(E.to_bigfloat()));

We close this section with a brief discussion of the implementation of reals. The data
type real stores objects of type real by their expression dags, i.e., every operation on reals
adds a node to the expression dag and records the arithmetic operation to be performed at
the node and the inputs to the node. Thus the dag of Figure 4.6 is built for the expression
(
√

17+ √
12)(

√
17− √

12) − 5. Whenever the sign of a real number has to be determined,
a separation bound is computed as described in Theorem 1 and then a bigfloat computation
is performed to determine the sign.

We sketch how the bigfloat computation is performed; for details we refer the reader
to [BMS96].We set a parameterl to some small integer and compute an approximationA
of val(E) with |A − val(E)| < 2−l . In order to compute such an approximation an error
analysis along the lines of the preceding section is performed (this is fully automated) and
then a bigfloat computation with the appropriate mantissa length is performed. If|A| ≥
2 · 2−l thenval(E) and A have the same sign and we may return the sign ofA. If |A| <

2 · 2−l we doublel and repeat. We continue in this fashion until 2−l ≤ sep(E)/2, where
sep(E) is the separation bound. Table 4.2 illustrates the effect of this optimization: For
the expressionA a crude approximation allows us to decide the sign and hencesign(A) is
computed quickly, however, for expressionB one has to go all the way to the quality of
approximation prescribed by the separation bound.

We close with a warning. Reals are not a panacea. Although they allow in principle to
compute the sign of any expression involving addition, subtraction, multiplication, division,
and arbitrary roots, you may have to wait a long time for the answer when the expression is
complex. The paper [BFMS99] discusses the use ofrealsin geometric computations.

Exercises for 4.4
1 Compute the sign ofE = (22k +1)2−k −2 for different values ofk. You may use program

real demo2 for this purpose. Don’t be too ambitious. Try to predict the growth rate of
the running time before performing the experiment.
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2 Let E = E1 + E2 and assume that you want an approximationA of val(E) such that
|val(E) − A| ≤ ε. Determineε1 andε2 and a precisionprecsuch that computation of
bigfloat approximationsAi of val(Ei) with an error|Ai − val(Ei)| ≤ εi and summation
of A1 andA2 with precisionprecyields the desired approximationA of val(E).

3 As above forE = E1 · E2, E = E1/E2, andE = √
E1. Solutions to exercises 2. and 3.

can be found in [BMS96].
4 Let p1 and p2 be two points in the plane, letl be a line, and consider the circle passing

throughp1 and p2 and touchingl. Write a procedure that determines the position of a
third point p3 with respect to this circle.

4.5 Vectors and Matrices

Vectors and matrices are one- and two-dimensional arrays of numbers, respectively. Let
n andm be integers. Ann-dimensional vectorv is a one-dimensional arrangement ofn
variables of some number typeN ; the variables are indexed from 0 ton − 1 andv[i ]
denotes the variable with indexi . An n × m matrix M is a two-dimensional arrangement
of n · m variables of some number typeN ; the variables are indexed by pairs(i, j ) with
0 ≤ i ≤ n − 1 and 0≤ j ≤ m − 1. We useM(i, j ) to denote the variable indexed byi and
j and calln andm the number of rows and columns ofM, respectively. Observe that as for
two-dimensional arrays we use round brackets for the subscript operator in matrices. We
have currently vectors and matrices with entries of typedouble(typesvectorandmatrix)
and typeinteger (typesintegervector and integermatrix). Vectors and matrices over an
arbitrary number type are part of the LEP for higher-dimensional geometry. We use the
latter types in all our examples. The definitions

integer vector v(m);

integer matrix M(n,m);

define anm-vectorv and ann × m-matrix M, respectively. All entries ofv and M are
initialized to zero. The following procedure multiplies a matrixM by a vectorv.

integer vector integer matrix::operator*(const integer matrix& M,

const integer vector& v)

{ int n = M.dim1(); // # of rows of M

int m = M.dim2(); // # of columns of M

if (m != v.dim()) error handler(1, "incompatible dimensions");

integer vector result(n);

for (int i = 0; i < n; i++)

for (int j = 0; j < m; j++) result[i] += M(i,j) * v[j];

return result;

}

In the context of

integer vector v(5);

integer vector r; // a 0 - dimensional vector

integer matrix M(3, 5);
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we may now write

r = M * v.

Note that we definedr as an empty vector. The assignmentr = M ∗ v assigns the result
of the multiplicationM ∗ v to r . This involves allocation of memory (for three variables of
type integer) and component-wise assignment. Vectors are internally represented as a pair
consisting of an intdim, containing the dimension of the vector, and a pointerv to a C++
array containing the components of the vector. The code for the assignment operator is as
follows:

integer vector& integer vector::operator=(const integer vector& vec)

{ if (dim != vec.dim())

{ /* this vector does not yet have the right dimension */

delete v;

dim = vec.dim();

v = new integer[dim];

}

for (int i = 0; i < dim; i++) v[i] = vec[i];

return *this;

}

Vectors and matrices are similar to one- and two-dimensional C++ arrays of numbers, re-
spectively. The main differences are as follows:

• Vectors and matrices know their dimension(s). Assignment is component-wise
assignment. It allocates space automatically.

• Vectors and matrices check whether indices are legal. The checks can be turned off.

• Vectors and matrices are somewhat slower than their C++ counterparts.

• Vectors and matrices offer a large number of operations of linear algebra.

The basic operations of linear algebra are vector and matrix addition and multiplication,
and multiplication by a scalar. For example,M +N denotes the component-wise addition of
two matricesM andN , M ∗ N denotes matrix multiplication,M ∗ v denotes matrix-vector
product,v ∗ w is the scalar product of two vectors, andv ∗ 5 multiplies each entry ofv by
the scalar 5.

We turn to the more advanced functions of linear algebra. LetM be ann × m integer
matrix and letb be ann integer vector. Letx be an integer vector and letD be an integer
variable. The call

linear solver(M,b,x,D);

returns true if the linear systemM · z = b has a solution and returns false otherwise. If the
system is solvable then the vector(1/D) · x is a solution of the system. Why do we return
the solution in this strange format? The solution vector of the systemM · z = b has rational
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entries. We provide a common denominator inD and the numerator inx . For example, the
system

3z0 + z1 = 5
z0 + z1 = 2

has the solutionz = (3/2, 1/2). We return this solution asx = (3, 1) andD = 2.
The main use of linear algebra within LEDA is the exact implementation of geometric

primitives; e.g., we solve a linear system to determine the equation of a hyperplane through
a set of points and we compute a determinant to determine the orientation of a sequence of
points. We use matrices and vectors over integers for that purpose. We hardly use vectors
and matrices over doubles within LEDA and therefore have not optimized the robustness of
our linear system solver. We do not recommend to use our procedures for serious numerical
analysis. Much better codes are available in the numerical analysis literature. A good source
of codes is the book [FPTV88].

A linear systemM · z = b may have more than one solution, may have exactly one
solution, or no solution at all. The calllinear solver(M, b, x, D, svecs, c) gives complete
information about the solution space of the systemM · z = b:

• If the system is unsolvable thenc is ann-vector such thatcT · M = 0 andcT · b 6= 0,
i.e.,c specifies a linear combination of the equations such that the left-hand side of the
resulting equation is identically zero and the right-hand side is non-zero. For example,
for the system

z0 + z1 = 5
2z0 + 2z1 = 4

the vectorc = (−2, 1)T provesthat the system is unsolvable.

• If the system is solvable then(1/D) · x is a solution andsvecsis anm × d matrix for
somed whose columns span the solution space of the corresponding homogeneous
systemM · z = 0. Letcol j denote thej -th column ofsvecs. Then any solution to
M · z = b can be written as

(1/D) · x +
∑

o≤ j<d

λ j · col j

for some realsλ j , 0 ≤ j < d. You may extract thej -th column ofsvecsby
svecs.col( j ).

The rank of a matrix is the maximal number of linearly independent rows (or columns).
The call

rank(M);

returns the rank ofM.
From now on we assume thatM is a square matrix, i.e., ann × n matrix for some

n. A square matrix is calledinvertible or non-singularif there is a matrixN such that
M · N = N · M = I , whereI is then × n identity matrix; the matrixN is called the inverse
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of M and is usually denoted byM−1. A matrix without an inverse is calledsingular. A
matrix is singular if and only if its determinant is equal to zero. The call

integer D = determinant(M);

returns the determinant ofM. The inverse of an integer matrix has, in general, rational
entries.

integer matrix N = inverse(M,D);

assigns a common denominator of the entries of the inverse toD and returns the matrix of
numerators inN , i.e,(1/D) · N is the inverse ofM. The functioninverserequires thatM is
non-singular and hence should only be used ifM is known to be non-singular. The call

inverse(M,N,D,c);

returns true ifM has an inverse and false otherwise. In the former case(1/D) · N is the
inverse ofM and in the latter casec is a non-zero vector withcT · M = 0. Note that such a
vector proves thatM is singular.

The LU-decomposition of a matrix is the decomposition as a product of a lower and an
upper diagonal matrix.

LU decomposition(M,L,U,q);

computes a lower diagonal matrixL, an upper diagonal matrixU , and a permutationq of
[0 .. n − 1] (represented as anarray<int>) such that for alli , 0 ≤ i < n, theq[i ]-th column
of L · M is equal to thei -th column ofU .

Exercises for 4.5
1 Write a procedure that determines whether a homogeneous linear system has a non-

trivial solution.
2 Write a function that computes the equation of a hyperplane passing through a given set

of d points ind-dimensional Euclidean space.
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Advanced Data Types

We discuss some of the advanced data types of LEDA: dictionary arrays, hashing arrays,
maps, priority queues, partitions, and sorted sequences. For each type we give its function-
ality, discuss its performance and implementation, and describe applications.

5.1 Sparse Arrays: Dictionary Arrays, Hashing Arrays, and Maps

Sparse arrays are arrays with an infinite or at least very large index set of which only a
“sparse” subset is in actual use. We discuss the sparse array types of LEDA and the many
implementations available for them. We start with the functionality and then discuss the
performance guarantees given by the different types and implementations. We also give an
experimental comparison. We advise on how to choose an implementation satisfying the
needs of a particular application and discuss the implementation ofmapsin detail.

5.1.1 Functionality
Dictionary arrays (typed array<I, E>), hashing arrays (typeh array<I, E>), and maps
(type map<I, E>) realize arrays with large or even unbounded index setI and arbitrary
entry typeE . Examples are arrays indexed by points, strings, or arbitrary integers. We refer
to d arrays, harrays, and maps assparse array types; another common name isassociative
arrays. The sparse array types have different requirements for the index type: dictionary
arrays work only for linearly ordered types (see Section 2.10), hashing arrays work only for
hashed types (see Section 2.8), and maps work only for pointer and item types and the type
int. They also differ in their performance guarantees and functionality. Figure 5.1 shows
the manual page of maps and Table 5.1 summarizes the properties of our sparse array types.
Before we discuss them we illustrate the sparse array types by small examples.
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d arrays harrays Maps

index type linearly ordered hashed int or pointer or item type

access time O(log n) O(1) O(1)

worst case expected expected

forall defined loop sorted unsorted unsorted

persistence of variables yes no no

undefineoperation available available not available

Table 5.1 Properties of darrays, harrays, and maps. The meaning of the various rows is
explained in the text.

In the first example we use a darray to build a small English–German dictionary and to
print all word pairs in the dictionary.

d array<string,string> dic;

dic["hello"] = "hallo";

dic["world"] = "Welt";

dic["book"] = "Buch";

string s;

forall defined(s,dic) cout << s << " " << dic[s] << "\n";

The forall definedloop iterates over all indices of the array that were used as a subscript
prior to the loop. The iteration is according to the order defined by thecomparefunction
of the index type; recall that dictionary arrays work only for linearly ordered types. In the
case of strings the defaultcomparefunction defines the lexicographic ordering and hence
the program outputs:

book Buch

hello hallo

world Welt

In the second example we use a harray to read a sequence of strings from standard input,
to count the multiplicity of each string in the input, and to output the strings together with
their multiplicities. Harrays work only for hashed types and hence we need to define a hash
function for strings. We define a very primitive hash function that maps the empty string
to zero and any non-empty string to its leading character (for a stringx , x [0] returns the
leading character ofx).

int Hash(const string& x) { return (x.length() > 0) ? x[0] : 0; }

h array<string,int> N(0); // default value 0

while (cin >> s) N[s]++;

forall defined(s,N) cout << s << " " << N[s] << "\n";
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1. Definition

An instanceM of the parameterized data typemap<I, E> is an injective mapping from
the data typeI , called the index type ofM, to the set of variables of data typeE , called
the element type ofM. I must be a pointer, item, or handle type or the type int. We use
M(i) to denote the variable indexed byi . All variables are initialized toxdef, an element
of E that is specified in the definition ofM . A subset ofI is designated as the domain of
M . Elements are added todom(M) by the subscript operator.

Related data types ared arrays, h arrays, anddictionaries.

2. Creation

map<I, E> M; creates an injective functionm from I to the set of unused vari-
ables of typeE , setsxdef to the default value of typeE (if E has
no default value thenxdef is set to an unspecified element ofE),
and initializesM with m.

map<I, E> M(E x); creates an injective functionm from I to the set of unused vari-
ables of typeE , setsxdef to x , and initializesM with m.

3. Operations

E& M[ I i ] returns the variableM(i) and addsi to
dom(M). If M is a const-object thenM(i)
is read-only andi is not added todom(M).

bool M.defined(I i ) returns true ifi ∈ dom(M).

void M.clear( ) makesM empty.

void M.clear(E x) makesM empty and setsxdef to x .

Iteration

forall defined(i, M) { “the indicesi with i ∈ dom(M) are successively assigned toi ” }
forall (x, M) { “the entriesM[i ] with i ∈ dom(M) are successively assigned tox” }
4. Implementation

Maps are implemented by hashing with chaining and table doubling. Access operations
M[i ] take expected timeO(1).

Figure 5.1 The manual page of data typemap.

There are two further remarks required about this code fragment. First, in the definition
of N we defined a default value for all entries ofN : all entries ofN are initialized to this
default value. Second, hashed types have no particular order defined on their elements and
hence theforall definedloop for h arrays steps through the defined indices of the array in
no particular order.

In the third example we assume that we are given a list of segments inseglistand that we
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want to associate a random bit with each segment. Amap<segment, bool> serves well for
this purpose.

map<segment,bool> color;

segment seg;

forall(seg,seglist) color[seg] = rand int(0,1);

After these introductory examples we turn to the detailed discussion of our sparse array
types. An objectA of a sparse array type is characterized by three quantities:

• An injective mapping from the index type into the variables of typeE . For an indexi
we useA(i) to denote the variable selected byi .

• An elementxdef of type E , the default value of all variables in the array. It is
determined in one of three ways. If the definition of the array has an argument, as, for
example, in

h array<int,int> N(0);

then this argument isxdef. If the definition of the array has no argument but the entry
type of the array has a default value1, as, for example, in

d array<string,string> D;

then this default value isxdef. If the definition of the array has no argument and the
entry type of the array has no default value, as, for example, in

map<point,int> color;

thenxdef is some arbitrary value ofE . This value may depend on the execution
history.

• A subsetdom(A) of the index set, the so-calleddomainof A. All variables outside the
domain have valuexdef. Indices are added to the domain by the subscript operation
and are deleted from the domain by theundefineoperation. Maps have noundefine
operation and put some indices in the domain even if they were not accessed2.
D arrays and harrays start with an empty domain and indices are added to the domain
only by the subscript operation.

We come to the operations defined on sparse arrays. We assume thatA belongs to one of
our sparse array types and thatI is a legal index type for this sparse array type as defined in
the first row of Table 5.1. The subscript operatoroperator[] comes in two kinds:

const E& operator[](const I& i) const

E& operator[](const I& i)

1 This is the case for all but the built-in types of C++.
2 These indices are used as sentinels in the implementation and allow us to make maps faster than the other sparse

array types. We refer the reader to Section 5.2 for details.
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The first version applies to const-objects and the second version applies to non-const-
objects. Both versions return the variableA(i). The first version allows only read access to
the variable and the second version also allows us to modify the value of the variable. The
second version addsi to the domain ofA and the first version does not. How is the selection
between the two versions made? Recall that in C++ every member function of a classX has
an implicit argument referring to an instance of the object. This implicit argument has type
const X<I,E>* for the first version of the subscript operator and has typeX<I,E>* for
the second version of the access operator; hereX stands for one of the sparse array types.
Thus depending on whether the subscript operator is applied to a constant sparse array or
a modifiable sparse array either the first or the second version of the subscript operator is
selected. Consider the following examples.

const map<int,int> M1;

map<int,int> M2;

int x;

x = M1[5]; // first version

x = M2[5]; // second version

x = ((const map<int,int>) M2)[7]; // first version

Observe that the first version of the subscript operator is used in the first and the last call
sinceM1 is a constant map and sinceM2 is cast to a constant map in the last line. The
second version of the subscript operator is used in the second access. It is tempting but
wrong to say (Kurt has made this error many times) that the use of the variableA(i) dictates
the selection: an access on the left-hand side of an assignment uses the second version
(since the typeE& is needed) and an access on the right-hand side of an assignment uses
the second version (since the typeconst E& suffices). We emphasize,the rule just stated
is wrong. In C++ the return type of a function plays no role in the selection of a version of
an overloaded function; the selection is made solely on the basis of the argument types. We
continue the example above.

x = M2[5]; // second version

M2[5] = x; // second version

x = M1[5]; // first version

M1[5] = x; // first version, illegal

The last assignment is illegal, since the first version of the access operator is selected for
the constant mapM1. It returns a constant reference to the variableM1(5), to which no
assignment is possible.

bool A.defined(I i)

returns true ifi ∈ dom(A) and returns false otherwise. Finally, the operation

void A.undefine(I i)

removesi from dom(A) and setsA(i) to xdef. This operation is not available for maps.
Sparse arrays offer an iteration statement
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forall defined(i,A)

{ the elements of dom(A) are successively assigned to i }

which iterates over the indices indom(A). In the case of darrays the indices are scanned
in increasing order (recall that the index type of a darray must be linearly ordered), in the
case of harrays and maps the order is unspecified. The iteration statement

forall(x,A)

{ A[i] for i in dom(A) is successively assigned to x }

iterates over the values of the entries indom(A).

5.1.2 Performance Guarantees and Implementation Parameters
Sparse arrays are one of the most widely studied data type and many different realizations
with different performance guarantees have been proposed for them. We have included
several into the LEDA system and give the user the possibility to choose an implementation
through the implementation parameter mechanism.

d array<string,int,rs tree> D1(0);

d array<string,int,rb tree> D2(0);

d array<int, int,dp hashing> H;

defines three sparse arrays realized by randomized search trees, red-black trees, and dy-
namic perfect hashing, respectively. We now survey the available implementations; see also
Tables 5.2 and 5.3. The implementations fall into two classes, those requiring a linearly
ordered index type and those requiring a hashed index type. We usen to denote the size of
the domain of the sparse array.

Implementations requiring a Linearly Ordered Index Type: This class of implemen-
tations contains deterministic and randomized implementations. The deterministic im-
plementations are(a, b)-trees [Meh84a],AVL-trees [AVL62],BB[α]-trees [NR73, BM80,
Meh84a], red-black-trees [GS78, Meh84a], and unbalanced trees. The corresponding im-
plementation parameters areabtree, avl tree, bbtree, rb tree, andbin tree, respectively. Ex-
cept for unbalanced trees, all deterministic implementations guaranteeO(logn) insertion,
lookup, and deletion time. The actual running times of all deterministic implementations
(except for unbalanced trees) are within a factor of two to three of one another. The un-
balanced tree implementation can deteriorate to linear search and guarantees only linear
insertion, lookup, and deletion time, as is clearly visible from the right part of Table 5.2. It
should not be used.

The randomized implementations are skiplists [Pug90b] (skiplist) and randomized search
trees [AS89] (rs tree). Both implementations guarantee an expected insertion, deletion, and
lookup time ofO(logn). The expectations are taken with respect to the internal coin flips
of the data structures.

Among the implementations requiring a linearly ordered index type ab-trees and skiplists
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Random integers Sorted integers

insert lookup delete total insert lookup delete total

ch hash 0.23 0.09 0.18 0.5 0.2 0.05 0.12 0.37

dp hash 1.48 0.21 1.08 2.77 1.37 0.21 1.02 2.6

map 0.15 0.04 — 0.19 0.15 0.05 — 0.2

skiplist 0.78 0.54 0.54 1.86 0.43 0.16 0.14 0.73

rs tree 1.04 0.71 0.76 2.51 0.42 0.19 0.2 0.81

bin tree 0.83 0.59 0.62 2.04 2704 1354 0.1501 4058

rb tree 0.9199 0.54 0.74 2.2 0.6499 0.1802 0.3 1.13

avl tree 0.8599 0.55 0.7 2.11 0.45 0.2 0.2402 0.8901

bb tree 1.23 0.52 1 2.75 0.6399 0.2 0.3301 1.17

ab tree 0.5898 0.25 0.4502 1.29 0.22 0.1399 0.2 0.5598

array 0.01001 0.01001 — 0.02002

Table 5.2 The performance of various implementations of sparse arrays. Hashing with chaining
(chhash) and dynamic perfect hashing (dphash) are implementations of harrays,mapis the
implementation of map, and skiplists (skiplist), randomized search trees (rs tree), unbalanced
binary trees (bin tree), red-black-trees (rb tree), AVL-trees (avl tree), BB[α]-trees (bb tree), and
2-4-trees (abtrees) are implementations of darrays. Running times are in seconds. We
performed 105 insertions followed by 105 lookups followed by 105 deletions. We used random
keys of typeint in [0 .. 107] for the left half of the table and we used the keys 0, 1, 2, . . . for the
right half of the table. Maps are the fastest implementation followed by hashing with chaining.
Among the implementations ofd arraysab-trees and skiplists are currently the most efficient.
Observe the miserable performance of thebin tree implementation for the sorted insertion order.
For comparison we also included arrays for the second test.

are currently the most efficient. We give the details of the skiplist implementation in Sec-
tion 5.7.

All implementations use linear space, e.g., the skiplist implementation requires 76n/3 +
O(1) = 25.333n + O(1) bytes.

Implementations requiring a Hashed Index Type: There are two implementations: Hash-
ing with chaining and dynamic perfect hashing.

Hashing with chaining is a deterministic data structure. Figure 5.2 illustrates it. It consists
of a table and a singly linked list for each table entry. The table sizeT is a power of two
such thatT = 1024 if n < 1024 andT/2 ≤ n ≤ 2T if n ≥ 1024. Thei -th list contains all
x in the domain of the sparse array such thati = Hash(x) modT . Let li be the number of
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Random doubles

insert lookup delete total

skiplist 3.09 2.36 1.95 7.4

rs tree 3.81 2.69 2.48 8.98

bin tree 2.85 1.94 2.15 6.94

rb tree 2.75 1.82 2.28 6.85

avl tree 2.82 1.89 2.24 6.95

bb tree 4.06 1.88 3.81 9.75

ab tree 2.09 1.51 1.61 5.21

Table 5.3 The performance of various implementations of sparse arrays. Running times are in
seconds. We performed 105 insertions followed by 105 lookups followed by 105 deletions. We
used random keys of typedoublein [0 .. 231].

elements in thei -th list and letk be the number of empty lists. The space requirement for
hashing with chaining is 12(n + k) bytes.

We justify this formula. An item in a singly linked list requires twelve bytes; four bytes
for the pointer to the successor and four bytes each for the key and the information (if a key
or information does not fit into four bytes the space for the key or information needs to be
added, see Section 13.4). There areT list items in the table andli − 1 extra items in thei -th
list, if li ≥ 1. Next observe that∑

i;li ≥1

(li − 1) =
∑

i

(li − 1) + k = n − T + k.

The space required is therefore 12(T + n − T + k) = 12(n + k) bytes.
If the hash function behaves like a random function, i.e., its value is a random number in

[0 .. T − 1], the probability that thei -th list is empty is equal to(1 − 1/T )n and hence the
expected value ofk is equal toT (1−1/T )n = T (1−1/T )T (n/T ) ≈ T e−n/T ; here, we used
the approximation(1 − 1/T )T ≈ e−1. The expected space requirement of hashing with
chaining is therefore equal to 12(n + T e−n/T ) bytes. The time to search for an elementx , to
insert it, or to delete it isO(1) plus the time to search in the linear list to whichx is hashed.
The latter time is linear in the worst case. For random indices the expected length of each
list is n/T and hence all operations take constant expected time for random indices.

After an insertion or deletion it is possible that the invariant relatingT andn is violated.
In this situation a so-calledrehashis performed, i.e., the table size is doubled or halved and
all elements are moved to the new table.

Dynamic perfect hashing [FKS84, DKM+94] uses randomization. It is the implemen-
tation with the theoretically best performance. The operationdefinedtakes constant worst
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Figure 5.2 Hashing with chaining: The table size is 8 and the domain of the sparse array is
{2, 12, 13, 16, 18, 24, 26, 27, 55}. The hash functionH(x) is the identity functionH(x) = x and
hence any numberx is stored in the list with indexx mod 8.

case time and the operationA[i ] takes constant expected amortized time or constant worst
case time depending on whether it is the first access with indexi or not. This requires some
explanation. Dynamic perfect hashing uses a two-level hashing scheme. A first-level hash
function hashes the domain to some numberT of buckets.T is chosen as in the case of
hashing with chaining. As above, letli be the number of elements in the domain that are
hashed to thei -th bucket. In the second level a separate table of sizel2

i is allocated to the
i -th bucket and a perfect hash function is used to map the elements in thei -th bucket to their
private table, see Figure 5.3. In [FKS84, DKM+94] it is shown that suitable hash functions
exist and can be found by random selection from a suitable class of hash functions. It is
also shown in these papers that the space requirement of the scheme is linear, although with
a considerably larger constant factor than for hashing with chaining. An access operation
requires the evaluation of two hash functions and hence takes constant time in the worst
case. An insertion (= first access toA[i ] for some indexi ) may require a rehash on either
the second level or the first level of the data structure. Rehashes are costly but rare and
hence the expected amortized time for an insert or delete is constant.

Experiments show that hashing with chaining is usually superior to dynamic perfect
hashing and hence we have chosen hashing with chaining as the default implementation
of h array<I, E>.

Maps: Maps are implemented by hashing with chaining. Since the index type of a map
must be an item or pointer type or the type int and since maps do not support theundefine
operation, three optimizations are possible with respect to hashing with chaining as de-
scribed above. First, items and pointers are interpreted as integers and the identity function
is used as the hash function, i.e., an integerx is hashed tox modT whereT is the table size.
SinceT is chosen as a power of two, evaluation of this hash function is very fast. Second,
the list elements are not allocated in free store but are all stored in an array. This allows
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Figure 5.3 Dynamic perfect hashing: The first-level tableP has size 8. For each entry of this
table the number of elements hashed to this entry are indicated. Ifl, l > 1, elements are hashed
to an entry then a second-level table of sizel2 is used to resolve the collisions. The sizes of the
two second-level tables that are required in our example are also indicated.

for a faster realization of the rehash operation. Third, since the keys are integers a particu-
larly efficient implementation of the access operation is possible. Section 5.2 contains the
complete implementation of maps.

An Experimental Comparison: We give an experimental comparison of all sparse array
types. We perform three kinds of experiments. In the first one, we use random integer keys
in the range [0.. 107], in the second one, we use the keys 0, 1,. . . , and in the thirdone, we
use random double keys. In each case we perform 105 insertions, followed by 105 lookups,
followed by 105 deletions. Tables 5.2 and 5.3 summarize the results.

The following program performs the first two experiments and generates Table 5.2. In
the main program we first define sparse arrays, one for each implementation, and two arrays
A andB of size 105. We fill A with random integers and we fillB with the integers 0, 1, . . .
. Then we call the functiondic test for each sparse array;dic testfirst insertsA[0], A[1],
. . . , then looks upA[0], A[1], . . . , andfinally deletesA[0], A[1], . . . . It then performs the
same sequence of operations withB instead ofA. For each sparse array type it produces a
row of Table 5.2. The chunks〈map test〉 and〈array test〉 perform the same tests for maps3

and arrays, respectively. We leave their details to the reader.

〈dic performance.c〉�
#include <LEDA/_d_array.h>

#include <LEDA/map.h>

#include <LEDA/array.h>

3 Since maps do not support delete operations, we need two mapsM1 andM2, one for the experiment withA and
one for the experiment withB.
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#include <LEDA/IO_interface.h>

#include <LEDA/impl/ch_hash.h>

#include <LEDA/impl/dp_hash.h>

#include <LEDA/impl/avl_tree.h>

#include <LEDA/impl/bin_tree.h>

#include <LEDA/impl/rs_tree.h>

#include <LEDA/impl/rb_tree.h>

#include <LEDA/impl/skiplist.h>

#include <LEDA/impl/ab_tree.h>

#include <LEDA/impl/bb_tree.h>

int N;

int* A; int* B;

IO_interface I;

void dic_test(d_array<int,int>& D, string name)

{

I.write_table("\n " + name);

float T; float T0 = T = used_time();

int i;

for(i = 0; i < N; i++) D[A[i]] = 0;

I.write_table(" & ",used_time(T));

for(i = 0; i < N; i++) int* ptr = &D[A[i]];

I.write_table(" & ",used_time(T));

for(i = 0; i < N; i++) D.undefine(A[i]);

I.write_table(" & ",used_time(T));

I.write_table(" & ",used_time(T0));

〈same for B〉
}

〈map test〉
int main()

{

_d_array<int,int,ch_hash> CHH_DIC;

_d_array<int,int,dp_hash> DPH_DIC;

map<int,int> M1, M2;

_d_array<int,int,avl_tree> AVL_DIC;

_d_array<int,int,bin_tree> BIN_DIC;

_d_array<int,int,rb_tree> RB_DIC;

_d_array<int,int,rs_tree> RS_DIC;

_d_array<int,int,skiplist> SK_DIC;

_d_array<int,int,bb_tree> BB_DIC;

_d_array<int,int,ab_tree> AB_DIC;

N = 100000;

A = new int[N]; B = new int[N];

int i;

for(i = 0; i < N; i++) { A[i] = rand_int(0,10000000); B[i] = i; }

dic_test(CHH_DIC,"ch\\_hash");

dic_test(DPH_DIC,"dp\\_hash"); I.write_table(" \\hline");

map_test(M1,M2, "map"); I.write_table(" \\hline");

dic_test(SK_DIC, "skiplist");
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dic_test(RS_DIC ,"rs\\_tree");

dic_test(BIN_DIC,"bin\\_tree");

dic_test(RB_DIC ,"rb\\_tree");

dic_test(AVL_DIC,"avl\\_tree");

dic_test(BB_DIC ,"bb\\_tree");

dic_test(AB_DIC ,"ab\\_tree"); I.write_table(" \\hline");

〈array test〉
}

5.1.3 Persistence of Variables
We stated above that an access operation

E& A[I i]

returns the variableA(i). Thus, one can write

E& x = A[5];

<some statements not touching A[5]>;

A[5] = y;

if ( x == y ) { .... }

and expect that the testx == y returns true. This is not necessarily the case for harrays and
maps as these types do not guarantee that different accesses toA[5] return the same vari-
able andwe therefore recommend never to establish a pointer or a reference to a variable
contained in a map or harray. Given the efficiency of harrays and maps there is really
no need to do so. The fact that the identity of variables is not preserved is best explained
by recalling the implementation of harrays and maps. They use an array of linked lists
where the size of the array is about the size of the domain of the sparse array. Whenever
the invariant linking the size of the table and the size of the domain is violated the content
of the sparse array is rehashed. In the process of rehashing new variables are allocated for
some of the entries of the sparse array. Of course, the values of the entries are moved to the
new variables. Thus, the content ofA(i) is preserved but not the variableA(i).

D arrays behave differently. Variables in darrays are persistent, i.e, the equality test in
the code sequence above is guaranteed to return true.

5.1.4 Choosing an Implementation
LEDA gives you the choice between many implementations of sparse arrays. Which is best
in a particular situation?

Tables 5.2 and 5.3 show that in certain situations maps are faster than harrays which in
turn are faster than darrays. On the other hand the slower data types offer an increased
functionality. This suggests using the type whose functionality just suffices in a particular
application.

There are, however, other considerations to be taken into account. Maps and harrays
perform well only for random inputs, they can perform miserably for non-random inputs.
For maps a bad example is easily constructed. Use the indices 1024i for i = 0, 1, . . . .
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Since maps use the hash functionx −→ x modT whereT is the table size, andT is always
a power of two these keys will not be distributed evenly by the hash function and hence the
performance of maps will be much worse than for random inputs. In the case of harrays
the situation is not quite as bad since you may overwrite the default hash function. For
example, you may want to use

int Hash(int x){ return x/1024; }

if you know that the indices are multiples of 1024.
Which implementations are we using ourselves? We usually use maps to associate infor-

mation with item types such as points and segments, we use darrays or dictionaries when
the order on the indices is important for the application, and we use harrays when we know
a hash function suitable for the application.

If you are not happy with any of the implementations provided in LEDA you may provide
your own. Section 13.6 explains how this is done.

5.2 The Implementation of the Data Type Map

We give the complete implementation of the data typemap. This section is for readers who
want to understand the internals of LEDA. Readers that “only” want to use LEDA may skip
this section without any harm.

We follow the usual trichotomy in the definition of LEDA’s parameterized data types
as explained in Section 13.4. Familiarity with this section is required for some of the
fine points of this section. We define two classes, namely the abstract data type class
map<I, E> and the implementation classchmap, in three files, namely map.h, chmap.h,
and ch map.c. The abstract data type class has template parametersI and E and the im-
plementation class storesGenPtrs(= void∗). In map.h we define the abstract data type class
and implement it in terms of the implementation class. This implementation is fairly direct;
its main purpose is to translate between the untyped view of the implementation class and
the typed view of the abstract data type class. In chmap.h andch map.c, respectively, we
define and implement the implementation class.

We first give the global structure of LEDAROOT/incl/LEDA/map.h.

〈map.h〉+�
template<class I, class E>

class map : private ch_map {

E xdef;

void copy_inf(GenPtr& x) const { LEDA_COPY(E,x); }

void clear_inf(GenPtr& x) const { LEDA_CLEAR(E,x); }

void init_inf(GenPtr& x) const { x = leda_copy((E&)xdef); }

public:



134 Advanced Data Types

typedef ch_map::item item;

〈member functions of map〉
};

We give some explanations. We derive the abstract data type classmapfrom the implemen-
tation classchmapand give it an additional data memberxdef, which stores the default
value of the variables of the map. Therefore, an instance ofmapconsists of an instance of
chmapand a variablexdef of type E . The private function memberscopyinf , clear inf ,
andinit inf correspond to virtual functions of the implementation class and redefine them.
The first two are required by the LEDA method for the implementation of parameterized
data types and are discussed in Section 13.4. The third function is used to initialize an entry
to a copy ofxdef.

The public member functions will be discussed below. They define the user interface of
maps as given in Table 5.1.

We come to our implementation classchmap. It is based on the data structure hashing
with chaining. Hashing with chaining uses an array of singly linked lists and therefore we
introduce a container for list elements, which we callchmapelem. A chmapelemstores
an unsigned longk, a generic pointeri , and a pointer to the successor container. We refer
to k as the key-field and toi as the inf-field of the container. This nomenclature is inspired
by dictionaries. Keys correspond to indices (typeI ) in the abstract data type class and infs
correspond to elements (typeE) in the abstract data type class.

A pointer to achmapelemis called achmapitem.
The flag__exportC is used during a precompilation step. On UNIX-systems it is simply

deleted and on Windows-systems it is replaced by appropriate key words that are needed
for the generation of dynamic libraries.

〈ch mapelem〉�
class __exportC ch_map_elem

{

friend class __exportC ch_map;

unsigned long k;

GenPtr i;

ch_map_elem* succ;

};

typedef ch_map_elem* ch_map_item;

Next we discuss the data members of the implementation class.

〈data members of chmap〉�
ch_map_elem STOP;

ch_map_elem* table;

ch_map_elem* table_end;

ch_map_elem* free;

int table_size;

int table_size_1;
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Figure 5.4 A hash table of size 12. The last four locations are used as an overflow area and the
first eight locations correspond to eight linear lists. The set stored is
{2, 12, 13, 16, 18, 24, 26, 27, 55} and any numberx is stored in the list with indexx mod 8. If
thei -th list contains more than one element then the first element is stored in thei -th table
position and all other elements are stored in the overflow area. In the example, three elements are
hashed to the second list and hence two of them are stored in the overflow area. The variablefree
points to the first free position in the overflow area.

We use atableof map elements of sizef · T whereT is a power of two andf is a number
larger than one, see Figure 5.4. We usef = 1.5 in our implementation. The firstT elements
of the table correspond to the headers ofT linear lists and the remaining( f −1)T elements
of the table are used as an overflow area to store further list elements. The variablefree
always points to the first unused map element in the overflow area. When the overflow area
is full we move to a table twice the size. We usetablesizeto storeT and tablesize1 to
storeT − 1.

The main use of maps is to associate information with objects. Thus the most important
operation for maps is the access operation with keys that are already in the table (the data
structure literature calls such accessessuccessful searches) and we designed maps so that
successful searches are particularly fast. An access for a keyx involves the evaluation of
a hash function plus the search through a linear list. Our hash function simply extracts the
last logtablesizebits from the binary representation ofx .

〈HASH function〉�
ch_map_elem* HASH(unsigned long x) const

{ return table + (x & table_size_1); }

Why do we dare to take such a simple hash function?Let U be the set of unsigned longs.
We assume, as is customary in the analysis of hashing, that a random subsetS ⊆ U of size
n is stored in the hash table. Letm = tablesizedenote the size of the hash table and for all
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i , 0 ≤ i < m, let si be the number of elements inS that are hashed to positioni . Then

s0 + s1 + . . . + sm−1 = n

and hence

E[s0] + E[s1] + . . . + E[sm−1] = n

by linearity of expectations. A hash function is calledfair if the same number of elements
of U are hashed to every table position. Our hash function is fair. For a fair hash function
symmetry implies that the expectations of all thesi ’s are the same. Hence

E[si ] = n/m

for all i . No hash function can do better since
∑

i E[si ] = n. We conclude that any fair hash
function yields the optimal expectations for the E[si ]. For the sake of speed the simplest
fair hash function should be used. This is exactly what we do.

We mentioned already that our main goal was to make access operations as fast as possi-
ble. We will argue in the next three paragraphs that most successful accesses are accesses to
elements which are stored in the first position of the list containing them. Letk denote the
number of empty lists. ThenT − k lists are non-empty and hence there areT − k elements
which are first in their list. Ifn denotes the number of elements stored in the table the frac-
tion of elements that are first in their list is(T − k)/n. We want to estimate this fraction for
random keys and immediately before and after a rehash. We move to a new table when the
overflow area is full. At this time, there are( f − 1)T elements stored in the overflow area
andT − k elements in the firstT positions of the table. Thusn = f T − k at the time of a
rehash.

For random keys the expected number of empty lists isk = T · (1 − 1/T )n ≈ T e−n/T .
For random keys we will therefore move to a new table whenn ≈ T · ( f − e−n/T ) or
n/T + e−n/T ≈ f . For f = 1.5 we getn ≈ 1.2T , i.e., when about 1.2T elements are
stored in the table we expect to move to a new table.

Whenn ≈ 1.2T about 0.7T elements are stored in the firstT slots of the table and about
0.5T elements are stored in the overflow area of the table. Thus about 0.7/1.2 ≈ 58% of
the successful searches go to the first element in a list. Immediately after a rehash we have
n ≈ 0.6T (sincen ≈ 1.2T before the rehash and a rehash doubles the table size) and the
expected number of empty lists isT e−0.6 ≈ 0.55T . Thus 0.45/0.6 ≈ 75% of the successful
searches go to the first element in a list. In either case a significant fraction of the successful
searches goes to the first element in a list.

How can we make accesses to first elements fast? A key problem is the encoding of
empty lists. We explored two possibilities. In both solutions we use a special list element
STOPas a sentinel. In the first solution we maintain the invariant that thei -th list is empty
if the successor field oftable[i ] is nil and that the last entry of a non-empty list points to
STOP. This leads to the following code for an access operation:
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inline GenPtr& ch map::access(unsigned long x)

{ ch map item p = HASH(x);

if ( p->succ == nil)

{ p->k = x;

init inf(p->i); // initializes p->i to xdef

p->succ = &STOP;

return p->i;

}

else

{ if ( p->k == x ) return p->i;

}

return access(p,x);

}

In this code,access(p, x) handles the case that the list forx is non-empty and that the first
element does not containx . This code has two weaknesses. First, it tests each list for
emptiness although successful searches always go to non-empty lists and, second, it needs
to change the successor pointer oftable[i ] to &STOPafter the first insert into thei -th list.

In the second solution we encode the fact that thei -th list is empty in the key field of
table[i ]. Let NULLKEY andNONNULLKEY be keys that are hashed to zero and some non-zero
value, respectively. In our implementation we use 0 forNULLKEY and 1 forNONNULLKEY.
We use the special keysNULLKEY andNONNULLKEY to encode empty lists. More specifi-
cally, we maintain:

• table[0].k = NONNULLKEY, i.e., the first entry of the zero-th list is unused. The
information field of this entry is arbitrary.

• table[i ].k = NULLKEY iff the i -th list is empty for alli , i > 0, and

• the last entry of a non-empty list points toSTOPand if thei -th list is empty then
table[i ] points toSTOP.

Observe that the zero-th list is treated somewhat unfairly. We leave its first position unused
and thus make it artificially non-empty. Figure 5.5 illustrates the items above.

Consider a search forx and letp be the hash-value ofx . If x is stored in the first element
of the p-th list we have a successful search, and thep-th list is empty iff the key of the first
element of thep-th list is equal toNULLKEY. Observe that this is true even forp equal to
zero, because the first item guarantees thatNULLKEY is not stored in the first element of list
0. We obtain the following code for the access operation:

〈inline functions〉�
inline GenPtr& ch_map::access(unsigned long x)

{ ch_map_item p = HASH(x);

if ( p->k == x ) return p->i;

else

{ if ( p->k == NULLKEY )

{ p->k = x;

init_inf(p->i); // initializes p->i to xdef
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Figure 5.5 The realization of the hash table of Figure 5.4 inchmap. The first entry of the
zero-th list containtsNONNULLKEY (whether the zero-th list is empty or not), empty lists other
than the zero-th list containNULLKEY in their first element, and each list points toSTOP.

return p->i;

}

else

return access(p,x);

}

}

Note that a successful search for a keyx that is stored in the first position of its list is very
fast. It evaluates the hash function, makes one equality test between keys, and returns the
information associated with the key. Ifx is not stored in the first position of its table, we
need to distinguish cases: if the list is empty we store(x, xdef) in the first element of the
list (note that the callinit inf (p → i) sets the inf-field ofp to xdef), and if the list is non-
empty we callaccess(p, x) to search forx in the remainder of the list. We will discuss this
function below.

Our experiments show that the second design is about 10% faster than the first and we
therefore adopted it for maps. In the implementation of harrays by hashing with chaining
we use the first solution. Since harrays use non-trivial hash functions that may require
substantial time for their evaluation, the second solution looses its edge over the first in the
case of harrays.

We can now give an overview over LEDAROOT/incl/LEDA/impl/chmap.h.

〈ch map.h〉�
#ifndef LEDA_CH_MAP_H

#define LEDA_CH_MAP_H

#include <LEDA/basic.h>

〈ch mapelem〉
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class __exportC ch_map

{

const unsigned long NULLKEY;

const unsigned long NONNULLKEY;

〈data members of chmap〉
virtual void clear_inf(GenPtr&) const { }

virtual void copy_inf(GenPtr&) const { }

virtual void init_inf(GenPtr&) const { }

〈HASH function〉
〈private member functions of chmap〉
protected:

typedef ch_map_item item;

〈protected member functions of chmap〉
};

〈inline functions〉
#endif

We have already explained the data members. The virtual function membersclear inf ,
copyinf , andinit inf are required by the LEDA method for the implementation of parame-
terized data types. We saw already how they are redefined in the definition ofmap.

The protected and private member functions will be discussed below. The protected
member functions are basically in one-to-one correspondence to the public member func-
tions of the abstract data type class and the private member functions define some basic
functionality that is needed for the protected member functions, e.g., rehashing to move to
a larger table.

We come to the file LEDAROOT/src/dic/ch map.c. There is little to say about it at this
point except that is contains the implementation of classchmap.

〈 ch map.c〉�
#include <LEDA/impl/ch_map.h>

〈implementation of chmap〉

Having defined all data members and the global structure of all files we can start to
implement functions. We start with the private members ofchmap.

〈private member functions of chmap〉�
void init_table(int T);

initializes a table of sizeT (T is assumed to be a power of two) and makes all lists (including
list zero) empty. This is trivial to achieve. We allocate a new table of sizef T and set all data
members accordingly. We also initializetable[0].k to NONNULLKEY, table[i ].k to NULLKEY

for all i , 1 ≤ i < tablesize, and lettable[i ].succpoint toSTOP for all i , 0 ≤ i < tablesize.
This initializes all lists to empty lists.
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〈implementation of chmap〉�
void ch_map::init_table(int T)

{

table_size = T;

table_size_1 = T-1;

table = new ch_map_elem[T + T/2];

free = table + T;

table_end = table + T + T/2;

for (ch_map_item p = table; p < free; p++)

{ p->succ = &STOP;

p->k = NULLKEY;

}

table->k = NONNULLKEY;

}

〈private member functions of chmap〉+�
void rehash();

moves to a table twice the current size. We do so by first moving all elements stored in
the firstT elements of the table and then all elements in the overflow area. Note that this
strategy has two advantages over moving the elements list after list: First, we do not have
to care about collisions when moving the elements in the firstT table positions (because
the element in positioni is moved to either positioni or T + i in the new table depending
on the additional bit that the new hash function takes into account), and second, locality of
reference is better (since we move all elements by scanning the old table once).

When moving the elements from the overflow area we make use of the member function
insert. We define it inline. It takes a pair(x, y) and moves it to the list for keyx . If the first
element of the list is empty, we move(x, y) there, and if the first element is non-empty, we
move(x, y) to positionfree, insert it after the first element of the list, and incrementfree.

〈private member functions of chmap〉+�
inline void insert(unsigned long x, GenPtr y);

〈implementation of chmap〉+�
inline void ch_map::insert(unsigned long x, GenPtr y)

{ ch_map_item q = HASH(x);

if ( q->k == NULLKEY )

{ q->k = x;

q->i = y;

}

else

{ free->k = x;

free->i = y;

free->succ = q->succ;

q->succ = free++;

}

}
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In rehashwe first initialize the new table (this putsNONNULLKEY into the first entry of the
zero-th list) and then move elements. We first move the elements in the main part of the
table (table[0] is unused and hence the loop for moving elements starts attable+ 1) and
then the elements in the overflow area.

〈implementation of chmap〉+�
void ch_map::rehash()

{

ch_map_item old_table = table;

ch_map_item old_table_mid = table + table_size;

ch_map_item old_table_end = table_end;

init_table(2*table_size);

ch_map_item p;

for(p = old_table + 1; p < old_table_mid; p++)

{ unsigned long x = p->k;

if ( x != NULLKEY ) // list p is non-empty

{ ch_map_item q = HASH(x);

q->k = x;

q->i = p->i;

}

}

while (p < old_table_end)

{ unsigned long x = p->k;

insert(x,p->i);

p++;

}

delete[] old_table;

}

〈private member functions of chmap〉+�
GenPtr& access(ch_map_item p, unsigned long x);

searches forx in the list starting atp. The function operates under the precondition that
the list is non-empty andx is not stored inp. The function is called by the inline function
access(x).

We search down the list starting atp. If the search reachesSTOP, we have to insertx .
If the table is non-full, we insertx at positionfree, and if the table is full, we rehash and
recompute the hash value ofx . If x now hashes to an empty list, we put it into the first entry
of the list, and otherwise, we put it atfree.

〈implementation of chmap〉+�
GenPtr& ch_map::access(ch_map_item p, unsigned long x)

{

STOP.k = x;

ch_map_item q = p->succ;

while (q->k != x) q = q->succ;

if (q != &STOP) return q->i;

// index x not present, insert it
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if (free == table_end) // table full: rehash

{ rehash();

p = HASH(x);

}

if (p->k == NULLKEY)

{ p->k = x;

init_inf(p->i); // initializes p->i to xdef

return p->i;

}

q = free++;

q->k = x;

init_inf(q->i); // initializes q->i to xdef

q->succ = p->succ;

p->succ = q;

return q->i;

}

We come to the protected member functions ofchmap. We start with some trivial stuff.

〈protected member functions of chmap〉�
unsigned long key(ch_map_item it) const { return it->k; }

GenPtr& inf(ch_map_item it) const { return it->i; }

Constructors and Assignment: We start with the implementation class.

〈protected member functions of chmap〉+�
ch_map(int n = 1);

ch_map(const ch_map& D);

ch_map& operator=(const ch_map& D);

The default constructor initializes a data structure of size min(512, 2dlogne). The copy con-
structor initializes a table of the same size asD and then copies all elements fromD to the
new table. Elements from the first part of the table are moved if their key is different from
NULLKEY and elements from the second part of the table are always moved. The assignment
operator works in the same way but clears and destroys the old table first.

〈implementation of chmap〉+�
ch_map::ch_map(int n) : NULLKEY(0), NONNULLKEY(1)

{

if (n < 512)

init_table(512);

else

{ int ts = 1;

while (ts < n) ts <<= 1;

init_table(ts);

}

}

ch_map::ch_map(const ch_map& D) : NULLKEY(0), NONNULLKEY(1)
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{

init_table(D.table_size);

for(ch_map_item p = D.table + 1; p < D.free; p++)

{ if (p->k != NULLKEY || p >= D.table + D.table_size)

{ insert(p->k,p->i);

D.copy_inf(p->i); // see chapter Implementation

}

}

}

ch_map& ch_map::operator=(const ch_map& D)

{

clear_entries();

delete[] table;

init_table(D.table_size);

for(ch_map_item p = D.table + 1; p < D.free; p++)

{ if (p->k != NULLKEY || p >= D.table + D.table_size)

{ insert(p->k,p->i);

copy_inf(p->i); // see chapter Implementation

}

}

return *this;

}

The constructors of the abstract data type class simply call the appropriate constructor of
the implementation class.

〈member functions of map〉�
map() { }

map(E x,int table_sz) : ch_map(table_sz), xdef(x) { }

map(E x) : xdef(x) { }

map<I,E>& operator=(const map<I,E>& M)

{ ch_map::operator=((ch_map&)M);

xdef = M.xdef;

return *this;

}

map(const map<I,E>& M): ch_map((ch_map&)M), xdef(M.xdef) { }

Destruction: We follow our canonical design for constructors, see Section 13.4.3. On
the level of the implementation class, we define a functionclearentries that clears the
information field of all used entries, a functionclear that first clears the entries of the table
and destroys the table and then reinitializes the table to its default size (clear is not used but
we define it for the sake of uniformity), and the destructor that simply deletestable. Note
that our canonical design ensures thatclearentriesis called before any call of the destructor
and hence onlytablemust be destroyed by the destructor. Following standard practice (see
[ES90, page278]) we declare the destructor virtual.
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〈protected member functions of chmap〉+�
void clear_entries();

void clear();

virtual ~ch_map() { delete[] table; }

〈implementation of chmap〉+�
void ch_map::clear_entries()

{ for(ch_map_item p = table + 1; p < free; p++)

if (p->k != NULLKEY || p >= table + table_size)

clear_inf(p->i); // see chapter Implementation

}

void ch_map::clear()

{ clear_entries();

delete[] table;

init_table(512);

}

The destructor of the abstract data type class first callsclearentriesand then the destructor
of the implementation class.

〈member functions of map〉+�
~map() { clear_entries(); }

Access Operations:We have already defined the operationaccess(x) that searches forx
and, if unsuccessful, insertsx into the table. Lookuponly searches; it returns the item
corresponding to a keyx , if there is one, andnil otherwise.

〈protected member functions of chmap〉+�
GenPtr& access(unsigned long x);

ch_map_item lookup(unsigned long x) const;

〈implementation of chmap〉+�
ch_map_item ch_map::lookup(unsigned long x) const

{ ch_map_item p = HASH(x);

((unsigned long &)STOP.k) = x; // cast away const

while (p->k != x) p = p->succ;

return (p == &STOP) ? nil : p;

}

The abstract data type class uses these functions in the obvious way.

〈member functions of map〉+�
const E& operator[](const I& i) const

{ ch_map_item p = lookup(ID_Number(i));

return (p) ? LEDA_CONST_ACCESS(E,ch_map::inf(p)) : xdef;

}
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E& operator[](const I& i)

{ return LEDA_ACCESS(E,access(ID_Number(i))); }

bool defined(const I& i) const { return lookup(ID_Number(i)) != nil; }

In the above,LEDAACCESS(E, i) returns the value ofi converted to typeE , see Sec-
tion 13.4.5, andID number(i) returns the ID-number ofi .

〈member functions of map〉+�
void clear() { ch_map::clear(); }

void clear(E x) { ch_map::clear(); xdef = x; }

Iteration: The implementation of the iteration statements follows the general strategy de-
scribed in Section 13.9. The implementation class provides two functions that return the first
used item and the used item following a used item, respectively. Both functions are simple.
The first item in the hash table is always unused and hencefirst itemreturnsnextitem(table).
We come tonextitem(it). Let it be any item. Ifit is nil, we returnnil. So assume otherwise.
To find the next used item we advanceit one or more times until we are either in the over-
flow area or have reached an item whose key is not equal toNULLKEY. If the resulting value
of it is less thanfreewe return it and otherwise we returnnil.

〈protected member functions of chmap〉+�
ch_map_item first_item() const;

ch_map_item next_item(ch_map_item it) const;

〈implementation of chmap〉+�
ch_map_item ch_map::first_item() const

{ return next_item(table); }

ch_map_item ch_map::next_item(ch_map_item it) const

{ if ( it == nil ) return nil;

do { it++; }

while ( it < table + table_size && it->k == NULLKEY);

return ( it < free ? it : nil);

}

The abstract data type class must provide the functionsfirst item, nextitem, inf , key. All
four functions reduce to the corresponding function in the implementation class.

〈member functions of map〉+�
item first_item() const { return ch_map::first_item(); }

item next_item(item it) const { return ch_map::next_item(it); }

E inf(item it) const

{ return LEDA_CONST_ACCESS(E,ch_map::inf(it)); }

I key(item it) const

{ return LEDA_CONST_ACCESS(I,(GenPtr)ch_map::key(it)); }
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Exercises for 5.2
1 The unbalanced tree implementation of sparse arrays deteriorates to linear lists in the

case of a sorted insertion order. In particular, if the keys 1, 2, . . . ,n are inserted in this
order then each insertion appends the key to be inserted at the end of the list. Try to
explain the row forbin treesin the lower half of Table 5.2 in view of this sentence.

2 Use maps and the indices 1024i for i = 0, 1, . . . .
3 Use harrays and the indices 1024i for i = 0, 1, . . . . Define your own hash function.
4 Design a hash function for strings. The function should depend on all characters of a

string.
5 Extend the implementation of harrays such that variables become persistent. (Hint: do

not store the array variables directly in the hash table but access them indirectly through
a pointer). What price do you pay in terms of access and insert time?

6 Provide a new implementation of darrays or harrays and perform the experiments of
Table 5.2.

5.3 Dictionaries and Sets

Dictionaries and sets are essentially another interface to darrays and therefore we can keep
this section short.

A dictionary is a collection of items (typedic item) each holding a key of some linearly
ordered typeK and an information from some typeI . Note that we now useI for the
information type and no longer for the index type. We illustrate dictionaries by a program
that reads a sequence of strings from standard input, counts the number of occurrences of
each string, and prints all strings together with their multiplicities.

dictionary<string,int> D;

string s;

dic item it;

while (cin >> s)

{ it = D.lookup(s);

if (it == nil) D.insert(s,1);

else D.change inf(it, D.inf(it) + 1);

}

forall dic items(it, D)

cout << D.key(it) << " " << D.inf(it) << "\n";

In the while-loop we first search fors in the dictionary. The lookup returnsnil if s is not
part of the dictionary and returns the unique item with keys otherwise. In the first case we
insert the item〈s, 1〉 into the dictionary. In the second case we increment the information
associated withs.

Dictionaries are frequently used to realize sets. In this situation the information associ-
ated with an element in the dictionary is irrelevant, the only thing that counts is whether a
key belongs to the dictionary or not. The data typesetis appropriate in this situation. A set
S of integers is declared byset<int> S. The number 5 is added byS.insert(5), the number 8
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is tested for membership byS.member(8), and the number 3 is deleted byS.delete(3). The
operationS.choose( ) returns some element of the set. Of course,chooserequires the set to
be non-empty.

We will discuss an extension of dictionaries in a later section:Sorted sequences. Sorted
sequences extend dictionaries by more fully exploiting the linear order defined on the key
type. They offer queries to find the next larger element in a sequence and also operations to
merge and split sequences.

LEDA also contains extensions of dictionaries to geometric objects such as points and
parallel line segments. We discuss a dictionary type for points in Section 10.6. For more
dictionary types for geometric objects we refer the reader to the manual.

Exercises for 5.3
1 Implement dictionaries in terms of darrays. Are you encountering any difficulties?
2 Implement darrays in terms of dictionaries. Are you encountering any difficulties?

5.4 Priority Queues

Priority queues are an indispensable ingredient for many network and geometric algorithms.
Examples are Dijkstra’s algorithm for the single-source shortest-path problem (cf. Sec-
tion 6.6), and the plane sweep algorithm for line segment intersection (cf. Section 10.7.2).
We start with the basic properties of priority queues, and then discuss the many implemen-
tations of priority queues in LEDA. We give recommendations about which priority queue
to choose in a particular situation.

5.4.1 Functionality
A priority queueQ over a priority typeP and an information typeI is a collection of items
(typepqitem), each containing a priority from typeP and an information from typeI . The
type P must be linearly ordered. A priority queue organizes its items such that an item with
minimum priority can be accessed efficiently.

p queue<P,I> Q;

defines a priority queueQ with priority type P and information typeI and initializesQ to
the empty queue. A new item〈p, i〉 is added by

Q.insert(p,i);

and

pq item it = Q.find min();

returns an item of minimal priority and assigns it toit (find min returnsnil if Q is empty).
Frequently, we do not only want to access an item with minimal information but also want
to delete it.
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P p = Q.del min();

deletes an item with minimum priority fromQ and assigns its priority top (Q must be
non-empty, of course). An arbitrary itemit can be deleted by

Q.del item(it);

The fields of an item are accessed byQ.prio(it) andQ.inf (it), respectively. The operation
Q.insert(p, i) adds a new item〈p, i〉 and returns the item; so we may store it for later use:

pq item it = Q.insert(p,i);

There are two ways to change the content of an item. The information can be changed
arbitrarily:

Q.change inf(it,i1);

makesi1 the new information of itemit. The priority of an item can only be decreased:

Q.decrease p(it,p1);

makesp1 the new priority of itemit. The operation raises an error ifp1 is larger than the
current priority ofit. There is no way to increase the priority of an item4. Finally, there are
the operations

Q.empty();

Q.size();

Q.clear();

that test for emptiness, return the number of items, and clear a queue, respectively.
Let us see priority queues at work. We read a sequence of doubles from standard input

and store them in a priority queue. We then repeatedly extract the minimum element from
the queue until the queue is empty. The net effect is to sort the input sequence into increasing
order.

p queue<double,int> Q; //the information type is irrelevant

double x;

while (cin >> x) Q.insert(x,0);

while (! Q.empty()) cout << Q.del min << "\n";

A more sophisticated use of priority queues isdiscrete event simulation. We have a set
of events associated with points in time. An event associated with timet is to be executed
at timet . The execution of an event may create new events that are to be executed at later
moments of time. Priority queues support discrete event simulation in a very natural way;
one only has to store all still to be executed events together with their scheduled time in a
priority queue (with time playing the role of the priority) and to always extract and execute
the event with the minimal scheduled time.
4 The fact that priorities can be decreased but not increased is dictated by the implementations. There are

implementations that support very efficient decrease of priorities but there are no implementations that support
efficient decrease and increase.



5.4 Priority Queues 149

Running times
Name Prio Args insert deletemin decreasep create, destruct

f heap general — O(logn) O(logn) O(1) O(1)

p heap general — O(logn) O(logn) O(1) O(1)

k heap general N , k = 2 O(logk n) O(k logk n) O(logk n) O(N)

bin heap general — O(logn) O(logn) O(log n) O(1)

list pq general — O(1) O(n) O(1)

b heap int, [l .. h] l, h O(1) O(h − l) O(h − l) O(h − l)

r heap int C O(log C) O(log C) O(1) O(log C)

mheap int C O(1) O(min− p min) O(1) O(C)

Table 5.4 Properties of different priority queue implementations: the second column indicates
whether the priorities can come from an arbitrary linearly ordered type (general) or must be
integers, the third column indicates the arguments of the constructor, and the remaining columns
indicate the running times of the various priority queue operations.B heapscan only handle
integer priorities from a fixed range [l .. h] andr heapsandmheapmaintain a variablep min and
priorities must be integers in the range [p min.. p min+ C − 1]. B heapsalso support a
deletemaxoperation. More detailed explanations are given in the text.

5.4.2 Performance Guarantees and Implementation Parameters
LEDA provides many implementations of priority queues. The implementations include
Fibonacci heaps [FT87], pairing heaps [SV87],k-ary heaps and binary heaps [Meh84a,
III.5.3.1], lists5, buckets6, redistributive heaps [AMOT90], and monotone heaps [Meh84c,
IV.7.2]. Fibonacci heaps are the default implementation and other implementations can be
selected using the implementation parameter mechanism. The implementation parameters
are f heap, p heap, k heap, bin heap, list pq, b heap, r heap, and mheap, respectively.
Fibonacci heaps supportinsert, del itemanddelmin in time O(logn), find min, decreasep,
changeinf , inf , size, andemptyin time O(1), andclear in time O(n), wheren denotes
the current size of the queue. The time bounds are amortized. The space requirement
of Fibonacci heaps is linear in the size of the queue. We give their implementation in
Section 13.10.

Table 5.4 surveys the properties of the other implementations. Some implementations
allow any linearly ordered type for the priority type (this is indicated by the word general)
and some work only for a prespecified range of integer priorities. The constructors take
zero or more arguments. For all priority queues that work only for a subset of the integers
the set of admissible priorities is defined by constructor arguments.k-ary heaps require that

5 In the list implementation the items of the queue are stored as an unordered list. This makesdeletemin and
find min linear time processes (linear search through the entire list) and trivializes all other operations.

6 In the bucket implementation we have an array of linear lists; the list with indexi contains all items whose
priority is equal toi. This scheme requires the priorities to be integers from a prespecified range.
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an upper boundN for the maximal size of the queue and the parameterk is specified in the
constructor; the default value ofk is 2.

Redistributive heaps and monotone heaps do only support monotone use of the priority
queue. The use of a priority queue ismonotoneif the priority argument in anyinsert or
decreasep operation is at least as large as the priority returned by the lastdeletemin or
findminoperation. Dijkstra’s shortest-path algorithm uses its priority queue in a monotone
way. Rheapsandmheapsmaintain a variablep min that is initialized to the priority of
the first insertion and that is updated to the priority returned by anydeletemin or find min
operation. Only priorities in the range [p min.. p min + C − 1] can be inserted into the
queue, whereC is specified in the constructor. Inmheapsthe cost of adeletemin is the
difference between the result of thisdeleteminoperation and the preceding one7.

Theb heapimplementation allows one to ask for the maximum priority and not only for
the minimum priority. This is sometimes called adouble-sidedpriority queue. For integer
priorities there are realizations known that have an even better performance thanr heaps.
The papers [AMOT90] and [CGS97] describe realizations whereinsertanddeletemin take
time O(

√
logC) andO((logC)1/3+ε) for arbitraryε > 0, respectively.

In order to select an implementation different from the default implementation, a decla-
ration

p queue<K,int,prio impl> Q(parameters);

has to be used, whereparametersdenotes the list of parameters required by the implemen-
tation, e.g.,

p queue<int,int,r heap> Q(100000);

selects ther heapimplementation and setsC to 100000.
A priority queue with a particular implementation is, of course, still a priority queue and

can hence be used wherever a priority queue can be used. We give an example. We write a
proceduredijkstra that takes a graphG, a nodes, anedgearray<int> costof edge weights,
and ap queue<int, node> PQ, and solves the single-source shortest-path problem for the
specified source node. The distances are returned in anodearray<int> dist. The edge costs
must be non-negative.

〈dijkstra〉�
void dijkstra(graph& G, node s, const edge_array<int>& cost,

node_array<int>& dist, p_queue<int,node>& PQ)

{ node_array<pq_item> I(G);

node v;

forall_nodes(v,G)

dist[v] = MAXINT;

dist[s] = 0;

7 Themheapimplementation uses an array of sizeC of linear lists and a variablep min which is initialized to the
priority of the first insertion. An item with priorityi is stored in the list with indexi modC. Since priorities are
allowed only from the range [p min.. p min+ C − 1] this implies that each list contains only items with the same
priority. A deletemin or find min operation advancesp min cyclically until a non-empty list is found.
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I[s] = PQ.insert(0,s);

while (! PQ.empty())

{ pq_item it = PQ.find_min();

node u = PQ.inf(it);

int du = dist[u];

edge e;

forall_adj_edges(e,u)

{ v = G.target(e);

int c = du + cost[e];

if (c < dist[v])

{ if (dist[v] == MAXINT)

I[v] = PQ.insert(c,v);

else

PQ.decrease_p(I[v],c);

dist[v] = c;

}

}

PQ.del_item(it);

}

}

We give some explanations; the correctness of the algorithm is shown in Section 6.6. Di-
jkstra’s algorithm keeps a tentative distance value for each node and a set of active nodes.
For a nodev its tentative distance value is stored indist[v] and the set of pairs(dist[v], v),
wherev is an active node, is stored in the priority queuePQ. Each active nodev knows the
pqitemcontaining the pair(dist[v], v); it is stored in entryI [v] of thenodearray<pqitem>
I . Initially, only the source nodes is active and its distance froms is zero. In each iteration
of the loop the pair with minimum distance value is deleted fromPQ, say the pair(du, u)

and all edgese leavingu are scanned. An edgee = (u, v) allows us to reach nodev through
a path of costc = du+ cost[e]. If c is smaller than the cost of the best path known tov so
far, this change is recorded indist[v] and the priority queue is informed about the change.
More precisely, if no path tov was known so far, i.e.,dist[v] is still equal toMAXINT, a
new pair(c, v) is inserted into the priority queue and the item returned is stored inI [v] and
if some path was already known then the priority of nodev in the queue is updated. Note
that in the latter caseI [v] contains the item forv in PQ.

We turn to the analysis of the running time. It can be shown (see Section 7.5.3) that each
node is inserted and deleted from the priority queue at most once; of course, nodes that can-
not be reached froms are never inserted into the queue. The algorithm therefore performs
at mostn insert, empty, find min, anddeleteminoperations and at mostm decreasep oper-
ations. Heren andm denote the number of nodes and edges ofG, respectively. The time
spent outside the calls to the priority queue isO(n + m) since array accesses take constant
time and since the time to scan through all edges leaving a nodeu is proportional to the out-
degree of the node. It is fair also to include the time for the construction and the destruction
of the queue (although this happens outside proceduredijkstra). The total running time is
therefore bounded byO(n+m+n·(Tinsert +Tempty +Tf ind min+Tdelete min)+m ·Tdecrease p+
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Worst case running time Expected running time

f heap O(m + n logn) O(m + n logn)

p heap O(m + n logn) O(m + n logn)

k heap O(m logk n + nk logk n) O(m + n(log(2m/n) + k) logk n)

bin heap O(m logn + n logn) O(m + n log(m/n) logn)

list pq O(m + n2) O(m + n2)

b heap O((m + n)nM) O((m + n)nM)

r heap O(m + n log M) O(m + n log M)

mheap O(m + maxdist+ M) O(m + maxdist+ M)

Table 5.5 Asymptotic running times of Dijkstra’s algorithm with different priority queue
implementations. In order to keep the formulae simple we assumedn ≤ m. For the last three
rows the edge weights must be integral and from the range [0.. M − 1]. The rows forb heaps
andmheapsrequire some explanation. Note that the maximal priority ever removed from the
queue is bounded by(n − 1)M since a shortest path consists of at mostn − 1 edges. Thus one
can useb heapswith l = 0 andh = nM . For r heapsandmheapswe observe that the fact that
edge costs are bounded byM guarantees that all priorities in the queue come from the range
[p min.. p min+ M − 1] and hence we can use these implementations withC = M. In mheaps
the cost of adeletemin is O(min− p min), whereminandp minare the results of the current and
the previousdeletemin operations. The sum of the differencesmin− p min over alldeletemin
operations is bounded by the maximal distance of any node from the source.

Tcreate + Tdestruct) whereTX is the time bound for operationX . Note that the expression
above is an upper bound on the running time. The actual number ofdecreasep opera-
tions may be smaller thanm. In fact, it can be shown that for random graphs and random
edge weights the expected number ofdecreasep operations isO(min(m, n log(2m/n))),
see [Nos85]. We can now use Table 5.4 to estimate the asymptotic running time ofdijkstra
with different implementations of the priority queue.

The result is shown in Table 5.5. The first five lines contain the implementations that work
for arbitrary non-negative real edge weights. The best worst case and average case time is
O(m + n logn); they are achieved byf heapsandp heaps. For dense graphs withm =
n1+ε for some positiveε, k heapswith k = n1/ε achieve a worst case time8 of O((1/ε)m)

which is competitive with the above forε bounded away from zero. The expected running
time9 of bin heapsis competitive form = �(n log(m/n) logn). The last three lines of
the table contain implementations that work only for integral edge weights. In these lines
we useM to denote 1 plus the maximal weight of any edge. The best worst case and

8 The worst case running time ofk heapsis O(nk logk n + m logk n). Fork = n1/ε we have
logk n = logn/ logk = 1/ε andnk = n1+1/ε = m.

9 In bin heapsthe cost of adecreasekeyis O(log n). The expected number ofdecreasekeyoperations is
n log(2m/n). Thus, ifm ≥ n log(2m/n) logn the running time isO(m).
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Figure 5.6 A worst case graph for Dijkstra’s algorithm. All edges(i, i + 1) have costc and an
edge(i, j) with i + 1 < j has costci, j . Theci, j are chosen such that the shortest path tree with
root 0 is the path 0, 1, . . . , n − 1 and such that the shortest path tree that is known after removing
nodei − 1 from the queue is as shown. Among the edges out of nodei − 1 the edge(i − 1, i ) is
the shortest, the edge(i − 1, n − 1) is the second shortest, and the edge(i − 1, i + 1) is the
longest.

average case time isO(m + n log M) achieved byr heaps. For M = O(1) the mheap
implementation is competitive. The heap implementations described in [AMOT90] and
[CGS97] yield a running time ofO(m +n

√
log M) andO(m +n(log M)1/3+ε) for arbitrary

ε > 0, respectively.

How do the different implementations compare experimentally? We will perform exper-
iments with random graphs and with worst case graphs. Before reporting running times we
construct a graph withn nodes andm edges that forces Dijkstra’s algorithm intom − n + 1
decreasep operations; observe that this number is the maximal possible since the distance
of s is never decreased and since for any nodev different froms the first edge intov that is
scanned leads to aninsertbut not to adecreasep operation. The construction works for all
m andn with m ≤ n(n − 1)/2. Letc be any non-negative integer. The graph consists of:

• the nodes 0, 1,. . . , n − 1,

• then − 1 edges(i, i + 1), 0 ≤ i < n − 1, each having costc, and

• the firstm ′ = m − (n − 1) edges in the sequence(0, 2), (0, 3), . . . , (0, n − 1), (1, 3),
(1, 4), . . . , (1, n − 1), (2, 4), . . . . The edge(i, j ) in this sequence is given costci, j to
be defined below.

We will define theci, j such that the shortest path tree with respect to node 0 is the path
[0, 1, . . . , n − 1], such that the nodes are removed from the queue in the order of their node
number, and such that the shortest path tree that is known after removing nodei from the
queue is as shown in Figure 5.6. The shortest path from 0 toi has costic and the path
[0, 1, . . . , i − 1, i, j ] has costic + ci, j , see Figure 5.6.

When node 0 is removed from the queue all other nodes are put into the queue. The
priority of node 1 is equal toc and the priority of nodej , j > 1, is equal toc0, j . Generally,
just prior to the removal of nodei the queue contains nodesi to n − 1: Nodei has priority
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Figure 5.7 The effect of scanning the edges out of nodei . When the scanning starts the nodes
i + 1 to n − 1 are in the queue and we havedist[n − 1] < . . . < dist[i + 1]. Just prior to the
scanning of edge(i, j) we have the situation shown; in this figure distance values are indicated
asx-coordinates. Scanning(i, j) will make dist[ j ] the smallest priority in the queue. The edges
out of i are scanned in the order(i, i + 2), . . . , (i, n − 1), (i, i + 1).

ic and nodej , j > i , has priority(i − 1)c + ci−1, j . We now remove nodei from the queue
and scan through the edges out ofi . We postulate that we look at the edges in the order
(i, i + 2), (i, i + 3) , (i, n − 1), (i, i + 1).

Under what conditions will each edge(i, j ) cause adecreasep operation and, moreover,
will the new priority given to nodej by this edge be the smallest priority in the queue? This
will be the case if theci, j are chosen such that

ic + ci,i+2 < (i − 1)c + ci−1,n−1,

ci, j < ci, j−1 for all j , i + 2 < j ≤ n − 1,

and c = ci,i+1 < ci,n−1.

Note that the first inequality implies that the edge(i, i + 2) causes adecreasep operation,
that the second inequality implies that the edge(i, j ) causes adecreasep operation for all
j , i + 2 < j ≤ n − 1, and that the third inequality implies that the edge(i, i + 1) causes
adecreasep operation. Also note that this choice of edge costs implies that before the scan
of the edges out ofi we havedist[n − 1] < . . . < dist[i + 1] and that consideration of edge
(i, j ) will make dist[ j ] the smallest value in the queue, i.e., before(i, j ) is considered we
havedist[ j − 1] < . . . < dist[i + 2] < dist[n − 1] < . . . < dist[ j ] < dist[i + 1] and after
(i, j ) is considered we havedist[ j ] < dist[ j −1] < . . . < dist[i +2] < dist[n −1] < . . . <

dist[ j + 1] < dist[i + 1], see Figure 5.7. In this way each edge scan causes a major change
in the priority queue.

How can we chooseci, j ’s satisfying these inequalities? We suggest the following strat-
egy. We first determine them ′ additional edges to be used and then assign the edge costs to
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the additional edges in reverse order. Note that the last edge can be given costc+1, and that
ci, j can be put toci, j+1 + 1 if j < n − 1 and can be put toci+1,i+3 + c + 1 if j = n − 1. The
following program realizes this strategy and returns the largest cost assigned to any edge.

〈worst case generator〉�
int DIJKSTRA_GEN(GRAPH<int,int>& G, int n, int m, int c = 0)

{ G.clear();

array<node> V(n);

int i;

for (i = 0; i < n; i++) V[i] = G.new_node(i);

stack<edge> S;

int m1 = m - (n - 1);

i = 0;

int j = i + 2;

while (m1 > 0)

{ if (j < n )

{ S.push(G.new_edge(V[i],V[j])); m1--; j++; }

else

{ i++; j = i + 2;

if (j == n)

error_handler(1,"DIJKSTRA_GEN: m can be at most n*(n-1)/2");

}

}

edge e = S.pop();

int last_c = G[e] = c + 1;

while (!S.empty())

{ e = S.pop();

int j = G[G.target(e)];

if (j == n-1)

last_c = G[e] = last_c + c + 1;

else

last_c = G[e] = last_c + 1;

}

for (i = 0; i < n-1; i++) G.new_edge(V[i], V[i+1], c);

return last_c;

}

A further remark about this program is required. Thenewedgeoperation appends the new
edge to the adjacency list of the source node and hence the adjacency list of any nodei will
be ordered(i, i + 2), . . . , (i, n − 1), (i, i + 1), as desired.

We come to the experimental comparison of our different priority queue implementations.
We refer the reader to [CGS97] for more experimental results. It is easy to timedijkstrawith
a particular implementation, e.g.,

〈generate a section of table: Dijkstra timings〉�
{ p_queue<int,node> fheap; K = "fheap";

dijkstra(G,s,cost,dist,fheap);

}

〈report time for heap of kind K〉
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{ _p_queue<int,node,p_heap> pheap; K = "pheap";

dijkstra(G,s,cost,dist,pheap);

}

〈report time for heap of kind K〉
{ int d = m/n; // degree for k_heap

if ( d < 2 ) d = 2;

_p_queue<int,node,k_heap> kheap(n,d); K = "kpeap";

dijkstra(G,s,cost,dist,kheap);

}

〈report time for heap of kind K〉
{ _p_queue<int,node,bin_heap> binheap(n); K = "binheap";

dijkstra(G,s,cost,dist,binheap);

}

〈report time for heap of kind K〉
if (i != 2) // listheaps are too slow for section 2 of table

{

{ _p_queue<int,node,list_pq> listheap; K = "listheap";

dijkstra(G,s,cost,dist,listheap);

}

〈report time for heap of kind K〉
}

else cout << "& - " ; cout.flush();

{ _p_queue<int,node,r_heap> rheap(C); K = "rheap";

dijkstra(G,s,cost,dist,rheap);

}

〈report time for heap of kind K〉
{ _p_queue<int,node,m_heap> mheap(C); K = "mheap";

dijkstra(G,s,cost,dist,mheap);

}

〈report time for heap of kind K〉

generates one section of Table 5.6. We have enclosed the experiment in a block such that
the time for the destruction of the queue is also measured. Table 5.6 shows the results of
our experiments. You can perform your own experiments with the priority queue demo.

We see thatp heapsare consistently better thanf heapsand thatr heapsare in many
situations even better. The exception is when the ratiom/n is very small, the maximal
edge weight is large, and we use the worst case graph. In the latter situation, then log M
term in the running time dominates. For random graphsbin heapsare competitive.K heaps
are worse thanbin heapson random graphs (because our choice ofk is bad for random
graphs) and are competitive for worst case graphs.List pqcannot be run for large values of
n because of then2-term in the running time.M heapsdo surprisingly well even for large
edge weights. This is due to the fact that theM-term in the running time does not really
harmmheapsin our experiments because of the large value ofm.

5.4.3 Choosing an Implementation
LEDA gives you the choice between many implementations of priority queues. Which is
best in a particular situation?
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Instance f heap pheap kheap binheap listpq r heap mheap

s,r,S 0.36 0.34 0.35 0.34 0.51 0.33 0.35

s,r,L 0.38 0.36 0.37 0.34 0.54 0.35 0.54

s,w,S 1.86 1.09 3.77 1.38 1 0.76 2.68

s,w,L 1.87 1.1 3.68 1.34 1 0.77 8.49

m,r,S 1.24 0.94 1.14 0.94 31.6 0.83 0.94

m,r,L 1.39 1.13 1.28 1.02 23 0.93 1.22

m,w,S 2.36 1.44 4.94 1.77 22.7 0.99 2.78

m,w,L 2.36 1.45 4.84 1.74 21.7 1.03 3.29

l,r,S 4.96 3.19 5.2 3.36 - 2.52 2.52

l,r,L 6.61 4.81 6.4 4.49 - 3.76 3.38

l,w,S 3.32 2.56 9.17 3.79 - 1.63 3.11

l,w,L 2.91 1.92 7.65 3.22 - 2.57 2.55

Table 5.6 Running times of Dijkstra’s algorithm with different priority queue implementations.
We used graphs withm = 500000 edges and eithern = 2000,n = 20000, orn = 200000 nodes.
The three cases are distinguished by the labels s, m, and l, respectively. For each combination of
n andm we generated four graphs. Two random graphs (r) with random edge weights in
[0 .. M − 1], whereM = 100 orM = 100000, and two worst case graphs (w) withc = 0 or
c = 10000. The two cases forM andc are distinguished by the labels S and L, respectively. So
s,r,L indicates that we used 2000 nodes, a random graph, andM equal to 100000. In thek heap
implementation we setk = max(2, m/n), as this minimizes the worst case running time.

Tables 5.4 and 5.6 suggest to use eitherp heaps, bin heaps, or r heaps. Rheapsare the
data structure of choice if the use of the queue is monotone and the parameterC is such that
logC is not much larger that logn. If the keys are not integers or logC is much larger than
logn, one should use eitherbin heapsor p heaps. The former are to be preferred when the
number ofdecreasep operations is not too large and the latter is to be preferred otherwise.

If you are not happy with any of the implementations provided in LEDA, you may provide
your own. Section 13.6 explains how this is done.

Exercises for 5.4
1 Consider a graph with two nodesv andw and one edge(v, w) of costM . What is the

running time of the different versions ofdijkstraon this graph as a function ofM . Verify
your result experimentally.

2 Implement hot queues as described in [CGS97].
3 Time Dijkstra’s algorithm withk heapsfor different values ofk. Do so for random

graphs and also for worst case graphs. Which value ofk works best?
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4 Use priority queues to sort a set ofn random integers or random doubles. Compare
the different queue implementations. In the case ofk heapstry different values ofk.
Compare your findings fork heapswith the experiments in [LL97].

5.5 Partition

We discuss the data type partition: its functionality, its implementation, and a non-trivial
application in the realm of program checking.

5.5.1 Functionality
A partition P consists of a finite set of items of typepartition itemand a decomposition of
this set into disjoint sets called blocks. Figure 5.8 visualizes a partition. The declaration

partition P;

declares a partitionP and initializes it to the empty partition, i.e., there are no items inP
yet.

P.make block();

adds a new item toP, makes this item a block by itself, and returns the item; see Figure 5.9.
We may store the returned item for later use.
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Figure 5.8 A partition P of eight items into three blocks. Partition items are indicated as solid
squares and blocks are indicated as ellipses enclosing the items constituting the block.
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Figure 5.9 The partition of Figure 5.8 after amakeblockoperation.
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partition item it = P.make block();

There are several ways to query a partition and to modify it.

P.same block(it1,it2);

returnstrue if the partition itemsit1 andit2 belong to the same block ofP andfalseother-
wise.

P.union blocks(it1,it2);

combines the blocks containing itemsit1 andit2, respectively.
For each block one of its elements is designated as the “canonical” item of the block.

P.find(it);

returns the “canonical” element of the block containingit. Note thatit andP.find(it) belong
to the same block ofP and that ifit1 andit2 belong to the same block thenP.find(it1) and
P.find(it2) return the same item. Thus

P.same block(it1,it2) == (P.find(it1) == P.find(it2))

is a fancy way to write the constanttrue.
If L is a list of partition items then

P.split(L);

splits all blocks consisting of items inL into singleton blocks.L must be a union of blocks
of P.

We give a small example program to see partitions at work. We maintain a partitionP of
n items. We start with the partition into singleton blocks and then repeat the following step
until the largest block has reached size 9n/10. We choose two items at random and merge
the blocks containing them (this has no effect if the two items belong already to the same
block). During the experiment we keep track of the block sizes. Whenever the size of the
maximal block reachesin/100 for somei , i ≥ 1, we report the number of steps and the
size of the two largest components.

In order to facilitate the selection of two random items we store all items of the partition
in anarray<partition item> Item. This reduces the selection of a random partition item to
the selection of a random integer.

We keep track of the block sizes in asortseq<int, int> freq; see Section 5.6. We store for
each block sizes the numberk of blocks having sizes in freq. Initially, all blocks have size
1 and there aren blocks of size 1.

〈giant componentdemo〉�
main(){

〈giant component demo: read n〉
partition P;

array<partition_item> Item(n);

sortseq<int,int> freq;
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for (int i = 0; i < n; i++) Item[i] = P.make_block();

int iteration = 0; int step = 1; int max_size = 1;

freq.insert(1,n);

while ( max_size < n/2 )

{ int v = rand_int(0,n-1);

int w = rand_int(0,n-1);

iteration++;

if ( P.same_block(Item[v],Item[w]) ) continue;

seq_item it = freq.lookup(P.size(Item[v]));

freq[it]--;

if ( freq[it] == 0 ) freq.del_item(it);

it = freq.lookup(P.size(Item[w]));

freq[it]--;

if ( freq[it] == 0 ) freq.del_item(it);

P.union_blocks(Item[v],Item[w]);

int size = P.size(Item[v]);

it = freq.lookup(size);

if (it) freq[it]++; else freq.insert(size,1);

it = freq.max();

max_size = freq.key(it);

int second_size = freq.key(freq.pred(it));

while (max_size >= step*n/100 )

{ 〈giant component demo: report step〉
step++;

}

}

}

Part of the output of a sample run of the program above withn = 106 is as follows:

The maximal block size jumped above 0.16n after 542386 iterations. The maximal size
of a block is 160055 and the second largest size of a block is 715.

The maximal block size jumped above 0.17n after 545700 iterations. The maximal size
of a block is 170030 and the second largest size of a block is 722.

The maximal block size jumped above 0.18n after 548573 iterations. The maximal size
of a block is 180081 and the second largest size of a block is 330.

The maximal block size jumped above 0.19n after 552784 iterations. The maximal size
of a block is 190008 and the second largest size of a block is 336.

The maximal block size jumped above 0.20n after 556436 iterations. The maximal size
of a block is 200003 and the second largest size of a block is 380.

Observe that it took more than 500 000 iterations until the largest block reached size
0.16n, and only 4 000 additional iterations until the largest block reached size 0.17n, . . . .
Moreover, the size of the largest block is much larger than the size of the second largest
block. In fact, the second largest block is tiny compared to the largest block. This phe-
nomenon is calledthe evolution of the giant componentin the literature on random graphs,
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see [ASE92] for an analytical treatment of the phenomenon. You may perform your own
experiments with the giant component demo. Qualitatively, the phenomenon of the giant
component is easy to explain. At any time during the execution of the algorithm the proba-
bility to merge two blocks of sizek1 andk2, respectively, is proportional tok1k2 sincek1k2

is the number of pairs that can be formed by choosing one item in each block. Thus the
two blocks most likely to be merged are the largest and the second largest block. Merging
them makes the largest block larger and the second largest block smaller (as the third largest
block becomes the second largest). Although we knew about the phenomenon before we
wrote the demo we were surprised to see how dominating the largest block is.

There are two variants of the partition data type:Partition andnodepartition. A node
partition is a partition of the nodes of a particular graph. It is very useful for graph algo-
rithms and we will discuss it in Section 6.6. APartition<I> is a partition where one can
associate an information of typeI with every item of the partition. The operation

partition item it = P.make block(i);

creates an item with associated informationi and makes the item a new block ofP, the
operation

P.inf(it);

returns the information of itemit and

P.change inf(it, i1);

changes the information ofit to i1. The typePartition is appropriate whenever one wants to
associate information with either the items or the blocks of a partition. In the latter case one
simply associates the information with the canonical item of the block. We give one such
application in Section 5.5.3.

5.5.2 The Implementation
Partitions are implemented by the so-calledunion-find data structure with weighted union
and path compression. This data structure is a collection ofpartition nodeswhich are ar-
ranged into a set of trees, see Figure 5.10 for an example. Each block of the partition
corresponds to a tree. Apartition item is a pointer to apartition node. Each partition node
contains a pointer to its parent and each root node knows the size of the tree rooted at it.
This is called thesizeof the root. A partition node also contains a fieldnextthat is used to
link all nodes of a partition into a singly linked list. The definition of classpartition nodeis
as follows:

〈partition node〉�
class partition_node {

friend class partition;

partition_node* parent;

partition_node* next;

int size;
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6 3

Figure 5.10 The representation of a partition with two blocks of six and three items,
respectively. All edges are directed upwards. The size of root nodes is indicated inside the node.
All nodes are also linked into a singly linked list. This list is not shown.

public:

partition_node(partition_node* n) { parent = 0; size = 1; next = n; }

LEDA_MEMORY(partition_node)

};

typedef partition_node* partition_item;

The constructor constructs a node with no parent and size one. We will see its use below,
where the use of the fieldnextand the argumentn will also become clear.

We come to class partition. It has only one data memberuseditemsthat points to the first
item in the linear list of all items comprising the partition.

〈partition.h〉�
#include <LEDA/basic.h>

〈partition node〉
class partition {

partition_item used_items; // list of used partition items

public:

〈member functions of partition〉
};

In order to create an empty partition we setuseditemsto nil and in order to destroy a
partition we go through the list of items comprising the partition and delete all of them.

〈member functions of partition〉�
partition() { used_items = nil; }

~partition()

{ while (used_items)

{ partition_item p = used_items;

used_items = used_items->next;
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Figure 5.11 Path compression: All edges are directed upwards and the path compression was
initiated by an operationfind(p). After the path compression all ancestors ofp including p point
directly to the root of the tree containingp.

delete p;

}

}

In order to make a new block we allocate a newpartition node, append it to the front of
the list of items comprising the partition, and return a pointer to the new node. Observe that
we defined the constructor of classpartition nodesuch that this works nicely.

〈member functions of partition〉+�
partition_item make_block()

{ used_items = new partition_node(used_items);

return used_items;

}

We come to functionfind(partition item p). It returns the root of the tree representing
the block containingp. This root is easy to find, we only have to follow the chain of parent
pointers starting atp. We do slightly more. Once we have determined theroot of the
tree containingp we traverse the path starting atp a second time and change the parent
pointer of all nodes on the path toroot, see Figure 5.11. This is called path compression;
it makes the current find operation a bit more expensive but saves all later find operations
from traversing the path fromp to root.
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〈member functions of partition〉+�
partition_item find(partition_item p)

{ // find with path compression

partition_item x = p->parent;

if (x == 0) return p;

partition_item root = p;

while (root->parent) root = root->parent;

while (x != root) // x is equal to p->parent

{ p->parent = root;

p = x;

x = p->parent;

}

return root;

}

The functionsameblock(p, q) returnsfind(p) == find(q).

〈member functions of partition〉+�
bool same_block(partition_item p, partition_item q)

{ return find(p) == find(q); }

In order to unite the blocks containing itemsp andq we first determine the roots of the
trees containing these items. If the roots are the same then there is nothing to do. If the roots
are different, we make one of them the child of the other. We follow the so-called weighted
union rule and make the lighter root the child of the heavier root. This rule tends to keep
trees shallow10.

〈member functions of partition〉+�
void union_blocks(partition_item p, partition_item q)

{ // weighted union

p = find(p);

q = find(q);

if ( p == q ) return;

if (p->size > q->size)

{ q->parent = p;

p->size += q->size; }

else { p->parent = q;

q->size += p->size; }

}

Despite its simplicity the implementation ofpartition given above is highly effective.
A sequence ofn makeblock andm other operations takes timeO((m + n)α(m + n, n))

10 We show that the depth of all trees is logarithmically bounded in their size. For any non-negative integerd let sd
be the minimal size of a root whose tree has depthd. Thens0 = 1. A tree of depthd arises by making the root of
a tree of depthd − 1 the child of another root. The former root has size at leastsd−1 and the latter root has at
least this size by the weighted union rule. Thussd ≥ 2sd−1 and hencesd ≥ 2d .
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9

Figure 5.12 The weighted union rule: When the trees of Figure 5.10 are united the root of size 3
is made a child of the root of size 6.

[Tar75]. Hereα is the so-called inverse Ackermann function; this function is extremely
slowly growing and has value less than 5 even forn = m = 10100, see [CLR90, Chapter
22] or [Meh84a, III.8.3].

5.5.3 An Application of Partitions: Checking Priority Queues
This section is joint work with Uli Finkler.

We will describe a checker for priority queues; this section assumes knowledge of the data
typep queue, see Section 5.4. We define a classcheckedp queue<P, I> that can be wrapped
around any priority queuePQ to check its behavior, see Figure 5.13. The resulting object
behaves likePQ, albeit a bit slower, ifPQ operates correctly. However, ifPQ works incor-
rectly then this fact will be revealed ultimately. In other words the layer of software that we
are going to design behaves like a watch-dog. It monitors the behavior ofPQ and is silent
if PQworks correctly. However, ifPQbehaves incorrectly, the watch-dog barks.

PQ

checked p queue

Figure 5.13 The classcheckedp queuewraps around a priority queuePQand monitors its
behavior. It offers the functionality of a priority queue.

How can the classcheckedp queuebe used? Suppose we have designed a classnewimpl
which is a new implementation of priority queues. Using the implementation parameter
mechanism we can write
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p queue<P,I,new impl> PQ;

to declare ap queue<P, I> which is implemented bynewimpl. We may usePQ in any
application using ap queue<P, I>.

Assume now thatnewimpl is faulty. Then an application usingPQ may go astray and
we will have to locate the bug. Is it inPQ or is it in the application program? The use of
checkedp queuesfacilitates the debugging process greatly. We write

p queue<P,I,list item,new impl> PQ;

checked p queue<P,I> CPQ(PQ);

and useCPQ in the application program. IfPQ works incorrectly,CPQwill tell us. There
is no change required in the application program sincecheckedp queueis publicly derived
from p queueand hence can be used wherever ap queuecan be used, for example,

void f(p queue<P,I>&) { ...}

p queue<P,I> PQ; f(PQ);

p queue<P,I,new impl> PQI; f(PQI);

p queue<P,list item,new impl>PQI1;

checked p queue<P,I> CPQ(PQI1); f(CPQ);

Observe that the information type ofPQI1 is list item instead ofI , i.e., we are checking a
p queue<P, list item> instead of ap queue<P, I>. This is a slight weakness of our solution.
We believe that it is only a slight weakness because the information typeI plays a minor role
in the implementation of priority queues. Moreover, it can be overcome, see the exercises.

In the remainder of this section we give the implementation of the classcheckedp queue.
The implementation is involved and reading this section certainly requires some stamina.
We decided to put this section into the book because we strongly believe that the work
on checkers is highly important for software libraries. Section 2.14 contains a general
discussion on program checking.

The Idea: How can one monitor the behavior of a priority queue? Without concern for
efficiency a solution is easy to come up with. Whenever adeletemin or find min operation
is performed all items ofPQ are inspected and it is confirmed that the reported priority is
indeed the minimum of all priorities in the queue. This solution does the job but defeats the
purpose as it makesdeletemin andfind min linear time operations. Our goal is a solution
that adds only a small overhead to each priority queue operation. Our solution performs
the checking of the items in the queue in a lazy way, i.e., when adeletemin or find min
operation is performed it is only recorded that all items currently in the queue must have
a priority at least as large as the priority reported. The actual checking is done later. Note
that this design implies that an error will not be detected immediately anymore but only
ultimately.

Consider Figure 5.14. The top part of this figure shows the items in a priority queue
from left to right in the order of their time. Thetimeof a pq item it is the time of the last
decreasep operation onit or, if there was none, the time of the addition ofit to PQ. The
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L
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S

PQ

nil

Figure 5.14 In the top part of the figure the items in a priority queue are shown as circles in the
xy-plane. Thex-coordinate corresponds to the time of an item and they-coordinate corresponds
to the priority of an item. The lower bounds for the priorities are indicated as heavy horizontal
lines. The lower bound for the last two items is−∞. The lower part of the figure illustrates our
design of classcheckedp queue. The listL has one item for each item inPQ, the listS has one
item for each step ofL except for the step with lower bound−∞ and the partitionPart has one
item for each item inL and one block for each step. The blocks ofPart are indicated as ellipses.
The information of the canonical item of a block ofPart is theSitemassociated with the block
(nil for the block with lower bound−∞). EachSitemknows the lastL item in its step.

vertical coordinate indicates the priority. With each item of the priority queue we have an
associated lower bound. Thelower boundfor an itemit is the maximal priority reported by
anydeleteminor findminoperation that took place after the time ofit. We observe thatPQ
operates correctly if the priority of allpqitemsis at least as large as their lower bound. We
can therefore checkPQby comparing the priority of an item with its lower bound whenever
an item is deleted fromPQor the time of an item is changed through adecreasep operation.

How can we efficiently maintain the lower bounds of the items in the queue? We observe
that lower bounds are monotonically decreasing from left to right, i.e., if the time ofit
is smaller than the time ofit ′ then the lower bound forit is at least as large as the lower
bound forit ′. This observation follows immediately from the definition of the lower bounds
and leads to the staircase-like form of the lower bounds shown in Figure 5.14. We call a
maximal segment of items with the same lower bound astep.

How does the system of lower bounds evolve over time? When a new item is added to
the queue its associated lower bound is−∞ and when afindmin or deletemin operation
reports a priority of valuep all lower bounds smaller thanp are increased top, i.e., all steps
of value at mostp are removed and replaced by a single step of valuep. Since the staircase
of lower bounds is falling from left to right this amounts to replacing a certain number of
steps at the end of the staircase by a single step, see Figure 5.15.

How can we represent a staircase of lower bounds such that it can be updated efficiently
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p

Figure 5.15 Updating the staircase of lower bounds after reporting a priority ofp. All steps
whose associated lower bound is at mostp are replaced by a single step whose associated lower
bound isp.

and such that lower bounds can be looked up efficiently? We keep a listL of checkobjects
and a listS of stepobjects. We have onecheckobject in L for each item inPQ and order
L according to the times of the corresponding item inPQ. We have onestepobjectin S for
each step of our staircase of lower bounds except for the step whose associated lower bound
is −∞, see Figure 5.14.

A checkobjectis a quadruple consisting of a priorityp, an informationi , a pqitemand
a partition item. We explain the use of the partition item below. We mentioned already
that check objects are in one-to-one correspondence to the items inPQ (if PQ operates
correctly). The check objecto corresponding to apq item pit with associated priorityp and
associated informationi containsp, i , andp it as its first three components. We storep
andi in the check object to guaranteedata integrity, i.e., the checking layer stores its own
copies of the pairs stored in the priority queue and hence can check whetherPQ tampers
with this data. In fact, we will not store the informationi in PQat all. We will rather use the
information field of the itemp it of PQ to store the item ofL containingo. In other words
the queue to be checked will be of typep queue<P, L item> whereL item is a synonym for
list itemthat we reserve for the items inL. We usel it as the canonical name of anL item.

A stepobject is a pair consisting of a priority and anL item. The priority is the lower
bound associated with the step and theL item is the last item inL that belongs to the step.
The listS will play a crucial role when we update our set of lower bounds after adelminor
findmin operation. When a priorityp is reported by adelmin or find min all steps whose
stepobjecthas a priority of at mostp are merged into a single step. These steps constitute a
final segment ofS. We useSitemas the name of the items inS and uses it as the canonical
name of anSitem.

For the efficient lookup of lower bounds we use aPartition<Sitem> Part with one item
for each item inL and one block for each step ofL. The information associated with
the canonical element of a step isnil, if the step’s lower bound is−∞, and is theSitem
corresponding to the step otherwise. The fourth component of each check object is the
partition item corresponding to the check object.

Let us summarize. A checked priority queue consists of a priority queue, the listsL and
S, a partitionPart, and two integer countersphaselengthandopcount (their use will be
explained below). The items ofL are in one-to-one correspondence to the items ofPQ
(if PQ operates correctly). All operations onPQ go through the checking layer, e.g., an
operationinsert(p, i) causes the checking layer to update its internal data structures, in
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particular, to add an item toL, and to forward the insert request toPQ. The newL itemwill
be returned by the insert operation.

The Class checkedp queue: We fix the definitions of the data structures of the checking
layer in the following layout for the classcheckedp queue<P, I>.

〈checkedp queue.h〉�
#ifndef LEDA_CHECKED_P_QUEUE_H

#define LEDA_CHECKED_P_QUEUE_H

#include <LEDA/p_queue.h>

#include <LEDA/list.h>

#include <LEDA/partition.h>

#include <assert.h>

#include <LEDA/tuple.h>

template <class P, class I>

class checked_p_queue : public p_queue<P,I>

{

typedef four_tuple<P,I,pq_item,partition_item> check_object;

list<check_object> L;

typedef list_item L_item;

typedef two_tuple<P,L_item> step_object;

list<step_object> S;

typedef list_item S_item;

Partition<S_item> Part;

int phase_length, op_count;

p_queue<P,L_item>* PQ;

〈private member functions of class checkedp queue〉
/* the default copy constructor and assignment operator work

incorrectly, we make them unaccessible by

declaring them private */

checked_p_queue(const checked_p_queue<P,I>& Q);

checked_p_queue<P,I>& operator=(const checked_p_queue<P,I>& Q);

public:

checked_p_queue(p_queue<P,L_item>& PQ_ext) // constructor

{ PQ = &PQ_ext;

assert(PQ->empty());

phase_length = 4; op_count = 0;

}

〈member functions of class checkedp queue〉
};

#endif

Observe thatcheckedp queue<P, I> is publicly derived fromp queue<P, I> and hence
will offer the same functions asp queues. The private data members are a pointer to the
p queue<P, L item> to be checked, the listsL and S, the partitionPart, and two integers
phaselengthandopcount; we will explain the latter two data members below.
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The constructor ofcheckedp queuegets a reference to the queue to be checked and stores
it in PQ. It also initializesphaselength to four andopcount to zero. The queue to be
checked must be empty (but, of course, there is no guarantee that the emptiness test does
not lie). All other data members are initialized by their default constructor.

The member functions ofcheckedp queuesplit into private and public member functions.
The public member functions are exactly the public member functions of the base class
p queueexcept for the copy constructor and the assignment operator. We were too lazy to
implement them. Since C++ provides default implementations of both functions and since
the default implementations are incorrect we declared both functions private to make them
unaccessible.

The private member functions are used in the implementation of the public member func-
tions. In order to motivate their definitions we give an overview of the implementations of
the public member functionsinsert and deletemin. In this overview we concentrate on
the interplay between the checking layer andPQ and do not give any details on how the
staircase of lower bounds is manipulated.

An insert(p, i) is realized as follows. The checking layer creates a check objecto con-
taining the pair(p, i) and appendso to L. Let l it be newL item. It then inserts the pair
(p, l it) into PQ. PQ returns an itemp it which the checking layer records ino. The check-
ing layer also creates a new partition item corresponding too. The new item either forms a
block of its own (if the step with lower bound−∞ is empty) or is joined into the step with
lower bound−∞. The checking layer then returnsl it as the result of theinsert.

A delmin is realized as follows. The checking layer forwards the request toPQ and
PQ returns a pair(p, l it). Let o = (p′, i, p it, part it) be the checking object stored inl it.
The checker verifies thatp = p′ and thatp satisfies the lower bound associated witho, it
updates the staircase of lower bounds, and it finally returnsp.

We want to stress that the checking layer is responsible for the communication with the
environment and that the checking layer stores all the pairs(p, i) that are in the priority
queue. It forwards all requests from the environment toPQ. In a delmin operation it uses
PQ as anoracle. The checking layer has no own means to answer minimum queries. It
therefore asksPQ to point out the correct item. It maintains the system of lower bounds
in order to find out whetherPQ ever lied to it. The checker discovers lies by checking the
lower bounds of items whenever an item is deleted or the priority of an item is changed.

We want to bound the delay between a lie and its discovery. For this purpose the checker
has a private member functionperiodiccheck. This operation goes through all elements
of L and checks the lower bound of every element.Periodiccheckis called after the 2l-
th operation performed on the priority queue for alll ≥ 2. It is also called after the last
operation performed on the priority queue. The integersphaselengthandopcountare used
to control the periodic checks. We divide the execution into phases. We usephaselength
for the length of the current phase and useopcount to count the number of operations in
the current phase. Whenopcountreachesphaselengthwe check all lower bounds, double
phaselength, and resetopcountto zero.
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The discussion above implies that we need to make two assumptions about the behavior
of PQ:

• All calls to member functions ofPQmust terminate. They may give wrong answers
but they must terminate. It is beyond our current implementation to guarantee
termination. A solution would require non-trivial but standard modification of the
implementation ofPQ. One can guard against run-time errors (e.g., invalid addresses)
by compilingPQwith the debugging option and one can guard against infinite loops
by specifying an upper bound on the execution time of each member function ofPQ.
The latter requires a worst case analysis of the running time ofPQ’s member functions.

• All calls of PQ → inf must return validL items. One may guard against invalid
L itemsby compilingcheckedp queueswith the debugging option. An alternative
solution is described at the end of this section.

Private Member Functions: We are now ready for the definition of the private member
functions. The first group provides natural access to the components ofcheckobjectsand
stepobjects.

〈private member functions of class checkedp queue〉�
P& prio(L_item l_it) { return L[l_it].first(); }

const P& prio(L_item l_it) const { return L[l_it].first(); }

I& inf(L_item l_it) { return L[l_it].second(); }

const I& inf(L_item l_it) const { return L[l_it].second(); }

pq_item& pq_it(L_item l_it) { return L[l_it].third(); }

pq_item pq_it(L_item l_it) const { return L[l_it].third(); }

partition_item& part_it(L_item l_it) { return L[l_it].fourth(); }

partition_item part_it(L_item l_it) const { return L[l_it].fourth(); }

P& prio_of_S_item(S_item s_it) { return S[s_it].first(); }

P prio_of_S_item(S_item s_it) const { return S[s_it].first(); }

L_item& L_it(S_item s_it) { return S[s_it].second(); }

L_item L_it(S_item s_it) const { return S[s_it].second(); }

The second group supports the navigation in the data structures of the checker.
The canonical partition item corresponding to anL item l it is obtained by performing

Part.find on the associated partition item.
The information associated with the canonical item is obtained by applyingPart.inf to

the canonical item.
The iteml it belongs to the step with lower bound−∞ if the canonical information is

equal tonil and belongs to a step with a defined lower bound otherwise.
The last item in the step containingl it is either the last item ofL (if l it is unrestricted)

or is theL itemstored in theSitemgiven bycanonicalinf (l it).
An item is the only item in its step if it is the last item in its step and is either the first

item of L or its predecessor item inL is also the last item in its step.
All functions above areconst-functions. They use operationsfindandinf of classPartition
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which are notconst-functions. We therefore write((Partition<Sitem>∗) &Part) → instead
of Part. to cast awayconstwhen calling one of these functions11.

〈private member functions of class checkedp queue〉+�
partition_item canonical_part_it(L_item l_it) const

{ return ((Partition<S_item>*) &Part)->find(part_it(l_it)); }

S_item canonical_inf(L_item l_it) const

{ return ((Partition<S_item>*) &Part)->inf(canonical_part_it(l_it)); }

bool is_unrestricted(L_item l_it) const

{ return canonical_inf(l_it) == nil; }

bool is_restricted(L_item l_it) const

{ return ! is_unrestricted(l_it); }

L_item last_item_in_step(L_item l_it) const

{ if ( is_restricted(l_it) )

return L_it(canonical_inf(l_it));

return L.last();

}

bool is_last_item_in_step(L_item l_it) const

{ return ( last_item_in_step(l_it) == l_it) ; }

bool is_only_item_in_step(L_item l_it) const

{ return (is_last_item_in_step(l_it) &&

( L.pred(l_it) == nil || is_last_item_in_step(L.pred(l_it))));

}

We put the functions above to their first use by writing a function that tests the validity of
the data structures of the checking layer. This function is for debugging purposes only. The
data structures must satisfy the following conditions:

• The sizes ofL andPQmust be equal.

• Each iteml it in L points to an item inPQwhich points back tol it.

• The items inL can be partitioned into segments such that in each segment the value of
canonicalinf is constant. Except for maybe the last segment, thecanonicalinf is
equal to an item inS and this item points back to the lastL item in the segment. In the
last segment thecanonicalinf is nil. The last segment may be empty and all other
segments are non-empty.

〈private member functions of class checkedp queue〉+�
void validate_data_structure() const

{

#ifdef VALIDATE_DATA_STRUCTURE

assert( PQ->size() == L.size() );

L_item l_it;

forall_items(l_it,L)

{ assert( pq_it(l_it) != nil ) ;

11 It is tempting to write the cast as((Partition<Sitem>) Part). but this would amount to a call of the copy
constructor ofPartition and hence be a disaster.
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assert( PQ->inf(pq_it(l_it)) == l_it );

}

l_it = L.first();

S_item s_it = S.first();

while (s_it)

{ assert(canonical_inf(l_it) == s_it);

while (l_it != L_it(s_it) )

{ l_it = L.succ(l_it);

assert(l_it != nil);

assert(canonical_inf(l_it) == s_it);

}

s_it = S.succ(s_it);

l_it = L.succ(l_it);

}

while (l_it)

{ assert(canonical_inf(l_it) == nil);

l_it = L.succ(l_it);

}

#endif

}

The final group of private member functions checks lower bounds and update the staircase
of lower bounds.

An Litem l it satisfies its lower bound if eitherl it is unrestricted or the priority of the step
containingl it is no larger than the priority ofp it.

〈private member functions of class checkedp queue〉+�
void check_lower_bound(L_item l_it) const

{ assert(is_unrestricted(l_it) ||

compare(prio_of_S_item(canonical_inf(l_it)), prio(l_it)) <= 0 );

}

The functionperiodiccheckis called at the end of every public member function. It
increasesopcountand whenopcounthas reachedphaselengthchecks all lower bounds,
doublesphaselength, and resetsopcountto zero.

〈private member functions of class checkedp queue〉+�
void periodic_check()

{ if ( ++op_count == phase_length )

{ L_item l_it;

forall_items(l_it,L) check_lower_bound(l_it);

phase_length = 2*phase_length;

op_count = 0;

}

}

Finally, we show how to update lower bounds, see Figure 5.14. Letp be a priority. We
move all lower bounds that are smaller thanp up to p. This amounts to removing all items
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in S whose associated lower bound is less than or equal top and adding a new item with
priority p to S. We give more details.

If L is empty or the last step in our staircase of lower bounds extends to the end of the
list and has a priority at least as large asp then there is nothing to do.

So assume otherwise. We scanS form its right end (= rear end) and remove items as
long as their priority is at mostp. Whenever we remove an items it from S we join the
step corresponding tos it with the step after it (it it exists). Finally, we add an item toS
representing a step with priorityp and ending atL.last( ) and make the item the canonical
information of all items in the last step.

〈private member functions of class checkedp queue〉+�
void update_lower_bounds(P p)

{ if ( L.empty() ||

( !S.empty() && compare(prio_of_S_item(S.last()),p) >= 0

&& L_it(S.last()) == L.last())) return;

S_item s_it;

while ( !S.empty() &&

compare(prio_of_S_item(s_it = S.last()),p) <= 0 )

{ L_item l_it = L_it(s_it);

if ( L.succ(l_it) )

Part.union_blocks(part_it(l_it),part_it(L.succ(l_it)));

S.pop_back();

}

Part.change_inf(canonical_part_it(L.last()),

S.append(step_object(p,L.last())));

}

After all this preparatory work we come to the public member functions.

The Insert Operation: To insert a new item〈p, i〉 we append toL a new check object
(p, i, p it, part it); p it is a new item inPQ created by the insertion of(p, −) andpart it
is a new item inPart. The lower bound of the new item is−∞ and hence the information
associated withpart it is nil. Let l it be the new item inL. We storel it as the information
of p it.

If there was already a step with lower bound−∞, we add the new item to this block.
Finally, we callperiodiccheckand returnl it (after casting it topqitem)12.

〈member functions of class checkedp queue〉�
pq_item insert(const P& p, const I& i)

{ pq_item p_it = PQ->insert(p,(L_item) 0);

L_item last_l_it = L.last(); // last item in old list

partition_item pa_it = Part.make_block((S_item) 0);

list_item l_it = L.append(check_object(p,i,p_it,pa_it));

PQ->change_inf(p_it,l_it);

if (last_l_it && is_unrestricted(last_l_it) )

12 The cast fromL item to pq item is necessary since early in the design of LEDA we made the decision that the
global typepqitem is the return type ofinsert. It would be more elegant to havepq itemas a type local top queue.
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Part.union_blocks(part_it(l_it),part_it(last_l_it));

periodic_check();

validate_data_structure();

return (pq_item) l_it;

}

The Find min Operation: In order to perform afindminoperation we perform afind min
operation onPQ and extract an iteml it in L from the answer. Having received this advice
from PQwe check the lower bound forl it and update the system of lower bounds using the
priority of l it.

Sincecheckedp queueis derived fromp queue, sincefind min is a const-function of
p queue, and sinceupdatelowerboundsandperodiccheckare not, we need to cast away
theconst.

〈member functions of class checkedp queue〉+�
pq_item find_min() const

{ L_item l_it = PQ->inf(PQ->find_min());

check_lower_bound(l_it);

((checked_p_queue<P,I>*)this)->update_lower_bounds(prio(l_it));

((checked_p_queue<P,I>*)this)->periodic_check();

validate_data_structure();

return (pq_item) l_it;

}

The Delete Operation: To delete an itemp it we check its lower bound, we delete it from
PQ, and we delete the correspondingL item l it from L. If l it is restricted and is the only
item in its step, we delete the item inS representing the step and ifl it is the last item in
its step but not the only item in its step, we change theL it-field of canonicalinf (l it) to
the predecessor ofl it in L. We should also delete the item corresponding top it from Part.
Unfortunately,partition does not offer a delete operation. We comment on this point at the
end of the section.

〈member functions of class checkedp queue〉+�
void del_item(pq_item p_it)

{ L_item l_it = (L_item) p_it;

check_lower_bound(l_it);

if ( is_restricted(l_it) )

{ if ( is_only_item_in_step(l_it) )

S.del_item(canonical_inf(l_it));

else if (is_last_item_in_step(l_it) )

L_it(canonical_inf(l_it)) = L.pred(l_it);

}

PQ->del_item(pq_it(l_it));

L.del_item(l_it);
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periodic_check();

validate_data_structure();

}

To perform adelmin operation we perform afind min on PQ and then adelmin on the
item returned. Finally, we update the lower bound according to the priority of the item
returned.

〈member functions of class checkedp queue〉+�
P del_min()

{ L_item l_it = PQ->inf(PQ->find_min());

P p = prio(l_it);

del_item((pq_item)l_it);

update_lower_bounds(p);

periodic_check();

validate_data_structure();

return p;

}

Miscellaneous Functions:The functionsprio, inf , changeinf , sizeandemptyreduce to
appropriate functions of the checking layer.

〈member functions of class checkedp queue〉+�
const P& prio(pq_item it) const

{ ((checked_p_queue<P,I>*)this) -> periodic_check();

return prio((L_item) it);

}

const I& inf(pq_item it) const

{ ((checked_p_queue<P,I>*)this) -> periodic_check();

return inf((L_item) it);

}

void change_inf(pq_item it, const I& i)

{ periodic_check();

inf((L_item) it) = i ;

}

int size() const

{ ((checked_p_queue<P,I>*)this) -> periodic_check();

return L.size();

}

bool empty() const

{ ((checked_p_queue<P,I>*)this) -> periodic_check();

return L.empty();

}

The Decreasep Operation: In order to perform adecreasep on iteml it we check whether
the current priority satisfies its lower bound and we check whether thedecreasep operation



5.5 Partition 177

actually decreases the priority ofl it. If so, we change the priority ofl it and forward the
change toPQ.

The new lower bound for the iteml it is −∞. If the old lower bound was also−∞ then
no action is required. Otherwise we must movel it from its current position inL to the last
position inL. This affects the step that containedl it. If l it was the only item in the step,
we remove the step altogether and ifl it was the last, but not the only, item in its step, we
record thatl it ’s predecessor is the new last element in the step.

In order to movel it to the last position ofL we splitL into three pieces (the items before
l it, l it, and the items afterl it) and then reassemble the pieces. We allocate a new partition
item for l it and set its information tonil (since the new lower bound forl it is −∞). If the
step with lower bound−∞ was non-empty, we addl it to this step.

〈member functions of class checkedp queue〉+�
void decrease_p(pq_item p_it, const P& p)

{ L_item l_it = (L_item) p_it;

check_lower_bound(l_it);

assert( compare(p,prio(l_it)) <= 0 );

prio(l_it) = p;

PQ->decrease_p(pq_it(l_it),p);

if ( is_restricted(l_it) )

{ if ( is_only_item_in_step(l_it) ) S.del_item(canonical_inf(l_it));

else if (is_last_item_in_step(l_it) )

L_it(canonical_inf(l_it)) = L.pred(l_it);

list<check_object> L1, L_it;

L.split(l_it,L,L1,LEDA::before);

L1.split(l_it,L_it,L1,LEDA::after);

L.conc(L1);

list_item last_it = L.last();

L.conc(L_it);

part_it(l_it) = Part.make_block((S_item) 0);

if (last_it && is_unrestricted(last_it) )

Part.union_blocks(part_it(l_it),part_it(last_it));

}

periodic_check();

validate_data_structure();

}

The Clear Operation and the Destructor: Finally, to clear our data structure we check
the lower bounds of all items and then clear forPQ, L, S, andPart. The destructor calls
clear.

〈member functions of class checkedp queue〉+�
void clear()

{ L_item l_it;

forall_items(l_it,L) check_lower_bound(l_it);
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PQ->clear(); L.clear(); S.clear(); Part.clear();

}

~checked_p_queue() { clear(); }

Efficiency: We have now completed the definition of our checker for priority queues. How
much overhead does it add? The body of any function of classcheckedp queueconsists of
a call of the same function ofPQ plus a constant number of calls to functions ofL, S, and
Part, a call toperiodiccheckplus (maybe) a call ofupdatelowerbounds.

Updatelowerboundsadds at most one element toS (and no other function does) and
removes zero or more entries fromS. We conclude that the total number of elements added
to S and hence removed fromS is bounded by the number of operations onPQ. A call of
updatelowerboundsthat removesk elements fromS has costO(1 + k) plus the cost for
O(1 + k) operations on a partition. We conclude that all calls ofupdatelowerboundscon-
tribute a linear number of operations onPart. Therefore each call toupdatelowerbounds
contributes a constant number of operations onPart in the amortized sense.

The cost of a call toperiodiccheckis also amortized constant. This follows from the fact
that the number of elements in the queue is at most twicephaselength, that the cost of a
call is eitherO(1) or O(phaselength), and that the latter alternative occurs only in every
phaselength-th call toperodiccheck.

We conclude that theamortized overhead for each operation on PQ is a constant number
of operations on lists and partitions. Operations on lists require constant time and opera-
tions on partitions requiresα(n) time.

An Experiment: The following program compares unchecked and checked priority queues
experimentally. We generate an array ofn random doubles and then use a binary heap to
sort them. We first use the binary heap directly and then wrap it into acheckedp queue. The
running time of the checked version is about two times the running time of the unchecked
version, e.g., it takes about 6.1 seconds to sort 100000 doubles with the unchecked version
and slightly more than 12 seconds with the checked version.

〈checkedp queuedemo.c〉�
〈checkedp queue demo: includes〉
main(){

〈checkedp queue demo: read n〉
array<double> A(n);

random_source S;

for (int i = 0; i < n; i++) S >> A[i];

float T = used_time();

{ _p_queue<double,int,bin_heap> PQ(n);

for (int i = 0; i < n; i++) PQ.insert(A[i],0);

while ( !PQ.empty() ) PQ.del_min();

}

float T1 = used_time(T);
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{ _p_queue<double,list_item,bin_heap> PQ(n);

checked_p_queue<double,int> CPQ(PQ);

for (int i = 0; i < n; i++) CPQ.insert(A[i],0);

while ( !CPQ.empty() ) CPQ.del_min();

}

float T2 = used_time(T);

〈checkedp queue demo: report times〉
}

We made a similar test with the priority queue in Dijkstra’s algorithm and observed a
slowdown by a factor of about 2.5.

Final Remarks: We close this section with a discussion of some alternatives and improve-
ments to our design.

The overhead introduced by our design is a constant number of operations on lists and
partitions for each priority queue operation. Since operations on partitions take slightly
super-linear time this invalidates theO(1) upper bound for thedecreasep operation in the
f heapandp heap implementation of priority queues. This can be remedied as follows.
The classcheckedp queueuses the typePartition in a very special way. The blocks ofL
partitionL into contiguous segments and all unions are between adjacent segments. For this
special situation there is a realization of partitions that supports all operations in constant
time, see [GT85].

Partitions do not offer an operation that deletes items and hence thedel item operation
of checkedp queuecan only delete the items inPQ, L, andS, but cannot delete the item
in Part. This shortcoming can be remedied by giving partitions adel item operation. We
briefly sketch the implementation. We perform deletions in a lazy way. When an item is
to be deleted it is marked for deletion. We also keep track of the total number of items in
the partition and the number of items that are marked for deletion. When more than three-
quarters of the items are marked for deletion the partition data structure is cleaned. We go
through all items (recall that they are linked into a singly linked list) and perform a find
operation for each item. This makes all trees depth one. Then we delete all marked items
except those that are the root of a non-trivial tree.

In our realization the checker puts some trust intoPQ, namely thatPQ → inf always re-
turns a validL item. This shortcoming can be overcome by introducing a level of indirection
into the data structure. We add anarray<L item> A. When the queue has sizen precisely
the firstn entries of this array are used. When an itemp it of PQ stores a list iteml it in
the current design it stores some integeri ∈ [0 .. n − 1] in the new design andA[i ] contains
l it. In this way the index-out-of-bounds check for arrays allows us to check for an invalid
pointer. When an item is deleted from the queue and this item corresponds to positioni of
A, this position is first swapped with positionn − 1 and then the last entry is removed. We
leave the details to the reader. This solution is inspired by [AHU74, exercise 2.12].

The classcheckedp queuecatches errors of the underlying priority queue eventually (at
the latest at the next call ofperiodiccheck) but not immediately. Is there a solution which
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guarantees immediate error detection? Yes and No.Yes, because we could simply put a
correct priority queue implementation into the checker, andno, because it can be shown
that no data structure whose running time has a smaller order of magnitude than the running
time of priority queues can guarantee immediate error detection.

Exercises for 5.5
1 Modify the program checkedp queuedemo so that you can experiment with different

implementations of priority queues and not only with the binary heap implementation.
2 Implement the copy constructor and the assignment operator of our classcheckedp queue.
3 Modify the implementation of classcheckedp queue, so as to remove the assumption

thatPQ → inf always returns a validL item.
4 Modify the implementation of classcheckedp queueso that the queue to be checked has

typep queue<P, I>. Hint: Use a map to make the correspondence betweenpqitemsand
the items ofL.

5 Use checked priority queues instead of priority queues in Dijkstra’s algorithm as dis-
cussed in Section 5.4.

6 Add an operationdel item to the typespartition andPartition<E>. Follow the sketch at
the end of Section 5.5.3.

7 In the extract minimum problem we are given a permutation of the integers 1 ton in-
terspersed with the letter E, e.g., 6,E,1,4,3,E,E,5,2,E,E,E is a possible input sequence.
The E’s are processed from left to right. Each E extracts the smallest number to its left
which has not been extracted by a previous E. The output in our example would there-
fore be 6,1,3,2,4,5. Solve the problem using a priority queue. In the off-line version of
this problem the input sequence is completely known before the first output needs to be
produced. Solve the problem with the partition data type (Hint: Determine first which E
outputs the number 1, then which E outputs 2, . . . ).

8 Implement the data structure of [GT85]. Make it available as a LEDA extension package.

5.6 Sorted Sequences

Sorted sequences are a versatile data type. We discuss their functionality in this section,
give their implementation by means of skiplists in the next section, and apply them to Jordan
sorting in the last section of this chapter.

A sorted sequenceis a sequence of items in which each item has an associated key from
a linearly ordered typeK and an associated information from an arbitrary typeI . We call
K the key type andI the information type of the sorted sequence and use〈k, i〉 to denote
an item with associated keyk and informationi . The keys of the items of a sorted sequence
must be in strictly increasing order, i.e., if〈k, i〉 is before〈k′, i′〉 in the sequence thenk is be-
forek ′ in the linear order onK . Here comes a sorted sequence of typesortseq<string, int>:

〈Ena, 7〉 〈Kurt, 4〉 〈Stefan, 2〉 〈Ulli , 8〉
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Sorted sequences offer a wide range of operations. They can do almost everything lists,
dictionaries, and priority queues can do and they can do many other things. They even do
all these things with the same asymptotic efficiency. Of course, there is a price to pay:
Sorted sequences require more space (about 23.33n bytes for a sequence ofn items) and
the constant factors in the time bounds are larger. So please use sorted sequences only if
you need their power.

We discuss the functionality of sorted sequences in several steps. In each step we in-
troduce some operations and then give a small program using these operations. We start
with the operations that we know already from dictionaries and priority queues, then turn
to so-called finger searches, and finally discuss operations for splitting and merging sorted
sequences.

Basic Functionality: Sorted sequences come in two kinds. The definitions

sortseq<K,I> S;

sortseq<K,I,ab tree> T;

defineS and T as sorted sequences with key typeK and information typeI . For T the
ab tree implementation of sorted sequences is chosen and forS the default implementa-
tions of typessortseqis chosen. The typesortseq<K , I, IMPL> offers only a subset of the
operations ofsortseq<K , I>; in particular it does not offer any of the finger search opera-
tions. The items in a sorted sequence have typeseqitem. The following implementations
of sortseqsare currently available: skiplists [Pug90b], randomized search trees [AS89],
BB(α)-trees [NR73],ab-trees [AHU74, HM82], and red-black-trees [GS78]. They are se-
lected by the implementation parameters skiplist, rstree, bbtree, abtree, and rbtree, re-
spectively. Skiplists are the default implementation. We have mentioned already that sorted
sequences extend dictionaries, lists, and priority queues, in particular we have the following
operations:

K S.key(seqitem it) returns the key of itemit.
Precondition: it is an item inS.

I S.inf(seqitem it) returns the information of itemit.
Precondition: it is an item inS.

seqitem S.lookup(K k) returns the item with keyk (nil if no such item exists in
S).

seqitem S.locate(K k) returns the item〈k′, i〉 in S such thatk′ is minimal with
k′ ≥ k (nil if no such item exists).

seqitem S.locatesucc(K k) equivalent toS.locate(k).

seqitem S.succ(K k) equivalent toS.locate(k).
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seqitem S.locatepred(K k) returns the item〈k′, i〉 in S such thatk′ is maximal with
k′ ≤ k ( nil if no such item exists).

seqitem S.pred(K k) equivalent toS.locatepred(k).

seqitem S.min item( ) returns the item with minimal key (nil if S is empty).

seqitem S.maxitem( ) returns the item with maximal key (nil if S is empty).

seqitem S.succ(seqitem it) returns the successor item ofit in the sequence contain-
ing it (nil if there is no such item).

seqitem S.pred(seqitemx) returns the predecessor item ofit in the sequence con-
taining it (nil if there is no such item).

seqitem S.insert(K k, I i ) associates informationi with key k: If there is an item
〈k, j〉 in S then j is replaced byi , otherwise a new item
〈k, i〉 is added toS. In both cases the item is returned.

int S.size( ) returns the size ofS.

bool S.empty( ) returns true ifS is empty, false otherwise.

void S.clear( ) makesS the empty sorted sequence.

void S.del(K k) removes the item with keyk from S (null operation if
no such item exists).

void S.del item(seqitem it) removes the itemit from the sequence containingit.

void S.changeinf(seqitem it, I i )

makesi the information of itemit.

The operationskey, inf , succ, pred, max, min, del item, changeinf , size, andemptytake
constant time,lookup, locate, locatepred, anddel take logarithmic time, andclear takes
linear time.

We come to our first program. We read a sequence of strings (terminated by “stop”) and
build a sorted sequence of typesortseq<string, int> for them13. Then we read a pair(s1, s2)
of strings and output all input strings larger than or equal tos1and smaller than or equal to
s2. This is done as follows. Ifs2 is smaller thans1 then there are no such strings. Assume
otherwise and let itemlast contain the largest string less than or equal tos2 and letfirst
contain the smallest string larger or equal tos1. If eitherfirst or lastdoes not exist orlast is

13 Observe that a sorted sequence needs an information type; we do not need informations in this application and
have chosen the information typeint; any other type would work equally well.
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the predecessor offirst then the answer is empty. Otherwise it consists of all strings that are
stored in the items starting atfirst and ending atlast.

〈sortseqdemo1.c〉�
#include <LEDA/sortseq.h>

main()

{ sortseq<string,int> S;

string s1,s2;

cout << "Input a sequence of strings terminated by stop.\n";

while (cin >> s1 && s1 != "stop") S.insert(s1, 0);

while ( true )

{ cout << "\nInput a pair of strings.\n\n";

cin >> s1 >> s2;

cout << "All strings s with " <<

s1 <<" <= s <= " << s2 <<":\n";

if ( s2 < s1 ) continue;

seq_item last = S.locate_pred(s2);

seq_item first = S.locate(s1);

if ( !first || !last || first == S.succ(last) ) continue;

seq_item it = first;

while ( true )

{ cout << "\n" << S.key(it);

if ( it == last ) break;

it = S.succ(it);

}

}

}

The running time of this program isO(n logn + m logn + L), wheren denotes the number
of strings put into the sorted sequence,m denotes the number of queries, andL is the total
number of strings in all answers. In this time bound we have assumed for simplicity that a
comparison between strings takes constant time and that a string can be printed in constant
time. Both assumptions require that the strings have bounded length.

Finger Search: All search operations discussed so far take logarithmic time.Finger search
opens the possibility for sub-logarithmic search time. It requires that the position of the key
k to be searched for is approximately known. Letit be an item of the sorted sequenceS; in
the context of finger search we callit a finger into S. The operations

S.finger locate(k);

S.finger locate from front(k);

S.finger locate from rear(k);

S.finger locate(it, k);

have exactly the same functionality as the operationlocate, i.e., all of them return the
leftmost itemit ′ in S having a key at least at large ask. They differ in their running
time. If it ′ is the d-th item in a list of n items then the first three operations run in
time O(log min(d, n − d)), O(logd), andO(log(n − d)), respectively14. In other words,

14 For the remainder of this section we assume logx to mean max(0, log x).
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fingerlocatefromfront is particularly efficient for searches near the beginning of the se-
quence,fingerlocatefromend is particularly efficient for searches near the end of the se-
quence, andfingerlocateis particularly efficient for searches near either end of the sequence
(however, with a larger constant of proportionality); it runs the two former functions in par-
allel and stops as soon as one of them stops. The operationS.fingerlocate(it, k) runs in time
O(log min(d, n − d)) whered is the number of items inS betweenit andit ′. For example,
if it is the 5th item ofS andit ′ is the 17th item thend = 17− 5 = 12.

After a fast search we also want to insert fast. That’s the purpose of the operation
insertat. Assume thatit is an item ofS andk is a key and thatit is either the rightmost item
in S with key(it) < k or the leftmost item withkey(it) > k. Then

S.insert at(it, k, i)

adds〈k, i〉 to S in time O(1). If k ’s relation to the key ofit is known then it is more efficient
to use

S.insert at(it, k, i, dir)

with dir equal toLEDA::beforeor LEDA::after.

We give an application of finger searching to sorting. More precisely, we give a sorting
algorithm which runs fast on inputs that are nearly sorted. Letn and f be integers with
0 ≤ f � n and consider the sequence

n − 1, n − 2, . . . , n − f, 0, 1, 2, . . . , n − f − 1.

We store this sequence in a listL and sort it in five different ways: four versions of insertion
sort and, for comparison, the built-in sorting routine for lists. The easiest way to build a
sorted sequenceS from L is to callS.insertfor each element ofL. As before, we must give
our sorted sequence an information type; we use the typeint and hence insert the pair(k, 0)

for each elementk of L.

〈repeated insertion sort〉�
forall(k,L) S.insert(k, 0);

The running time of repeated insertion sort isO(n logn).
Let us take a closer look where the insertions are taking place for our input sequence. In

the first f insertions the new element is always inserted at the beginning of the sequence
and in the remainingn − f insertions the new element is always inserted before thef -th
element from the end of the sequence. Sincef � n it should be more efficient to search
for the place of insertion from the rear end of the sequence.

〈finger search from rear end〉�
forall(k, L)

{ if (S.empty()) it = S.insert(k, 0);

else

{ seq_item it = S.finger_locate_from_rear(k);

if (it) S.insert_at(it,k,0,LEDA::before);
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else S.insert_at(S.max_item(),k,0,LEDA::after);

}

}

With finger search from the rear end each search takes timeO(log f ) and hence the total
running time becomesO(n log f ). The same running time results if we use the version of
finger search that does not need to be told from which end of the sequence it should search.

〈finger search from both ends〉�
forall(k, L)

{ if (S.empty()) it = S.insert(k, 0);

else

{ seq_item it = S.finger_locate(k);

if (it) S.insert_at(it,k,0,LEDA::before);

else S.insert_at(S.max_item(),k,0,LEDA::after);

}

}

We can do even better by observing that each insertion takes place next to the previous
insertion. Hence it is wise to remember the position of the last insertion and to start the
finger search from there.

〈finger search from last insertion〉�
forall(k, L)

{ if (S.empty()) it = S.insert(k, 0);

else

{ it = S.finger_locate(it,k);

it = ( it ? S.insert_at(it,k,0,LEDA::before) :

S.insert_at(S.max_item(),k,0,LEDA::after) );

}

}

With this version of finger search each search takes constant time and hence a total running
time of O(n) results.

Table 5.7 shows the running times of our four versions of insertion sort in comparison
to the built-in sorting routine for lists (L.sort( )) for n = 500000 andf = 50. We made
the comparison for the key typesint, double, andfour tuple<int, int, int, int> to study the
influence of the cost of comparing two keys. The table shows that insertion sort with fin-
ger search is superior to repeated insertion sort for nearly sorted input sequences and that
the advantage becomes larger (as is to be expected from the asymptotic analysis) as com-
parisons become more expensive. The table also shows that in the case of very expensive
comparisons insertion sort with finger search can even compete with quicksort (which is the
algorithm used in the sorting routine for lists).

It is worthwhile to take a more abstract view of the programs above. The less mathe-
matically inclined reader may skip the next two paragraphs. Letk1, . . . , kn be a sequence
of distinct keys from a linearly ordered typeK . An inversionis a pair of keys that is not



186 Advanced Data Types

Repeated Finger search List
insertion from rear from both ends from last insertion sort

int 5.45 4.78 4.7 2.98 2.22

double 6.28 5.1 7.12 3.28 2.53

quads 22.1 13.9 16.8 6.3 14.8

Table 5.7 Running times of the four versions of insertion sort and of the sorting routineL.sort( )

for lists for n = 500000 andf = 50. The sorting routine for lists uses quicksort with the middle
element of the list as the splitting element. It runs in timeO(n logn). Three different key types
were used:int, double, and the typefour tuple<int, int, int, int> where an integeri was
represented as the quadruple(0, 0, 0, i ). This ensures that comparisons between quadruples are
expensive. You may perform your own experiments with the sortseq sort demo.

in ascending order, i.e., a pair(i, j ) of indices with 1≤ i < j ≤ n andki > k j . We use
F to denote the total number of inversions and usef j to denote the number of inversions
involving j as their second component, i.e.,

f j = |{ i ; i < j andki > k j }|
If F is zero then the sequence is already sorted. The maximal value ofF is n(n − 1)/2. We
show that insertion sort with finger search from the rear runs in timeO(n(1 + log(F/n)))

on a sequence withF inversions. So the worst case isO(n logn), the best case isO(n), and
the running time degrades smoothly asF increases. A sequence with a “small” value ofF
is sometimes callednearly sorted. Thus, insertion sort with finger search is fast on nearly
sorted sequences.

Assume that we have already sortedk1, . . . , k j−1 and next want to insertk j . As in our
programs above we useS to denote the resulting sorted sequence. Each key ink1, . . . , k j−1

which is larger thank j causes an inversion and hence the number of keys ink1, . . . , k j−1

larger thank j is equal tof j . Thus,k j needs to be inserted at thef j -th position from the rear
end ofS. A finger search from the rear end ofS determines this position in timeO(log f j ).
We conclude that the total running time of insertion sort with finger search from the rear
end is

O(
∑

1≤ j≤n

1 + log f j ) = O(n + log
∏

1≤ j≤n

f j ).

Subject to the constraint
∑

1≤ j≤n f j = F , the product
∏

1≤ j≤n f j is maximized if all f j ’s
are equal and hence are equal toF/n. The claimed time bound ofO(n · (1 + log(F/n)))

follows.

Split: There are several operations to combine and split sequences. IfS is a sorted sequence
andit is an item ofS then

S.split(it, T, U, dir)
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A

S1 S2 S3 S4

Figure 5.16 A sequenceS of eight items that has been split into a sequence of length three, a
sequence of length one, and two sequences of length two. The entryA[i ] of the arrayA contains
a pointer to thei -th container ofS. The sequencesS1, S3, andS4 need to be split further. In the
sortseqsplit program there will be a task in the task stack for each one of them. The task forS3

has the form(pointer toS3, 4, 5).

splits S after (if dir = LEDA::after) or before (ifdir = LEDA::before) it and returns the
two fragments inT andU . More precisely, ifS is equal to

x1, . . . , xk−1, it, xk+1, . . . , xn

anddir is LEDA::after thenT = x1, . . . , xk−1, it andU = xk+1, . . . , xn after the split. Ifdir
is before thenU starts withit after the split. The two sequencesT andU must name distinct
objects, butS may be one ofT or U . If S is distinct fromT andU thenS is empty after the
split. The running time ofsplit is O(logn) for sortseqsand isO(1+ log min(k, n − k)) for
sortseqs.

We sketch an application of splitting in order to show the difference between the two
time bounds. Assume thatS is a sorted sequence of lengthn and consider the following
process to splitS into n sequences of length 1 each. We start withS and as long as we have
a sequence of length larger than 2 we split this sequence at an arbitrary item.

In the following program we construct a sorted sequenceS of n items and store its items
in an arrayA. We also maintain a stack of “tasks”. A task is a triple consisting of a pointer
to a subsequence ofS plus the indices of the first and the last item in the subsequence, see
Figure 5.16. Initially there is only one task, namely, the triple(S, 1, n). In each iteration of
the loop we take the topmost task from the stack. If the sequence has less than two elements
and hence requires no further split, we simply delete it. Otherwise, we split it at a random
element and create tasks for the two parts. We continue until there are no tasks left.

〈sortseqsplit〉�
main(){

〈sortseq split: read n〉
typedef sortseq<int,int> int_seq;

array<seq_item> A(n);

int_seq* S = new int_seq();;

for (int i = 0; i < n; i++) A[i] = S->insert(i,0);

typedef three_tuple<int_seq*,int,int> task;
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stack<task> TS;

TS.push(task(S,0,n-1));

float UT = used_time();

while ( !TS.empty() )

{ task t = TS.pop();

int_seq* S = t.first();

int l = t.second();

int r = t.third();

if ( r - l + 1 < 2 ) { delete S; continue; }

int_seq* T = new int_seq();

int_seq* U = new int_seq();

int m = rand_int(l,r-1);

S->split(A[m],*T,*U,LEDA::after);

delete S;

TS.push(task(T,l,m));

TS.push(task(U,m+1,r));

}

〈sortseq split: report time〉
}

We show that the running time of this program is linear inn. We do so for arbitrary choice
of the splitting indexm and not only for random choice ofm. The less mathematically
inclined reader may skip the analysis. We useT (n) to denote the maximal running time of
the program on a sequence ofn items. ThenT (1) = c and

T (n) ≤ max
1≤m<n

T (m) + T (n − m) + c(1 + log min(m, n − m))

for n > 1 and a suitable constantc. The recurrence relation reflects the fact that it takes
timec(1+ log min(m, n−m)) to split a sequence of lengthn into sequences of lengthm and
n−m and additional timeT (m) andT (n−m) to split these sequences further into sequences
of length 1. We need to take the maximum with respect tom since we are interested in the
worst case time. We showT (n) ≤ c(5n − 2 − 2 log(n + 1)) for all n by induction onn.
This is certainly true forn equal to 1. So assumen > 1 and letm maximize the right-hand
side in the recurrence relation above. Because of the symmetry of the right-hand side inm
andn − m we may assumem ≤ n/2. Then

T (n) ≤ T (m) + T (n − m) + c(1 + log min(m, n − m))

≤ c(5m − 2 − 2 log(m + 1) + 5(n − m) − 2 − 2 log(n − m + 1) + 1 + logm)

< c(5n − 2 − log(m + 1) − 2 log(n − m + 1) − 1)

≤ c(5n − 2 − 2 log(n + 1)),

where the first inequality is our recurrence relation, the second inequality follows from
the induction hypothesis, the third inequality is simple arithmetic, and the last inequality
follows from the fact that 1+ log(m + 1) + 2 log(n − m + 1) ≥ 2 log(n + 1) for all m with
1 ≤ m ≤ n/2. To see this, observe first that the second derivative off (m) = 1 + log(m +
1) + 2 log(n − m + 1) is negative and hence min1≤m≤n/2 f (m) = min( f (1), f (n/2)).
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Observe next thatf (1) ≥ 2 log(n + 1) and f (n/2) ≥ 2 log(n + 1). This completes the
induction.

Concatenation and Merging: We turn to concatenation and merging of sequences.

S.conc(T,dir)

appendsT to the rear (ifdir = LEDA::after) or front (if dir = LEDA::before) of S and
makesT empty. Of course, we may applyconcwith dir = LEDA::after only if the key of
the last item inS is smaller than the key of the first item inT and withdir = LEDA::before
only if the key of the last item inT is smaller than the key of the first item inS. The running
time ofconcis O(log(n + m)) for sortseqsand isO(1+ log min(n, m)) for sortseqswhere
n andm are the lengths of the sequences to be concatenated.Mergegeneralizesconc.

S.merge(T)

merges the listT into the listS and makesT empty. For example, ifS = 〈5,.〉 〈7,.〉 〈8,.〉
andT = 〈6,.〉 〈9,.〉 are sequences with key typeint thenS = 〈5,.〉 〈6,.〉 〈7,.〉 〈8,.〉 〈9.,〉 after
the merge. Of course,S andT can only be merged if the keys of all items are distinct. The
time to merge two sequences of lengthsn andm, respectively, isO(log

(n+m
n

)
); mergeis

only supported bysortseqs.
We sketch howmergeis implemented, we comparemergewith two less sophisticated

approaches to merging, and we show how to usemergein a robust version of merge sort.
We start with a sketch of the implementation. Assume that the sequencesS andT are to be
merged and that the number of elements inT is at most the number of elements inS. We
insert the elements ofT one by one intoS, starting with the first element ofT . In order to
locate the position of an element ofT in S we use a finger search starting from the position
of the last insertion (starting from the first element ofS instead of the first element ofT ).

sortseq item finger = S.min item();

sortseq item it = T.min item();

while ( it )

{ finger = S.finger locate(finger,T.key(it));

S.insert at item(finger,T.key(it),T.inf(it));

it = T.succ(it);

}

The running time of this program is easy to analyze. We usem to denote the number of
elements inT andn to denote the number of elements inS. Assume that thei -th element
of T is to be inserted after thefi -th element ofS for all i with 1 ≤ i ≤ m. Set f0 = 0. The
finger search that determines the position of thei -th element ofT in S takes timeO(logdi)

wheredi = fi − fi−1 is the number of elements ofS that are between the position of
insertion for thei -th and the(i − 1)-th element. Clearly,

∑
i di ≤ n. The total time for

mergingT into S is ∑
i

O(1 + logdi) = O(m + log
∏

i

di).
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Subject to the constraint
∑

i di ≤ n, the product
∏

i di is maximal if alldi are equal ton/m.
The running time is thereforeO(m + mlog(n/m)) = O(log

(n+m
n

)
). To see the last equality

observe first that

1 + log(n/m) = 1 + log(n + m)/m ≤ 2 log((n + m)/m)

sincen + m ≥ 2m and observe next thatm log((n + m)/m) = log((n + m)/m)m and
((n + m)/m)m ≤ (n+m

m

)
.

We next comparemergeto two less sophisticated merge routines. LetT andU be sorted
sequences of lengthn andm, respectively. There are two ways to mergeU into T that
come to mind immediately. The first method inserts the elements ofU one by one into
T . This takes timeO(m log(n + m)). The second method scans both files simultaneously
from front to rear and inserts the elements ofU as they are encountered during the scan.
This takes timeO(n + m). In the following programs we assume thatT andU are of type
sortseq<K , int>.

〈three merging routines〉�
template < class K >

void merging_by_repeated_insertion(sortseq<K,int>& T, sortseq<K,int>& U)

{ seq_item it = U.min_item();

while ( it )

{ T.insert(U.key(it),U.inf(it));

it = U.succ(it);

}

}

template < class K >

void merging_by_scanning(sortseq<K,int>& T, sortseq<K,int>& U)

{ seq_item it1 = T.min_item();

seq_item it2 = U.min_item();

while ( it2 && compare(U.key(it2),T.key(it1)) < 0 )

{ T.insert_at(it1,U.key(it2),U.inf(it2),LEDA::before);

it2 = U.succ(it2);

}

seq_item succ1 = T.succ(it1);

while ( it2 )

{ K k2 = U.key(it2);

while ( succ1 && compare(T.key(succ1),k2) < 0 )

{ it1 = succ1;

succ1 = T.succ(succ1);

}

it1 = T.insert_at(it1,k2,U.inf(it2),LEDA::after);

it2 = U.succ(it2);

}

}

template < class K >

void merging_by_finger_search(sortseq<K,int>& T, sortseq<K,int>& U)

{ T.merge(U); }
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Figure 5.17 Two patterns for merging six sequences of length one. The merge pattern on the left
is unbalanced: it first merges two sequences of length one, then merges the resulting sequence of
length two with a sequence of length one, then merges the resulting sequence of length three
with a sequence of length one, . . . . The second merge pattern is balanced: it first forms three
sequences of length two, then merges two of them to a sequence of length four, and finally
merges the sequence of length four with the remaining sequence of length two.

How do the three routines compare theoretically and experimentally? Let us consider three
cases:m = 1, m = n, and m = n/ logn. Merging by repeated insertion takes time
O(logn), O(n logn), andO(n), respectively, merging by scanning takesO(n) in all three
cases, and merging based on finger search takes timeO(logn), O(n), andO(m log(n/m)) =
O(n loglogn/ logn), respectively. We see that merging based on finger search is never
worse than the two other methods (it has a larger constant of proportionality, though) and
that it is superior to both methods in two of the cases. Table 5.8 shows an experimental
comparison of the three methods.

Robust Merge Sort: We use our three merging routines in a version of merge sort. In
order to sort a set ofn elements, merge sort starts withn sequences of length 1 (which are
trivially sorted) and then uses merging to combine them into a single sorted sequence of
lengthn. Themerge pattern, i.e., the way in which then sequences are combined into a
single sequence can be visualized by a binary tree withn leaves andn − 1 internal nodes.
Then leaves correspond to then initial sequences and each internal node corresponds to a
merging operation. In this way we associate with every internal node the sorted sequence
that results from merging the two sequences associated with its children. Figure 5.17 shows
two merging patterns.

How do our three merging routines behave? In the balanced merging pattern we per-
form aboutn/2k merges between sequences having length 2k each and hence obtain a total
running time of

O(
∑

0≤k<logn

(n/2k)M(2k , 2k)),

where M(x, y) is the time to merge two sequences of lengthx and y. For merging by
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Merging by
repeated insertion scanning finger search

int m = 1 0 0.75 0

m = 10 0 0.767 0

m = 100 0 0.7 0

m = 1000 0.0333 0.767 0.05

m = 10000 0.4 0.883 0.267

m = 100000 3.65 1.78 1.75

double m = 1 0 0.817 0

m = 10 0 0.8 0

m = 100 0.0167 0.817 0.0167

m = 1000 0.05 0.833 0.0333

m = 10000 0.433 0.95 0.317

m = 100000 4.2 2.02 2.02

quadruplem = 1 0 2.58 0

m = 10 0 2.6 0

m = 100 0.0167 2.67 0.0333

m = 1000 0.183 2.63 0.15

m = 10000 1.65 2.82 1.03

m = 100000 15.8 4.38 6.6

Table 5.8 Running times of the three versions of merging forn = 500000 and different values
of m. The sequenceT consisted of the firstn even integers and the sequenceU consisted of the
integers 2(n/m)i + 1 for i = 1, . . . , m. Three different key types were used:int, double, and the
type four tuple<int, int, int, int> where an integeri was represented as the quadruple(0, 0, 0, i ).
This ensures that comparisons between quadruples are expensive. You may perform your own
experiments with the sortseq merge demo.

repeated insertion we haveM(x, x) = O(x log x) and hence obtain a total running time of

O(
∑

0≤k<logn

(n/2k)2kk) = O(n
∑

0≤k<logn

k) = O(n log2 n).

For merging by scanning and merging by finger search we haveM(x, x) = O(x) and hence
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Unbalanced merge tree Balanced merge tree

merging by repeated insertion 5.07 11.5

merging by scanning 3.44e+03 9.82

merging by finger search 5.9 8.73

Table 5.9 This table was generated by program sortseqmergesort. You can perform your own
experiments with the sortseq merge demo. Merging by finger search comes in shortly after the
winner for both merge patterns.

obtain a total running time of

O(
∑

0≤k<logn

(n/2k)2k) = O(n logn).

We conclude that the latter two merging methods perform optimally in the case of a balanced
merging pattern but that merging by repeated insertion does not.

Let us turn to the unbalanced merging pattern. It builds a sequence of lengthi by merging
a sequence of lengthi − 1 and a sequence of length 1 for alli , 2 ≤ i ≤ n. We obtain a total
running time of

O(
∑

2≤i≤n

M(i, 1)).

For merging by repeated insertion and merging by finger search we haveM(x, 1) = O(log x)

and hence obtain a total running time of

O(
∑

2≤i≤n

log i) = O(n logn).

For merging by scanning we haveM(x, 1) = O(x) and hence obtain a total running time
of

O(
∑

2≤i≤n

i) = O(n2).

We conclude that the two former merging methods perform optimally in the case of an
unbalanced merging pattern but that merging by scanning does not.Only merging by finger
searching performs optimally for both merge patterns.

Table 5.9 shows an experimental comparison. You may perform your own experiments
by calling the sortseq merge demo. This program generatesn sorted sequences of length one
and puts pointers to them into an arrayA (intseqis an abbreviation forsortseq<int, int>.).
It permutesA to make sorting non-trivial.
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〈fill A〉�
for (i = 0; i < n; i++)

{ A[i] = new int_seq;

A[i]->insert(i,0);

}

A.permute();

It then uses either the unbalanced merge pattern or the balanced merge pattern to merge the
n sequences into a single sequence (mergeis any one of our three merging routines).

〈unbalanced merge pattern〉�
for (i = 1; i < n; i++)

{ merge(*A[0],*A[i]);

delete A[i];

}

〈balanced merge pattern〉�
while (n > 1)

{ int k = n/2;

for (i = 0; i < k; i++)

{ merge(*A[i],*A[k + i]);

delete A[k+i];

}

if ( 2 * k < n ) // n is odd

{ A[k] = A[n - 1]; n = k + 1; }

else

{ n = k; }

}

We close our discussion of merging by showing that merge sort with merging by finger
search has running timeO(n logn) for every merge pattern. Recall that a merge pattern
is a binary treeT with n leaves and that every internal node ofT corresponds to a merge
operation. For an internal node lets(v) be the length of the sorted sequence that is the result
of the merge operation at nodev and for a leafv let s(v) be equal to one. With this notation
the cost of the merge at a nodev with childrenx andy is

O(log

(
s(v)

s(x)

)
) = O(log(s(v)!/(s(x)!s(y)!))) = O(log s(v)! − logs(x)! − logs(y)!)

and the total running time of merge sort is obtained by summing this expression over all
nodesv of T . In this sum every nodez except for the root and the leaves contributes twice:
it contributes logs(z)! whenz is considered as a parent and it contributes− logs(z)! when
z is considered as a child. The two contributions cancel. Therefore everything that remains
is the contribution of the root (which is logn!) and the contribution of the leaves (which is
−n log 1). We conclude that the total running time isO(n logn) independent of the merge
patternT .
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Operations on Subsequences:We want to mention two further operations. Leta andb be
two items in a sorted sequenceS with a being equal to or beforeb. Then

S.reverse items(a,b)

reverses the subsequence of items inS starting ata and ending atb, i.e., if

S = it1, it2, . . . , it i−1, it i , it i+1, . . . , it j−1, it j , it j+1, . . . , itn

before the operation anda = it i andb = it j then

S = it1, it2, . . . , it i−1, it j , it j−1, . . . , it i+1, it i , it j+1, . . . , itn

after the operation. We will see an application ofreverseitemsin a plane sweep algorithm
for segment intersection in Section 10.7.2.Reverseitemsruns in time proportional to the
number of items that are reversed.Reverseitemsis also available under the nameflip items.

The operation

S.delete subsequence(a,b,T)

removes the subsequence starting ata and ending atb from S and assigns it toT . The
running time isO(log min(m, n − m)) wheren is the number of items inIT andm is the
number of items that are removed. We will see an application ofdeletesubsequencein
Section 5.8 on Jordan sorting.

Sequences and Items:Many of the operations onsortseqstake items as arguments, e.g.,

S.finger locate(finger,x)

locatesx in S by searching from the itemfinger. What happens iffinger is not an item inS
but in some othersortseq IT?

The complete specification offingerlocateis as follows (and this is, of course, the spec-
ification that is given in the manual). LetIT be the sorted sequence containingfinger. Then

S.finger locate(finger,x)

is equivalent to

IT.finger locate(finger,x)

provided thatIT has the same type asS. If IT andS have different types the semantics of
S.fingerlocate(finger, x) is undefined.

A similar statement holds for all other operations having items as arguments. So

S.reverse items(a,b)

is applied to the sequence containing the itemsa andb (of course,a andb must belong to
the same sequence).

If the items determine the sequence to which the operation is applied, why does one
have to specify a sequence at all? We explored the alternative to makefingerlocatea static
member function ofsortseq<K , I> and to write

sortseq<K,I>::finger locate(finger,x);
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We decided against it because in most applications of sorted sequences there is no problem
in providing the sequence as an argument and in these situations it is clearer if the sequence
is provided as an argument. The price to pay is that in the rare situation where the sequence
is not known (the program in Section 5.8 is the only program we have ever written where
this happens) one has to “invent”S, i.e., to declare a dummy sequenceS and to apply
fingerlocateto it.

Exercise for 5.6
1 A run in a sequence of keys is a sorted subsequence. LetL = k1, . . . , kn be any sequence

and letk be the number of runs inL, i.e., k is one larger than the number ofi with
ki > ki+1. Show that insertion sort with finger search from the position of the last
insertion sorts a sequence consisting ofk runs in timeO(n(1 + logk)).

5.7 The Implementation of Sorted Sequences by Skiplists

We first describe the skiplist data structure. Skiplists were invented by W. Pugh [Pug90a,
Pug90b] and our implementation is based on his papers. We go beyond his papers by
also providing implementations for finger searches, merging, and deletion of subsequences.
We start with an overview of the data structure and then outline the content of the files
skiplist.h, skiplist.c, and sortseq.h. In the bulk of the section we give the implementations
of the different operations on skiplists.

5.7.1 The Skiplist Data Structure
A skiplist is a sequence ofskiplistnodes, see Figure 5.18. We also saytower instead of
skiplistnode. In a skiplist for a sequence ofn elements we haven + 2 towers,n towers
corresponding to the elements of the sequence and two towers calledheaderandSTOPthat
serve as sentinels. We refer to the former towers asproperand to the latter asimproper.

A tower contains the following information:
— a key,
— an information,
— an integerheight,
— an arrayforward of height+ 1 pointers to towers,
— a backwardpointer, and
— a predecessor pointer.

The keys of the proper towers in a skiplist are strictly increasing from front to rear of the
sequence. The sentinelsheaderandSTOPhave no keys stored in them although, logically,
their keys are−∞ and∞, respectively. It would make life somewhat easier if the key type
K provided the elements−∞ and∞. Because not all key types do, we have decided to
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5 7 11 13 19 21 30

Figure 5.18 A skiplist: The sequence of keys stored in the sequence is 5, 7, 11, 13, 19, 21, 30.
The proper towers have height 0, 1, 0, 3, 0, 2, and 0, respectively. Their keys are shown at the
bottom of the towers. The two improper towersheaderandSTOPare the first and last tower,
respectively. They have no keys. The forward pointers point horizontally to the right. The
backward pointers are shown as curved arcs and the predecessor pointers are not shown. All
forward pointers that have no proper tower to point to, point toSTOP. An object of type skiplist
contains pointers toheaderandSTOP. The header points back to the skiplist object.
A search for 19 proceeds as follows. We start in the header and consider the forward pointer at
height 3 (= maximal height of a proper tower) out of the header. It ends in a tower with key 13.
Since 19> 13 we move forward to the tower with key 13 and consider its forward pointer at
height 3. It ends inSTOP(which has key∞) and so we drop down to height two. The forward
pointer at height 2 out the tower with key 13 ends in the tower with key 21. Since 19< 21 we
drop down to the height one, . . . .

store no keys in the sentinels. When formulating invariants we will however assume that
the keys ofheaderandSTOPare−∞ and∞, respectively.

Skiplists represent the sequence stored at different levels of granularity. The tower of
height at least zero represent the entire sequence, the towers of height at least one represent
a subsequence, the towers of height at least two represent a subsequence of the subsequence,
. . . . The operations on skiplists gain their efficiency by exploiting the different levels of
granularity; Figure 5.18 sketches a search for key 19 in our example skiplist. Observe that
the search first locates 19 with respect to the list represented by the towers of height at least
3, i.e., the list(−∞, 13, +∞), then with respect to the list represented by the towers of
height at least 2, i.e., the list(−∞, 7, 13, 21, +∞), . . . .

The height of a proper tower is chosen probabilistically when the tower is created. We
will explain this in more detail below. The height of a proper tower is always non-negative.
The height ofSTOPis−1 and the height ofheaderis equal toMaxHeight. We setMaxHeight
to 32 in our implementation. When we choose the heights of proper towers we will make
sure that their height is smaller thanMaxHeight. The sentinelsheaderand STOPcan
therefore be recognized by their height.Headersare the only items with height equal to
MaxHeightandSTOPnodes are the only items with negative height.

A headerstores information in addition to the ones listed above: the data member
trueheight is one plus the maximal height of any proper tower (it is zero if there are no
proper towers) and the membermyseqstores a pointer to the skiplist to whichheaderbe-
longs. Theheaderhas typeheadernode, where aheadernodeis anskiplistnodewith the
two additional fields just mentioned.
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A pointer to askiplistnodeis called ansl itemand a pointer to aheadernodeis called a
largeitem.

In the definitions below the flagSMEM (= simple memory management) allows us to
choose between two schemes for memory allocation. IfSMEM is defined, the obvious
memory allocation scheme is used andforward is realized as an array ofsl itemsand if
SMEMis not defined, a refined and more efficient memory allocation scheme is used. This
is explained in more detail in Section 5.7.4.

The flag__exportC is used for preprocessing purposes. On UNIX-systems it is sim-
ply deleted and on Windows-systems it is replaced by flags which are needed to generate
dynamic libraries.

〈definition of classes skiplistnode and headernode〉�
class __exportC header_node;

class __exportC skiplist_node;

typedef skiplist_node* sl_item;

typedef header_node* large_item;

const int MaxHeight = 32;

class __exportC skiplist_node

{ friend class __exportC skiplist;

static leda_mutex mutex_id_count;

static unsigned long id_count;

GenPtr key;

GenPtr inf;

int height;

unsigned long id; // id number

sl_item pred;

sl_item backward;

#ifdef SMEM

sl_item* forward; // array of forward pointers

#else

sl_item forward[1];

#endif

friend unsigned long ID_Number(skiplist_node* p){return p->id;}

};

class __exportC header_node : public skiplist_node

{ friend class __exportC skiplist;

#ifndef SMEM

sl_item more_forward_pointers[MaxHeight];

#endif

int true_height;

skiplist* myseq;

};

A header node can be viewed as askiplistnodeand as aheadernode. If v is ansl itemwhich
is known to be alarge item(becausev → height= MaxHeight) then we can castv to a large
item by(large item)v and access the skiplist containingv by ((largeitem)v) → myseq.

We can now complete the definition of the skiplist data structure by defining the values
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only towers of
height< 4 height< 2
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only towers of

Figure 5.19 Forward and backward pointers:v → forward[2] points to the closest successor
tower of height at least 2 andv → backwardpoints to the closest predecessor tower of height at
least 4.

of the various pointers stored in a tower, see Figure 5.19. Letv be any tower and leth be
the height ofv (view headeras a tower of heighttrueheightfor this paragraph). Then:

• for all i , 0 ≤ i ≤ h, thei -th forward pointer ofv points to closest successor tower of
height at leasti (to STOPif there is no such tower),

• the backward pointer points to the nodew with the highest forward pointer intov, i.e.,
theh-th forward pointer ofw points tov,

• and the predecessor pointer ofv points to the tower immediately precedingv.

The procedurevalidatedatastructurechecks the invariants in timeO(trueheight· n).

〈miscellaneous〉�
void skiplist::validate_data_structure()

{ assert(header == header->myseq->header);

assert (header->height == MaxHeight);

assert(STOP->height == -1);

int max_proper_height = -1;

sl_item p = (sl_item) header;

while (p != STOP)

{ assert(p->height >= 0);

if (p != header && p->height > max_proper_height)

max_proper_height = p->height;

p = p->forward[0];

}

assert(header->true_height == max_proper_height + 1);

p = (sl_item) header;

while (p != STOP)

{ sl_item q = p->forward[0];

assert(p == q->pred); //condition three

if (p != header && q != STOP) //check order

assert(cmp(p->key,q->key) < 0);

for(int h=0; h<=Min(p->height,header->true_height);h++)

{ sl_item r = p->forward[0];
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while (r->height < h && r != STOP) r = r->forward[0];

assert ( r == p->forward[h]); //condition one

if ( h == r->height ) assert(r->backward == p);

} //condition two

p = q;

}

assert(STOP->backward == (sl_item) header);

}

As a preview for later sections we describe briefly how one can search for a keyx in
a skiplist. We keep a nodev and a heighth such thatv → key < x and x ≤ v →
forward[h] → key. Initially, v = headerandh = trueheight. In the basic search step
we find a nodev with the same property andh one less. This is easy to achieve. We only
have to start a walk at nodev taking forward pointers at heighth − 1.

h--;

w = v->forward[h];

while (key > w->key)

{ v = w;

w = v->forward[h];

}

The while-loop re-establishes the invariantv → key< x ≤ v → forward[h] → key. Con-
tinuing in this way down toh = 0 locatesx among the items in the skiplist. The complete
program for a search in a skiplist is therefore as follows:

sl item v = header;

int h = header->true height;

while ( h > 0 )

{ h--;

w = v->forward[h];

while (w != STOP && key > w->key)

{ v = w;

w = v->forward[h];

}

}

The search in skiplists is efficient because skiplists represent the underlying sequence at
different levels of granularity. The forward pointers at level 0 represent the entire sequence,
the forward pointers at level 1 represent the subsequence formed by the towers of height at
least 1, the forward pointers at level 2 represent the subsequence formed by the towers of
height at least 2, . . . . In a search we locatex with respect to the subsequence of towers of
height at leasth for decreasing values ofh. This is trivial at the highest level and requires
only little additional work for each smaller value ofh.

The height of a proper tower is chosen probabilistically when the tower is created. It is
set toh with probability ph(1 − p) wherep with 0 < p < 1 is a parameter that is fixed
when the skiplist is created. In our implementation we use 1/4 as the default value forp.
We draw three easy consequences from this probabilistic definition of height.
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The probability that a proper tower has heighth or more is
∑

k≥h pk(1 − p) = ph and
therefore the expected value ofheightcan be computed as15:

E[height] =
∑
h≥1

ph = p
∑
h≥0

ph = p/(1 − p).

Since the space requirement for a tower of heighth is (6 + h) · 4 bytes plus the space for
the key and the information we conclude that the expected space requirement for a skiplist
of n items is about(6 + p/(1 − p))4n bytes plus the space for the keys and informations.
For p = 1/4 we have E[h] = 1/3 and hence the expected space requirement for a skiplist
of n items is about 76/3n = 25.333n bytes. The refined memory allocation scheme needs
a bit more, see Section 5.7.4.

The fact thatph is the probability that a proper tower has heighth or more implies that
the probability that some tower in a collection ofn proper towers has heighth or more is
at most min(1, nph). This is one forh ≤ log1/p n and is at mostpl for h = dlog1/p ne + l.
Sincetrueheightis one plus the maximal height of any proper tower, we can compute the
expected value oftrueheightas:

E[trueheight] =
∑
h≥1

prob(trueheight≥ h) =
∑
h≥1

prob(maximal height≥ h − 1)

≤
∑
h≥0

min(1, ph) ≤
∑

0≤h<dlog1/p ne
1 +

∑
h≥dlog1/p ne

ph

≤ 1 + log1/p n +
∑
l≥0

pl = 1 + log1/p n + 1/(1 − p).

Finally, if v is any tower then the probability thatv → backwardhas height larger than
v is p. Observe thatv → backwardhas at least the height ofv and that the conditional
probability that a tower has heighth + 1 or more given that it has heighth or more is
ph+1/ph = p. Thus, the probability thatv → backwardhas height larger thanv is p.

We use this observation to bound the cost of a search. Consider a search for a keyx
and letv0, v1, . . . , vk be the path traced by the variablev in the program above. Then
v0 = headerandvi = vi+1→backward. By the above, the probability that the height of
vi is larger than the height ofvi+1 is p and hence the expected number of nodes traversed
at any particular height is 1/p. We start at height zero and end at heighttrueheight. The
expected length of the path is therefore bounded by

1/p · (1 + log1/p n + 1/(1 − p)).

This concludes our discussion of skiplist nodes.
We turn to the class representing skiplists. In anskiplistwe store the itemsheaderand

STOPand some quantities related to the random process:prob contains the parameterp in
use, andrandomBitscontains an integer whose lastrandomsLeftbits are random. We use

15 If X is a random variable which assumes non-negative integer values andqh = prob(X ≥ h) and
ph = prob(X = h) for all h ≥ 0 then E[X ] = ∑

h≥0 ph · h = ∑
h≥1 ph · h = ∑

h≥1(qh − qh+1) · h = ∑
h≥1 qh .
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randomBitsas the random source in the construction of skiplist nodes. Whenever all bits in
randomBitsare used up we refill it using the LEDA random number generator.

〈data members of class skiplist〉�
large_item header;

sl_item STOP;

float prob;

int randomBits;

int randomsLeft;

〈private member functions of class skiplist〉�
void fill_random_source()

{ randomBits = rand_int(0,MAXINT-1);

randomsLeft = 31;

}

5.7.2 The Files sortseq.h, skiplist.h, andskiplist.c
The definition of typesortseq<K , I> follows the strategy laid out in Section 13.4. We define
two classes: an abstract data type classsortseq<K , I> and an implementation classskiplist.
The classsortseq<K , I> is a parameterized class with type parametersK and I . The keys
and infs in the implementation class are generic pointers.

The implementation class is defined in incl/LEDA/impl/skiplist.h and src/dict/skiplist.c.
We have already seen the chunks〈definition of classes skiplistnode and headernode〉 and
〈data members of class skiplist〉. In the other chunks of skiplist.h we define a set of virtual
functions that are later redefined in the abstract data type class and we define the functions
that realize all operations on sorted sequences. The virtual functions are discussed in Sec-
tion 5.7.3 and the other functions are discussed starting in Sections 5.7.5. Inskiplist.c we
assemble the implementations of all member functions (except for the trivial ones which
are given directly in the header file).

The compile-time constant SMEM is explained in Section 5.7.4.

〈skiplist.h〉�
#ifndef SKIPLIST_H

#define SKIPLIST_H

// #define SMEM remove comment for use of simple memory scheme

#include <LEDA/basic.h>

#include <assert.h>

〈definition of classes skiplistnode and headernode〉
class __exportC skiplist

{ 〈data members of class skiplist〉
〈virtual functions of class skiplist〉
〈private member functions of class skiplist〉

public:

〈public member functions of class skiplist〉
};
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〈implementation of inline functions〉
#endif

〈 skiplist.c〉�
#include <LEDA/impl/skiplist.h>

〈memory management〉
〈constructors and related functions〉;
〈search functions〉;
〈insert and delete functions〉;
〈concatenate and related functions〉;
〈miscellaneous〉;

The abstract data type class is derived from the implementation class (which we rename as
IMPL to save ink) and anseqitemis nothing but ansl item. The definition ofsortseq<K , I>
has two large sections: in〈redefinition of virtual functions〉 all virtual functions of the im-
plementation class are redefined (see Section 5.7.3) and in〈public member functions of
sortseq〉 all operations on sorted sequences are defined by calling the corresponding func-
tion of the implementation class (see Section 5.7.10).

〈sortseq.h〉�
#ifndef SORTSEQ_H

#define SORTSEQ_H

#if !defined(LEDA_ROOT_INCL_ID)

#define LEDA_ROOT_INCL_ID 360010

#include <LEDA/REDEFINE_NAMES.h>

#endif

#include <LEDA/basic.h>

#include <LEDA/impl/skiplist.h>

#define IMPL skiplist

typedef sl_item seq_item;

template<class K, class I>

class sortseq : public virtual IMPL {

〈redefinition of virtual functions〉
public:

〈public member functions of sortseq〉
};

#if LEDA_ROOT_INCL_ID == 360010

#undef LEDA_ROOT_INCL_ID

#include <LEDA/UNDEFINE_NAMES.h>

#endif

#endif

5.7.3 Virtual Functions and their Redefinition
The classskiplisthas virtual functionscmp, clearkey, clear inf , copykey, copyinf , print key,
print inf andkeytypeid. All of them are redefined insortseq<K , I>.
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〈virtual functions of class skiplist〉�
virtual int cmp(GenPtr x, GenPtr y) const

{ error_handler(1,"cmp should never be called"); return 0; }

virtual void copy_key(GenPtr&) const { }

virtual void copy_inf(GenPtr&) const { }

virtual void clear_key(GenPtr&) const

{ error_handler(1,"clear_key should never be called"); }

virtual void clear_inf(GenPtr&) const

{ error_handler(1,"clear_inf should never be called"); }

virtual void print_key(GenPtr) const

{ error_handler(1,"print_key should never be called"); }

virtual void print_inf(GenPtr) const

{ error_handler(1,"print_inf should never be called"); }

virtual int key_type_id() const

{ error_handler(1,"key_type_id should never be called");

return 0;

}

〈redefinition of virtual functions〉�
leda_cmp_base<K> cmp_def;

const leda_cmp_base<K> *cmp_ptr;

int cmp (GenPtr x, GenPtr y) const

{ return (*cmp_ptr) (LEDA_CONST_ACCESS(K,x), LEDA_CONST_ACCESS(K,y)); }

int ktype_id;

int key_type_id () const { return ktype_id; }

void clear_key(GenPtr& x) const { LEDA_CLEAR(K,x); }

void clear_inf(GenPtr& x) const { LEDA_CLEAR(I,x); }

void copy_key(GenPtr& x) const { LEDA_COPY(K,x); }

void copy_inf(GenPtr& x) const { LEDA_COPY(I,x); }

void print_key(GenPtr x) const { LEDA_PRINT(K,x,cout); }

void print_inf(GenPtr x) const { LEDA_PRINT(I,x,cout); }

What are these virtual functions good for? The implementation class uses them to ma-
nipulate keys and information fields. It callscmp to compare two keys, it callscopykey,
clearkey, or print keyto copy, destroy or print a key (and analogously an inf), respectively,
and it callskeytypeid to determine the kind of the key type (integer, double, or otherwise).
The latter function allows us to optimize the treatment of integer and double keys. Keys and
informations are stored as generic pointers in the implementation class and only the abstract
class knowsK andI . All virtual functions are redefined in the abstract class. For example,
cmp(x, y) is redefined asLEDACOMPARE(K , x, y) which in turn amounts to converting
x andy to typeK and then calling the compare function of typeK . Similar statements hold
for the other virtual functions, see Section 13.4.

Except forcopykeyandcopyinf the virtual functions are only called in their redefined
form. In order to double-check we have included appropriate asserts into the bodies of the
virtual functions.Copykeyandclearkeyare also called by the copy-constructor ofskiplist
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Figure 5.20 A skiplist node with four forward pointers. The left part shows the simple memory
management scheme and the right part shows the refined memory management scheme.

and their original versions are used there. For this reason the original versions ofcopykey
andcopyinf are defined as functions with no effect.

5.7.4 Memory Management
We implemented two schemes for memory management: a simple scheme and a refined
scheme. The refined scheme increases the speed of our implementation by almost a factor
of two (if insertions and deletions have about the same frequency as lookups). The sim-
ple scheme can be selected by defining the constantSMEM in skiplist.h. Both schemes are
illustrated by Figure 5.20.

In the simple scheme we construct an array ofh + 1 forward pointers by

forward = new sl item[h+1];

This calls the built-in new function and does not use LEDA’s memory manager. An access
to a forward pointer goes through a level of indirection as shown in Figure 5.20. The refined
scheme avoids this level of indirection.

In the refined scheme we observe that the space required for a tower of heighth is the
size of anskiplistnodeplus h times the size of a pointer. Recall that a node has already
room for one forward pointer and that a tower of heighth hash + 1 forward pointers. This
suggests using the LEDA memory manager to allocate

int(sizeof(skiplistnode)) + (h) ∗ int(sizeof(skiplistnode∗))

bytes for a node of heighth. Since C++ does not check array bounds andforward is the
last field inskiplistnodethis is equivalent to allocating space for the data member of an
skiplistnodeand an arrayforward of h + 1 pointers.

The scheme just described has the disadvantage that it leads totrueheightdifferent node
sizes. The life of the LEDA memory manager becomes simpler if the number of different
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node sizes is small. We therefore modify the scheme slightly and roundh to the next power
of two if h > 2. We show that this modification uses very little additional space. The
modified scheme never allocates more than twice the number of forward pointers that are
actually needed and it allocates no additional forward pointer ifh ≤ 2. Sinceph is the
probability that a tower has heighth or more, the additional number of forward pointers per
tower required by the modified scheme is therefore bounded by

∑
h≥3 ph = p3/(1 − p).

For p = 1/4 this is equal to 1/48, i.e., an expected additional 1/12 bytes per tower. We
conclude that the expected space requirement for a skiplist withn items is about 25.42 · n
bytes plus the space for the keys and informations.

The macroNEWNODE(v, h) allocates space for a node of heighth and the macro
FREENODE(v) frees that space again. Both macros use the LEDA memory management
scheme. The macrosNEWHEADER(v) andFREEHEADER(v) do the same for header
nodes. Recall that a header always containsMaxHeight+ 1 forward pointers.

〈memory management〉�
inline int NODE_SIZE(int l)

{ int l1 = 0;

if ( l > 0 ) // compute smallest power of two >= l

{ l1 = 1;

while (l1 < l) l1 <<= 1;

}

return int(sizeof(skiplist_node))+

(l1)*int(sizeof(skiplist_node*));

}

#define NEW_NODE(v,l) \

v = (sl_item)std_memory.allocate_bytes(NODE_SIZE(l)); \

v->height = l;

#define FREE_NODE(v) \

std_memory.deallocate_bytes(v,NODE_SIZE(v->height))

inline int HEADER_SIZE()

{ int l1 = 1;

while (l1 < MaxHeight) l1 <<= 1;

return int(sizeof(header_node))+

(l1)*int(sizeof(skiplist_node*));

}

#define NEW_HEADER(v) \

v = (large_item)std_memory.allocate_bytes(HEADER_SIZE());\

v->height = MaxHeight;

#define FREE_HEADER(v) \

std_memory.deallocate_bytes(v,HEADER_SIZE())

5.7.5 Construction, Assignment and Destruction
The classskiplist has two constructors. The first constructor constructs an empty skiplist
and the second constructor copies its argument.
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Let us look more closely at the first constructor. We allocate a tower of heightMaxHeight
for headerand a tower of height−1 for STOP. Thetrueheightof theheaderis 0 and hence
only the level 0 forward pointer ofheaderis initialized.

The copy constructor first constructs an empty skiplist and then copies its argumentL
element by element. Since the constructor of classskiplist uses the trivial versions of the
virtual functionscopykeyandcopyinf , the calls ofcopykeyandcopyinf in insertat item
have no effect, and we therefore have to useL ’s version of these functions to do the copy-
ing. This is a problem which arises in the implementation of all copy constructors; see
Section 13.1 for a general discussion.insertat item is defined in Section 5.7.8.

The default constructor takes constant time and the copy constructor takes linear expected
time plus the time to copyn keys and informations.

〈constructors and related functions〉�
skiplist::skiplist(float p)

{ prob = p;

randomsLeft = 0;

#ifdef SMEM

header = new header_node;

header->forward = new sl_item[MaxHeight+1];

header->height = MaxHeight;

STOP = new skiplist_node;

STOP->height = -1;

#else

NEW_HEADER(header);

NEW_NODE(STOP,-1);

#endif

header->true_height = 0;

header->myseq = this;

STOP->backward= (sl_item) header;

STOP->pred= (sl_item) header;

header->forward[0] = STOP;

}

skiplist::skiplist(const skiplist& L)

{ prob = L.prob;

randomsLeft = 0;

#ifdef SMEM

header = new header_node;

header->forward = new sl_item[MaxHeight+1];

header->height = MaxHeight;

STOP = new skiplist_node;

STOP->height = -1;

#else

NEW_HEADER(header);

NEW_NODE(STOP,-1);

#endif

header->true_height = 0;

header->myseq = this;

STOP->backward= (sl_item) header;

STOP->pred= (sl_item) header;
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header->forward[0] = STOP;

sl_item p = L.STOP->pred;

while (p!= L.header)

{ insert_at_item(header,p->key,p->inf);

L.copy_key(p->key);

L.copy_inf(p->inf);

p = p->pred;

}

}

We come to the assignment operator, the functionclear, and the destructor. The as-
signment operator first clears the skiplist and then copies its argument. Theclear function
deletes all nodes of a skiplist and the destructor first callsclear and then deletes the two
non-proper towers.

It would not do to copy the body ofclear into the destructor since∼skiplist uses the
trivial versions of the virtual functionsclearkeyandclear inf and hence does not know
how to destroy a key or inf. This is a problem which arises in the implementation of all
destructors; see Section 13.4.3 for a general discussion.

All three functions take linear expected time plus the time to copy or clearn keys and
informations.

〈constructors and related functions〉+�
skiplist& skiplist::operator=(const skiplist& L)

{ clear();

sl_item p = L.STOP->pred;

while (p!= L.header)

{ insert_at_item(header,p->key,p->inf,after);

p = p->pred;

}

return *this;

}

void skiplist::clear()

{ register sl_item p,q;

p = header->forward[0];

while(p!=STOP)

{ q = p->forward[0];

clear_key(p->key);

clear_inf(p->inf);

#ifdef SMEM

delete p->forward;

delete p;

#else

FREE_NODE(p);

#endif

p = q;

}

header->true_height = 0;

header->forward[0] = STOP;

STOP->pred= (sl_item) header;
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}

skiplist::~skiplist()

{ clear();

#ifdef SMEM

delete header->forward;

delete header;

delete STOP;

#else

FREE_HEADER(header);

FREE_NODE(STOP);

#endif

}

5.7.6 Search Operations
Skiplists offer a wide variety of search operations. We first give a fairly general search
function calledsearchand then derive the other search functions from it.Searchtakes a
key, an itemv and an integerh and returns a nodeq and an integerl. The nodev has height
at leasth andkeyis known to lie betweenv → key(exclusive) andv → forward[h] → key
(inclusive). In the formulation of this precondition we used our simplifying assumption that
the keys ofheaderandSTOPare−∞ and∞, respectively.Searchfinds the unique nodeq
such thatkeylies betweenq → pred→ key(exclusive) andq → key(inclusive). Ifkey is
equal toq → keythenl ≥ 0; otherwise,l < 0.

The principle underlyingsearchis simple. It maintains itemsp andq and a heightk,
k ≥ −1, such thatp’s height is at leastk + 1, q is the levelk + 1 successor ofp and
p → key< key≤ q → key. Initially k = h − 1. If k is −1 thenq is returned. Ifk ≥ 0 then
we search through levelk starting atp → forward[k] to determine the newp andq.

q = p->forward[k];

while (key > q->key) { p = q; q = p->forward[k]; }

The basic strategy can be slightly optimized as follows. Before making a comparison be-
tween keys we check whether the currentq has heightk (otherwise, it is already known
that key ≤ q → key). This optimization is worthwhile when a comparison between keys
is considerably more expensive than a comparison between integers. This is the case when
the comparison is made by callingcmpand it is not the case when the comparison is made
by the operator< for intsor doubles.

The expected running time ofsearchis O(1+ h) sinceh + 1 levels are visited and since
the expected time spent on each level is constant. The easiest way to see the latter fact is
to traverse the search path backwards and to recall that after following a constant expected
number of backward pointers a higher tower is reached.

We give three versions ofsearch, one calledgensearchand working for arbitrary key
type K , one calleddoublesearchand working only for keys of typedouble, and one called
int searchand only working for keys of typeint. Searchselects the appropriate version by
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switching on the value ofkeytypeid. A general discussion of this optimization strategy can
be found in Section 13.5.

〈search functions〉�
sl_item skiplist::search(sl_item v, int h, GenPtr key, int& l) const

{ switch (key_type_id()) {

case INT_TYPE_ID: return int_search(v,h,key,l);

case DOUBLE_TYPE_ID: return double_search(v,h,key,l);

default: return gen_search(v,h,key,l);

}

}

sl_item skiplist::gen_search(sl_item v, int h, GenPtr key, int& l) const

{ register sl_item p = v;

register sl_item q = p->forward[h];

l = 0;

#ifdef CHECK_INVARIANTS

assert(p->height == MaxHeight || cmp(key,p->key) > 0);

assert(q->height < 0 || cmp(key,q->key) <= 0);

#endif

if (q->height >= 0 && cmp(key,q->key) == 0) return q;

int k = h - 1;

int c = -1;

while (k >=0)

{ /* p->key < key < p->forward[k+1]->key and c = -1 */

q = p->forward[k];

while (k == q->height && (c = cmp(key,q->key)) > 0)

{ p = q;

q = p->forward[k];

}

if (c == 0) break;

k--;

}

l = k;

#ifdef CHECK_INVARIANTS

p = q->pred;

assert(p->height == MaxHeight || cmp(key,p->key) > 0);

assert(q->height < 0 || cmp(key, q->key) <= 0);

assert(l >= 0 && cmp(key,q->key) == 0 ||

( l < 0 && (q->height < 0 || cmp(key,q->key) < 0)));

#endif

return q;

}

In the versions ofsearchfor integer and double keys we perform the following optimiza-
tions: we avoid the call ofcmpand call the comparison operators<, ≤, =, . . . instead.
Moreover, we drop the comparisonk == q->height, as it does not pay for integer keys.
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〈search functions〉+�
sl_item skiplist::int_search(sl_item v, int h, GenPtr key, int& l) const

{ sl_item p = v;

sl_item q = p->forward[h];

l = 0;

int ki = LEDA_ACCESS(int,key);

if ( q->height >= 0 && ki == LEDA_ACCESS(int,q->key) ) return q;

int k = h - 1;

STOP->key = key;

while (k >= 0)

{ /* p->key < key <= p->forward[k+1]->key */

q = p->forward[k];

while ( ki > LEDA_ACCESS(int,q->key) )

{ p = q;

q = p->forward[k];

}

if ( ki == LEDA_ACCESS(int,q->key) && q != STOP ) break;

k--;

}

l = k;

#ifdef CHECK_INVARIANTS

p = q->pred;

assert(p->height==MaxHeight || ki>LEDA_ACCESS(int,p->key));

assert(q->height < 0 || ki <= LEDA_ACCESS(int,q->key));

assert(l >= 0 && ki == LEDA_ACCESS(int,q->key) ||

( l < 0 && (q->height<0 || ki<LEDA_ACCESS(int,q->key))));

#endif

return q;

}

We refrain from showing the version for double keys. For all other search functions we will
only show the generic version.

It is easy to derive the other search functions from the basic routinesearch. The call
locatesucc(k) returns the item〈k1, i〉 with k ≤ k1 andk1 minimal (nil if there is no such
item), locatepred is symmetric tolocatesucc, locate is synonymous tolocatesuccand
lookup(k) returns the item〈k, i〉 (nil if there is no such item). All operations in this section
take logarithmic time.

〈search functions〉+�
sl_item skiplist::locate_succ(GenPtr key) const

{ int l;

sl_item q = search(header,header->true_height,key,l);

return (q == STOP) ? 0 : q;

}

sl_item skiplist::locate(GenPtr key) const { return locate_succ(key); }

sl_item skiplist::locate_pred(GenPtr key) const

{ int l;

sl_item q = search(header,header->true_height,key,l);
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if (l < 0) q = q->pred;

return (q == header) ? 0 : q;

}

sl_item skiplist::lookup(GenPtr key) const

{ int k;

sl_item q = search(header,header->true_height,key,k);

return (k < 0) ? 0 : q;

}

5.7.7 Finger Searches
We describe four versions of finger search.

The first three versions take akeyand locate an itemq and an integerl such thatq →
pred → key < key ≤ q → keyandl ≥ 0 iff key = q → keyand run in timeO(logd),
O(log(n − d)), andO(log min(d, n − d)), respectively, ifq is thed-th item in a list ofn
items. We first show how to obtain the time boundsO(logd) and O(log(n − d)), respec-
tively.

To achieve the first bound we comparekeywith the key ofheader→ forward[k] for k
equal to 0, 1,. . . until a key at least as large askeyis found. When this is the case we start a
standard search at levelk from the header.

k = 0;

while ( k < true height )

{ if ( key <= header->forward[k]->key ) break;

k++;

}

search(header,k,key,l);

Since the expected maximal height among the firstd towers isO(logd) the expected max-
imal value ofk is O(logd) and the time bound follows.

In order to achieve the second bound we comparekeywith the key of the rightmost tower
qk of height at leastk for k equal to 0, 1,. . . until a key smaller thankey is found. When
this is the case we start a standard search at levelk from qk . We can findqk from qk−1 by
following an expected constant number of backward pointers.

k = 0;

q = STOP->pred;

while ( k < true height )

{ if ( key > q->key ) break;

k++;

while ( q->height < k ) q = q->backward;

}

search(q,k,key,l);

Since the expected maximal height among the lastn−d towers isO(log(n−d)) the expected
maximal value ofk is O(log(n − d)) and the time bound follows.

In order to obtain the minimum of both time bounds we perform the two searches simul-
taneously (also called dove-tailed), i.e., we merge the two loop bodies into one, and stop as
soon as one of the two searches tells us to stop.
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As in the case of standard searches we provide optimizations for keys of typeint or
double.

〈search functions〉+�
sl_item skiplist::finger_search_from_front(GenPtr key, int& l) const

{ switch (key_type_id()) {

case INT_TYPE_ID: return int_finger_search_from_front(key,l);

case DOUBLE_TYPE_ID: return double_finger_search_from_front(key,l);

default: return gen_finger_search_from_front(key,l);

}

}

sl_item skiplist::gen_finger_search_from_front(GenPtr key, int& l) const

{ sl_item q = STOP->pred;

int th = header->true_height;

if (th == -1) return STOP;

l = 0;

int k = 0;

int c1;

while ( k < th )

{ if ( cmp(key,header->forward[k]->key) <= 0 ) break;

k++;

}

return search(header,k,key,l);

}

and similarly

〈search functions〉+�
sl_item skiplist::gen_finger_search_from_rear(GenPtr key, int& l) const

{ sl_item q = STOP->pred;

int th = header->true_height;

if (th == -1) return STOP;

l = 0;

int k = 0;

while ( k < th )

{ if ( cmp(key, q->key) > 0 ) break;

k++;

while (k > q->height) q = q->backward;

}

return search(q,k,key,l);

}

and

〈search functions〉+�
sl_item skiplist::gen_finger_search(GenPtr key, int& l) const

{ sl_item q = STOP->pred;

int th = header->true_height;

if (th == -1) return STOP;

l = 0;
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int k = 0;

int c1,c2;

while ( k < th )

{ c1 = cmp(key,header->forward[k]->key);

c2 = cmp(key, q->key);

if ( c1 <= 0 || c2 > 0 ) break;

k++;

while (k > q->height) q = q->backward;

}

if (c1 <= 0)

return search(header,k,key,l);

else

return search(q,k,key,l);

}

The fourth version of finger search takes an itemv and akeyand returns an integerl and
an itemq such thatq → pred→ key< key≤ q → keyandl ≥ 0 iff key= q → key. It
runs in timeO(log min(d, n − d)) whered is the number of items betweenv andq. The
search is performed in the skiplist containingv and not in the skiplist which is given by
this; recall the discussion in the paragraph preceding Section 5.7. This implies that we must
not use the variablesheader, STOP, nor trueheight in the program below. However, once
we have determined the STOP node or the header node of the skiplist containingv (recall
that STOP nodes are the only towers with negative height and that header nodes are the
only towers with heightMaxHeight) we can find the skiplist containingv as follows: if p
is the header node of the skiplist containingv then((large item) p) → myseqis the skiplist
containingv and if p is the STOP node of the skiplist containingv then p → backwardis
the corresponding header node and we are back to the situation where we know the header
node.

The strategy used byfingersearchis simple. Ifv is either the header or the STOP node
of the skiplist containingv then we simply call the first version of finger search. So assume
otherwise.

Assume first thatkeyis larger than the key ofv. Fork ≥ 0 let pk be the rightmost tower
to the left of or equal tov that has heightk or more. We find the minimalk such that either
pk is a header node orpk → forward[k] is a STOP node orkeylies between the key ofpk

and pk → forward[k]. In the first case we finish the search by calling the first version of
finger search and in the last two cases (note that the second case is really a special case of
the third case under the convention that the key of STOP is∞) we start a standard search
from pk at levelk. If keyis smaller than the key ofv, we use the symmetric strategy.

The running time offingersearchis readily determined. Assume for simplicity thatq
is to the right ofv (the other case being symmetric) and thatv is the n1-th item in the
sequence. Thenv and q split the list into three parts of lengthn1, n2 = d, andn3 =
n − n1 − n2, respectively. Usehi to denote the maximal height of a tower in thei -th part.
Then E [hi ] = logni + O(1). The maximal value assumed by the variablek is equal to
h0 = min(h1, h2) = log min(d, n − d) + O(1). If the backward walk reaches the header
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thenh1 ≤ h2 and the second part of the search is the dove-tailed search of the preceding
section that takes time min(max(h1, h2), h3)) = min(h2, h3) = log min(d, n−d)+O(1). If
the backward walk does not reach the header then the second part of the search is a standard
search that takes timeO(h0) as well.

As before we have three versions offingersearch, one for general keys, one for keys of
type int, and one for keys of typedouble.

〈search functions〉+�
sl_item skiplist::gen_finger_search(sl_item v, GenPtr key, int& l) const

{ l = 0;

sl_item p = v;

if ( p->height < 0 ) p = p->backward;

// if p was a STOP node then it is a header now

if ( p->height == MaxHeight )

return ((large_item) p)->myseq->finger_search(key,l);

int dir = cmp(key, v->key);

if ( dir == 0 ) return v;

int k = 0;

int c ;

if (dir > 0)

{ while ( p->height < MaxHeight && p->forward[k]->height >= 0 &&

(c = cmp(key,p->forward[k]->key )) >= 0 )

{ if ( c == 0 ) return p->forward[k];

k++;

while ( k > p->height ) p = p->backward;

}

if ( p->height == MaxHeight )

return ((large_item)p)->myseq->finger_search(key,l);

}

else

{ while ( p->height < MaxHeight && p->forward[k]->height >= 0 &&

(c = cmp(key, p->key)) <= 0 )

{ if ( c == 0 ) return p;

k = p->height;

p = p->backward;

}

if (p->forward[k]->height < 0 )

{ p = p->forward[k]->backward;

return ((large_item)p)->myseq->finger_search(key,l);

}

}

#ifdef CHECK_INVARIANTS

assert(p->height == MaxHeight || cmp(key, p->key) > 0);

assert(p->forward[k]->height < 0 ||

cmp(key, p->forward[k]->key) < 0);

#endif

return search(p,k,key,l);

}
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. . .. . . . . . . . .

p qp q

Figure 5.21 Insertion of a towerq after a towerp. All pointers that are “intersected” by the new
tower are redirected.

5.7.8 Insertions and Deletions
We discuss the various procedures to insert into and to delete from a skiplist.

The procedureinsertitemat item(q, p, dir) inserts the itemq after and beforep, respec-
tively, as prescribed bydir. This requires to redirect pointers as shown in Figure 5.21. The
trueheightof the header is also adjusted to the maximum of the old height and 1 plus the
height of the new item.

The running time ofinsertitemat item is proportional to the height of the new item. The
expected height of the new item is constant.

〈insert and delete functions〉�
void skiplist::insert_item_at_item(sl_item q, sl_item p, int dir)

{ if (dir == before) p = p->pred;

/* insert item q immediately after item p */

sl_item x;

q->pred = p;

p->forward[0]->pred = q;

for (int k = 0; k <= q->height; k++ )

{ while (k > p->height) p = p->backward;

x = p->forward[k];

if (p->height == MaxHeight && x->height < 0 )

{/* we have reached header and STOP and need to

increase true_height */

((large_item) p)->true_height = k + 1;

p->forward[k+1] = x;

}

q->forward[k] = x;

p->forward[k] = q;

if ( x->height == k ) x->backward = q;

}

q->backward = p;

}

The functioninsertat item(p, key, inf ) modifies the skiplist in the vicinity of itemp. If
p’s key is equal tokey then its information is changed toinf . Otherwise a new item is
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created and inserted before or afterp as dictated bykey. The height of the new node is
chosen randomly by a callrandomLevel( ). The expected running time is constant.

〈insert and delete functions〉+�
sl_item skiplist::insert_at_item(sl_item p, GenPtr key, GenPtr inf)

{ sl_item q;

if (p->height < 0) p = p->pred;

else

{ if ( p->height < MaxHeight )

{ int c = cmp(key,p->key);

if (c == 0)

{ clear_inf(p->inf);

copy_inf(inf);

p->inf = inf;

return p;

}

if ( c<0 ) p = p->pred;

}

}

int k = randomLevel();

if ( k >= MaxHeight ) k = MaxHeight - 1;

#ifdef SMEM

q = new skiplist_node;

q->forward = new sl_item[k+1];

q->height = k;

#else

NEW_NODE(q,k);

#endif

copy_key(key);

copy_inf(inf);

q->key = key;

q->inf = inf;

insert_item_at_item(q,p,after);

return q;

}

int skiplist::randomLevel()

{ int height = 0;

int b = 0;

if ( prob == 0.25 )

{ while ( b == 0 )

{ b = randomBits&3; // read next two random bits

randomBits >>= 2;

randomsLeft -= 2;

if ( b == 0 ) height++;

// increase height with prob 0.25

if (randomsLeft < 2) fill_random_source();

}

}

else // user defined prob.

{ double p;
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rand_int >> p;

while ( p < prob )

{ height++;

rand_int >> p;

}

}

return height;

}

There is also a version ofinsertat itemwhich inserts before or afterp as directed bydir.
The expected running time is again constant.

〈insert and delete functions〉+�
sl_item skiplist::insert_at_item(sl_item p,

GenPtr key, GenPtr inf, int dir)

{ sl_item q;

int k = randomLevel();

#ifdef SMEM

q = new skiplist_node;

q->forward = new sl_item[k+1];

q->height = k;

#else

NEW_NODE(q,k);

#endif

copy_key(key);

copy_inf(inf);

q->key = key;

q->inf = inf;

insert_item_at_item(q,p,dir);

return q;

}

This completes the discussion of the insertion procedures which insert at a given item.
Insert(k, i) inserts a new item〈k, i〉 or changes the information of the item with keyk (if

there is such an item) anddel(k) removes the item with keyk.

〈insert and delete functions〉+�
sl_item skiplist::insert(GenPtr key, GenPtr inf)

{ int k;

sl_item p = search(header,header->true_height,key,k);

if ( k >= 0 )

{ clear_inf(p->inf);

copy_inf(inf);

p->inf = inf;

return p;

}

p = insert_at_item(p,key,inf,before);

return p;

}
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Removeitem removes an item anddel item removes an item, frees its storage and also
adjusts the height of the skiplist if required. The first function is used in the second and in
reverseitems. A call reverseitems(p, q) with p equal or left ofq reverses the subsequence
with endpointsp andq.

Reverseitemhas expected running timeO(d), whered is the length of the subsequence
to be reversed. The other functions run in constant expected time.

〈insert and delete functions〉+�
void skiplist::remove_item(sl_item q)

{

if (q->height == MaxHeight || q->height < 0)

error_handler(1,"cannot remove improper item");

sl_item p = q->backward;

sl_item x;

for(int k = q->height; k >= 0; k--)

{ while ( p->forward[k] != q ) p = p->forward[k];

x = q->forward[k];

p->forward[k] = x;

if ( x->height == k ) x->backward = p;

}

x->pred = p;

}

void skiplist::del_item(sl_item q)

{

if (q->height == MaxHeight || q->height < 0)

error_handler(1,"cannot delete improper item");

remove_item(q);

clear_key(q->key);

clear_inf(q->inf);

sl_item p = q->forward[q->height];

#ifdef SMEM

delete q->forward;

delete q;

#else

FREE_NODE(q);

#endif

if ( p->height < 0 )

{ large_item r = (large_item) p->backward;

int& h = r->true_height;

while( h > 0 && r->forward[h - 1] == p) h--;

}

}

void skiplist::del(GenPtr key)

{ int k;

sl_item q = search(header,header->true_height,key,k);

if ( k>=0 ) del_item(q);

}

void skiplist::reverse_items(sl_item p, sl_item q)

{ sl_item r;
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while ( p != q )

{ r = p;

p = p->forward[0];

remove_item(r);

insert_item_at_item(r,q,after);

}

}

5.7.9 Concatenate, Split, Merge and DeleteSubsequence
We discuss concatenation, splitting, merging, and the deletion of subsequences.

Concatenation: We describe how to concatenate two skiplists of sizen1 andn2, respec-
tively, in time

O(log min(n1, n2)).

Assume that the two lists to be concatenated are given bythisandS1. We first make sure
that this is the higher list (by swappingheaderandSTOPof this andS1, if necessary) and
then appendS1to either the front or the rear ofthis. Assume that we need to appendS1to
the rear ofthis, the other case being symmetric.

There are two strategies for performing the concatenation. The first strategy places the
skiplists next to each other and then removes the STOP node of the left list and the header
of the second list. The work required is proportional to the height of the higher list.

The second strategy placesS1between the last element ofthisand the STOP node ofthis
and then the header node and the STOP node ofS1. The work required is proportional to
the smaller height.

We use the second strategy. The details are as follows. For anyk less than the height of
S1thek-th forward pointer out of the rightmost tower inthisof height at leastk is redirected
to the first item inS1of height at leastk and thek-th forward pointer out of the rightmost
tower inS1of height at leastk is redirected to the STOP node ofthis, see Figure 5.22.

The running time ofconcis proportional to the smaller of the two heights and is therefore
O(log min(n1, n2)).

〈concatenate and related functions〉�
void skiplist::conc(skiplist& S1, int dir)

{ if (header->true_height < S1.header->true_height)

{ leda_swap(header->myseq,S1.header->myseq);

leda_swap(header,S1.header);

leda_swap(STOP,S1.STOP);

dir = ((dir == after) ? before : after);

}

if (S1.STOP->pred == S1.header) return;

/* S1 is non-empty and since height >= S1.height this is

also non-empty */

if (dir == after)
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S S1 S S1

rightmost
proper tower inS

or

Figure 5.22 Concatenation of two skiplistsS andS1. S1 is assumed to have smaller height and
is appended at the rear ofS. Only the header and STOP nodes of the lists are shown; their
trueheightis indicated as the height of the corresponding rectangles. The left part illustrates the
first strategy and the right part illustrates the second strategy. The shaded towers are removed.

{ sl_item p = STOP->pred;

sl_item q = S1.STOP->pred;

assert(cmp(p->key, S1.header->forward[0]->key) < 0);

STOP->pred = q;

S1.header->forward[0]->pred = p;

for (int k = 0; k < S1.header->true_height; k++)

{ /* p and q are the rightmost items of height at

least k in this and S1, respectively */

sl_item r = S1.header->forward[k];

p->forward[k] = r;

if ( r->height == k ) r->backward = p;

q->forward[k] = STOP;

while (p->height == k) p = p->backward;

while (q->height == k) q = q->backward;

}

}

else

{ sl_item q = S1.STOP->pred;

assert(cmp(q->key, header->forward[0]->key) < 0);

S1.header->forward[0]->pred= (sl_item) header;

header->forward[0]->pred = q;

for (int k = 0; k < S1.header->true_height; k++)

{ // q is the rightmost item of height at least k in S1

sl_item r = header->forward[k];

q->forward[k] = r;

if (r->height == k) r->backward = q;

r = S1.header->forward[k];

header->forward[k] = r;

if (r->height == k) r->backward= (sl_item) header;

while (q->height == k) q = q->backward;

}

}

S1.header->true_height = 0;
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S1.STOP->pred = (sl_item) S1.header;

S1.header->forward[0] = S1.STOP;

#ifdef CHECK_INVARIANTS

this->check_data_structure("this in conc");

check_data_structure(S1,"S1 in conc");

#endif

}

We need to explain the last call ofcheckdatastructure. In deletesubsequencewe callconc
with an argumentS1that is locally defined withindeletesubsequence. ThisS1is a skiplist
but not asortseqand hence its virtual functions have never been redefined. We therefore
usethisas the implicit argument of the last call ofcheckdatastructureand in this way give
it access to the redefined versions of the virtual functions.

Split: S.split at item(p, S1, S2, dir) splits the skiplist containingp before or after itemp
into listsS1andS2as directed bydir in time proportional to the logarithm of the shorter
result. We useP to denote the skiplist containingp. Clearly,S1andS2must be distinct,
but one of them may be equal toP . If both of them are different fromP then P is empty
after the split. The primary argumentS may be any skiplist. It must have the same type as
P, S1, andS2.

A method whose running time is proportional to the logarithm of the size ofP is easy to
describe. We simply erect two new improper towers before or afterp.

In order to obtain a running time that is proportional to the height of the smaller result
list, we have to reuseheaderand STOPof P for the larger output list. We proceed as
follows. We first determine the lower of the two outputs by simultaneously walking from
p and its successor (this assumesdir == after) to headerandSTOPuntil one of the two
walks reaches its destination. Letmaxlev be the maximal level reached, i.e., both sublists
contain a tower of heightmaxlevand for one of the sublists this is the maximal height.

Assume firstmaxlev is the maximal height of a tower inS1, i.e., in the left sublist. Then
1 + maxlev is the height ofS1andheight is the height ofS2after the split. We want to
reuseheaderandSTOPof P for S2. We interchangeheaderandSTOPof S2and P (this
makesS2the input list and, ifP andS2are distinct, makesP empty) and then removeS1
from S2.

To removeS1 from S2 we do the following for eachk, 0 ≤ k ≤ maxlev. Let p k be
the rightmost item inS1of height at leastk. Thek-th forward pointer out ofS1.headeris
redirected to the destination of thek-th forward pointer out ofS2.header, thek-th forward
pointer out ofS2.headeris redirected to the destination of thek-th forward pointer out of
p k and thek-th forward pointer out ofp k is redirected toS1.STOP.

Assume next thatmaxlev is the maximal height of a tower inS2. Then the height ofS2
is 1+ maxlev after the split andheight is the height ofS1after the split. We interchange
headerandSTOPof S1and P and then removeS2 from S1 in a way similar to the one
described above.

The running time isO(maxlev) and, if n1 and n2 denote the sizes of the two parts,
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respectively, then the expected value ofmaxlev is

O(log min(n1, n2)).

〈concatenate and related functions〉+�
void skiplist::split_at_item(sl_item p,skiplist& S1,

skiplist& S2,int dir)

{ if (dir == before) p = p->pred;

sl_item p1 = p;

sl_item p2 = p->forward[0];

int max_lev = -1;

while ( p1->height < MaxHeight && p2->height >= 0 )

{ /* p1 and p2 are proper towers of height

larger than max_lev */

max_lev++;

while (p1->height == max_lev) p1 = p1->backward;

while (p2->height == max_lev) p2 = p2->forward[max_lev];

}

/* we have seen proper towers of height max_lev on both

sides of the split and either p1 or p2 is a sentinel */

large_item pheader;

if (p1->height == MaxHeight)

pheader = (large_item) p1;

else

pheader = (large_item) p2->backward;

skiplist* Pp = pheader->myseq;

if (Pp != &S1) S1.clear();

if (Pp != &S2) S2.clear();

if (p1->height == MaxHeight)

{ /* we reuse pheader and pSTOP for S2 */

if (Pp != &S2)

{ leda_swap(Pp->header->myseq, S2.header->myseq);

leda_swap(Pp->header,S2.header);

leda_swap(Pp->STOP,S2.STOP);

}

S1.header->true_height = 1+max_lev;

p1 = p;

for (int k =0; k <= max_lev; k++)

{ // p1 is the rightmost item in S1 of height at least k

sl_item q = S2.header->forward[k];

S1.header->forward[k] = q;

if (q->height == k) q->backward = (sl_item) S1.header;

S2.header->forward[k] = p1->forward[k];

if (p1->forward[k]->height == k)

p1->forward[k]->backward = (sl_item) S2.header;

p1->forward[k] = S1.STOP;

while (k == p1->height) p1 = p1->backward;

}

S1.header->forward[max_lev + 1] = S1.STOP;
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/* the next line sets the predecessor of S1.STOP

correctly if S1 is non-empty; if it is empty

the last line corrects the mistake */

S1.STOP->pred = p;

S2.header->forward[0]->pred = (sl_item) S2.header;

S1.header->forward[0]->pred = (sl_item) S1.header;

}

else

{ /* we want to reuse pheader and pSTOP for S1 */

if (Pp != &S1)

{ leda_swap(Pp->header->myseq,S1.header->myseq);

leda_swap(Pp->header,S1.header);

leda_swap(Pp->STOP,S1.STOP);

}

S2.header->true_height = 1 + max_lev;

p1 = p;

p2 = S1.STOP->pred;

for (int k =0; k <= max_lev; k++)

{ /* p1 and p2 are the rightmost items in S1 and S2

of height at least k, respectively */

sl_item q = p1->forward[k];

S2.header->forward[k] = q;

if (q->height == k) q->backward = (sl_item) S2.header;

p1->forward[k] = S1.STOP;

p2->forward[k] = S2.STOP;

while (k == p1->height) p1 = p1->backward;

while (k == p2->height) p2 = p2->backward;

}

S2.header->forward[max_lev + 1] = S2.STOP;

/* the next line sets the predecessor of S2.STOP

correctly if S2 is non-empty; if it is empty then

the next line corrects the mistake */

S2.STOP->pred = S1.STOP->pred;

S2.header->forward[0]->pred = (sl_item) S2.header;

S1.STOP->pred = p;

S1.header->forward[0]->pred = (sl_item) S1.header;

}

if (Pp != &S1 && Pp != &S2)

{ /* P is empty if distinct from S1 and S2 */

Pp->header->forward[0] = Pp->STOP;

Pp->STOP->pred = Pp->STOP->backward =

(sl_item) Pp->header;

Pp->header->true_height = 0;

}

#ifdef CHECK_INVARIANTS

this->check_data_structure("this in split");

Pp->check_data_structure("P in split");

check_data_structure(S1,"S1 in split");

check_data_structure(S2,"S2 in split");

#endif

}
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Merge: We describe how to merge two skiplists of lengthn1 andn2, respectively, in time
O(
(n1+n2

n1

)
).

Assume that the lists to be merged as given bythis and byS1. We first determine the
shorter list (by stepping through both lists in lock-step fashion and stopping as soon as the
end of the shorter list is reached) and make sure thatthis is the larger list (by interchanging
headerandSTOPof this andS1otherwise). We then erect a finger at the first item ofthis
and consider the items ofS1one by one. We locate the item by a finger search, insert the
item intothisand advance the finger to the point of insertion.

For the running time analysis we assume without loss of generality thatn1 ≤ n2. For
i , 1 ≤ i ≤ n1, let di be the stride of the finger search when inserting thei -th item of S1
into this. Thenn2 = ∑

i di and the total running time isO(n1 + ∑
i logdi). This sum is

maximal if all thedi ’s are equal ton2/n1 and is hence bounded by

O(n1(1 + log(n2/n1))) = O(

(
n1 + n2

n1

)
).

〈concatenate and related functions〉+�
void skiplist::merge(skiplist& S1)

{ sl_item p= (sl_item) header;

sl_item q = S1.header;

while ( p->height >= 0 && q->height >= 0 )

{ p = p->forward[0];

q = q->forward[0];

}

if (q->height >= 0)

{ /* swap if this is shorter than S1 */

leda_swap(header->myseq,S1.header->myseq);

leda_swap(header,S1.header);

leda_swap(STOP,S1.STOP);

}

/* now S1 is at most as long as this */

sl_item finger= (sl_item) header;

p = S1.header->forward[0];

while (p->height >= 0)

{ sl_item q = p->forward[0];

int l;

finger = finger_search(finger,p->key,l);

if (l >= 0) error_handler(1,"equal keys in merge");

insert_item_at_item(p,finger,before);

finger = p; // put finger at newly inserted item

p = q;

}

S1.header->true_height = 0;

S1.STOP->pred = (sl_item) S1.header;

S1.header->forward[0] = S1.STOP;

#ifdef CHECK_INVARIANTS

check_data_structure("this in merge");



226 Advanced Data Types

S1.check_data_structure("S1 in merge");

#endif

}

Deletion of Subsequences:We describe how to delete a subsequence from a skiplist.
More precisely, ifa andb are items in a listP with a left of or equal tob then the call
S.deletesubsequence(a, b, S1) deletes the subsequence starting ata and ending atb from
P and assigns it toS1. The running time isO(log min(n1, n − n1)) wheren andn1 are the
length ofP andS1respectively.S only provides the type.

The itemsa andb split P into three parts. We first determine the lowest of the parts by
simultaneously walking froma → predand fromb to the left and fromb → forward[0] to
the right until we reachheader, a tower left ofa, or STOP, respectively.

If either the first or the last subsequence is lowest then the operation can be reduced to
two splits and one conc. If what is to becomeS1 is lowest we directly insertS1’s header
andSTOPbeforea and afterb, respectively.

Let hi be the height of thei -th part. Then

E[h2] = O(logn1), E[h1] = O(log(n − n1)), and E[h3] = O(log(n − n1)).

The time to determine the lowest part is min(h1, h2, h3). If h2 is smallest then the running
time of actually deleting the subsequence isO(h2). If h2 is not the smallest then the times
for the two splits and one conc are min(max(h1, h2), h3)), min(h1, h2), and min(h1, h3), re-
spectively. All three quantities are bounded by min(h2, max(h1, h3)). The expected running
time is therefore

O(log min(n1, n − n1))

in both cases.

〈concatenate and related functions〉+�
void skiplist::delete_subsequence(sl_item a,

sl_item b,skiplist& S1)

{ S1.clear();

sl_item p1 = a->pred;

sl_item p2 = b;

sl_item p3 = b->forward[0];

int k = -1;

while ( p1->height < MaxHeight && p3->height >= 0 &&

p2->height < MaxHeight && cmp(p2->key,a->key) >= 0 )

{ k++;

while ( p1->height == k) p1 = p1->backward;

while ( p2->height == k) p2 = p2->backward;

while ( p3->height == k) p3 = p3->forward[k];

}

if (p1->height == MaxHeight || p3->height < 0)

{ if (p1->height < MaxHeight) p1 = p3->backward;

skiplist* Pp = ((large_item) p1)->myseq;
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skiplist S2,S3;

split_at_item(b,S2,S3,after);

split_at_item(a,*Pp,S1,before);

Pp->conc(S3,after);

return;

}

// the middle list is the lowest and we have to do some work

p1 = a->pred;

p2 = b;

/* correct predecessor pointers */

a->pred = (sl_item) S1.header;

S1.STOP->pred = b;

b->forward[0]->pred = p1;

/* height of S1 */

S1.header->true_height = 1 + k;

S1.header->forward[1+k] = S1.STOP;

for (int i = 0; i <= k; i++)

{ /* p1 and p2 are the rightmost items of height at least

i in the first and second part, respectively */

sl_item q = p1->forward[i];

S1.header->forward[i] = q;

if (q->height == i) q->backward = S1.header;

q = p2->forward[i];

p1->forward[i] = q;

if (q->height == i) q->backward = p1;

p2->forward[i] = S1.STOP;

while (i == p1->height) p1 = p1->backward;

while (i == p2->height) p2 = p2->backward;

}

}

It takes a lot of trivial stuff to complete the implementation ofskiplist. We do not include it
here to save space.

5.7.10 Member Functions of Classsortseq
The purpose of the file LEDAROOT/incl/LEDA/sortseq.h is to define the abstract data type
classsortseqand to implement the abstract functions in terms of the concrete functions.
We follow the general technique discussed in Section 13.4. Every abstract function (e.g.
lookup) calls the concrete function with the same name after converting any arguments of
type K or I to a generic pointer (by means of functionledacast) and after converting any
argument of typesortseq<K , I> to a skiplist (by a cast). Similarly, any result of typeK
or I is converted back from generic pointer (by means of theLEDAACCESSmacro). Two
examples should suffice to show the principle.

K key(seq item it) const { return LEDA ACCESS(K,IMPL::key(it)); }

seq item lookup(K k) const { return IMPL::lookup(leda cast(k)); }



228 Advanced Data Types

5.7.11 A Final Word
We have given the implementation of the data typesortseq. We glossed over some of the
trivial stuff. The complete source code can be found in the LEDA source code directory.

Exercises for 5.7
1 Implement operationsunion, intersection, setminus, and setdifferencefor sorted se-

quences. Start from the implementation ofmerge.
2 Add the implementation parameter mechanism to the typesortseq<K , I>. Follow the

construction of the typesortseq<K , I, IMPL>.
3 Add the finger search operations to theab-tree implementation or the randomized search

tree implementation of sorted sequences. Inspect [Meh84a] and [AS89] for the relevant
theory.

5.8 An Application of Sorted Sequences: Jordan Sorting

LetC be a Jordan curve in the plane16 that is nowhere tangent to thex-axis. Letx1, x2, . . . , xn

be the abscissas of the intersection points ofC with thex-axis, listed in the order the points
occur onC (see Figure 5.23). Call a sequencex1, x2, . . . , xn of real numbers obtainable in
this way aJordan sequence. The reader should convince himself at this point that the se-
quence 1, 3, 4, 2 is not a Jordan sequence. We describe a linear time algorithm to recognize
and sort Jordan sequences due to Hoffmann et al. [HMRT85]. The Jordan demo allows you
to exercise the algorithm.

As a sorting algorithm,Jordansort is not competitive with general purpose sorting al-
gorithms, like quicksort and mergesort, despite its linear running time. We include the
Jordansort program in the book as an example of how much LEDA simplifies the imple-
mentation of complex algorithms.

The Jordan sorting problem arises in the following context. Suppose we are given a
simple polygon (as a sequence of edges) and a line and are asked to compute the points of
intersection in the order they occur on the line. A traversal of the polygon produces the
intersections in the order they occur on the polygon. Sorting the sequence of intersections
produces the order on the line.

A Jordan sequence together with its intersections with thex-axis gives rise to two nested
sets of parentheses, simply cut the plane at thex-axis into two half-planes (see Figure 5.24).
We call a matching pair of parentheses abracket. A nested set of brackets gives rise to an
ordered forest in a natural way. Each bracket corresponds to a node of the tree and the
children of a node correspond to the brackets directly nested within a bracket. The ordering
of the children of a bracket corresponds to the left to right ordering of the subbrackets. We
can turn the ordered forest into a tree by adding a fictitious bracket(−∞, +∞). Figure 5.25

16 A Jordan curve is a curve without self-intersections, i.e., a continuous injective mapping from the unit interval
into the plane.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 5.23 A Jordan curve and its intersections with thex-axis: The curve intersects thex-axis
21 times. We assumed for the drawing that the abscissas of the intersections are the integers 1 to
21. As the curve is traversed starting at 6 the sequence 6, 1, 21, 13, 12, 7, 5, 4, 3, 2, 20, 18, 17,
14, 11, 10, 9, 8, 15, 16, 19 is obtained.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

(a)

(b)

Figure 5.24 The nested parentheses corresponding to the Jordan curve of Figure 5.23; each pair
of parentheses is drawn as a half-circle: (a) The parentheses corresponding to the upper
half-plane; (b) The parentheses corresponding to the lower half-plane.

shows the ordered trees corresponding to the brackets of Figure 5.24. We call these trees
the lowerand theupper tree, respectively.

To sort a Jordan sequencex1, x2, . . . , xn we process the numbersxi in increasing order
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Figure 5.25 The upper and lower tree for the Jordan curve of Figure 5.23. The smaller and
larger element of each bracket is on either side of the corresponding tree node.

on i , constructing three objects simultaneously: the sorted list of the numbers so far pro-
cessed, and the upper and lower tree of the brackets corresponding to the numbers so far
processed. Figure 5.26 shows the state of the algorithm after having processed number 8 in
our example.

Initially, the upper and the lower tree consist of the bracket(−∞, +∞) and the initial
sorted list is−∞, x1, +∞. We also assume for concreteness that the curveC crosses the
x-axis from bottom to top atx1.

Assume now that we have processedx1, . . . , xi for somei ≥ 1 and want to processxi+1

next. Assume for concreteness that the crossing atxi is from top to bottom. So we have to
insert a bracket with endpointsxi andxi+1 into the lower tree. In our running example this
is the bracket (8,15). Letli andri with li < xi < ri be the two neighbors ofxi in the sorted
list; if one of them is equal tox1 and we insert into the lower tree then we take the neighbor
in distance two. In our example we haveli = 7 andri = 9. Letli be the bracket in the lower
tree containingli and letri be the bracket containingri . In our example we haveli = (5, 7)

andri = (9, 10). We now distinguish cases.
Assume first thatli is equal tori , i.e., (li , ri) is a bracket. Ifxi+1 does not lie betweenli

andri then we abort since the sequence is not Jordan. Ifxi+1 lies betweenli andri then we
make the bracket(min(xi , xi+1), max(xi , xi+1)) the single child of(li , ri) and insertxi+1 at
the appropriate position into the sorted list.

Assume next thatli is not equal tori . Then one of the two brackets, call itTi , does not
containxi . We locatexi+1 in the ordered sequence of siblings ofTi . Two cases can occur:
eitherxi+1 is contained in one of the siblings ofTi or it is not. If xi+1 is contained in a
sibling of Ti then we abort since the sequence is not Jordan. Ifxi+1 is not contained in a
sibling of Ti then we change the lower tree as follows. We create a new node corresponding
to bracket(min(xi , xi+1), max(xi , xi+1)), make all siblings ofTi that are enclosed in the
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∞−∞
(c)

(a)

(b) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 17 18 20 21

Figure 5.26 (a) The Jordan curve after reaching point 8. (b) The sorted sequence of points
processed so far. (c) The lower and upper tree.

new bracket children of the new bracket, and add the new bracket to the list of siblings of
Ti . We also insertxi+1 at the appropriate position into the sorted list of numbers processed
so far.

In our example neitherli nor ri containsxi and so either one of them can beTi . The
ordered list of siblings ofTi is (3, 4), (5, 7), (9, 10), (11, 14), (17, 18) and number 15 lies
between brackets(11, 14) and(17, 18). So we make(9, 10) and(11, 14) children of the
new bracket(8, 15) and let(8, 15) take their place in the list of children of bracket(2, 20).
We also insert 15 between 14 and 17 into the sorted list of numbers processed so far. Fig-
ure 5.27 shows the lower tree after inserting the bracket(8, 15).

We proceed to describe the implementation of a procedure
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43 75 158 1817

109 1411

Figure 5.27 The lower tree after inserting the bracket (8,15).

bool Jordan sort(const list<double>& In, list<double>& Out,

window* Window = 0);

It takes a sequenceIn of doubles and tests whether the sequence is Jordan. If so, it returns
the sorted output sequence inOut. If the third argument is non-nil then the execution of
the algorithm is animated inWindow. We define three files: the file Jordan.h contains the
declaration of procedureJordansort, the file Jordan.c contains its implementation, and the
file Jordandemo.c contains a demo. The latter file is not shown in the book, but can be
found in LEDAROOT/demo. It includes Jordan.c as a subfile.

〈Jordan.h〉�
#include <LEDA/list.h>

class window;

bool Jordan_sort(const list<double>&, list<double>&, window* Window = 0);

The global structure of Jordan.c is as follows:

〈Jordan.c〉�
#include <LEDA/list.h>

#include <LEDA/window.h>

#include <LEDA/sortseq.h>

〈Jordan.h〉
〈global variables〉
〈data structure〉
〈global functions〉
〈procedure Jordan sort〉

As outlined above, we construct three data structures simultaneously: the sorted listL of
the intersections processed so far and the upper and lower tree of brackets. We define
appropriate classes. While reading these class definitions the reader may want to inspect
Figure 5.28; it shows how the subtree of the upper tree rooted at the bracket(7, 12) is
represented.
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7 8 9 10 11 12

8 10

7

L

upper tree

Figure 5.28 The representation of the subtree of the upper tree rooted at the bracket(7, 12).
This bracket contains subbrackets(8, 9) and(10, 11). The items (=Intersections) of the listL
are shown as rectangular boxes with three fields and brackets are shown as rectangular boxes
with five fields. Solid lines correspond to pointers. Each intersection points to the bracket
containing it which in turn points back to the intersection. Each bracket contains achildrenseq.
Thechildrenseqcontained in the bracket(7, 12) is shown as a dotted triangle. It has two items
corresponding to the two subbrackets(8, 9) and(9, 10). The key of each item is a pointer to the
subbracket and each subbracket stores inposamongsibsthe item representing it in the
childrenseqof its parent. This allows, for example, the bracket(8, 9) to find the bracket
(10, 11), namely ifb is a pointer to the former bracket thenb → posamongsibsis an item in the
childrenseqof bracket(7, 12), and the successor of this item is the item corresponding to
(10, 11).

〈data structure〉�
class intersection;

typedef intersection* Intersection;

class bracket;

typedef bracket* Bracket;

list<Intersection> L;

We defined the listL as a list of pointers to intersections rather than a list of intersections
as this will avoid frequent copying of intersections. Each intersection needs to know the
bracket containing it in either tree. Therefore, an intersection contains its abscissa (adouble)
and pointers to the brackets in the two trees containing it. The constructor constructs an
intersection with a particularx-coordinate.

〈data structure〉+�
class intersection{

public:

double x;

Bracket containing_bracket_in[2];

intersection(double xcoord)

{ x = xcoord;

containing_bracket_in[upper] = nil;

containing_bracket_in[lower] = nil;

}

};
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A node of either tree corresponds to a bracket. A bracket needs to know its two endpoints
(as items inL), its position among its siblings (aseqitem), and its sorted sequence of sub-
brackets (asortseq<Bracket, int>). We also store thex-coordinate of the left endpoint of the
bracket. In order to save ink we usechildrenseqas an abbreviation forsortseq<Bracket, int>.
The information typeint in childrenseqis irrelevant.Childrenseqsneed to be able to com-
pare brackets. Brackets are compared by comparing thex-coordinates of their left end-
points. Because of the circularity (the classbracketneeds to know aboutchildrenseqand
childrenseqneeds a functioncomparefor Brackets) we declarecompareat the beginning
of the next program chunk and define it at its end.

Brackethas two constructors. The first constructor takes two itemsa and b in L and
the indicatorsideand constructs a bracket with endpointsa and b. The left endpoint is
the endpoint with the smallerx-coordinate. Itsx-coordinate is stored inleft x. The list item
corresponding to the left endpoint is stored inendpt[left] and the appropriate reverse pointer
is stored in the list item. The same holds true for the right endpoint. Thechildrenand the
posamongsibsfields will be filled later.

The second constructor initializes onlyleft x. It is used to convert anx-coordinate into a
bracket so that we can search17 for thex-coordinate in achildrenseq.

A bracket contains a numberx , if x lies between the abscissa of the endpoints of the
bracket.

〈data structure〉+�
int compare(const Bracket&,const Bracket&);

typedef sortseq<Bracket,int> children_seq;

class bracket{

public:

double left_x;

list_item endpt[2];

children_seq children;

seq_item pos_among_sibs;

bracket(list_item a, list_item b, SIDE side)

{ if (L[a]->x > L[b]->x) leda_swap(a,b);

left_x = L[a]->x;

endpt[left] = a;

L[a]->containing_bracket_in[side] = this;

endpt[right] = b;

L[b]->containing_bracket_in[side] = this;

}

bracket(double x){ left_x = x; }

bool contains(double x)

{ return ( L[endpt[left]]->x < x && x < L[endpt[right]]->x ); }

17 The key type ofchildrenseqis Bracketand hence we can only search for aBracketin achildrenseq. We will
have to search for adoubleand can do so only by converting thedoubleinto abracket. This slight inconvenience
would not arise if the search functions in asortseq<K , I> would use a comparison function
compare(constK & , const K1&) where the second argument type is allowed to be different from the first and in
this way allowed to search for any object that can be compared with the keys of the sorted sequence.
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};

int compare(const Bracket & b1,const Bracket & b2)

{ return compare(b1->left_x,b2->left_x); }

We complete the definition of the data structure with the definition of some global variables.
We need a representation of∞ for the bracket(−∞, ∞), we need a variablesidethat tells
us in which tree we are working in, and we need the first abscissax1and the corresponding
itemx1 itemin L. We also define enumeration types{upper, lower} and{left, right} that are
used to distinguish the upper and lower tree and the left and right endpoint of a bracket.

〈global variables〉�
const double infty = MAXDOUBLE;

double x1;

list_item x1_item;

enum SIDE {upper,lower};

SIDE side;

enum {left,right};

We can now give the global structure of the Jordan sorting procedure. It takes a listIn of
doublesand decides whether it is Jordan. If so, it also produces a sorted versionOut of In.

If the input list has length at most one then sorting is trivial. If it has length at least two
then we first initializeL with −∞, x1, ∞ and build trivial upper and lower trees. Then we
insert the elements ofIn one by one alternately into the lower or upper tree; the variable
sidekeeps track of where we are. At the end we produce the sorted output listOut.

〈procedure Jordan sort〉�
bool Jordan_sort(const list<double>& In, list<double>& Out,

window* Window)

{ if ( In.length() <= 1 ) { Out = In; return true; }

〈initialize L with x1 and construct trivial lower and upper trees〉;
/* we now process x_2 up to x_n */

list_item it = In.succ(In.first()); // the second item

side = upper;

while (it)

{ 〈process next input〉;
it = In.succ(it);

side = ((side == upper)? lower : upper); // change sides

}

〈produce the output by copying L to Out〉;
return true;

}

We now discuss the three phases ofJordansort: initialization, processing an input, and
producing the output list.

We initialize the listL with −∞, x1, ∞, and the upper and lower trees with the brackets
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(−∞, ∞). We also storex1 in x1and the corresponding item ofL in x1item. We setxi item
to x1 item; generally,xi itemcorresponds to the last number inserted intoL. This was called
xi in the discussion above.

〈initialize L with x1 and construct trivial lower and upper trees〉�
x1 = In.head();

L.clear();

list_item minus_infty_item = L.append(new intersection(-infty));

list_item xi_item = x1_item = L.append(new intersection(x1));

list_item plus_infty_item = L.append(new intersection(infty));

bracket upper_root(minus_infty_item,plus_infty_item,upper);

bracket lower_root(minus_infty_item,plus_infty_item,lower);

We turn to the insertion part. The number to be inserted isx = In[it]. This was called
xi+1 in the discussion above. Recall thatxi item is the item of listL holdingxi. So the new
bracket has endpointsx andxi. The new bracket needs to be inserted into thesidetree.

We first determine the itemsl item and r item to the left and to the right of the cur-
rent item and their corresponding intersectionsl andr ; if one of them is equal tox1 and
side== lower, we skip it, since there is no bracket in the lower tree containingx1. We also
retrieve the bracketslB andrB containingl andr . Then we distinguish cases according to
whether the bracketslB andrB are identical or not and branch to the two sub-cases. Both
sub-cases modify the listL and thesidetree and setx item to the item ofL containing the
new intersection.

After returning from the two sub-cases we updatexi item.
If Windowis non-nil we also draw an appropriate half-circular arc into it. We divide the

plane in half aty = 50 and draw red arcs in the upper half and black arcs in the lower
half. The operationdrawarc(x1, y1, x2, y2, r, c) of classwindowdraws a counterclockwise
oriented circular arc starting in(x1, y1), ending in(x2, y2), and having radiusr and colorc.

〈process next input〉�
double x = In[it];

double xi = L[xi_item]->x;

if (x == xi || x == x1) return false;

list_item l_item = L.pred(xi_item);

if (l_item == x1_item && side == lower) l_item = L.pred(l_item);

list_item r_item = L.succ(xi_item);

if (r_item == x1_item && side == lower) r_item = L.succ(r_item);

Intersection l = L[l_item];

Intersection r = L[r_item];

Bracket lB = l->containing_bracket_in[side];

Bracket rB = r->containing_bracket_in[side];

list_item x_item;

if (Window != nil)

{ double r = (xi - x)/2; if (r < 0) r = -r;

if ( side == upper)

Window->draw_arc(point(xi,50),point((xi+x)/2,50+r), point(x,50),red);
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Figure 5.29 The two neighboring bracketslB andrB are identical and hence the new bracket
becomes their child.

else

Window->draw_arc(point(xi,50),point((xi+x)/2,50-r), point(x,50),black);

}

int dir = ( x > xi ? LEDA::after : LEDA::before);

if (lB == rB)

{ 〈lB and rB are identical〉 }

else

{ 〈lB and rB are distinct〉 }

xi_item = x_item;

If the bracketslB and rB are identical then we only need to check whether the bracket
contains the new abscissax . If not, we abort because the input sequence is not Jordan.
Otherwise we insertx next toxi into list L, create a new bracket, and make it the only child
of lB, see Figure 5.29.

〈lB and rB are identical〉�
if (!(lB->contains(x))) return false;

x_item = L_insert(x,xi_item,dir);

Bracket new_bracket = new bracket(x_item,xi_item,side);

new_bracket->pos_among_sibs = lB->children.insert(new_bracket,0);

The procedureL insertis essentially identical toL.insert. A small difference arises from the
fact thatx1 item is not part of a bracket on the lower side and hence if the new intersection
is to be inserted next tox1 then its position with respect tox1 is not yet known.

〈global functions〉�
list_item L_insert(double x, list_item it, int dir)

{ if ( side == lower &&

(dir == LEDA::before && L.pred(it) == x1_item && x < x1) ||

(dir == LEDA::after && L.succ(it) == x1_item && x > x1) )

it = x1_item;

return L.insert(new intersection(x),it,dir);

}

We come to the case in which the bracketslB andrB are not identical. We distinguish
two cases.

If x lies betweenl andr then the new bracket(xi, x) does not enclose any brackets. We
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Figure 5.30 The new bracket extends to the right andx is larger thanr ; tB is the rightmost
sibling of rB whose left endpoint is less thanx . x must not be contained intB and it must be
contained in the parent bracket oftB. The children of the new bracket start atrB and end attB.

therefore only have to insertx either before or afterxi into L and make the new bracket
either the left sibling ofrB (if lB containsx) or the right sibling oflB (otherwise).

If x does not lie betweenl andr , we have to work harder.

〈lB and rB are distinct〉�
children_seq S; // just for the type

if ( l->x < x && x < r->x )

{ x_item = L_insert(x,xi_item,dir);

Bracket new_bracket = new bracket(xi_item,x_item,side);

new_bracket->pos_among_sibs =

( lB->contains(x) ?

S.insert_at(rB->pos_among_sibs,new_bracket,0,LEDA::before) :

S.insert_at(lB->pos_among_sibs,new_bracket,0,LEDA::after) );

}

else

if ( dir == LEDA::after )

{ 〈new bracket has subbrackets and extends to the right〉 }

else

{ 〈new bracket has subbrackets and extends to the left〉 }

We come to the case that the new bracket extends to the right and thatx is at least as large
asr . Let tB be the rightmost sibling ofrB whose left endpoint is less than or equal tox ,
cf. Figure 5.30. We determinetB by a finger search starting atrB. The right endpoint oftB
must be smaller thanx andx must be contained in the parent bracket oftB (which is also
the parent bracket ofrB); otherwise the sequence is not Jordan. The latter is guaranteed ifx
is smaller than thex-coordinate of the successor item of the right endpoint oftB (we skipx1
if side== lower, asx1 is not an endpoint of a bracket in the lower tree). Assume that both
conditions hold. We addx after the right endpoint oftB to L, insert the new bracket(xi, x)

beforerB, delete the subsequence starting atrB and ending attB, and make the subsequence
the children sequence of the new bracket.

〈new bracket has subbrackets and extends to the right〉�
Bracket query_bracket = new bracket(x);

seq_item x_pos = S.finger_locate_pred(rB->pos_among_sibs, query_bracket);

Bracket tB = S.key(x_pos);



5.8 An Application of Sorted Sequences: Jordan Sorting 239

list_item next = L.succ(tB->endpt[right]);

if ( next == x1_item && side == lower ) next = L.succ(next);

if ( x <= L[tB->endpt[right]]->x || x >= L[next]->x ) return false;

x_item = L_insert(x,tB->endpt[right],LEDA::after);

Bracket new_bracket = new bracket(xi_item,x_item,side);

new_bracket->pos_among_sibs =

S.insert_at(rB->pos_among_sibs,new_bracket,0,LEDA::before);

S.delete_subsequence(rB->pos_among_sibs, x_pos, new_bracket->children);

If the new bracket has subbrackets and extends to the left we proceed symmetrically to the
case above, i.e, we replacepredby succand vice-versa, less than by greater than, . . . .

〈new bracket has subbrackets and extends to the left〉�
Bracket query_bracket = new bracket(x);

seq_item x_pos = S.finger_locate_succ(lB->pos_among_sibs, query_bracket);

Bracket tB = S.key(x_pos);

list_item next = L.pred(tB->endpt[left]);

if ( next == x1_item && side == lower ) next = L.pred(next);

if ( x >= L[tB->endpt[left]]->x || x <= L[next]->x ) return false;

x_item = L_insert(x,tB->endpt[left],LEDA::before);

Bracket new_bracket = new bracket(x_item,xi_item,side);

new_bracket->pos_among_sibs =

S.insert_at(tB->pos_among_sibs,new_bracket,0,LEDA::before);

S.delete_subsequence(x_pos,lB->pos_among_sibs, new_bracket->children);

Preparing the output is easy. After deleting the sentinels−∞ and∞ the output is avail-
able inL. We copy it toOut.

〈produce the output by copying L to Out〉�
Out.clear();

L.pop(); L.Pop();

forall_items(it,L) Out.append(L[it]->x);

We described an algorithm to recognize and to sort Jordan sequences. The algorithm
runs in linear time, see [HMRT85] for a proof18. As a sorting algorithm,Jordansort is not
competitive with general purpose sorting algorithms, like quicksort and mergesort, despite
its linear running time. We included theJordansort program in the book as an example of
how much LEDA simplifies the implementation of complex algorithms.

18 The idea underlying the proof is as follows: in each iteration of Jordan sort a new bracket is constructed. This
takes timeO(log min(k, m − k)) wherek is the number of subbrackets andm − k is the number of siblings of the
new bracket. One then proceeds as in the analysis of repeated splits on page 188.
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Graphs and their Data Structures

The graph data type is one of the central data types in LEDA. In the first two sections we give
a gentle introduction to it. Each of the remaining sections is devoted to a particular aspect
of the graph data type: node and edge arrays, node and edge maps, node lists, node priority
queues, node partitions, undirected graphs, graph generators, input and output, iteration
statements, basic graph properties, parameterized graphs, and time and space complexity.

6.1 Getting Started

A directed graphG = (V, E) consists of a setV of nodes or vertices and a setE of
edges. Figure 6.1 shows a directed graph. Every edgee has asource node source(e) and a
target node target(e). In our figures we draw an edgee as an arrow starting atsource(e) and
ending attarget(e). We refer to the source and the target of an edge as theendpointsof the
edge. An edge is said to beincidentto its endpoints. We also say that an edgee is an edge
out of source(e) andinto target(e). The edges out ofv are also called the edgesadjacentto
v. For an edgee with source nodev and target nodew we will write (v, w).

The declarations

graph G;

node v, w;

edge e, f;

declare variablesG, v, w, e and f of typegraph, node, andedge, respectively. The values
of these variables are graphs, nodes, and edges, respectively;G is initialized to the empty
graph, i.e., a graph with no node and no edge, and the initial values ofv, w, e, and f are
unspecified (since nodes and edges are pointer types). The special valuenil is not a node or

240



6.1 Getting Started 241
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Figure 6.1 A directed graph.

edge of any graph and can be used to initialize nodes and edges with a definite value, as, for
example, in

node v = nil;

Graph algorithms frequently need to iterate over the nodes and edges of a graph and the
edges incident to a particular node. The iteration statement

forall nodes(v,G){ }

iterates over all nodes of a graph, i.e., the nodes ofG are successively assigned tov and the
body of the loop is executed once for each value ofv. Similarly,

forall edges(e,G){ }

iterates over all edgese of G. There are three ways to iterate over the edges incident to a
nodev. The iteration statements

forall out edges(e,v){ }

forall adj edges(e,v){ }

iterate over all edgese out ofv, i.e, all edges whose source node is equal tov,

forall in edges(e,v) { }

iterates over all edgese into v, i.e., over all edges whose target node is equal tov, and

forall inout edges(e,v){ }

iterates over all edgese into and out ofv. So

int s = 0;

forall edges(e,G) s++;

computes the number of edges ofG. This number is also available asG.numberof edges( ).
In many situations it is useful to associate additional information with the nodes and

edges of a graph. LEDA offers several ways to do so. We briefly discussnode arrays, edge
arrays, andparameterized graphs. We will give more details and also discuss node and
edge maps later.
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The declarations

node array<string> name(G);

edge array<int> length(G,1);

introduce arraysnameand length indexed by the nodes and edges of theG, respectively.
The entries ofnameare strings and the entries oflengthare integers. All entries ofname
are initialized to the empty string (= the default value ofstring) and all entries oflengthare
initialized to 1. Ifv is a vertex ofG ande is an edge ofG we may now write

name[v] = "Saarbruecken";

length[e] = 5;

The following piece of code numbers the nodes of a graph with the integers 0 ton − 1,
wheren is the number of nodes ofG. As is customary in the literature on graph algorithms
we will usually writen for the number of nodes andm for the number of edges.

node array<int> number(G);

int count = 0;

forall nodes(v,G) number[v] = count++;

A second method to associate information with nodes and edges is to use so-calledpa-
rameterized graphs. The declaration

GRAPH<string,int> H;

declaresH as a parameterized graph where a string variable is associated with every vertex
of H and an integer is associated with every edge ofH . We may now write

H[v] = "Saarbruecken";

H[e] = 5;

to associate the string ”Saarbruecken” with v and the integer 5 withe. Of course, both
operations are only legal ifv ande actually denote a vertex and edge ofH , respectively.

There is an important difference between the two methods of associating information
with nodes and edges. Node and edge arrays work only for static graphs, i.e., when a new
node or edge is added to a graph it will not have a corresponding entry in the node and edge
arrays of the graph (in Section 6.3 this condition will be relaxed somewhat). Parameterized
graphs, on the contrary, are fully dynamic. Information can be associated with new edges
and nodes without any restriction. In this sense, parameterized graphs are more flexible.
Also, the access to the information stored in the nodes and edges of a parameterized graph
is somewhat more efficient than the access to the information stored in a node or edge array.
On the other hand, the great strength of node and edge arrays is that an arbitrary number of
them can be defined for a graph.

It’s time to learn how to build non-trivial graphs. A graph can be altered by adding and
deleting nodes and edges. For example,

graph G;

G.new node();

G.new node();

node v;

forall nodes(v,G) cout << G.outdeg(v);
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makesG a graph with two nodes and no edge and then outputs the outdegree1 of all nodes,
i.e., outputs the number 0 twice. In order to add an edge we need to specify its source and
its target. For example,

node w = G.first node();

G.new edge(w,G.succ node(w));

will add an edge whose source and target are the first and second node ofG respectively;
note that LEDA internally orders the nodes of a graph in the order in which they were added
to G. G.first node( ) returns the first node in this ordering andG.succnode(w) returns
the node added immediately afterw. There is a more interesting way to add edges. The
operationG.newnode( ) does not only add a new node to the graphG but also returns the
new node. We can remember the new node in a variable of typenode. So

graph G;

node v0 = G.new node();

node v1 = G.new node();

node v2 = G.new node();

node v3 = G.new node();

G.new edge(v0,v1); G.new edge(v0,v2);

G.new edge(v1,v2); G.new edge(v1,v3);

creates the graph of Figure 6.1.

Let us do something more ambitious next. Suppose that we created a graphG and that
we want to make an isomorphic copyH of it. Moreover, we want every node and edge ofH
to know its original inG. Here is an elegant way to do this. We use parameterized graphs,
node arrays and edge arrays.

void CopyGraph(GRAPH<node,edge>& H, const graph& G)

{ H.clear(); // reset H to the empty graph

node array<node> copy in H(G);

node v;

forall nodes(v,G) copy in H[v] = H.new node(v);

edge e;

forall edges(e,G)

H.new edge(copy in H[source(e)],copy in H[target(e)],e);

}

We defineH as a parameterized graph where a node can be associated with each node and
an edge can be associated with each edge. We also define a node arraycopyin H for G that
allows us to associate a node with every node ofG. We then iterate over the nodes ofG.
For every nodev of G the operationH.newnode(v) adds a new node toH and associates
v with the new node. Note that thenewnodeoperation for a parameterized graph has an
argument, namely the information that is to be associated with the new node. The operation
H.newnode(v) also returns the new node. We remember it incopyin H[v]. The overall
effect of theforall nodes-loop is to giveH as many nodes asG and to establish bidirectional

1 The outdegree of a vertexv is the number of edgese with source(e) = v.
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copy in H[v]

H [w]

Figure 6.2 A graphG and an isomorphic copyH of it. Each nodev of G knows its partner inH
throughcopyin H[v] and each nodew of H knows its partner inG throughH [w].

links between the nodes ofG and H : in particular, we haveH [copyin H[v]] = v for all
nodesv of G andcopyin H[ H [w]] = w for all nodesw of H , see Figure 6.2. It is now easy
to add the edges. We iterate over the edges ofG. For every edgee we add an edge toH
that runs fromcopyin H[source(e)] to copyin H[target(e)] and also makee the information
associated with the new edge. Observe thatH.newedge(x, y, inf ) adds an edge from node
x to nodey and associates the informationinf with it.

Exercise for 6.1
1 Write a program that makes a copy of a graphG with all edges reversed, i.e., for every

edgee = (v, w) in G there should be an edge from the copy ofw to the copy ofv in H .

6.2 A First Example of a Graph Algorithm: Topological Ordering

A graph is calledacyclic if it contains no cycle. A cycle is a path that closes on itself,
i.e., a sequencee0, e1, . . . , ek of edges such thattarget(ei ) = source(ei+1 modk+1) for all
i , 0 ≤ i ≤ k. The graph in Figure 6.1 is acyclic. The nodes of an acyclic graph can be
numbered such that all edges run from smaller to higher numbered nodes. The function

bool TOPSORT(const graph& G, node array<int>& ord);

returns true ifG is acyclic and false ifG contains a cycle. In the former case it also returns
a topological ordering of the nodes ofG in ord.

The procedure works by repeatedly removing nodes of indegree zero and numbering the
nodes in the order of their removal.

In the example of Figure 6.1 we first number node 0. Removing node 0 makes the inde-
gree of node 1 zero and hence this node is numbered next. Removal of node 1 makes the
indegree of node 2 zero, . . . .

For reasons of efficiency we keep track of the current indegree of all nodes and also
maintain the list of nodes whose current indegree is zero.
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#include <LEDA/graph.h>

#include <LEDA/queue.h>

bool procedure TOPSORT(const graph& G,node array<int>& ord)

{ 〈initialization〉
〈removing nodes of indegree zero〉

}

In the initialization phase we determine the indegree of all nodes and initialize a queue of
nodes of indegree zero.

〈initialization〉�
node_array<int> INDEG(G);

queue<node> ZEROINDEG;

node v,w;

forall_nodes(v,G)

if ( (INDEG[v] = G.indeg(v)) == 0 ) ZEROINDEG.append(v);

In the main phase of the algorithm we consider the nodes of indegree zero in turn. When
a vertexv is considered we number it and we decrease the indegrees of all adjacent nodes
by one. Nodes whose indegree becomes zero are added to the rear ofZEROINDEG.

〈removing nodes of indegree zero〉�
int count = 0;

node_array<int> node_ord(G);

while (!ZEROINDEG.empty())

{

v = ZEROINDEG.pop();

node_ord[v] = ++count;

forall_out_edges(e,v)

{ node w = G.target(e);

if ( --INDEG[w] == 0 ) ZEROINDEG.append(w);

}

}

return (count == G.number_of_nodes());

TOPSORTconsiders every edge ofG only once and hence has running timeO(n + m).
In the section on depth-first search (see Section 7.3) we will see an alternative program for
topological sorting.

6.3 Node and Edge Arrays and Matrices

Node and edge arrays and matrices are the main means of associating information with the
nodes and edges of a graph. The declarations

node array<E> A(G);

node array<E> B(G,E x);
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Figure 6.3 The realization of node arrays: Node arraysA andB are realized by regular arrays.
The nodes of a graph are numbered and the node numbers are used as the indices into the arrays.

declare node arraysA and B for the nodes ofG, respectively. The elements ofA are
initialized with the default value ofE and the elements ofB are initialized tox . Edge
arrays are declared in a similar way. So

node array<bool> visited(G,false);

declares a node arrayvisitedand initializes all its entries to false. The cost of declaring a
node array forG is proportional to the number of nodes ofG and the cost of declaring an
edge array is proportional to the number of edges.

Node and edge arrays are a very flexible way of associating information with the nodes
and edges of a graph: any number of node or edge arrays can be defined for a graph and
they can be defined at any time during execution.

Node and edge arrays are implemented as follows. The nodes and edges of a graph are
numbered in the order of their construction, starting at zero. We call the number of a node
or edge itsindex. The index of a nodev or edgee is available asindex(v) and index(e),
respectively. Node and edge arrays are realized by standard arrays. The node and edge
indices are used to index into the arrays, see Figure 6.3.

The access to an entryA[v] of a node arrayA (similarly, edge arrays) requires two
accesses to memory, first the structure representing the nodev is accessed to determine
index(v) and second the entryA[index(v)] is accessed.

When the number of node and edge arrays that are needed for a graph is known, the
following alternative is possible. Assume thatn slotsnode arrays andeslotsedge arrays are
needed. The constructor

graph G(int n slots, int e slots);

constructs a graph where the structures representing nodes have room for the entries of
n slotsnode arrays and the structures representing edges have room for the entries ofeslots
edge arrays. In order to use one of the slots for a particular array, one writes:
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0 A[0] B[0]

1 A[1] B[1]

Figure 6.4 The alternative realization of node arrays: In a graphG constructed by
graphG(2, 0), every node has room for the entries of two node arrays.

node array<E> A;

A.use node data(G, E x);

This will reserve one of the slots in the node structures forA and initialize all entries of the
array tox . If no slot is available, the node array is realized by a standard array. Figure 6.4
illustrates the alternative. The alternative realization of node and edge arrays is frequently,
but not always, faster (see the next section), as only one access to memory is needed to
access an entry of a node or edge array, but it is also less convenient, as the number of node
and edge arrays that can use the alternative is fixed at the time of the construction of the
graph.

We recommend that you experiment with the alternative design during the optimization
phase of program development.

Node and edge arrays, as discussed so far, are primarily useful for static graphs.

node array<int> dist(G);

node v = G.new node();

dist[v] = 5;

is illegal and produces the error message “nodearray[v] not defined forv”. We next discuss
node and edge arrays for dynamic graphs. We have to admit, though, that we hardly use
node and edge arrays for dynamic graphs ourselves. We prefer node and edge maps and
parameterized graphs.

node array<E> A(graph G, int n, E x);

declaresA as a node array of sizen for the nodes ofG and initializes all entries ofA to x ;
x must be specified even if it is the default value ofE .

The constructor requires thatn ≥ |V |. The arrayA has room forn − |V | additional
nodes, i.e., for the nodes created by the nextn −|V | calls ofG.newnode( ). In this way one
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can have the convenience and efficiency of node arrays also for dynamic graphs. Deletion
of nodes is no problem for node arrays.

The following doubling and halving strategy is useful for node and edge arrays on dy-
namic graphs. Suppose thatn0 is the current number of nodes ofG and that we want to
create a node arrayA for G. We makeA an array of size 2n0 and initialize two counters
inscountanddelcountto zero. We incrementinscountfor everyG.newnode( ) operation
anddelcount for every G.delnode( ) operation. Wheninscount reachesn0 or delnode
reachesn0/2 we allocate a new arrayB of size 2(n0 + inscount− delcount) and move the
contents ofA to B. This scheme ensures that node arrays are always at least 25% utilized
and that the overhead for moving information around increases the running time by only a
constant factor (since the cost of moving isO(n0) and since there are�(n0) newnodeand
delnodeoperations between reorganizations of the node array).

We next turn to node matrices. The definition

node matrix<int> M(G,0);

definesM as a two-dimensional matrix indexed by pairs of nodes ofG and initializes all
entries ofG to zero. This takes timeO(n2), wheren is the number of nodes ofG. The
space requirement for a node matrix is quadratic in the number of nodes. So they should
only be used for small graphs.

M(v,w) = 1;

sets the entry for pair(v, w) to one.
A node matrix can also be viewed as a node array of node arrays, i.e., the typenodematrix<E>

is equivalent to the typenodearray<nodearray<E> >. This view is reflected in the opera-
tion

M[v];

which returns a node array.
We give an example of the use of node matrices. The following three-liner checks

whether a graph is bidirected (also called symmetric), i.e., whether for every edgee =
(v, w) the reversed edge(w, v) is also present.

node matrix<bool> M(G,false);

forall edges(e,G) M(G.source(e),G.target(e)) = true;

forall edges(e,G)

{ if ( !M(G.target(e),G.source(e)) ) error handler(1,"not bidirected"); }

The program above has running time2(n2 + m), 2(n2) for initializing M and2(m) for
iterating over all edges twice. As we will see later there is also anO(m) algorithm for the
same task. It is available as

bool Is Bidirected(G);
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6.4 Node and Edge Maps

Nodes and edge maps are an alternative to node arrays. The declarations

node map<E> A(G);

node map<E> B(G,E x);

declare node mapsA andB for the nodes ofG, respectively. The elements ofA are initial-
ized with the default value ofE and the elements ofB are initialized tox . Edge maps are
declared in a similar way. So

node map<bool> visited(G,false);

declares a node mapvisitedand initializes all its entries to false.

What is the difference between node and edge arrays and node and edge maps?Node
and edge maps use hashing (see Section 5.1.2). The declaration of a node or edge map has
constant cost (compare this to the linear cost for node and edge arrays) and the access to an
entry of a node or edge map has constant expected cost.

Table 6.1 compares three ways of associating information with the nodes of a graph, the
standard version of node arrays, the version of node arrays that makes use of a data slot
in the node, and node maps. The table was produced by the program below. We give the
complete program because the numbers in the table are somewhat surprising. We create a
graph withn nodes and no edge and iterateR times over the nodes of the graph. In each
iteration we access the information associated with the node. We iterate over the nodes once
in their natural order and once in random order.

〈nodearrays versusnodemaps〉�
main(){

〈node arrays versus node maps: read n and R〉
graph G; graph G1(1,0); node v; int j;

random_graph(G,n,0); random_graph(G1,n,0);

float T = used_time();

float TA, TB, TM, TAP, TBP, TMP;

{ node_array<int> A(G,0);

for ( j = 0; j < R; j++ )

forall_nodes(v,G) A[v]++;

TA = used_time(T);

}

{ node_array<int> A;

A.use_node_data(G1,0);

for ( j = 0; j < R; j++ )

forall_nodes(v,G1) A[v]++;

TB = used_time(T);

}

{ node_map<int> A(G,0);

for ( j = 0; j < R; j++ )

forall_nodes(v,G) A[v]++;

TM = used_time(T);
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Linear scan Random scan

array node data map array node data map

3.25 4.39 3.48 8.96 5.9 9.56

Table 6.1 Node arrays versus node maps: The table shows the output of the program
nodearraysversusnodemaps.c. We used a node array (columns one and four), a node data slot
(columns two and five), and a node map (columns three and six). We used a graph with one
million nodes andR = 10. The nodes were scanned in linear order and in random order. The
nodearray versusnodemaps demo allows you to perform your own experiments.

}

array<node> perm(n); array<node> perm1(n);

int i = 0;

forall_nodes(v,G) perm[i++] = v;

i = 0;

forall_nodes(v,G1) perm1[i++] = v;

perm.permute(); perm1.permute();

used_time(T);

{ node_array<int> A(G,0);

for ( j = 0; j < R; j++ )

for(i = 0; i < n; i++) A[perm[i]]++;

TAP = used_time(T);

}

{ node_array<int> A;

A.use_node_data(G1,0);

for ( j = 0; j < R; j++ )

for(i = 0; i < n; i++) A[perm1[i]]++;

TBP = used_time(T);

}

{ node_map<int> A(G,0);

for ( j = 0; j < R; j++ )

for(i = 0; i < n; i++) A[perm[i]]++;

TMP = used_time(T);

}

〈node arrays versus node maps: report running times〉
}

In the random scan over the nodes, node data slots outperform node arrays which in turn
outperform node maps. This was to be expected, since node data slots avoid one level of
indirection, and since maps have the overhead of hashing. Maps are only slightly slower
than arrays due to our very efficient realization of maps, see Section 5.1.2. In the linear
scan the situation is different. Node data slots are the slowest and maps are even closer
to arrays. We believe that this is due to caching. We compare node arrays and node data
slots. When node data slots are used, the node structures are larger, and hence fewer of



6.5 Node Lists 251

them fit into a cache line. Node arrays use the cache more effectively in the linear scan
because they can use one cache line for node structures and one cache line for the array
itself and only the cache lines for the array itself are written. Thus the number of write-
faults reduces. A similar explanation applies to node maps. Since it requires knowledge of
the implementation of maps, we do not give it here.

We recommend to use node and edge maps in situations where a sparse map on nodes or
edges, respectively, has to be maintained. If more than half of the entries are actually used,
it is better to use node arrays.

We next turn to two-dimensional node maps. The definition

node map2<int> M(G,0);

definesM as a two-dimensional map indexed by pairs of nodes ofG and initializes all
entries ofG to zero. This takes constant time.

M(v,w) = 1;

sets the entry for pair(v, w) to one. The space requirement for a two-dimensional node
map is proportional to the number of entries used.

We give an example for the use of two-dimensional node maps. The following three-liner
checks whether a graph is bidirected (also called symmetric), i.e., whether for every edge
e = (v, w) the reversed edge(w, v) is also present.

node map2<bool> M(G,false);

forall edges(e,G) M(G.source(e),G.target(e)) = true;

forall edges(e,G)

{ if ( !M(G.target(e),G.source(e)) ) error handler(1,"not symmetric"); }

The program above has running timeO(m), O(1) for initializing M andO(m) for iterating
over all edges twice. The space requirement isO(m). Observe, that this is much better than
what we obtained with node arrays in the preceding section ifm � n2.

Exercises for 6.4
1 Write a program that checks whether a graph is symmetric and, if so, computes an edge

arrayreversalthat stores for each edge a reversal of the edge. The source ofreversal[e]
must be equal to the target ofe and vice versa.

2 Extend the program of the previous item so that it can also handle parallel edges. We
wantreversal[reversal[e]] = e for all edgese.

3 Extend the program of the previous item so that it can also handle self-loops. We want
reversal[e] 6= e for all e.

6.5 Node Lists

A node list is a combination of a doubly linked list of nodes and a node map which gives,
for each node, its position in the list, see Figure 6.5.A node can be contained in a node list
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Figure 6.5 Node lists: A node list for a graph with four nodesa, b, c, andd. The node list
contains the nodesa, c, andd in this order. The top part of the figure shows a doubly linked list
and the lower part of the figure indicates a node map. The node map maps each node contained
in the node list to the list item containing the node.
In asnodelist a singly linked list is used instead of a doubly linked list.

at most once. It can be contained in several node lists, but in each particular node list it can
appear only once.

node list L(G);

creates a node list for the graphG and initializes it with the empty list. Node lists offer all
the usual list operations, e.g.,append, push, pop, insert, head, tail, pred, succ, cyclicpred,
cyclicsucc, empty, and the possibility to iterate over the nodes in the list. In addition, node
lists offer constant time member ship test.

The related data typesnodelist is the combination of a singly linked list and a node map.
It offers all the operations of singly linked lists plus constant time member ship test.

A prime example for the use of node lists is breadth-first search. The goal is to explore
the nodes of a graph starting from some source nodes in order of increasing distance from
s. The distance of a nodev from s is the smallest number of edges in a path froms to v.

The following program realizes breadth-first search. We collect the nodes ofG in a
snodelist Q in the order in which they are reached. We always explore the edges out of
the first unprocessed node inQ. Whenever a node is encountered that has not been reached
before (= is not inQ) we add it to the rear ofQ.

snode list Q;

Q.append(s);

node v = Q.head();

while ( v != nil )

{ edge e;

forall adj edges(e,v)

{ node w = G.target(e);

if ( !Q.member(w) ) Q.append(w);

}

v = Q.succ(v);

}

We will discuss breadth-first search in more detail in the chapter on graph algorithms.
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Exercises for 6.5
1 Give an implementation ofsnodelist that uses anodemap<node> succnode, two nodes

first nodeandlastnode, and an integersize.
2 Give an implementation ofnodelist that uses two maps from nodes to nodes, namely,

succnodeandprednode, two nodesfirst nodeandlast node, and an integersize.

6.6 Node Priority Queues and Shortest Paths

The declaration

node pq<P> Q(G);

declares anode priority queueQ with priority type P for G and initializes it to the empty
queue. A node priority queue with priority typeP is a partial function from the nodes ofG
to the setP. The setP must be linearly ordered. IfQ(v) is defined we call it the priority of
nodev. We use domQ to denote the set of nodes for whichQ(v) is defined, thedomainof
Q. Node priority queues allow us to manipulate the functionQ by insertion, deletion, and
(restricted) modification of values, and they allow us to select a node with smallest priority.

We next discuss some of the operations available on node priority queues in more detail,
then show how to use them in an implementation of Dijkstra’s algorithm for the single-
source shortest-path problem, and finally show how node priority queues are implemented
in terms of node arrays and general priority queues.

We come to the operations available on node priority queues:

node Q.find min();

returns a nodev ∈ domQ with minimal associated priority (nil if Q is empty),

bool Q.member(node v);

checks whether nodev is contained in the queueQ, i.e., if v ∈ domQ,

void Q.insert(node v, P p);

adds the nodev with associated priorityp to the queueQ (the effect of this operation is
unspecified ifv is already contained inQ) and

void Q.decrease p(node v, P p);

makesp the new priority of nodev (the effect of this operation is unspecified ifv is not
contained inQ or p is larger than the old priority associated withv).

The implementation of node priority queues is based on priority queues and node arrays.
The operationsfind min anddecreasep take constant time, all other operations take time
O(logs) wheres is the current size ofQ. The space requirement is proportional to the
number of nodes ofG. We give the details of the implementation at the end of the section.
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We illustrate the use of node priority queues on Dijkstra’s single-source shortest-path
algorithm. LetG be a graph, letedgearray<NT> costbe a non-negative cost function2 on
the edges ofG, and lets be a node ofG. For any nodev of G let µ(v) be the cost of a
shortest path froms to v, where the cost (or length) of a path is the sum of the costs of its
edges; if there is no path froms to v thenµ(v) = ∞. We usecost(p) to denote the cost of
a pathp.

The task is to computeµ in a nodearray<NT> dist and anodearray<edge> predwhich
contains for each nodev 6= s the last edge of a shortest path froms to v. We need to be
more precise. Observe that not every number type has a representation for∞, and hence the
previous sentence does not specify how the algorithm should report the fact thatµ(v) = ∞
for a nodev. We refine the specification to the following:

• If v is reachable froms thendist[v] = µ(v).

• pred[s] = nil.

• If v 6= s andv is reachable froms thenpred[v] is the last edge of a shortest path from
s to v.

• If v 6= s andv is not reachable froms thenpred[v] = nil.

Dijkstra’s algorithm [Dij59] “simulates” the following physical process. Imagine the
graph as a network of uni-directional wires, imagine that current is injected into the network
at nodes and time zero, and imagine that current spreads with unit speed. Thus current
requirescost[e] time units to spread across an edgee. In this model, the current will reach
every nodev at timeµ(v).

In order to carry out the simulation, we turn the nodes of the network into active compo-
nents. As soon as current reaches a nodeu, say at timet = µ(u), the node sends a message
to each nodev with e = (u, v) ∈ E with the content:

You will receive current through edgee at timet + cost[e].

Every nodev keeps track of all the messages sent to it. More precisely, a node keeps
track of the earliest time at which current will reach it, i.e., whenever a nodev receives a
message, it checks whether the message promises it an earlier delivery time and, if so, the
node updates its time estimate. In our implementation we keep the current time estimate of
nodev in dist[v] and we keep the edge through which the node will receive current at time
dist[v] in pred[v]. If v has received no message yet we havepred[v] = nil.

The simulation is driven by a global clock which we call wall time. At any timet there
will be a setS of nodes which have already been reached by the current and which have
accordinglysent messages to their neighbors, and there will be the setV \S of the remaining
nodes which have not been reached yet by the current wave. Each node inV \S has received
zero or more messages and keeps track of its earliest delivery time. Clearly, the node which

2 NT denotes an arbitrary number type.
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is reached next by the current is the nodeu ∈ V \ S with the smallest delivery time, i.e., the
smallest valuedist[u]. It is the next node to send out messages.

In an implementation the crucial question is how to find the nodev with minimal dist-
value among the nodes inV \ S. The data type node priority queue is ideally suited for that
purpose. Simply have anodepq<NT> P with

domP = {v ; v ∈ V \ S andpred[v] 6= nil}
and P(v) = dist[v] for any v ∈ domP, i.e., P contains all nodes outsideS which have
received at least one message and records, for each such node, the earliest delivery time to
the node. ThenP.delmin( ) returns the desired node and deletes it fromP. The complete
program follows.

〈dijkstra.t〉+�
template <class NT>

void DIJKSTRA_T(const graph& G, node s, const edge_array<NT>& cost,

node_array<NT>& dist, node_array<edge>& pred)

{

node_pq<NT> PQ(G);

node v; edge e;

dist[s] = 0;

PQ.insert(s,0);

forall_nodes(v,G) pred[v] = nil;

while (!PQ.empty())

{ node u = PQ.del_min(); // add u to S

NT du = dist[u];

forall_adj_edges(e,u)

{ v = G.opposite(u,e); // makes it work for ugraphs

NT c = du + cost[e];

if (pred[v] == nil && v != s )

PQ.insert(v,c); // first message to v

else if (c < dist[v]) PQ.decrease_p(v,c); // better path

else continue;

dist[v] = c;

pred[v] = e;

}

}

}

The program runs in timeO(m + n logn) since every node is deleted from the queue at
most once anddelmin has costO(logn) and since every other operation is executed at
mostO(n + m) times and has constant amortized cost.

In the remainder of this section we show how to implement node priority queues in
terms of node arrays and priority queues. The construction is very simple. We realize a
nodeprio<P> NPQ for a graphG by ap queue<P, node> PQ and anodearray<pqitem>
itemof such that:
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Figure 6.6 A node priority queue for a graph with four nodesu, v, w, andx . The priority ofu is
6, the priority ofw is 4, andv andx have no entry in the queue.

• if a nodev is stored inNPQwith priority p then there is an itempit = 〈p, v〉 in PQ
anditemof [v] = pit.

• if a nodev is not contained inNPQthenitemof [v] = nil.

Figure 6.6 illustrates these invariants and nodepq.c shows the complete implementation.

〈nodepq.c〉�
#include <LEDA/graph.h>

#include <LEDA/p_queue.h>

template <class P> class node_pq {

private:

p_queue<P,node> PQ;

node_array<pq_item> item_of;

public:

node_pq(const graph& G): item_of(G,nil) { }

~node_pq() { }

void insert(node v, P p) { item_of[v]= PQ.insert(p,v); }

P prio(node v) { return PQ.prio(item_of[v]); }

void decrease_p(node v, P p) { PQ.decrease_p(item_of[v],p); }

void del(node v)

{ PQ.del_item(item_of[v]);

item_of[v] = nil;

}

node find_min() { return PQ.inf(PQ.find_min()); }

node del_min()

{ node v= PQ.inf(PQ.find_min());

PQ.del_min();

item_of[v] = nil;

return v;

}

〈nodepq::other operations〉
};
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Only a few words are required to explain this code. We construct anodepq<P> for a
graphG by constructing an empty priority queuePQ and a node arrayitemof for G and
by initializing all entries ofitemof to nil. The former is done by the default constructor
of priority queues and requires no code and the latter is achieved by the constructor call
itemof(G, nil). In order to insert a pair(v, p) we insert the pair(p, v) into PQ and store
the item that is returned initemof [v]. In order to look up the priority of a nodev we return
PQ.prio(itemof[v]), . . . .

Exercises for 6.6
1 Modify Dijkstra’s algorithm such that it does not start with a single source nodes but

with a setL of sources. It is supposed to computeµ(L, v) for all nodesv whereµ(L, v)

is the minimum distance from a node inL to v.
2 (Single sink shortest path). Lets andt be distinct nodes in a directed graph with non-

negative edge weights. The goal is to compute a shortest path froms to t . Assume
that there is heuristic information available which gives for any nodev a lower bound
lb(v) for the length of a shortest path fromv to t . Modify Dijkstra’s algorithm such that
dist(v) + lb(v) is used as the priority of nodev.

3 Use the algorithm of the previous item to compute shortest paths in graphs embedded
into the plane, e.g., Delaunay diagrams (see Section 10.4). Define the cost of an edge
as the Euclidean distance between its endpoints and letlb(v) for any nodev be the
Euclidean distance betweenv andt . Which improvement in running time results from
the use of heuristic information?

4 Implement operationsmember, clear, size, andemptyof nodepq.

6.7 Undirected Graphs

In anundirectedgraph the edges have no direction. Mathematically speaking, an edge in an
undirected graph is an unordered pair{v, w} of nodes and an edge in a directed graph is an
ordered pair(v, w) of nodes. As for directed graphs, we callv andw the endpoints of the
edge. The endpoints of an edge in an undirected graph must be distinct (since an edge is a
set of vertices of cardinality two).

6.7.1 Viewing Directed Graphs as Undirected Graphs
Every directed graph without self-loops can be viewed as an undirected graph.

For an edgee and an endpointv of e

G.opposite(v,e)

returns the other endpoint ofe, i.e., returnstarget(e) if v = source(e) and returnssource(e)
otherwise.

The iteration statement

forall inout edges(e,v){ }
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iterates over all edgese havingv as one of their endpoints. It iterates first over all edges out
of v and then over all edges intov.

The iterationforall inoutedgesand the functionoppositecan also be applied to graphs
with self-loops. Observe, however, that the iteration statement will consider a self-loop
e = (v, v) twice, once as an edge, whose source is equal tov, and once as an edge, whose
target is equal tov.

It is our experience that the two statements above suffice to deal with undirected graphs.
We can foresee one situation where they do not suffice: if one wants to iterate over the edges
incident tov in some mixed order, first some edges out ofv, then some edges intov, then
again some edges out ofv, . . . . We will see in Section 6.11 that the order of the out-edges
and the order of the in-edges can be modified. Nevertheless, out-edges always come before
in-edges in theforall inoutedgesiteration. If a more flexible scanning order is required, the
following operation is useful:

G.make undirected();

appends for every nodev the list of in-edges ofv to the list of out-edges ofv and removes
all self-loops. All edges incident to any node are now in a single list and hence can be
rearranged freely using the operations to be described in Section 6.11.

G.make directed();

partially reverses the operation above. It moves, for every nodev, all edgese with target(e) =
v from the list of out-edges ofv to the list of in-edges ofv. Note that the operation does not
reinsert self-loops.

6.7.2 The Data Type ugraph
We also have a data typeugraph. We use it very rarely. Ugraphs offer the same operations
as graphs but thenewedgeoperation is interpreted differently. For example,

ugraph G;

node v = G.new node(); node w = G.new node();

edge e = G.new edge(v,w);

creates an undirected graph with two nodes and one edge. The edgee is inserted into the
out-lists ofv andw (which in this context is better called the list of adjacent edges). Thus

e == G.first adj edge(v) && e == G.first adj edge(w)

evaluates to true. As for directed graphs the functionssource( ) andtarget( ) yield the two
endpoints of an edge, soG.source(e) returnsv and G.target(e) returnsw. Note that the
role of the two nodesv andw in the definition of the edgee is not symmetric:v is made
the source ofe because it is mentioned first, andw is made the target ofe because it is
mentioned second.
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Figure 6.7 A node partition for a graph with six nodesu, v, w, x , y, andz: u, v, andz are in the
same block,w andy are in the same block andx is a block of its own.

6.8 Node Partitions and Minimum Spanning Trees

We discuss node partitions. We first discuss their functionality and then illustrate their use
in Kruskal’s minimum spanning tree algorithm.

A node partitionis a partition of the nodes of a graphG, i.e., a family of pairwise disjoint
sets (calledblocks) whose union is the set of nodes ofG, see Figure 6.7 for an example.

node partition P(G);

declaresP as a node partition forG and initializes it to the finest partition ofG, i.e., every
nodev of G forms its own block{v}. Node partitions offer the following operations:

bool P.same block(node v,node w);

returnstrue iff v andw belong to the same block ofP,

void P.union blocks(node v,node w);

combines the blocks containingv andw. Each block has acanonical representative. The
canonical representative of a block is some element in the block; it is not specified which.
The operations

node P.find(node v);

node P(node v);

return the canonical representative of the block containingv. So, in the example of Fig-
ure 6.7,P.find(x) returnsx (for the singleton block there is no choice of canonical element)
and P.find(u) and P.find(v) return the same element of block{u, v, z} (it is not specified
which). When the functional notationP(v) is used for the find operation it is convenient to
name the partition after the name for the canonical element; for example, in the matching
algorithm of Section 7.7 we will call the node partitionbase. After a union operation the
data structure chooses the canonical representative of the block formed (among the elements
of the block). We can makev the canonical representative of the block containingv by

void P.make rep(node v);
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The operation

void P.split(list<node> T);

splits the blocks containing the nodes inT into singleton blocks. The operation requires
thatT is a union of blocks ofP. So, in the example of Figure 6.7 we can apply split with
the argument{u, v, z, x } but not with the argument{u, y } and not with the argument{u, v}.

The implementation of node partitions is based on the data typespartitionandnodearray.
A sequence ofm operations (except for split) on a node partition ofn nodes takes time
O((n +m)α(n)) whereα is the functional inverse of the Ackermann function. The function
α is extremely slowly growing, in particularα(n) ≤ 5 for n ≤ 10100. The running time of
node partitions is therefore linear for all practical purposes. A split takes time proportional
to the size ofT .

We turn to Kruskal’s minimum spanning tree algorithm.
Let G be a graph whose edges have an associated cost of some number type and letcmp

be a function that compares edges according to their cost, i.e.,cmp(e1, e2) returns−1, 0,
and+1, respectively, if the cost ofe1 is smaller than, equal to, or larger than the cost of
e2. A subsetT of the edges ofG is called aspanning forestof G if any two nodes that
are connected inG are also connected using only edges inT and if the subgraph(V, T ) is
acyclic. A spanning forest of a connected graph is a tree. The cost of a spanning forest is the
sum of the costs of its edges. Aminimum spanning forestis a spanning forest of minimal
cost, see Figure 6.8 for an example. Kruskal [Kru56] discovered a very simple method for
computing minimum cost spanning forests; it is customary to refer to his algorithm as a
spanning tree algorithm although it will not compute a tree on a graph consisting of more
than one connected component.

Kruskal’s algorithm starts with an empty setT of edges and considers the edges ofG in
order of increasing cost. When considering an edgee = {u, v} it checks whether addition
of e to T would close a cycle. If it does not close a cycle thene is added toT and if it closes
a cycle thene is discarded. In this way,T gradually evolves into a minimum spanning
forest.

We give a proof. Less mathematically inclined readers may skip the proof. For the
following argument lete1, e2, . . . , em be the sequence of edges ofG ordered in order of
increasing cost and letF0 be the lexicographically smallest minimum spanning forest3. We
show thatT ∩ {e1, . . . , ei } = F0 ∩ {e1, . . . , ei } for all i , 0 ≤ i ≤ m, by induction on
i . This is clearly true fori = 0. Consideri > 0. If ei closes a cycle with respect to
T ∩ {e1, . . . , ei } then it closes a cycle with respect toF0 and henceei belongs to neither of
the two sets. Ifei does not close a cycle with respect toT ∩ {e1, . . . , ei } then it is added
to T . We need to showei ∈ F0. SinceF0 is a spanning forest there must be a pathp in
F0 connecting the endpoints ofei and since the endpoints ofei are not connected by the
edges inT ∩ {e1, . . . , ei−1} = F0 ∩ {e1, . . . , ei−1} there must be an edgee j with j ≥ i in

3 We may view a spanning forest as a string over{0, 1} of lengthm where a 1 in thei-th position indicates thatei
belongs to the spanning forest and a 0 indicates that it does not. The lexicographic ordering on these strings
defines an ordering on spanning forests.
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Figure 6.8 A minimum spanning forest in a graphG. The edges in the minimum are indicated
in bold. The cost of each edge is indicated. This figure was generated with the spanning tree
demo in xlman.

p. If j = i we are done. So assumej > i and considerF ′ = F0 \ e j ∪ ei . The cost
of F ′ is at most the cost ofF0, F ′ is a spanning forest (since the removal ofe j splits one
component ofF0 into two components each containing one of the endpoints ofei and hence
the addition ofei glues them together again), andF ′ is lexicographically smaller thanF0, a
contradiction. Thusj = i .

In an implementation the crucial question is how to check whether an edgee should be
added toT . The data typenodepartition is ideally suited for that purpose. We maintain the
connected components ofT as a node partitionP, i.e., two nodes ofG belong to the same
block of P iff they are connected by a path of edges ofT . Then an edgee = {u, v} closes a
cycle with respect toT iff u andv belong to the same block ofP, i.e., if P.sameblock(u, v).
If e does not close a cycle we adde to T and updateP by uniting the blocks containingu
andv (P.unionblocks(u, v)). We obtain the following algorithm:
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〈Kruskal.c〉�
#include <LEDA/graph.h>

#include <LEDA/node_partition.h>

list<edge> MIN_SPANNING_TREE(const graph& G,

int (*cmp)(const edge&, const edge&))

{

list<edge> T;

node_partition P(G);

list<edge> L = G.all_edges();

L.sort(cmp);

edge e;

forall(e,L)

{ node u = source(e);

node v = target(e);

if (! P.same_block(u,v))

{ T.append(e);

P.union_blocks(u,v);

}

}

return T;

}

The running time of Kruskal’s algorithm isO((n + m) log(n + m)), wherem is the num-
ber of edges ofG, since it takes timeO(m logm) to sort the edges by cost and since the
forall edges-loop has costO((n + m)α(n)) = O((n + m) log(n + m)). Kruskal’s algorithm
is efficient, but there are asymptotically more efficient algorithms known. In particular,
there is a randomized algorithm with linear running time [KKT95].

The algorithm in LEDA combines Kruskal’s algorithm with a heuristic and works in
three phases. In the first phase it selects the 3n cheapest edges and runs Kruskal’s algorithm
on them. This yields a forestT . In the second phase it goes through the remaining edges
and discards all edges that do not connect distinct components ofT ; this amounts to a
sameblockoperation for each edge. In the third phase the still remaining edges are sorted by
cost and are considered for inclusion inT in order of increasing cost. The hope underlying
this heuristic is that the 3n edges selected in the first phase will already form a large part
of the spanning tree and hence most remaining edges are discarded in the second phase. A
saving results since the edges discarded in the second phase do not have to be sorted. In
particular, if the third phase is empty the running time isO((n + m)α(n)).

Table 6.2 shows some running times of the minimum spanning tree algorithm.

Exercises for 6.8
1 Experiment with the following modification of Kruskal’s algorithm. First select thecn

edges of smallest cost for some small constantc, sayc = 3. Run Kruskal’s algorithm
on them. Then scan through the remaining edges and discard all edges that close a
cycle. Sort the remaining edges in order of increasing cost and proceed with Kruskal’s
algorithm.

2 Implement Prim’s minimum spanning tree algorithm. LetG be a connected graph and
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n m Time

25000 250000 2.843
50000 500000 6.414

100000 1000000 13.83

Table 6.2 Running time of minimum spanning tree algorithm: For eachn andm we generated
10 random graphs withn andm edges and random edge weights in [0.. 100000] and ran
MIN SPANNING TREE on them. You may perform your own experiments by running the
minspantreetime demo.

let s be an arbitrary node ofG. Prim’s algorithm grows a minimum spanning tree froms.
It maintains a subsetS of the nodes ofG and a setT of edges that comprise a minimum
spanning tree ofS. Initially, S = {s} and T = ∅. For each nodev 6∈ S let dist(v)

be the smallest cost of an edge connectingv to a node inS. In each iteration Prim’s
algorithm selects the nodev 6∈ S with the smallestdist-value and adds it toS. What is
an appropriate data structure for thedist-values and how can thedist-values be updated
upon the addition of a node toS?

3 Implementnodepartitions.

6.9 Graph Generators

Constructing graphs by a sequence ofnewnodeandnewedgeoperations is a boring process,
at least for humans. LEDA offers somegraph generators.

complete graph(graph& G, int n);

makesG the complete graph onn nodes. A graphG is completeif for every pair(v, w)

of distinct nodes there is an edgee with source(e) = v andtarget(e) = w. A complete
graph onn nodes hasn(n − 1) edges.

random graph(graph& G, int n, int m, bool no anti parallel edges,

bool loopfree, bool no parallel edges);

makesG a random graph withn nodes andm edges in the so-calledGn,m-model of random
graphs. A graph in this model consists ofn nodes andm random edges. A random edge is
generated by selecting a random element from a candidate setC defined as follows:

• C is initialized to the set of alln2 pairs(v, w) of nodes, ifloopfreeis false, and to the
set of alln(n − 1) pairs of distinct nodes, ifloopfreeis true.

• Upon selection of a pair(v, w) from C the pair is removed fromC, when
noparallel edgesis true, and the reversed pair(w, v) is removed fromC, when
noanti parallel edgesis true.
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(v,w1) . . . . . . (v,w3)(v,w2)

Figure 6.9 The storage layout of a graph generated byrandomgraphnoncompact. Memory is
indicated as a horizontal band with low addresses at the left and high addresses at the right.
Observe that the edges contained in any adjacency list spread over a large area of memory.

Several special cases ofrandomgraph are available. The following pairs of calls are
equivalent:

random graph(G,n,m);

random graph(G,n,m,false,false,false);

random simple graph(G,n,m);

random graph(G,n,m,false,false,true);

random simple loopfree graph(G,n,m);

random graph(G,n,m,false,true,true);

random simple undirected graph(G,n,m);

random graph(G,n,m,true,true,true);

We give two implementations ofrandomgraph. The first implementation works only for
the case that all flags are set to false. The second implementation is to be preferred and we
give the first implementation mainly for didactic reasons. The first implementation makes
n calls ofnewnodeand thenm calls ofnewedge(v, w) for random nodesv andw.

〈randomgraph.c〉+�
void random_graph_noncompact(graph& G, int n, int m)

{

node* V = new node[n];

int i;

G.clear();

for(i=0; i<n; i++) V[i] = G.new_node();

for(i = 0; i < m; i++)

G.new_edge(V[rand_int(0,n-1)],V[rand_int(0,n-1)]);

delete[] V;

}

Figure 6.9 indicates the storage layout generated byrandomgraphnoncompact. The edges
are stored in the order in which they are generated. This implies that the edges belonging
to any particular adjacency list are spread over a large area of memory and hence makes
the layout not well suited for the most frequent iteration statement in graph algorithms:
the iteration over the edges out of a node. A compact layout, which stores for each node
all edges out of the node consecutively, is much better. A quantitative comparison will be
given later in the section.

We turn to the functionrandomgraphcompactthat generates a representation where all
edges out of any node are stored consecutively. It also supports the flagsnoanti parallel edges,
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. . . (v,w1) (v,w2) . . .(v,w3)

Figure 6.10 The storage layout of a graph generated byrandomgraphcompact. Memory is
indicated as a horizontal band with low addresses at the left and high addresses at the right.
Observe that the edges contained in any adjacency list are stored next to each other.

loopfree, andnoparallel edges. In the generation process we distinguish cases according to
whether the candidate setC is modified during the generation process or not.

We first deal with the simple case that the candidate setC is not modified by the process.
We choose the edges in two phases. In the first phase we choose the source node of each
edge and hence determine the out-degree of each node. In the second phase we iterate over
the nodes of the graph and generate for each node the required number of outgoing edges. In
this way all edges out of a node are generated consecutively. The running time isO(n +m).

〈randomgraph.c〉+�
void random_graph_compact(graph& G, int n, int m,

bool no_anti_parallel_edges,

bool loopfree, bool no_parallel_edges)

{ if ( n == 0 && m > 0 )

error_handler(1,"random graph: m to big");

if ( n == 1 && m > 0 && loopfree )

error_handler(1,"random graph: m to big");

node* V = new node[n];

int* deg = new int[n];

int i;

G.clear();

for (i = 0; i < n; i++)

{ V[i] = G.new_node();

deg[i] = 0;

}

if ( !no_anti_parallel_edges && !no_parallel_edges )

{

for (i = 0; i < m; i++) deg[rand_int(0,n-1)]++;

for (i = 0; i < n; i++)

{ node v = V[i];

int d = deg[i];

while ( d > 0 )

{ int j = rand_int(0,n-1);

if ( loopfree && j == i ) continue;

G.new_edge(v,V[j]);

d--;

}

}

}

else

{ 〈random graph: difficult case〉 }
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delete[] V;

delete[] deg;

}

We come to the case where the candidate setC is modified during the generation process.
In this situation we have to work harder.

We first check whetherm is too large. If only parallel edges are forbidden thenm can be
at mostn2, if parallel edges and self-loops are forbidden thenm can be at mostn(n − 1),
if parallel and anti-parallel edges are forbidden thenm can be at mostn + n(n − 1)/2, and
if parallel edges and anti-parallel edges and self-loops are forbidden thenm can be at most
n(n − 1)/2.

For the generation process we maintain anodemap2<bool> C with the following prop-
erties:

• If loopfreeis false thenC(v, w) = true iff (v, w) ∈ C.

• If loopfreeis true then for allv andw with v 6= w: C(v, w) = true iff (v, w) ∈ C, i.e.,
the mapC is equal to the setC except on the diagonal. This relaxed “equality”
removes the obligation to setC(v, v) to false for allv.

We build the graph as follows. We generate a random pair(v, w) of nodes. If it does not
belong to the candidate set, we discard it, and if it belongs to the candidate set, we add it to
the graph and update the candidate set accordingly. We build the graph temporarily as an
arrayE of lists of nodes. Once we have constructed all edges of the graph inE we actually
constructG.

〈random graph: difficult case〉�
〈random graph: check whether m is too big〉
node_map2<bool> C(G,true);

array<list<node> > E(n);

int i = m;

while ( i > 0 )

{ int vi = rand_int(0,n-1);

node v = V[vi];

node w = V[rand_int(0,n-1)];

if ( (v == w && loopfree) || !C(v,w) ) continue;

E[vi].append(w);

if ( no_parallel_edges ) C(v,w) = false;

if ( no_anti_parallel_edges ) C(w,v) = false;

i--;

}

for (i = 0; i < n; i++)

{ node v = V[i];

node w;

forall(w,E[i]) G.new_edge(v,w);

}
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Random Simple Simple loopfree Simple undirected

10.97 21.05 20.98 24.24

Table 6.3 Running time of random graph generation: We generated a random graph with
n = 105 nodes andm = 106 edges. The first column shows the running time with all flags set to
false, and the other columns show the time to generate a simple graph, a simple loopfree graph,
and a simple undirected graph, respectively. You may perform you own experiments using the
random graph demo.

What is the running time of the generation process? The less mathematically inclined reader
may skip the remainder of this section. We do the analysis for the case that no parallel edges
are allowed and leave the other cases to the reader. In this situation the maximal number
of edges isM = n2 and each edge generated decreases the number of candidate edges by
one. Thus there areM − j candidate edges whenj edges have already been generated, and
hence an expected number ofM/(M − j ) iterations are needed to generate a candidate. We
conclude that the expected total number of iterations required to generatem edges is∑

0≤ j<m

M/(M − j ).

If m > M/2 this sum is less than (we use the estimate
∑

1≤ j≤k 1/j ≈ ln k)

2m
∑

M−m+1≤ j≤M

1/j = O(m(ln M − ln(M − m))) = O(m ln(M/(M − m)))

and ifm < M/2 this sum isO(m). In either case the running time isO(m(1+ ln(M/(M −
m)))).

We still need to implement the check of whetherm is too big. This check is non-trivial to
implement due to the danger of overflow. Note thatn2 may be a number which does not fit
into anint. We therefore cannot simply compute the upper bound for the number of edges
in a variable of typeint. We use a variable of typedoubleinstead. This will work as long
asn ≤ 226, which is safe for some time to come. We only show one case of the check.

〈random graph: check whether m is too big〉�
double md = m; double nd = n;

if ( no_parallel_edges && !loopfree &&

!no_anti_parallel_edges && md > nd*nd)

error_handler(1,"random graph: m too big");

〈random graph: more checks whether m is too big〉

Table 6.3 shows the running time of our random graph generators.

The storage representation of a graph can have significant impact on the running time of
graph algorithms. We give an example. We generate a random graph with either one of the
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n m Compact Non-compact

100000 1000000 0.34 0.85

Table 6.4 Influence of representation on running time: We generated a random graph withn
nodes andm edges with our two random graph generators and then ran〈determine number of
edges〉 on both of them. Observe that the running time is more than double for the non-compact
representation. You may perform your own experiments by running the
compactversusnoncompactrepresentation demo.

two generators above and then count the number of edges in the graph by iterating over all
the edges out of all nodes.

〈determine the number of edges〉�
count = 0;

forall_nodes(v,G)

forall_adj_edges(e,v) count++;

Table 6.4 shows the running times for the compact and the non-compact representation.
The difference is huge. The running time for the non-compact representation is more than
double the running time for the compact representation. Similar but not as striking dif-
ferences can be obtained for other graph algorithms. The effect is less pronounced for
other graph algorithms because they usually do more than incrementing a counter in the
forall adj edges-loop.

The difference in speed is due to the influence of cache memory. It makes access to
consecutive locations faster than access to random locations. We discuss the influence of
cache memory on running time in some detail in Section 3.2.2.

In earlier versions of LEDA we usedrandomgraphnoncompactas our random graph
generator. When we moved torandomgraphcompactthe running time of all our graph
algorithms improved significantly.

random graph(graph& G, int n, double p);

makesG a random graph withn nodes and an expected number ofp · n · (n − 1) edges.
The graph is generated by the following experiment. Firstn nodes are created and then for
any pair(v, w) of distinct nodes the edge(v, w) is added toG with probability p. In the
graph literature this model of random graphs is called theGn,p-model. The running time is
O(n2). Graphs generated according to theGn,p-model behave similar to graphs generated
according to theGn,pn(n−1)-model.

random bigraph(graph& G, int a, int b, int m,

list<node>& A, list<node>& B);

makesG a random bipartite graph witha nodes on the one side,b nodes on the other side,
andm edges directed from theA-side to theB-side. The nodes on the two sides are returned
in A andB.
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The generators for planar graphs are treated in the chapter on embedded graphs, see
Section 8.9.

Exercises for 6.9
1 Compare the compact and the non-compact representation of graphs for other graph

algorithms.
2 Let o = (o0, . . . , on−1) andi = (i0, . . . , in−1) be vectors of non-negative integers with∑

0≤ j<n o j = ∑
0≤ j<n i j . Show that there is a graph withn nodes ando j edges out of

node j andi j edges into nodej for all j , 0 ≤ j ≤ n − 1. Generate a random graph
of this kind. Hint: Use the classdynamicrandomvariateof Section 3.5. Set up random
variatesS andT according to the weight vectorso andi , respectively. UseS to choose
sources andT to choose targets. After every generation of an edge decrement the weight
of its source and its target.

3 Userandomgraph(G, n, m) to generate a random graph and test the graph for simplicity
(usingIs Simple(G)). Try to find the value ofm (in relation ton) where about 50% of
the generated graphs are simple. If you want to understand the experiment, read up on
the so-called Birthday paradox, see for example [Fel68] or [MR95].

4 Write a O(n + m) generator for random graphs in theGn,p-model. Hint: Reduce the
problem to generating a graph in theGn,m-model. Letpm be the probability that a ran-
dom graph in theGn,p-model hasm edges. Show that the probability is maximal for
m ≈ pn(n − 1) by considering the quotientpm/pm+1. Also show that the probability
falls off quickly as one goes away fromm ≈ pn(n − 1). The idea is now to generate
m according to the distribution given by thepm ’s and to callrandomgraph(G, n, m)

afterwards. The problem with this approach is that thepm ’s are numbers with long
representations. A possible way around this problem is to write eachpm as a sum
pm,1 + pm,2 + . . . where for eachm the pm,i decrease exponentially ini . Consider the
collection

{
pm,i ; 0 ≤ m ≤ n(n − 1), i ≥ 0

}
and order it approximately by size. Gener-

atem according to this distribution and then callrandomgraph(G, n, m). Provide your
solution as an LEP.

6.10 Input and Output

We discuss how to write graphs to a file (or standard output) and how to read graphs from
a file. We support two formats, the format shown in Figure 6.11 (henceforth called the
standard representation) and the GML-format [Him97]. We will not formally define either
format.

G.write();

writes the standard representation ofG on standard output.

G.write(string s);

writesG onto the file with names and
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LEDA.GRAPH

void

void

4

|{}|

|{}|

|{}|

|{}|

5

1 2 0 |{}|

1 3 0 |{}|

2 3 0 |{}|

2 4 0 |{}|

3 4 0 |{}|

Figure 6.11 The standard representation of the graph of Figure 6.1. In the case of a
parameterized graph the node and edge labels are enclosed in the angular brackets.

G.write gml(string s,...);

writesG in gml-format. The additional arguments ofwrite gmlcan be used to fine-tune the
way nodes and edges are output.

G.read(string s);

G.read gml(string s, ...);

read a graphG from the file with names. Either the standard representation or the GML-
representation is expected.

The following piece of code is useful during the debugging phase of a graph algorithm.

while (true)

{ generate G;

G.write("graph.gw");

run graph algorithm on G;

check result and abort if incorrect;

}

If the program aborts, a witness that falsifies the algorithm can be found in the file with
name graph.gw.

There are several ways to inspect the witness graph:

• One can visually inspect the file to which the graph was written. This is tedious even
for very small graphs.

• One can load the graph into a graph window. This is the most convenient method and
we give more details below.

• One can send it through a graph drawing algorithm, see Section 8.1, and display the
result.
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We give more details on how to load a graph into a graph window, see Chapter 12 for
more information about the graphwin type. The following piece of code assumes that the
graph written has an integer node label and an integer edge label and that a parameterized
graph was used. We define a graphGRAPH<int, int> G and read it from the file. We then
define aGraphWin gwfor G. We tellgw that we want the so-called data labels of the nodes
and edges displayed, we open the display and putgw into edit mode4. When this program
is executed, a window will pop up in which the graphG is displayed. The nodes ofG will
appear at random positions. The layout can be modified by dragging nodes around.

〈simplevisualization.c〉�
#include <LEDA/graphwin.h>

main()

{

GRAPH<int,int> G;

G.read("graph.gw");

GraphWin gw(G);

node v; edge e;

gw.set_node_label_type(data_label);

gw.set_edge_label_type(data_label);

gw.display();

gw.edit();

}

Actually, there is no need even to write the program above. Call any of the programs starting
with “gw” in xlman and use the file menu to load the graph.

6.11 Iteration Statements

Iterating over the nodes and edges of a graph or all the edges incident to a particular node
is an essential component of any graph algorithm. Accordingly, we have seen iteration
statements already many times in this chapter. In this section we treat them in detail. We
first give a precise definition of the semantics, then discuss the possibility of hiding and
unhiding edges and the possibilities of changing the order of iteration, and finally discuss
which modifications of a graph are legal during iteration.

6.11.1 Basics
In order to understand the iteration statements we need to learn a bit about the representation
of graphs in LEDA. A graph is a collection of nodes and edges which are arranged into
several lists:

• The nodes are arranged into a list of nodes.

4 If the statementgw.edit( ) is omitted, the program will briefly flash the graph and then terminate.
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• The edges are arranged into a list of edges.

• In directed graphs two lists of edges are associated with every nodev:

adj edges(v) = {e ∈ E ; v = source(e)} ,

i.e., the list of edges starting inv, and

in edges(v) = {e ∈ E ; v = target(e)} ,

i.e., the list of edges ending inv. The listadj edges(v) is called the adjacency list of
nodev. For directed graphs we often useoutedges(v) as a synonym foradj edges(v).

• In undirected graphs only the listadj edges(v) is defined for every nodev. Here it
contains all edges incident tov, i.e.,

adj edges(v) = {e ∈ E ; v ∈ {source(e), target(e)}} .

An undirected graph must not contain self-loops, i.e., it must not contain an edge
whose source is equal to its target.

The semantics of the iteration statements for graphs now reduces to the semantics of the
iteration statements for lists.

forall nodes(v,G) { }

forall rev nodes(v,G) { }

iterate over the list of nodes in either forward or backward direction,

forall edges(e,G) { }

forall rev edges(e,G) { }

iterate over the list of edges in either forward or backward direction,

forall adj edges(e,v) { }

forall out edges(e,v) { }

forall in edges(e,v) { }

forall inout edges(e,v) { }

iterate over the listsadj edges(v), outedges(v), in edges(v), andoutedges(v) followed by
in edges(v), respectively, and

forall adj nodes(u,v) { }

iterates over the other endpoint, i.e.,G.opposite(v, e), of all edgese in adj edges(v).

6.11.2 Modification during Iteration
The rules are simple:

• It is unsafe to modify an object while iterating over it.

• However, the item under the iterator can be removed from the object.
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In our experience the exception covers most of the situations where one wants to perform
modifications during an iteration.

The following piece of code iterates over the edges of a graph and deletes all edges whose
cost is negative.

forall edges(e,G) if ( cost[e] < 0 ) G.del edge(e);

The following piece of code is an infinite loop as new edges are appended to the list of
edges during iteration.

forall edges(e, G) G.new edge(G.target(e), G.source(e));

A safe way to add the reversal of every edge toG is to write:

list<edge> L = G.all edges();

forall(e, L) G.new edge(G.target(e), G.source(e));

6.11.3 Hiding and Restoring Edges
Sometimes it is convenient to remove edges only temporarily from a graph. For this purpose
we have the concept of a hidden edge.

G.hide edge(e);

removese temporarily fromG until restored by

G.restore edge(e);

The implementation is simple.Hideedge(e) deletese from G and stores it in a list of hidden
edges andrestoreedge(e) removese from the list of hidden edges and puts it back into the
list of real edges. The list of all hidden edges is available asG.hiddenedges( ), one can ask
whether an edgee is hidden (G.is hidden(e)), . . . .

The following lines of code hides all edges with negative cost, then runs some graph
algorithm on the resulting graph, and finally restores all edges.

forall edges(e,G) if ( cost[e] < 0 ) G.hide edge(e);

// some graph algorithm

G.restore all edges();

The operationshideedgeandrestoreedgechange the order of the adjacency lists and hence
should be used withextreme care on embedded graphs.

6.11.4 Rearranging Nodes and Edges
The lists of nodes and edges may be arranged by sorting. There are many different ways
to sort. We go through the possibilities for nodes and remark that a similar set of sorting
routines exists for edges.

G.sort nodes(int (*cmp)(const node&, const node&));

sorts the nodes according to the compare functioncmpand

G.sort nodes(const node array<NT>& A);
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sorts the nodes according to the values in the node arrayA (the typeNT must be a number
type). The running time of both functions isO(n logn).

G.sort nodes(const list<node>& vl);

assumes thatvl is a permutation of the nodes ofG. This permutation is taken as the new
node ordering. The running time is linear.

G.bucket sort nodes(int (*ord)(const node&));

uses bucket sort to sort the nodes according to the values of the functionord(v). The
running time isO(n + (b − a + 1)) wherea andb are the minimal and maximal values of
ord, respectively.

void bucket sort nodes(const node array<int>& A);

uses bucket sort with the ordering functionord(v) = A[v].
Sorting the set of nodes rearranges the list of nodes. Subsequentforall nodesloops iterate

over the nodes in the modified order.
Sorting the set of edges rearranges the list of edges and the adjacency lists of all nodes.

Subsequentforall edges, forall adj edgesand forall outedgesloops iterate over the nodes
in the modified order.

For example, ifcostis an edge array that assigns an integer or double valued cost to every
edge, then

G.sort edges(cost);

rearranges the list of all edges and also the adjacency lists of all nodes in order of increasing
cost.

6.12 Basic Graph Properties and their Algorithms

We define some basic graph properties and give the algorithms that decide them. For some
of the algorithms we give the implementation. Many of the functions discussed in this
section are illustrated by Figure 6.12 and by the submenu “test” of menu “graph” of any
xlman-demo starting with the characters “gw”.

6.12.1 Functionality
The function

void CopyGraph(GRAPH<node,edge>& H, const graph& G);

constructs an isomorphic copyH of G. For each nodev of H the corresponding node inG
is stored inH [v] and for each edgee of H the corresponding edge ofG is stored inH [e].
The mappingv −→ H [v] is a bijection from the nodes ofH to the nodes ofG and for each
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(a)

(c) (d)

(b)

e

f

Figure 6.12 Illustration of basic graph properties: The graph (a) is not simple (the edgese and
f are parallel) and has a self-looph. The graph (b) is simple and bidirected. The graph (c) is
connected but not biconnected (the full node is an articulation point). The graph (d) is
biconnected but not triconnected (the full nodes form a split pair).

edgee = (v, w) of H we havesource(H [e]) = H [v] and target(H [e]) = H [w]. We have
already seen the implementation ofCopyGraphin Section 6.1.

A graph is calledsimpleiff is has no parallel edges, i.e., no two distinct edgese and f
with the same source and sink, and a graph is calledloopfreeif it has no self-loop, i.e., no
edge whose source is equal to its sink.

bool Is Simple(const graph& G);

returns true ifG is simple and returns false otherwise.
A directed graphG = (V, E) is calledbidirectedif for every edgee the reversed edge

(target(e), source(e)) also belongs toG, more precisely, if there is a bijectionrev : E −→ E
such that:

• source(e) = target(rev(e)) andtarget(e) = source(rev(e)) for everye ∈ E and

• rev(e) 6= e for everye ∈ E .

The conditionrev(e) 6= e ensures that a self-loop cannot be its own reversal. A bidi-
rected graph has an even number of edges. The main use of bidirected graphs is in the
representation of embedded graphs, the topic of Chapter 8.

The calls

bool Is Bidirected(const graph& G);

bool Is Bidirected(const graph& G, edge array<edge>& rev);
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check whetherG is bidirected. The second version also computes an appropriate bijection
between the edges ofG (if it exists).

void Make Bidirected(graph& G, list<edge>& R)

list<edge> Make Bidirected(graph& G)

adds edges toG to make it bidirected. The added edges are returned inR or as the result of
the function. An alternative toMakeBidirectedare the member functionsG.makebidirected
andG.makemap( ) which are discussed in Section 8.2.

bool Is Acyclic(const graph& G);

bool Is Acyclic(const graph& G, list<edge>& L);

return true if theG is acyclic and return false otherwise. The second version also returns
a list of edges whose removal makesG acyclic. We have already seen an implementation
of the first version ofIs Acyclic in Section 6.2. The second version performs a depth-first
search onG (see Section 7.3) and returns the list of back edges.

A path in a directed graphis a sequence

[v0, e1, v1, e2, v2, . . . , vk−1, ek, vk ]

of nodes and edges such thatsource(ei ) = vi−1 andtarget(ei ) = vi for all i , 1 ≤ i ≤ k. We
call v0 the source of the path andvk the target of the path. The number of edges in the path
is called the cardinality or length of the path. We will frequently abuse notation and write

[e1, e2, . . . , ek ]

or

[v0, v1, v2, . . . , vk−1, vk ]

instead of the more verbose notation above. A path issimpleif all nodes (except maybe for
the source and the target of the path) are pairwise distinct. Acycleis a path whose source
is equal to its target.

A path in an undirected graphis a sequence

[v0, e1, v1, e2, v2, . . . , vk−1, ek, vk ]

of nodes and edges such that{source(ei ), target(ei)} = {vi−1, vi } for all i , 1 ≤ i ≤ k and
ei−1 6= ei for all i , 1 < i ≤ k. We callv0 andvk the endpoints of the path. The number
of edges in the path is called the cardinality or length of the path. We will frequently abuse
notation and write

[v0, v1, v2, . . . , vk−1, vk ]

instead of the more verbose notation above.
If G is a graph ande is an edge ofG thenG \ e is the graph that results from removinge

from G. If v is a node ofG thenG \ v denotes the graph that results from removingv and
all edges incident tov from G.
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An undirected graphG is connectedif for any two nodesv andw of G there is a path
fromv to w in G. An articulation pointof an undirected graphG is any node ofG such that
G \ v is not connected. An undirected graph is calledbiconnectedif is has no articulation
point. A split pair of an undirected graph is a pair{s1, s2} of nodes such thatG \ {s1, s2} is
not connected.

bool Is Connected(const graph& G);

returns true ifG (viewed as an undirected graph) is connected and returns false otherwise.

void Make Connected(graph& G,list<edge>& L);

list<edge> Make Connected(graph& G);

makeG connected by adding edges and return the list of inserted edges. The number of
edges added is minimal.

void Make Biconnected(graph& G,list<edge>& L);

list<edge> Make Biconnected(graph& G);

makeG biconnected by adding edges and return the list of inserted edges.

bool Is Biconnected(const graph& G);

bool Is Biconnected(const graph& G, node& s);

test whetherG is biconnected. The second version returns an articulation point ins if the
graph is not biconnected.

A (directed or undirected) graph isbipartite if the nodes of the graph can be colored with
two colors such that every edge ofG connects nodes with different colors.

bool Is Bipartite(const graph& G);

bool Is Bipartite(const graph& G, list<node>& A, list<node>& B);

return true ifG is bipartite and return false otherwise. The second version also returns a
bipartition of the nodes ofG in A andB (if the graph is bipartite).

A graph isplanar if it can be drawn into the plane such that all nodes are placed at distinct
points in the plane and such that no two edges cross.

bool Is Planar(const graph& G);

returns true ifG is planar and returns false otherwise. We will see a lot more of planar
graphs in Chapter 8.

All functions above have linear running timeO(n + m).

bool Is Triconnected(const graph& G);

bool Is Triconnected(const graph& G, node& s1, node& s2);

returns true ifG (viewed as an undirected graph) is triconnected and returns false otherwise.
The second version returns a split pair ins1 ands2 if the graph is not triconnected. The
running time isO(n(n + m)).

Table 6.5 reports some running times of the basic graph algorithms.
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n G L C B S D A N T

1000 0.07 0.01 0.01 0.03 0.04 0.1 0.01 0 17.9

10000 1.08 0.03 0.29 0.63 0.48 1.85 0.28 0.01 3342

Table 6.5 Speed of basic graph algorithms: We generated a random graph withn nodes and
m = 10n edges and then ran various graph algorithms on it:
G = generation of random graph,
L = time for removing self-loops,
C = time for testing connectedness,
B = time for testing biconnectedness,
S = time for testing simplicity,
D = time for testing bidirectedness,
A = time for testing acyclicity,
N = time for testing bipartiteness,
T = time for testing triconnectivity.
The time for testing bipartiteness is so small because a violation to bipartiteness is found very
quickly in a random graph. For bipartite graphs the running time will be about the time to test
connectedness. You may perform your own experiments by running the speed of basic graph
algorithms demo.

6.12.2 Implementations
We give the implementation of the functionIs Bidirected.

We make two copies of the edges ofG in listsESTandETSand sort both lists.
In the sorted version ofEST the edges are sorted by their source node, and edges with

equal source node are sorted by their target node, i.e., all edges out of the first node come
first, then all out of the second node, . . . . Within each group of edges the ordering is by
target node.

In the sorted version ofETSthe edges are sorted by their target node, and edges with
equal target node are sorted by their source node, i.e., all edges into the first node come
first, then all into the second node, . . . .

We use bucket sort for both sorts. This will play a role below.
Figure 6.13 shows an example. After having sorted the two lists thei -th edge ofEST is

the reversal of thei -th edge ofETSfor all i (if G is bidirected).
Self-loops cause a small problem. As described so far, a self-loop can be matched with

itself. There is a simple remedy. We use the fact that bucket sort is stable, i.e., the relative
order of parallel edges is not changed.

Suppose now that we reverseETSbefore the sorting step. Consider all self-loops incident
to a particular nodev, saye1, e2, . . . , ek. In ESTthey will appear exactly in the same order
as in the original list of edges and inETSthey will appear in the reversed order. We match
thei -th edge of one sequence with thei -th edge of the other sequence. Whenk is even we
obtain a legal matching and whenk is odd we will attempt to match one of the edges with
itself. This leads to the following program.
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1 2

a

c
d

b

Figure 6.13 The listsESTandETSin the implementation of IsBidirected: It is assumed that
the original edge list ofG is E = (a, b, c, d ). Observe that the edgesb andd are parallel. In
ESTthe edges are sorted by source, and edges with equal source are sorted by target. Parallel
edges appear in the same order as inE . ThusEST= (a, c, b, d ). In ETSthe edges are sorted by
target, and edges with equal source are sorted by source. Parallel edges appear in the reverse
order as inE . ThusEST= (c, a, d, b).

The program uses the fact that the nodes of a graph are internally numbered and that
index(v) returns the number of a nodev.

static int edge ord1(const edge& e) { return index(source(e)); }

static int edge ord2(const edge& e) { return index(target(e)); }

bool Is Bidirected(const graph& G, edge array<edge>& reversal)

{

int n = G.max node index();

edge e,r;

list<edge> EST = G.all edges();

EST.bucket sort(0,n,&edge ord2);

EST.bucket sort(0,n,&edge ord1);

list<edge> ETS = G.all edges();

ETS.reverse(); //crucial

ETS.bucket sort(0,n,&edge ord1);

ETS.bucket sort(0,n,&edge ord2);

// merge EST and ETS to find corresponding edges

while (! EST.empty() && ! ETS.empty())

{ e = EST.pop();

r = ETS.pop();

if ( target(r) == source(e) && source(r) == target(e)

&& e != r )

reversal[e] = r;

else return false;

}

return true;

}

Exercises for 6.12
1 Give an implementation of the functionIs Simple. Use anodemap2.
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2 Implement a function that tests whether a graph has a self-loop.
3 Implement the functionMakeAcyclic. Read Section 7.3 first.
4 As above, but for functionIs Connected.
5 As above, but for functionMakeConnected.
6 Provide a better implementation of the triconnectedness test. A linear time algorithm is

described in [HT73]. Provide it as an LEP.

6.13 Parameterized Graphs

Parameterized graphs are another convenient way to associate information with the nodes
and edges of a graph.

GRAPH<vtype,etype> G;

declaresG as a parameterized graph and initializesG to the empty graph. With every node
of G a variable of typevtype is associated and with every edge ofG a variable of type
etypeis associated. The variables associated with nodes or edges can be accessed using
array notation, i.e.,G[v] and G[e] return the variables associated with nodev and edge
e, respectively. We have illustrated the use of parameterized types already in Section 6.1.
We will see extensive use of parameterized graphs in the chapters on embedded graphs and
on geometry. Here we want to discuss the relationship between parameterized graphs and
graphs.

All operations defined on instances of the data typegraphare also defined on instances
of any parameterized graph typeGRAPH<vtype, etype>, i.e., instances of a parameterized
graph type can be used wherever an instance of the data typegraph can be used, in par-
ticular, as arguments to functions with formal parameters of typegraph&. If a function
f (graph& G) is called with an argumentQ of type GRAPH<vtype, etype> then inside f
only the basic graph structure ofQ (the adjacency lists) can be accessed. The node and
edge entries are hidden.

The operations

node array<vtype>& G.node data()

edge array<etype>& G.edge data()

make the information associated with the nodes (edges) ofG available as a node array (edge
array) of typenodearray<vtype> (edgearray<etype>). These operations are extremely use-
ful when one wants to run a graph algorithm that requires a node or edge array as a parameter
on a parameterized graph where one has stored the appropriate information in the nodes and
edges, respectively. For example,

GRAPH<int,int> G;

node array<edge> pred(G);

DIJKSTRA(G,G.first node(), G.edge data(), G.node data(), pred);
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runs Dijkstra’s algorithm onG taking the edge data ofG as the edge costs and storing the
node distances in the nodes ofG.

We have four different ways to associate information with the nodes, and similarly with
the edges, of a graph in this section: node arrays, node data slots, node maps, and param-
eterized graphs. We use all four of them in our own work. We use parameterized graphs
when the node information is an essential part of the graph. For example, we use the type
GRAPH<point,...> for graphs embedded into the plane; the position of any nodev is given
asG[v]. If the information is only temporarily associated with the node, as, for example, in
a graph algorithm, we use node arrays and node maps. We use node maps for sparse arrays,
where only a fraction of the nodes need an entry, and we use node arrays for dense arrays.
We use node data slots, if speed is of utmost importance and node information is accessed
many times and in random order, and we use standard node arrays otherwise. Standard
node arrays are the most convenient and most widely used way to associate information
with nodes.

6.14 Space and Time Complexity

Graphs are represented in their adjacency lists representation and hence the space require-
ment isO(n + m), wheren andm are the number of nodes and edges of the graph, respec-
tively. Most operations on graphs take constant time except, of course, those which change
or inspect the entire graph. The iterators take time proportional to the number of objects
they iterate over, soforall edges(e, G) takes timeO(m). We give some more information
about the constant factors involved.

The space requirement of agraph or GRAPH with n nodes andm edges isO(1) +
44m + 52n bytes, i.e., a graph with 104 nodes and 105 edges needs about 5 megabytes. For
GRAPH<T1, T2>where an object of typeT1or T2needs more than one word of storage one
also has to account for the information associated with the nodes and edges. For example,
a point requires 8 bytes and hence aGRAPH<point, int> requires an additional 8n bytes.

There is a trade-off between the space requirement of graphs and the functionality offered
by them. We give some examples. Our graphs are fully dynamic, i.e., nodes and edges can
be added and deleted at any time, and hence the adjacency information of every node is
stored in a doubly linked list. For static graphs the adjacency information could be stored
in an array. Our graphs support the dynamic addition of additional node and edge labels (in
the form of node and edge arrays and maps) and hence every node or edge needs to have an
integer index. This index could be saved if all node and edge labels have to be declared at
the time of the construction of the graph.

We turn to running time. There is a large number of tables with running times of graph
algorithms in this book. The tables prove that it is possible to solve problems on fairly
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large graphs using our algorithms. Moreover, the time bounds achieved by (most of) our
algorithms are competitive with what other researchers report.

Exercises for 6.14
1 Implement a version of directed graphs where each node only knows about its outgoing

edges but not about its incoming edges and where the adjacency lists are stored as singly
linked lists and hence can only be traversed from front to rear. Make the graph class
compatible with LEDA’s graphs and provide it as an LEP.

2 Implement static directed graphs where all edges are stored in a single array, all edges in
a adjacency list are stored consecutively, and each node has two pointers into the array,
one to the first edge of its adjacency list, and one to the edge after the last edge of its
adjacency list.
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Graph Algorithms

LEDA offers a wide variety of graph algorithms. Starting in the third section of this chapter
we discuss depth-first and breadth-first search, algorithms to compute graph decomposi-
tions, and algorithms for shortest paths, matchings in bipartite and general graphs, maxi-
mum flows, and minimum cuts. For each class of algorithms we first discuss their func-
tionality and then discuss implementations. In many cases we also derive a checker of
correctness.

The first two sections of this chapter are orthogonal to the other sections of the chapter.
They deal with general considerations for algorithms on weighted graphs. In Section 7.1 we
discuss the use of template functions for such algorithms and in Section 7.2 we discuss the
requirements on the underlying arithmetic. Both sections can be skipped on first reading.

7.1 Templates for Network Algorithms

Many graph algorithms operate on graphs whose nodes or edges have an associated weight
from some number type. For example, the single-source shortest-path algorithm operates
on an edge-weighted graph and computes for each node its distance from the source. The
algorithm works for any linearly ordered number type. It is natural to formulate it as a
template function.

template <class NT>

bool DIJKSTRA T(const graph& G, node s, const edge array<NT>& c,

node array<NT>& dist, node array<edge>& pred);

The template parameterNT can be instantiated with any number type. The number type
must, of course, satisfy certain syntactic and semantic requirements, e.g., there must be a

283
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linear ordering defined on it and addition must be monotone. The most frequent instantia-
tions are with the built-in number typesint anddoubleand the LEDA number typesinteger
andreal. It is desirable that:

• the most frequent instantiations are pre-compiled, as this reduces the compilation time
of application programs and allows us to distribute object code instead of source code
to all those users, who do not need instantiations with other number types, and that

• the pre-instantiated versions can be used side by side with the template version.

We describe our mechanism to achieve these goals. We use the shortest-path algorithm as
our running example. We write three files: dijkstra.h, dijkstra.t, anddijkstra.c, which are
contained in the directories LEDAROOT/incl/LEDA, LEDAROOT/incl/LEDA/templates,
and LEDAROOT/src, respectively.

The file dijkstra.h contains the prototypes of all functions. We distinguish the template
version and the pre-instantiated versions of a function by the suffixT in the function name.
Thus

〈dijkstra.h〉�
#ifndef DIJKSTRA_H

#define DIJKSTRA_H

#include <LEDA/graph.h>

template <class NT>

void DIJKSTRA_T(const graph& G, node s, const edge_array<NT>& c,

node_array<NT>& dist, node_array<edge>& pred);

/* next come the pre-instantiated versions */

void DIJKSTRA(const graph& G, node s, const edge_array<int>& c,

node_array<int>& dist, node_array<edge>& pred);

// and, similarly, for double, ...

#endif

The file dijkstra.t contains the definition of the template function.

〈dijkstra.t〉�
#include <LEDA/dijkstra.h>

template <class NT>

void DIJKSTRA_T(const graph& G, node s, const edge_array<NT>& c,

node_array<NT>& dist, node_array<edge>& pred)

{

/* implementation of DIJKSTRA_T */

}

The file dijkstra.c contains the implementations of the instantiations in terms of the tem-
plate function.
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〈 dijkstra.c〉�
#include <LEDA/templates/dijkstra.t>

void DIJKSTRA(const graph& G, node s, const edge_array<int>& c,

node_array<int>& dist, node_array<edge>& pred)

{

DIJKSTRA_T(G,s,c,dist,pred);

}

// and, similarly, for double ...

Observe the include statement. As mentioned already, all files containing definitions of tem-
plate functions are collected in the subdirectorytemplatesof the LEDA include directory.

The file dijkstra.c is pre-compiled into the object filedijkstra.o, which is included in
one of the object libraries of the LEDA system.

We next discuss how to use the pre-instantiated and the template versions of the shortest-
path algorithm.

In order to use one of the pre-instantiated versions, one includes dijkstra.h into the appli-
cation program, for example,

〈foo.c〉�
#include <LEDA/dijkstra.h>

// define G, s, c, dist, pred with number type int

DIJKSTRA(G,s,c,dist,pred);

In order to use the template version, one includes templates/dijkstra.t into the application
program, as, for example, in

〈foo.c〉+�
#include <LEDA/templates/dijkstra.t>

// define G, s, c, dist, pred for any number type NT

DIJKSTRA_T(G,s,c,dist,pred);

// define G, s, c, dist, pred for number type int

// and use template version

DIJKSTRA_T(G,s,c,dist,pred);

// use pre-instantiated version

DIJKSTRA(G,s,c,dist,pred);

Observe that there is no problem to use one of the pre-instantiated versions and the template
version side by side in an application program such as foo.c.

We nevertheless recommend a different strategy.We suggest that the t-files are not in-
cluded directly into application programs, as t-files may contain the definitions of auxiliary
functions which might clobber the name space of the application program. We rather rec-
ommend to define intermediate files as shown next.
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In order to instantiate DIJKSTRAT for a particular number type, say the LEDA number
typereal, we recommend defining files

〈real dijkstra.h〉�
#include <LEDA/real.h>

void DIJKSTRA(const graph& G, node s, const edge_array<real>& c,

node_array<real>& dist, node_array<edge>& pred)

and

〈real dijkstra.c〉�
#include "real_dijkstra.h"

#include <LEDA/templates/dijkstra.t>

void DIJKSTRA(const graph& G, node s, const edge_array<real>& c,

node_array<real>& dist, node_array<edge>& pred)

{

DIJKSTRA_T(G,s,c,dist,pred);

}

to include the former in application programs, to pre-compile the latter, and to add the
object file realdijkstra.o to the set of objects for the linker. The alternative strategy has the
advantage of introducing no extraneous names into application programs.

We summarize: functions whose name ends withT are function templates. In order to
use them one must include a file LEDA/templates/X.t. The pre-instantiated functions have
the same name except for theT. In order to use them one needs to include a file LEDA/X.h.

7.2 Algorithms on Weighted Graphs and Arithmetic Demand

Many algorithms of this chapter operate on weighted graphs and work for any number type
NT. The algorithms use additions, subtractions, comparisons, and in rare cases multiplica-
tion and division. The correctness proofs of the algorithms rely on the laws of arithmetic
and hence the algorithms are only correct if the implementation of the number type obeys
the laws of arithmetic.

The two most commonly used number types areint anddouble. Unfortunately, both
types do not guarantee that the basic arithmetic operations obey their mathematical laws.
For example,int-arithmetic may overflow and wrap around1 anddouble-arithmetic incurs
rounding error, see Chapter 4. It is therefore not at all obvious that an instantiation of a
network algorithm with typesint or doublewill work correctly. Sections 4.1 and 7.10.5
contain examples of what can go wrong.

We use the following two-step approach to guarantee correctness.

1 Executecout << MAXINT + MAXINT;
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Step 1: We analyze the arithmetic demand of our algorithms. We state clearly which oper-
ations must be supported by the number type (that’s easy to do, since a simple inspection of
the code suffices) and we prove theorems of the following form: if all input weights are in-
tegers whose absolute value is bounded byB, then all numbers handled by the algorithm are
integers whose absolute value is bounded byf · B. We call such an algorithmf -bounded.
For example, we will show that the maximum weight bipartite matching algorithm is 3-
bounded and that the maximum weight assignment algorithm is 4n-bounded, wheren is the
number of nodes of the bipartite graph.

Step 2 for type int: In the instantiation of a network algorithm for typeint, we check that
all input weightsw satisfy f · w ≤ MAXINT. If not, we write an appropriate message to
diagnostic output. If yes, step 1 guarantees correctness of the computation.

We give an example. We mentioned already that the maximum weight bipartite matching
algorithm is 3-bounded. The instantiation is therefore as follows:

〈instantiation for ints〉�
list<edge> MAX_WEIGHT_BIPARTITE_MATCHING(graph& G,

const edge_array<int>& c, node_array<int>& pot)

{ int W = MAXINT/3;

check_weights(G,c,-W,W,"MWBM<int>");

return MAX_WEIGHT_BIPARTITE_MATCHING_T(G,c,pot);

}

where

〈scaleweights.h〉+�
inline bool check_weights(const graph& G, const edge_array<int>& c,

int lb, int ub, string inf)

{ edge e;

bool all_edges_ok = true;

forall_edges(e,G)

if ( c[e] < lb || c[e] > ub ) all_edges_ok = false;

if ( !all_edges_ok ) cerr << inf << ": danger of overflow.\n";

return all_edges_ok;

}

There is a similar function for node arrays.

Step 2 for type double:The problem withdouble-arithmetic is round-off error. Round-off
errors invalidate the correctness and termination proof and hence a “naive” instantiation of a
network algorithm with the number typedoublemay run forever, terminate with a run-time
error, terminate with an incorrect result, or terminate with the correct result.

It would be nice if we could guarantee that no rounding occurs during a computation, as
this will guarantee termination and the absence of run-time errors. It does not guarantee by
itself that the result produced has any relationship to the correct result. We come back to
this point below.

We can avoid rounding by scaling the input weights appropriately. We replace any input
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weightw by sign(w)·b|w|·Sc/S, where thescaling parameterS = 2s is a suitable power of
two. We use thesamescaling parameter for all input weights. This has the effect that, after
scaling, all input weights are of the formw′ · 2−s, wherew′ is an integer. Hence floating
point arithmetic will incur no rounding error as long as all intermediate results are of the
form z · 2−s, wherez is an integer that fits into the mantissa of a floating point number. It
remains to chooses.

Let C be the maximum absolute value of any input weight. Since the division by 2s

effects only the exponent of a floating point number, we may as well assume that every
input weightw is replaced bysign(w)b|w| · Sc. This will turn all inputs into integers and
hence step 1 guarantees that the absolute value of all intermediate results is bounded by
f · bC · Sc in the case of anf -bounded algorithm. If we chooses such that all intermediate
results can be represented exactly as a double precision floating point number then the
computation will incur no rounding error. This is the case if

f · bC · Sc < 253,

since double precision floating point arithmetic can represent all integers in the range [−(253−
1) .. 253− 1]. Observe that double precision floating point arithmetic uses a 52-bit mantissa
and that a floating point number with mantissam1m2 . . . m52 and exponent 52 represents
the integer

(1 +
∑

1≤i≤52

mi2−i) · 252.

The inequalityf · bC · Sc < 253 is certainly satisfied if

f · C · S < 253

or

s < 53− log( f · C).

We summarize:

Lemma 1 Consider an f -bounded algorithm, letC be the maximum absolute value of
any input weight, and letS be a power of two such thatf · C · S < 253. If every input
weightw is replaced by sign(w)b|w| · Sc, then the algorithm will incur no rounding error
in a computation with doubles and hence computes the correct result for the scaled inputs
weights.

What is the relationship between the result for the scaled input weights and the result
for the original input weights? We can make no general claim. However, there are many
situations where one can claim that the result for the scaled inputs is a good approximation
for the result on the unscaled inputs. For all but one network problem considered in this
chapter, namely min-cost flow, the objective value is a sum of input weights; for example,
the cost of a shortest path is a sum of edge weights, the cost of a matching is a sum of
edge weights, and the maximum flow in a network is the minimum capacity of a cut and
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hence a sum of edge weights. Assume that the objective value is the sum of at mostL
weights. For any set of at mostL weights the sum of the scaled weights and the sum of
the unscaled weights differs by at mostL/S, since for any individual weight the difference
is at most 1/S. If S is chosen as the largest power of two such thatS < 253/( f · C), then
S ≥ 252/( f · C) and hence the maximum absolute error in the objective function is at most
L · f · C · 2−52. We summarize in:

Lemma 2Under the hypothesis of the preceding lemma and the additional assumption that
the algorithm computes an objective value, which is the sum of at mostL input weights, the
maximum absolute error in the objective function is at mostL · f · C · 2−52.

Let us give an example. Consider the maximum weighted matching algorithm for bi-
partite graphs. This algorithm is 3-bounded and the value of a matching is the sum of at
mostn edges, wheren is the number of nodes of the graph. The maximum absolute error is
therefore at most 3· C · 2−52.

Observe that Lemma 2 bounds the absolute error in the objective function, but not the
relative error. We can make no general claims about the relative error. It must be studied
individually for each algorithm.

In order to computes and to scale the input weights, we use the functionsfrexp, ldexp,
andfloor from the math-library. Letx = f · C.

double frexp(double x, int* exp);

returns a doubley such thaty is a double with magnitude in the interval [1/2, 1) or 0, andx
equalsy times 2 raised to the powerexp(more precisely,∗exp). If x is 0, both parts of the
result are 0.

Thus, ifx is non-zero, then log|x | = exp− ε where 0< ε ≤ 1 and hence

53− log( f · C) = 53− exp+ ε.

We therefore chooses as

s = 53− exp.

If C = 0 and hencex = 0, the choice ofs is arbitrary. We will sets to 53 in this case. The
following procedures implement the computation ofs andS. We also compute 1/S, as it
will be convenient to have it around.

〈scaleweights.h〉+�
#include <math.h>

inline int compute_s(double f, double C)

{

int exp;

double x = frexp(f*C,&exp);

return 53 - exp;

}

inline double compute_S(double f, double C, double& one_over_S)
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{

int exp;

double x = frexp(f*C,&exp);

one_over_S = ldexp(1,exp - 53);

return ldexp(1,53 - exp);

}

where

double ldexp(double x, int exp);

computes the quantityx · 2exp.

How can we computew′ = sign(w) · b|w| · Sc/S? We use

double floor(double x);

which computes the largest integral value not greater thanx .

〈scaleweights.h〉+�
inline double scale_weight(double w, double S, double one_over_S)

{

if ( w == 0 ) return 0;

int sign_w = +1;

if ( w < 0 ) { sign_w = -1; w = -w; }

return sign_w * floor(w * S) * one_over_S;

}

Let us see scaling at work. We use again the weighted matching algorithm for bipartite
graphs. The instantiation for number typedoubleis as follows.

〈instantiation for double〉�
list<edge> MAX_WEIGHT_BIPARTITE_MATCHING(graph& G,

const edge_array<double>& c, node_array<double>& pot)

{ edge_array<double> c1(G);

scale_weights(G,c,c1,3.0,"MWBM<double>");

return MAX_WEIGHT_BIPARTITE_MATCHING_T(G,c1,pot);

}

where

〈scaleweights.h〉+�
inline bool scale_weights(const graph& G, const edge_array<double>& c,

edge_array<double>& c1, double f)

{ edge e;

double C = 0;

forall_edges(e,G) C = leda_max(C,fabs(c[e]));

double one_over_S;

double S = compute_S(f,C,one_over_S);

bool no_scaling = true;
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forall_edges(e,G)

{ c1[e] = scale_weight(c[e],S,one_over_S);

if ( c[e] != c1[e] ) no_scaling = false;

}

return no_scaling;

}

inline bool scale_weights(const graph& G, const edge_array<double>& c,

edge_array<double>& c1, double f, string inf)

{ bool no_scaling = scale_weights(G,c,c1,f);

if ( no_scaling == false ) cerr << inf << ": scaling was required";

return no_scaling;

}

We also offer a function that replaces a weight vector by its scaled version.

〈scaleweights.h〉+�
inline bool scale_weights(const graph& G, edge_array<double>& c,

double f)

{ edge_array<double> c0 = c;

return scale_weights(G,c0,c,f);

}

There are also analogous functions for node arrays.

How does scaling interact with program checking? We showed in Lemmas 1 and 2 that
a computation with doubles computes the exact result for the scaled weights and that the
result for the scaled weights is frequently a good approximation of the result for the unscaled
weights. We should not expect them to be equal. It is therefore nonsense to check whether
a double computation produced the correct result for the unscaled weights if scaling took
place.

For example, in the program

list<edge> M = MAX WEIGHT BIPARTITE MATCHING(G,c,pot);

CHECK MWBM(G,c,M,pot);

the call of CHECKMWBM may fail. Indeed, it is very likely to fail if scaling took place
in the computation of the maximum weight matching.

We recommend the following strategy of using program checking together with a com-
putation with doubles.The scaling should be done on the level of the user program. To this
end, each network algorithm comes with a function that replaces all input weights by their
scaled versions.

For example, in<mwbmatching.h> we also define a function

bool MWBM SCALE WEIGHTS(const graph& G, edge array<double>& c)

{

return scale weights(G,c,3.0);

}

that replaces the cost vectorc by a scaled version. One may then write
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MWBM SCALE WEIGHTS(G,c);

list<edge> M = MAX WEIGHT BIPARTITE MATCHING(G,c,pot);

CHECK MWBM(G,c,M,pot);

and checking will work.

The remainder of this section may be skipped. It is worthwhile to study in more detail
what it means to replacew by w′ = sign(w) · b|w| · Sc/S. Clearly, if w = 0 thenw′ = 0.
So assumew 6= 0. By symmetry, it suffices to study the casew > 0.

Lemma 3 Let 0 < w = x · 2e with 1/2 ≤ |x | < 1, e integral, and letw1w2 . . . w52 be the
mantissa of the floating point representation ofw. Let s be an integer, letS = 2s, and let
w′ = bw · Sc/S. If e + s ≤ 0 thenw′ = 0. If e + s > 0 thenw′ is obtained fromw by
replacing the mantissa byw1 . . . we+s−10 . . .0.

Proof We havew = x · 2e with 1/2 ≤ |x | < 1. If e + s ≤ 0 thenw′ = 0. So assume
e + s > 0. We have 2· x = 1 +∑

1≤i≤52wi2−i and hence

bw · Sc = bx · 2e+sc = b2 · x · 2e+s−1c
= b(1 +

∑
1≤i≤52

wi 2−i) · 2e+s−1c ≤ (1 +
∑

1≤i≤e+s−1

wi 2−i) · 2e+s−1

= (1 +
∑

1≤i≤e+s−1

wi2−i )/(2 · 2e · 2s)

and hence

w′ = bw · Sc/S = (1 +
∑

1≤i≤e+s−1

wi2−i )/(2 · 2e),

i.e.,w′ has the same exponent asw and mantissaw1 . . . we+s−10 . . .0.

Let us consider two special cases.

If all input weights are integers, then the scaling will not change any input as long as
f · C < 253. This is as forints, but withMAXINT replaced by 253 − 1.

For the second case we assume that all input weights are less than one. We may assume
w.l.o.g. that 1/2 ≤ C < 1. Thens = 53− k wherek = blog f c + 1 ork = blog f c. If w is
any input weight andw has binary representation

0.ww1w2 . . .

thenw′ has binary representation

0.w1w2 . . .w53−k000. . . ,

i.e., the binary representation is truncated after the(53− k)-th bit. In this way the scaled
weights leavek bits of the mantissa unused. The unused bits can be used to compute
intermediate results without rounding error.
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7.3 Depth-First Search and Breadth-First Search

Depth-first search and breadth-first search are two powerful methods to explore a graph in a
systematic way. Both methods start at some nodev of a directed graphG and visit all nodes
that can be reached fromv. They differ in the order in which they visit the nodes.

Depth-first search always explores edges out of the node most recently reached by the
search. When it has exhausted all edges out of a node it backtracks to the node from which
the node was reached.

Depth-first search is most easily formulated as a recursive proceduredfsthat takes a node
v as an argument (and additional arguments depending on the application of depth-first
search). A calldfs(v, . . .) first labelsv as reached and then makes recursive calls for all
nodesw such that(v, w) is an edge out ofv and nodew is not yet reached. A depth-
first search on a graphG induces two numberings of the vertices ofG, one in the order in
which the nodes are reached by the search and one in the order in which the calls todfs
are completed. The two numbers associated with a node are usually called itsdepth-first
search numberand itscompletion number. Depth-first search can also be used to partition
the edges ofG into so-calledtree, forward, backward, andcrossedges.

In the program below we use node arraysdfsnumandcompnumto record the two number-
ings and we use a listT to collect tree edges. The sets of forward, backward, and cross edges
are determined implicitly, as we will discuss later. We define two procedures, a recursive
proceduredfs(v, dfsnum, compnum, T ) and a masterDFSNUM(G, dfsnum, compnum). A
call dfs(v, . . .) visits and numbers all vertices reachable fromv that were not reached previ-
ously. We maintain the invariant thatdfsnum[v] = −1 iff v was not visited yet. The master
procedureDFSNUM initializes the variables and then iterates over all nodes. For every
nodev that was not reached yet it callsdfs(v, . . .). The calldfs(v, . . .) setsdfsnum[v] to the
current value ofdfsnumcounter, and then iterates over all edges out ofv. Each edge(v, w)

to an unreached nodew is added toT and leads to a recursive calldfs(w, . . .). When the
edges out ofv are exhaustedcompnum[v] is set to the current value ofcompnumcounter.

〈dfs〉+�
static int dfsnum_counter;

static int compnum_counter;

static void dfs(node v, node_array<int>& dfsnum, node_array<int>& compnum,

list<edge>& T )

{ dfsnum[v] = ++dfsnum_counter;

edge e;

forall_adj_edges(e,v)

{ node w = target(e);

if (dfsnum[w] == -1)

{ T.append(e);

dfs(w,dfsnum,compnum,T);

}

}

compnum[v] = ++compnum_counter;

}
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list<edge> DFS_NUM(const graph& G, node_array<int>& dfsnum,

node_array<int>& compnum)

{

list<edge> T;

dfsnum_counter = compnum_counter = 0;

dfsnum.init(G,-1); // declares all nodes unreached

node v;

forall_nodes(v,G)

if (dfsnum[v] == -1) dfs(v,dfsnum,compnum,T);

return T;

}

Figure 7.1 shows the result of a run ofDFSNUM. A call DFSNUM(G, . . .) partitions the
edges ofG into four classes in a natural way; the four classes are also shown in Figure 7.1.
An edgee = (v, w) is called atree edgeif dfs(w, . . .) is called when the edgee is scanned
in dfs(v, . . .); we useT to denote the set of tree edges. The treeT is the call tree of
proceduredfs. An edgee = (v, w) is called aforward edgeif it is parallel to a path of tree
edges, but is not a tree edge, i.e.,v

+
−→
T

w ande /∈ T ; it is called abackward edge(or back

edge) if it is anti-parallel to a path of tree edges, i.e.,w
∗−→
T

v; and it is called across edgein

all other cases. The two numberings of the vertices can be used to classify the edges2. An
edge(v, w) is a :

• tree or forward edge iffdfsnum[v] < dfsnum[w] andcompnum[v] > compnum[w],

• backward edge iffdfsnum[v] ≥ dfsnum[w] andcompnum[v] ≤ compnum[w],

• cross edge iffdfsnum[v] > dfsnum[w] andcompnum[v] > compnum[w].

Let us see why this is true. We only give an intuitive argument and refer the reader to
[Meh84c, IV.5] and [CLR90, chapter 23] for more detailed discussions.

If two callsC andD of dfsare nested within one another, sayD is nested withinC, then
C starts beforeD and ends afterD, i.e., the dfs-number of the node corresponding toC is
smaller than the dfs-number of the node corresponding toD and the completion-number of
the node corresponding toC is larger than the completion number of the node corresponding
to D. This explains the characterization of tree, forward, and backward edges.

If two calls C and D are not nested within one another and, sayC starts afterD, then
C starts after the completion ofD and hence the dfs-number of the node corresponding
to C is larger than the dfs-number of the node corresponding toD and the same holds for
completion-numbers. This fact together with the observation that a cross edge always runs
from a node reached later to a node reached earlier explains the characterization of cross
edges.

Depth-first search considers every edge of the graphG exactly once and hence runs in
linear timeO(n + m), wheren = |V | andm = |E |.
2 There is no standard convention concerning self-loops. We classify self-loops as back edges.
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1 : 5

2 : 4

3 : 1 4 : 2 5 : 3

Figure 7.1 Depth-first search: The search started at the bottom-most node. For each node the
dfs- and the completion-number are shown inside the node. Tree edges are shown as thick solid
edges, forward edges are shown as thin solid edges, backward edges are shown as dashed edges,
and cross edges are shown a dotted edges. It is customary to draw dfs-trees such that tree edges
are directed upwards and cross edges are directed from right to left. Observe how dfs-numbers
increase along every tree path and how completion-numbers decrease. Also observe that cross
edges go from nodes with higher dfs- and completion-number to nodes with lower dfs- and
completion-number. You may generate your own figures by calling the xlman-demo gwdfs.

Why should one be interested in the classification of the edges into tree, forward, back-
ward, and cross edges? Here is one reason. A depth-first search on an acyclic graph does
not find any backward edges. Thuscompnum[v] > compnum[w] for any edge(v, w), i.e.,
all edges go from higher to lower completion numbers. In other words,compnumis a
topological numbering of the graph.

We turn to breadth-first search. It explores the edges in the order in which their source
vertex is reached. It uses a queueQ to store the vertices in the order in which they are
reached and always explores edges out of the first node of the queue. When all edges out
of the first node are scanned, the first node is popped from the queue and exploration from
the new first node is started. BFS can be used to label the vertices with their distance from
a particular nodes, i.e., to compute anodearray<int> dist such thatdist[w] = d iff there
is a path froms to w of lengthd andd is the smallest integer with this property.

〈bfs〉�
void BFS(const graph& G, node s, node_array<int>& dist)

{ queue<node> Q;

node v,w;
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forall_nodes(w,G) dist[w] = -1;

dist[s] = 0;

Q.append(s);

while (!Q.empty())

{ v = Q.pop();

forall_adj_nodes(w,v)

if (dist[w] < 0)

{ Q.append(w);

dist[w] = dist[v] + 1;

}

}

}

The correctness of BFS is easy to establish. Clearly, ifdist[w] = d then there is a path of
lengthd from s to w. On the other hand, ifs = v0, v1, . . . , vl = w is a path froms to w of
lengthl thendist[vi ] ≤ i for all i , 1 ≤ i ≤ l.

Exercises for 7.3
1 Why can there be no edge(v, w) in a depth-first search withdfsnum[v] < dfsnum[w]

andcompnum[v] < compnum[w]?
2 Write a procedure based on depth-first search that tests a graph for acyclicity. If the

graph is acyclic it should also compute a so-called topological numbering of the vertices
of G, i.e., a labeling of the nodes ofG such that for all edges ofG the label of the source
node is smaller than the label of the target node.

3 Use the program LEDAROOT/demo/xlman/gwdfs.c as the basis of a program that il-
lustrates BFS.

7.4 Reachability and Components

We start with an overview of the algorithms that compute reachability information and sim-
ple structural information of directed and undirected graphs: transitive closure, connected
and biconnected components, and strongly connected components. Then we discuss the de-
tails of the strongly connected components algorithm, and finally we describe an animation
of this algorithm.

7.4.1 Functionality
We deal with basic problems concerning reachability in directed and undirected graphs. We
first consider directed graphs and later turn to undirected graphs.

Let G = (V, E) be a directed graph and letv andw be two vertices ofG. Recall that
w is reachablefrom v if there is a path inG from v to w, i.e., if eitherv = w or there
is a sequencee1, . . . , ek of edges ofG with k ≥ 1, v = source(e1), w = target(ek), and
target(ei ) = source(ei+1) for all i , 1 ≤ i < k.
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Figure 7.2 A graph with five strongly connected components. The five components are induced
by the node setsC0 = {8}, C1 = {5}, C2 = {1, 3, 4, 6, 7}, C3 = {0}, andC4 = {1}. The
xlman-demo gwsccanim illustrates strongly connected components.

The graphG∗ = (V, E∗) whereE∗ = {(v, w); w is reachable fromv} is called there-
flexive transitive closureof G. The procedure

graph TRANSITIVE CLOSURE(const graph& G);

computesG∗ from G in time O(n2 + mred · n) wheren = |V | andmred is the number of
edges in a transitive reduction ofG. A transitive reductionof G is a minimal (with respect
to set inclusion of edges) subgraph ofG with the same transitive closure asG. In an acyclic
graph,mred is the number of edges(v, w) of G such that there is no path of length two or
more fromv to w in G. For random graphs in theGn,p-model and arbitrary value ofp,
E(mred) = O(n) and hence the expected running time of the transitive closure algorithm is
O(n2), see [Meh84c, IV.3].

A directed graphG is calledstrongly connectedif from any node ofG there is a path
to any other node ofG. A strongly connected component(scc) of a graphG is a maximal
strongly connected subgraph. Figure 7.2 shows a graph with five strongly connected com-
ponents. Shrinking the strongly connected components of a graph to single nodes gives rise
to an acyclic graphGs = (Vs, Es) with

Vs = {C; C is an scc ofG}
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C0
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C2

Figure 7.3 The graph obtained by shrinking the sccs of the graph in Figure 7.2 to single nodes.
The given numbering of the sccs will be obtained if a first depth-first search is started in node 0
(it will only reach 0) and a second depth-first search is started in node 2.

and

Es = {(C, D); C, D ∈ Vs and there exists(v, w) ∈ E with v ∈ C andw ∈ D}
Figure 7.3 shows the shrunken graph obtained from the graph of Figure 7.2.

The procedure

int STRONG COMPONENTS(const graph& G, node array<int>& comp num)

returns the number of strongly connected components ofG and computes anodearray<int>
compnumwith the following properties3:

• For all nodesv of G: 0 ≤ compnum[v] < number of sccs ofG.

• compnum[v] = compnum[w] iff the verticesv andw belong to the same strongly
connected component.

• If (v, w) is an edge ofG thencompnum[v] ≥ compnum[w].

In other words, the arraycompnumencodes the strongly connected components ofG and
moreover induces a topological ordering of the shrunken graph. The scc demo illustrates
the strongly connected components algorithm. The demo allows one to construct a graph
interactively. After every edit step the strongly connected components are recomputed and
highlighted by a color and numbering code. ProcedureSTRONGCOMPONENTSruns in

3 Observe thatcompnumstands for component number andcompnumstands for completion number.
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linear timeO(n + m), wheren = |V | andm = |E |; its implementation is given in the next
section.

The transitive closure algorithm uses the strongly connected components algorithm as a
subroutine: it first computes the sccs, then the shrunken graph, then the transitive closure of
the shrunken graph, and finally the transitive closure of the full graph. We give the simple
procedure for computing the shrunken graphSGcorresponding to a graphG. We first call
the strong components algorithm forG and giveSGone vertex for each scc ofG. We then
iterate over the edges ofG and add an edge toSGfor each edge(v, w) of G wherev andw

belong to distinct sccs. Finally, we remove parallel edges by callingMakeSimple(SG).

〈shrunkengraph〉�
graph SHRUNKEN_GRAPH(const graph& G)

{ node_array<int> comp_num(G);

int N = STRONG_COMPONENTS(G, comp_num);

graph SG;

array<node> V(N);

for (int i = 0; i < N; i++) V[i] = SG.new_node();

edge e;

forall_edges(e,G)

{ node v = G.source(e); node w = G.target(e);

if (comp_num[v] > comp_num[w] )

SG.new_edge(V[comp_num[v]],V[comp_num[w]]);

}

Make_Simple(SG);

return SG;

}

We turn to undirected graphs. The data typeugraphrepresents undirected graphs. Alter-
natively, directed graphs may be interpreted as undirected graphs, see Section 6.7. In the
early versions of LEDA we usedugraphsas the argument of all graph algorithms that op-
erate on undirected graphs. We now prefer to usegraphsand to let the algorithms interpret
them as undirected graphs. In the discussion of the algorithms we talk about undirected
graphs, of course.

Let G = (V, E) be an undirected graph. It is calledconnectedif for any two verticesv
andw there is a path fromv to w in G, i.e., eitherv = w or there is a sequencev1, . . . , vk

of vertices such thatv = v1, w = vk , and{vi , vi+1} is an edge ofG for all i , 1 ≤ i < k. A
component ofG is a maximal connected subgraph ofG. The procedure

int COMPONENTS(const graph& G, node array<int>& comp num)

computes the number of connected components, sayN , of G and an arraycompnumsuch
that 0 ≤ compnum[v] < N for all verticesv andcompnum[v] = compnum[w] iff the
verticesv andw belong to the same connected component ofG. It runs in linear time
O(n + m).

A connected undirected graphG = (V, E) is calledbiconnectedif G − v is connected



300 Graph Algorithms
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Figure 7.4 A graph with four bccs. The bccs are indicated by ovals. They have edge sets
{{ f, c}}, {{e, g}},{{a, b}, {b, c}, {a, c}}, and{{b, d}, {b, e}, {e, d}}, respectively. The articulation
points are the nodesb, c, ande.

for everyv ∈ V . Here

G − v = (V − v, {e; e ∈ E andv /∈ e})
is the graph obtained by removing the vertexv and all edges incident tov from G. For
graphs with at least three nodes the following alternative definition is useful:G is bicon-
nected if for any distinct verticesv andw there are two vertex-disjoint paths connectingv

andw. A biconnected component(bcc) is a maximal biconnected subgraph. A vertexa is
called anarticulation pointof G if G − a is not connected. Figure 7.4 shows a graph with
four biconnected components.

Let G be an undirected graph and letG1 = (V1, E1), . . . , Gm = (Vm, Em) be the bi-
connected components ofG. We claim thatE = E1 ∪ . . . ∪ Em and |Vi ∩ Vj | ≤ 1 and
Ei ∩ E j = ∅ for i 6= j . To see this, note first that for each edge{v, w} ∈ E the graph con-
sisting of verticesv andw and the single edge{v, w} is biconnected, and hence contained
in one of the biconnected components ofG. It remains to show that any two distinct bccs
share at most one vertex (this also implies that they can share no edge). Assume otherwise,
i.e., we have distinct bccsGi andG j and a pair{v, w} of nodes belonging to both. SinceGi

andG j are maximal biconnected subgraphs, the subgraphG ′ = (Vi ∪ Vj , Ei ∪ E j ) is not
biconnected and hence has an articulation point, saya. Let x andy be vertices in different
components ofG ′ − a. Sincea is neither an articulation point inGi nor in G j , the graphs
Gi − a andG j − a are connected and hencex and y cannot both be vertices in the same
graphGi or G j . We may assume w.l.o.g. thatx ∈ Vi andy ∈ Vj . Sincea cannot be equal
to bothv andw we may assumev 6= a. SinceGi − a andG j − a are connected, a path
exists fromx to v in Gi − a and fromy to v in G j − a. Hence a path exists fromx to y in
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G ′ − a and we have reached a contradiction. We conclude that the bccs of a graph partition
the edges.

The procedure

int BICONNECTED COMPONENTS(const graph& G, edge array<int>& comp num)

returns the number of bccs of the undirected version ofG and computes an edge array
compnumsuch thatcompnum[e] = compnum[ f ] iff the edgese and f belong to the same
biconnected component ofG. The running time isO(n + m).

We give more details. Letc be the number of biconnected components and letc′ be the
number of biconnected components containing at least one edge;c−c′ is the number of iso-
lated nodes inG, i.e., the number of nodesv that are not connected to a node different from
v. The function returnsc and labels each edge ofG (which is not a self-loop) by an integer
in [0 .. c′ − 1]. Two edges receive the same label iff they belong to the same biconnected
component. The edge labels are returned incompnum. Be aware that self-loops receive no
label since self-loops are ignored when interpreting a graph as an undirected graph.

The nodes of a biconnected graph can be numbered in a special way which is useful for
many algorithms on biconnected graphs. Imagine the following physical experiment.G is
a biconnected graph ands and t are any two nodes ofG that are connected by an edge.
We replace all edges ofG by rubber bands and then pulls and t apart. SinceG has no
articulation point, this will exert force on every node ofG and order the nodes ofG along
the line froms to t . We number the nodes from 1 ton starting withs and proceeding
towardst . Every nodev of G, except fors andt , will have a smaller numbered and a higher
numbered neighbor. Such a numbering is called anst-numberingof G. The function

void ST NUMBERING(graph& G, node array<int>& stnum, list<node>& stlist)

numbers the nodes ofG with the integers 1 ton (the number of any nodev is returned
in stnum[v] and the ordered list of nodes is returned instlist) such that every nodev with
1 < stnum[v] < n is connected to a node with smaller number and to a node with higher
number, and such that the nodes with numbers 1 andn are connected by an edge. The
running time isO(n + m). We will see an application of st-numbering in Section 8.7.

7.4.2 Strongly Connected Components: An Implementation
We give a program to compute the strongly connected components of a directed graph. An
animation of this program is available as the xlman-demo gwsccanim. The algorithm is
an extension of depth-first search and was first described in [CM96]; alternative algorithms
are described in [Tar72] and [Sha81].

Consider a depth-first search onG and useGc = (Vc, Ec) to denote the subgraph already
explored, i.e.,Vc is the set of nodesv for which dfs(v, . . .) has been called andEc consists
of all edgese which have been explored in one of the calls ofdfs. The algorithm maintains
the strongly connected components ofGc. In order to derive the algorithm we first introduce
some notation and then state some properties ofGc.

We call a vertexv ∈ V completedif the calldfs(v, . . .) has been completed,unreachedif
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Figure 7.5 A snapshot of depth-first search on the graph of Figure 7.2 and the shrunken graph
corresponding to it.
A first dfs was started at nodea and a second dfs was started at nodeb. The upper part shows the
snapshot of dfs; it is assumed that the search has just reached nodeh and is starting to explore
the edges out ofh. The edge(h, i ) and the nodei have not been seen yet and the depth-first
search numbers of the nodes are indicated. The nodeh is the current node. Completed nodes are
shown shaded.
The shrunken graph is shown in the lower part of the figure. The components{a} and{e} are
permanent and all other components are tentative. The permanent components are shown
shaded. The tentative components form a pathP in the shrunken graph andh belongs to the last
component ofP. The roots of the tentative components are the verticesb, c, f , andh. They lie
on a common tree path of the depth-first search tree ofG.

the calldfs(v, . . .) has not been started yet, andactiveotherwise, i.e., if the call has already
been started but not yet completed. All active nodes lie on a single path inG and this path
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corresponds to the recursion stack of depth-first search. We call the last node of this path
thecurrent node. We call an scc ofGc permanentif all its vertices are completed and we
call it tentativeif this is not the case. Theroot of an scc is the node in the scc with the
smallest depth-first search number. Figure 7.5 illustrates these concepts. In this example
the shrunken graph ofGc exhibits considerable structure:

(1) There is no edge(v, w) ∈ E with v belonging to a permanent scc andw not belonging
to a permanent scc. In particular, all vertices reachable from a vertex in a permanent
scc are completed.

(2) The tentative sccs form a pathP in the shrunken graph and the current node is
contained in the last scc of this path.

(3) If C andC ′ are distinct tentative sccs withC precedingC ′ on P then all vertices inC
have smaller dfs-number than all vertices inC ′.

(4) Let C be a tentative scc ofGc and letr be its root. Then all vertices inC and all nodes
in all successors ofC on P are tree descendants ofr in the depth-first search tree, i.e.,
the name root is justified.

We will show below that all four properties hold true generally and not only for our
running example. The four properties will be invariants of the algorithm to be developed.
The first invariant implies that the permanent sccs ofGc are actually sccs ofG, i.e., it is
justified to call them permanent. This observation is so important that it deserves to be
stated as a lemma.

Lemma 4A permanent scc ofGc is an scc ofG.

Proof Let v be a vertex in a permanent scc ofGc and letw be a node ofG such thatv and
w belong to the same scc ofG. Thus there is a cycleC in G passing throughv andw. If v

andw do not belong to the same scc ofGc, one of the edges ofC does not belong toGc.
The source node of this edge cannot be completed and hence does not lie in a permanent
component. Sincev lies in a permanent component, there must be an edge(x, y) onC such
that x lies in a permanent component, buty does not. This is a contradiction to our first
invariant.

Invariants (2) to (4) suggest a simple method to represent the tentative sccs ofGc. We
simply keep a sequenceunfinishedof all vertices in tentative sccs in increasing order of
dfs-number and a sequencerootsof all roots of tentative sccs. In our exampleunfinished
is b, c, d, f , g, h, androots is b, c, f , h. For both sequences the data typestack<node> is
appropriate.

We can now start to write code. As already mentioned the program is an extension
of depth-first search and has the same global structure. As in Section 7.3 we define two
procedures:STRONGCOMPONENTSis the main procedure andSCCDFS is an auxiliary
procedure. Both procedures make use of the stacksunfinishedandrootsand the node arrays
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dfsnumandcompnum: dfsnum[v] is the dfs-number ofv for all reached nodes and is−1
for all unreached nodes;compnum[v] is the number of the scc containingv for all nodes
belonging to permanent sccs and is−1 for all other nodes. The variablesdfscountand
compcountkeep track of the used dfs-numbers and component numbers, respectively.

STRONGCOMPONENTSdefines and initializes all variables and then iterates over all
nodes ofG. It calls SCCDFS(v, . . .) for each unreached nodev. A call SCCDFS(v, . . .)

assigns the next dfs-number tov and makesv a tentative scc of its own. It then explores all
edges out ofv. Finally, it returns from the call.

〈SCC〉�
void SCC_DFS(node v, const graph& G, node_array<int>& dfsnum,

node_array<int>& comp_num, stack<node>& unfinished,

stack<node>& roots, int& dfscount, int& comp_count)

{ dfsnum[v] = dfscount++;

〈make v a tentative scc of its own〉
node w;

forall_adj_nodes(w,v){ 〈explore edge (v,w)〉 }

〈return from the call for node v〉
}

int STRONG_COMPONENTS(const graph& G, node_array<int>& comp_num)

{ stack<node> unfinished;

stack<node> roots;

node_array<int> dfsnum(G, - 1);

node v;

forall_nodes(v,G) comp_num[v] = - 1;

int dfscount = 0;

int comp_count = 0;

forall_nodes(v,G)

if (dfsnum[v] == -1)

SCC_DFS(v,G,dfsnum,comp_num,unfinished,roots,dfscount,comp_count);

return comp_count;

}

A call SCCDFS(v, . . .) makesv a tentative scc of its own sinceGc contains no edges out
of v yet. This amounts to addingv to the top ofunfinishedandroots. Thus

〈make v a tentative scc of its own〉�
unfinished.push(v);

roots.push(v);

It is easy to check that all invariants are maintained.
We come to the exploration of an edgee = (v, w). If e is a tree edge (this is the case iff

dfsnum[w] = −1) we simply initiate a recursive call. Ife is a non-tree edge andw belongs
to a permanent scc (this will be the case ifdfsnum[w] ≥ 0 andcompnum[w] ≥ 0), then,
by Lemma 4, no action is required to maintain the invariants. Ife is a non-tree edge andw
belongs to a tentative scc (this will be the case ifdfsnum[w] ≥ 0 andcompnum[w] = −1)
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v

w

collapse components

Figure 7.6 The path of tentative sccs and the effect of exploring an edge(v, w), wherew

belongs to a tentative scc. All tentative sccs on the path from the tentative scc containingw to
the tentative scc containingv are collapsed into a single scc.

then some final segment of the path of tentative sccs collapses to a single scc (cf. Figure 7.6).
Thus

〈explore edge (v,w)〉�
if (dfsnum[w] == - 1)

SCC_DFS(w,G,dfsnum,comp_num,unfinished,roots,dfscount,comp_count);

else if (comp_num[w] == - 1) { 〈merge sccs〉 }

We give the details of merging sccs. Assume thatw belongs to a tentative scc with rootr .
Thenr is the topmost root inroots with dfsnum[r ] ≤ dfsnum[w] (by invariant (3)). Any
rootr ′ abover ceases to be a root sincev −→ w

∗−→ r
∗−→ r ′ ∗−→ v. Note thatw

∗−→ r
sincew andr belong to the same scc, andr

∗−→ r ′ ∗−→ v since the shrunken graph of
tentative sccs is a path. Thus

〈merge sccs〉�
while (dfsnum[roots.top()] > dfsnum[w]) roots.pop();

What do we have to do when we return from a call, say for nodev? The completion ofv
completes an scc ifv is a root (by invariant (4)) andv is a root iff v = roots.top( ) (since
the call for the topmost root is completed before the call of any other root contained inroots,
again by invariant (4)). Ifv is a root the scc ofv consists of all nodes inunfinishedwhose
dfsnumis at least as large asv’s dfsnum(by invariant (3)). We simply pop these nodes from
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unfinishedand define theircompnum. Lemma 4 tells us that this scc is also an scc of the
final graph.

〈return from the call for node v〉�
if (v == roots.top())

{ do

{ w = unfinished.pop();

comp_num[w] = comp_count;

} while ( w != v);

comp_count++;

roots.pop();

}

Invariants (2), (3), and (4) are clearly maintained. For invariant (1) this can be seen as
follows. LetC be the scc with rootv. ThenC is the last scc of the pathP of tentative sccs
and hence all other tentative sccs are predecessors ofC on P. Thus there can be no edge
in Ec from a vertex inC to a vertex in any other tentative scc. Since all nodes inC are
completed, all edges(x, y) ∈ E with x ∈ C are also edges inEc and invariant (1) holds.

7.4.3 Strongly Connected Components: An Animation
We describe an animation of the algorithm of the preceding section. The animation is
available as the xlman-demo gwsccanim . The animation consists of two parts. In the
first part the user can interactively construct a directed graphG; after every edit operation
of the user the strongly connected components ofG are recomputed and shown in number
and color code, i.e., nodes belonging to the same scc are shown in the same color and with
the same integer label. In the second part the execution of our scc-algorithm on the graph
constructed in the first section is animated. Figure 7.7 shows a screen-shot. The overall
structure of the program is as follows:

〈gw scc anim.c〉�
#include <LEDA/graph_alg.h>

#include <LEDA/graphwin.h>

〈display functions for part one〉
〈display functions for part two〉
〈help panels〉
int main(){

GraphWin gw("SCC Animation Demo");

gw.display(); // open display

gw.set_directed(true);

int h_menu = gw.get_menu("Help");

gw_add_simple_call(gw,about_scc_anim1, "About SCC: phase 1",h_menu);

gw_add_simple_call(gw,about_scc_anim2, "About SCC: phase 2",h_menu);

gw_add_simple_call(gw,about_scc_anim_basics, "About SCC: basics",h_menu);

gw_add_simple_call(gw,about_scc_anim_data_structures,

"About SCC: data structures",h_menu);

〈part one of demo〉
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Figure 7.7 A screen-shot of the second part of gwsccanim. Explored nodes are labeled with
their depth-first search number and nodes in permanent sccs are labeled with their depth-first
search number and the number of the scc containing them. Explored edges are drawn solid and
unexplored edges are drawn dashed. The nodes in permanent sccs are shown in the left half of
the window and the other nodes are shown in the right half of the screen. The node with
depth-first number 2 is the currently active node and there are two tentative components, one
consisting of node 0 and the other one consisting of nodes 1, 2, and 3. There is one unreached
node. The stacksunfinishedandrootsare indicated at the bottom of the screen-shot. The text at
the top of the window explains the actions of the algorithm.

〈part two of demo〉
return 0;

}

The animation is based on the data typeGraphWin; this data type is a combination of graphs
and windows and is discussed in Chapter 12. Most of the current section can be appreciated
without knowledge of GraphWins, as we explain the used features of GraphWin as we go
along. However, the explanations of GraphWin will be kept short and hence readers without
knowledge of GraphWin will miss some of the fine points. We hope that all readers will
enjoy the demo so much that they will also study GraphWin.

In mainwe first define aGraphWin gwand then informgw that we are dealing with di-
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rected graphs. We then set up the help menu.GraphWinhas already a predefined help menu.
We get its number and add three buttons to it. The corresponding functionsaboutsccanim1,
. . . are defined in the program chunk〈help panels〉. We do not show it as the help buttons
of gw sccanim should give sufficient information. Having set up the help buttons we start
part one of the demo. It makes use of the display functions defined in the corresponding
chunk. The same holds true for the second part of the demo.

We come to the first part of the demo. Thanks to the powerfulGraphWindata type it is
extremely simple to write. AGraphWinalways has an associated graph and moreover it
maintains information about how to display the constituents of this graph: for example, for
a node it maintains the position of the node, the color of the node, and the shape of the node
(circle, square, rectangle, or ellipse), and for an edge it maintains the style of the edge (solid
or dashed or dotted) and the color and the width of the edge. The display information can
be modified.

In displaysccwe first get the current graphG from gw and then compute the strongly
connected components ofG. We then set for each nodev of G the color ofv to the compo-
nent number ofv modulo 16 (as we rely only on the availability of 16 different colors) and
we set the so-called user label4 of v to the component number ofv. We also informgw that
we want the user label to be displayed with each node.

We wantdisplayscc to be called whenever the graph associated withgw is modified.
This is easy to achieve. It is possible to associate functions with aGraphWin(so-called
handlers) that are called whenever a node or edge is added or deleted. For example,
gw.setdeledgehandler(displayscc) informsgw that the functiondisplaysccis to be called
whenever an edge is deleted. The handlers for the addition of a node or edge are syn-
tactically required to have a second argument which is a node or edge, respectively. We
therefore need to wrapdisplaysccaccordingly before defining the new edge and the new
node handler.

After having set the handlers we open the display, show the help information for phase
one, and putgw into edit mode. The callgw.edit( ) is terminated by a click on the done-
button ofgw.

〈display functions for part one〉�
void display_scc(GraphWin& gw)

{ graph& G = gw.get_graph();

node_array<int> comp_num(G);

int N = STRONG_COMPONENTS(G,comp_num);

node v;

forall_nodes(v,G)

{ gw.set_color(v,comp_num[v]%16);

gw.set_user_label(v,string("%d",comp_num[v]));

gw.set_label_type(v,user_label);

}

}

void new_edge_handler(GraphWin& gw, edge) { display_scc(gw); }

4 In GraphWineach node has a number of predefined labels; one of them is called the user label.
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void new_node_handler(GraphWin& gw, node) { display_scc(gw); }

〈part one of demo〉�
gw.set_init_graph_handler(display_scc);

gw.set_del_edge_handler(display_scc);

gw.set_del_node_handler(display_scc);

gw.set_new_node_handler(new_node_handler);

gw.set_new_edge_handler(new_edge_handler);

about_scc_anim1(gw); // inform user about phase 1

gw.message("\\blue Construct or load a graph and press done.");

wait(1.75);

gw.message("");

gw.edit(); // enter edit mode

We come to part two of the demo. The goal of part two is to animate the strongly con-
nected components algorithm of the preceding section. The idea behind the animation is as
follows. We use a split design for the main window. The right half of the window shows all
tentative components ofGc and all unexplored nodes and the left half of the screen shows
all permanent components. Also, unreached nodes are shown as white empty circles and
unexplored edges are shown dashed. The code below sets up the initial configuration of this
design and also displays some textual information for the user (which we do not show here
to save space).

We first get the coordinates of the window boundaries and then move the contents of
gw to the right half of the screen. We then create the initial drawing of the demo. For
each nodev we set the color to white, state that the node is to be drawn as a circle of radius
smallwidth(smallwidth is defined in program chunk〈display functions for part two〉), state
that the displayed information is the user label, set the user label to the empty string, and
compute the position to whichv is moved once it belongs to a permanent component. We
also set the style of all edges to dashed. We then call theSTRONGCOMPONENTSfunction
of the preceding section; of course, this function needs to be augmented by display actions
and therefore needs additional arguments, namely,gwandpermpos.

〈part two of demo〉�
gw.disable_calls(); // disable buttons

about_scc_anim2(gw);

graph& G = gw.get_graph();

window& W = gw.get_window();

node_array<point> perm_pos(G);

double xmin = gw.get_xmin() + W.pix_to_real(20);

// coordinate of left boundary plus 20 pixels

double xmax = gw.get_xmax() - W.pix_to_real(20);

double ymin = gw.get_ymin() + W.pix_to_real(30);

double ymax = gw.get_ymax() - W.pix_to_real(20);

double dx = xmax - xmin;

double dy = ymax - ymin;
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gw.place_into_box(xmin+dx/2,ymin,xmax,ymax-dy/5);

// move everything to right half of screen

gw.set_flush(false); // changes are accumulated

node v;

forall_nodes(v,G)

{ gw.set_color(v,white);

gw.set_label(v,user_label); gw.set_user_label(v,"");

gw.set_shape(v,circle_node);

gw.set_node_width(small_width);

double xcoord = gw.get_position(v).xcoord();

double ycoord = gw.get_position(v).ycoord();

perm_pos[v] = point(xcoord-dx/2,ycoord);

}

edge e;

forall_edges(e,G) gw.set_style(e,dashed_edge);

gw.redraw(); // all changes are performed now

gw.set_flush(true);

〈more information about part two〉
node_array<int> comp_num(G);

STRONG_COMPONENTS(G,comp_num,gw,perm_pos);

gw.message("\\bf Wasn\'t this a nice demo ?");

wait(1);

gw.message("");

gw.fill_window();

gw.enable_calls(); // enable buttons

gw.edit();

We come to the display functions used for part two. We display nodes in two sizes: roots and
nodes in permanent components are shown as large rectangles and all other nodes are shown
as small circles. All nodes in the same strongly connected components are colored with the
same color. For permanent components we use the color corresponding to the component
number and for tentative components we use the height of the root of the component in the
roots-stack. In order to keep the colors for permanent and tentative components separate (or
at least approximately so) we add an integercolor shift to all colors of tentative components.

The demo can be run in either of two modes. In step mode the next action is triggered
by a click on the done-button and in continuous mode the animation is run to completion
without user interaction. The choice of mode is controlled by the variablestepand the
proceduremessagewhich we use to write messagesmsginto gw. If step is true,msg is
displayed until the done-button is pressed. Ifstepis true and the exit button is pressed,step
is set to false and the demo runs to completion (sincemessagehas no effect whenstepis
false).

We define a windowstatewin (in addition to the window associated withgw) and use it
to display state information. The state information is generated by the functionstateinfo.
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It draws the stacks5 unfinishedand roots as sequences of rectangles intostatewin. Each
rectangle is labeled with the dfs-number of the node it represents. The stacksunfinished
and roots are displayed in a way that equal elements are aligned (recall thatroots is a
subsequence ofunfinished).

〈display functions for part two〉�
static int small_width = 20;

static int large_width = 36;

static int color_shift = 5;

static bool step = true;

void message(GraphWin& gw, string msg)

{ msg += "\\5 \\blue press done \\black";

if (step && !gw.wait(msg)) step = false;

}

static window state_win(320,60,"State Of The Algorithm");

static void state_redraw(window* wp) { wp->flush_buffer(); }

static color text_color(color col)

{ if (col==black || col==red || col==blue || col==violet ||

col==brown || col==pink || col==blue2 || col==grey3)

return white;

else

return black;

}

void state_info(GraphWin& gw, const list<node>& unfinished,

const list<node>& roots,

const node_array<int>& dfsnum,

node cur_v)

{

if (!state_win.is_open())

{ state_win.set_bg_color(grey1);

state_win.set_redraw(state_redraw);

state_win.display(-gw.get_window().xpos()+8,0);

state_win.init(0,320,0);

state_win.start_buffering();

}

state_win.clear();

double th = state_win.text_height("H");

double x0 = state_win.text_width("Unfinished") + 2*th;

double y1 = state_win.ymax() - 1.75*th;

double y2 = state_win.ymax() - 3.20*th;

double d = 18;

state_win.draw_text(5,y1+(d+th)/2,"Unfinished");

state_win.draw_text(5,y2+(d+th)/2,"Roots");

list_item r_it = roots.first();

double x = x0;

5 In contrast to the preceding section we realize both stacks as lists, the reason being that we need to iterate over all
elements in both stacks and that stacks do not support iteration over their elements (they probably should).
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list_item u_it;

forall_items(u_it, unfinished)

{ node v = unfinished[u_it];

color col = gw.get_color(v);

int dn = dfsnum[v];

state_win.draw_box(x,y1,x+d,y1+d,col);

state_win.draw_rectangle(x,y1-1,x+d,y1+d,black);

state_win.draw_ctext(x+d/2,y1+d/2,string("%d",dn),text_color(col));

if ( v == roots[r_it] )

{ state_win.draw_box(x,y2,x+d,y2+d,col);

state_win.draw_rectangle(x,y2-1,x+d,y2+d,black);

state_win.draw_ctext(x+d/2,y2+d/2,string("%d",dn),

text_color(col));

r_it = roots.succ(r_it);

}

else

state_win.draw_box(x+1,y2,x+d,y2+d,white);

x += d;

}

state_win.draw_rectangle(x0,y1-1,x,y1+d,black);

state_win.draw_rectangle(x0,y2-1,x,y2+d,black);

state_win.flush_buffer();

}

The functionsSTRONGCOMPONENTSandSCCDFS have the same overall structure
as in the preceding section, but are augmented by display actions. At the beginning of a
call SCCDFS(v, . . .) we callgw.select(v) to highlightv and at the end of the call we call
gw.deselect(v) to unhighlightv. In theforall adj edgesloopwe color the edge explored red
and make it solid.

〈display functions for part two〉+�
void SCC_DFS(node v, const graph& G, node_array<int>& dfsnum,

node_array<int>& comp_num, list<node>& unfinished,

list<node>& roots, int& dfscount, int& comp_count,

GraphWin& gw, const node_array<point>& perm_pos)

{ gw.select(v);

〈new node v was reached〉
node w; edge e;

forall_adj_edges(e,v)

{ w = G.target(e);

gw.set_style(e,solid_edge);

gw.set_color(e,red);

string msg = "I am exploring the red edge.\\3 ";

if (dfsnum[w] == - 1) { 〈tree edge and recursive call〉 }

else if (comp_num[w] == - 1)

{ 〈non-tree edge into tentative component〉 }

else

{ 〈non-tree edge into permanent component〉 }

}
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if (v == roots.head()) { 〈v is a root〉 }

gw.deselect(v);

}

In STRONGCOMPONENTSwe inform the user about every new call ofSCCDFSexcept
for the first.

〈display functions for part two〉+�
int STRONG_COMPONENTS(const graph& G, node_array<int>& comp_num,

GraphWin& gw, const node_array<point>& perm_pos)

{ list<node> unfinished;

list<node> roots;

node_array<int> dfsnum(G,-1);

node v;

forall_nodes(v,G) comp_num[v] = -1;

int dfscount = 0;

int comp_count = 0;

forall_nodes(v,G)

if (dfsnum[v] == -1)

{ SCC_DFS(v,G,dfsnum,comp_num,unfinished,roots,dfscount,

comp_count,gw,perm_pos);

message(gw,"This was a return from an outermost call\\3

I am looking for an unreached node and \\n\

(if successful) start a new search from it.");

}

return comp_count;

}

When a new node is reached it is given a dfs-number and is pushed onunfinishedand
roots. The new node forms a tentative strongly connected component of its own. We set
the color ofv to the size of theroots-stack (shifted bycolor shift so as to avoid too much
overlap with the colors used for permanent components), we set the user label ofv to its dfs-
number, and we set the shape and width ofv to a large rectangular shape (so as to indicate
thatv is a root). We build up a string to explain our actions, hand it tomessageto display
it, and callstateinfo to update the state information.

〈new node v was reached〉�
dfsnum[v] = dfscount++;

unfinished.push(v);

roots.push(v);

gw.set_color(v,(color_shift + roots.size())%16);

gw.set_user_label(v,string("%d",dfsnum[v]));

gw.set_shape(v,rectangle_node);

gw.set_width(v,large_width);

string msg;

msg += "A new node has been reached.\\3 ";

msg += "It got the dfs-number ";

msg += string("%d ",dfsnum[v]);

msg += "and it is the new current node.\\3 ";
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msg += "It is the root of a new tentative component.";

state_info(gw,unfinished,roots,dfsnum,v);

message(gw,msg);

A tree edgee = (v, w) leads to a recursive call. We inform the reader about this fact
by textual output, we unhighlightv as it ceases to be a current node, and we emphasize the
edgee (by increasing its width and setting its color to blue); in this way the tree path to the
current node is always shown as a path of thick blue edges. Then we make the recursive
call. After the return from the recursive call, we de-emphasizee and highlightv (again), and
we inform the reader that we just returned from a recursive call and thatv became active
again.

〈tree edge and recursive call〉�
msg += "It's a tree edge and I am making a recursive call.";

message(gw,msg);

state_info(gw,unfinished,roots,dfsnum,v);

gw.deselect(v);

gw.set_color(e,blue);

gw.set_width(e,2);

SCC_DFS(w,G,dfsnum,comp_num,unfinished,roots,dfscount,

comp_count,gw, perm_pos);

gw.set_width(e,1);

gw.set_color(e,black);

gw.select(v);

state_info(gw,unfinished,roots,dfsnum,0);

message(gw,"I returned from a recursive call. The node with \

number " + string("%d ",dfsnum[v]) + " got reactivated");

A non-tree edgee = (v, w) into a tentative component may close a cycle involving
several tentative components. These components are merged into one. More precisely, all
components whose root has a dfs-number larger thandfsnum[w] cease to exist. We inform
the user about this fact by textual output and then start poppingroots. Whenever a node is
popped fromroots its shape and width are changed to a small circle. We put await(0.25)
statement into the loop that pops fromrootsso that different roots are visibly popped one
after the other. Once all roots are popped we recolor the nodes in the newly formed scc and
give state information. Finally, we change the color ofe back to black.

〈non-tree edge into tentative component〉�
msg += "It's a non-tree edge into a tentative component. This edge may \

merge several components into one.\\n More precisely: all \

components whose root is larger than " + string("%d ",dfsnum[w]);

msg += "cease to exist and are merged into the component \

containing the node with dfs-number " + string("%d. ",dfsnum[w]);

msg += "Algorithmically, this amounts to removing all roots \

larger than " + string("%d ",dfsnum[w]);

msg += "from the stack of roots. I do so one by one. Removal of a node \
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from the stack of roots turns its shape from rectangular \

to circular.";

message(gw,msg);

state_info(gw,unfinished,roots,dfsnum,v);

while (dfsnum[roots.head()] > dfsnum[w])

{ node z = roots.pop();

gw.set_shape(z,circle_node);

gw.set_width(z,small_width);

state_info(gw,unfinished,roots,dfsnum,v);

wait(0.25);

}

node u;

forall(u,unfinished)

if (dfsnum[u] >= dfsnum[roots.head()] )

gw.set_color(u,(color_shift + roots.size())%16);

state_info(gw,unfinished,roots,dfsnum,0);

message(gw,string("Now all roots are removed and the newly formed \

component has been recolored. The current \

node is still: %d.", dfsnum[v]));

gw.set_color(e,black);

A non-tree edgee into a permanent component requires no action. We inform the user
and change the color ofe back to black.

〈non-tree edge into permanent component〉�
msg += "It's a non-tree edge into a permanent component. I do nothing.";

message(gw,msg);

state_info(gw,unfinished,roots,dfsnum,v);

gw.set_color(e,black);

When a callSCCDFS(v, . . .) for a rootv is completed a permanent component has been
found. We inform the reader accordingly. All nodes in the permanent component are moved
to the left half of the window (by setting their position as given bypermpos, the shape and
width is changed to a large rectangular shape, the user label is set to a pair consisting of
dfs-number and component number, and the color is set to the color corresponding to the
component number.

〈v is a root〉�
string msg = "Node " + string("%d",dfsnum[v]) + " has been \

completed. It is a root and hence we have identified \

a permanent component. \\3 \

The permanent component consists of all nodes in \

unfinished whose dfs-number is at least as large as "

+ string("%d",dfsnum[v]) + ". \\3 \

I move all nodes in the component to the left and \

indicate their dfs-number and their component number.";

state_info(gw,unfinished,roots,dfsnum,0);



316 Graph Algorithms

message(gw,msg);

do { w = unfinished.pop();

if (v == w) roots.pop();

comp_num[w] = comp_count;

gw.set_shape(w,rectangle_node);

gw.set_width(w,large_width);

gw.set_color(w,comp_count%16);

gw.set_user_label(w,string("%d | %d", dfsnum[w],comp_num[w]));

state_info(gw,unfinished,roots,dfsnum,0);

gw.set_position(w,perm_pos[w]);

} while ( w != v);

comp_count++;

Enjoy the animation.

Exercises for 7.4
1 Modify the algorithm for the computation of strongly connected components to compute

biconnected components of undirected graphs. Hint: Define the root of a biconnected
component as the node in the component with the second largest dfs-number. Then
proceed as for strongly connected components.

2 Part one of the animation of strongly connected components is unsatisfactory as color
changes are not “local”. It would be desirable to have the following behavior: after
the addition or deletion of a node or edge only the colors of those nodes change whose
containing strongly connected component has changed. Modify the animation to achieve
this behavior.

3 Animate the biconnected components algorithm of the first item.
4 Extend the first part of the animation of strongly connected components so that the

shrunken graph is also visualized. A reasonable approach seems to represent each vertex
of the shrunken graph by the convex hull of the vertices of the corresponding strongly
connected component.

5 Define the shrunken graph of an undirected graph with respect to its biconnected com-
ponents as follows. There is a vertex for each biconnected component and for each
articulation point. A vertex standing for a component is connected to a vertex represent-
ing an articulation point if the articulation point is contained in the component. Show
that the shrunken graph is a tree and give a program that computes it.

7.5 Shortest Paths

We introduce the shortest-path problem and describe the functionality of our various shortest-
path programs. We discuss a checker for the single-source shortest-path problem and de-
rive a generic shortest-path algorithm. We give algorithms and their implementations for
acyclic networks, for the single-source problem with arbitrary edge costs, for the single-
source single-sink problem, for the all-pairs problem, and for the minimum cost to profit
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Figure 7.8 The node labels indicateµ(s, .). The graph on the left contains a negative cycle and
also a node that is not reachable froms. Therefore there are node labels equal to±∞. The graph
on the right contains no negative cycle and all nodes are reachable froms. Therefore all node
labels are finite.

ratio cycle problem; an algorithm for the single-source problem with non-negative edge
costs was already given in Section 6.6. We also give experimental results about the running
times of the various implementations.

7.5.1 Functionality
Let G = (V, E) be a directed graph and letc : E −→ IR be acostfunction on the edges
of G. We will also saylengthinstead of cost. We extend the cost function topathsin the
natural way: the cost (or length) of a path is the sum of the costs of its constituent edges,
i.e., if p = [e1, e2, . . . , ek ] is a path thenc(p) = ∑

1≤i≤k c(ei). We will abuse notation
and writec(u, v) instead ofc(e) for e = (u, v). For every vertexv ∈ G the trivial path
consisting of no edge is a path fromv to v; its cost is zero. Acycleis a non-trivial path from
v to v for some nodev. A negative cycleis a cycle whose cost is negative.

For two verticesv andw we useµ(v, w) to denote the minimal cost of a path fromv to
w, i.e.,

µ(v, w) = inf {c(p) ; p is a path fromv to w} .

The infimum of the empty set is defined as+∞, i.e.,µ(v, w) = +∞ if w is not reachable
from v. Figure 7.8 illustrates this definition. The set of paths fromv to w is in general an
infinite set and hence it is not clear whetherµ(v, w) is actually achieved by a path fromv
to w. The following lemma gives information about the existence of shortest paths.

Lemma 5

(a) If w is not reachable fromv thenµ(v, w) = +∞.
(b) If there is a path fromv to w containing a negative cycle thenµ(v, w) = −∞.
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(c) If w is reachable fromv and there is no path fromv to w passing through a negative
cycle then−∞ < µ(v, w) < +∞ andµ(v, w) is the length of a simple path fromv to
w.

(d) If µ(v, w) = −∞ then there is a path fromv to w containing a negative cycle.

Proof Part (a) is true by definition.
For part (b), we observe that if there is a path fromv to w containing a negative cycle

then by going around the cycle sufficiently often a path fromv to w whose cost is below
any prescribed number is obtained. Thusµ(v, w) = −∞.

For part (c) consider any pathp from v to w. If p contains a cycle letp′ be obtained
by removing a cycle fromp. Sincep contains no negative cycle we havec(p′) ≤ c(p).
Continuing in this way we obtain a simple path fromv to w whose cost is at most the cost
of p. Thus

µ(v, w) = inf {c(p) ; p is a simple path fromv to w} .

The number of simple paths fromv tow is finite and henceµ(v, w) = c(p) for some simple
pathp.

We turn to part (d). Ifµ(v, w) = −∞ thenw is reachable fromv. If there is no path
from v to w containing a negative cycle thenµ(v, w) > −∞ by part (c).

We distinguish between thesingle-source single-sink shortest-path problem, thesingle-
source shortest-path problem, and theall-pairs shortest-path problem. The first problem
asks for the computation ofµ(s, t) for two specified nodess andt and will be discussed in
Section 7.5.6. The second problem asks to computeµ(s, v) for a specified nodes and all
v and the third problem asks to computeµ(s, v) for all nodess andv. The single-source
problem is the basis for the solutions to the other two problems and hence we discuss it first.

In our discussion of the single-source problem we uses to denote the source and we
write µ(v) instead ofµ(s, v). The following characterization of the functionµ is extremely
useful for the correctness proofs of shortest-path algorithms6.

Lemma 6

(a) We have

µ(s) = min(0, min{µ(u) + c(e) ; e = (u, s) ∈ E })
and

µ(v) = min {µ(u) + c(e) ; e = (u, v) ∈ E }
for v 6= s.

(b) If d is a function fromV to IR ∪ {−∞, +∞} with

• d(v) ≥ µ(v) for all v ∈ V ,

6 In this characterization and for the remainder of the section we use the following definitions for the arithmetic
and order onIR ∪ {−∞, +∞}: −∞ < x < +∞, +∞ + x = +∞, and−∞ + x = −∞ for all x ∈ IR.
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• d(s) ≤ 0, and

• d(v) ≤ d(u) + c(u, v) for all e = (u, v) ∈ E

thend(v) = µ(v) for all v ∈ V .

Proof For part (a) we consider only the casev 6= s and leave the casev = s to the reader.
Any path p from s to v consists of a path froms to some nodeu plus an edge fromu to v.
Thus

µ(v) = inf {c(p) ; p is a path froms to v}
= min

u
inf
{

c(p′) + c(e) ; p′ is a path froms to u ande = (u, v) ∈ E
}

= min {µ(u) + c(e) ; e = (u, v) ∈ E } .

For part (b) we assume for the sake of a contradiction thatd(v) > µ(v) for somev. Then
µ(v) < +∞. We distinguish cases.

If µ(v) > −∞, let [s = v0, v1, . . . , vk = v ] be a shortest path froms to v. We have
µ(s) = 0 = d(s), µ(vi) = µ(vi−1) + c(vi−1, vi) for i > 0, andµ(v) < d(v). Thus, there
is a leasti > 0 with µ(vi) < d(vi) and hence

d(vi) > µ(vi) = µ(vi−1) + c(vi , vi−1) = d(vi−1) + c(vi , vi−1),

a contradiction.
If µ(v) = −∞, let [s = v0, v1, . . . , vi , . . . , v j , . . . , vk = v ] be a path froms to v

containing a negative cycle. Such a path exists by Lemma 5. Assume that the subpath from
vi to v j is a negative cycle. Ifd(v) > µ(v) thend(v) > −∞ and henced(vl) > −∞ for
all l, 0 ≤ l ≤ k. Thus,

d(vi) = d(v j ) sincevi = v j

≤ d(v j−1) + c(v j−1, v j)

≤ d(v j−2) + c(v j−2, v j−1) + c(v j−1, v j )
...

≤ d(vi) +∑ j−1
l=i c(vl, vl+1),

and hence
∑ j−1

l=i c(vl, vl+1) ≥ 0, a contradiction to the fact that the subpath fromvi to v j is
a negative cycle.

We split the set of vertices ofG into three sets:

V − = {v ∈ V ; µ(v) = −∞} ,

V f = {v ∈ V ; − ∞ < µ(v) < +∞} , and

V + = {v ∈ V ; µ(v) = +∞} .

The vertexs belongs toV f if there is no negative cycle passing throughs and it belongs to
V − otherwise; in the latter caseV f is empty. The setV + consists of all vertices that are not
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Figure 7.9 A solution to a single-source problem: It consists of a shortest-path tree onV f , a
collection of negative cycles plus trees emanating from them onV −, a setV + of isolated nodes,
and the valuesµ(v) for v ∈ V f .

reachable froms. A shortest-path treewith respect tos is a tree defined onV f such that
for anyv ∈ V f the tree path froms to v is a shortest path froms to v.

We next define the output convention for the single-source shortest-path problem. What
do we want to know? Certainly,µ(v) for all nodesv. However, knowingµ(v) is usually
not enough. Ifv ∈ V f , it is useful to know a shortest path froms to v and if v ∈ V −, it
is useful to know the negative cycle that “puts”v into V −. Our algorithms therefore also
produce a shortest-path tree onV f and a collection of negative cycles plus trees emanating
from them onV −, see Figure 7.9. The exact definition is as follows7:

The solution to a single-source shortest-path problem(G, s, c) is a pair (dist, pred),
wheredist is anodearray<NT> andpred is anodearray<edge>. Let

P = {pred[v] ; v ∈ V andpred[v] 6= nil} .

The pair must have the following properties:

• s ∈ V f iff pred[s] = nil ands ∈ V − iff pred[s] 6= nil.

• Forv 6= s: v ∈ V + iff pred[v] = nil andv ∈ V f ∪ V − iff pred[v] 6= nil.

7 We further comment on our output convention after its definition.
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Figure 7.10 The output of a single-source shortest-path problem. The source nodes is shown
bigger than all other nodes. Itsdist-label is zero. Edge costs are indicated. For every nodev with
pred[v] 6= nil the edgepred[v] is shown in bold. For the nodes inV f thedist-value is shown
inside the node. For nodesv ∈ V + ∪ V − the set containingv is indicated by a+ or −. V +
consists of all nodesv 6= s with pred[v] = nil, V f consists of all nodes that are reachable froms
by a P-path, andV − consists of all nodes that lie on aP-cycle or are reachable from aP-cycle
by theP-path. All P-cycles have negative cost. You may generate your own figures with the
xlman-demo gwshortestpath.

• v ∈ V f if v is reachable froms by a P-path8 ands ∈ V f . P restricted toV f forms a
shortest-path tree anddist[v] = µ(v) for v ∈ V f .

• All P-cycles have negative cost andv ∈ V − iff v lies on aP-cycle or is reachable
from a P-cycle by aP-path.

Figure 7.10 shows an example. Observe that our output convention leaves the value of
dist[v] unspecified forv ∈ V + ∪ V −. We have made this choice because most number
types have no representation for+∞ and−∞. In theabsence of negative cyclesour output
convention simplifies to the following:

• Forv 6= s: v ∈ V f iff pred[v] 6= nil andv ∈ V + otherwise.

• pred[s] = nil.

• P is a shortest-path tree onV f anddist[v] = µ(v) for v ∈ V f .

Our output convention for the single-source shortest-path problem is non-standard. Most
papers on the shortest-path problem do not define precisely how negative cycles are reported
and this was also true for early versions of LEDA. We have defined our output convention
such that:

• the return value of a single-source algorithm consists of a pair(dist, pred), as is
customary for single-source algorithms. We played with the idea to add an output

8 A P-path is a path all of whose edges belong toP and aP-cycle is a cycle all of whose edges belong toP.
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parameter, which indicates for every node its membership to the setsV +, V f , andV −.
We decided against it, because we wanted to stick with the traditional interface of
shortest-path algorithms,

• it can be checked in linear time whether a pair(dist, pred) is a solution to the
shortest-path problem(G, s, c), see Section 7.5.2,

• shortest-path algorithms can satisfy it with little additional effort.

We turn to algorithms. All algorithms are function templates that work for an arbitrary num-
ber typeNT. We use the convention that names of function templates for graph algorithms
end with T. In order to use the templates one must include LEDA/templates/shortestpath.t.
LEDA also contains pre-compiled instantiations for the number typesint anddouble. The
function names for the instantiated versions arewithout the suffix T. In order to use the
instantiated versions one must include LEDA/graphalg.h. Section 7.1 discusses the rela-
tionship between templates and instantiated versions in more detail.

Acyclic Graphs:

void ACYCLIC SHORTEST PATH T(const graph& G, node s,

const edge array<NT>& c,

node array<NT>& dist,

node array<edge>& pred)

solves the problem in timeO(n + m) for acyclic graphs, see Section 7.5.4. As always, we
usen to denote the number of nodes ofG andm to denote the number of edges ofG.

Non-Negative Edge Costs:

void DIJKSTRA T(const graph& G, node s, const edge array<NT>& c,

node array<NT>& dist, node array<edge>& pred)

solves the problem in timeO(m + n logn) if all edge costs are non-negative. We have
discussed this function already in Section 6.6. If all edge costs are equal to one then breadth-
first search, see Section 7.3, solves the problem in linear time.

General Edge Costs:

bool BELLMAN FORD T(const graph& G, node s, const edge array<NT>& c,

node array<NT>& dist, node array<edge>& pred)

solves the problem in timeO(n · m) for arbitrary edge costs. It returns false ifµ(v) = −∞
for some vertexv. Otherwise, it returnstrue.

We also have a procedure

bool SHORTEST PATH T(const graph& G, node s, const edge array<NT>& c,

node array<NT>& dist, node array<edge>& pred)
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that tests whether one of the two special cases applies and, if so, applies the efficient proce-
dure applicable to the special case. If none of the special cases applies,BELLMANFORDT
is called. The implementation ofSHORTESTPATHT is simple.

〈SP.t〉�
template <class NT>

bool SHORTEST_PATH_T(const graph& G, node s, const edge_array<NT>& c,

node_array<NT>& dist, node_array<edge>& pred )

{ if ( Is_Acyclic(G) )

{ ACYCLIC_SHORTEST_PATH_T(G,s,c,dist,pred);

return true;

}

bool non_negative = true;

edge e;

forall_edges(e,G) if (c[e] < 0) non_negative = false;

if (non_negative) { DIJKSTRA_T(G,s,c,dist,pred);

return true;

}

return BELLMAN_FORD_T(G,s,c,dist,pred);

}

The Single-Sink Problem: The single-source single-sink shortest-path problem asks for
the computation of a shortest path from a specified nodes, the source, to a specified nodet ,
the sink.

NT DIJKSTRA T(const graph& G, node s, node t,

const edge array<NT>& c, node array<edge>& pred)

computes a shortest path froms to t and returns its length. The cost of all edges must be
non-negative. The return value is unspecified if there is no path froms to t . The array
predallows one to trace a shortest path froms to t in reverse order, i.e.,pred[t ] is the last
edge on the path. If there is no path froms to t or if s = t thenpred[t ] = nil. The worst
case running time isO(m + n logn), but frequently much better. The implementation is
discussed in Section 7.5.6.

The All-Pairs Problem: The all-pairs shortest-path problem asks for the computation of
the complete distance functionµ.

bool ALL PAIRS SHORTEST PATHS T(graph& G, edge array<NT> c,

node matrix<NT> DIST)

returnstrue if G has no negative cycle and returnsfalseotherwise. In the latter case all
values returned inDIST are unspecified. In the former case we have for allv andw: if
µ(v, w) < ∞ thenDIST(v, w) = µ(v, w) and if µ(v, w) = ∞, the value ofDIST(v, w)

is unspecified. The procedure runs in timeO(nm + n2 logn).
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Our output convention for the all-pairs problem is somewhat unsatisfactory. It is dictated
by the fact that many number types have no representation of+∞. An alternative solution
is to also return a node matrixPREDof edges in analogy to the single-source problem.

7.5.2 A Checker for Single-Source Shortest-Path Algorithms
We develop a programCHECKSPT(G, s, c, dist, pred) that checks whether(dist, pred) is
a correct solution to the shortest-path problem(G, s, c). If not, the program aborts (with
the error message “assertion failed”) and if so, the program returns anodearray<int> label
with label[v] < 0 if v ∈ V −, label[v] = 0 if v ∈ V f , andlabel[v] > 0 if v ∈ V +.

Let P = {pred[v] ; pred[v] 6= nil} be the set of edges defined by thepred-array and
define

U+ = {v ; v 6= s andpred[v] = nil} ,

U f = ∅, if pred[s] 6= nil,

U f = {v ; v is reachable froms by a P-path} , if pred[s] = nil,

U− = {v ; v lies on aP-cycle or is reachable from aP-cycle by aP-path} .

We perform the following checks:

(1) v ∈ U+ iff v is not reachable froms in G.
(2) All P-cycles have negative cost.
(3) There is no edge(v, w) ∈ E with v ∈ U− andw ∈ U f .
(4) For all e = (v, w) ∈ E : if v ∈ U f andw ∈ U f thendist[v] + c[e] ≥ dist[w].
(5) For all v ∈ U f : if v = s thendist[v] = 0 and if v 6= s thendist[v] = dist[u] +

c[pred[v]] whereu is the source ofpred[v].

Lemma 7 If (dist, pred) satisfies the five conditions above then it is a solution to the
shortest-path problem(G, s, c).

Proof Observe first thatv ∈ V + iff v is not reachable froms. Thus (1) implies that
U+ = V + and henceU f ∪ U− = V f ∪ V −. We next show thatU− ⊆ V −. Consider
anyv ∈ U−. By definition ofU− there is aP-cycle, call itC, from whichv is reachable.
Moreover, the cost ofC is negative by (2) and there is a node onC that is reachable froms
by (1). Thusµ(s, v) = −∞ and hencev ∈ V −. ThusU− ⊆ V − and thereforeU f ⊇ V f .
Assume for the sake of a contradiction that the latter inclusion is proper and letv ∈ U f \V f

be arbitrary. Thenv ∈ V − and hence there is a pathp from s to v containing a negative
cycle, sayC. By (3) there is no edge(x, y) with x ∈ U− andy ∈ U f . We conclude that all
vertices onp belong toU f . This implies that (4) holds for all edges ofC. Let e0, e1, . . . ,
ek−1 with ei = (vi , vi+1) be the edges ofC. Thenv0 = vk . We have

dist[v0] + c(C) = dist[v0] +
∑

0≤i<k

c[ei ]
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≥ dist[v1] +
∑

1≤i<k

c[ei ] ≥ . . . ≥ dist[vk]

= dist[v0]

by repeated application of (4). Thusc(C) ≥ 0, a contradiction. We have now shown that
U+ = V +, U f = V f , andU− = V −. We still need to show thatP restricted toV f is
a shortest-path tree. Consider anyv ∈ V f . Condition (5) implies thatdist[v] is the length
of the P-path froms to v and (4) implies that the length of any path froms to v is at least
dist[v]. Thus P is a shortest-path tree.

We come to the implementation. We start with condition (1). We use depth-first search to
determine all nodes reachable froms and we check whether for all nodesv different from
s: pred[v] = nil iff v is not reachable froms. We give all nodes that are not reachable from
s the labelPLUS; PLUSis an element of an enumeration type that we use to classify nodes.
All nodes start with the labelUNKNOWN. The other members of the enumeration type will
be explained below.

〈condition one〉�
enum{ NEG_CYCLE = -2, ATT_TO_CYCLE = -1, FINITE = 0, PLUS = 1,

CYCLE = 2, ON_CUR_PATH = 3, UNKNOWN = 4 };

node_array<int> label(G,UNKNOWN);

node_array<bool> reachable(G,false);

DFS(G,s,reachable);

node v;

forall_nodes(v,G)

{ if (v != s)

{ assert( (pred[v] == nil) == (reachable[v] == false));

if (reachable[v] == false) label[v] = PLUS;

}

}

Next we compute the setsU f andU−. Consider any nodev 6∈ U+. Tracing the path
[v, source(pred[v]), source(pred[source(pred[v])]), . . .] until either a node is encountered
twice or until the path cannot be extended further (it must end ins in the latter case because
s is the only node outsideU+ which may have no incomingP-edge) allows us to classify
all nodes on the path. In the former casev and all nodes on the path belong toU− and in the
latter case all of them belong toU f . For the sequel it is useful to have a finer classification
of the nodes inU− into nodes lying on aP-cycle (labelCYCLE) and nodes attached to a
cycle by aP-path (labelATTTOCYCLE) and so we will compute the finer classification.

Of course, we do not want to trace the same path several times. We therefore stop trac-
ing a path once a node is reached whose label is known (more precisely, is different from
UNKNOWN). As we trace a path all nodes on the path are put onto a stackS and are given
the labelON CURPATH.

We initialize the classification step by givings the labelFINITE if its pred-value isnil.
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〈classification of nodes〉�
if (pred[s] == nil) label[s] = FINITE;

forall_nodes(v,G)

{ if ( label[v] == UNKNOWN )

{ stack<node> S;

node w = v;

while ( label[w] == UNKNOWN )

{ label[w] = ON_CUR_PATH;

S.push(w);

w = G.source(pred[w]);

}

〈label all nodes on current path〉
}

}

When a nodew is encountered whose label is different fromUNKNOWNwe distinguish
cases: ifw is labeledFINITE, i.e., v ∈ U f , then all nodes on the path belong toU f , and
if w is labeledCYCLEor ATTTOCYCLE, i.e.,v ∈ U−, then all nodes on the path (except
for w) are attached to a cycle but do not lie on a cycle themselves, and ifw belongs to the
current path then the situation is as shown in Figure 7.11. This leads to the following code.

w v

Figure 7.11 A cycle and a path emanating from it. The search started inv andw is the first node
encountered twice.

〈label all nodes on current path〉�
int t = label[w];

if ( t == ON_CUR_PATH )

{ node z;

do { z = S.pop();

label[z] = CYCLE;

}

while ( z != w );

while ( !S.empty() ) label[S.pop()] = ATT_TO_CYCLE;

}

else // t is CYCLE, ATT_TO_CYCLE, or FINITE

{ if ( t == CYCLE ) t = ATT_TO_CYCLE;

while ( !S.empty() ) label[S.pop()] = t;

}

We next check that allP-cycles have negative cost. Given our classification of nodes
this is fairly simple. For every cycle node we trace the cycle containing it and compute its
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cost. We assert that the cost is negative. If so, we promote all nodes on the cycle to label
NEGCYCLE; this guarantees that every cycle is traced only once.

〈condition two〉�
forall_nodes(v,G)

{ if ( label[v] == CYCLE )

{ node w = v;

NT cycle_length = 0;

do

{ cycle_length += c[pred[w]];

label[w] = NEG_CYCLE;

w = G.source(pred[w]);

} while (w != v);

assert(cycle_length < 0);

}

}

Conditions (3), (4), and (5) are trivial to check.

〈conditions three, four, and five〉�
if ( label[s] == FINITE ) assert(dist[s] == 0);

edge e;

forall_edges(e,G)

{ node v = G.source(e);

node w = G.target(e);

if ( label[w] == FINITE )

{ assert( label[v] == FINITE || label[v] == PLUS);

if ( label[v] == FINITE )

{ assert( dist[v] + c[e] >= dist[w] );

if ( e == pred[w] ) assert( dist[v] + c[e] == dist[w] );

}

}

}

Putting it all together we obtain:

〈checksp.t〉+�
template <class NT>

node_array<int> CHECK_SP_T(const graph& G, node s,

const edge_array<NT>& c,

const node_array<NT>& dist,

const node_array<edge>& pred)

{ 〈condition one〉
〈classification of nodes〉
〈condition two〉
〈conditions three, four, and five〉
return label;

}
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7.5.3 A Generic Single-Source Shortest-Path Algorithm
We derive a generic shortest-path algorithm. All our implementations for the single-source
problem will be instances of the generic algorithm and the correctness proofs and running
time claims of our implementations will be consequences of the lemmas derived in this
section.

In Lemma 6 we gave a characterization of shortest-path distances.
Let d : V −→ IR ∪ {−∞, ∞} be a function with

(1) d(v) ≥ µ(v) for all v ∈ V
(2) d(s) ≤ 0
(3) d(v) ≤ d(u) + c(u, v) for all e = (u, v) ∈ E

Thend(v) = µ(v) for all v ∈ V .
The generic algorithm maintains a functiond satisfying (1) and (2) and aims at establish-

ing (3). We calld(v) thetentative distance labelof v.

d(s) = 0; d(v) = ∞ for v 6= s;
π(v) = nil for all v ∈ V ;
while there is an edgee = (u, v) ∈ E with d(v) > d(u) + c(e)
f d(v) = d(u) + c(e);

π(v) = e;
g

We will refer to the body of the while-loop asrelaxing9 edgee. Besides the tentative
distance labels the generic algorithm maintains for each nodev the edgeπ(v) that defined
d(v).

It is easy to see that (1) and (2) are invariants of the algorithm. We only have to observe
thatd(v) never increases (and henced(s) ≤ 0 always) and thatd(v) < +∞ implies that
d(v) is the length of some path froms to v (and henced(v) ≥ µ(v) always). When the
algorithm terminates we also have (3). Thus,d(v) = µ(v) for all v ∈ V when the algorithm
terminates. A lot more can be said about the generic algorithm.

Lemma 8The following is true at any time during the execution of the generic algorithm10.
Let

P = {e ; e = π(v) ∈ E for somev ∈ V } .

(a) d(s) = 0 iff π(s) = nil and d(v) < ∞ iff π(v) 6= nil for v 6= s.
(b) If π(v) = e = (u, v) thend(v) ≥ d(u) + c(e).
(c) If π(v) 6= nil then v either lies on aP-cycle, or is reachable from aP-cycle by a

P-path, or is reachable from s by aP-path. Ifπ(s) 6= nil thens lies on aP-cycle.

9 Think of e = (u, v) as a rubber band that wants to keepv within distancec(e) of u. If d(v) > d(u) + c(e) the
rubber band is under tension. Settingd(v) to d(u) + c(e) relaxes it.

10 Observe the similarity of items (a), (d), (e), (f), and (g) with the four bullets in the definition of our output
convention.
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(d) P-cycles have negative cost.
(e) If v lies on aP-cycle or is reachable from aP-cycle thenµ(v) = −∞.
(f) If v ∈ V f andd(v) = µ(v) then there is aP-path froms to v and this path has cost

µ(v).
(g) If d(v) = µ(v) for all v ∈ V f thenP defines a shortest-path tree onV f .

Proof (a) We start withd(s) = 0, d(v) = ∞ for all v with v 6= s, andπ(v) = nil for all v.
Whend(v) is decreased,π(v) is set, and whenπ(v) is set,d(v) is decreased.

(b) Consider the moment of time whenπ(v) was set most recently. At this moment
we hadd(v) = d(u) + c(u, v), d(v) has not changed since then, andd(u) can only have
decreased.

(c) Consider any nodeu, u 6= s, with (u, v) ∈ P for somev. Thenπ(v) = (u, v) and
henced(v) < ∞ by part (a). Thend(u) + c(u, v) ≤ d(v) by part (b) and henced(u) < ∞.
Thus,π(u) 6= nil by part (a). We conclude that any nodeu, u 6= s, with an outgoingP-edge
has also an incomingP-edge. Thuss is the only node which may have outgoingP-edges
but no incomingP-edge.

(d) Let [e0, . . . , ek−1] with ei = (vi , vi+1) andv0 = vk be aP-cycle. We may assume
w.l.o.g. thatπ(vk) = ek−1 is the edge in the cycle that was added toP last. Just prior to the
addition ofek−1 we have

d(vi+1) ≥ d(vi) + c(ei) for all i , 0 ≤ i ≤ k − 2

by part (b) and

d(vk) > d(vk−1) + c(ek−1).

Summation yields ∑
0≤i<k

d(vi+1) >
∑

0≤i<k

(d(vi ) + c(ei))

and hence (sincevk = v0 and thusd(vk) = d(v0))∑
0≤i<k

c(ei) < 0.

(e) Any nodev with π(v) 6= nil hasd(v) < ∞ and is hence reachable froms in G. Any
P-cycle has negative cost. Thusµ(v) = −∞ for any nodev lying on a P-cycle or being
reachable from aP-cycle.

(f) AssumeV f 6= ∅ and consider any nodev ∈ V f with d(v) = µ(v). Forv = s there
is nothing to show. Forv 6= s, d(v) = µ(v) < ∞ impliesπ(v) 6= nil. From (c) and (e) we
conclude thatv is reachable froms by a P-path p = [e0, . . . , ek−1] with ei = (vi , vi+1),
v0 = s, andvk = v. From (b) we conclude

d(vi+1) ≥ d(vi) + c(ei) for i, 0 ≤ i < k

and hence

d(vk) ≥ d(v0) + c(p) = c(p),
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where the last equality follows fromv0 = s ∈ V f and henced(s) = µ(s) = 0 by (1) and
(2). Thus,c(p) ≤ d(v) = µ(v) and we must have equality since no path froms to v can be
shorter thanµ(v).

(g) This follows immediately from part (f).

There are two major problems with the generic algorithm:

• In the presence of negative cycles it will never terminate (since thed-values are always
the length of some path and hence cannot reach−∞).

• Even in the absence of negative cycles the running time can be exponential, see
[Meh84c, page40] for an example.

We address the second problem in the remainder of this section and deal with the first
problem in Section 7.5.7. When we decrease the distance labeld(v) of a nodev in the
generic algorithm this may create additional violations of (3), namely for the edges out of
v. This suggests maintaining a setU of nodes with

U ⊇ {u ; d(u) < ∞ and∃(u, v) ∈ E with d(u) + c(u, v) < d(v)}
and to rewrite the algorithm11 as:

d(s) = 0; d(v) = ∞ for v 6= s;
U = {s };
while U 6= ∅
f selectu ∈ U and remove it;

forall edgese = (u, v)

f if d(u) + c(e) < d(v)

f addv to U ;
d(v) = d(u) + c(e);
π(v) = e;

g
g

g

We are left with the decision of which nodeu to select fromU . There is always an
optimal choice.

Lemma 9 (Existence of optimal choice)

(a) As long asd(v) > µ(v) for somev ∈ V f : for anyv ∈ V f with d(v) > µ(v) there is a
u ∈ U with d(u) = µ(u) and lying on a shortest path froms to v.

(b) When a nodeu is removed fromU with d(u) = µ(u) then it is never added toU again.

11 We reuse the name generic shortest-path algorithm for the modified version of the algorithm.
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Proof (a) Let [s = v0, v1, . . . , vk = v ] be a shortest path froms to v. Thenµ(s) =
0 = d(s) andd(vk) > µ(vk). Let i be minimal such thatd(vi) > µ(vi). Theni > 0,
d(vi−1) = µ(vi−1) and

d(vi) > µ(vi) = µ(vi−1) + c(vi−1, vi) = d(vi−1) + c(vi−1, vi).

Thus,vi−1 ∈ U .
(b) We haved(u) ≥ µ(u) always. Also, whenu is added toU thend(u) is decreased.

Thus, if a nodeu is removed fromU with d(u) = µ(u) it will never be added toU at a later
time.

There are two important special cases of the single-source problem where the existence
claim of an optimal choice can be made algorithmic. Both cases deal with graphs where the
structure of the graphs excludes negative cycles: graphs with non-negative edge costs and
acyclic graphs.

Lemma 10(Algorithmic optimal choice)

(a) If c(e) ≥ 0 for all e ∈ E thend(u) = µ(u) for the nodeu ∈ U with minimald(u).
(b) If G is acyclic andu0, u1, . . . , un−1 is a topological order of the nodes ofG, i.e., if

(ui , u j) ∈ E theni < j , thend(u) = µ(u) for the nodeu = ui ∈ U with i minimal.

Proof Assumed(u) > µ(u) for the node chosen in either part (a) or (b). By the preceding
lemma there is a nodez ∈ U lying on a shortest path froms to u with d(z) = µ(z). We
now distinguish cases.

In part (a) we haveµ(z) ≤ µ(u) since all edge costs are assumed to be non-negative.
Thus,d(z) < d(u), contradicting the choice ofu.

In part (b) we havez = u j for somej < i , contradicting the choice ofu.

Part (a) of the lemma above is the basis of Dijkstra’s algorithm, see Section 6.6, and part
(b) is the basis of a linear time algorithm for acyclic graphs, which we will discuss in the
next section.

In our shortest-path programs we use anodearray<NT> dist to represent the function
d and anodearray<edge> pred for the functionπ . Since most number types have no
representation of+∞ we will not be able to maintain equality betweend anddist. We
exploit the fact that the equivalence

d(v) = +∞ iff v 6= s andπ(v) = nil

holds in the generic algorithm and use it for the representation of+∞. We maintain the
following relationship between(d, π) and(dist, pred): for all nodesv:

• pred[v] = π(v) and

• dist[v] = d(v), if d(v) < ∞, anddist[v] arbitrary, if d(v) = +∞.

With this representation a comparisond < d(v) with d ∈ IR can be realized as:
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(pred[v] == nil && v != s) || d < dist[v]

We remark that the alternative

(v != s && pred[v] == nil) || d < dist[v]

is less efficient. All but one nodev is different froms and hence the testv != s evaluates
to true most of the time; thus the testpred[v] == nil will also be performed most of the
time in the second line. In the first line, the testpred[v] == nil evaluates to true only
when the first edge intov is considered (sinced(v) < +∞ afterwards) and hence evaluates
to false in the majority of the cases (at least if the average indegree is larger than two). Thus
the testv != s will not be made in the majority of the cases.

The general rule is that in a conjunction of tests one should start with the test that evalu-
ates to false most often and that in a disjunction of tests one should start with the test that
evaluates to true most often. Please, do not use this rule blindly since interchanging the
order of tests may change the semantics (since C++ evaluates a test from left to right and
terminates the evaluation once the value of the test is known). In the example above, it
would be unwise (why?) to change the expression into

d < dist[v] || (pred[v] == nil && v != s)

7.5.4 Acyclic Graphs
We show how topological sorting can be used to solve the single-source shortest-path prob-
lem in acyclic graphs in linear timeO(n + m). Let G be an acyclic graph and assume that
v1, v2, . . . , vn is an ordering of the nodes such that(vi , v j) ∈ E implies i ≤ j . Such an
ordering is easy to compute.

〈acyclic graphs: establish topological order〉�
node_array<int> top_ord(G);

TOPSORT(G,top_ord); // top_ord is now a topological ordering of G

int n = G.number_of_nodes();

array<node> v(1,n);

node w;

forall_nodes(w,G) v[top_ord[w]] = w; // top_ord[v[i]] == i for all i

The call TOPSORT(. . . ) numbers the nodes ofG with the integers 1 ton such that all edges
go from lower numbered to higher numbered nodes. In the forallnode-loop we store the
node with numberi in v[i ].

It is now easy to implement the generic single-source algorithm. Letk = topord[s].
Nodesvi with i < k are not reachable froms. We step through the nodes in the order
vk, vk+1, . . . and maintain the setU implicitly. Assume we have reached nodei . ThenU
consists of all nodesv j with j ≥ i anddist(v j ) < +∞. For j > k the latter condition
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is equivalent topred[v j ] 6= nil. If v[i ] is equal tos or has a defined predecessor edge we
propagatedist[v[i ]] over all edges out ofv[i ] and proceed to the next node.

〈acyclic sp.t〉+�
template <class NT>

void ACYCLIC_SHORTEST_PATH_T(const graph& G, node s,

const edge_array<NT>& c,

node_array<NT>& dist,

node_array<edge>& pred)

{

〈acyclic graphs: establish topological order〉
forall_nodes(w,G) pred[w] = nil;

dist[s] = 0;

for(int i = top_ord[s]; i <= n; i++)

{ node u = v[i];

if ( pred[u] == nil && u != s ) continue;

edge e;

NT du = dist[u];

forall_adj_edges(e,u)

{ node w = G.target(e);

if ( pred[w] == nil || du + c[e] < dist[w])

{ pred[w] = e;

dist[w] = du + c[e];

}

}

}

}

The correctness follows immediately from the remarks preceding the program and Lemma 10.
The running time isO(n + m) since each node and each edge is considered at most once.

7.5.5 Non-Negative Edge Costs
Dijkstra’s algorithm for the shortest-path problem with non-negative edge costs was already
treated in Section 6.6.

7.5.6 The Single-Source Single-Sink Problem
The single-source single-sink shortest-path problem is probably the most natural shortest-
path problem. The goal is to find a shortest path from a given source nodes to a given sink
nodet .

We describe the so-calledbidirectional search algorithm(an alternative approach is dis-
cussed in the exercises). The algorithm assumes that edge costs are non-negative. The
worst case running time of the algorithm isO(m + m logn); the observed running time is
frequently much better.

The bidirectional search algorithm runs two instances of Dijkstra’s algorithm (see Sec-
tion 6.6) concurrently, one to find shortest-path distances froms and one to find shortest-
path distances tot . The first instance is simply Dijkstra’s algorithm and the second instance
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Figure 7.12 Termination of the bidirectional shortest-path algorithm: In our implementation we
alternately add nodes toKs andKt . In the example we adds to Ks , t to Kt , u to Ks , v to Kt , w

to Ks , w to Kt , andv to Ks . The algorithm terminates whenv is added toKs . It does not
terminate whenw is added toKt , althoughw ∈ Ks ∩ Kt at this point of time. Observe that
dt (v) = 1 after addingt to Kt andds(v) = 2 after addingu to Ks . ThusD = 3 after addingu to
Ks and hencew does not realizeD when it is added toKs ∩ Kt .

is a symmetric version of Dijkstra’s algorithm, where the search starts att and shortest-path
distances are propagated across the edgesinto a node instead of the edges out of a node.

We useds(v) to denote the tentative distance froms to v anddt(v) to denote the tentative
distance fromv to t . Initially, ds(s) = dt(t) = 0, ds(v) = ∞ for v 6= s, anddt(v) = ∞ for
v 6= t . The algorithm maintains

D = min
v

(ds(v) + dt(v))

which is the shortest known length of a path froms to t .
Let Ks and Kt be the set of nodes that were removed from the priority queue in the

shortest-path calculations froms andt , respectively. We know from Section 7.5.3 that

ds(v) = µ(s, v) for v ∈ Ks

ds(v) = min{µ(s, u) + c(u, v); u ∈ Ks} for v 6∈ Ks

dt(v) = µ(v, t) for v ∈ Kt

dt(v) = min{c(v, u) + µ(u, t); u ∈ Kt } for v 6∈ Kt

The bidirectional algorithm terminates whenD is realized by a node inKs ∩ Kt or when
both queues become empty. In the former caseD is the shortest-path distance froms to
t , and in the latter case there is no path froms to t . Figure 7.12 illustrates the termination
condition.

Theorem 2The bidirectional search algorithm is correct.

Proof If there is no path froms to t then there is never a node inKs ∩ Kt and hence the
algorithm terminates when both queues become empty. Thus the algorithm is correct if
there is no path froms to t .
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So let us assume that there is a path froms to t . Let p = [s = v0, v1, . . . , vk−1, vk = t ]
be a shortest path froms to t .

We argue first that the event thatD is realized by a node inKs ∩ Kt will occur. This is
easy to see. Observe first that all nodes onp are reachable froms as well ast . When a node
vh on p is added toKs ∩ Kt , we have

µ(s, t) ≤ D ≤ ds(vh) + dt(vh) = µ(s, vh) + µ(vh, t) = µ(s, t),

and hence the event thatD is realized by a node inKs ∩ Kt will occur at the latest when a
node onp is added toKs ∩ Kt .

It remains to show thatD = c(p) when the event actually occurs. Assume otherwise,
i.e.,c(p) < D when the algorithm terminates. Then there is no node ofp in Ks ∩ Kt at the
time of termination.

Consider the time of termination, letw ∈ Ks ∩ Kt be the node withD = ds(w) + dt(w),
let i be minimal withvi+1 6∈ Ks , and let j be maximal withv j−1 6∈ Kt . Both indices exist
sincev0 = s is the first node to be added toKs andvk = t is the first node to be added to
Kt . We havei < j by our assumption that no node ofp is added toKs ∩ Kt and hence
ds(w) ≤ ds(vi+1), sincew ∈ Ks andv j−1 6∈ Ks , anddt (w) ≤ dt(v j−1), sincew ∈ Kt and
v j−1 6∈ Kt . If i + 1 ≤ j − 1, we have

c(p) ≥ µ(s, vi+1) + µ(v j−1, t) = ds(vi+1) + dt(v j−1) ≥ ds(w) + dt(w) = D,

and if i + 1 = j , we have withv = vi+1 = v j

c(p) = µ(s, v) + µ(v, t) = ds(v) + dt(v) ≥ D.

We turn to the implementation. We distinguish the two versions of Dijkstra’s algorithm
by indices 0 and 1 and provide two copies of the required data structures in arrays with
index set{0, 1}.
〈single sink: data structures〉�

array<node> terminal(2);

terminal[0] = s; terminal[1] = t;

array<node_pq<NT>* > PQ(2);

PQ[0] = new node_pq<NT>(G);

PQ[1] = new node_pq<NT>(G);

PQ[0]->insert(terminal[0],0);

PQ[1]->insert(terminal[1],0);

array<node_array<NT> > dist(2);

dist[0] = dist[1] = node_array<NT>(G);

dist[0][s] = dist[1][t] = 0;

array<node_array<edge> > Pred(2);

Pred[0] = Pred[1] = node_array<edge>(G,nil);

bool D_equals_infinity = (s != t? true : false);

NT D = 0;
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We store the tentative distancesds(v) anddt(v) in dist[0][v] anddist[1][v], respectively, we
usePQ[0] andPQ[1] as the priority queue in the search froms andt , respectively, we use
Pred[0][v] to record the edge intov that definesds(v), and we usePred[1][v] to record the
edge out ofv that definesdt (v).

We initialize D to infinity if s 6= t , and to zero otherwise. Since we cannot assume that
the number typeNT provides the value+∞ we use a boolean flag to indicate this special
value.

A remark is in order about the declarations above. We declareddist as an array of node
arrays andPQas an array of pointers to priority queues. Why did we make this distinction?
In order to declare anarray<T> for some typeT , T must provide a default constructor, a
copy constructor, and some other operations, e.g., the input and output operators� and�,
see Section 2.8. Node arrays provide all required functions except for the input and output
operators and those are easily defined in the current file, since the missing functions are non-
member functions of node arrays. The situation is different for node priority queues; they
define only a few of the required functions and, in particular, a member function is missing.
We cannot add the member function in this file. Moreover, in the case ofdist it is more
important to have an array of node arrays instead of an array of pointers to node arrays, since
having an array of pointers to node arrays would force us to write either(*dist[i])[v]
or dist[i]->operator[](v) instead ofdist[i][v].

〈dijkstra single sink.t〉�
template <class T>

ostream& operator<<(ostream& o,const node_array<T>&) { return o; }

template <class T>

istream& operator>>(istream& i,node_array<T>&) { return i; }

The structure of the single-source single-sink program is as described above. We run
both instances of Dijkstra’s algorithm concurrently, and terminate when either both queues
become empty or when we encounter a nodeu ∈ Ks ∩ Kt with D = ds(u) + dt(u). In
the former case there is no path froms to t . According to our output convention for the
single-source single-sink problem this fact is recorded by havingpred[t ] = nil in the return
values.

〈dijkstra single sink.t〉+�
template<class NT>

NT DIJKSTRA_T(const graph& G, node s, node t,

const edge_array<NT>& cost, node_array<edge>& pred)

{

〈single sink: data structures〉
while ( !PQ[0]->empty() || !PQ[1]->empty() )

{ for (int i = 0; i < 2; i++)

{ if ( PQ[i]->empty() ) continue;

node u = PQ[i]->del_min();

〈return if u is in Ks and Kt and D = ds(u) + d t(u)〉
〈relax edges out of u, if i = 0, or into u, if i = 1〉
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}

}

pred[t] = nil; // no path from s to t

return D;

}

The relaxation of edges is copied from Section 6.6 with two small modifications.
In the search for shortest paths froms we iterate over the edges out ofu, and in the search

for shortest paths tot we iterate over the edges intou.
Whenever the dist-value of a node is improved we check whether this leads to an im-

provement ofD.

〈relax edges out of u, if i = 0, or into u, if i = 1〉�
for ( edge e = (i == 0? G.first_adj_edge(u): G.first_in_edge(u));

e != nil;

e = (i == 0? G.adj_succ(e): G.in_succ(e)) )

{ node v = (i == 0? G.target(e) : G.source(e) );

NT c = dist[i][u] + cost[e];

if ( Pred[i][v] == nil && v != terminal[i] )

PQ[i]->insert(v,c); // first path to v

else if (c < dist[i][v]) PQ[i]->decrease_p(v,c); // better path

else continue;

dist[i][v] = c;

Pred[i][v] = e;

if ( ( v == terminal[1-i] || Pred[1-i][v] != nil )

// dist[1-i][v] is defined iff true

&& ( D_equals_infinity || dist[0][v] + dist[1][v] < D ))

{ D_equals_infinity = false;

D = dist[0][v] + dist[1][v];

}

}

How can we check whetheru ∈ Ks ∩ Kt ? Assume w.l.o.g. thati = 0. Thenu ∈ Ks since
we have just removed it fromPQ[0]. Also, we haveu ∈ Kt if u has been inPQ[1], but is
not there anymore.u has been or still is inPQ[1] if either u = t or Pred[1][u] is defined,
andu is not inPQ[1] if PQ[1] → member(u) returns false.

If u ∈ Ks ∩ Kt andD = ds(u) + dt(u) we terminate the computation, record the path in
the predecessor array, and returnD as the length of the shortest path froms to t . In order to
record the path in thepred-array we trace the two “half paths” fromu to s and fromu to t ,
respectively. When tracing the latter path we observe thatPred[1] stores out-edges and not
in-edges.

〈return if u is in Ks and Kt and D = ds(u) + d t(u)〉�
if ( (u == terminal[1-i] || Pred[1-i][u] != nil) &&

!PQ[1-i]->member(u) && dist[0][u] + dist[1][u] == D )

{ // have found shortest path from s to t.

// trace path from u to s

node z = u;



338 Graph Algorithms

n m Single-sink Dijkstra

10000 500000 0.118 0.736

Table 7.1 A comparison of the running time of the single-sink algorithm with the running time
of the standard version of Dijkstra’s algorithm. The standard version computes the distance from
the source to all other vertices and then extracts the distance value of the sink.

while ( z != s ) z = G.source(pred[z] = Pred[0][z]);

// trace path from u to t

z = u;

edge e;

while ( (e = Pred[1][z] ) != nil) { pred[z = G.target(e)] = e; }

return D;

}

Table 7.1 compares the running times of the single-source single-sink algorithm pre-
sented in this section and the standard version of Dijkstra’s algorithm.

7.5.7 General Networks: The Bellman–Ford Algorithm
We derive and implement a single-source shortest-path algorithm for arbitrary edge costs.
The algorithm is due to Bellman [Bel58] and Ford. We will refer to the algorithm as the
basic Bellman–Ford algorithm12. In Section 7.5.3 we studied a generic shortest-path algo-
rithm. Let us recall what we know:

• The algorithm maintains a setU containing all nodesu for which there is an edge
(u, v) with d(u) + c(u, v) < d(v). U may also contain other nodes.

• In each iteration the algorithm selects some node inU and relaxes all edges out of it.

• As long asd(v) > µ(v) for somev ∈ V f , there is a nodeu ∈ U with d(u) = µ(u)

(Lemma 9). We use the phrase that not all finite distance values are determined to
mean thatd(v) > µ(v) for somev ∈ V f .

• When a nodeu is removed fromU with d(u) = µ(u) it will never be added toU again
at a later stage.

• Let P = {e ; e = π(v) ∈ E for somev ∈ V }. All P-cycles are negative and if
d(v) = µ(v) for all v ∈ V f thenP defines a shortest-path tree onV f .

What is a good strategy for selecting fromU? We know thatU contains a perfect choice
(at least as long as not all finite distance values are determined), but we do not know which
node inU is the perfect choice. In order to play it safe we should therefore not discriminate
against any node inU . A way to achieve fairness is to organize the computation in phases.

12 We will study a refined version in the next section.
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Let Ui be the setU at the beginning of phasei , i ≥ 0; U0 is equal to{s }. In phasei we
remove all vertices inUi from U . Newly added vertices are inserted intoUi+1. In this way
we guarantee that at least one finite distance value is determined in each phase (if there is
one that is still to be determined) and hence all finite distance values are determined after at
mostn phases.

In the program below we realize the setU by a queueQ. During phasei all nodes inUi

are at the front of the queue and all nodes inUi+1 are at the rear of the queue. We separateUi

andUi+1 by the markernil. We count the number of phases inphasecount. Whenever the
marker appears at the front ofQ we incrementphasecount. In order to avoid putting nodes
several times intoQ we keep anodearray<bool> in Q with in Q[v] = true iff v ∈ Q.

We terminate the algorithm whenQ becomes empty or when phasen is reached. In the
former case we haved(v) = µ(v) for all v and in the latter case we haved(v) = µ(v) for
all v ∈ V + ∪ V f . We will deal with the nodes inV − in a postprocessing step.

〈bellmanford basic.t〉�
#include <LEDA/graph_alg.h>

#include <LEDA/b_queue.h>

〈BF: helper〉
template <class NT>

bool BELLMAN_FORD_B_T(const graph& G, node s, const edge_array<NT>& c,

node_array<NT>& dist, node_array<edge>& pred )

{ int n = G.number_of_nodes();

int phase_count = 0;

b_queue<node> Q(n+1);

node_array<bool> in_Q(G,false);

node u,v;

edge e;

forall_nodes(v,G) pred[v] = nil;

dist[s] = 0;

Q.append(s); in_Q[s] = true;

Q.append((node) nil); // end marker

while( phase_count < n )

{ u = Q.pop();

if ( u == nil)

{ phase_count++;

if ( Q.empty() ) return true;

Q.append((node) nil);

continue;

}

else in_Q[u] = false;

NT du = dist[u];

forall_adj_edges(e,u)

{ v = G.opposite(u,e); // makes it also work for ugraphs

NT d = du + c[e];

if ( (pred[v] == nil && v != s) || d < dist[v] )

{ dist[v] = d; pred[v] = e;

if ( !in_Q[v] ) { Q.append(v); in_Q[v] = true; }
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Figure 7.13 The situation at the beginning of phasen = |V | = 5. Note thatv belongs toV −,
that P contains a negative cycle from whichv is reachable inG, but thatv is not reachable from
this cycle by aP-path. Running the algorithm for another 10000 phases will establish the output
convention; the quantity 10000 reflects the fact that traversing the cycle 10000 times creates a
path of cost−10000.

}

}

}

〈BF: postprocessing〉
return false;

}

We turn to the postprocessing step required whenU is non-empty aftern phases. Fig-
ure 7.13 shows that our output convention is not automatically satisfied. As the figure shows
there may be nodes inV − that are not reachable yet from aP-cycle by aP-path.

How can we establish our output convention that all nodes inV − are reachable from a
P-cycle by aP-path? We could run the algorithm for more phases until a path containing
a negative cycle has been discovered for all nodes inV −. This may take very long as Fig-
ure 7.13 shows. We need a better method. In the following lemma we show that Figure 7.14
describes the situation at the beginning of phasen. The argument is with respect to the
generic algorithm with the selection rule of the Bellman–Ford algorithm.

For an integerk, k ≥ 0, let

µk(v) = min {c(p) ; p is a path froms to v consisting of at mostk edges} .

Lemma 11After n phases:

(a) d(v) ≤ µn(v) and ifv ∈ U thend(v) < µn−1(v).
(b) s ∈ V f iff π(s) = nil.
(c) Everyu ∈ U lies either on aP-cycle or on aP-path emanating from aP-cycle.
(d) Everyv ∈ V − is reachable inG from au ∈ U .
(e) If π(s) 6= nil then the output convention is already satisfied.
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Figure 7.14 The situation at the beginning of phasen: Some nodes inV − are still reachable
from s by a P-path and some are already contained in aP-cycle or lie on aP-path emanating
from a P-cycle.All nodes inU (nodes inU are shown as solid circles) belong to the latter
category by part (d) of Lemma 11. All nodes inV − are reachable inG from a node inU by part(
e) of Lemma 11.

Proof (a) Let p = [s = v0, v1, . . . , vk = v ] be any path starting ins. Thend(vi) ≤∑
0< j≤i c(v j−1, v j) at the beginning of phasei and henced(v) ≤ µn−1(v) at the beginning

of phasen − 1 andd(v) ≤ µn(v) at the beginning of phasen. If v is added toU in phase
n − 1, d(v) is decreased and henced(v) < µn−1(v) at the beginning of phasen.

(b) If s ∈ V f thend(s) = 0 and henceπ(s) = nil. If s /∈ V f then there is a negative
cycle passing throughs and henceµn(s) < 0. Thus,d(s) < 0 and henceπ(s) 6= nil.

(c) If π(s) 6= nil part (c) follows from Lemma 8, part (c). So assumes ∈ V f and assume
that there is au ∈ U that is reachable froms by a P-path, sayp. Thend(u) ≥ c(p) ≥
µn−1(u), a contradiction to part (a).

(d) Letv ∈ V − be arbitrary. Sinceµ(v) = −∞ there must be a pathp from s to v with
c(p) < d(v). Let pi be the path consisting of the firsti edges ofp and letvi be the target
node of pi . Let k be minimal such thatc(pk) < d(vk). Thenk > 0 sincec(p0) = 0 and
d(v0) = d(s) ≤ 0 and hencec(pk−1) ≥ d(vk−1). Thus,

d(vk) > c(pk) = c(pk−1) + c(vk−1, vk) ≥ d(vk−1) + c(vk−1, vk)

and hencevk−1 ∈ U .
(e) If π(s) 6= nil then part (c) of Lemma 8 tells us that every node reachable froms lies

either on aP-cycle or aP-path emanating from aP-cycle.

Parts (a), (d), and (e) of the lemma above are the key for the postprocessing step. If
π(s) 6= nil we are done. So assumeπ(s) = nil, i.e., V f 6= ∅, and letR be the set of nodes
that are reachable froms by a P-path. ThenR ⊇ V f but this inclusion may be proper,
see Figure 7.14. All nodes inR that are reachable from a nodeu ∈ U belong toV − and
hence theirπ -values have to be changed. We can do so by performing a depth-first search
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from each nodeu ∈ U . Whenever a node inR is reached we change itsπ -value to the edge
which led to the node. In this way we connect all nodes inR ∩ V − to the nodes inU and
hence, by part (c), make them reachable fromP-cycles byP-paths.

How can we determine the nodes inR? We simply perform a depth-first search froms
on the subgraph defined byP. This can be done by hiding all edges not inP, performing
a depth-first search, and restoring (= unhiding) all edges inP. In the program below the
nodes inR are labeled true in the node arrayin R.

In the program chunk below the cast((graph∗) & G) turns G from a const-object to a
non-const-object. The cast is required sincehideedgeand restoreall edgesmodify the
graph and the cast is safe sincerestoreall edgesrestores the original situation.

〈BF: postprocessing〉�
if (pred[s] != nil) return false;

node_array<bool> in_R(G,false);

forall_edges(e,G)

if (e != pred[G.target(e)]) ((graph*) &G)->hide_edge(e);

DFS(G,s,in_R); // sets in_R[v] = true for v in R

((graph*) &G)->restore_all_edges();

node_array<bool> reached_from_node_in_U(G,false);

forall_nodes(v,G)

if (in_Q[v] && !reached_from_node_in_U[v])

Update_pred(G,v,in_R,reached_from_node_in_U,pred);

where

〈BF: helper〉�
inline void Update_pred(const graph& G, node v,

const node_array<bool>& in_R,

node_array<bool>& reached_from_node_in_U,

node_array<edge>& pred)

{ reached_from_node_in_U[v] = true;

edge e;

forall_adj_edges(e,v)

{ node w = G.target(e);

if ( !reached_from_node_in_U[w] )

{ if ( in_R[w] ) pred[w] = e;

Update_pred(G,w,in_R,reached_from_node_in_U,pred);

}

}

}

The running time of the Bellman–Ford algorithm isO(nm). This can be seen as follows.
There are at mostn phases and the running time of each phase is proportional to the sum of
the outdegrees of the nodes removed fromQ in the phase. This implies that the cost of any
one phase isO(m) and the bound follows.
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A somewhat tighter analysis is as follows. LetD be the maximal number of edges on
any shortest path. We haveD < n if V − is empty andD = ∞ otherwise. ThenQ is empty
after phaseD and hence the running time isO(min(D, n) · m).

For many graphsD is much smaller thann. Examples are complete graphs with edge
costs chosen uniformly at random from [0.. 1]. In this caseD = O(log2 n) with high
probability [CFMP97]; the expected running time is thereforeO(n2 log2 n) for complete
graphs with random edge costs. More generally, it is an experimental fact that the Bellman–
Ford algorithm is efficient for almost any kind of random graph.

However, there are also graphs where the worst case running time is actually achieved.
We give one example in the next section and one now.

A first example are graphs with negative cycles. IfV − is non-empty then the algorithm
always usesn phases and a high running time results. We will show in the next but one
section how negative cycles can frequently be recognized earlier.

7.5.8 A Difficult Graph
The goal of this section is to construct a graph with non-negative edge costs that forces the
algorithm of the preceding section into its worst case running time.

The running time analysis given above tells us that a running time of�(nm) results if
a fixed fraction of the nodes is removed and added to the queue in each iteration. The
Bellman–Ford algorithm uses a breadth-first scanning strategy, i.e., essentially explores
paths in the order of their number of edges. Thus if we ensure that paths consisting of
more edges have smaller cost we will ensure that every node is added to the queue many
times.

We will define the graph in two steps. In the first step we will allow edges of negative cost
and in the second step we will remove them. Figure 7.15 shows our worst case example.
The graph has nodes 0,. . . , L − 1, L, . . . , L + K − 2 whereL = 2l is a power of two. We
will fix K andL later.

On nodesL − 1 to L + K − 2 we have the complete graph in which all edge costs are
zero. This makes(K − 1)2 edges. On the firstL nodes we have the edge(0, L − 1), the
edges(L − L/2j , L − L/2j+1) and(L − L/2j+1, L − 1) for all j , 0 ≤ j < l − 1, and the
L edges(i, i + 1) for all i , 0 ≤ i < L − 1. This makes for no more than 2L edges.

We claim that for anyr , 1 ≤ r < L, there is exactly one path from node 0 to nodeL − 1
consisting ofr edges. This is certainly true forr = 1. So assume thatr > 1. We construct
the path as follows. Ifr > L/2 we useL/2 edges to go from 0 toL/2 and ifr ≤ L/2 we
use one edge. In either case we are left with the task of constructing a path fromL/2 to
L − 1 consisting ofr ′ edges, where 1≤ r ′ < L/2. This path is constructed by applying the
argument recursively.

How do we assign edge costs to the edges(i, j ) with 0 ≤ i < j < L? We want an
assignment which favors paths with more edges. This suggests assigning cost−1 to every
edge as this makes sure that the cost of a path consisting ofk edges is equal to−k. Thus
paths with more edges are shorter than paths with fewer edges. We said at the beginning
that we will construct a graph with non-negative edge costs and now we have set the cost
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Figure 7.15 The graph generated byBF GEN for L = 8 andK = 4. TheK nodes labeled
L − 1 to L + K − 2 form a complete directed graph in which all edge costs are zero. The edges
in this clique are not shown.

of some edges to−1. This is easily corrected. We set the cost of edge(i, j ) to j − i − 1.
Then all edges have non-negative cost and the cost of a path from 0 toL − 1 consisting of
k edges has costL − 1 − k. Thus we are again favoring paths with more edges over paths
with fewer edges.

The total number of edges in our graph is certainly less than 2L + K 2 and the number of
nodes isL + K − 1. With K = b√m/2c andL the largest power of two no larger thann/2,
we get a graph with at mostn + m/2 edges andn/2+√

m/2 nodes. This is less thanm and
n, respectively, ifm ≥ 2n andm ≤ n2/2.

The following procedureBF GEN realizes the construction just outlined. For the edge
costs there is the choice between non-negative and arbitrary edge costs. Ifm ≥ 2n and
m ≤ n2/2 then the constructed graph has at mostn nodes and at mostm edges.

〈 BF GEN.c〉�
#include <LEDA/array.h>

#include <LEDA/graph_alg.h>

void BF_GEN(GRAPH<int,int>& G, int n, int m,

bool non_negative)

{ G.clear();

int K = 1; while ( (K+1)*(K+1) <= m/2 ) K++;

int l = 0; int L = 1;

while ( 2*L <= n/2 ) {l++; L = 2*L; }

array<node> V(n);

int i, j;

for (i = 0; i < n; i++) V[i] = G.new_node(i);

for (i = L - 1; i < L - 1 + K; i++)

for (j = L - 1; j < L - 1 + K; j++)

if ( j != i ) G.new_edge(V[i], V[j], 0);

for (i = 0; i < L - 1; i++) G.new_edge(V[i], V[i+1], 0);

G.new_edge(V[0],V[L-1],(non_negative? L-1-1 :-1));

int powj = 1;

for (j = 0; j < l-1; j++)

{ int x = L - L/powj;
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int y = L - L/(2*powj);

G.new_edge(V[x],V[y], (non_negative? y-x-1 : -1));

G.new_edge(V[y],V[L-1],(non_negative? L-1-y-1 : -1));

powj *= 2;

}

}

How does our algorithm of the previous section do on the graphs generated byBF GEN?
There will beL phases and in each phase theK nodesL − 1, . . . , L + K − 2 will be
removed from the queue and henceK 2 edges will be scanned in each phase. SinceL ≥ n/4
andK 2 ≥ m/4 the running time is�(nm).

Table 7.2 shows the running times of the basic and the refined version of the Bellman–
Ford algorithm (the refined version is the subject of the next section), the time for checking
the output, and, if applicable, the running time of Dijkstra’s algorithm. We observe that
the basic version beats the refined version for random inputs and that both of them are al-
most competitive with Dijkstra’s algorithm for random inputs with non-negative edge costs.
The situation changes completely for graphs with negative cycles and graphs generated by
BF GEN.

For random graphs with negative cycles the running time of the basic version explodes
because it always executesn phases on such graphs. The refined version behaves much
better.

For graphs generated byBF GEN the basic version shows the claimed�(nm) behavior.
Doublingn (more than) quadruples the running time; the fact that the running time more
than quadruples is due to cache effects. Again, the refined version behaves much better.
Its running time seems to less than triple ifn is doubled. We will explain this effect at the
end of Section 7.5.9. Dijkstra’s algorithm performs much better than either version of the
Bellman–Ford algorithm.

In all cases the time needed to verify the computation is no larger than the time required
to compute the result.

There are more shortest-path algorithms than the ones treated in this book, see [AMO93],
and some of them have an edge over the algorithms in LEDA in certain situations. The
papers [CG96, CGR94, MCN91] contain extensive experimental comparisons of various
shortest-path algorithms. The algorithms that we have selected for LEDA are the asymptot-
ically most efficient and also exhibit excellent actual running times.

7.5.9 A Refined Bellman–Ford Algorithm
We describe a variant of the Bellman–Ford algorithm due to Tarjan [Tar81]. The worst case
running time of the variant is alsoO(nm). However, the algorithm is frequently much faster
than the basic Bellman–Ford algorithm, as Table 7.2 shows, and the algorithm is never much
slower. It is available asBELLMANFORDT13.
13 This is clearly a misnomer. However, we want to keep the nameBELLMANFORDT for our currently best

implementation for the single-source problem with arbitrary edge costs.
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Instance BF Basic BellmanFord Dijkstra Checking

n, n = 10000 0.3 0.57 0.22 0.31

n, n = 20000 0.69 1.36 0.57 0.69

n, n = 40000 1.98 3.59 1.47 1.69

c, n = 10000 0.3 0.63 — 0.3

c, n = 20000 0.81 1.63 — 0.7

c, n = 40000 2.02 3.72 — 1.68

r, n = 2000 20.2 0.08 — 0.03

r, n = 4000 73.15 0.17 — 0.08

r, n = 8000 462.5 0.54 — 0.18

g, n = 4000 7.52 0.42 0.01001 0.04999

g, n = 8000 30.66 1.17 0.04004 0.07996

g, n = 16000 131.5 3.24 0.07001 0.19

Table 7.2 Running times of different shortest-path algorithms. We used four different kinds of
graphs. Random graphs (generated byrandomgraph(G, n, m)) with random non-negative edge
costs in [0.. 1000], random graphs with arbitrary edge costs but no negative cycles (we chose for
each nodev a random node potentialpot[v] ∈ [0 .. 1000] and for each edgee = (v, w) a random
costc[e] ∈ [0 .. 1000] and then set the cost ofe to pot[v] + c[e] − pot[w]; this generates arbitrary
edge costs but no negative cycles as the potentials cancel along any cycle, see Section 7.5.10.),
random graphs with random edge costs in [−100.. 1000], and graphs generated byBF GEN. In
the table above the four types of graphs are indicated by the labels n, c, r, and g, respectively. For
each type we generated graphs with three different values ofn andm = 8n. Observe that the
graphs in the top half of the table are much larger than the graphs in the lower half of the table.
The columnBF Basicstands for the basic version of the Bellman–Ford algorithm. You may
generate your own version of this table by calling shortestpath time in the demo-directory.

The variant maintains the shortest-path tree14 not only implicitly in the form of thepred-
array but also explicitly. We useT to denote the shortest-path tree. The algorithm usesT
to overcome two weaknesses of the basic Bellman–Ford algorithm. Consider the scanning
of an edgee = (v, w) and assume that it reducesdist[w] to dist[v] + c[e]. In the basic
algorithm the only action is to addw to Q (if it is not already there). In the variant we do
more:

• The fact that a shorter path tow has been discovered implies that shorter paths exist
for all nodes inTw (= the subtree ofT rooted atw). Thus there is no need to propagate
the current distance labels of these nodes any further (as smaller distance labels will be

14 We ignore the possibility of a negative cycle for the moment.
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Figure 7.16 The pre-order traversal of the tree shown yields the sequencea, b, c, e, f , h, i , g, d.

propagated sometime in the future) and hence all nodes inTw can be removed fromQ
andT . Upon removal ofTw from Q andT , w is added toQ and made a child ofv in
T . This modification introduces a distance related component into the otherwise
purely breadth-first scanning strategy of the Bellman–Ford algorithm.

• If w is an ancestor ofv or, equivalently,v is a descendant ofw then a negative cycle
has been detected and all nodes reachable fromv can be added toV −. This
modification replaces the indirect way of recognizing negative cycles used in the basic
algorithm (“more thann phases”) by a direct method.

We come to the details. We useT to denote the current shortest-path tree. It is rooted at
s and ifw is a child ofv in T thenpred[w] = (v, w). Conversely, ifpred[w] 6= nil thenw

was already added toT at least once; it may or may not belong toT currently. The treeT
is represented by its list of vertices in pre-order traversal, see Figure 7.16, i.e., a single node
tree is represented by that node and a tree with rootr and subtreesT1, . . . , Tk is represented
by r , followed by the list forT1, . . . , followed by thelist for Tk . We use alist<node> T to
represent the shortest-path tree, anodearray<int> t degreeto store the degree of each node,
and anodearray<list item> posin T to store the position of each node in the listT . For
nodesv /∈ T we havet degree[v] = 0 andposin T[v] = nil and for nodesv ∈ T we have
T [posin T[v]] = v.

The queueQ is also realized as a list of nodes. Every node knows its position inQ .
We use anodearray<list item> posin Q for that purpose. If a nodev belongs toQ then
posin Q[v] is its position inQ and if a nodev does not belong toQ thenposin Q[v] = nil.

We usew item= posin T[w] to denote the item corresponding to nodew in T . We define
a proceduredeletesubtree(w item, . . .) that deletes all nodes in the subtreeTw from T and
Q and returns the item followingTw in T . In Figure 7.16 a calldeletesubtree(f item, . . .)

would delete the subtreeT f and return the item corresponding tog.
If w has no children (t degree[w] = 0), we simply deletew from T and maybe also from

Q. If w has children, the idea is to remove the subtrees of the children by recursive calls.
The first child is easy to find; it is the node immediately afterw in the list T . The second
child (if the degree ofw is more than one) is the first node after the sublist representing
the first subtree ofTw. This is precisely the node returned by the first recursive call of
deletesubtreeand hence a simple loop removes all subtrees ofTw.
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The proceduredeletesubtreeusesQ, T , posin Q, posin T andt degree. We make them
parameters. We will initialize them below.

〈BF: auxiliary functions〉�
inline list_item BF_delete_subtree(list_item w_item, list<node>& Q,

list<node>& T, node_array<int>& t_degree,

node_array<list_item>& pos_in_Q,

node_array<list_item>& pos_in_T)

{ list_item child = T.succ(w_item);

node w = T[w_item];

while (t_degree[w] > 0)

{ t_degree[w]--;

child = BF_delete_subtree(child,Q,T,t_degree,pos_in_Q,pos_in_T);

}

pos_in_T[w] = nil;

T.del_item(w_item);

if ( pos_in_Q[w] )

{ Q.del_item(pos_in_Q[w]);

pos_in_Q[w] = nil;

}

return child;

}

As in the basic algorithm we operate in phases. For the zeroth phase we initializeQ and
T with s.

〈BF: initialize T, Q, dist, and pred〉�
node_array<list_item> pos_in_Q(G,nil);

node_array<int> t_degree(G,0);

node_array<list_item> pos_in_T(G,nil);

node v;

forall_nodes(v,G) pred[v] = nil;

dist[s] = 0;

list<node> Q; pos_in_Q[s] = Q.append(s);

list<node> T; pos_in_T[s] = T.append(s);

During thek-th phase,k ≥ 0, we maintain the following invariants. They refine the
invariants of the basic algorithm. We useµk(v) to denote the length of a shortest path from
s to v consisting of at mostk edges.

(1) For every nodev, dist[v] is the cost of some path froms to v, and ifv belongs toT then
dist[v] is the cost of the tree path froms to v andpred[v] is the tree edge ending inv.

(2) If v has been inT at least once, but is not inT now, thenµ(v) < dist[v], i.e, its current
distance label is not its true distance label.

(3) Only leaves ofT belong toQ, and these leaves have depthk or k + 1 in T . The nodes
of depthk precede the nodes of depthk + 1 in Q.

(4) The algorithm maintains anodearray<bool> in Vmsuch that the following items hold
for every nodev:
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(a) in Vm[v] = true impliesv ∈ V −.
(b) If every path definingµk(v) contains a negative cycle thenin Vm[v] = true.
(c) If in Vm[v] = trueandw is reachable fromv in G thenin Vm[w] = true.

(5) If v is a node inT \ Q thendist[v] + c[e] ≥ dist[w] for all edgese = (v, w) with
in Vm[w] = false, i.e., if v is in T but not in Q then its outgoing edges are relaxed.
Observe thatin Vm[w] = true impliesµ(w) = −∞ and hence may be interpreted as
“dist[w] = −∞”.

(6) For every nodev with in Vm[v] = false, dist(v) ≤ µk(v).

Phasek ends whenQ contains no node of depthk anymore15 and the algorithm terminates
whenQ is empty.

Let v be the first node inQ and letk be its depth inT . The goal is to removev from
Q without violating the invariants. We explain the required actions first and then give the
code. We suggest that the code is read in parallel to the explanation.

We scan all edgese = (v, w) out ofv. If in Vm[w] = true then there is nothing to do (by
invariants (5) and (6)). So assume otherwise. We comparedist[v] + c[e] anddist[w]. There
are two cases to consider.

If dist[w] ≤ dist[v] +c[e] then there is nothing to do, i.e, all invariants hold already. This
is obvious if we have inequality orw ∈ T . So assume that we have equality andw does
not belong toT . Don’t we have to addw to T ? No! Observe thatdist[w] = dist[v] + c[e]
impliesdist[w] < ∞. Thusw has been inT at least once, and hence (2) impliesµ(w) <

dist[w]. Thus the invariants also hold in this case.
If dist[v] + c[e] < dist[w] then µ(z) < dist[z] for all nodesz in Tw. Thus, we may

removew and all its descendants fromT andQ, setdist[w] to dist[v] + c[e] andpred[w]
to e.

If v was not inTw and hencev is still in T at this point we makew a child ofv and add
w to Q. This maintains all invariants. In order to makew a child ofv, we simply insert it
immediately afterv into the listT and increment the degree ofv.

If v belonged toTw then we discovered a negative cycle consisting of the tree path from
w to v followed by the edgee. We move all nodes reachable fromv in G to V −.

〈bellmanford.t〉�
#include <assert.h>

〈BF: auxiliary functions〉
template <class NT>

bool BELLMAN_FORD_T(const graph& G, node s,

const edge_array<NT> & c,

node_array<NT> & dist,

node_array<edge>& pred)

{ 〈BF: initialize T, Q, dist, and pred〉
node_array<bool> in_Vm(G,false); // for V_minus

bool no_negative_cycle = true;

15 The algorithm does not keep track of node depths and phase numbers; we only use them in the correctness proof.
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while (!Q.empty())

{ // select a node v from Q

node v = Q.pop(); pos_in_Q[v] = nil;

edge e;

forall_adj_edges(e,v)

{ node w = G.target(e);

if ( in_Vm[w] ) continue;

NT d = dist[v] + c[e];

if ( ( pred[w] == nil && w != s ) || d < dist[w])

{ dist[w] = d;

// remove the subtree rooted at w from T and Q

// if w has a parent, decrease its degree

if (pos_in_T[w])

{ BF_delete_subtree(pos_in_T[w],Q,T,t_degree,

pos_in_Q,pos_in_T);

if (pred[w] != nil) t_degree[G.source(pred[w])]--;

}

pred[w] = e;

if (pos_in_T[v] == nil) // v belonged to T_w

{ no_negative_cycle = false;

〈move v and all nodes reachable from it to Vm〉
}

else

{ // make w a child of v and add w to Q

pos_in_T[w] = T.insert(w,pos_in_T[v],after);

t_degree[v]++;

pos_in_Q[w] = Q.append(w);

}

}

}

}

#ifndef LEDA_CHECKING_OFF

CHECK_SP_T(G,s,c,dist,pred);

#endif

return no_negative_cycle;

}

We still need to complete the case that a negative cycle is detected. Whenv belonged to
Tw we discovered a negative cycle. After settingpred[w] = e = (v, w) this negative cycle
is already recorded in thepred-array. What remains is to add all nodes that are reachable
from v to V − and to set theirpred-values accordingly. We want to do so without destroying
the negative cycle just found.

This is readily achieved. We first setin Vm to true for all nodes on the cycle and then
in a second pass over the cycle calladdto Vm(G, z, . . .) for all nodesz of the cycle. In
addto Vm(G, z, . . .) we scan all edges out ofz. For each edgee = (z, w), wherew does
not belong toV − yet, we remove all nodes inTw from T and Q, we addw to V −, set
pred[w] to e, and make a recursive call.
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〈move v and all nodes reachable from it to Vm〉�
node z = v;

do

{ in_Vm[z] = true;

z = G.source(pred[z]);

} while (z != v);

do

{ BF_add_to_Vm(G,z,in_Vm,pred,Q,T,t_degree,pos_in_Q,pos_in_T);

z = G.source(pred[z]);

} while (z != v);

where

〈BF: auxiliary functions〉+�
inline void BF_add_to_Vm(const graph& G, node z,

node_array<bool>& in_Vm,

node_array<edge>& pred,

list<node>& Q, list<node>& T,

node_array<int>& t_degree,

node_array<list_item>& pos_in_Q,

node_array<list_item>& pos_in_T)

{ edge e;

forall_adj_edges(e,z)

{ node w = G.target(e);

if ( !in_Vm[w] )

{ if (pos_in_T[w])

{ BF_delete_subtree(pos_in_T[w],Q,T,t_degree,

pos_in_Q,pos_in_T);

if (pred[w] != nil) t_degree[G.source(pred[w])]--;

}

pred[w] = e;

in_Vm[w] = true;

BF_add_to_Vm(G,w,in_Vm,pred,

Q,T,t_degree,pos_in_Q,pos_in_T);

}

}

}

This completes the description of the algorithm. We still have to complete the correctness
proof and establish theO(nm) running time.

Lemma 12 The refined Bellman–Ford algorithm solves the single-source shortest-path
problem in timeO(nm).

Proof The nodes inV + are never reached and hence are treated correctly.
Next consider the nodes inV −. Invariant (4) tells us thatin Vm is set to true only for

nodes inV −. We need to show thatin Vm is set to true for all nodes inV − at some point
during the execution. Letv ∈ V − be arbitrary. If every path definingµn(v) contains a
negative cycle or ifv is reachable from such a node thenin V[v] is set to true by invariant
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(4). We need to show that this is indeed the case. Ifv ∈ V − then there must be an integer
N > n and a path [v0 = s, v1, . . . , vN = v ] from s to v such that this path is shorter than
any path froms to v with less thanN edges. The prefix consisting of the firsti edges of this
path is a path tovi that is shorter than any path tovi with less thani edges. In particular,
µn(vn) < µn−1(vn) and hence any path tovn definingµn(vn) contains a negative cycle.

Finally, consider a node inV f and assume thatµ(v) = µk(v). Thendist[v] = µ(v)

after phasek, the tree path froms to v has costµ(v), and the tree path is recorded in the
pred-array by invariants (1), (2), and (6).

The two preceding paragraphs establish that there are at mostn + 1 phases. Since each
node is removed fromQ at most once in each phase the running time isO(nm).

Table 7.2 shows the running times of the refined Bellman–Ford algorithm on the graphs
generated byBF GEN. The running time seems to triple ifn is doubled. This can be
explained as follows. At the beginning of each phase the nodesL to L − K − 2 are children
of nodeL − 1 in the shortest-path tree and the nodesL − 1 to L − K − 2 (and some nodes
smaller thanL −1) are inQ. In the basic algorithm all nodesL −1 to L −K −2 are removed
from the queue and their outgoing edges are scanned. This results in�(m) edge scans per
phase. In the refined algorithm the discovery of a better path to nodeL −1 causes the nodes
L to L − K − 2 to be removed fromQ andT without(!!) scanning their edges. When the
edges out of nodeL − 1 are scanned they are again added toQ andT . In this way only the
edges out of nodeL − 1 are scanned in each phase. Thus only2(K ) = 2(

√
m) edges are

scanned in each phase and the total running time is therefore2(n
√

m). In particular, for
m = 8n as in Table 7.2, the running time grows liken3/2 and hence about triples whenn is
doubled16.

7.5.10 The All-Pairs Problem
The all-pairs shortest-path problem is the task to computeµ(v, w) for all pairs of nodes
v andw. This could be solved by solving the single-source problem with respect to each
v. We describe a better method based on so-callednode potentials; the improved method
applies wheneverG has no negative cycles. We will see further uses of the node potential
method in the section on matchings.

A node potential assigns a numberpot(v) to each vertexv. Thetransformedor reduced
edge costs̄c with respect to a potential functionpot are defined by

c̄(e) = pot(v) + c(e) − pot(w)

for each edgee = (v, w) ∈ E . Consider a pathp = [e0, . . . , ek−1] and letei = (vi , vi+1).
Then

c̄(p) =
∑

0≤i<k

c̄(ei ) =
∑

0≤i<k

(pot(vi) + c(ei) − pot(vi+1))

16 The authors initially assumed that the running time of the refined algorithm would also grow likenm on the
BF GEN-examples and were surprised to learn from the experiments that this is not the case. It took us some time
to understand why not.
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= pot(v0) +
∑

0≤i<k

c(ei) − pot(vk) = pot(v0) + c(p) − pot(vk),

i.e., the cost ofp with respect toc̄ is the cost ofp with respect toc plus the potential
difference between the source and the target of the path. This difference is independent(!!)
of the particular pathp and only depends on the endpoints of the path. Thus for any two
pathsp andq with the same source and the same target,c̄(p) ≤ c̄(q) iff c(p) ≤ c(q), i.e.,
the relative order of path costs is not changed by the transformation.

Assume now thatG has no negative cycles and that all nodes ofG are reachable from
some nodes. We claim thatpot (v) = µ(s, v) is a node potential such that all reduced
costs with respect to it are non-negative. This is easily seen. Observe first thatµ(s, v)

is finite for all v if G has no negative cycles and all nodes are reachable froms. The
reduced costs are therefore well defined. Observe next that for any edgee = (v, w) we
haveµ(s, v) + c(e) ≥ µ(s, w) and hence

c̄(e) = µ(s, v) + c(e) − µ(s, w) ≥ 0.

The observations above suggest the following strategy to solve the all-pairs problem. We
first solve the single-source problem with respect to some nodes from which all nodes of
G are reachable. IfG has a negative cycle, we stop. Otherwise we use the distances froms
to transform the edge costs into non-negative ones and solve the single-source problem for
each nodev of G. Finally, we translate the computed distances back to the original edge
costs, i.e., for each pair(v, w) we set

dist(v, w) = dist1(v, w) + pot(w) − pot(v),

wheredist anddist1denote the distances with respect to the original and the transformed
distance function.

How do we chooses? We add a new vertexs to G and add edges(s, v) of length 0 for all
vertices ofG. Observe that this does not create any additional cycles; in particular, it does
not create any negative cycles. We use the distancesµ(s, v) as our potential function.

〈all pairs.t〉�
#include <LEDA/graph_alg.h>

template <class NT>

bool ALL_PAIRS_SHORTEST_PATHS_T(graph&G, const edge_array<NT>& c,

node_matrix<NT>& DIST)

{ edge e;

node v,w;

node s = G.new_node();

forall_nodes(v,G) if ( v != s ) G.new_edge(s,v);

edge_array<NT> c1(G);

forall_edges(e,G) c1[e] = (G.source(e) == s? 0 : c[e]);

node_array<NT> dist1(G);

node_array<edge> pred(G);

if (!BELLMAN_FORD_T(G,s,c1,dist1,pred)) return false;

G.del_node(s);
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forall_edges(e,G)

c1[e] = dist1[G.source(e)] + c[e] - dist1[G.target(e)];

// (G,c1) is a non-negative network; for every node v

// compute row DIST[v] of the distance matrix DIST

// by a call of DIJKSTRA_T(G,v,c1,DIST[v])

forall_nodes(v,G) DIJKSTRA_T(G,v,c1,DIST[v],pred);

// correct the entries of DIST

forall_nodes(v,G)

{ NT dv = dist1[v];

forall_nodes(w,G) DIST(v,w) += (dist1[w] - dv);

}

return true;

}

7.5.11 Minimum Cost to Profit Ratio Cycles
We consider a graphG with two weight functions defined on its edges: a functionp that
assigns a profit to each edge and a functionc that assigns a cost to each edge. For a cycleC
we use

p(C) =
∑
e∈C

p(e), c(C) =
∑
e∈C

c(e), λ(C) = c(C)/p(C)

to denote the profit, the cost, and cost to profit ratio of the cycle, respectively. Our goal is
to find a cycle that minimizes the cost to profit ratio17. We useλ∗ andC∗ to denote the
minimum ratio and a cycle realizing it, respectively, i.e.,

λ∗ = λ(C∗) = min {λ(C) ; C is a cycle} .

Figure 7.17 shows an example. We will define a function

rational MINIMUM RATIO CYCLE(graph& G,

const edge array<int>& c,

const edge array<int>& p,

list<edge>& C opt);

that returns the ratio and the list of edges (inC opt) of a minimum cost to profit ratio cycle.
The program returns zero if there is no cycle inG; also the empty list is returned inC opt in
this case. The procedure runs in timeO(nm log(n ·C · P)) whereC andP are the maximum
cost and profit of any edge, respectively. Observe that edge costs and profits are assumed to
be integral. We assume that there are no cycles of cost zero or less with respect to eitherc
or p.

Lawler [Law66] has shown thatλ∗ andC∗ can be found by binary search and repeated
shortest-path calculations.

Let λ be a real parameter and consider the cost functioncλ defined by

cλ(e) = c(e) − λ · p(e)

17 For some readers it may seem more natural to maximize the ratiop(C)/c(C). However, maximizingp(C)/c(C)
is the same as minimizingc(C)/p(C) if the cost and profit of all cycles are positive.
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Figure 7.17 An example of a minimum cost to profit ratio cycle. Edge labels are of the form
“cost/profit”. The optimal cycle is shown in bold. It has cost 12 and profit 17. This figure was
generated with the xlman-demo gwminimum ratio cycle. The program minimumratio cycle in
LEDAROOT/demo/book/Graph illustrates the execution ofMINIMUM RATIOCYCLE.

for all edgese. We can compareλ with the unknownλ∗ by solving a shortest-path problem
with cost functioncλ.

If λ > λ∗ then

cλ(C
∗) = c(C∗) − λ · p(C∗) = (λ(C∗) − λ) · p(C∗) < 0,

i.e., there is a negative cycle.
If λ ≤ λ∗ andC is any cycle then

cλ(C) = c(C) − λ · p(C) = (λ(C) − λ) · p(C) ≥ (λ∗ − λ) · p(C) ≥ 0,

i.e., there is no negative cycle.
We capture this argument in the following procedure. It takes a rationallambdaand

returns true iflambdais greater thanλ∗. The implementation is simple. It assumes thats is
a node from which all other nodes ofG are reachable. We set up the cost functioncλ and
then test for a negative cycle. It is important that all nodes are reachable froms (otherwise,
a negative cycle could hide in a part of the graph that is unreachable froms).

We have performed one optimization. The costscλ(e) for e ∈ E are rational numbers, all
with the same denominator. We therefore multiply all costs with their common denominator
and work in integers.

〈minimum ratio cycle: compare〉�
bool greater_than_lambda_star(const graph& G, node s,

const edge_array<int>& c,

const edge_array<int>& p,

rational lambda)
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{ edge_array<integer> cost(G);

edge e;

integer num = lambda.numerator();

integer denom = lambda.denominator();

forall_edges(e,G) cost[e] = denom*c[e] - num*p[e];

node_array<integer> dist(G);

node_array<edge> pred(G);

return !BELLMAN_FORD_T(G,s,cost,dist,pred);

}

We next show how to use the compare function above in a binary search forλ∗. Let Pmax

andCmax be the maximum profit and cost of any edge, respectively. Then

p(C) ∈ [1 .. n · Pmax ] and c(C) ∈ [1 .. n · Cmax ].

Thusλ(C) is a rational number whose denominator is in the former range and whose nu-
merator is in the latter range. IfC1 andC2 are cycles withλ(C1) = a/b 6= c/d = λ(C2)

then

|λ(C1) − λ(C2)| = |a/b − c/d | = |ad − cb|/(bd) ≥ 1/(bd) ≥ 1/(n · Pmax)
2.

Let δ = 1/(n · Pmax)
2. We now have all the ingredients for a binary search. We start with

the half-open interval [λmin .. λmax) = [0 .. 1 + n · Cmax) (it is convenient to maintain the
invariantλmin ≤ λ∗ < λmax) and then repeatedly compareλ = (λmin + λmax)/2 with λ∗.
If λ > λ∗ we setλmax to λ and if λ ≤ λ∗ we setλmin to λ. In this way we maintain the
invariantλmin ≤ λ∗ < λmax . We continue untilλmax −λmin ≤ δ. Thenλmin ≤ λ∗ < λmin +δ

and hence there is no cycleC with λ∗ < λ(C) < λmax . We will use this observation below
to extractC∗ andλ∗.

The following procedure summarizes the discussion. We first add a new nodes and edges
(s, v) for all v ∈ V to our graph (this makes all nodes reachable froms) and then perform
the binary search. Whenever a midpoint is computed in the binary search we normalize
its representation, i.e., cancel out common factors of numerator and denominator. This is
important to keep the representations of the rationals small.

〈 minimumratio cycle.c〉�
#include <LEDA/templates/shortest_path.t>

#include <LEDA/rational.h>

〈minimum ratio cycle: compare〉
rational MINIMUM_RATIO_CYCLE(graph& G,

const edge_array<int>& c,

const edge_array<int>& p,

list<edge>& C_opt)

{ node v; edge e;

〈additional variables for demos〉 // for minimum ratio cycle demo

C_opt.clear();

if ( Is_Acyclic(G) ) return rational(0);

node s = G.new_node();
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forall_nodes(v,G) if (v != s) G.new_edge(s,v);

edge_array<int> c1(G);

edge_array<int> p1(G);

int Cmax = 0; int Pmax = 0;

forall_edges(e,G)

{ if (G.source(e) == s) { c1[e] = p1[e] = 0; }

else

{ c1[e] = c[e]; p1[e] = p[e];

Cmax = Max(Cmax,c[e]);

Pmax = Max(Pmax,p[e]);

}

}

int n = G.number_of_nodes();

〈minimum ratio cycle: check precondition〉
integer int_n(n);

integer int_Pmax(Pmax);

rational lambda_min(integer(0));

rational lambda_max(int_n * integer(Cmax) + integer(1));

rational delta(1,int_n * int_n * int_Pmax * int_Pmax);

while (lambda_max - lambda_min > delta)

{ rational lambda = (lambda_max + lambda_min)/2;

lambda.normalize(); // important

〈report progress in demos〉
if ( greater_than_lambda_star(G,s,c1,p1,lambda) )

lambda_max = lambda;

else

lambda_min = lambda;

}

rational lambda_opt;

{ 〈minimum ratio cycle: determine lambdaopt and Copt〉 }

G.del_node(s);

return lambda_opt;

}

When the binary search terminates we have

λmax − λmin ≤ δ and λmin ≤ λ∗ < λmax

and hence there can be no cycleC with λ∗ < λ(C) < λmax . Letλ = λmax . Sinceλ∗ < λmax ,
there is a negative cycle with respect tocλ. Let C be any negative cycle with respect tocλ.
Thenλ(C) < λ = λmax and henceλ(C) = λ∗. We conclude that any negative cycle with
respect tocλ is an optimal cycle.

A negative cycle with respect tocλ is easy to find. We set up the cost functioncλ and run
BELLMAN FORD T. We then run CHECKSPT on the output. It labels all nodes lying
on a negative cycle by−2. We pick any such node and trace the cycle containing it.



358 Graph Algorithms

〈minimum ratio cycle: determine lambdaopt and Copt〉�
edge_array<integer> cost(G);

node v; edge e;

integer num = lambda_max.numerator();

integer denom = lambda_max.denominator();

forall_edges(e,G) cost[e] = denom*c1[e] - num*p1[e];

node_array<integer> dist(G);

node_array<edge> pred(G);

BELLMAN_FORD_T(G,s,cost,dist,pred);

node_array<int> label = CHECK_SP_T(G,s,cost,dist,pred);

forall_nodes(v,G) if (label[v] == -2) break;

int P = 0; int C = 0;

node z = v;

do { P += p[pred[z]]; C += c[pred[z]];

C_opt.append(pred[z]);

z = G.source(pred[z]);

} while ( z != v);

lambda_opt = rational(C)/rational(P);

We still need to show how to check the preconditionp(C) > 0 andc(C) > 0 for
all cyclesC. We discuss the latter condition. Consider the cost functioncλ defined by
c′(e) = c(e) − 1/n for all edgese. Clearly, if there is no negative cycle with respect to
c′ then there is no cycle of length zero or less with respect toc. Conversely, ifc(C) > 0
and hencec(C) ≥ 1 for all C thenc′(C) = c(C) − |C |/n ≥ 1 − n/n ≥ 0 and there is no
negative cycle with respect toc′.

We can therefore misuse our comparison function to check the precondition.

〈minimum ratio cycle: check precondition〉�
edge_array<int> unit_cost(G,1);

rational one_over_n(integer(1),integer(n));

if (greater_than_lambda_star(G,s,c1,unit_cost,one_over_n))

error_handler(1,"cycle of cost zero or less wrt c");

if (greater_than_lambda_star(G,s,p1,unit_cost,one_over_n))

error_handler(1,"cycle of cost zero or less wrt p");

The running time of the algorithm isO(nm log(n · Pmax · Cmax)). This can be seen as
follows. The binary search starts with an interval of lengthnCmax + 1 and ends with an
interval of length 1/(n · Pmax)

2. The length of the interval is halved in each iteration and
hence the number of iterations isO(log(n · Pmax · Cmax)). Each iteration takes timeO(nm).

The technique used in our program for the minimum ratio cycle problem is calledpara-
metric search. Parametric search is applicable in the following situation:

• One searches for the threshold valueλ∗ of a monotone predicateP(λ) of one real
argumentλ. A predicateP is monotone if

λ1 < λ2 andP(λ1) imply P(λ2),
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and the threshold value ofP is

λ∗ = inf {λ ; P(λ)} .

In the problem of this sectionP(λ) holds if there is a negative cycle with respect to the
cost functioncλ.

• There is a decision procedure forP(λ).

• There is a master procedure that drives the search forλ∗. We used binary search as the
master procedure in this section.

We refer the reader to [Meg83] and [AST94] for further applications of parametric search.
Parametric search has high demands on the underlying arithmetic. You can get an impres-

sion of the arithmetic demand of the minimum ratio cycle procedure by calling the program
minimum ratio cycle in LEDAROOT/demo/book/Graph. The paper [SSS97] discusses an
application of the number classreal to parametric search.

Exercises for 7.5
1 (Single-pair shortest-path problem) Lets andt be distinct nodes in a directed graph with

non-negative edge costs. The goal is to compute a shortest path froms to t . Assume
that there is heuristic information available which gives, for any nodev, a lower bound
lb(v) for the length of a shortest path fromv to t . Modify Dijkstra’s algorithm such that
dist(v) + lb(v) is used as the priority of nodev.

2 Show that the conditiond(v) ≥ µ(v) for all v in part (b) of Lemma 6 is essential, i.e.,
the claim does not hold without it.

3 Investigate the following shortest-path algorithm. Split the input graphG into G− con-
sisting of all edges of negative cost andG≥0 consisting of all edges of non-negative cost.
What can you say whenG− is not acyclic? IfG− is acyclic then run alternately the
acyclic shortest-path algorithm onG− and Dijkstra’s algorithm onG≥0. In each case the
distance labels output by the preceding run must be taken as the initial distance labels
for the next run. Modify the programs accordingly.

4 Consider the following version of the Bellman–Ford algorithm. It iterates over all edges
on the graphn times. Whenever an edgee = (v, w) is considered,d(w) is set to the
minimum ofd(w) andd(v) + c(e).

dist[s] = 0;

forall nodes(v,G) pred[v] = nil;

for(int i = 0; i < n; i++)

forall edges(e,G)

{ node v = G.source(e);

node w = G.target(e);

if ( v != s && pred[v] == nil) continue;

// dist[v] is finite

d = dist[v] + cost[e];

if ( pred[w] == nil && v != s || d < dist[w] )

{ dist[w] = d; pred[w] = e; }

}
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Show that the algorithm computes all finite distances correctly (Hint: show thatd(v) is
bounded above by the length of a shortest path consisting of at mostk edges after thek-
th iteration.). Modify the algorithm so that it satisfies our output convention. Implement
the algorithm and compare its running time to the implementations of the Bellman–Ford
algorithm given in the text. What is best case running time of the algorithm?

5 In all our algorithms we implemented the testc < d(w) in a somewhat clumsy way due
to the fact thatd(w) may be+∞ and that most number types have no representation
for +∞. Show thatnC whereC is the largest cost of any edge can be taken as an
approximation of+∞. Modify the algorithms accordingly and time them in comparison
to the algorithms in the text.

6 Our algorithm for determining minimum ratio cycles uses binary search. It starts with
an interval of lengthnCmax + 1 and stops as soon as the length of the interval becomes
1/(n Pmax)

2 or less. Thus there are log(n3P2
maxCmax) iterations and hence the algorithm

handles rational numbers with denominator as large asn3P2
maxCmax . This is unnecessar-

ily large since theλ(C) are rational numbers whose denominator is bounded byn Pmax .
Explore the possibility that the values ofλ are restricted to rational numbers whose de-
nominator is bounded byn Pmax. This requires us to write a function that “rounds” a
rational number to the closest rational number whose denominator is bounded by some
prescribed integer. Inspect the functionsmallrational nearof classrational to see how
such a function can be realized.

7 Define a number classNT star. The definition is with respect to a fixed graphG with
integral weight functionsc andp. Letλ∗ be the minimum cost to profit ratio of a cycle in
G. Each number of this class is represented by a pair of integers. Addition is component-
wise and there is no multiplication. Zero has both its components equal to zero. A
pair (a, b) is less than (equal to, larger than) a pair(c, d) if a + λ∗b < (=, >)c +
λ∗d . Implement the compare function as follows. Letλ = (c − a)/(b − d) and use
the comparison betweenλ andλ∗ (realized by a shortest-path computation as in the
text). The number type maintains an interval [λmin .. λmax] containingλ∗. Whenever a
comparison is performed this interval is updated. Use the number type in a shortest-path
computation on the graphG. What will the final interval be?

7.6 Bipartite Cardinality Matching

We start with the problem definition and the functionality of the bipartite matching algo-
rithms. We describe a checker and then lay the foundations of matching algorithms. In
the bulk of the section we discuss the implementations of several matching algorithms and
derive some general implementation principles. We close with an experimental comparison
of our implementations.
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Figure 7.18 A graph and a maximum matching: The bold edges form a matching of cardinality
three. The filled nodes form a node cover of cardinality three; a node cover is a set of nodes
containing at least one endpoint of every edge. The node cover proves the optimality of the
matching. This figure was generated with the xlman-demo gwmcb matching.

7.6.1 Concepts and Functionality
Let G = (V, E) be a graph. AmatchingM is a subset of the edges no two of which share
an endpoint, see Figure 7.18. The cardinality|M | of a matchingM is the number of edges
in M.

A nodev is calledmatchedwith respect to a matchingM if there is an edge inM incident
to v and it is calledfreeor unmatchedotherwise. An edgee ∈ M is called amatchingedge.
A matching is calledperfectif all nodes ofG are matched. For a matched nodev the unique
nodew connected tov by a matching edge is called themateof v.

In this section we assume thatG is bipartite, i.e., that there is a partitionV = A ∪̇ B
of the nodes ofG such that every edge ofG has one endpoint inA and one endpoint inB.
Matchings in general graphs are the topic of Section 7.7. The procedure

bool Is Bipartite(const graph& G, list<node>& A, list<node>& B)

tests whetherG is bipartite and if so computes an appropriate partition of the nodes in lists
A andB. It runs in timeO(n + m).

The procedure
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list<edge> MAX CARD BIPARTITE MATCHING(graph& G);

returns a maximum cardinality matching; the graphG must be bipartite. The worst case and
average case running time of the algorithm areO(

√
n ·m) andO(m logn), respectively. The

variant

list<edge> MAX CARD BIPARTITE MATCHING(graph& G, node array<bool>& NC);

returns in addition a proof of optimality in the form of a node coverNC.

A node coveris a setU of nodes such that for every edge(v, w) of G at least one of the
endpoints is inU .

Lemma 13Let M be a matching and letU be a node cover. Then|M | ≤ |U |.
If |M | = |U | thenM is a maximum cardinality matching andU is a minimum cardinality
node cover.

Proof SinceU is a node cover, each edgee ∈ M has at least one endpoint inU . We assign
an endpoint inU to each edge inM; for an edge inM having both endpoints inU the choice
of the endpoint is arbitrary. Each node is assigned at most once since every nodev has at
most one edge inM incident to it. Hence,|M | ≤ |U |.

If |M | = |U | then M is a maximum cardinality matching, since no matching can have
cardinality larger than|U |, andU is a minimum cardinality node cover, since no node cover
can have cardinality smaller than|M |.

We will later show that in bipartite graphs there is always a node cover and a matching
of the same cardinality. Lemma 13 is the basis for a checker for maximum cardinality
matchings in bipartite graphs. The checker takes a setM of edges and a setNC of nodes,
and checks thatM is a matching,NC is a node cover, and that the cardinality ofM is equal
to the cardinality ofNC.

〈 mcbmatching〉�
static bool False(string s)

{ cerr << "CHECK_MCB: " + s +"\n"; return false; }

bool CHECK_MCB(const graph& G,const list<edge>& M,

const node_array<bool>& NC)

{ node v; edge e;

// check that M is a matching

node_array<int> deg_in_M(G,0);

forall(e,M)

{ deg_in_M[G.source(e)]++;

deg_in_M[G.target(e)]++;

}

forall_nodes(v,G)

if ( deg_in_M[v] > 1 ) return False("M is not a matching");

// check size(M) = size(NC)

int K = 0;

forall_nodes(v,G) if (NC[v]) K++;
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if ( K != M.size() ) return False("M is smaller than node cover");

// check that NC is a node cover

forall_edges(e,G)

if ( ! (NC[G.source(e)] || NC[G.target(e)]) )

return False("NC is not a node cover");

return true;

}

7.6.2 Concepts for Maximum Matching Algorithms
We introduce the concepts of alternating and augmenting paths that are crucial for all match-
ing algorithms. A large part of the section applies not only to bipartite graphs but to all
graphs. We will clearly state when we restrict attention to bipartite graphs.

A simple pathp = [e0, e1, . . . , ek−1] from v to w in G is called analternatingpath with
respect to a matchingM if:

• the edges inp are alternately inM and not inM,

• exactly one ofe0 andek−1 is a matching edge ifv = w,

• eithere0 is a matching edge orv is free and eitherek−1 is a matching edge orw is free
if v 6= w.

Figure 7.19 shows examples. The importance of alternating paths stems from:

Lemma 14 If p is an alternating path with respect toM thenM ′ = M ⊕ p = (M \ p) ∪
(p \ M) is also a matching.

Proof Consider any nodez. We need to show that at most one edge ofM ′ is incident toz.
This is obvious ifz does not lie onp or if z is not an endpoint ofp or if p is a cycle. So
assume thatz is an endpoint ofp and p is not a cycle, sayz = v 6= w. Sincep is simple,
it contains only one edge incident tov, namelye0. Moreover, ife0 6∈ M thenv is free with
respect toM. Thus at most one edge ofM ′ is incident tov.

If p is alternating with respect toM thenM ⊕ p has cardinality one larger thanM if both
endpoints ofp are free, has the same cardinality asM if exactly one endpoint is free, and
has cardinality one smaller thanM if no endpoint is free.

An alternating pathp is calledaugmentingif both endpoints ofp are free. For an aug-
menting path the cardinality of the matchingM ⊕ p is one larger than the cardinality ofM.
If M does not have maximum cardinality then there is always an augmenting path, as the
next lemma shows; ifM is “far” from optimality there are many augmenting paths (even
short ones).

Lemma 15Let M and M ′ be matchings in a graphG. We have the following:

• M ⊕ M ′ consists of alternating paths and alternating cycles.
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Figure 7.19 Alternating paths: The edges of a matchingM are shown in bold. The paths
p1 = [a, y, b, v ], p2 = [u, b, v ], and p3 = [u, b, v, c] are alternating with respect toM, but the
path p4 = [a, y, b] is not. AugmentingM by p1 decreases the size of the matching (as both
endpoints ofp1 are matched), augmenting byp2 leaves the size of the matching unchanged (as
exactly one of the endpoints ofp2 is matched), and augmentation byp3 increases the size of the
matching by one (as both endpoints ofp3 are free). The right half of the figure shows the
matching obtained by augmenting byp3.

• If |M | < |M ′| then there is at least one augmenting path inG with respect toM.

• Let d = |M ′| − |M |. Then there is at least one augmenting path of length at mostn/d
and there are at leastd/2 augmenting paths of length at most2n/d.

Proof Consider the graph with edge setM ⊕ M ′. In this graph each node has degree zero,
one, or two, and hence the graph consists of paths, cycles, and isolated nodes. SinceM and
M ′ are matchings, the edges ofM andM ′ alternate on every path and cycle.

An alternating cycle contains the same number of edges ofM and M ′. Thus, if |M | <

|M ′|, then there must be at least one path inM ⊕ M ′ which contains more edges ofM ′ than
of M. Such a path contains one more edge ofM ′ than ofM and hence the first and the last
edge of the path belong toM ′. Thus the path is augmenting with respect toM.

The argument in the previous paragraph actually shows that there must bed paths in
M ⊕ M ′ which contain more edges ofM ′ than ofM. Thus there ared augmenting paths
with respect toM. The paths are node-disjoint and hence contain at mostn edges in total.
Thus their average length is at mostn/d and there are at leastd/2 paths whose length is at
most 2n/d.

It is worthwhile looking at a numerical example. Assume thatM is empty and thatG
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allows for a perfect matching. TakingM ′ as a perfect matching we haved = n/2 and hence
there are at leastn/4 augmenting paths of length at most 2.

Corollary 3 Let M be a matching in a graphG. M is a maximum cardinality matching in
G iff there is no augmenting path inG with respect toM.

Proof Clearly, if there is an augmenting pathp with respect toM thenM is not a maximum
cardinality matching.

Assume conversely, thatM is not a maximum cardinality matching. Then there is a
matchingM ′ such that|M | < |M ′|. Lemma 15 implies the existence of an augmenting path
with respect toM.

Corollary 3 immediately suggests an algorithm for finding maximum matchings.

M = some matching;
while there is an augmenting pathp with respect toM
f augmentM by p; g

In the remainder of this section we concentrate on bipartite graphs. In a bipartite graph
G = (A ∪̇ B, E) there is a particularly simple method for finding augmenting paths. We
direct all free edges fromA to B and all matching edges fromB to A. The existence of an
augmenting path is then tantamount to the existence of a path from a free node inA to a
free node inB. Also, augmentation by a pathp is trivial. One simply reverses the direction
of all edges on the path. Observe that this correctly records that the endpoints ofp are now
matched and thatM was replaced byM ⊕ p, see Figure 7.20.We will use this “directed”
view in all our implementations of bipartite matching algorithms.

Before we turn to implementations we make the observation that it suffices to search for
augmenting paths only from vertices inA and from each vertex only once, i.e., the algorithm
above can be modified to:

M = some matching;
forall nodesv in A
f if there is an augmenting pathp with respect toM starting inv

f augmentM by p; g
g

We prove that the modified algorithm is correct. We observe first that the set of nodes in
A that are matched inM ⊕ p are exactly the nodes that are matched inM plus the source
node ofp.

Let M0 be the initial matching, letA0 be the nodes inA that are matched inM0 and let
v1, v2, . . . , vk be the vertices inA \ A0 in the order in which they are considered. For all
i , i ≥ 1, let Mi be equal toMi−1 if there is no augmenting pathpi with respect toMi−1



366 Graph Algorithms

c

b

a

v

y

x

u

Figure 7.20 The edges of a matchingM are shown in bold. Matching edges are directed from
right to left and non-matching edges are directed from left to right. The pathp = [c, v, b, u ] is
an augmenting path with respect toM. AugmentingM by p yields the matchingM ⊕ p shown
in the right half of the figure.

starting invi and let it beMi−1 ⊕ pi otherwise. LetAi = A0 ∪ {v1, . . . , vi } and letGi be
the subgraph spanned byVi = Ai ∪̇ B.

Lemma 16For all i : Mi is a maximum cardinality matching inGi .

Proof The claim is certainly true fori = 0 as all nodes inA0 are matched. So consider
i ≥ 1 and assume that the claim is true forMi−1. Let ki be the maximum cardinality of a
matching in the subgraph spanned byVi . If ki = ki−1 then the claim clearly holds fori . So
assume thatki > ki−1 and letM∗ be an optimal matching inGi . Thenvi must be matched
in M∗ (otherwise there would be a matching of cardinalityki in Gi−1, a contradiction to the
optimality of Mi−1) and henceMi−1 ⊕ M∗ contains a pathp starting invi . The path starts
with an edge inM∗ and is alternating with respect toMi−1; we consider the maximal length
path of this form. Ifp also ends with an edge inM∗ then p is augmenting with respect to
Mi−1 and hence the cardinality ofMi is one larger than the cardinality ofMi−1. ThusMi is
optimal. If p ends with an edge inMi−1 thenM∗ ⊕ p has the same cardinality asM∗ and
does not matchvi . Thus there is a matching of cardinalityki in Gi−1, a contradiction to the
optimality of Mi−1.
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7.6.3 Translating between the Directed and the Undirected View
We stated in the previous section that augmenting paths in bipartite graphs are particularly
easy to find if one adopts a directed view: all matching edges are directed fromB to A,
all non-matching edges are directed fromA to B, and augmentation by a pathp means
to reverse all its edges. We take this directed view in all our implementations of bipartite
matching algorithms. However, we do not want to impose this directed view on the users of
matching algorithm. For them an “undirected” view is more appropriate. In this section we
discuss how to translate between the two views.

We postulate the following common interface for all our implementations:

• The node set is partitioned into disjoint setsA andB (given as lists of nodes).

• All edges are directed fromA to B.

• The implementations are allowed to modify the graph in two ways: they may reorder
adjacency lists and they may change the orientation of edges during execution. At
termination, all edges must again18 be directed fromA to B. However, the ordering of
the adjacency lists may be arbitrary.

In this section we show how to prepare this input format and how to restore the original
graph.

We determine a bipartitionV = A ∪̇ B of V by calling Is Bipartite(G, A, B). This call
will return true iff G is bipartite and computeA andB if G is bipartite. We then orient all
edges fromA to B. Having oriented all edges fromA to B we compute a maximum match-
ing by calling one of our matching algorithms. After returning from the matching algorithm
we restore the original orientation of all edges and the original order of all adjacency lists.

We give more details. We deal with the edge orientations first. We collect all edges
out of nodes inB in a list edgesoutof B and reverse the orientation of all of them (op-
erationrevedge). After return from the matching algorithm we again reverse all edges in
edgesoutof B and thus restore their original orientation.

We come to the orderings of the adjacency lists. We number all edges according to their
original order and usesort edgesto restore the original order.

Among our implementations of matching algorithms the algorithm by Alt, Blum, Mehlhorn,
and Paul seems to be the best, see Section 7.6.7 for an experimental comparison of all im-
plementations. We therefore use it as our default implementation.

〈 mcbmatching〉+�
list<edge> MAX_CARD_BIPARTITE_MATCHING(graph& G, node_array<bool>& NC)

{ list<node> A,B;

node v; edge e;

if ( !Is_Bipartite(G,A,B) )

error_handler(1,"MAX_CARD_BIPARTITE_MATCHING: G is not bipartite");

edge_array<int> edge_number(G); int i = 0;

forall_nodes(v,G)

18 We would not make this requirement anymore if we could start from scratch.
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forall_adj_edges(e,v) edge_number[e] = i++;

list<edge> edges_out_of_B;

forall(v,B)

{ list<edge> outedges = G.adj_edges(v);

edges_out_of_B.conc(outedges);

}

forall(e,edges_out_of_B) G.rev_edge(e);

list<edge> result = MAX_CARD_BIPARTITE_MATCHING_ABMP(G,A,B,NC);

forall(e,edges_out_of_B) G.rev_edge(e);

G.sort_edges(edge_number);

#ifndef LEDA_CHECKING_OFF

CHECK_MCB(G,result,NC);

#endif

return result;

}

7.6.4 The Ford and Fulkerson Algorithm
In this sectionG = (V, E) is a bipartite graph withV = A ∪̇ B. All edges have one
endpoint inA and one endpoint inB and all edges are directed fromA to B. Our goal is
to compute a matching of maximum cardinality. We are allowed to reorder adjacency lists
and to reorient edges but we must at the end again orient all edges fromA to B.

We will give several implementations of the Ford and Fulkerson algorithm [FF63] already
derived in Section 7.6.2.

M = some matching;
forall nodesv in A
f if there is an augmenting pathp with respect toM starting inv

f augmentM by p; g
g

The implementations differ:

• in the strategy used to search for augmenting paths (we will study depth-first and
breadth-first search),

• in the choice of the initial matching (we will either use the empty matching or the
matching produced by the so-called greedy heuristic),

• in the data structures used.

All implementations have a worst case running time ofO(nm). They have different best
case behaviors and different average case behaviors and they behave drastically differently
in practice.
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A First Implementation: We implement the algorithm above and call the resulting pro-
cedure MAXCARD BIPARTITE MATCHING FFB; FFB stands for basic version of the
Ford and Fulkerson algorithm. It starts by declaring all nodes as free and then iterates
over all nodes inA. For each nodev in A it tries to find an augmenting path starting
in v by calling find augpathbydfs(G, f, free, reached) for the edgesf out of v. A call
findaugpathbydfs(G, f, . . .) returns true if there is an augmenting path starting withf
and returns false otherwise. In the former case it also augments the current matching by
the path (by reversing all its edges) and labels the endpoint inB of the path as non-free. In
either case it labels all visited nodes (by settingreached[w] to true for each visited nodew).
If an augmenting path starting with a particular edgef is found,v is made non-free and the
next node inA is considered.

When all nodes inA have been considered the result list is prepared, all edges are directed
from A to B (as this is required by our interface convention), and a node cover is computed.

〈 FFB matching〉�
〈FFB: dfs〉
list<edge> MAX_CARD_BIPARTITE_MATCHING_FFB(graph& G,

const list<node>& A, const list<node>& B,

node_array<bool>& NC)

{ node v; edge e;

node_array<bool> free(G,true);

// check that all edges are directed from A to B

forall(v,B) assert(G.outdeg(v) == 0);

forall(v,A)

{ edge f;

node_array<bool> reached(G,false);

forall_adj_edges(f,v)

{ if (find_aug_path_by_dfs(G,f,free,reached))

{ free[v] = false;

break;

}

}

}

〈MCB: prepare result and node cover and restore orientations〉
}

We give the details offind augpathbydfs(G, f, free, reached). It is a variant of depth-first
search; later in the section we will also consider breadth-first search. In a general call,f is
some edge and the recursion stack contains a pathp starting at a free node inA and ending
in f . In the procedure we distinguish cases according to whether the target node off is
free or not.

If the target nodew of f is free, we have found an augmenting path. We labelw as
non-free and then reverse all edges inp. This can be done by unwinding the recursion stack
and reversing all edges contained in it. More precisely, we reversef and return true. The
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enclosing call receives true and knows that an augmenting path has been found. It reverses
its argument and returns true. In this way all edges on the path are reversed.

If w is not free, we try to extend the path. Lete = (w, z) be any edge out ofw. If z was
already reached then there is no need to exploree as we know already that no free node in
B can be reached fromz. If z was not reached yet we make a recursive call fore.

〈FFB: dfs〉�
static bool find_aug_path_by_dfs(graph& G, edge f,

node_array<bool>& free, node_array<bool>& reached)

{ node w = G.target(f);

reached[w] = true;

if (free[w])

{ free[w] = false;

G.rev_edge(f);

return true;

}

edge e;

forall_adj_edges(e,w)

{ node z = G.target(e);

if ( reached[z] ) continue;

if ( find_aug_path_by_dfs(G,e,free,reached) )

{ G.rev_edge(f);

return true;

}

}

return false;

}

We complete the description of our first matching algorithm by discussing how to produce
the matching, the node cover, and how to orient all edges fromA to B. The matchingM
consists of all edges that are directed fromB to A. Their directions need to be reversed.

How can we find a node coverNC? We claim that the following rule determines a node
cover. For each matched edge we select the endpoint inB, if this endpoint can be reached
from a free node inA, and the endpoint inA otherwise, see Figure 7.21.

Clearly, each matching edge is incident to a node inNC. We now consider a non-
matching edgee = (v, w) with v ∈ A andw ∈ B. If v is free thenw must be matched (by
optimality of M), andw was selected according to the rule above. Ifv is matched and was
not selected then there must be a matching edgef = (v, w′) with w′ selected. This means
thatw′ can be reached from a free node inA. Extend this path byf ande to see thatw is
selected according to the rule above.

〈MCB: prepare result and node cover and restore orientations〉�
list<edge> result;

forall(v,B)

forall_adj_edges(e,v) result.append(e);

forall_nodes(v,G) NC[v] = false;

node_array<bool> reachable(G,false);
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e0

Figure 7.21 The edges of a matchingM are shown in bold. The nodes on the left belong toA
and the nodes on the right belong toB. Matching edges are directed fromA to B and
non-matching edges are directed fromB to A. The edgee0 is the only matching edge whose
endpoint inB is reachable from a free node inA. The node cover is shown as large solid circles.

forall(v,A)

if (free[v]) DFS(G,v,reachable);

forall(e,result)

if ( reachable[G.source(e)] )

NC[G.source(e)] = true;

else

NC[G.target(e)] = true;

forall(e,result) G.rev_edge(e);

return result;

What is the time complexity of our implementation? The worst case complexity is
O(nm) since we search at mostn times for an augmenting path and since each search
takes timeO(m) in the worst case. On many graphs the running time is smaller. However,
the running time of the implementation above is never better than�(n2). This is due to
very poor algorithmicswhich lets each search for an augmenting path take time�(n). The
culprit is the innocent looking statement

node array<bool> reached(G,false);
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which consumes2(n) time and is executed in each of then phases. We will next describe
two improvements. None of them improves the worst case running time, but both of them
improve the running time dramatically for many inputs.

Improving the Best Case: We show how to improve the best case from�(n2) to O(m).
We will see that the optimization has a dramatic effect on the observed running time of our
implementation.

Consider the first search for an augmenting path when the current matching is still empty.
At this point any edge is an augmenting path and hence the first call offindaugpathbydfs
returns with success immediately. However, in the implementation above the search will
take time�(n) since the initialization of thenodearray<bool> reachedtakes linear time.
We aim for a design where the cost for reinitializingreachedis proportional to the number
of nodes that were actually reached in the previous search and not proportional to the total
number of nodes. We call this the principle of

paying only for what we actually touched
and not

for what we could have conceivably touched.

We describe three ways to realize the principle.
The first method uses astack<node> reachedstack in addition to the boolean array

reached. Wheneverreached[w] is set to true for a nodew we also pushw ontoreachedstack
and after a successful augmentation we usereachedstackto resetreachedto false for all
nodes on the stack. In this way reinitialization takes time proportional to the number of
elements reached. We obtain the following code. Infind augpathbydfswe write

reached[w] = true; reached stack.push(w);

and in the body of MAXCARD BIPARTITE MATCHING FFB we write

node array<bool> reached(G,false);

stack<node> reached stack;

forall(v,A)

{ edge f;

forall adj edges(f,v)

{ if (find aug path by dfs(G,f,free,reached))

{ free[v] = false;

while ( !reached stack.empty() )

reached[reached stack.pop()] = false;

break;

}

}

}

The second method uses the data typenodeslist. This data type offers the functions
member, push, pop, andemptyand hence combines the functionality of a boolean array
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with a stack. We leave it to the reader to rewrite the algorithm so that anodeslist is used
instead ofreachedandreachedstack.

The third method uses a counternumberof augmentationsand anodearray<int> mark
instead ofreached. The counter is increased whenever an augmentation occurs19 and the
marknumberof augmentationsis assigned to all nodes reached in the current search for an
augmenting path. The test whether a nodew has already been reached in the current search
amounts tomark[w] == numberof augmentations. We obtain the following code. In this
code we have also made provisions for our second improvement in form of the program
chunk〈MCB: greedy heuristic〉.
〈 FF DFS matching〉�

〈FF: dfs〉
list<edge> MAX_CARD_BIPARTITE_MATCHING_FF_DFS(graph& G,

const list<node>& A, const list<node>& B,

node_array<bool>& NC)

{ node v; edge e;

node_array<bool> free(G,true);

node_array<int> mark(G,-1);

// check that all edges are directed from A to B

forall(v,B) assert(G.outdeg(v) == 0);

〈MCB: greedy heuristic〉
number_of_augmentations = 0;

forall(v,A)

{ if ( !free[v] ) continue;

edge f;

forall_adj_edges(f,v)

{ if (find_aug_path_by_dfs(G,f,free,mark))

{ free[v] = false;

number_of_augmentations++ ;

break;

}

}

}

〈MCB: prepare result and node cover and restore orientations〉
}

where

〈FF: dfs〉�
static int number_of_augmentations;

static bool find_aug_path_by_dfs(graph& G, edge f,

node_array<bool>& free, node_array<int>& mark)

{ node w = G.target(f);

mark[w] = number_of_augmentations;

if (free[w])

{ free[w] = false;

19 There are 232 numbers of typeint and hence this counter will never overflow.
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G.rev_edge(f);

return true;

}

edge e;

forall_adj_edges(e,w)

{ node z = G.target(e);

if ( mark[z] == number_of_augmentations ) continue;

if ( find_aug_path_by_dfs(G,e,free,mark))

{ G.rev_edge(f);

return true;

}

}

return false;

}

The third method has an interesting side effect (which we did not intend). Suppose that
we searched for an augmenting path froma and did not succeed. Then all nodes reached by
this search are marked (and stay marked) and hence the search from the next free node inA
will not explore them. In this way the worst case time between successive augmentations is
O(m).

Table 7.3 compares the running times of the implementations FFB and FF in columns
FFB- and FF- on random bipartite graphs; the other columns will be explained in the next
section. Observe that FF is much faster than FFB. We conclude that the principle of

paying only for what we actually touched
and not

for what we could have conceivably touched

is worth being observed.

The Greedy Heuristic: We come to our second improvement. In our considerations at the
beginning of the section we started the matching algorithm with the line

M = some matching;

So far, we have chosen the empty matching as out initial matching. We will now do some-
thing more clever and use the so-calledgreedy heuristicto find an initial matching. The
greedy heuristic considers all edges in turn and adds an edge to the current matching if both
of its endpoints are free.

〈MCB: greedy heuristic〉�
forall_edges(e,G)

{ node v = G.source(e);

node w = G.target(e);

if ( free[v] && free[w] )

{ free[v] = free[w] = false;

G.rev_edge(e);

}

}
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n m FFB- FFB+ FF- FF+ Check

1000 2000 1.17 0.32 0.04 0.03 0

1000 4000 1.26 0.3 0.11 0.08 0.01

1000 8000 1.2 0.18 0.08 0.1 0.01

2000 4000 4.57 1.22 0.09 0.07 0

2000 8000 5.04 1.2 0.27 0.25 0.01

2000 16000 4.67 0.57 0.21 0.25 0.01

4000 8000 18.32 4.51 0.29 0.18 0.009998

4000 16000 20.57 4.82 0.97 0.51 0.02

4000 32000 18.47 2.09 0.64 0.7 0.04

8000 16000 72.05 18.1 0.67 0.46 0.04001

8000 32000 82 19.82 2.79 1.47 0.04999

8000 64000 74.05 7.63 1.78 1.54 0.07999

Table 7.3 The running times of four versions of the basic bipartite matching algorithm. FFB and
FF refer to the two programs above, a minus sign indicates that no heuristic was used to find an
initial matching and a plus sign indicates that the greedy heuristic was used. The last column
shows the time required to check the results. The programs were run on random bipartite graphs
with n nodes on each side andm edges (generated byrandombigraph(G, n, n, m, A, B)). FFB
and FF use depth-first search to find augmenting paths. You may perform your own experiments
by calling FFmatchingtime in the demo directory.

The greedy heuristic is frequently highly effective. We support this statement by analysis
and also by experimental evidence.

For the analysis we consider random graphs where|A| = |B| = n and each node inA
hasd incident edges for some integerd. The edges go to random destinations, e.g., for each
edge the endpoint inB is chosen uniformly at random from the nodes inB.

Let us consider the cased = 1 first. We consider the nodes inA one by one. When the
nodev is considered and its incident edge ise = (v, w) we adde to the matching ifw is
free and we discarde if w is already matched. This shows that every node inB which has
degree at least one will be matched by the greedy heuristic. The probability that a node
w in B has degree zero is(1 − 1/n)n ≈ e−1 ≈ 0.37 since the probability that the edge
starting in any particular node inA does not end inw is (n − 1)/n = 1 − 1/n and hence
the probability that none of then edges starting in a node inA ends inw is (1 − 1/n)n.
Thus about(1 − e−1)n ≈ 0.63n nodes will be matched by the greedy heuristic in the case
d = 1. Of course, even more nodes will be matched on average for largerd. We give a
plausibility argument of what to expect; the remainder of this paragraph is not rigorous.
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Considerd = 2. Aboute−1n nodes inA will not be matched by only considering the first
edge incident to any node. For these nodes the second incident edge will be considered and
hence a total number of aboutn +n/e edges will be considered. The probability that a node
in B stays unmatched reduces to(1 − 1/n)n+n/e ≈ e−(1+1/e) ≈ 0.25.

We turn to experiments. Table 7.4 shows the effect and the cost of the greedy heuristic.
We used the program below. The effect of the heuristic is as predicted by our analysis, i.e,
for m = n about 63% of the nodes are matched by the heuristic and form = 2n about 75%
of the nodes are matched by the heuristic. The running time of the heuristic is insignificant.
Even for the graphs withm = 10n the running time of the heuristic is less than 10 times
the time required to initialize the node arrayfree and the time to check that all edges are
directed fromA to B.

〈mcb: effect of heuristic〉�
double MCB_EFFECT_OF_HEURISTIC(graph& G,

const list<node>& A, const list<node>& B)

{ node v; edge e;

node_array<bool> free(G,true);

forall(v,B) assert(G.outdeg(v) == 0);

if (use_heuristic == 0) return 0;

〈MCB: greedy heuristic〉
int n = 0;

forall(v,A) if (!free[v]) n++;

return double(n)/A.size();

}

Table 7.3 shows the running time of four variants of our basic algorithm. The table indi-
cates that both refinements have a tremendous impact on running time at least for random
graphs. The greedy heuristic finds a large initial matching and hence saves many searches
for augmenting paths and the refined implementation of the set of reached nodes keeps the
cost of searching for augmenting paths low. Observe that the running time of both versions
of FFB is quadratic inn. FFB+ (that is, FFB with greedy heuristic) has a smaller con-
stant in then2 term in the running time since the expensive search for augmenting paths is
only started from those nodes inA that are left free by the greedy heuristic. Also FFB+
runs faster for denser graphs since the matching found by the greedy heuristic is larger for
denser graphs. FF is always much better than FFB and the time to check the output of our
algorithms is negligible compared to the running times of the algorithms.

We summarize the findings of this section:

• The use of a heuristic to find a good initial solution can speed up graph algorithms
tremendously.We recommend exploring the use of a heuristic always.The value of a
heuristic is usually the highest for the least sophisticated algorithm.

• If graph exploration, e.g., a depth-first or a breadth-first search or a shortest-path
computation, is used as a subroutine in a graph algorithm, the initialization of the data
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n m No heuristic Greedy heuristic

% time % time

10000 10000 0 0.02 0.632 0.07

10000 20000 0 0.03 0.764 0.08

10000 30000 0 0.02 0.823 0.1

10000 40000 0 0.02 0.858 0.11

10000 50000 0 0.03 0.881 0.11

10000 60000 0 0.03 0.9 0.12

10000 70000 0 0.02 0.912 0.13

10000 80000 0 0.03 0.927 0.14

10000 90000 0 0.02 0.931 0.14

10000 100000 0 0.03 0.937 0.14

Table 7.4 Percentage of nodes matched by the greedy heuristic and cost of the greedy heuristic.
The experiments were performed on random bigraphs withn nodes on each side andm edges
(generated byrandombigraph(G, n, n, m, A, B)). You can perform your own experiments by
calling mcbeffect of heuristic in the demo directory.

structures should be performed outside the subroutine. Only those parts of the data
structure which are actually touched inside the subroutine should be reinitialized.

Breadth-First versus Depth-First Search: In the previous section we used depth-first
search for finding augmenting paths. In this section we will investigate the use of breadth-
first search. We will see that breadth-first search is more effective than depth-first search in
finding augmenting paths.

Before we give the code we briefly argue that this should be the case. Assume thata is a
free node inA, that the shortest augmenting path starting ina consists ofk edges, and that
the outdegree of all nodes inA is bounded byd. When breadth-first search froma is used in
a search for an augmenting path then only nodes in distance at mostk +1 froma are visited
in the search. The number of such nodes is bounded byd(k+1)/2. Observe that we have
fan-out only at the nodes inA since nodes inB have at most outgoing edge. Actually, the
stronger boundd(d − 1)(k+1)/2−1 holds since each of the nodes inA reachable froma must
have one matching edge incident to it and hence there are onlyd − 1 outgoing edges left.
For example ford = 3 andk = 9 the number of nodes visited is bounded by 3· 24 = 48.

How will depth-first search do? Well, it might explore a large fraction of the graph in the
worst case. Even, if there is an augmenting path of length one, it might explore the entire
graph.
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We turn to the implementation of breadth-first search. Leta be any free node inA.
We start a breadth-first search froma. We maintain a queueQ that contains all nodes
in A reached by the search from which we have not yet explored the outgoing edges.
Initially, Q contains onlya. A node (in A or B) has been reached by the search iff
mark[v] == numberof augmentationsand for a reached nodev, pred[v] contains the edge
through whichv was reached. When the procedure finds an augmenting path it augments
the path and returns true, otherwise it returns false.

The procedure starts by puttinga into the queue and markinga. As long as the queue is
not empty, the first node is removed fromQ. Call the nodev; v is a node inA. We explore
all edges out ofv. Let e = (v, w) be any such edge. Ifw has been reached before, we do
nothing. Otherwise we setpred[w] to e and markw. If w is free, we augment by the path
from a to w and returntrue. The path can be found by tracing edges as given bypred. If w

is not free, letf = (w, x) be the matching edge incident tow; note that f is the only edge
out ofw. We setpred[x ] to f , markx , and appendx to Q.

〈FF: bfs〉�
#include <LEDA/queue.h>

static bool find_aug_path_by_bfs(graph& G, node a,

node_array<bool>& free, node_array<edge>& pred,

node_array<int>& mark)

{ queue<node> Q;

Q.append(a); mark[a] = number_of_augmentations;

edge e;

while ( !Q.empty() )

{ node v = Q.pop(); // v is a node in A

forall_adj_edges(e,v)

{ node w = G.target(e); // w is a node in B

if (mark[w] == number_of_augmentations) continue;

// w has not been reached before in this search

pred[w] = e; mark[w] = number_of_augmentations;

if (free[w])

{ // augment path from a to w

free[w] = free[a] = false;

while ( w != a)

{ e = pred[w];

w = G.source(e);

G.rev_edge(e);

}

return true;

}

// w is not free

edge f = G.first_adj_edge(w);

node x = G.target(f);

pred[x] = f; mark[x] = number_of_augmentations;

Q.append(x);

}
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}

return false;

}

The matching algorithm is as we already know it. We use either breadth-first or depth-
first search for finding augmenting paths. The choice is made by the variableusebfs. In
both methods we declare all nodes unreached (by increasingnumberof augmentations)
whenever an augmenting path has been found.

〈 FF matching〉�
〈FF: dfs〉
〈FF: bfs〉
list<edge> MAX_CARD_BIPARTITE_MATCHING_FF(graph& G,

const list<node>& A, const list<node>& B,

node_array<bool>& NC,

bool use_heuristic, bool use_bfs)

{ node v; edge e;

node_array<bool> free(G,true);

node_array<int> mark(G,-1);

node_array<edge> pred(G);

number_of_augmentations = 0;

// check that all edges are directed from A to B

forall(v,B) assert(G.outdeg(v) == 0);

if (use_heuristic) 〈MCB: greedy heuristic〉
forall(v,A)

{ if ( !free[v] ) continue;

if (use_bfs)

{ if (find_aug_path_by_bfs(G,v,free,pred,mark) )

number_of_augmentations++ ;

}

else

{ edge f;

forall_adj_edges(f,v)

{ if (find_aug_path_by_dfs(G,f,free,mark))

{ free[v] = false;

number_of_augmentations++ ;

break;

}

}

}

}

〈MCB: prepare result and node cover and restore orientations〉
}

Table 7.5 shows the running time of the procedure above on random bipartite graphs. The
table shows that breadth-first search is almost always superior to depth-first search (as we
already argued above). It also shows that breadth-first search is not helped at all by the
greedy heuristic. We explain this observation. The greedy heuristic considers augmenting
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n m k dfs- dfs+ bfs- bfs+

10000 15000 1 0.26 0.26 0.28 0.27

10000 15000 10 0.25 0.24 0.26 0.25

10000 15000 100 0.24 0.23 0.24 0.25

10000 15000 1000 0.24 0.23 0.24 0.25

10000 15000 10000 0.23 0.23 0.25 0.24

10000 25000 1 8.46 3.56 2.89 2.91

10000 25000 10 5.44 3.11 2.34 2.33

10000 25000 100 5.34 3.11 2.54 2.53

10000 25000 1000 2.04 2.19 1.92 1.92

10000 25000 10000 0.31 0.29 0.29 0.28

10000 35000 1 5.38 2.28 2.51 2.52

10000 35000 10 7.62 2.55 2.75 2.76

10000 35000 100 22.78 2.24 2.37 2.37

10000 35000 1000 17.91 2.21 2.09 2.09

10000 35000 10000 2.15 1.12 0.92 0.93

Table 7.5 Depth-first versus breadth-first search. The table shows the running time of
MAX CARD BIPARTITE MATCHING FF. Either no heuristic (indicated by a minus sign) or
the greedy heuristic (indicated by a plus sign) is used to find an initial matching. To complete the
matching, a search for an augmenting path is started from each free node inA that was not
matched by the heuristic. Either breadth-first or depth-first search is used to find an augmenting
path. The programs were run on random bipartite group graphs withn nodes on each side andm
edges (generated byrandombigraph(G, n, n, m, A, B, k)). The nodes on either side are divided
into k groups and the nodes in thei -th group are connected to nodes in groupsi − 1 andi + 1 on
the other side. The generator is described in detail in Section 7.6.7. You may perform your own
experiments by calling mcbdfs vs bfs in the demo directory.

paths of length one. It finds an augmenting path of length one by inspecting all the edges
incident to a node. Breadth-first search does exactly the same when an augmenting path of
length one exists.

7.6.5 The Algorithm of Hopcroft and Karp
In this and the next section we give algorithms whose worst case running time isO(

√
nm).

The first such algorithm is due to Hopcroft and Karp [HK73]. They suggested organiz-
ing the execution into phases, restricting augmentation to shortest augmenting paths, and
augmenting a maximal number of node disjoint augmenting paths in each phase. Observe
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that Lemma 15 guarantees the existence of many short augmenting paths when the current
matching is still far from optimality.

The overall structure of the program is the same as for our previous algorithms. The
differences are that we maintain some additional data structures, in particular a list of the
free nodes inA, and that the search for augmenting paths is organized differently.

〈 HK matching〉�
〈HK: bfs〉
〈HK: dfs〉
list<edge> MAX_CARD_BIPARTITE_MATCHING_HK(graph& G,

const list<node>& A, const list<node>& B,

node_array<bool>& NC, bool use_heuristic)

{ node v;

edge e;

node_array<bool> free(G,true);

//check that all edges are directed from A to B

forall(v,B) assert(G.outdeg(v) == 0);

if (use_heuristic) { 〈MCB: greedy heuristic〉 }

node_list free_in_A;

forall(v,A) if (free[v]) free_in_A.append(v);

〈HK: data structures〉
while ( 〈there is an augmenting path〉 )

{ 〈find a maximal set and augment〉 }

〈MCB: prepare result and node cover and restore orientations〉
}

We now give the details of how the Hopcroft and Karp algorithm searches for augmenting
paths.

The length (= number of edges) of the shortest augmenting path can be found by breadth-
first search. The search starts from all free nodes inA. We give a variant of breadth-
first search which does a bit more. It constructs a so-calledlayered network. In a layered
network the nodes of a graph are partitioned intolayersaccording to their distance with
respect to the starting layer, i.e., a nodev belongs to layerk if there is a path from the
starting layer tov consisting ofk edges and there is no path with fewer edges. For any
edge in a layered network the distance of the target node is at most one more than the
distance of the source node. Only edges that connect different layers can be contained
in shortest augmenting paths and hence we mark themusefulin the program below; the
mark is an integerphasenumberin which we count the number of phases executed20. The
construction of the layered network starts by putting all free nodes inA into the zeroth
layer, then proceeds by standard breadth-first search, and stops as soon as the first layer is
completed that contains free nodes inB. We achieve the latter goal by stopping to put nodes
into the queue as soon as the first free node inB has been removed from the queue.

20 Observe that we are reusing the marking technique introduced in section 7.6.4. Incrementingphasecounterwill
unmark all edges.
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The program returnstrue if there is an augmenting path and returnsfalseotherwise.

〈HK: data structures〉�
edge_array<int> useful(G,0);

node_array<int> dist(G);

node_array<int> reached(G,0);

phase_number = 1;

and

〈HK: bfs〉�
#include <LEDA/b_queue.h>

#include <LEDA/node_list.h>

static int phase_number;

static bool bfs(graph& G, const node_list& free_in_A,

const node_array<bool>& free, edge_array<int>& useful,

node_array<int>& dist, node_array<int>& reached)

{

list<node> Q;

node v,w;

edge e;

forall(v,free_in_A)

{ Q.append(v);

dist[v] = 0; reached[v] = phase_number;

}

bool augmenting_path_found = false;

while (!Q.empty())

{ v = Q.pop();

int dv = dist[v];

forall_adj_edges(e,v)

{ w = target(e);

if (reached[w] != phase_number )

{ dist[w] = dv + 1; reached[w] = phase_number;

if (free[w]) augmenting_path_found = true;

if (!augmenting_path_found) Q.append(w);

}

if (dist[w] == dv + 1) useful[e] = phase_number;

}

}

return augmenting_path_found;

}

With this procedure we can refine the test for the existence of an augmenting path in the
main loop.

〈there is an augmenting path〉�
bfs(G,free_in_A,free,useful,dist,reached)

The layered graph contains all augmenting paths of shortest length. We determine a
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maximal setP of augmenting paths. Distinct paths inP will be node disjoint andP
is maximal in the sense that no augmenting path can be added toP without violating
the disjointness property. We findP by a variant of depth-first search. The procedure
findaugpath(G, f, free, pred, useful) attempts to find a path in the layered network starting
with the edgef , ending in a free vertex inB, and being node-disjoint from all previously
constructed paths. In the main loop we will call this procedure for all edges out of free
nodes inA. The call returns the last edge on the path if it succeeds and returnsnil other-
wise. It also records, for each node, the first edge through which the node was reached in a
nodearray<edge> pred.

The details offind augpath(G, f, . . .) are simple. Letw be the endpoint off . We set
pred[w] to f and then distinguish cases. Ifw is a free node (it is necessarily inB then), we
return f . If w is not a free node, we scan through all edgese = (w, z) out of w. If e does
not belong to the layered network or we have already tried to construct a path out ofz, we
ignoree. Otherwise, we recurse. The recursive call either returnsnil or a proper edge. In
the latter case we know that a new augmenting path has been found and forward the edge to
the enclosing call.

〈HK: dfs〉�
static edge find_aug_path(graph& G, edge f, const node_array<bool>& free,

node_array<edge>& pred, const edge_array<int>& useful)

{ node w = G.target(f);

pred[w] = f;

if (free[w]) return f;

edge e;

forall_adj_edges(e,w)

{ node z = G.target(e);

if ( pred[z] != nil || useful[e] != phase_number ) continue;

edge g = find_aug_path(G,e,free,pred,useful);

if ( g ) return g;

}

return nil;

}

In the main loop we callfind augpath for all edges out of free nodes inA that belong
to the layered network and where the target node of the edge has not been reached by a
previous search and collect the (terminal edges of the) paths found in a listEL. We then
augment all paths. Lete be an arbitrary edge inEL. We trace the path ending ine by means
of thepred-array and for each path reverse all edges on the path. We complete the phase by
incrementingphasenumber.

〈find a maximal set and augment〉�
node_array<edge> pred(G,nil);

list<edge> EL;

forall(v,free_in_A)

{ forall_adj_edges(e,v)

if (pred[G.target(e)] == nil && useful[e] == phase_number)
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{ edge f = find_aug_path(G,e,free,pred,useful);

if ( f ) { EL.append(f); break; }

}

}

while (!EL.empty())

{ edge e = EL.pop();

free[G.target(e)] = false;

node z;

while (e)

{ G.rev_edge(e);

z = G.target(e);

e = pred[z];

}

free[z] = false;

free_in_A.del(z);

}

// prepare for next phase

phase_number++;

We close our discussion of the Hopcroft–Karp matching algorithm with a word on run-
ning time. Each phase of the algorithm takes timeO(m) for the breadth-first and depth-first
search and the augmentation and hence the total running time isO(Dm) whereD is the
number of phases. It can be shown (see for example [HK73] or [AMO93, section 8.2]
or [Meh84c, IV.9.2]) that the number of phases isO(

√
n). On many graphs the number

of phases is much smaller. In particular, Motwani [Mot94] has shown that the number of
phases isO(logn) for random graphs.

7.6.6 The Algorithm of Alt, Blum, Mehlhorn, and Paul
We discuss a variant of the Hopcroft–Karp algorithm due to Alt, Blum, Mehlhorn, and Paul
[ABMP91]. It uses ideas first propagated for flow algorithms [AO89, GT88] to integrate
the breadth-first and depth-first search used in the Hopcroft–Karp algorithm. The resulting
algorithm is usually faster.

As above, we direct all edges in the current matching fromB to A and all other edges
from A to B. In this directed graph every path is an alternating path. For each nodev ∈ V
we maintain a distance labellayer[v]. Nodes inB will occupy even layers, and all free
nodes inB will be in layer zero. Nodes inA will occupy odd layers, and all free nodes in
A will be in two adjacent layersL and L + 2, for someL. Observe that this layering is
“opposite” to the layering used in the Hopcroft and Karp algorithm. Now free nodes inB
are in the bottom layer (= layer zero) and free nodes inA are in the two topmost layers (=
layersL andL +2). Initially, we put all nodes inB into layer zero, all nodes inA into layer
one, direct all edges fromA to B, and setL to one.

〈ABMP: initialization〉�
node_array<bool> free(G,true);

node_array<int> layer(G);

if (use_heuristic) {〈MCB: greedy heuristic〉}
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list<node> free_in_A;

forall(v,B) layer[v] = 0;

forall(v,A)

{ layer[v] = 1;

if (free[v]) free_in_A.append(v);

}

int L = 1;

In freein A we collect all free nodes inA. We maintain the invariant that the free nodes in
level L precede the free nodes in levelL + 2. In this wayL is always the layer of the first
node infreein A.

We maintain the “layered graph invariant” that no edge reaches downwards by two or
more layers, i.e.,

for all edgese = (v, w): layer[v] ≤ layer[w] + 1.

It follows thatlayer[v] is a lower bound on the length of an alternating path starting inv and
ending in a free node inB. Call an edgee = (v, w) eligible, if layer[v] = layer[w] + 1,
and letce(v) be a function which returns an eligible edge starting inv, if there is one, and
nil otherwise. We callce the current edge function. Its implementation will be discussed at
the end of the section.

We search for augmenting paths as follows: starting from a free nodev in layer L we
construct a pathp of eligible edges. Letw be the last node ofp. There are three cases to
distinguish:

Case 1 (breakthrough): w is a free node in layer zero:
Then p is an augmenting path with respect to the current matching. We augment the
current matching by reversing all edges ofp and terminate the search.

Case 2 (advance):w is not a free node in layer zero andce(w) exists:
We extendp by addingce(w).

Case 3 (retreat): w is not a free node in layer zero andce(w) = nil:
We increaselayer[w] by two and remove the last edge fromp. If there is no last edge in
p, i.e.,w is equal to the free nodev from which we started the search for an augment-
ing path, we terminate the search and addw to the end offreein A. Observe that this
maintains the invariant that the nodes on layerL precede the nodes on layerL + 2 in
freein A.

The following program chunk realizes this strategy. The edges of the path are stored in a
stackp of edges andw is the last node of the path. In the case of a breakthroughv andw

are declared matched and all edges ofp are reversed. In the case of an advance we push the
current edge ofw onto p and setw to the target node of the edge. In the case of a retreat we
increase the layer ofw by two and pop the last edge fromp and setw to the source node of
the edge popped. If there is no edge to be popped we terminate the search and addw to the
rear end offreein A.
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〈search for an augmenting path from v〉�
node w = v;

while (true)

{ if ( free[w] && layer[w] == 0 )

{ // breakthrough

free[w] = free[v] = false;

while ( !p.empty() )

{ e = p.pop();

〈breakthrough: current edge function〉
G.rev_edge(e);

}

break;

}

else

{ if ( (e = ce(w,G,layer,cur_edge)) )

{ // advance

p.push(e);

w = G.target(e);

}

else

{ // retreat

layer[w] += 2;

〈relabel: current edge function〉
if (p.empty())

{ free_in_A.append(w);

break;

}

w = G.source(p.pop());

}

}

}

After a breakthrough or a retreat, which leaves us with an empty path, we start the next
search for an augmenting path. If there are no more free nodes in layerL, we increaseL by
two and repeat. In the program below this increase ofL is implicit; L is simply the layer
of the first node infreein A. In this way we proceed untilL exceedsLmaxwhereLmaxis
a parameter of the algorithm or until the number of free nodes is smaller thanδL whereδ

is a parameter (which we set rather arbitrarily to 50 in our implementation). The parameter
Lmaxcan either be set by the user or is set toγ

√
n whereγ is a parameter (which we

set rather arbitrarily to 0.1 in our implementation). OnceL exceedsLmaxor the number
of free nodes inA has fallen belowδL we determine the remaining augmenting paths by
breadth-first search as in the Ford and Fulkerson algorithm.

〈 ABMP matching〉�
static int number_of_augmentations;

〈FF: bfs〉 // for the basic algorithm

edge ce(const node v, const graph& G,

const node_array<int>& layer, node_array<edge>& cur_edge)

{ 〈implementation of current edge function〉 }
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list<edge> MAX_CARD_BIPARTITE_MATCHING_ABMP(graph& G,

const list<node>& A, const list<node>& B,

node_array<bool>& NC,

bool use_heuristic, int Lmax)

{ node v; edge e;

//check that all edges are directed from A to B

forall(v,B) assert(G.outdeg(v) == 0);

〈ABMP: initialization〉
node_array<edge> cur_edge(G,nil); // current edge iterator

if (Lmax == -1) Lmax = (int)(0.1*sqrt(G.number_of_nodes()));

b_stack<edge> p(G.number_of_nodes());

while ( L <= Lmax && free_in_A.size() > 50 * L)

{ node v = free_in_A.pop();

L = layer[v];

〈search for an augmenting path from v〉
}

〈complete by basic algorithm〉
〈MCB: prepare result and node cover and restore orientations〉

}

where

〈complete by basic algorithm〉�
node_array<int> mark(G,-1);

node_array<edge> pred(G);

number_of_augmentations = 0;

forall(v,free_in_A)

{ if ( find_aug_path_by_bfs(G,v,free,pred,mark) )

number_of_augmentations++;

}

We establish correctness.

Lemma 17At all times during the execution of the algorithm, the following invariants hold:

(I1) For all edges(v, w): layer[w] ≥ layer[v] − 1.
(I2) layer[v] is even iffv ∈ B.
(I3) Let p = [e0, e1, . . . , el−1] with ei = (vi , vi+1). Thenp is a path in the current graph

with layer[vi ] = L − i for all i , 0 ≤ i < l, andv0 is a free node inA.
(I4) All free nodesv ∈ A are in layersL or L + 2.
(I5) The setM of edges that are directed fromB to A forms a matching inG; furthermore

free[v] is true iffv is free with respect toM.

Proof We use induction on the number of executions of the loop. All invariants hold
initially. For the induction step we address the invariants in turn.

Only relabeling a node or reversing the direction of an edge may invalidate (I1). When
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a nodev is relabeled there are no eligible edges out ofv and hencelayer[w] ≥ layer[v]
for all (v, w) ∈ E . Since nodes inA live on odd layers and nodes inB live on even layers
we even havelayer[w] > layer[v] for all (v, w) ∈ E . Hence increasinglayer[v] by two
preserves (I1) for all edges(v, w) ∈ E . For edges(w, v) ∈ E the invariant also stays true.
Reversing the edges of the pathp in the case of a breakthrough maintains (I1) as well, since
all edges inp are eligible. Altogether, we have shown that (I1) is maintained.

Since layer labels are always increased by two, (I2) remains true.
The pathp always starts at a free node inA in layer L and is only extended by eligible

edges.
When a node is relabeled, it must be on the pathp. Thus no free node in layerL + 2 can

be relabeled by (I3). WhenL is increased by two, there is no free nodev in layer L. Thus,
(I4) is preserved.

In the case of a breakthrough,p is an alternating path from a free nodew ∈ A to a free
nodev ∈ B by (I3) and the induction hypothesis, i.e., an augmenting path with respect to
the current matching. Thus (I5) is preserved in the case of a breakthrough.

The correctness of our algorithm is now established. Next we show that it is a derivative of
the Hopcroft–Karp algorithm.

Lemma 18The algorithm always increases the matching along a shortest augmenting path.

Proof Any augmenting pathp found has lengthL. (I4) and (I5) imply that all free nodes
in A are in layersL or L + 2, and those ofB are in layer zero. Now the claim follows from
(I1).

Lemma 19Let M∗ be a matching of maximum cardinality inG and M the matching com-
puted by our algorithm when〈complete by basic algorithm〉 is reached. Then|M∗| −
|M | ≤ max(γ Lmax, n/Lmax). Furthermore,〈complete by basic algorithm〉 takes time
O(max(γ Lmax, n/Lmax) · m).

Proof When〈complete by basic algorithm〉 is reached then eitherL > Lmaxand there is
no augmenting path with respect to the current matchingM of length less thanLmaxor the
number of free nodes inA is smaller thanγ L which in turn is smaller thanγ Lmax. In the
latter case we have established the claimed bound on|M∗| − |M |. In the former case we
observe thatM∗ ⊕ M must contain|M∗|−|M | node-disjoint augmenting paths with respect
to M. The total length of these paths is at mostn and each path has length at leastLmax.
Thus(|M∗| − |M |) · Lmax≤ n.

In 〈complete by basic algorithm〉 we need timeO(m) for each node inA which is still
free. By the previous paragraph there are at most max(γ Lmax, n/Lmax) such nodes when
the chunk is reached.

The previous lemma suggests our choice ofLmax. In order to balance the contribution
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of the two choices we should setLmaxto 2(
√

n). Unfortunately, the theoretical analysis is
not strong enough to suggest the “correct” factor of proportionality.

Lemma 20The total number of increases of layer labels and the total of number of calls to
the eligible edge function ce isO(n · Lmax).

Proof (I4) implies that the maximum layer of a node during an execution of the algorithm
is Lmax+ 2. Thus any node is relabeled at most(Lmax+ 2)/2 times.

Each time the functioncereturns an eligible edge(v, w), we extend the current pathp by
this edge. Either it still belongs to the path whenp becomes augmenting for the next time,
or layer[w] is increased by two when(v, w) is deleted fromp. Thus the number of calls
to the functionce is bounded by the total number of increases of layer labels plus the total
length of all augmenting paths. Since the length of an augmenting path is at mostLmax,
because of (I4), and since there are at mostn of them, the bound follows from the bound
for the number of relabels.

Lemma 20 implies that the total time spent outside〈complete by basic algorithm〉 is
O(n · Lmax) plus the time spent in calls to the current edge function. We now show how
to implement the current edge function efficiently. We maintain for each nodev an edge
cur edge[v] out of v such that all edges precedingcur edge[v] in v’s adjacency list are not
eligible; whencur edge[v] is nil all edges inv’s adjacency list may be eligible. Recall that
an edge(v, w) is eligible if the layer ofw is one less than the layer ofv and that no edge goes
down more than one layer. Thus relabelingw cannot make(v, w) eligible and reversing an
edge in an augmentation cannot make the edge eligible (because all edges in the augmenting
path go from lower layers to higher layers after the augmentation). Only relabelingv can
make an edge out ofv eligible. With these observations it is easy to maintain the invariant
that all edges precedingcur edge[v] in v’s adjacency list are not eligible:

Whenw is relabeled we setcur edge[w] to nil.
When we search for a current edge we start searching at the current value ofcur edge[v]

(at the first edge out ofv if the current value isnil) until an eligible edge is found.
When an edgee = (v, w) is reversed ande is the current value ofcur edge[v] we advance

cur edge[v] to the successor edge ofv.

〈relabel: current edge function〉�
cur_edge[w] = nil;

〈implementation of current edge function〉�
edge e = cur_edge[v];

if ( e == nil ) e = G.first_adj_edge(v);

while (e && layer[G.target(e)] != layer[v] - 1) e = G.adj_succ(e);

cur_edge[v] = e;

return e;
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〈breakthrough: current edge function〉�
if (e == cur_edge[G.source(e)])

cur_edge[G.source(e)] = G.adj_succ(e);

In this way the time spent in callsce(v) between relabelings ofv is O(number of calls+
outdeg(v)). Since each node is relabeled at mostLmaxtimes and since the total number of
calls toce is O(n · Lmax) we conclude that the total time spent in calls to the current edge
function isO(m · Lmax).

We summarize in:

Theorem 4A maximum cardinality matching in a bipartite graph withn nodes andm edges
can be computed in timeO(

√
nm).

Proof This follows from the discussion above and the choiceLmax= 2(
√

n).

7.6.7 An Experimental Comparison
We compare the algorithmsFF, HK, andABMPexperimentally on bipartite graphs of the
form shown in Figure 7.22. We call these graphsbipartite group graphs. They were sug-
gested by [CGM+97].

The following program generates bipartite group graphs withnanodes inA andnbnodes
in B. We divide both sides intok + 1 groups numbered 0 tok. For all i , 0 ≤ i ≤ k − 1, the
i -th group on sideX contains nodesi · Kx to (i + 1) · Kx− 1 whereKx = bnx/kc. The final
group contains nodesk · Kx to n − 1; it is empty ifk dividesnx.

We generate the edges in two phases. In the first phase we generated = bm/nac edges
for each node in groups 0 tok − 1 of A. For a node in thei -group the destination of these
edges are random nodes in groupsi − 1 modk andi + 1 modk of B. In the second phase
we addm − d · k · Ka random edges.

〈randombigraph.c〉�
void random_bigraph(graph& G, int na, int nb, int m,

list<node>& A, list<node>& B, int k)

{ G.clear();

if ( na < 0 || nb < 0 || m < 0 )

error_handler(1,"random_bigraph: one of na, nb, or m < 0");

node* AV = new node[na];

node* BV = new node[nb];

A.clear();

B.clear();

int a, b;

for(a = 0; a < na; a++) A.append(AV[a] = G.new_node());

for(b = 0; b < nb; b++) B.append(BV[b] = G.new_node());

if ( na == 0 || nb == 0 || m == 0 ) return;

if ( k < 1) error_handler(1,"random_bigraph: k < 1");

int d = m/na;

if (k > na) k = na; if (k > nb) k = nb;
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Figure 7.22 A bipartite graph withn nodes on each side. On each side the nodes are divided into
k groups of sizen/k each (this assumes thatk dividesn). Each node inA has degreed = m/n
and the edges out of a node in groupi of A go to random nodes in groupsi + 1 andi − 1 of B.

int Ka = na/k; // group size in A

int Kb = nb/k; // group size in B

node v;

int i;

a = 0;

forall(v,A)

{ int l = a/Ka; // group of v

if ( l == k) break;

int base1 = (l == 0 ? (k-1)*Kb : (l-1)*Kb);

int base2 = (l == k-1 ? 0 : (l+1)*Kb);

for(i = 0; i < d; i++)

{ b = ( rand_int(0,1) == 0? base1 : base2 );

G.new_edge(v,BV[b + rand_int(0,Kb-1)]);

}

a++;

}

int r = m - a*d;

while (r--) G.new_edge(AV[rand_int(0,na-1)], BV[rand_int(0,nb-1)]);

delete[] AV;

delete[] BV;

}
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n m k FF- FF+ HK- HK+ AB- AB+ Check

4 8 1 4.99 4.38 5.63 5.24 3.46 3.4 0.28

4 8 100 3.45 2.47 3.83 3.54 2.45 2.45 0.24

4 8 10000 1.11 1.04 3.76 3.51 2.16 2.16 0.22

4 12 1 155.7 50.02 8.37 7.95 4.91 4.95 0.36

4 12 100 69.07 44.09 5.94 5.78 3.19 3.1 0.26

4 12 10000 1.36 1.28 7.79 7.21 2.34 2.33 0.2599

4 16 1 42.75 21.34 9.71 9.16 4.95 5.33 0.43

4 16 100 48.75 41.59 6.99 6.57 3.02 3.37 0.29

4 16 10000 1.56 1.43 12.5 12.15 2.17 2.2 0.27

8 16 1 11.98 11.34 11.79 11.16 8.96 8.95 0.63

8 16 100 8.15 6.76 8.79 8.33 6.28 6.13 0.45

8 16 10000 2.33 2.15 7.83 7.29 5.42 5.44 0.46

8 24 1 611.6 188.6 19.49 18.56 12.28 12.35 0.77

8 24 100 349.8 221.4 13.14 12.69 8.33 8.36 0.54

8 24 10000 5.38 4.67 15.47 14.53 6.25 6.29 0.51

8 32 1 153.3 60.37 20.89 19.6 15.26 15.34 0.9099

8 32 100 247.1 208.2 13.9 13.22 9.73 9.76 0.6001

8 32 10000 13.58 12.46 26.38 25.96 6.75 6.71 0.5601

Table 7.6 The running times of the bipartite matching algorithmsFF, HK, andABMPon
random bipartite group graphs withn · 104 nodes on each side,m · 104 edges andk groups
(generated byrandombigraph(G, n, n, m, A, B, k)). The plus sign indicates the use of the
greedy heuristic and the minus sign indicates that the algorithm started with the empty matching.
The last column shows the time required to check the results.FF uses breadth-first search. You
may perform your own experiments by calling mcbmatchingtime in the demo directory.

Table 7.6 shows the outcome of our experiments.FF does very badly for some of the
parameters and very well for others. It is always helped by the heuristic and frequently
helped considerably. It shows the highest fluctuations of running time.HK andABMPare
more stable andABMP is the fastest for most settings of the parameters.HK is always
helped by the heuristic. ForABMPthe effect of the heuristic is very small. If it is noticeable
at all, it is negative. We have therefore chosen ABMP with the heuristic turned off as our
default implementation. The time required for checking the result is negligible in all cases.
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Exercises for 7.6
1 We described three methods to implement the principle of only paying for what is ac-

tually touched but gave the details of only two of them. Explore the third alternative.
Rewrite MAX BIPARTITE CARD MATCHING FFB such that it uses anodeslist in-
stead ofreachedandreachedstack.

2 In our implementations of matching algorithms we explicitly reverse the direction of
matching edges byrevedge. Explore the possibility of making the reversal only implic-
itly. Use anodearray<edge> matchingedgesuch thatmatchingedge[v] is nil if v is free
and is the matching edge incident tov otherwise.

3 Rewrite the ABMP-implementation such that it uses depth-first search instead of breadth-
first search in〈complete by basic algorithm〉. Compare the running times.

4 Develop a strategy for choosing the parameterLmaxin the ABMP-algorithm (the authors
have no good solution to this exercise).

5 Construct graphs where our maximum cardinality bipartite matching algorithms assume
their worst case running time. Please inform the authors about your solution (as they can
only partially solve this exercise).

7.7 Maximum Cardinality Matchings in General Graphs

A matchingM in a graphG is a subset of the edges no two of which share an endpoint, see
Figure 7.23. The cardinality|M | of a matchingM is the number of edges inM.

A nodev is calledmatchedwith respect to a matchingM if there is an edge inM incident
to v and it is calledfreeor unmatchedotherwise. An edgee is called matching ife ∈ M.
A matching is calledperfectif all nodes ofG are matched and is calledmaximumif it has
maximum cardinality among all matchings.

The structure of this section is as follows. In Section 7.7.1 we discuss the functionality
of our matching algorithms, in Section 7.7.2 we derive the so-called blossom shrinking
algorithm for maximum matchings, and in Section 7.7.3 we give an implementation of it.

7.7.1 Functionality
The function

list<edge> MAX CARD MATCHING(const graph& G, int heur = 0)

returns a maximum matching inG. The underlying algorithm is the so-called blossom
shrinking algorithm of Edmonds [Edm65b, Edm65a]. The worst case running time of the
algorithm isO(nmα(m, n)) ([Gab76]), the actual running time is usually much better. Ta-
ble 7.7 contains some experimental data.

With heur= 1, the greedy heuristic is used to construct an initial matching which is then
extended to a maximum matching by the blossom shrinking algorithm. As Table 7.7 shows,
the influence of the greedy heuristic on the running time is small. It sometimes helps, it
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Figure 7.23 A maximum matching and a proof of optimality: The edges of the matching are
shown in bold. The node labels prove the optimality of the matching. Observe that every edge is
either incident to a node labeled 1 or connects two nodes that are labeled 2 or connects two
nodes that are labeled 3. There are two nodes labeled 1, three nodes labeled 2, and three nodes
labeled 3. Thus no matching can have more than 2+ b3/2c + b3/2c = 4 edges. The matching
shown has four edges and is hence optimal. You may generate similar figures with the
xlman-demo gwmc matching.

sometimes harms, and it never causes a dramatic change. The cost of checking optimality
is negligible in all cases.

In the remainder of this section we discuss the check of optimality. A labelingl of the
nodes ofG with non-negative integers is said tocoverG (or to be a cover forG) if every
edge ofG (which is not a self-loop) is either incident to a node labeled 1 or connects two
nodes labeled with the samei , for somei ≥ 2. Thecapacityof l is defined as

cap(l) = n1 +
∑
i≥2

bni/2c,

whereni is the number of nodes labeledi . Observe that there may be nodes that are labeled
zero. The capacity of a covering21 is an upper bound on the cardinality of any matching.

Lemma 21If l coversG and M is any matching then|M | ≤ cap(l).

Proof Sincel covers every edge ofG and hence every edge inM, each edge inM is either
incident to a node labeled one or connects two nodes labeledi for somei ≥ 2. There can
be at mostn1 edges of the former kind and at mostbni/2c edges of the second kind for any
i , i ≥ 2. Thus|M | ≤ cap(l).

21 In bipartite graphs only the labels zero and one are needed. The nodes labeled one form a node cover in the sense
of Section 7.6.1.
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n m MCM MCM+ Check

10000 10000 0.287 0.223 0.024

20000 20000 0.905 0.717 0.074

40000 40000 2.178 1.758 0.184

80000 80000 4.857 3.934 0.413

10000 15000 1.049 1.03 0.027

20000 30000 3.799 3.862 0.102

40000 60000 11.45 11.9 0.262

80000 120000 30.51 33.57 0.583

10000 20000 1.247 1.304 0.04199

20000 40000 4.876 5.357 0.136

40000 80000 14.2 15.3 0.343

80000 160000 38.42 43.81 0.789

10000 25000 1.322 1.347 0.05099

20000 50000 4.761 4.782 0.169

40000 100000 13.95 14.22 0.422

80000 200000 35.2 37.3 0.959

Table 7.7 Running times of the general matching algorithm: The table shows the running time
of the maximum cardinality matching algorithm without (MCM) and with the greedy heuristic
(MCM+) and the time to check the result for random graphs withn nodes andm edges
(generated byrandomgraph(G, n, m)). In all cases the time for checking the result is negligible
compared to the time for computing the maximum matching. In each of the four blocks we used
n = 2i · 104 for i = 0, 1, 2, 3 and a fixed relationship betweenn andm (m/n = 1, 3/2, 2, 5/2).
The time to compute the maximum matching seems approximately to triple ifn andm are
doubled. Each entry is the average of ten runs. Except on the very sparse instances (m ≈ n) it
does not pay to use the greedy heuristic.

We will see in the next section that there is always a covering whose capacity is equal to
the size of the maximum matching. The function

list<edge> MAX CARD MATCHING(const graph& G, node array<int>& OSC,

int heur = 0)

returns a maximum matchingM and a labelingOSC(OSCstands for odd set cover, a name
to be explained in the next section) with:

• OSCcoversG and



396 Graph Algorithms

• |M | = cap(OSC).

ThusOSCproves the optimality ofM. Figure 7.23 shows an example. The additional
running time for computing the proof of optimality is negligible.

The function

void CHECK MAX CARD MATCHING(const graph& G, const list<edge>& M,

const node array<int>& OSC)

checks whetherOSC is a node labeling that coversG and whose capacity is equal to the
cardinality ofM. The function aborts if this is not the case. It runs in linear time.

The implementation of the checker is trivial. We determine for eachi the numberni of
nodes with labeli and then computeS = n1 +∑i≥2bni/2c. We assert thatS is equal to the
size of the matching.

We also check whether all edges are covered by the node labeling. Every edge must
either be incident to a node labeled one or connect two nodes labeledi for somei ≥ 2.

〈MCM: checker〉�
static bool False(string s)

{ cerr << "CHECK_MAX_CARD_MATCHING: " << s << "\n";

return false;

}

bool CHECK_MAX_CARD_MATCHING(const graph& G, const list<edge>& M,

const node_array<int>& OSC)

{ int n = Max(2,G.number_of_nodes());

int K = 1;

array<int> count(n);

int i;

for (i = 0; i < n; i++) count[i] = 0;

node v; edge e;

forall_nodes(v,G)

{ if ( OSC[v] < 0 || OSC[v] >= n )

return False("negative label or label larger than n - 1");

count[OSC[v]]++;

if (OSC[v] > K) K = OSC[v];

}

int S = count[1];

for (i = 2; i <= K; i++) S += count[i]/2;

if ( S != M.length() )

return False("OSC does not prove optimality");

forall_edges(e,G)

{ node v = G.source(e); node w = G.target(e);

if ( v == w || OSC[v] == 1 || OSC[w] == 1 ||

( OSC[v] == OSC[w] && OSC[v] >= 2) ) continue;

return False("OSC is not a cover");

}

return true;

}
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7.7.2 The Blossom Shrinking Algorithm
We derive theblossom shrinkingalgorithm of Edmonds [Edm65b, Edm65a] for maximum
cardinality matching in non-bipartite graphs. In its original form the running time of the
algorithm isO(n4). Gabow [Gab76] and Lawler [Law76] improved the running time to
O(n3) and Gabow [Gab76] showed how to use the partition data structure of Section 5.5 to
obtain a running time ofO(nmα(m, n)). Tarjan [Tar83b] gave a very readable presentation
of Edmond’s algorithm and Gabow’s improvement. Our presentation and our implementa-
tion is based on [Law76] and [Tar83b].

The algorithm follows the general paradigm for matching algorithms: repeated augmen-
tation by augmenting paths until a maximum matching is obtained. We assume familiarity
with the paradigm, which can, for example, be obtained by reading Section 7.6.2. The
natural way to search for an augmenting path starting in a nodev is to grow a so-called
alternating treerooted atv.

The root of an alternating tree is a free node, the nodes on odd levels are reached by odd
length alternating paths (and hence their incoming tree edge is a non-matching edge) and the
nodes on even levels are reached by even length alternating paths (and hence their incoming
tree edge is a matching edge). The root is even. All leaves in an alternating tree are even
and odd nodes have exactly one child (namely their mate). Figure 7.24 shows an alternating
tree. A node on an even level is called anevennode and a node on an odd level is called
anoddnode. In the implementation an even node is labeled EVEN, an odd node is labeled
ODD, and every node belonging to no alternating tree carries the label UNLABELED. This
suggests calling a nodelabeledif it belongs to some alternating tree and calling itunlabeled
otherwise.

We start the algorithm by making every free node the root of a trivial alternating tree
(consisting only of the free node itself) and by labeling all free nodes even. We will maintain
the following invariants:

• For each free node there is an alternating tree rooted at the free node.

• All nodes belonging to one of the alternating trees are labeled EVEN or ODD. Nodes
on even levels are labeled EVEN and nodes on odd levels are labeled ODD.

• All nodes belonging to no alternating tree are unlabeled (= labeled UNLABELED).

• All unlabeled nodes are matched and if a node is unlabeled then its mate is also
unlabeled.

An alternating tree is extended by exploring an edge{v, w} incident to an even nodev. It
is a matter of implementation strategy which alternating tree is extended and which edge is
chosen to extend it. There are four cases to be distinguished:w may be unlabeled,w may
be odd,w may be even and in a different tree, andw may be even and in the same tree. The
first three cases occur also in the bipartite case.

Case 1,w is unlabeled: We makew the child ofv and the mate ofw the child ofw,
see Figure 7.25. In this way,w becomes an odd node, its mate becomes an even node, and
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v

Figure 7.24 An alternating tree: It is rooted at a free node, nodes on odd levels (= odd nodes)
are reached by odd length alternating paths, and nodes on even levels (= even nodes) are reached
by even length alternating paths.

E O E O E

v w mate(w)

Figure 7.25 Growing an alternating tree: Exploration of the edge(v, w) turnsw and its mate
into labeled nodes,w becomes an odd node, and its mate becomes an even node.

both nodes become labeled. Observe that the growth action maintains the invariant that a
matched node and its mate are either both labeled or both unlabeled.

Case 2,w is an odd node:We have discovered another odd length alternating path tow

and do nothing.

Case 3,w is an even node in a different tree:We have discovered an augmenting path
consisting of the edge{v, w} and the tree paths fromv andw to their respective roots, see
Figure 7.26. We augment the matching by the augmenting path and unlabel all nodes in
both trees. This makes all nodes in both trees matched (recall, that the root of an alternating
tree is the only node in the tree that is unmatched) and destroys both trees. Observe that the
remaining alternating trees, i.e., the ones whose roots are still free, are not affected by the
augmentation. They are still augmenting trees with respect to the increased matching.

The three cases above also occur for bipartite graphs. The fourth and last case is new.

Case 4,w is an even node in the same tree asv: We have discovered a so-called
blossom, see Figure 7.27. Letb be the lowest common ancestor ofv andw, i.e.,v andw



7.7 Maximum Cardinality Matchings in General Graphs 399

v w

Figure 7.26 Discovery of an augmenting path:v andw are even nodes in distinct trees. The
edge{v, w} and the tree paths fromv andw to their respective roots form an augmenting path.

w

b v

u

Figure 7.27 Discovery of a blossom:v andw are even nodes in the same tree. The nodeb is
their lowest common ancestor. The blossom consists of the edge{v, w} and the tree paths fromb
to v andw, respectively. Thestemof the blossom consists of the tree path tob. The nodeb is the
base of the blossom. The blossom consists of seven edges, three of which are matching. The
even length alternating path tou follows the tree path tov, uses the edge{v, w} and then
proceeds down the tree tou.

are both descendants ofb and there is no proper descendant ofb with the same property.
Since only even nodes can have more than one child,b is an even node. The blossom
consists of the edge{v, w} and the tree paths fromb to v andw, respectively. Thestemof
the blossom consists of the tree path tob andb is called thebaseof the blossom. The stem
is an even length alternating path ending in a matching edge; if the stem has length zero
thenb is free. The blossom is an odd length cycle of length 2k + 1 containingk matching
edges for somek, k ≥ 1. All nodes in the blossom (except for the base) are reachable by an
even and odd length alternating path from the root of the tree. For an even nodeu the even
length path is simply the tree path tou and for an odd nodeu, say lying on the tree path
from b to w, the even length path is the tree path tov followed by the edge{v, w}, followed
by the path down the tree fromw to u. For the odd length paths, the situation is reversed.

The action to take is toshrink the blossom. To shrink a blossom means to collapse all
nodes of the blossom into the base of the blossom. This removes all edges from the graph
which connect two nodes in the blossom and replaces any edge{u, z} whereu belongs to
the blossom andz does not belong to the blossom by the edge{b, z}, see Figure 7.28. The
nodeb is free after the shrinking iff it was free before the shrinking.

Lemma 22Let G′ be obtained fromG by shrinking a blossom with baseb. If G ′ contains
an augmenting path then so doesG.
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w

b v

u

Figure 7.28 Shrinking a blossom: All nodes of the blossom are collapsed into the base of the
blossom. After the shrinking,b stands for all the nodes enclosed by the dashed line.

Proof SupposeG ′ contains an augmenting pathp. If p avoidsb then p is an augmenting
path inG and we are done. So let us assume thatb lies on p. We breakp at b into two
piecesp1 and p2 and assume w.l.o.g thatp2 uses a non-matching edgee incident tob (in
G ′). The pathp1 is either empty (ifb is free) or uses the matching edge incident tob.
The edgee = {b, z} in G ′ is induced by an edge{u, z} in G whereu is some node of the
blossom. An augmenting path inG is obtained by first usingp1 then using the even length
alternating path fromb to u in the blossom, and then usingp2 (with its first edge replaced
by {u, z}).

We can now summarize the blossom shrinking algorithm. We grow alternating trees from
the free nodes. Whenever a blossom is encountered it is shrunk. Whenever an augmenting
path is discovered (this will in general happen after several shrinkings occurred), Lemma 22
is used to lift the augmenting path to the original graph. The matching is augmented by the
augmenting path, the two trees involved are destroyed, all nodes in both trees are unlabeled,
and the search for augmenting paths continues. The algorithm terminates when no alternat-
ing tree can be extended anymore. At this point the matching is maximum. Of course, this
requires proof.

In order to show correctness we need the concept of anodd-set cover. It refines the notion
of a covering introduced in Section 7.7.1.

For a subsetN of an odd number of vertices ofG we define the set of edges covered by
N and the capacity ofN as follows. If|N | = 1 thenN covers all edges incident to the node
in N and the capacity ofN is equal to one. If|N | = 2k + 1 for somek ≥ 1 thenN covers
all edges which have both endpoints inN and the capacity ofN is k.

An odd-set cover22 OSCof G is a family {N1, . . . , Nr } of odd cardinality subsets ofV
such that each edge ofG is covered by at least one of the sets inOSC. The capacityc(OSC)
of OSCis the sum of the capacities of the sets inOSC.

Lemma 23Let OSC be an odd-set cover in a graphG. Then the cardinality of any matching
in G is at mostc(OSC).

Proof Let M be any matching and lete be any edge inM. Thene must be covered by some

22 An odd-set cover gives rise to an integer labeling of the nodes as follows: nodes that are contained in no set of the
cover are labeled zero, nodes that are contained in a singleton set are labeled one, and nodes that are contained in
an odd set of cardinality larger than one are labeledi for somei > 1. Distincti ’s are used for distinct sets.
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set inOSC. Moreover, the number of edges inM covered by any particular set inOSCis at
most the capacity of the set.

We are now ready for the correctness proof of the blossom shrinking algorithm. We will
show that if the blossom shrinking algorithm does not find an augmenting path with respect
to a matchingM then there is an odd-set cover whose capacity is equal to the size ofM,
thus proving the optimality ofM.

Let G(0) = G be our graph and letM be a matching inG. Suppose that the blossom
shrinking algorithm does not discover an augmenting path. The blossom shrinking algo-
rithm constructs a sequenceG(0), G(1), G(2), . . . , G(h) of graphs where for alli , 0 < i ≤ h,
G(i) is obtained fromG(i−1) by shrinking a blossom. Each nodev of everyG(i) stands for a
set of nodes ofG. In G(0) every node represents itself, and a nodev in G(i) either stands for
the same set as inG(i−1) or, if v is equal to the base node of the shrunken blossom, stands
for all nodes represented by the nodes ofG(i−1) collapsed into it.

Lemma 24For everyi and every nodev of G(i):

• v stands for an odd set of nodes inG,

• if v is odd or unlabeled thenv stands for the singleton set consisting ofv itself,

• if v stands for a setB of 2k + 1 nodes inG for somek ≥ 1 then the number of edges in
M connecting nodes inB is equal tok.

Proof The claim is certainly true fori equal to zero. When a blossom is shrunk an odd
number of nodes is collapsed into a single node. By induction hypothesis each collapsed
node represents an odd number of nodes ofG. The sum of an odd number of odd numbers
is odd.

The result of a shrinking operation is an even node. Thus odd and unlabeled nodes
represent only themselves.

Consider a shrinking operation that collapses 2r + 1 nodes into one. Out of these nodes,
r + 1 were even before the shrinking (namely the basev and every even node on the two
tree paths belonging to the blossom) andr were odd. Every odd node represents a single
node ofG and every even node stands for an odd set of nodes ofG. Suppose that thei -th
odd node represents a setBi of 2ki + 1 nodes inG.

After the shrinking operationv stands for ther odd nodes and the union of theBi ’s. Thus
B consists of

r +
∑

1≤i≤r+1

(2ki + 1) = 2(r +
∑

1≤i≤r+1

ki) + 1

nodes and hencek = r +∑
1≤i≤r+1 ki . The number of edges inM running between nodes

of Bi is ki , and the number of edges ofM belonging to the blossom isr . We conclude that
k edges ofM connect nodes inB.

Consider now the graphG(h). In G(h) we have an alternating tree rooted at each free node
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and the tree growing process has come to a halt. Thus there cannot be an edge connecting
two even nodes (because this would imply the existence of either an augmenting path or a
blossom) and there cannot be an edge connecting an even node to an unlabeled node (as
this would allow us to grow one of the alternating trees). Thus every edge either connects
two nodes contained in the same blossom, or is incident to an odd node, or connects two
unlabeled nodes. Every unlabeled node is matched to an unlabeled node (since a matched
node and its mate are either both unlabeled or both matched) and hence the number of
unlabeled nodes is even. We construct an odd-set coverOSCwhose capacity is equal toM.
OSCconsists of:

• all odd nodes (interpreted as singleton sets),

• for each even node that stands for a set of cardinality at least three: the set represented
by the node,

• no further set if there is no unlabeled node, a singleton set consisting of an arbitrary
unlabeled node if there are exactly two unlabeled nodes, and a singleton set consisting
of an arbitrary unlabeled node and a set consisting of the remaining unlabeled nodes if
there are more than two unlabeled nodes.

Lemma 25The capacity of the odd-set cover OSC is equal to the cardinality ofM.

Proof The number of edges inM that still exist inG(h), i.e., have not been shrunken into a
blossom in the course of the algorithm, is equal to the number of odd nodes plus half of the
number of unlabeled nodes. For each even nodev of G(h), representing a setB of 2r + 1
nodes ofG, the number of edges inM connecting nodes inB is equal tor by Lemma 24.
This concludes the proof.

Theorem 5The blossom shrinking algorithm is correct.

Proof The algorithm terminates when it does not find an augmenting path. When this
happens, there is, by Lemma 25, an odd-set cover whose capacity is equal to the size ofM.
ThusM is optimal.

7.7.3 The Implementation
The goal of this section is to implement the blossom shrinking algorithm. Our implementa-
tion refines the implementation described in [Tar83b] and is similar to the implementation
given in [KP98]. The refinement does not change the worst case running time, but improves
the best case running time from�(n2) to O(m). The observed behavior on random graphs
with m = O(n) seems to be much better thanO(n2), see Table 7.7.

The overall structure of our implementation is given below. In the main loop we iterate
over all nodes ofG. Letv1, . . . ,vn be an arbitrary ordering of the nodes ofG. Whenv = vi

is considered, every free nodev j with j ≥ i is the root of a trivial alternating tree, and the
collection of alternating trees rooted at free nodesv j with j < i is stable. A collectionT
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of alternating trees is stable if every edge{u, w} incident to an even nodeu in T connects
u to an odd nodew in T . In other words, every edge{u, w} connecting a nodeu in T to a
node outsideT hasu odd, and every edge connecting two nodes contained inT has at least
one odd endpoint. It follows from our tree growing rules that the trees inT will not change
in the future.

Whenv = vi is considered andv is already matched we do nothing. Ifv is still un-
matched we grow the alternating treeT with rootv until either an augmenting path is found
or the growth comes to an end. We use anodelist Q to store all even nodes inT which
have unexplored incident edges. We organizeQ as a queue and hence grow the tree in
breadth-first manner.

The growth process comes to an end whenQ becomes empty. We claim thatT ∪ {T } is
stable whenQ becomes empty. Consider any edge{u, w} with u an even node inT . Then
w is odd, since otherwise the growth ofT would not have come to an end. Moreover,w

belongs to a tree inT ∪ {T }, since trees outsideT ∪ {T } are rooted at free nodesv j , j > i ,
and consist only of a root and roots are even. ThusT can be added to our stable collection
of alternating trees (this requires no action in the implementation) and the next free node
can be considered.

When an augmenting path is found by exploring an edge{u, w} with u an even node in
T andw an even node in a tree different fromT , w must be a free nodev j with j > i .
Observe, thatw cannot belong toT (sinceu andw are in distinct trees) and thatw cannot
belong to a tree inT (sinceT is stable). Thusw must belong to a tree rooted at somev j ,
j > i , and hence must be equal to somev j , j > i (since the trees rooted at these nodes are
trivial). When the matching is augmented by the augmenting path fromv to w, all nodes in
T ∪ w become matched and unlabeled. In order to be able to unlabel all nodes inT ∪ w in
time proportional to the size ofT we collect all nodes inT in a list of nodes (which we call
T ). We also set the variablebreakthroughto truewhenever an augmenting path is found in
order to guarantee that we proceed to the next node in the main loop.

〈 mc matching〉�
enum LABEL {ODD, EVEN, UNLABELED};

〈MCM: helpers〉
list<edge> MAX_CARD_MATCHING(const graph& G,

node_array<int>& OSC, int heur)

{

〈MCM: data structures〉
〈MCM: heuristics〉
node v; edge e;

forall_nodes(v,G)

{ if ( mate[v] != nil ) continue;

node_list Q; Q.append(v);

list<node> T; T.append(v);

bool breakthrough = false;

while (!breakthrough && !Q.empty()) // grow tree rooted at v

{
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node v = Q.pop();

〈explore edges out of the even node v〉
}

}

list<edge> M;

〈MCM: compute M〉
〈general checking: compute OSC〉
return M;

}

The Main Data Structures: We next discuss the main data structures used in the pro-
gram. We use anodearray<node> mateto keep track of the current matching and we use a
nodepartition baseto keep track of the blossoms.

〈MCM: data structures〉�
node_array<node> mate(G,nil);

node_partition base(G); // now base(v) = v for all nodes v

If two nodesv andw are matched thenmate[v] = w andmate[w] = v and if a nodev is
free thenmate[v] = nil. At the beginning, all nodes are free.

The node partition (see Section 6.8)baseestablishes the relationship between the current
graphG′ and the original graphG; recall that the current graph is obtained from the original
graph by a sequence of shrinkings of blossoms, that a node partition partitions the nodes
of a graph into disjoint sets called blocks, and that for a nodev, base(v) is the canonical
representative of the block containingv. The relationship betweenG andG ′ is as follows:

• For any nodev of G: if base(v) = v thenv is a node ofG ′ and ifbase(v) 6= v thenv

was collapsed intobase(v). Thus{base(v) ; v ∈ V } is the set of nodes ofG ′.

• An edge{v, w} represents the edge{base(v), base(w)} of G ′.

Every node is labeled as either EVEN, ODD, or UNLABELED. A node is labeled UN-
LABELED if it does not belong to any alternating tree and it is labeled EVEN or ODD
otherwise. A node is labeled when it is added to an alternating tree. It retains its label when
it is collapsed into another node. At the beginning all nodes are free and hence the root of
an alternating tree. Thus all nodes are EVEN at the beginning. For an odd nodev we use
pred[v] to store its parent node in the alternating tree. The pred value is set when a node is
added to an alternating tree; it is not changed when the node is collapsed into another node.

〈MCM: data structures〉+�
node_array<int> label(G,EVEN);

node_array<node> pred(G,nil);

Figure 7.29 shows an example.
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Figure 7.29 Snapshot of the data structure: The node labels are indicated by the labels “E” and
“O”. All nodes enclosed by the dashed line form a blossom and hence a block of the partition
base. The canonical element of this block isb.

Exploring an Edge: Having defined most of the data structures we can give the details of
exploring edges. Assume thatv is an even node and lete = {v, w} be an edge incident to
v. Recall thate stands for the edge{base(v), base(w)} in the current graph.

We do nothing ife is a self-loop or ifbase(w) is ODD. If base(w) is UNLABELED (this
is equivalent tow being unlabeled) we grow the alternating tree containingv and ifbase(w)

is EVEN we have either discovered an augmenting path or a blossom.

〈explore edges out of the even node v〉�
forall_inout_edges(e,v)

{ node w = G.opposite(v,e);

if ( base(v) == base(w) || label[base(w)] == ODD )

continue; // do nothing

if ( label[w] == UNLABELED )

{ 〈grow tree〉 }

else // base(w) is EVEN

{ 〈augment or shrink blossom〉 }

}

Growing the Tree: Let us first give the details of growing a tree. We labelw as odd, make
v the parent ofw, label the mate ofw as even, add the mate ofw to Q, and addw and the
mate ofw to T .

〈grow tree〉�
label[w] = ODD; T.append(w);

pred[w] = v;

label[mate[w]] = EVEN; T.append(mate[w]);

Q.append(mate[w]);

Discovery of a Blossom or an Augmenting Path:The nodebase(w) is even. We have ei-
ther found an augmenting path or a blossom. We have found an augmenting path ifbase(v)

andbase(w) belong to distinct trees and we have discovered a blossom if they belong to the
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same tree. We distinguish the two cases by tracing both tree paths in lock-step fashion until
we either encounter a node that lies on both paths or reach both roots23.

We discover a node lying on both paths as follows. We keep a counterstruewhich we
increment in every execution of〈augment or shrink blossom〉. Since there are at mostn
augmentations and at mostn shrinkings between two augmentations the maximal value of
the counter is bounded byn2. It would therefore be unsafe to use typeint for the counter,
but typedoubleis safe.

We use the counter as follows. As we trace the two tree paths we setpath1[hv] to strue
for all even nodeshv on the first path andpath2[hw] to struefor all even nodeshw on the
second path. The two paths meet iffpath1[hw] or path2[hv] is equal tostruefor some even
hwon the second path or some evenhvon the first path. The first node for which this is true
is the base of the blossom. Recall that the base of a blossom is always even.

The cost of tracing the paths is proportional to the size of the blossom found, if a blossom
is discovered, and is proportional to the length of the augmenting path found otherwise.
Also observe that we define the arrayspath1andpath2outside the loop that searches for
augmenting paths. Thus the cost for their initialization arises only once.

〈MCM: data structures〉+�
double strue = 0;

node_array<double> path1(G,0);

node_array<double> path2(G,0);

〈augment or shrink blossom〉�
node hv = base(v);

node hw = base(w);

strue++;

path1[hv] = path2[hw] = strue;

while ((path1[hw] != strue && path2[hv] != strue) &&

(mate[hv] != nil || mate[hw] != nil) )

{ if (mate[hv] != nil)

{ hv = base(pred[mate[hv]]);

path1[hv] = strue;

}

if (mate[hw] != nil)

{ hw = base(pred[mate[hw]]);

path2[hw] = strue;

}

}

if (path1[hw] == strue || path2[hv] == strue)

{ 〈shrink blossom〉 }

else

{ 〈augment path〉 }

23 An alternative strategy is as follows: we have found an augmenting path ifw is the root of a tree outsideT ∪ {T }.
We could, for each node, keep a bit to record this fact. The alternative simplifies the distinction between blossom
shrinking and augmentations. However, it does not simplify the code overall, as all the information gathered in
the program chunk〈augment or shrink blossom〉 is needed in later steps of the algorithm.
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Figure 7.30 The bridge of a blossom: The edge{v, w} closes a blossom with baseb. For the
odd nodes on the tree path fromb to v we setsourcebridge to v andtargetbridge to w and for
the odd nodes on the tree path fromb to w we setsourcebridge to w andtargetbridge to v.

Shrinking a Blossom: Let us see how to shrink a blossom. The baseb of the blossom24 is
eitherhvor hw. It is hw if hwalso lies on the first path and it ishvotherwise. We shrink the
blossom by shrinking the two paths that form the blossom.

The call shrinkpath(b, v, w, . . .) collapses the path fromv to b into b and the call
shrinkpath(b, w, v, . . .) collapses the path fromw to b into b. Both calls also have the
other end of the edge that closes the blossom as an argument.

〈shrink blossom〉�
node b = (path1[hw] == strue) ? hw : hv; // Base

shrink_path(b,v,w,base,mate,pred,source_bridge,target_bridge,Q);

shrink_path(b,w,v,base,mate,pred,source_bridge,target_bridge,Q);

Before we can give the details of the procedureshrinkpathwe need to introduce two more
node labels. When an edge{v, w} closes a blossom, all odd nodes in the blossom also get
an even length alternating path to the root of their alternating tree. This path goes through
the edge that closes the blossom. We call this edge thebridge of the blossom. The odd
nodes on the tree path fromv to b use the bridge in the direction fromv to w and the odd
nodes on the tree path fromw to b use the bridge in the direction fromw to v. We use
the node arrayssourcebridgeandtargetbridgeto record for each odd node shrunken into a
blossom the source node and the target node of its bridge (now viewed as a directed edge).

〈MCM: data structures〉+�
node_array<node> source_bridge(G,nil);

node_array<node> target_bridge(G,nil);

The details of collapsing the tree path fromv to b into b are now simple. For each node
x on the path we performunionblocks(x, b) to union the blocks containingx andb, for
each odd node we setsourcebridge to v andtargetbridge to w, and we add all odd nodes
to Q (because the edges out of the odd nodes now emanate from the even nodeb), see
Figure 7.30.

24 With the alternative case distinction between blossom shrinking and augmentation we would have to computehv
andhwat this point.
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There is one subtle point. After a union operation the canonical element of the newly
formed block is unspecified (it may be any element of the resulting block). It is impor-
tant, however, thatb stays the canonical element of the block containing it. We therefore
explicitly makeb the canonical element bybase.makerep(b).

〈MCM: helpers〉�
static void shrink_path(node b, node v, node w,

node_partition& base, node_array<node>& mate,

node_array<node>& pred, node_array<node>& source_bridge,

node_array<node>& target_bridge, node_list& Q)

{ node x = base(v);

while (x != b)

{

base.union_blocks(x,b);

x = mate[x];

base.union_blocks(x,b);

base.make_rep(b);

Q.append(x);

source_bridge[x] = v; target_bridge[x] = w;

x = base(pred[x]);

}

}

Augmentation: We treat the discovery of an augmenting path. The nodesv andw belong
to distinct alternating trees with rootshvandhw, respectively. In fact,w is a root itself. The
augmenting path consists of the edge{w, v} plus the even length alternating path fromv to
its roothv.

For a nodev let p(v) be the even length alternating path fromv to its root (if it exists).
The pathp(v) can be defined inductively as follows:

If v is a root thenp(v) is the trivial path consisting solely ofv.
If v is EVEN, p(v) goes through the mate ofv to the predecessor of the mate and then

follows p(pred[mate[v]]).
If v is ODD, p(v) consists of the alternating path fromv to sourcebridge[v] concatenated

with p(targetbridge[v]).

Lemma 26The above characterization ofp(v) is correct.

Proof The claim is certainly true whenv is a root. So assume otherwise and consider the
time whenp(v) is discovered in the course of the algorithm. For an even node this is the
time whenv is labeled EVEN and for an odd node this is the case when it becomes part of
a blossom. In either case the characterization is correct.

How can we find the alternating path fromv to sourcebridge[v] when v is odd? The
problem is that thepred-pointers are directed towards the roots of alternating trees and hence
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Figure 7.31 Tracing augmenting paths: The node labels are indicated by the labels “E” and “O”.
The predecessor pointer of the odd nodes are shown. When the bridge{e, f } was explored we
setsourcebridge[d] to e, targetbridge[d] to f , sourcebridge[g] to f , andtargetbridge[g] to e,
and when the bridge{c, d } was explored we setsourcebridge[a] to c, targetbridge[a] to d,
sourcebridge[b] to d, andtargetbridge[b] to c.
The even length alternating path fromb to its rootr consists of the reversal of the path from
d = sourcebridge[b] to b followed by the even length alternating path fromc = targetbridge[b]
to r . The former path consists of the reversal of the alternating path frome = sourcebridge[d]
to d followed by the alternating path fromf = targetbridge[d] to b.

there is no direct way to walk fromv to sourcebridge[v]. We walk fromsourcebridge[v]
to v instead and then take the reversal of the resulting path. The path fromsourcebridge[v]
to v is the prefix ofp(sourcebridge[v]) ending inv, see Figure 7.31.

We cast this reasoning into a program by defining a procedurefindpath(P, x, y, . . .) that
takes two nodesx andy, such thaty lies onp(x) and such that the prefix ofp(x) ending iny
has even length (the program would be slightly less elegant without the second assumption),
and appends the prefix ofp(x) ending iny to the listP. Find pathdistinguishes three cases:

If x is equal toy then the path consists of the single nodex .
If x 6= y and x is EVEN the path consists ofx , mate[x ], followed by the path from

pred[mate[x ]] to y.
If x 6= y andx is ODD, letP1 andP2 be the paths fromtargetbridge[x ] to y and from

sourcebridge[x ] to mate[x ], respectively. Then path consists ofx followed by the reversal
of P2 followed byP1.

〈MCM: helpers〉+�
static void find_path(list<node>& P, node x, node y,

node_array<int>& label, node_array<node>& pred,

node_array<node>& mate,

node_array<node>& source_bridge,

node_array<node>& target_bridge)

{ if ( x == y )

{

P.append(x);

return;

}

if ( label[x] == EVEN )

{

P.append(x);
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P.append(mate[x]);

find_path(P,pred[mate[x]],y,label,pred,mate,

source_bridge,target_bridge);

return;

}

else // x is ODD

{

P.append(x);

list<node> P2;

find_path(P2,source_bridge[x],mate[x],label,pred,mate,

source_bridge,target_bridge);

P2.reverse_items();

P.conc(P2);

find_path(P,target_bridge[x],y,label,pred,mate,

source_bridge,target_bridge);

return;

}

}

Givenfindpath, it is trivial to construct the augmenting path. We construct the path from
v to hv in P and appendw to the front of the path. We augment the current matching by the
path by walking along the path and changingmateaccordingly.

It remains to prepare for the next search for an augmenting path. All nodes inT ∪ {w}
are now matched. We unlabel all nodes inT ∪ {w} and split the blocks ofbasecontaining
nodes ofT . No action is required for the other alternating trees.

Finally, we setbreakthroughto true and break from the forall-inout-edges loop. Setting
breakthroughto truemakes sure that we also leave the grow tree loop. The next action will
therefore be to grow an alternating tree from the next free node.

〈augment path〉�
list<node> P;

find_path(P,v,hv,label,pred,mate,source_bridge,target_bridge);

P.push(w);

while(! P.empty())

{ node a = P.pop();

node b = P.pop();

mate[a] = b;

mate[b] = a;

}

T.append(w);

forall(v,T) label[v] = UNLABELED;

base.split(T);

breakthrough = true;

break;

Computing the Node LabelingOSC: We compute the node labelingOSCas described
in the paragraph preceding Lemma 25. We initializeOSC[v] to −1 for all nodesv. This
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will allow us to recognize nodes without a properOSC-label later. We then determine the
number of unlabeled nodes (= nodes labeledUNLABELEDand select an arbitrary unlabeled
node. If there are unlabeled nodes, the selected unlabeled node is labeled one and all other
unlabeled nodes are either labeled zero (if there are exactly two unlabeled nodes) or two (if
there are more than two unlabeled nodes). We then setK to the smallest unused label larger
than one.

Next we determine the number of sets of cardinality at least three and assign distinct
labels to their representatives. We do so by iterating over all nodes. Every nodev with
base(v) 6= v indicates a set of cardinality at least three. If its base is still unlabeled, we
label it.

Finally, we label all other nodes. Nodes belonging to a set of cardinality at least two
inherit the label of the base, and nodes that belong to sets of cardinality one (they satisfy
base(v) == v && OSC[base(v)] == -1) are labeled one iff they are ODD and are la-
beled zero if they are EVEN.

〈general checking: compute OSC〉�
forall_nodes(v,G) OSC[v] = -1;

int number_of_unlabeled = 0;

node arb_u_node;

forall_nodes(v,G)

if ( label[v] == UNLABELED )

{ number_of_unlabeled++;

arb_u_node = v;

}

if ( number_of_unlabeled > 0 )

{ OSC[arb_u_node] = 1;

int L = ( number_of_unlabeled == 2 ? 0 : 2 );

forall_nodes(v,G)

if ( label[v] == UNLABELED && v != arb_u_node ) OSC[v] = L;

}

int K = ( number_of_unlabeled <= 2 ? 2 : 3);

forall_nodes(v,G)

if ( base(v) != v && OSC[base(v)] == -1 ) OSC[base(v)] = K++;

forall_nodes(v,G)

{ if ( base(v) == v && OSC[v] == -1 )

{ if ( label[v] == EVEN ) OSC[v] = 0;

if ( label[v] == ODD ) OSC[v] = 1;

}

if ( base(v) != v ) OSC[v] = OSC[base(v)];

}

Computing the List of Matching Edges: The list M of matching edges is readily con-
structed. We iterate over all edges. Whenever an edge is encountered whose endpoints are
matched with each other, the edge is added to the matching. We also “unmate” the endpoints
in order to avoid adding parallel edges toM.
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〈MCM: compute M〉�
forall_edges(e,G)

{ node v = source(e);

node w = target(e);

if ( v != w && mate[v] == w )

{ M.append(e);

mate[v] = v;

mate[w] = w;

}

}

Heuristics: If heur = 1, the greedy heuristic is used to compute an initial matching. We
iterate over all edges. If both endpoints of an edge are unmatched, we match the endpoints
and declare both endpoints unlabeled. Recall that matched nodes that do not belong to an
alternating tree are UNLABELED.

〈MCM: heuristics〉�
switch (heur) {

case 0: break;

case 1: { edge e;

forall_edges(e,G)

{ node v = G.source(e); node w = G.target(e);

if ( v != w && mate[v] == nil && mate[w] == nil)

{ mate[v] = w; label[v] = UNLABELED;

mate[w] = v; label[w] = UNLABELED;

}

}

break;

}

}

Summary: We summarize and complete the running time analysis. The algorithm com-
putes a maximum matching in phases. In each phase an alternating treeT from a free node
is grown to find an augmenting path. If the search for an augmenting path is successful, the
matching is increased and all nodes in the alternating tree are unlabeled, and if the search is
unsuccessful, the tree will stay around and will never be looked at again.

The running time of a phase isO((nT + mT )α(nT , mT )), wherenT is the number of
nodes included intoT , mT is the number of edges having at least one endpoint inT , and
α(n, mT ) is the cost ofmT operations on a node partition ofn nodes. This can be seen
as follows. In a phase zero or more blossoms are shrunken. The search for a blossom (if
successful) has cost proportional to the size of the blossom, and shrinking a blossom of size
2k + 1 removes 2k nodes from the graph. Therefore the total size of all blossoms shrunk
in a phase isO(nT ). In each phase each edge is explored at most twice (once from each
endpoint). Each exploration of an edge and each removal of a node involves a constant
number of operations on the node partitionbase. We conclude that the total cost of a phase



7.8 Maximum Weight Bipartite Matching and the Assignment Problem 413

is O((nT + mT )α(n, mT )) = O((n + m)α(n, m)) = O(mα(n, m)), sincenT ≤ n ≤ m and
mT ≤ m.

There are at mostn phases and hence the total running time isO(nmα(n, m)) in the
worst case. One may hope thatnT is significantly smaller thann andmT is significantly
smaller thanm for many phases. The running times reported in Section 7.7.1 show that the
hope is justified in the case of random graphs. There are no analytical results concerning
the average case behavior of general matching algorithms.

In an earlier implementation of the blossom shrinking algorithm we did not collect the
nodes of the alternating tree grown into a setT . Rather, we iterated over all nodes at the be-
ginning of a phase and labeled all free nodes EVEN and all matched nodes UNLABELED.
With this implementation the running time is�(n2). The implementation discussed in this
section is significantly faster. It is superior for two reasons. Firstly, the cost of a phase is
proportional to the size of the alternating tree grown in the phase and hence may be sublin-
ear, and secondly, an alternating tree that does not lead to a breakthrough is not destroyed,
but kept till the end of the execution.

Exercises for 7.7
1 Compare the running time of the general matching algorithm and the bipartite matching

algorithm on bipartite graphs.
2 Exhibit a family of graphs where the running time of our matching algorithm is�(nm).

Write a program to generate such graphs and provide it as an LEP.

7.8 Maximum Weight Bipartite Matching and the Assignment Problem

Throughout this sectionG = (A ∪̇ B, E) denotes a bipartite graph andc : E 7→ IR denotes
a cost functionon the edges ofG. We also sayweightinstead of cost. AmatchingM is a
subset ofE such that no two edges inM share an endpoint. Thecost of a matchingM is
the sum of the cost of its edges, i.e.,

c(M) =
∑
e∈M

c(e).

A nodev is calledmatchedwith respect to a matchingM if there is an edge inM incident
to v and it is calledfreeor unmatchedotherwise. An edgee is calledmatchingif e ∈ M.
For a matched nodev the unique nodew connected tov by a matching edge is called the
mateof v. A matching is calledperfector anassignmentif all nodes ofG are matched.

A matching is called:

• amaximum weight matchingif its cost is at least as large as the cost of any other
matching,

• amaximum weight assignmentif it is a heaviest perfect matching,
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Figure 7.32 Maximum weight assignment and maximum weight matching. The matching on the
left is a maximum weight perfect matching and the matching on the right is a maximum weight
matching; the edges in the matchings are shown in bold in both cases. A potential function that
proves the optimality of the matching is also given in both cases. The potential of each node and
the cost of each edge is shown. For every edge the cost of the edge is bounded by the sum of the
potentials of its endpoints. In an assignment every node is incident to exactly one edge of the
assignment and hence the total cost of the assignment is bounded by the total potential. In the
graph on the left the two quantities are equal and hence the assignment is optimal. In the graph
on the right the potential function has the additional property that all potentials are non-negative
and that all free nodes have potential zero. This implies (see Lemma 27) that the cost of any
matching is bounded by the total potential. The two quantities are equal in the graph on the right
and hence the matching is a maximum weight matching. The xlman-demo gwmwb matching
allows the reader to experiment with weighted matchings in bipartite graphs.

• aminimum weight assignmentif it is a lightest perfect matching,

• amaximum weight maximum cardinality matchingif it is a heaviest matching among
the matchings of maximum cardinality.

Figure 7.32 shows a a maximum weight assignment and a maximum weight matching.
Clearly, a maximum or minimum weight assignment exists if and only ifG contains a
perfect matching.

In the next section we give the functionality of our algorithms and derive checkers of
optimality. Sections 7.8.2 and 7.8.3 discuss an algorithm for maximum weight matchings
and its implementation. In Sections 7.8.4 and 7.8.6 we modify our algorithms to compute
assignments and maximum weight matchings of maximum cardinality. Finally, in Sec-
tion 7.8.5 we show how to reduce the shortest path problem to the assignment problem.

7.8.1 Functionality
All functions in this section are function templates that work for an arbitrary number type
NT. We use the convention that names of function templates for graph algorithms end with
T. In order to use the templates one must include<LEDA/templates/mwbmatching.t>.
LEDA also contains pre-compiled instantiations for the number typesint anddouble. The
function names for the instantiated versions arewithout the suffix T. In order to use the
instantiated versions one must include<LEDA/graphalg.h>. Section 7.1 discusses the re-
lationship between templates and instantiated versions in more detail.
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The function

list<edge> MAX WEIGHT BIPARTITE MATCHING T(graph& G,

const edge array<NT>& c, node array<NT>& pot)

returns a matching of maximal cost; the graphG is required to be bipartite. The worst case
running time of the algorithm isO(n · (m +n logn)), the average case running time is much
better. The function computes a proof of optimality in the form of the potential function
pot. We discuss potential functions later in the section.

If a bipartitionV = A ∪̇ B is known and all edges are directed fromA to B, the function

list<edge> MAX WEIGHT BIPARTITE MATCHING T(graph& G,

const list<node>& A, const list<node>& B,

const edge array<NT>& c, node array<NT>& pot)

can be used. IfA andB have different sizes then it is advisable thatA is the smaller set; in
general, this leads to smaller running time.

The functions

list<edge> MAX WEIGHT ASSIGNMENT T(graph& G,

const edge array<NT>& c, node array<NT>& pot);

list<edge> MIN WEIGHT ASSIGNMENT T(graph& G,

const edge array<NT>& c, node array<NT>& pot);

return a maximum and minimum weight assignment, respectively. Both functions require
that G is bipartite. If G does not contain a perfect matching the empty set of edges is
returned.

All functions above are also available in the form whereA andB are given as additional
arguments and also without the argumentpot.

The function

list<edge> MWMCB MATCHING T(graph& G,

const list<node>& A, const list<node>& B,

const edge array<NT>& c, node array<NT>& pot);

returns a maximum weight matching among the matchings of maximum cardinality. The
potential functionpot proves the optimality of the matching, see Section 7.8.6.

Potential Functions: We have mentioned the concept of apotential functionseveral times
already. It is time to define it. A functionπ : V 7→ IR is called a potential function. For an
edgee = (v, w) we call

c(e) = π(v) + π(w) − c(e)

the reduced costof e with respect toπ . An edge is calledtight iff its reduced cost is zero
and the tight subgraph consists of all tight edges. For a subsetU of the nodes we useπ(U )

to denote
∑

v∈U π(v). The following four properties of potential functions will play a role:

(1) Non-negativity of reduced costs,c(e) ≥ 0 for all e ∈ E .
(2) Tightness of matched edges,c(e) = 0 for e ∈ M.
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(3) Non-negativity of node potentials,π(v) ≥ 0 for all v ∈ V .
(4) Tightness of free nodes,π(v) = 0 for all v that are free with respect toM.

The importance of potential functions stems from the following lemma.

Lemma 27Let M be any matching, letπ be any potential function, and letF be the set of
nodes that are free with respect toM.

If all reduced costs are non-negative thenc(M) ≤ π(V ) − π(F). If, in addition,M is an
assignment or all node potentials are non-negative thenc(M) ≤ π(V ).

If all reduced costs are non-negative and all matched edges have reduced cost zero then
c(M) = π(V ) − π(F). If, in addition, M is an assignment or all free nodes have potential
zero thenc(M) = π(V ).

Proof If all reduced costs are non-negative thenc(e) ≤ π(v) + π(w) for every edgee =
(v, w). Thus

c(M) =
∑
e∈M

c(e)

≤
∑

e=(v,w)∈M

π(v) + π(w)

=
∑

v∈V ;v is matched

π(v) = π(V ) − π(F),

where the next to last equality follows from the fact thatM is a matching and hence every
matched node contributes exactly once to the sum on the second line and no free node
contributes, and the last equality follows from the fact that the matched nodes are precisely
the nodes that are not free. This establishes the first claim. For the third claim we observe
that the inequality above becomes an equality if all matching edges have reduced cost zero.

The second and fourth claim follow from the first and third claim, respectively, and the
additional observation thatπ(F) ≥ 0 if node potentials are non-negative and thatπ(F) = 0
if M is an assignment or if the potential of all free nodes is zero.

We call a potential functionfeasibleif it satisfies (1),non-negativeif it satisfies (3),
and tight if it satisfies (1), (2), and (4). A tight non-negative potential function proves
the optimality of a maximum weight matching and a tight potential function proves the
optimality of a maximum weight assignment. Our algorithms return proofs of optimality in
the form of tight potential functions.

The optimality conditions (1) to (4) are the basis for checkers of optimality. The function
CHECK MWBM T takes a cost functionc, a list of edgesM, and a potential functionpot,
and checks thatM is a matching and that the properties (1) to (4) above are satisfied.

〈mwb matching.t〉+�
bool False(const string s)

{ cerr << "CHECK_MWBM_T: " << s << "\n" << flush; return false;}

template <class NT>
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bool CHECK_MWBM_T(const graph& G, const edge_array<NT>& c,

const list<edge>& M, const node_array<NT>& pot)

{ node v; edge e;

// M is a matching

node_array<int> deg_in_M(G,0);

forall(e,M)

{ deg_in_M[G.source(e)]++;

deg_in_M[G.target(e)]++;

}

forall_nodes(v,G)

if ( deg_in_M[v] > 1) return False("M is not a matching");

// node potentials are non-negative

forall_nodes(v,G)

if ( pot[v] < 0) return False("negative node potential");;

// edges have non-negative reduced cost

forall_edges(e,G)

{ node v = G.source(e); node w = G.target(e);

if ( c[e] > pot[v] + pot[w])

return False("negative reduced cost");

}

// edges in M have reduced cost equal to zero

forall(e,M)

{ node v = G.source(e); node w = G.target(e);

if ( c[e] != pot[v] + pot[w] )

return False("non-tight matching edge");

}

// free nodes have potential equal to zero

forall_nodes(v,G)

if ( deg_in_M[v] == 0 && pot[v] != 0 )

return False("free node with non-zero potential");

return true;

}

The analogous functions

bool CHECK MIN WEIGHT ASSIGNMENT T(G,c,M,pot);

bool CHECK MAX WEIGHT ASSIGNMENT T(G,c,M,pot);

check minimum and maximum weight assignments, respectively. We do not give their
implementations here. It is a good exercise to provide the implementations.

Potential Functions and Linear Programming Duality: We relate Lemma 27 to linear
programming duality. Readers unfamiliar with linear programming may skip this material,
although there is no harm in reading it anyway.

The maximum matching problem can be formulated as an integer program. We associate
a variablex(e) with every edgee, constrain it to the values 0 and 1, and consider the integer
program

max
∑
e∈E

c(e)x(e)
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subject to ∑
e;e is incident tov x(e) ≤ 1 for all v ∈ V

x(e) ∈ {0, 1} for all e ∈ E .

Let M be the set of edgese with x(e) = 1. The first constraint states that for each node
v at most one of the incident edges belongs toM, i.e., it guarantees thatM is a matching.
The objective function states that we are looking for a matching of maximal weight. It was
shown by Edmonds [Edm65b, Edm65a] that the integrality constraintsx(e) ∈ {0, 1} may
be replaced by the linear constraintsx(e) ≥ 0 without changing the problem25. Assume that
the integrality constraintx(e) ∈ {0, 1} has been replaced byx(e) ≥ 0. We now consider the
dual linear program. The dual has one variable for each node and one constraint for each
edge. We useπ(v) for the variable corresponding to nodev and obtain

min
∑
v∈V

π(v)

subject to

c(e) ≤ π(v) + π(w) for all e = (v, w) ∈ E
π(v) ≥ 0 for all v ∈ V .

Linear programming duality states that the objective value of any feasible solution of the
primal problem (= a matching) is no larger than the objective value of any feasible solution
of the dual problem (= a potential function satisfying (1) and (3)) and that the value of the
optimal solutions are equal. Complementary slackness implies in addition that the reduced
cost of an edge in the matching must be zero and that the node potential of a free node must
be zero. In fact, the proof of Lemma 27 is simply an adaption of the standard proofs of
weak linear programming duality and complementary slackness to matchings.

25 We sketch a proof of this fact. We first observe that the non-negativity constraintsx(e) ≥ 0 together with the
matching constraints

∑
e;e is incident tov x(e) ≤ 1 guarantee 0≤ x(e) ≤ 1. It therefore suffices to prove that the

linear program has an optimal integral solution. The optimal solution to the linear program is given by a basic
feasible solution, i.e., by the solution to a systemBx = 1 whereB is a square submatrix of the constraint matrix
and 1 is a vector of ones. Thusx = B−11. It therefore suffices to prove thatB−1 is integral. By Cramer’s rule,
each entry ofB−1 is the quotient of the determinant of a submatrix ofB and the determinant ofB. It therefore
suffices to prove that the determinant ofB is in {−1, 0, +1}. We prove more generally that the determinant of
any square submatrix of the constraint matrix has determinant−1, 0, or+1, i.e., that the constraint matrix is a
so-calledtotally unimodularmatrix. LetB be any square submatrix. We need to compute the determinant ofB.
Each entry ofB is either zero or one, each column ofB corresponds to an edge ofG, each row ofB corresponds
to a node ofG, and each column contains at most two ones, one for each endpoint. As long asB contains a row
or column with at most one one, we expand the determinant along this row or column. Each such reduction step
reduces the dimension by one and yields a factor−1, 0, or+1. When no further reduction step applies, we have
either reduced the dimension to zero and are done or reached a matrixB in which every row and column contains
at least two ones. We will show thatB is singular. Since a column contains at most two ones, we conclude that
every column contains exactly two ones. SinceB is square and since every row contains at least two ones we
conclude that every row contains exactly two ones. In other words in the graph defined byB every node has
degree two and thus the graph consists of a set of cycles. Each cycle has even length sinceG is bipartite (this is
where we use the fact thatG is bipartite). Letv1, v2, . . . , v2k be any one of the cycles and consider the following
linear combination formed by the rows corresponding to these nodes. Rows corresponding to nodes with odd
index are multiplied by+1 and rows corresponding to nodes with even index are multiplied by−1. This linear
combination yields the zero vector since, in each column corresponding to an edge of the cycle, one contribution
is +1 and the other contribution is−1; this argument relies on the fact that the cycle has even length. Altogether
we have now shown that the determinant ofB is either−1, 0, or+1.



7.8 Maximum Weight Bipartite Matching and the Assignment Problem 419

Arithmetic Demand: Special care should be taken when using the template functions with
a number typeNT that can incur rounding error, e.g., the typedouble. Section 7.2 contains
a general discussion of this issue. The template functions are only guaranteed to perform
correctly if all arithmetic performed is without rounding error. This is the case if all numer-
ical values in the input are integers (albeit stored as a number of typeNT) and if none of the
intermediate results exceeds the maximal integer representable by the number type (253− 1
in the case ofdoubles). All intermediate results are sums and differences of input values, in
particular, the algorithms do not use divisions and multiplications.

The algorithms have the following arithmetic demands. LetC be the maximal absolute
value of any edge cost. If all weights are integral then all intermediate values are bounded by
3C in the case of maximum weight matchings and by 4nC in the case of the other matching
algorithms. We will prove these bounds when we discuss the algorithms. For the sequel let
f = 3 in the case of the maximum weight matchings and letf = 4n in the other cases.

The pre-instantiations for number typeint issue a warning ifC is larger thanMAXINT/ f .
The pre-instantiations for number typedoublecompute the optimal matching for a mod-

ified weight functionc1, where for every edgee

c1[e] = sign(c[e])b|c[e]| · Sc/S

andS is the largest power of two such that

S < 253/( f · C).

The weight of the optimal matching for the modified weight function and the weight of the
optimal matching for the original weight function differ by at mostn · f · C · 2−52.

The weight modification can also be performed explicitly and we advise you to do so.
The functions

bool MWBM SCALE WEIGHTS(const graph& G, edge array<double>& c);

bool MWA SCALE WEIGHTS( const graph& G, edge array<double>& c);

replacec[e] by c1[e] for every edgee, wherec1[e] was defined above andf = 3 for the
first function andf = 4n for the second function. The first scaling function is appropriate
for the maximum weight matching algorithm and the second function is appropriate for all
other matching algorithms. The functions returnfalseif the scaling changed some weight,
and returntrueotherwise.

7.8.2 Maximum Weight Bipartite Matching: An Algorithm
We describe an algorithm for maximum weight bipartite matching. The algorithm works
iteratively. It starts with the empty matching and the graph spanned byB and the empty
subset ofA and then adds the nodes inA one by one. After each addition of a node it
computes a new maximum weight matching and a new tight non-negative potential function.

Let a1, . . . , an be an enumeration of the elements inA, let Ai = {a1, . . . , ai }, let Gi be
the subgraph spanned byVi = Ai ∪̇ B, let Mi be a maximum weight matching inGi , and
let πi : Vi 7→ IR≥0 be a non-negative potential function that is tight with respect toMi . Our
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algorithm will constructMi andπi for i = 0, 1, . . . ,n. We assume that all matching edges
are directed fromB to A and all non-matching edges are directed fromA to B.

M0 andπ0 are trivial; M0 is the empty matching andπ0 assigns zero to all nodes inB.
Let us also constructM1 andπ1. Let e be the heaviest edge incident toa1. If e does not
exist or has negative weight thenM1 is empty andπ1 assigns zero to all nodes inV1. If e has
non-negative weight thenM1 consists ofe andπ1 assignsc(e) to a1 and zero to all nodes in
B.

Assume now that we knowMi−1 andπi−1 for somei , i ≥ 1. We show how to construct
Mi andπi . An alternative interpretation of the construction will be given at the end of the
section.

We start the construction ofMi and πi by extendingπi−1 to a feasible non-negative
potential functionπ i for Vi ; this can be done by settingπ i(ai ) to any value that makes the
reduced cost of all edges incident toai non-negative. LetM = Mi−1 andπ = π i and
observe thatM andπ satisfy the optimality conditions (1), (2), and (3), and thata = ai is
the only free node which violates (4). We now modifyπ (maintaining (1), (2), and (3), and
(4) for all free nodes different froma) until there is an alternating path of tight edges from
a either to a nodea′ in A having potential zero (a = a′ is possible) or to a free node inB.
We setMi = M ⊕ p andπi = π . This re-establishes all four optimality conditions.

The potential functionπ is modified in phases. In each phase (except the last) we de-
creaseπ(Vi ) and we leaveπ(Vi ) unchanged in the last phase.

We now describe a phase. In each phase we determine the setR of nodes that are reach-
able froma = ai by tight edges and then distinguish three cases.

R contains a node inA of potential zero: Let v be a node inA ∩ R with π(v) = 0 and
let p be a path of tight edges froma to v. We augmentM by p, see Figure 7.33, and
observe thatπ is tight with respect toM ⊕ p. It is conceivable thatv = a andp is a path
of length zero.

R contains a free node inB: Let w be a free node inB ∩ R and let p be a path of tight
edges froma to w. We augmentM by p, see Figure 7.34, and observe thatπ is tight
with respect toM ⊕ p.

Neither of the above: We define a valueδ = min(α, β). Let α be the minimal valueπ(v)

for any nodev ∈ R ∩ A and letβ be the minimal valuec(e) of any edgee leaving R.
Thenα > 0 sinceR contains no node inA with potential zero andβ > 0 since only
non-tight edges can leaveR, see Figure 7.35. We decrease the potential of all nodes in
R ∩ A by δ, we increase the potential of all nodes inR ∩ B by δ, and recomputeR. We
continue in this fashion until one of the first two cases occurs.

The correctness of the method follows from the following lemma.

Lemma 28 In the first two cases,π is tight with respect toM ⊕ p. In the third case, the
update ofπ preserves feasibility and non-negativity. The total potential decreases byδ.
Moreover, all edges inM stay tight andai is the only free node whose potential can be
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Figure 7.33 The edges of a matchingM are shown in bold. The potential of each node is shown
inside the node and the costc and the reduced costc of each edge is shown asc(e)/c(e). The
patha1, b0, a0 consists of tight edges and can be used for augmentation. The resulting matching
has the same cardinality as the current matching.
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Figure 7.34 The edges of a matchingM are shown in bold. The potential of each node is shown
inside the node and the costc and the reduced costc of each edge is shown asc(e)/c(e). The
patha1, b0, a0, b1 consists of tight edges and can be used for augmentation. The resulting
matching has cardinality one larger than the current matching.

positive after the potential update. After the update there is either a node inR ∩ A whose
potential is zero (ifδ = α) or R grows (ifδ = β).

Proof In cases 1 and 2 we augment along a path of tight edges. Hence any edge inM ⊕ p
is tight. Also, in case 1 we expose a node inA that has potential zero. Thusπ is tight with
respect toM ⊕ p.

We turn to the third case. We start with a feasible potential function in which all edges in
M are tight and in which all free nodes except forai have potential zero;ai may or may not
have potential zero. The setR contains one more node inA than inB since every node inR
excepta is matched and since for every matched edge either both endpoints or no endpoint
is in R. Thus a potential update decreases the total potential byδ.

Let e be any edge. We show that the reduced cost ofe stays non-negative. The reduced
cost ofe decreases only if one endpoint lies inR ∩ A and the other endpoint lies inB\R.
Thene is non-matching (since matching edges always have both or no endpoint inR) and
hence the reduced cost ofe before the potential update is at leastβ.

All edges inM stay tight since for any edge inM either both endpoints belong toR or
neither endpoint does.

No free node inB can get a positive potential since there is no free node inR ∩ B;
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R ∩ A R ∩ B

β

α
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Figure 7.35 R is the set of nodes reachable fromai by tight edges. The setsA ∩ R andB ∩ R
are indicated as large ovals. The number of nodes inA ∩ R is one larger than the number of
nodes inB ∩ R, since each node inA ∩ R \ ai is matched to a node inB ∩ R and vice versa.β is
the minimum reduced cost of any edge leavingR (any such edge has its source node inA since
all edges out ofB are inM and hence tight) andα is the minimum potential of any node in
A ∩ R, andδ = min(α, β). We reduce the potential of all nodes inA ∩ R by δ and increase the
potential of all nodes inB ∩ R by δ.

otherwise we would be in case 2. The potential of nodes inA does not increase and hence
ai can stay the only node with positive potential.

At this point we have arrived at a first version of our algorithm.

M = the empty matching;
pot (b) = 0 for all b in B;

forall a ∈ A
f set pot (a) to some value that makes the reduced cost of all edges incident toa

non-negative;

while (true)
f determine the setR of nodes reachable froma by tight edges.

if R contains a node inA with potential zero or a free node inB
f augment by a path of tight edges froma to this node;

break;
g

computeα, β, andδ and adjust the potentials;
g

g
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We leave it to the reader to implement the basic version of the algorithm.
Let us take a closer look at the inner loop of this algorithm. It grows a setR until R

contains either a free node inB or a node inA with potential zero. LetRk be the setR in
thek-th iteration of the loop fork = 1, 2, . . . ,K + 1, letδk be the value ofδ determined in
thek-th iteration, let1k = δ1 + . . . + δk , and let1 = 1K be the sum of allδ’s. Then the
total change of potential of the nodes inRk \ Rk−1 is δk +δk+1+ . . . = 1− (δ1+ . . .+δk−1).

Also δk = βk < αk for k < K sinceδi = αi implies that case 1 occurs in the next
iteration and hencei = K . Finally, δK = αK implies thatRK+1 = RK . We relate the
growth of R to a shortest-path computation with sourceai .

Lemma 29Letw be any node and letµ(w) be the shortest-path distance ofw fromai with
respect to the reduced costs defined byπ i . Thenw is added toR after a total potential
change ofµ(w).

Proof Let w be any node and consider a shortest pathp from ai to w. Let e1, e2, . . . be
the edges onp that are not tight initially in the order in which they occur onp. The source
node ofe1 belongs toR1. The reduced cost ofe1 is decreased byδ1 in the first phase, byδ2

in the second phase, and becomes zero at the end of some phase, say the(l − 1)-th, i.e., the
original reduced cost ofe1 was equal toδ1 + . . . + δl−1. In phasel the source node ofe2

belongs toR and the next potential updates reduce the cost ofe2 to zero. In this wayw is
added toR after a total potential change ofµ(w).

Lemma 30Letπ = π i and for any nodew let µ(w) be the shortest-path distance ofw from
ai with respect to the reduced costs defined byπ . Let minA= min{µ(a) + π(a) ; a ∈ A}
and let minB= min{µ(b) ; b ∈ B andb is free}. Then1 = min(minA, minB) and the
total potential change for any nodev is equal tomax(0, 1 − µ(v)).

If 1 = minA, letz be the node that defines minA and if1 = minB, letz be the node that
defines minB (if minA= minB, definez by either half-sentence). In either case letp be a
path of lengthµ(z) from ai to z. Then all edges ofp are tight after the change of potential.

Proof Consider an arbitrary nodea ∈ A. It is added toR when the total potential change
is equal toµ(a). Subsequent potential changes decreaseπ(a) and hence the total potential
change cannot be more thanµ(a) + π(a) (since node potentials always stay non-negative).

Consider a free nodeb ∈ B. It is added toR when the total potential change is equal to
µ(b). Thus the total potential change cannot be more thanµ(b).

We stop changing the potentials once a node inA ∩ R reaches potential zero or a free
node inB is added toR. Thus the total potential change1 is equal to min(minA, minB).

A nodev participates in potential changes after it has been added toR. Thus the total
change of potential ofv is equal to max(0, 1 − µ(v)).

Let p be as defined in the statement of the lemma and lete = (v, w) be any edge ofp.
Thenµ(v) + c(e) = µ(w) sincep is a shortest path. Alsoµ(v), µ(w) ≤ 1 sincep is a
shortest path to the node that defines1. We show thate is tight after the potential change.
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If e is matching and hencev ∈ B andw ∈ A andc(e) = 0, we haveµ(v) = µ(w). Thus
π(v) is increased by1 − µ(v) andπ(w) is decreased by the same amount. Thuse stays
tight.

If e is non-matching and hencev ∈ A andw ∈ B, we haveµ(v) + c(e) = µ(w). Thus
π(w) is increased by1 − µ(w) = 1 − µ(v) − c(e) andπ(v) is decreased by1 − µ(v).
The reduced cost ofe is therefore reduced byc(e) and hencee becomes tight.

Lemmas 29 and 30 allow us to refine our basic algorithm.

M = the empty matching;
pot(b) = 0 for all b in B;

forall a ∈ A
f set pot(a) to some value that makes the reduced cost of all edges incident toa

non-negative;

for any nodev let dist(v) be the shortest-path distance ofv from a and let

minA= min{dist(v) + pot(v) ; v ∈ A};
bestnodein A = a node inA that definesminA;

minB= min{dist(v) ; v ∈ B and free};
bestnodein B = a node inB that definesminB;

Delta = min(minA, minB);

forall v ∈ A: pot(v) = pot(v) − max(0, Delta− dist(v));
forall v ∈ B: pot(v) = pot(v) + max(0, Delta− dist(v));

augment by the alternating path of tight edges froma to bestnodein A, if Delta =
minA, and froma to bestnodein B, otherwise;

g

The description above suggests that it is necessary to computedist[v] for all nodesv in
each execution of the inner loop. This is not true. It is only necessary to computeDeltaand
the node defining it and to computedist[v] for all nodesv with dist[v] < Delta. Given this
information all potentials can be updated correctly and the augmentation can be made.

How can we computeDelta without computingdist[v] for all nodesv? We exploit the
fact that Dijkstra’s algorithm computes dist-values in increasing order. Letv0, v1, . . . with
v0 = a be the order in which the nodes are reached by the shortest-path computation. Then
dist[v0] ≤ dist[v1] ≤ . . . . We observe:

(1) If

min{dist[vi ] + pot[vi ] ; i < k andvi ∈ A} ≤ dist[vk]

then somevi with i < k andvi ∈ A definesminA. This follows from the fact that all
node potentials are non-negative.

(2) minB is the dist-value of the first free node inB that is reached by the shortest-path
computation. If nov j with j < k is a free node inB thendist[vk] ≤ minB.
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(3) If

min{dist[vi ] + pot[vi ] ; i < k andvi ∈ A} ≤ dist[vk]

and nov j with j < k is a free node inB thenDelta = minA. This follows from (1) and
(2).

(4) If

min{dist[vi ] + pot[vi ] ; i < k andvi ∈ A} ≥ dist[vk]

andvk is a free node inB thenDelta = minB. This follows from (1) and (2).
(5) Let k be minimal such that either (3) or (4) holds. ThenDelta ≤ dist[v j ] for all j > k

and the potentials of all nodesv j with j > k are not changed.

We will use items (3) and (4) as the stopping criteria for the shortest-path computation in
our implementation. Item (5) implies that only nodes that are reached by the shortest-path
computation can be affected by the potential change.

7.8.3 Maximum Weight Bipartite Matching: An Implementation
After all this preparatory work we are ready for the implementation.

We start by declaring the data structures required by the algorithm, then use one of three
heuristics to initialize the potential function and the matching, then callaugment(a, . . .) for
each node inA that is left unmatched by the heuristic, and finally restore the graph and
prepare the list of edges comprising the matching.

The data structures used by the algorithm are two boolean arrays to keep track of the free
nodes and the nodes inA and the data structures needed for the shortest-path computations
(arrayspredanddist, and a node priority queuePQ).

We describe three heuristics. The simplest heuristic (called naive in the program below)
sets the potential of all nodes inB equal to zero, the potential of all nodes inA equal to
the maximal cost of all edges, and sets the matching to the empty matching. The other
heuristics are described later in the section.

〈mwb matching.t〉+�
〈mwb matching: helpers〉
static int which_heuristic = 2;

template <class NT>

list<edge> MAX_WEIGHT_BIPARTITE_MATCHING_T(graph& G,

const list<node>& A, const list<node>& B,

const edge_array<NT>& c, node_array<NT>& pot)

{ node a,b,v; edge e;

list<edge> result;

forall_nodes(v,G) pot[v] = 0;

if (G.number_of_edges() == 0 ) return result;

// check that all edges are directed from A to B

forall(b,B) assert(G.outdeg(b) == 0);

node_array<bool> free(G,true);
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node_array<edge> pred(G,nil);

node_array<NT> dist(G,0);

node_pq<NT> PQ(G);

switch (which_heuristic)

{ case 0: { // naive heuristic

NT C = 0;

forall_edges(e,G) if (c[e] > C) C = c[e];

forall(a,A) pot[a] = C;

break;

}

case 1: { // simple heuristic

〈simple heuristic〉
break;

}

default: { // refined heuristic

mwbm_heuristic( G, A, c, pot, free);

break;

}

}

forall(a,A)

if (free[a]) augment(G,a,c,pot,free,pred,dist,PQ);

forall(b,B)

{ forall_out_edges(e,b) result.append(e); }

forall(e,result) G.rev_edge(e);

return result;

}

We give the details ofaugment(G, a, . . .). It is a variant of Dijkstra’s algorithm.

〈mwb matching: helpers〉�
〈procedure augmentpath to〉
template <class NT>

inline void augment(graph& G, node a, const edge_array<NT>& c,

node_array<NT>& pot, node_array<bool>& free,

node_array<edge>& pred, node_array<NT>& dist,

node_pq<NT>& PQ)

{ 〈augment: initialization〉
while ( true )

{ 〈select from PQ the node b with minimal distance db〉
〈distinguish three cases〉

}

〈augment: potential update and reinitialization〉
}

We compute shortest paths starting ina. The priority queuePQ contains nodes inB (we
will explain shortly why nodes inA are not put into the queue) together with their tentative
distance froma, minAcontains the minimum value of{µ(v) + π(v) ; v ∈ A} that we have
seen so far, andbestnodein A contains a node realizingminA. We use an arraydist to
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record distances and an arraypredto record predecessor edges in the shortest-path tree; this
is as in Section 7.5.

Initially, the distance ofa is zero,minA is equal to the potential ofa, bestnodein A is
equal toa, andPQ contains all neighbors ofa (recall that we store only nodes inB in the
priority queue).

We do not definePQ within augmentnor do we initializepredwithin augment. This is
absolutely vital for efficiency. We assume thatPQ is empty andpred[v] = nil for all v

whenaugmentis called. Withinaugmentwe collect, in stacksRAandRB, all nodesv (in A
andB, respectively) that are added toPQor for whichpred[v] is set. At the end ofaugment
we use these stacks to resetPQ andpred. In this way augmentations can have sublinear
running time.

〈augment: initialization〉�
dist[a] = 0;

node best_node_in_A = a;

NT minA = pot[a];

NT Delta;

stack<node> RA; RA.push(a);

stack<node> RB;

node a1 = a; edge e;

〈relax all edges out of a1〉

where

〈relax all edges out of a1〉�
forall_adj_edges(e,a1)

{ node b = G.target(e);

NT db = dist[a1] + (pot[a1] + pot[b] - c[e]);

if ( pred[b] == nil )

{ dist[b] = db; pred[b] = e; RB.push(b);

PQ.insert(b,db);

}

else

if ( db < dist[b] )

{ dist[b] = db; pred[b] = e;

PQ.decrease_p(b,db);

}

}

For each edgee = (a1, b) we computedb asdist[a1] plus the reduced cost ofe. If b is
reached for the first time, we add it toPQ and toRB, and ifw has been reached before but
db is smaller than the current distance value ofb, we update the distance value accordingly.
We will reuse the program chunk above below and hence have formulated it for an arbitrary
nodea1 in A. In the main loop we remove the node with smallest distance fromPQ. Let b
be this node and letdbbe its distance;b is a node inB.
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〈select from PQ the node b with minimal distance db〉�
node b;

NT db;

if (PQ.empty()) b = nil;

else { b = PQ.del_min(); db = dist[b]; }

We distinguish three cases according to the discussion at the end of Section 7.8.2.
If b does not exist, i.e.,PQ is empty, ordb ≥ minA, we augment by a path to node

bestnodein A. Delta is equal tominA.
If b exists,db < minA, andb is free, we augment by a path tob. Delta is equal todb.
If b exists,db < minA, andb is matched, we continue the shortest-path computation.

〈distinguish three cases〉�
if ( b == nil || db >= minA )

{ Delta = minA;

〈augmentation by path to best node in A〉
}

else

{ if ( free[b] )

{ Delta = db;

〈augmentation by path to b〉
}

else

{ 〈continue shortest-path computation〉 }

}

Augmentation to the best node inA is done byaugmentpathto(bestnodein A, . . .), which
simply reverses the direction of all edges on the path froma to bestnodein A. The path
is given by thepred-array. We also declarea matched andbestnodein A unmatched. It is
important that we do the latter actions in this order, sincea may be the best node inA, in
which case we do not want to change the current matching.

〈augmentation by path to best node in A〉�
augment_path_to(G,best_node_in_A,pred);

free[a] = false; free[best_node_in_A] = true; // order is important

break;

where

〈procedure augmentpath to〉�
inline void augment_path_to(graph& G, node v,

const node_array<edge>& pred)

{ edge e = pred[v];

while (e)

{ G.rev_edge(e);

e = pred[G.target(e)]; // not source (!!!)

}

}
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Augmentation by a path tob is equally simple. We augment and declarea andb matched.

〈augmentation by path to b〉�
augment_path_to(G,b,pred);

free[a] = free[b] = false;

break;

We come to the case where the shortest-path computation is to be continued. Thenb is
matched. Lete be the matching edge incident tob and consider the matea1of b. The mate
has the same distance value asb and its predecessor edge ise.

If db+ pot[a1] is smaller thanminAwe updateminAandbestnodein A.
We also relax the edges out ofa1. This may put more nodes inB into PQ. Observe that

only nodes inB are put intoPQ.

〈continue shortest-path computation〉�
e = G.first_adj_edge(b);

node a1 = G.target(e);

pred[a1] = e; RA.push(a1);

dist[a1] = db;

if (db + pot[a1] < minA)

{ best_node_in_A = a1;

minA = db + pot[a1];

}

〈relax all edges out of a1〉

This completes the description of the main loop.
We break from the main loop as soon as an augmenting path has been found. At this point

RA∪ RB contains all nodes that have been reached in the shortest-path computation and
Deltacontains the value required for the potential updates. For each nodev in RA∪ RBwe
resetpred[v] to nil, removev from the priority queue (only nodes inB can be in the queue),
and update its potential. The potential change is max(0, Delta− dist[v]). It is a decrease
for the nodes inA and an increase for the nodes inB. For the nodes outsideRA∪ RB the
potential does not change (by item (5) of the discussion at the end of Section 7.8.2).

〈augment: potential update and reinitialization〉�
while (!RA.empty() )

{ node a = RA.pop();

pred[a] = nil;

NT pot_change = Delta - dist[a];

if (pot_change <= 0 ) continue;

pot[a] = pot[a] - pot_change;

}

while (!RB.empty() )

{ node b = RB.pop();

pred[b] = nil;

if (PQ.member(b)) PQ.del(b);

NT pot_change = Delta - dist[b];
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if (pot_change <= 0 ) continue;

pot[b] = pot[b] + pot_change;

}

We come to the heuristics.
The simple heuristic setspot[a] to the largest non-negative cost of any edge incident toa

for everya ∈ A. This will make the heaviest edge incident toa tight (since the potential of
all nodes inB is initially zero). The edge is added to the matching iff its endpoint inB is
free.

〈simple heuristic〉�
forall(a,A)

{ edge e_max = nil; NT C_max = 0;

forall_adj_edges(e,a)

if (c[e] > C_max) { e_max = e; C_max = c[e]; }

pot[a] = C_max;

if ( e_max != nil && free[b = G.target(e_max)] )

{ G.rev_edge(e_max);

free[a] = free[b] = false;

}

}

The refined heuristic augments along paths of length one and length three. When it is
called, the potential of all nodes inB is zero. It considers the nodes inA in turn. For each
nodea ∈ A it determines the two incident edges with largest non-negative reduced cost.
Call themebande2, respectively, and their reduced costsmaxandmax2, respectively. Ife2
does not exist, thenmax2= 0, and ifebdoes not exist, thenmax= 0.

We then distinguish cases. Ifebdoes not exist, we setpot[a] to zero. Ifebexists, letb be
the target ofeb. If b is free, we addebto the matching, recorde2as the second best edge of
a, and setpot[a] to max2andpot[b] to max- max2. This makeseb tight, and it makese2
tight if it leads to a free node inB. Finally, if b is not free we setpot[a] to maxand consider
the second best edge, saye, incident to the mate ofb. If e exists and the target ofe is free,
we use the path of length three for augmentation.

〈mwb matching: helpers〉+�
template <class NT>

void mwbm_heuristic(graph& G, const list<node>& A,

const edge_array<NT>& c, node_array<NT>& pot,

node_array<bool>& free)

{

node a, b; edge e, e2, eb;

node_array<edge> sec_edge(G,nil);

forall( a, A )

{ NT max2 = 0; NT max = 0; eb = e2 = nil;

// compute edges with largest and second largest slack

forall_adj_edges( e, a )

{ NT we = c[e] - pot[target(e)];
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if ( we >= max2 )

{ if( we >= max )

{ max2 = max; e2 = eb;

max = we; eb = e;

}

else

{ max2 = we; e2 = e;

}

}

}

if( eb )

{ b = target(eb);

if( free[b] )

{ // match eb and change pot[] to make slack of e2 zero

sec_edge[a] = e2;

pot[a] = max2;

pot[b] = max-max2;

G.rev_edge(eb);

free[a] = free[b] = false;

}

else

{ // try to augment matching along

// path of length 3 given by sec_edge[]

pot[a] = max;

e2 = G.first_adj_edge(b);

e = sec_edge[target(e2)];

if( e && G.outdeg(target(e)) == 0 )

{ free[a] = free[G.target(e)] = false;

G.rev_edge(e); G.rev_edge(e2); G.rev_edge(eb);

}

}

}

else pot[a] = 0;

}

}

The worst case running time of our matching algorithm isn times the worst case running
time of the shortest-path computation. The worst case running time of the shortest-path
computation depends on the implementation of the priority queue. Priority queues are dis-
cussed in Section 5.4. With either the Fibonacci heap or the pairing heap implementation
we obtain a worst case running time ofO(n(m + n logn)) and with the redistributive heap
implementation we obtain a worst case running time ofO(n(m + n logC)) whereC is the
largest edge weight (edge weights are assumed to be integral for the latter time bound). The
implementation given has worst case running timeO(n(m + n logn)). The average case
running time seems to be much better as Table 7.8 shows.

Arithmetic Demand: How large are the numbers that are handled by the program above?
Let us assume that all edge weights are integers whose absolute value is bounded byC.

We observe first that all node potentials are non-negative integers less than or equal toC.
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This is clear for the nodes inA since their potential is initialized to a value less than or equal
to C and is only decreased afterwards. For the nodes inB it follows from the observation
that the potential of any matched node is at mostC (since the reduced cost of a matched
edge is zero) and that the potential of free nodes inB is zero.

The fact that node potentials are bounded byC implies that the reduced cost of any edge
is bounded by 2C. Thus the largest number handled in any of the shortest-path computations
is at most 2 min(|A|, |B|) ·C. This bound holds since matched edges have reduced cost zero
and hence no simple path can contain more than min(|A|, |B|) edges of non-zero reduced
cost.

We will next establish a much better bound. The quantityminA is always bounded by
C, since it is initialized to the potential of a node inA and is only decreased afterwards.
The shortest-path computation stops as soon as a distance value larger thanminAis selected
from the queue. Thus only distance values less thanminA(and hence less thanC) can lead
to the insertion of additional distance values into the queue. We conclude that the maximal
value ever put into the queue is bounded byC plus the maximal reduced cost of any edge
and is hence bounded by 3C. We summarize.

Lemma 31 If all edge weights are integers whose absolute value is bounded byC then the
largest number handled by the maximum weight bipartite matching algorithm is bounded
by3C.

Experimental Data: Table 7.8 contains some running times. We used random bipartite
graphs withn nodes on each side andm edges, and three different kinds of edge weights:

• Uniform edge weights, i.e., all edge weights equal to one.

• Random edge weights in [1..1000].

• Large random edge weights in [10000..10005].

In all cases we also solved the corresponding unweighted matching problem.

The instances with random edge weights are by far the simplest, followed by the instances
with large random edge weights, followed by the uniform instances. We expected that
random edge weights from a large range lead to simple problems because heavy edges are
much more favorable than light edges. We were surprised to find that the uniform problems
are the hardest and have no explanation for it.

The density of the problem has a big influence on running time. For very sparse prob-
lems (m = 2n) the weighted matching algorithm is faster than the unweighted matching
algorithm. This is due to the use of the potential function.

Consider the graph shown in Figure 7.36. It consists of a connected graphH which has
a perfect matching and additional nodesa1, a2, . . . , ak . Eacha1 is connected to a node
on the B-side ofH . In the figure, allai are connected to the same node inB, but this is
not essential. Assume that the perfect matching inH has already been constructed and
that the nodesa1, a2, . . . , ak are considered in turn. In the unweighted matching algorithm
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C n m No Simple Refined Check Unweighted

U 20000 40000 0.995 0.997 0.994 0.186 2.633

U 20000 60000 61.1 60.41 58.43 0.213 3.679

U 20000 80000 116.2 114.2 109.9 0.239 6.248

U 40000 80000 2.139 2.153 2.144 0.39 6.791

U 40000 120000 212.2 210.3 204.3 0.4539 9.61

U 40000 160000 410 402.8 387.8 0.5081 9.217

R 20000 40000 0.84 0.849 0.8467 0.1836 2.73

R 20000 60000 1.399 1.401 1.391 0.2189 3.811

R 20000 80000 2.635 2.509 2.578 0.2402 6.32

R 40000 80000 1.812 1.82 1.817 0.3922 7.056

R 40000 120000 3.001 2.941 2.973 0.4621 9.855

R 40000 160000 5.667 5.364 5.512 0.5168 9.532

L 20000 40000 1.293 1.31 1.307 0.1838 2.811

L 20000 60000 20.84 20.89 20.65 0.2305 3.922

L 20000 80000 41.6 40.69 41.05 0.2529 6.726

L 40000 80000 2.815 2.816 2.816 0.4213 7.222

L 40000 120000 57.06 56.9 54.67 0.4834 9.98

L 40000 160000 116.5 113.9 103.1 0.5283 9.595

Table 7.8 The running times of three versions of the weighted bipartite matching algorithm. The
first three columns contain the running times of the algorithm above with the three different
heuristics, the fourth column shows the time to verify the result and the last column shows the
time required to solve the unweighted problem (byMAX CARDBIPARTITE). The graphs were
generated byrandombigraph(G, n, n, m, A, B) and three kinds of edge weights were used:
uniform edge weights (denoted U), i.e., all edge weights were set to one, random edge weights
(denoted R) in [1.. 1000] and random edge weights (denoted L) in [10000.. 10005]. Each
number is the average of ten runs. The function mwbmatchingtime in the demo directory
allows readers to perform their own experiments.

every search for an augmenting path will exploreH in its entirety. Not so in the weighted
matching algorithm. After the search froma1, a1 will have potential equal to zero (since it
is free) and hence the node inB connected to it will have potential equal to one. SinceH is
assumed to be connected, every node inH ∩ B will have potential equal to one. Consider
next a search for an augmenting path starting atai , i ≥ 2. The nodeai is given potential one
(since one is the largest cost of an edge incident toai ), and hence all edges out ofai have
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H

a1

ak

Figure 7.36 H has a perfect matching and eachai , 1 ≤ i ≤ k is connected to some node on the
B-side ofH . After the search for an augmenting path froma1 all nodes inB will have potential
one. The searches fromai , i > 2, take constant time.

reduced cost one. When the first neighbor ofai is removed from the queue (with distance
value one), the conditiondv >= minA holds and hence the search for an augmenting path
terminates. In this way, the fact thatai cannot be matched is detected in timeO(1). We
conclude that node potentials help tremendously in the example of Figure 7.36. Of course,
this example is very special and hence we need to generalize the argument.

Our algorithm considers the nodes inA in turn. LetAi−1 = {a1, . . . , ai−1}. After having
considered the nodes inAi−1, it has computed a maximal matchingMi−1 in the subgraph
Gi−1 spanned byAi−1 ∪ B and a potential functionπi−1 which proves the optimality of
Mi−1. Observe now that a node inB which can be reached from a free node inA must have
potential one (since free nodes have potential zero and hence their neighbors have potential
one, and hence the neighbors of the neighbors have potential zero,. . . ).

Consider now the search for an augmenting path fromai . We claim that it will not enter
the subgraphH of Gi−1 consisting of all nodes that can be reached from a free node in
Ai−1. This is most easily seen for what we called the basic version of the algorithm in
Section 7.8.2. We observe first that the nodeai is given potential one (since one is the
largest cost of an edge incident toai ) and hence an edge(ai , b) will have reduced cost
equal to zero or equal to one depending on whether the potential ofb is zero or one. The
edges connectingai to nodes inH will have reduced cost equal to one. The search will
first explore all nodes that can be reached by tight edges. If a free node inB is reached, the
matching will be increased. If no free node inB can be reached, a potential change will be
made. The change reduces the potential ofai to zero and hence no further search will be
performed. We conclude thatH is never entered.
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For random edge weights the weighted matching algorithm is faster than the unweighted
matching algorithm on the corresponding unweighted problem.

Alternative Interpretation: We close this section with an alternative interpretation of our
algorithm. The alternative interpretation may be skipped.

We consider only the construction ofMi from Mi−1 andπi−1. For any alternating path
starting ina = ai let d(p) be the total cost of the edges inp that belong toM minus the
total cost of the edges that do not belong toM, i.e.,

d(p) =
∑

e∈p∩M

c(e) −
∑
p\M

c(e).

Consider the matchingM ⊕ p obtained by augmentingM by p. It has costc(M) − d(p)

and henceM ⊕ p is “better” thanM iff d(p) is negative. This observation suggests the
following definition. We call a pathp improving with respect toM if d(p) is negative. The
observation also suggests the following algorithm for finding an improving path.

We orient all matching edges fromB to A and all non-matching edges fromA to B.
We assign weightc(e) to any matching edge and assign weight−c(e) to any non-matching
edge and search for a path of negative cost starting ina. If there is no such path thenM is
also a maximum cost matching inGi . If there is such a path then letp be the most negative
such path, i.e., the one with the most negatived(p), and obtainMi by augmentingM by p.
A simple way to findp is to solve a single-source shortest-path problem with sourcea.

The previous paragraph leaves many questions unanswered. Why isM also a maximum
cost matching inGi if no path of negative cost exists, why isM ⊕ p a maximum cost
matching inGi if p is a most negative path, and why can there be no negative cycles?

In answering these questions the potential functionπ = πi−1 comes handy. Recall that
the first action in the construction ofMi is to extendπ to a potential function onAi ∪ B by
settingπ(a) to any value that makes the reduced cost of every edge out ofa non-negative.
Consider any alternating pathp with respect toM starting ina. Let p = [e1, . . . , ek ] with
e j = (v j−1, v j ). Thenv0 is equal toa, v0, v2, . . . are nodes inA, v1, v3, . . . are nodes inB,
e1, e3, . . . are edges not inM ande2, e4, . . . are edges inM, and ifk is odd, thenvk is a free
node inB. We have

d(p) =
∑

j ; j even

c(e j ) −
∑

j ; j odd

c(e j ).

Sinceπ is tight with respect toM, we havec(e j ) = π(v j−1) + π(v j ) for all even j . Thus

d(p) =
∑

j ; j even

(π(v j−1) + π(v j )) −
∑

j ; j odd

c(e j )

= −π(a) +
∑

j ; j odd

(π(v j−1) + π(v j ) − c(e j )) + (−1)kπ(vk)

= −π(a) +
∑

j ; j odd

c(e j ) + (−1)kπ(vk) = −π(a) +
∑

j

c(e j ) + (−1)kπ(vk)
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= −π(a) +
∑

j

c(e j ) + π(vk).

This derivation deserves explanation. The first equality amounts to rearranging the sum.
For example, ifk = 4 then

−c(e1) + (π(v1) + π(v2)) − c(e3) + (π(v3) + π(v4)) =
−π(a) + (π(v0) − c(e1) + π(v1)) + (π(v2) − c(e3) + π(v3)) + π(v4)

and if k = 3 then

−c(e1) + (π(v1) + π(v2)) − c(e3) =
−π(a) + (π(v0) − c(e1) + π(v1)) + (π(v2) − c(e3) + π(v3)) − π(v3).

The second equality follows fromc(e) = π(v) + π(w) − c(e) for any edgee = (v, w),
the third equality follows from the fact thatc(e) = 0 for anye ∈ M, and the last equality
follows from the fact thatπ(vk) = 0 if k is odd (since in this casevk is a free node inB).

The derivation above is extremely powerful. It tells us thatd(p) is equal to the cost of
p with respect to the reduced costsc plus the potential of the target node ofp minus the
potential of the source node ofp. The source node ofp is equal toa and hence the latter
contribution is independent ofp. In other words, searching for a path that minimizesd(p)

amounts to searching for a path that minimizesc(p) + π(vk). For fixedvk this amounts to
searching for the pathp from a to vk that minimizesc(p). This problem is easily solved
by Dijkstra’s algorithm. For any nodev ∈ Vi let µ(v) be the minimum cost of a path from
a to v with respect to the cost functionc. The iterative step fromM = Mi−1 to Mi is then
performed as follows:

Computeµ(v) for all v by Dijkstra’s algorithm.

Let v be the node that minimizesd = −π(a) + µ(v) + π(v) and letp be a path froma
to v that realizesµ(v).

If d < 0, augmentM by p.

This completes our alternative derivation of the algorithm.

The first algorithm for the assignment problem was given by Kuhn [Kuh55]. In the early
60’s, Jewell [Jew58], Iri [Iri60] and Busacker and Gowen [BG61] observed that the assign-
ment problem can be solved by a sequence of shortest-path computations in general graphs.
In the early 70’s Tomizawa [Tom71] and Edmonds and Karp [EK72] showed that the use of
node-potentials restricts the shortest-path computations to non-negative edge costs. Recent
surveys of algorithms for the assignment problem can be found in an article by Galil [Gal86]
and the book by Ahuja, Magnanti, and Orlin [AMO93]. In his master’s thesis Markus
Paul [Pau89] extended the algorithms to the maximum weight matching problem; he also
implemented the algorithm for LEDA. His implementation always searched for augmenting
paths from all nodes inA. Uli Finkler [Fin97] observed, in his PhD-thesis, that substantial
improvements (not asymptotically but on average) can be obtained by considering the nodes
in A one by one. The implementation given here follows his suggestion.
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7.8.4 The Assignment Problem
The assignment problem asks for a perfect matching of maximum or minimum weight. A
simple modification of the algorithm of the preceding section solves the maximum weight
assignment problem.

We only need to change the way we search for augmenting paths. We insist that every
augmentation increases the size of the matching and hence we continue our search for an
augmenting path until a free node inB is found. When no free node inB is ever found, we
return false to indicate that the graph has no perfect matching.

We obtain:

〈procedure augment for max weight assignment〉�
#include <LEDA/stack.h>

template <class NT>

bool max_weight_assignment_augment(graph& G,

node a, const edge_array<NT>& c,

node_array<NT>& pot, node_array<bool>& free,

node_array<edge>& pred, node_array<NT>& dist,

node_pq<NT>& PQ)

{ 〈augment: initialization〉
while ( true )

{ node b; NT db;

if (PQ.empty()) { return false; }

else { b = PQ.del_min(); db = dist[b]; }

if ( free[b] )

{ Delta = db;

〈augmentation by path to b〉
}

else

{〈continue shortest-path computation〉 }

}

〈augment: potential update and reinitialization〉
return true;

}

The minimum weight assignment problem is easily reduced to the maximum weight
assignment problem. We only have to change the sign of all weights.

〈mwb matching.t〉+�
template <class NT>

list<edge> MIN_WEIGHT_ASSIGNMENT_T(graph& G,

const list<node>& A, const list<node>& B,

const edge_array<NT>& c, node_array<NT>& pot)

{ edge_array<NT> w(G);

edge e;

forall_edges(e,G) w[e] = - c[e];

list<edge> M = MAX_WEIGHT_ASSIGNMENT_T(G,A,B,w,pot);

node v;



438 Graph Algorithms

forall_nodes(v,G) pot[v] = -pot[v];

return M;

}

The worst case running time of the maximum and minimum weight assignment algorithms
is the same as for the maximum weight bipartite matching algorithm, namelyO(n(m +
n logn)).

Arithmetic Demand: How large are the numbers that are handled by the assignment algo-
rithms? We assume that all edge weights are integers whose absolute value is bounded by
C. Let k = |A| = |B|.

We will first derive a bound on the node potentials. Letv be any node and consider a
change26 of π(v). After a change ofπ(v) there is an undirected pathp of tight edges from
a nodeb ∈ B that was just matched tov. Let p = [b = v0, v1, . . . , vs = v ], where
s ≤ 2k. We claim thatπ(vi ) ∈ [−iC .. iC] for all i after the potential update. This is
true for i = 0, sinceb was just matched and hence has potential equal to zero. Fori > 0
the claim follows from the fact that the edge{vi , vi−1} has reduced cost equal to zero and
cost in [−C .. C]. We conclude thatπ(a) ∈ [−(2k − 1)C .. (2k − 1)C] for a ∈ A and
π(b) ∈ [−(2k − 2)C .. (2k − 2)C] for b ∈ B after a potential change. These bounds also
hold before the first change ofπ(v) since the potential of nodes inB is initialized to zero
and since the potential of nodes inA is initialized such that there is a tight edge incident to
the node.

The reduced cost of any edge is therefore bounded byC + (2k − 1)C + (2k − 2)C ≤
(4k − 2)C.

When we search for an augmenting path from a free nodea ∈ A we start a shortest-path
computation froma. The computation stops when the first free node inB is encountered.
Let p be an augmenting path froma to a free node inB. The maximal number handled
in the shortest-path calculation is the cost ofp (with respect to the reduced cost function)
plus the maximal reduced cost of any edge. The cost ofp is the difference between the old
and the new potential ofa and is therefore bounded by 4kC. We conclude that the absolute
value of all integers handled by the algorithm is bounded by 8kC.

We summarize.

Lemma 32 If all edge weights are integers whose absolute value is bounded byC then the
absolute value of all numbers handled by the maximum and minimum weight assignment
algorithm is bounded by8kC = 4nC, wherek = |A| = |B| andn = 2k.

7.8.5 Shortest Paths via Assignment
Our algorithms for the maximum weight matching problem and the assignment problem use
an algorithm for the shortest-path problem (for non-negative edge weights) as a subroutine.
We show in this section that any algorithm for the assignment problem can be used to solve

26 We will derive a bound on the initial value ofπ(v) later in the section.
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n m D A BF A BF A

5000 50000 0.76 2.51 2.51 185.9 0.67 2.01

Table 7.9 A comparison of the running time of the shortest path via assignment algorithm
(denoted A) with the shortest-path algorithms of Section 7.5. Columns three and four contain a
comparison with Dijkstra’s algorithm (D) and columns five and six and seven and eight contain a
comparison with the Bellman–Ford algorithm (BF). We used random graphs with non-negative
edge weights for the first comparison, random graphs with arbitrary edge weights but no negative
cycle for the second comparison, and graphs generated byBF GEN for the third comparison.
The program shortestpath via assignmenttime in the demo directory allows readers to perform
their own experiments.

the shortest-path problem with arbitrary edge weights. This will give us an alternative to
the algorithms in Section 7.5. The alternative is of considerable theoretical interest and
has led to the asymptotically most efficient shortest-path algorithm for arbitrary edge costs,
see [AMO93, sections 12.4 and 12.7]. We wrote this section to find out whether it also leads
to efficient programs. At least in our implementation it does not, see Table 7.9.

Let G = (V, E) be a directed graph. We construct a bipartite networkG′ = (V ′ ∪̇
V ′′, E ′); see Figure 7.37 for an illustration.G ′ contains two copies of each node ofG, one
in V ′ and one inV ′′. For each nodev ∈ V we usev′ to denote the copy inV ′ andv′′ to
denote the copy inV ′′. For each edge(v, w) there is an edge{v′, w′′ } of the same cost in
E ′. In addition, for each nodev ∈ V we have an edge{v′, v′′ } of cost zero inE ′. Clearly,
the set

{{v′, v′′ } ; v ∈ V
}

is an assignment of cost zero. It is a minimum cost matching iff
G has no negative cycle.

Lemma 33G ′ contains a perfect matching of negative cost iffG contains a negative cycle.

Proof Let C = [e0, e1, . . . , ek−1] with ei = (vi , vi+1) andvk = v0 be a simple cycle of
negative cost inG. We construct a perfect matching of the same cost inG ′. It consists of
the edges{v′

i , v′
i+1} for i , 0 ≤ i < k, and the edges{v′, v′′ } for all nodesv that do not lie

on C.
For the reverse direction consider any perfect matchingM of negative cost inG ′. We

show thatM corresponds to a set of cycles inG and that one of these cycles has negative
cost. Consider any edge{v′

0, v′′
1} ∈ M with v0 6= v1; there must be at least one such edge

sinceM has negative cost. The nodev′
1 must also be matched. Letv′′

2 be its mate. Contin-
uing in this fashion we construct a sequence of edges{v′

0, v′′
1 }, {v′

1, v′′
2}, . . . , {v′

k−1, v′′
k } in

M. We stop as soon as we encounter a nodev′′
k such thatv′

k appeared previously in the se-
quence. We must havevk = v0 sincevk = v j for somej , j > 0, implies that two matching
edges are incident tov′′

k . We conclude that [v0, v1, . . . , vk ] is a simple cycle inG. ThusM
induces a set of simple cycles inG and the total cost of these cycles is equal to the cost of
M. Hence, one of the cycles must have negative cost.
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Figure 7.37 A directed graph and the derived bipartite graph. All dashed edges in the graph on
the right have cost zero. The dashed edges define a perfect matching of cost zero. The solid
edges together with the lowest dashed edge define a perfect matching of negative cost. It
corresponds to the negative cycle in the graph on the left.

Assume now thatG contains no negative cycle, letM be a minimum weight assignment
in G ′ and letπ ′ be a potential function that proves the optimality ofM. We show thatπ ′

can be used to transform the cost functionc into a non-negative cost function.M has cost
zero27 and hence

∑
v∈V π ′(v′) + π ′(v′′) = 0. Alsoπ ′(v′) + π ′(v′′) ≤ 0 for all v ∈ V and

hence

π ′(v′) = −π ′(v′′) for all v ∈ V .

We define a potential functionπ on V by

π(v) = π ′(v′′) for all v ∈ V .

Consider any edgee = (v, w) in G and letc(e) = π(v) + c(e) − π(w) be its reduced cost.
We have:

c(e) = π(v) + c(e) − π(w) = π ′(v′′) + c(e) − π ′(w′′)

= −π ′(v′) + c(e) − π ′(w′′) ≥ 0,

where the inequality follows from the fact thatc(e) ≥ π ′(v′) + π ′(w′′) for all edgese =
{v, w}.

We conclude thatc is a non-negative cost function onG. The shortest-path problem
with respect toc can be solved by Dijkstra’s algorithm. Also, ifµ(v) andµ(v) are the
shortest-path distances froms to v with respect toc andc, respectively, then

µ(v) = −π(s) + µ(v) + π(v),

27 It is possible that one of the edges(v′, v′′) is not contained inM . How?
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see Section 7.5.10.
The discussion above leads to the following program.

〈shortestpath via assignment.c〉�
template <class NT>

bool shortest_path_via_assignment(const graph& G, node s,

const edge_array<NT>& c,

node_array<NT>& dist,

node_array<edge>& pred)

{ node v,w; edge e;

GRAPH<NT,NT> G1;

list<node> A,B;

node_array<node> left_copy(G), right_copy(G);

forall_nodes(v,G)

{ A.append(left_copy[v] = G1.new_node());

B.append(right_copy[v] = G1.new_node());

G1.new_edge(left_copy[v],right_copy[v],0);

}

forall_edges(e,G)

{ v = G.source(e); w = G.target(e);

G1.new_edge(left_copy[v],right_copy[w],c[e]);

}

list<edge> M =

MIN_WEIGHT_ASSIGNMENT_T(G1,A,B,G1.edge_data(),G1.node_data());

NT sum = 0;

forall_nodes(v,G1) sum += G1[v];

if (sum < 0) return false;

node_array<NT> pot(G);

forall_nodes(v,G) pot[v] = G1[right_copy[v]];

edge_array<NT> red_cost(G);

forall_edges(e,G)

red_cost[e] = pot[G.source(e)] + c[e] - pot[G.target(e)];

DIJKSTRA_T(G,s,red_cost,dist,pred);

forall_nodes(v,G) dist[v] += pot[v] - pot[s];

return true;

}

7.8.6 Maximum Weighted Matchings of Maximum Cardinality
We show how to compute a matching of maximum weight among the matchings of maxi-
mum cardinality28. Let L be a real number and consider the weight functioncL defined by
addingL to the weight of every edge, i.e.,

cL(e) = c(e) + L for everye ∈ E .

It is intuitively clear that larger values ofL favor matchings of larger cardinality. We make
this precise.

28 For graphs that have a perfect matching this is the same as looking for a maximal weight perfect matching.
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We observe first thatcL(M) = c(M) + L|M | for any matchingM. Thus, for two match-
ingsM andN of the same cardinality the relative weight of the matchings does not change.
Let C be the largest absolute value of any edge weight and letk = min(|A|, |B|). Then
|c(M)| ≤ kC for any matchingM (since a matching consists of at mostk edges) and hence
|c(N) − c(M)| ≤ 2kC for any two matchingsM and N . We conclude that|M | < |N |
impliescL(M) < cL(N) for L > 2kC. Thus in order to find a maximum weight matching
of maximum cardinality we only have to find a maximum weight matching with respect to
the cost functioncL whereL = 2kC + 1.

〈mwb matching.t〉+�
template <class NT>

list<edge> MWMCB_MATCHING_T(graph& G,

const list<node>& A, const list<node>& B,

const edge_array<NT>& c, node_array<NT>& pot)

{ NT C = 0;

edge e;

forall_edges(e,G)

{ if (c[e] > C) C = c[e];

if (-c[e] > C) C = -c[e];

}

int k = Max(A.size(),B.size());

C = 1 + 2*k*C;

edge_array<NT> c_L(G);

forall_edges(e,G) c_L[e] = c[e] + C;

list<edge> M = MAX_WEIGHT_BIPARTITE_MATCHING_T(G,A,B,c_L,pot);

#ifndef LEDA_CHECKING_OFF

if ( !CHECK_MWBM_T(G,c_L,M,pot) )

error_handler(0,"check in MWMCB_MATCHING_T failed");

#endif

return M;

}

Be aware that the computed potential function proves optimality with respect to the cost
functioncL , whereL = 1 + 2kC. The function has an arithmetic demand similar to the
programs for the assignment problem. Recall that the maximum weight matching algorithm
deals with numbers up to 3D when all edges costs are bounded byD in absolute value. We
haveD = C + 1 + 2kC and hence the numbers handled by the algorithm may be as large
as 3+ (6k + 3)C. SinceC ≥ 1 andk ≥ 1 we have 3+ (6k + 3)C ≤ 4nC.

Exercises for 7.8
1 Write a checker for the maximum weight assignment problem.
2 Write a checker for the maximum weight assignment problem that takes only a matching

M as input. Hint: Direct all edges in the matching fromB to A, give each edge in
the matching costc(e) and each edge outside the matching cost−c(e). Show that the
matching is optimal iff the resulting graph has no negative cycle.

3 Formulate Lemma 27 for the minimum weight assignment problem and write a checker
for it.
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4 Implement the basic version of the weighted bipartite matching algorithm.
5 Extend the functionshortestpathvia assignmentsuch that it can also deal with graphs

with negative cycles.
6 Show that the following strategy computes a maximum weight matching among the

matchings of maximum cardinality: when searching for augmenting path froma = ai

choose the shortest path to a free node inB (if there is one) and choose the path to the
best node inA otherwise.

7 Write a program that computes a minimum weight matching among the matchings of
maximal cardinality.

8 Write a program that computes a maximum weight matching of cardinalityk, wherek is
a parameter of the algorithm. You may assume that the graph is connected.

7.9 Weighted Matchings in General Graphs

A matchingM in a graphG is a subset of the edges no two of which share an endpoint, see
Figure 7.38. The cardinality|M | of a matchingM is the number of edges inM. If w is a
weight function on the edges ofG then the weightw(M) of a matchingM is the sum of the
weights of its edges, i.e.,

w(M) =
∑
e∈M

w(e).

A nodev is calledmatchedwith respect to a matchingM if there is an edge inM incident
to v and it is calledfreeor unmatchedotherwise. An edgee is called matching ife ∈ M. A
matching is called amaximum weight matchingif its weight is at least as large as the weight
of any other matching. Figure 7.38 shows an example.

The function

list<edge> MAX WEIGHT MATCHING(const graph& G, const edge array<int>& w)

returns a maximum weight matching inG with respect to the weight functionw. Ob-
serve that the algorithm is only available for integer weights. The underlying algorithm is
the so-called blossom shrinking algorithm of Edmonds[Edm65b, Edm65a]. Its worst case
running time isO(n3) ([Law76]). The implementation is due to Thomas Ziegler [Zie95].
There are algorithms with better performance, both theorically [GMG86, Gal86] and prac-
tically [AC93]. At present the function cannot be asked to return a proof of optimality.

7.10 Maximum Flow

Let G = (V, E) be a directed graph, lets and t be distinct vertices inG and letcap :
E −→ IR≥0 be a non-negative function on the edges ofG. For an edgee, we callcap(e)
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Figure 7.38 A maximum weight matching: The edges of the matching are shown in bold and the
edge weights are indicated. We used the xlman-demo gwmw matching to generate this figure.

thecapacityof e. An (s, t)-flowor simplyflow is a function f : E −→ IR≥0 satisfying the
capacity constraints and the flow conservation constraints:

(1) 0 ≤ f (e) ≤ cap(e) for every edgee ∈ E

(2)
∑

e;source(e)=v

f (e) = ∑
e;target(e)=v

f (e) for every nodev ∈ V \{s, t }

The capacity constraints state that the flow across any edge is bounded by the capacity of
the edge, and the flow conservation constraints state that for every nodev different froms
andt , the total flow out of the node is equal to the total flow into the node.

We calls andt the source and the sink of the flow problem, respectively, and we useV +

to denoteV \{s, t}. For a nodev, we call

excess(v) =
∑

e;target(e)=v

f (e) −
∑

e;source(e)=v

f (e)

theexcessof v. Flow conservation states that all nodes except fors andt have zero excess.
Thevalueof a flow f , denoted| f |, is the excess of the sink, i.e.,

| f | = excess(t).

A flow is calledmaximum, if its value is at least as large as the value of any other flow.
Figure 7.39 shows an example.

In Section 7.10.1 we define the functionality of max flow algorithms and derive a checker,
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Figure 7.39 A maximum(s, t)-flow: For every edgee its capacitycap(e) and the flowf (e)
across it are shown ascap(e)/ f (e). The value of the flow is equal 171. A saturated cut is
indicated by the dashed line. It proves the maximality of the flow. The xlman-demo
gw max flow visualizes maximum flows.

in Section 7.10.2 we discuss the generic preflow push algorithm, in Section 7.10.3 we give
a first implementation of the preflow push algorithm, in Section 7.10.4 we describe several
heuristic improvements, and in Section 7.10.5 we discuss the arithmetic demand of the
algorithm and the danger of using the network flow algorithm with a number type that may
incur rounding error.

7.10.1 Functionality
The function

NT MAX FLOW T(const graph& G, node s, node t

const edge array<NT>& cap, edge array<NT>& f)

computes a maximum flowf in the network(G, s, t, cap) and returns the value of the flow.
The function can be used with an arbitrary number typeNT. There are pre-instantiated
versions for the number typesint anddouble. The function name of the pre-instantiated
versions is MAXFLOW, i.e., without the suffix T. In order to use the pre-instantiated
versions one must include<LEDA/maxflow.h>, and in order to use the template version,
one must include<LEDA/templates/maxflow.t>.

Special care should be taken when using the template function with a number typeNT
that can incur rounding error, e.g., the typedouble. Section 7.2 contains a general discussion
of this issue and Section 7.10.5 gives an example of what can go wrong in the computation
of a maximum flow. The template function is only guaranteed to perform correctly if all
arithmetic performed is without rounding error. This is the case if all numerical values in
the input are integers (albeit stored as a number of typeNT) and if none of the intermediate
results exceeds the maximal integer representable by the number type (253 − 1 in the case
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of doubles). All intermediate results are sums and differences of input values, in particular,
the algorithms do not use divisions and multiplications.

The algorithm has the following arithmetic demand. LetC be the maximal absolute value
of any edge capacity. If all capacities are integral then all intermediate values are bounded
by d · C, whered is the outdegree of the source.

The pre-instantiation for number typeint issues a warning ifC is larger thanMAXINT/d.
The pre-instantiation for number typedoublecomputes the optimal matching for a mod-

ified capacity functioncap1, where for every edgee

cap1[e] = sign(cap[e])b|cap[e]| · Sc/S

and S is the largest power of two such thatS < 253/(d · C). The value of the maximum
flow for the modified capacity function and the value of the maximum flow for the original
capacity function differ by at mostm · d · C · 2−52.

The weight modification can also be performed explicitly and we advise you to do so.
The function

bool MAX FLOW SCALE CAPS(const graph& G, node s, edge array<double>& cap)

replacescap[e] by cap1[e] for every edgee, wherecap1[e] is as defined above. The function
returnsfalseif the scaling changed some weight, and returnstrueotherwise.

In the remainder of this section we discuss a check of optimality and derive the famous
max-flow-min-cut theorem of Ford and Fulkerson [FF63]. We need a technical lemma that
generalizes the notion of excess to a set of nodes.

Lemma 34Let S ⊆ V and letT = V\S. Then∑
u∈S

excess(u) =
∑

e∈E∩(T ×S)

f (e) −
∑

e∈E∩(S×T )

f (e).

Proof We have∑
u∈S

excess(u) =
∑
u∈S

( ∑
e;target(e)=u

f (e) −
∑

e;source(e)=u

f (e)

)
,

by definition of excess. We now observe that each edgee ∈ E ∩ (T × S) contributesf (e)
to this sum, each edgee ∈ E ∩ (S × T ) contributes− f (e) to this sum, and each edge
e ∈ E ∩ (S × S) contributesf (e) − f (e) to this sum.

We draw a quick consequence. An application withS = V and henceT = ∅ yields

excess(s) + excess(t) = 0,

i.e., excess(s) = −| f |. This agrees with the intuition that the flow arriving att must
originate ats.
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Figure 7.40 The residual networkG f : The left part shows an edgee = (v, w) with capacity 3
and flow 1. It gives rise to two edges in the residual network shown on the right. The edge(v, w)

has residual capacity 2 and the edge(w, v) has residual capacity 1.

An (s, t)-cut or simplycut is a setS of nodes withs ∈ S andt /∈ S. Thecapacityof a
cut is the total capacity of the edges leaving the cut, i.e.,

cap(S) =
∑

e∈E∩(S×T )

cap(e).

A cut S is calledsaturatedif f (e) = cap(e) for all e ∈ E ∩ (S × T ) and f (e) = 0 for all
e ∈ E ∩ (T × S).

The next lemma relates flows and cuts: the capacity of any(s, t)-cut is an upper bound
for the value of any(s, t)-flow. Conversely, the value of any(s, t)-flow is a lower bound for
the capacity of any(s, t)-cut.

Lemma 35Let f be any(s, t)-flow and letS be any(s, t)-cut. Then

| f | ≤ cap(S).

If S is saturated then| f | = cap(S).

Proof We have

| f | = −excess(s) = −
∑
u∈S

excess(u)

=
∑

e∈E∩(S×T )

f (e) −
∑

e∈E∩(T ×S)

f (e) ≤
∑

e∈E∩(S×T )

cap(e)

= cap(S).

For a saturated cut, the inequality is an equality.

A saturated cut proves the maximality off . A saturated cut is easily extracted from a
maximum flow by means of the so-called residual network.

The residual networkG f with respect to a flowf has the same node set asG. Every
edge ofG f is induced by an edge ofG and has a so-calledresidual capacity. Let e be an
arbitrary edge ofG. If f (e) < cap(e) thene is also an edge ofG f . Its residual capacity
is r(e) = cap(e) − f (e). If f (e) > 0 thenerev is an edge ofG f . Its residual capacity is
r(erev) = f (e). Figure 7.40 shows an example.
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Figure 7.41 A path in the residual network and the resulting change of flow: A graph and an
(s, t)-flow is shown at the top. The corresponding residual network is shown in the middle. A
path p from s to t in the residual network is shown in bold. The flow obtained from
augmentation byp is shown at the bottom.

Theorem 6Let f be an(s, t)-flow, letG f be the residual network with respect tof , and
let S be the set of nodes that are reachable froms in G f .

a) If t ∈ S then f is not maximum.
b) If t /∈ S thenS is a saturated cut andf is maximum.

Proof a) Let p be any simple path froms to t in G f and letδ be the minimum residual
capacity of any edge ofp. Thenδ > 0. We construct a flowf ′ of value| f | + δ. Let (see
Figure 7.41)

f ′(e) =


f (e) + δ if e is in p
f (e) − δ if erev is in p
f (e) if neithere nor erev belongs top.

Then f ′ is a flow and| f ′| = | f | + δ.
b) There is no edge(v, w) in G f with v ∈ S andw ∈ T . Hence,f (e) = cap(e) for any

e with e ∈ E ∩ (S × T ) and f (e) = 0 for anye with e ∈ E ∩ (T × S), i.e., the cutS is
saturated. Thusf is maximal.

The function
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bool CHECK MAX FLOW T(const graph& G, node s, node t

const edge array<NT>& cap, const edge array<NT>& f)

checks whetherf is a maximum(s, t)-flow. It returnsfalse if this is not the case. The
implementation is easy.

We check the capacity condition for each edge and compute the excess of all nodes.
All nodes buts andt must have excess equal to zero. We then use breadth-first search to
compute the set of nodes reachable froms in the residual graph;t must not be reachable.

〈maxflow check〉�
bool False_MF(string s)

{ cerr <<"\n\nCHECK_MAX_FLOW: " << s << "\n";

return false;

}

template <class NT>

bool CHECK_MAX_FLOW_T(const graph& G, node s, node t,

const edge_array<NT>& cap, const edge_array<NT>& f)

{ node v; edge e;

forall_edges(e,G)

if ( f[e] < 0 && f[e] > cap[e] )

return False_MF("illegal flow value");

node_array<NT> excess(G,0);

forall_edges(e,G)

{ node v = G.source(e); node w = G.target(e);

excess[v] -= f[e]; excess[w] += f[e];

}

forall_nodes(v,G)

{ if ( v == s || v == t || excess[v] == 0 ) continue;

return False_MF("node with non-zero excess");

}

node_array<bool> reached(G,false);

queue<node> Q;

Q.append(s); reached[s] = true;

while ( !Q.empty() )

{ node v = Q.pop();

forall_out_edges(e,v)

{ node w = G.target(e);

if ( f[e] < cap[e] && !reached[w] )

{ reached[w] = true; Q.append(w); }

}

forall_in_edges(e,v)

{ node w = G.source(e);

if ( f[e] > 0 && !reached[w] )

{ reached[w] = true; Q.append(w); }

}

}

if ( reached[t] ) return False_MF("t is reachable in G_f");

return true;

}
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Figure 7.42 A push: The top left shows an edgee = (v, w) in G with capacity three and flow
one. This gives rise to two edges in the residual network shown on the right. A push of one unit
of flow acrosse increases the flow acrosse by one and a push acrosserev decreases the flow
acrosse by one.

7.10.2 Algorithms
The maximum flow problem is a widely studied problem and numerous algorithms have
been proposed for it [FF63, EK72, Din70, Kar74, AO89, Gol85, GT88, CH95, CHM96,
GR97].

Our implementations are based on the preflow-push method of Goldberg and Tarjan [GT88].
It manipulates a preflow that gradually evolves into a flow. Detailed computational studies
of the preflow-push method can be found in [CG97, AKMO97] and in Section 7.10.4.

A preflow f is a function f : E −→ IR≥0 with

(1) 0 ≤ f (e) ≤ cap(e) for every edgee ∈ E and
(2) excess(v) ≥ 0 for every nodev ∈ V +

i.e., the flow conservation constraint is replaced by the weaker constraint that no node in
V + has negative excess. We call a nodev ∈ V + activeif its excess is positive. The residual
networkG f with respect to a preflowf is defined as in the case of a flow.

The basic operation to manipulate a preflow is apush. Let v be an active node, let
e = (v, w) be a residual edge out ofv, and letδ ≤ min(excess(v), r(e)). A push ofδ across
e changesf as follows: it increasesf (e) by δ if e is an edge ofG, and it decreasesf (erev)

by δ if e is the reversal of an edge ofG, see Figure 7.42.
A push of δ acrosse increasesexcess(w) by δ and decreasesexcess(v) by δ. A push

is calledsaturatingif δ = r(e) and is callednon-saturatingotherwise. A saturating push
acrosse removese from the residual network and either kind of push addserev to the residual
network (if it is not already there).

The question is now which pushes to perform? Goldberg and Tarjan suggested to put the
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nodes ofG (and henceG f ) onto layers witht on the bottom-most layer and to perform only
pushes with transport excess to a lower layer. We used(v) to denote the (number of the)
layer containingv. We call an edgee = (v, w) ∈ G f eligible if d(w) < d(v).

Let us summarize: a push across an edgee = (v, w) ∈ G f can be performed ifv is
active ande is eligible. It movesδ ≤ min(excess(v), r(e)) units of flow fromv to w. If e is
also an edge ofG then f (e) is increased byδ, and ife is the reversal of an edge ofG then
f (e) is decreased byδ.

What are we going to do whenv is active but there is no eligible edge out ofv? In this
situationv is relabeledby increasingd(v) by one.

We are now ready for the generic preflow-push algorithm.

/* initialization */
set f (e) = cap(e) for all edges withsource(e) = s;
set f (e) = 0 for all other edges;
setd(s) = n andd(v) = 0 for all other nodes;

/* main loop */
while there is an active node
f let v be any active node;

if there is an eligible edgee = (v, w) in G f

f pushδ acrosse for someδ ≤ min(excess(v), r(e)); g
else
f relabelv; g

g

We will show that the algorithm terminates with a maximum flow (if it terminates). Call
an edgee = (v, w) ∈ G f steepif d(w) < d(v) − 1, i.e., if it reaches down by two or more
levels.

Lemma 36 The algorithm maintains a preflow and does not generate steep edges. The
nodess andt stay on levels 0 andn, respectively.

Proof The algorithm clearly maintains a preflow.
After the initialization, each edge inG f either connects two nodes on level zero or con-

nects a node on level zero to a node on leveln. Thus, there are no steep edges (there are
not even any eligible edges). A relabeling of a nodev does not create a steep edge since
a node is only relabeled if there are no eligible edges out of it. A push across an edge
e = (v, w) ∈ G f may add the edge(w, v) to G f . However, this edge is not even eligible.

Only active nodes are relabeled and only nodes different froms andt can be active. Thus,
s andt stay on layersn and 0, respectively.

The preceding lemma has an interesting interpretation. Since there are no steep edges,
any path fromv to t must have length (= number of edges) at leastd(v) and any path from
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v to s must have length at leastd(v) − n. Thus,d(v) is a lower bound on the distance from
v to t andd(v) − n is a lower bound on the distance fromv to s.

The next lemma shows that active nodes can always reachs in the residual network (since
they must be able to send their excess back tos). It has the important consequence thatd-
labels are bounded by 2n − 1.

Lemma 37 If v is active then there is a path fromv to s in G f . No distance label ever
reaches2n.

Proof Let S be the set of nodes that are reachable fromv in G f and letT = V \S. Then∑
u∈S

excess(u) =
∑

e∈E∩(T ×S)

f (e) −
∑

e∈E∩(S×T )

f (e),

by Lemma 34. Please convince yourself that this lemma holds for preflows and not only for
flows.

There is no edge(v, w) ∈ G f with v ∈ S and w /∈ S. Thus, f (e) = 0 for every
e ∈ E ∩ (T × S). We conclude

∑
u∈S excess(v) ≤ 0.

Sinces is the only node whose excess may be negative and sinceexcess(v) > 0 we must
haves ∈ S.

Assume that a nodev is moved to level 2n. Since only active nodes are relabeled this
implies the existence of a path (and hence simple path) inG f from a node on level 2n to s
(which is on leveln). Such a path must contain a steep edge, a contradiction to Lemma 36.

Theorem 7When the algorithm terminates, it terminates with a maximum flow.

Proof When the algorithm terminates, there are no active nodes and hence the algorithm
terminates with a flow. Call itf .

In G f there can be no path froms to t since any such path must contain a steep edge
(sinces is on leveln, t is on level 0). Thus,f is a maximum flow by Theorem 6.

There is no guarantee that the generic preflow-push algorithm terminates, as it may
choose to perform arbitrarily small pushes. However, it is fairly easy to bound the num-
ber of relabels and the number of saturating pushes.

Lemma 38 There are at most2n2 relabels and at mostnm saturating pushes.

Proof No distance label ever reaches 2n by Lemma 37 and hence each node is relabeled at
most 2n times. The total number of relabels is therefore at most 2n2.

A saturating push across an edgee = (v, w) ∈ G f removese from G f . We claim that
v has to be relabeled at least twice before the next push acrosse and hence there can be
at mostn saturating pushes across any edge. To see the claim, observe that only a push
acrosserev can again adde to G f . Since pushes occur only across eligible edges,w must
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be relabeled at least twice after the saturating push acrosse and before the next push across
erev. Similarly, it takes two relabels ofv beforee becomes eligible again.

It is more difficult to bound the number of non-saturating pushes. It depends heavily
on which active node is selected for pushing, which edge is selected for pushing, and how
much flow is pushed across the selected edge. In fact, without further assumptions, the
number of non-saturating pushes is unbounded since we may choose to send only miniscule
portions of flow. We make two assumptions for the remainder of the section:

Maximality: Every push moves the maximal possible amount, i.e., when flow is pushed
across an eligible edgee = (v, w) out of an active nodev, the amount pushed is

δ = min(excess(v), r(e)).

This rule guarantees that every non-saturating push makes the source of the push inactive.
Persistence: When an active nodev is selected, pushes out ofv are performed until eitherv

becomes inactive (because of a non-saturating push out ofv) or until there are no eligible
edges out ofv anymore. In the latter casev is relabeled.

We study three rules for the selection of active nodes.

Arbitrary: An arbitrary active node is selected. Goldberg and Tarjan have shown that the
number of non-saturating pushes isO(n2m) when the Arbitrary-rule is used. We will
give their proof below.

FIFO : The active nodes are kept in a queue and the first node in the queue is always
selected. When a node is relabeled or activated the node is added to the rear of the
queue. The number of non-saturating pushes isO(n3) when the FIFO-rule is used. This
bound is due to Goldberg.

Highest-Level: An active node on the highest level, i.e., with maximal dist-value, is se-
lected. Observe that when a maximal level active node is relabeled it will be the unique
maximal active node after the relabel. Thus, this rule guarantees that, when a node is
selected, pushes out of the node will be performed until the node becomes inactive. The
number of non-saturating pushes isO(n2√m) when the highest-level-rule is used. This
bound is due to Cheriyan and Maheshwari [CM89]. The proof given below is due to
Cheriyan and Mehlhorn [CM99].

Lemma 39When the Arbitrary-rule is used, the number of non-saturating pushes isO(n2m).

Proof The proof makes use of a potential function argument. Consider the potential func-
tion

8 =
∑

v;v is active

d(v).

We will show:

(1) 8 ≥ 0 always, and8 = 0 initially.
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(2) A non-saturating push decreases8 by at least one.
(3) A relabeling increases8 by one.
(4) A saturating push increases8 by at most 2n.

Suppose that we have shown (1) to (4). By (3) and (4) and Lemma 38 the total increase of
8 is at mostn2 + nm2n = n2(1+ 2m). By (1), the total decrease can be no larger than this.
Thus, the number of non-saturating pushes can be at mostn2(1 + 2m) by (3).

It remains to show (1) to (4). (1) is obvious. For (2) we observe that a non-saturating
push deactivates a node. It may or may not activate a node at the level below. In either case,
8 decreases by at least one. For (3) we observe that a relabeling ofv increasesd(v) by one,
and for (4) we observe that a saturating push may activate a node and that all distance labels
are bounded by 2n.

We turn to the FIFO-rule. Recall that it keeps the active nodes in a queue and always
selects the head of the queue. Relabeled and activated nodes are added to the rear of the
queue.

It is convenient to split the execution into phases. The first phase starts at the beginning
of the execution and a phase ends when all nodes that were active at the beginning of the
phase have been selected from the queue. In this way each node is selected at most once in
each phase and hence the number of non-saturating pushes is at mostn times the number of
phases.

Lemma 40When the FIFO-rule is used, the number of non-saturating pushes isO(n3).

Proof By the discussion preceding the lemma it suffices to show that the number of phases
is O(n2).

We use a potential function argument. Consider

8 = max{d(v) ; v is active} .

We show:

(1) 8 ≥ 0 always, and8 = 0 initially.
(2) A phase containing no relabel operation decreases8 by at least one.
(3) A phase containing a relabel operation increases8 by at most one.

Suppose that we have shown (1) to (3). By (3) and Lemma 38, the total increase is bounded
by 2n2. By (1), the total decrease can be no larger. Thus the number of phases containing no
relabel operation is bounded by 2n2 by (3). The total number of phases is therefore bounded
by 4n2.

It remains to show (1) to (3). (1) is obvious. For (2) we observe that if a phase contains
no relabel operation then all nodes selected in the phase get rid of their excess and push it
to a lower layer. Thus,8 decreases by at least one (it can decrease by more than one if an
active node on leveln + 1 pushes its excess back tos). For (3), we observe that pushes
move excess to a lower layer and that a relabeling of a node moves the node to one higher
level.
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We turn to the highest-level selection rule. Recall that it always selects an active node
with maximal distance label.

Lemma 41 When the Highest-Level-rule is used, the number of non-saturating pushes is
O(n2√m).

Proof We use a potential function argument. LetK = √
m; this choice ofK will become

clear at the end of the proof. For a nodev, let

d ′(v) = |{w; d(w) ≤ d(v)}|/K

and consider

8 =
∑

v;v is active

d ′(v).

We split the execution into phases. We define a phase to consist of all pushes between two
consecutive changes of

d∗ = max{d(v) ; v is active}
and call a phaseexpensiveif it contains more thanK non-saturating pushes, andcheap
otherwise.

We show:

(1) The number of phases is at most 4n2.
(2) The number of non-saturating pushes in cheap phases is at most 4n2K .
(3) 8 ≥ 0 always, and8 ≤ n2/K initially.
(4) A relabeling or a saturating push increases8 by at mostn/K .
(5) A non-saturating push does not increase8.
(6) An expensive phase containingQ ≥ K non-saturating pushes decreases8 by at least

Q.

Suppose that we have shown (1) to (6). (4) and (5) imply that the total increase of8 is at
most(2n2 + mn)n/K and hence the total decrease can be at most this number plusn2/K
by (3). The number of non-saturating pushes in expensive phases is therefore bounded by
(2n3+n2+mn2)/K . Together with (2) we conclude that the total number of non-saturating
pushes is at most

(2n3 + n2 + mn2)/K + 4n2K .

Observing thatn = O(m) and that the choiceK = √
m balances the contributions from

expensive and cheap phases, we obtain a bound ofO(n2√m).
It remains to prove (1) to (6). For (1) we observe thatd∗ = 0 initially, d∗ ≥ 0 always,

and that only a relabel can increased∗. Thus,d∗ is increased at most 2n2 times, decreased
no more than this, and hence changed at most 4n2 times. (2) follows immediately from (1)
and the definition of a cheap phase. (3) is obvious. (4) follows from the observation that
d ′(v) ≤ n/K for all v and at all times. For (5) observe that a non-saturating push across an
edge(v, u) deactivatesv, activatesu (if it is not already active), and thatd ′(u) ≤ d ′(v).
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For (6) consider an expensive phase containingQ ≥ K non-saturating pushes. By defi-
nition of a phase,d∗ is constant during a phase, and hence allQ non-saturating pushes must
be out of nodes at leveld∗. The phase is finished either because leveld∗ becomes empty or
because a node is moved from leveld∗ to leveld∗ +1. In either case, we conclude that level
d∗ containsQ ≥ K nodes at all times during the phase. Thus, each non-saturating push in
the phase decreases8 by at least one (sinced ′(u) ≤ d ′(v) − 1 for a push fromv to u).

7.10.3 A First Implementation
We describe a first implementation of the generic preflow-push algorithm. The implemen-
tation is straightforward. We initialize a preflow, refine the flow into a flow, check that the
computed flow is maximal, and return the value of the flow.

We want to execute the program with different rules for selection from the set of active
nodes and therefore give the function two template parameters: the number typeNT and the
implementation of the setU of active nodes.

We want to count the number of pushes, the number of relabels, and the number of
inspections of edges and therefore introduce appropriate parameters.

〈maxflow basic〉�
template<class NT, class SET>

NT MAX_FLOW_BASIC_T(const graph& G, node s, node t,

const edge_array<NT>& cap, edge_array<NT>& flow,

SET& U,

int& num_pushes, int& num_edge_inspections,

int& num_relabels)

{ if (s == t) error_handler(1,"MAXFLOW: source == sink");

〈MF BASIC: initialization〉
〈MF BASIC: main loop〉

#ifndef LEDA_CHECKING_OFF

assert(CHECK_MAX_FLOW_T(G,s,t,cap,flow));

#endif

return excess[t];

}

Initialization and Data Structures: We use the following data structures and variables:
for each edgee we store the flow acrosse in flow[e] and for each nodev we store the level
of v and the excess ofv in dist[v] andexcess[v], respectively. We store the active nodes in
U .

We initialize the flow and the excess to zero, we put all nodes except fors on level zero,
we puts on leveln, we saturate all edges out ofs, and initializeU with all nodes of positive
excess. Thus
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〈MF BASIC: initialization〉�
〈initialize flow and excess and saturate edges out of s〉
〈MF BASIC: initialize dist and U〉
〈MF BASIC: initialize counters〉

where

〈initialize flow and excess and saturate edges out of s〉�
flow.init(G,0);

if (G.outdeg(s) == 0) return 0;

int n = G.number_of_nodes(); int max_level = 2*n - 1;

int m = G.number_of_edges();

node_array<NT> excess(G,0);

// saturate all edges leaving s

edge e;

forall_out_edges(e,s)

{ NT c = cap[e];

if (c == 0) continue;

node v = target(e);

flow[e] = c;

excess[s] -= c;

excess[v] += c;

}

〈MF BASIC: initialize dist and U〉�
node_array<int> dist(G,0); dist[s] = n;

node v;

forall_nodes(v,G)

if ( excess[v] > 0 ) U.insert(v,dist[v]);

〈MF BASIC: initialize counters〉�
num_relabels = num_pushes = num_edge_inspections = 0;

Implementations of the Set of Active Nodes:The implementation ofU must support the
following operations:

nodeU.del( ); delete a node fromU and return it (returnnil if U is empty).

U.insert(nodev, int d); insert a nodev with dist-valued. This version is to be used in the
initialization phase and when a node is reinserted into the set of active nodes after a relabel.

U.insert0(nodev, int d); insert a nodev with dist-valued. This version is to be used
when a node gets activated by a push into it.

boolU.empty( ); return true ifU is empty.

U.clear( ); remove all elements fromU .

Construction and Destruction.
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We give three implementations:

TheFIFO implementationkeeps the nodes inU in a queue. Insertions add to the end of
the queue, and deletions remove from the front of the queue.

〈FIFO implementation of SET〉�
#include <LEDA/list.h>

class fifo_set{

list<node> L;

public:

fifo_set(){}

node del() { if (!L.empty()) return L.pop(); else return nil; }

void insert(node v, int d) { L.append(v); }

void insert0(node v, int d) { L.append(v); }

bool empty() { return L.empty(); }

void clear() { L.clear(); }

~fifo_set(){}

};

The MFIFO (modified FIFO) implementationkeeps the nodes inU in a linear list and
always selects the first node from the list. Nodes that are reinserted after a relabel operation
are added to the front of the linear list, and nodes that get activated by a push into them are
added to the rear of the list. In this way the same node is selected until all excess is removed
from the node. The MFIFO implementation guarantees anO(n3) bound on the number of
non-saturating pushes, see the exercises.

〈MFIFO implementation of SET〉�
#include <LEDA/list.h>

class mfifo_set{

list<node> L;

public:

mfifo_set(){}

node del() { if ( !L.empty() ) return L.pop(); else return nil; }

void insert(node v, int d) { L.push(v); }

void insert0(node v, int d){ L.append(v); }

bool empty() { return L.empty(); }

void clear() { L.clear(); }

~mfifo_set(){}

};

Thehighest-level implementationof U maintains an arrayA of linear lists with index range
[0 .. maxlevel], wheremaxlevelis an argument of the constructor. The listA[d] contains all
nodesv that were inserted byinsert(v, d) or insert0(v, d). The implementation maintains
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a variablemaxsuch thatA[d] is empty ford > max. In insert0we exploit the fact that it
always inserts below the maximal level.

〈Highest level implementation of SET〉�
#include <LEDA/list.h>

#include <LEDA/array.h>

class hl_set{

int max, max_lev;

array<list<node> > A;

public:

hl_set(int max_level):A(max_level+1)

{ max = -1; max_lev = max_level;}

node del()

{ while (max >= 0 && A[max].empty()) max--;

if (max >= 0) return A[max].pop(); else return nil;

}

void insert(node v, int d)

{ A[d].push(v);

if (d > max) max = d;

}

void insert0(node v, int d) { A[d].append(v); }

bool empty()

{ while (max >= 0 && A[max].empty()) max--;

return ( max < 0 );

}

~hl_set(){}

void clear()

{ for (int i = 0; i <= max_lev; i++) A[i].clear();

max = -1;

}

};

The Main Loop: In the main loop we select a nodev from U . We callv thecurrentnode.
If v does not exist, we break from the main loop, and ifv is equal tot , we continue to the
next iteration of the main loop. So assume otherwise. We try to push the excess ofv to its
neighbors in the residual graph. We inspect first the residual edges that correspond to edges
out ofv in G and then the residual edges that correspond to edges intov in G.

If v remains active after saturating all residual edges out of it, we relabelv and reinsert it
into U .

〈MF BASIC: main loop〉�
for(;;)

{

node v = U.del();

if (v == nil) break;

if (v == t) continue;
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NT ev = excess[v]; // excess of v

int dv = dist[v]; // level of v

edge e;

〈MF BASIC: push across edges out of v〉
if ( ev > 0 )

{ 〈MF BASIC: push across edges into v〉 }

excess[v] = ev;

if (ev > 0)

{ dist[v]++;

num_relabels++;

U.insert(v,dist[v]);

}

}

Pushing Excess Out of a Node:Let v be a node with positive excess. We want to push
flow out of v along eligible edges. An edgee ∈ G f is either also an edge ofG (and then
flow[e] < cap[e]) or the reversal of an edge ofG (and thenflow[erev] > 0). We therefore
iterate over all edges out ofv and all edges intov.

For each edgee out of v we push max(excess[v], cap[e] − flow[e]). If a push decreases
the excess ofv to zero we break from the loop.

〈MF BASIC: push across edges out of v〉�
for (e = G.first_adj_edge(v); e; e = G.adj_succ(e))

{ num_edge_inspections++;

NT& fe = flow[e];

NT rc = cap[e] - fe;

if (rc == 0) continue;

node w = target(e);

int dw = dist[w];

if ( dw < dv ) // equivalent to ( dw == dv - 1 )

{ num_pushes++;

NT& ew = excess[w];

if (ew == 0) U.insert0(w,dw);

if (ev <= rc)

{ ew += ev; fe += ev;

ev = 0; // stop: excess[v] exhausted

break;

}

else

{ ew += rc; fe += rc;

ev -= rc;

}

}

}

The code for the edges intov is symmetric.
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〈MF BASIC: push across edges into v〉�
for (e = G.first_in_edge(v); e; e = G.in_succ(e))

{ num_edge_inspections++;

NT& fe = flow[e];

if (fe == 0) continue;

node w = source(e);

int dw = dist[w];

if ( dw < dv ) // equivalent to ( dw == dv - 1 )

{ num_pushes++;

NT& ew = excess[w];

if (ew == 0) U.insert0(w,dw);

if (ev <= fe)

{ fe -= ev; ew += ev;

ev = 0; // stop: excess[v] exhausted

break;

}

else

{ ew += fe; ev -= fe;

fe = 0;

}

}

}

Our first implementation is now complete. Let us see how it performs. We investigate the
worst case complexity first and then give experimental data.

Worst Case Running Time: The running time of our implementation, not counting the
time spent in the implementation ofU , is proportional to the number of edge inspections.
We bound the number of edge inspections first and then turn to the time spent in the imple-
mentation ofU .

Consider an arbitrary iteration of the main loop and letv be the node selected in the
iteration. In the iteration we inspect all edges incident tov, and either perform a push
across an edge incident tov or relabelv. Thus the number of inspections of an edgee is
bounded by the number of relabels of the endpoints ofe plus the number of pushes out of
the endpoints ofe. No node is relabeled more than 2n times and hence the total number of
edge inspections due to relabels isO(nm). If P denotes the total number of pushes then the
number of edge inspections due to pushes isO(deg∗ · P), wheredeg∗ is the maximal degree
of any node. The number of pushes isO(n3) with the FIFO or MFIFO implementation for
the set of active nodes and isO(n2√m) with the highest-level implementation.

We turn to the time spent in maintaining the set of active nodes. For the FIFO and
MFIFO implementation each operation onU takes constant time, and for the highest-level
implementation each operation onU takes constant time plus the number of decreases of
max. The number of decreases ofmax is bounded by the total increase ofmaxandmax
is only increased by relabel operations. A relabel increasesmaxby one. We conclude the
total change ofmaxis bounded byO(n2) by Lemma 38. The time spent in maintaining the
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set of active nodes is thereforeO(n2) plus the number of operations onU . The number of
operations onU is certainly bounded by the number of edge inspections.

We summarize in:

Theorem 8 The worst case running time of our implementation isO(n3 · deg∗) with the
FIFO- or MFIFO-rule and isO(n2√m ·deg∗) with the highest-level-rule, where deg∗ is the
maximum degree of any node.

Thedeg∗-factor in the running time is easily removed by means of the so-calledcurrent
edge data structure. We used it already in Section 7.6. We found that the improvement is
theoretical and does not show positively in the observed running times for all graphs where
the average degree is bounded by 20. We therefore did not include the current edge data
structure in our implementations.

We maintain for each nodev a current out-edgecur outedge[v] and a current in-edge
cur in edge[v] with the property that:

• no edge precedingcur outedge[v] in the list of edges out ofv is eligible and

• no edge precedingcur in edge[v] in the list of edges intov is eligible.

When we push excess out ofv we start searching for eligible edges atcur outedge[v] and
cur in edge[v], respectively. When we relabelv we resetcur outedge[v] andcur in edge[v]
to the first edge out ofv and intov, respectively.

The implementation is correct since the only way a non-eligible edgee = (v, w) can
become eligible is through a relabeling ofv.

The current edge implementation has the property that for any nodev and between con-
secutive relabels ofv the time spent in searching for eligible edges incident tov is pro-
portional to the degree ofv plus the number of pushes performed. The total time spent in
searching for eligible edges is therefore bounded byO(nm) plus the number of pushes.

Theorem 9The worst case running time of our implementation with the current edge data
structure isO(n3) with the FIFO- or MFIFO-rule and isO(n2√m) with the highest-level-
rule.

Four Generators: We describe four generators for max flow problems.
The first generator produces a graph withn nodes and 2n + m edges. It first produces a

random graph withn nodes andm edges and makess andt the first and the last node ofG,
respectively. It then adds edges(s, v) and(v, t) for all nodesv. The capacities are random
numbers between 2 and 11 for all edges leavings and between 1 and 10 for all other edges.

〈 maxflow gen.c〉+�
void max_flow_gen_rand(GRAPH<int,int>& G, node& s, node& t, int n, int m)

{ G.clear();

random_graph(G,n,m);

s = G.first_node(); t = G.last_node();
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node v; edge e;

forall_nodes(v,G) { G.new_edge(s,v); G.new_edge(v,t); }

forall_edges(e,G)

G[e] = ( G.source(e) != s ? rand_int(1,10) : rand_int(2,11) );

}

The next two generators are due to Cherkassky and Goldberg [CG97]. For each integerk,
k ≥ 1, they generate the networks shown in Figure 7.43.

〈 maxflow gen.c〉+�
void max_flow_gen_CG1(GRAPH<int,int>& G, node& s, node& t, int n)

{ G.clear();

if (n < 1)

error_handler(1,"max_flow_gen_CG1: n must be at least one");

array<node> V(2*n);

int i;

for(i = 0; i < 2*n; i++) V[i] = G.new_node();

s = V[0]; t = V[2*n - 1];

node v = V[n];

for (i = 0; i < n; i++)

{ G.new_edge(V[i],V[i + 1], n - i);

G.new_edge(V[i],v, 1);

}

G.new_edge(V[n - 1],V[2*n - 1], 1);

G.new_edge(V[n - 1],V[n], 1);

for (i = n; i <= 2*n - 2 ; i++ ) G.new_edge(V[i],V[i + 1],n);

}

void max_flow_gen_CG2(GRAPH<int,int>& G, node& s, node& t, int n)

{ G.clear();

if (n < 1)

error_handler(1,"max_flow_gen_CG2: n must be at least one");

array<node> V(2*n);

int i;

for(i = 0; i < 2*n; i++) V[i] = G.new_node();

s = V[0]; t = V[2*n-1];

for (i = 0; i < n; i++ ) G.new_edge(V[i],V[2*n - 1 - i], 1);

for (i = 0; i <= n - 1; i++ ) G.new_edge(V[i],V[i + 1], 2*n);

for (i = n; i <= 2*n - 2; i++ ) G.new_edge(V[i],V[i + 1], n);

}

Observe the order in which we generate the edges out of nodei : the edge fromi to 2n−1−i
precedes the edge to nodei + 1.

The fourth generator was suggested by Ahuja, Magnanti, and Orlin [AMO93]. The gen-
erated network is also shown in Figure 7.43.
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Figure 7.43 The generatorsmaxflowgenCG1, maxflowgenCG2, andmaxflowgenAOM
generate the graphs shown. All three generators take the parametern as an input.

〈 maxflow gen.c〉+�
void max_flow_gen_AMO(GRAPH<int,int>& G, node& s, node& t, int n)

{ G.clear();

if (n < 1)

error_handler(1,"max_flow_gen_AMO: n must be at least one");

array<node> V(n);

s = G.new_node();

int i;
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for(i = 0; i < n; i++) V[i] = G.new_node();

t = G.last_node();

for (i = n - 2; i >= 0; i-- )

{ G.new_edge(s,V[i], 10000);

G.new_edge(V[i],V[i + 1], 1);

}

}

Running Times: Table 7.10 shows the behavior of our first implementation of the preflow-
push method with three different selection rules and for four different kinds of graphs. For
each of the four generators above we ran the casesn = 500 andn = 1000. For the random
graph generator we usedm = 3n. The number of pushes, the number of edge inspections,
the number of relabels, and the running time quadruples or more than quadruples whenn is
doubled.

In the next section we will describe several optimizations which will lead to a dramatic
improvement of observed running time. None of them improves the worst case behavior,
however.

7.10.4 Optimizations
What is the best case running time of our implementation? The running time is�(n2) if
�(n) nodes need to be lifted above leveln. This is usually the case. The best case behavior
of the other parts of the algorithm isO(m) and hence the cost of relabeling dominates the
best case running time. In this section we will describe several heuristics that frequently
reduce the time spent in relabeling nodes and as a side-effect reduce the time spent in all
other operations. The heuristics will turn the preflow-push algorithm into a highly effective
algorithm for solving flow problems.

Consider the example shown in Figure 7.44. We have nodes 0 ton − 1, s = 0, t = n − 1,
and edges(i, i + 1) for all i , 0 ≤ i < n − 1. All edges have capacity two, except for edge
(n − 2, n − 1) which has capacity one.

Let us see what the preflow-push method does. In the initialization phase we saturate the
edge(0, 1), put s on leveln, and all other nodes on level 0. Node 1 has positive excess.
We lift node 1 to level 1 and push its excess to node 2. We lift node 2 to level 1 and push
its excess to node 3. Continuing in this way the excess is pushed to noden − 2. Only one
unit can be forwarded tot and one unit remains on noden − 2. At this point the value of
the maximum flow has been determined. There is one unit of flow intot and this is the
maximum possible. However, the algorithm does not know this fact yet and it will take the
algorithm a long time to discover it. We lift noden − 2 to level 2 and push the unit back to
noden − 3. Continuing in this way we lift nodesn − 2, n − 3, . . . , 2 to level 2 and push the
excess back to node 1. Then we lift node 1 to level 2 and then level 3, and . . . . Continuing
in this way, we will invest�(n2) relabels (and pushes) until nodes 1 ton −1 end up at level
n + 1. At this point we can push the excess back tos and the algorithm terminates.
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Generator Rule Pushes Inspections Relabels Time

rand FIFO 1.764e+05 2.467e+06 2.34e+05 1.42

6.831e+05 9.833e+06 9.28e+05 5.88

HL 1.775e+05 2.672e+06 2.34e+05 1.47

7.442e+05 1.073e+07 9.28e+05 6.04

MFIFO 2.262e+05 2.566e+06 2.34e+05 1.28

8.524e+05 1.018e+07 9.28e+05 5.25

CG1 FIFO 1.761e+05 9.63e+05 2.281e+05 0.81

6.835e+05 4.121e+06 8.92e+05 3.94

HL 1.875e+05 6.009e+06 1.885e+05 2.75

7.5e+05 4.486e+07 7.52e+05 20.47

MFIFO 1.682e+05 8.629e+05 2.207e+05 0.68

6.713e+05 3.608e+06 8.801e+05 3.08

CG2 FIFO 2.864e+06 1.367e+07 2.751e+06 12.12

1.149e+07 5.479e+07 1.1e+07 50.97

HL 1.695e+06 1.226e+07 2.752e+06 11.33

6.764e+06 4.902e+07 1.1e+07 43.17

MFIFO 2.864e+06 1.367e+07 2.751e+06 11.02

1.149e+07 5.479e+07 1.1e+07 45.14

AMO FIFO 500 4.498e+06 1.5e+06 3.27

1000 1.8e+07 6e+06 13.13

HL 500 4.498e+06 1.5e+06 3.79

1000 1.8e+07 6e+06 15.25

MFIFO 500 4.498e+06 1.5e+06 2.74

1000 1.8e+07 6e+06 11.13

Table 7.10 The basic implementation of the preflow-push algorithm. We show its behavior for
four different kinds of graphs and three different selection rules. For each generator we ran the
casesn = 500 andn = 1000. For the random graph generator we usedm = 3n. The program
max flow basictime in the demo directory allows readers to make their own experiments.

We describe five optimizations. The first optimization is based on the observation that
nodes on layern and above can be treated more simply than nodes below leveln. The
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0 1 2 n-2 n-1n-3
2 2 12

Figure 7.44 A network with nodes 0,. . . , n − 1 and edges(i, i + 1) for all i , 0 ≤ i < n − 1. All
edges have capacity two except for edge(n − 2, n − 1) which has capacity one.

second and third optimizations increase distance labels more aggressively, the fourth opti-
mization splits the execution into two phases (where a maximum preflow is computed in
the first phase and the remaining excess is pushed back tos in the second phase), and the
fifth optimization recognizes nodes that have no chance of forwarding their flow tot . The
combined effect of the five heuristics is to reduce the running time dramatically for many
instances of the max flow problem, see Table 7.16 on page 485.

Large Distance Labels: We call a nodev high if d(v) ≥ n and low otherwise and show
that high nodes can be treated simpler than low nodes.

What distinguishes high nodes from low nodes? There can never be a path of residual
edges from a high node tot as any such path would necessarily contain a steep edge. All
excess of active high nodes must therefore flow back tos. The situation is different for
active low nodes. Some of their excess can be pushed tot and some of their excess must
flow back tos.

How can we exploit the difference? All excess of active high nodes must flow back to
s. The excess reaches the active high nodes through edgese ∈ E with f (e) > 0. This
suggests that it can be sent back through such edges.

We therefore define

E∗
f = {

erev ; e ∈ E and f (e) > 0
}

and use only edges inE∗
f when pushing out of high active nodes. We relabel a high active

node when there are no eligible edges inE∗
f out of it.

/* initialization */
set f (e) = cap(e) for all edges withsource(e) = s;
set f (e) = 0 for all other edges;
setd(s) = n andd(v) = 0 for all other nodes;

/* main loop */
while there is an active node
f let v be any active node;

if d(v) < n and there is an eligible edgee = (v, w) ∈ E f or
d(v) ≥ n and there is an eligible edgee = (v, w) ∈ E∗

f

f pushδ acrosse for δ = min(excess(v), r(e)); g
else
f relabelv; g

g
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We need to show that the modified algorithm is correct. We adapt the correctness proof
of the basic preflow-push algorithm. The modified algorithm may create steep edges. We
show that no steep edge can end below leveln − 1 and that every steep edge belongs to
E f \ E∗

f ; this modifies Lemma 36.

Lemma 42 Any residual edgee = (v, w) that becomes steep in the modified algorithm
satisfiese ∈ E f \ E∗

f andd(w) ≥ n − 1.

Proof A steep edgee = (v, w) can only be created by a relabeling ofv. A nodev is only
relabeled when there is no eligible edge(v, w) ∈ E∗

f . Thus only edges inE f \ E∗
f can

become steep.
A nodev with d(v) < n is only relabeled when there is no eligible edge out of it. Thus

a relabeling ofv that creates a steep edgee = (v, w) can only occur whend(v) ≥ n. The
edgee was not steep before the relabeling ofv and henced(w) ≥ n − 1.

We next show that every active node can reachs in G∗
f ; this modifies Lemma 37. The

proof carries over almost literally.

Lemma 43 If v is active then there is a path fromv to s in G∗
f . No distance label ever

reaches2n.

Proof Let S be the set of nodes that are reachable fromv in G∗
f and letT = V \S. Then∑

u∈S

excess(u) =
∑

e∈E∩(T ×S)

f (e) −
∑

e∈E∩(S×T )

f (e),

by Lemma 34.
There is no edge(v, w) ∈ G∗

f with v ∈ S and w /∈ S. Thus, f (e) = 0 for every
e ∈ E ∩ (T × S). We conclude

∑
u∈S excess(v) ≤ 0.

Sinces is the only node whose excess may be negative and sinceexcess(v) > 0 we must
haves ∈ S.

Assume that a nodeu is moved to level 2n. Since only active nodes are relabeled this
implies the existence of a path (and hence simple path) inG∗

f from a node on level 2n to s
(which is on leveln). Such a path must contain a steep edge, a contradiction to Lemma 42.

Theorem 10When the modified algorithm terminates it terminates with a maximum flow.
All bounds on the number of relabels and the number of pushes shown for the basic algo-
rithm hold also true for the modified algorithm.

Proof When the algorithm terminates there are no active nodes and hence the algorithm
terminates with a flow. Call itf .

Assume that there is a pathp in G f from s to t . Write p = p1 � p2 wherep1 ends in a
node with level at leastn andp2 contains no node with leveln or more. Thenp2 starts with
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a node on leveln − 1 and contains no steep edges. Both claims follow from Lemma 42.
However,p2 contains at mostn−1 nodes (since it cannot contains) and hence must contain
a steep edge.

Thus there is no path froms to t in G f and hencef is optimal by Theorem 6.

The changes in the program are minor. We push across the edges out ofv only whenv

lives on a layer less thann.

〈MF LH: main loop〉�
for(;;)

{

node v = U.del();

if (v == nil) break;

if (v == t) continue;

NT ev = excess[v]; // excess of v

int dv = dist[v]; // level of v

edge e;

if ( dist[v] < n )

{ 〈MF BASIC: push across edges out of v〉 }

if ( ev > 0 )

{ 〈MF BASIC: push across edges into v〉 }

excess[v] = ev;

if (ev > 0)

{ dist[v]++;

num_relabels++;

U.insert(v,dist[v]);

}

}

The procedure MAXFLOW LH T results from MAXFLOW BASIC T by replacing the
main loop. Table 7.11 shows the effect of distinguishing between low and high nodes. The
effect is small and significant savings are only observed for the CG2-generator.

The Local Relabeling Heuristic: The local relabeling heuristicapplies whenever a node
is relabeled. It increases the dist-value ofv to

1 + min
{

d(w) ; (v, w) ∈ G f
}
.

Observe thatv is active whenever it is relabeled and that an active node has at least one
outgoing edge inG f . The expression above is therefore well defined. Whenv is relabeled,
none of the outgoing edges is eligible and henced(w) ≥ d(v) for all (v, w) ∈ G f . Thus,
the local relabeling heuristic increasesd(v) by at least one. It may increase it by more than
one.

The correctness of the heuristic follows from the following alternative description: when
a node is relabeled, continue to relabel it until there is an eligible edge out of it.

The local relabeling heuristic is easily incorporated into our implementation. We main-
tain a variabledmin, which we initialize to MAXINT before we scan the edges incident
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Generator Rule Pushes Inspections Relabels Time

rand FIFO 1.728e+05 2.426e+06 2.27e+05 1.51

1.726e+05 2.422e+06 2.269e+05 1.54

HL 1.811e+05 2.654e+06 2.27e+05 1.6

1.81e+05 2.649e+06 2.269e+05 1.64

MFIFO 2.164e+05 2.513e+06 2.27e+05 1.36

2.16e+05 2.508e+06 2.268e+05 1.4

CG1 FIFO 1.761e+05 9.63e+05 2.281e+05 0.85

1.761e+05 9.63e+05 2.281e+05 0.9

HL 1.875e+05 6.009e+06 1.885e+05 2.83

1.875e+05 6.009e+06 1.885e+05 2.88

MFIFO 1.682e+05 8.629e+05 2.207e+05 0.73

1.682e+05 8.629e+05 2.207e+05 0.89

CG2 FIFO 2.864e+06 1.367e+07 2.751e+06 12.82

2.54e+06 1.221e+07 2.544e+06 11.98

HL 1.695e+06 1.226e+07 2.752e+06 11.31

1.57e+06 1.12e+07 2.627e+06 11.24

MFIFO 2.864e+06 1.367e+07 2.751e+06 11.6

2.54e+06 1.221e+07 2.544e+06 10.87

Table 7.11 Effect of low-high distinction. We show the behavior for three different kinds of
graphs and three different selection rules. For each generator we ran the casen = 500. For the
random graph generator we usedm = 3n. For each case we give the running time of
MAX FLOW BASIC T (first line) and of MAX FLOW LH T (second line). Use the program
max flow lh time in the demo directory to perform your own experiments.

to the current active nodev. Let e = (v, w) be a residual edge. Ife is eligible, i.e.,
d(w) < d(v), we push acrosse, and if e is not eligible, i.e,d(w) ≥ d(v), we setdmin to
min(dmin, d(w)). If v is still active after scanning all residual edges incident to it, we can
setd(v) to 1+ dmin.

We obtain

〈push across edges out of v〉�
for (e = G.first_adj_edge(v); e; e = G.adj_succ(e))

{ num_edge_inspections++;

NT& fe = flow[e];
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NT rc = cap[e] - fe;

if (rc == 0) continue;

node w = target(e);

int dw = dist[w];

if ( dw < dv ) // equivalent to ( dw == dv - 1 )

{ num_pushes++;

NT& ew = excess[w];

if (ew == 0) U.insert0(w,dw);

if (ev <= rc)

{ ew += ev; fe += ev;

ev = 0; // stop: excess[v] exhausted

break;

}

else

{ ew += rc; fe += rc;

ev -= rc;

}

}

else { if ( dw < dmin ) dmin = dw; }

}

The code for the edges intov is symmetric.

〈push across edges into v〉�
for (e = G.first_in_edge(v); e; e = G.in_succ(e))

{ num_edge_inspections++;

NT& fe = flow[e];

if (fe == 0) continue;

node w = source(e);

int dw = dist[w];

if ( dw < dv ) // equivalent to ( dw == dv - 1 )

{ num_pushes++;

NT& ew = excess[w];

if (ew == 0) U.insert0(w,dw);

if (ev <= fe)

{ fe -= ev; ew += ev;

ev = 0; // stop: excess[v] exhausted

break;

}

else

{ ew += fe; ev -= fe;

fe = 0;

}

}

else { if ( dw < dmin ) dmin = dw; }

}

The main loop turns into



472 Graph Algorithms

〈MF LRH: main loop〉�
for(;;)

{

node v = U.del();

if (v == nil) break;

if (v == t) continue;

NT ev = excess[v]; // excess of v

int dv = dist[v]; // level of v

int dmin = MAXINT; // for local relabeling heuristic

edge e;

if (dv < n)

{ 〈push across edges out of v〉 }

if ( ev > 0 )

{ 〈push across edges into v〉 }

excess[v] = ev;

if (ev > 0)

{ dist[v] = 1 + dmin;

num_relabels++;

U.insert(v,dist[v]);

}

}

The procedure MAXFLOW LRH T results from MAXFLOW BASIC T by replacing the
main loop. Table 7.12 shows the combined effect of the local relabeling heuristic and the
low-high distinction.

The Global Relabeling Heuristic: Theglobal relabeling heuristicupdates the dist-values
of all nodes. It sets

d(v) =


µ(v, t) if there is a path fromv to t in G f

n + µ∗(v, s) if there is a path fromv to s in G∗
f but no

path fromv to t in G f

2n − 1 otherwise

Hereµ(v, t) andµ∗(v, s) denote the lengths (= number of edges) of the shortest paths from
v to t in G f and fromv to s in G∗

f , respectively. The reader should convince himself that
the global relabeling heuristic does not generate any steep edges.

The global relabeling heuristic can be implemented by breadth-first search and requires
time O(m). It should therefore not be applied too frequently. We will apply it everyh · m
edge inspections for some suitable constanth. In this way�(m) time is spent between ap-
plications of the global relabel heuristic and hence the worst case running time is increased
by at most a constant factor. The best case can improve significantly.

In our example from the beginning of the section, the global relabeling heuristic is highly
effective. Assume that it is applied after the edge(n −2, n −1) is saturated. It will put node
i on leveln + i for all i , 1 ≤ i ≤ n − 2, and the excess on noden − 2 will flow back tos in
a series ofn pushes. In this way the running time decreases from�(n2) to O(n).
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Generator Rule Pushes Inspections Relabels Time

rand FIFO 1.878e+05 2.554e+06 2.349e+05 1.51

1.945e+05 1.949e+06 1.498e+05 1.25

HL 1.915e+05 2.768e+06 2.349e+05 1.6

1.915e+05 2.04e+06 1.36e+05 1.27

MFIFO 2.332e+05 2.644e+06 2.348e+05 1.39

2.332e+05 1.986e+06 1.457e+05 1.17

CG1 FIFO 1.761e+05 9.63e+05 2.281e+05 0.85

2.234e+05 7.007e+05 1.403e+05 0.68

HL 1.875e+05 6.009e+06 1.885e+05 2.8

1.875e+05 5.726e+06 9.438e+04 2.67

MFIFO 1.682e+05 8.629e+05 2.207e+05 0.71

1.682e+05 5.482e+05 1.16e+05 0.52

CG2 FIFO 2.54e+06 1.221e+07 2.544e+06 11.35

2.216e+06 9.529e+06 1.82e+06 9.19

HL 1.57e+06 1.12e+07 2.627e+06 10.35

1.57e+06 7.51e+06 1.377e+06 7.41

MFIFO 2.54e+06 1.221e+07 2.544e+06 10.35

2.54e+06 9.996e+06 1.796e+06 8.99

Table 7.12 Effect of low-high distinction and local relabeling heuristic. We show the behavior
for three different kinds of graphs and three different selection rules. For each generator we ran
the casen = 500. For the random graph generator we usedm = 3n. For each case we give the
running time of MAX FLOW LH T (first line) and of MAX FLOW LRH T (second line). The
local relabeling heuristic results in a considerable saving in all cases. Use maxflow lrh time in
the demo directory to perform your own experiments.

We turn to the implementation.
We define two functionscomputedist t andcomputedist s that compute the distance tot

ands, respectively. Both functions need access to the residual graph and hence have param-
etersG, flow, andcap. We also provide them with the nodet and the nodes, respectively.
The functions store the computed distances indist. It is assumed thatdist[v] ≥ n for all
nodesv prior to a call ofcomputedist t and thatdist[v] = 2 ∗ n − 1 for all nodesv that
cannot reacht in G f prior to a call ofcomputedist s; the latter function also assumes that
nodes that can reacht in G f have a distance value less thann.



474 Graph Algorithms

The calls insert all active nodes with their new distance labels intoU . It is assumed that
U is empty prior to a call ofcomputedist t and thatU contains all active nodes that can
reacht in G f prior to a call ofcomputedists.

The functions are realized by breadth-first search and hence need a queueQ. We provide
it as a parameter. It is assumed that the queue is empty prior to a call of both functions.
Both functions leaveQ empty when they terminate.

The functioncomputedist t also computes for eachd, 0 ≤ d < n, the number of nodes
v with dist[v] = d and stores the number incount[d]; this count will be needed in the
so-called gap heuristic to be described later.

The details of both functions are fairly simple. Incomputedist t we perform a “back-
ward” breadth-first search starting att . Whenever a new nodew is reached, say from node
v, we setdist[w] to 1+dist[v], we insertw into U if it is active, we increasecount[dist[w]],
and we addw to the rear ofQ. Since we are computing distances tot ands, respectively,
all edges are considered in their reverse direction.

〈maxflow dist st〉+�
template<class NT, class SET>

void compute_dist_t(const graph& G, node t, const edge_array<NT>& flow,

const edge_array<NT>& cap,

const node_array<NT>& excess, node_array<int>& dist,

SET& U, b_queue<node>& Q, array<int>& count)

{

int n = G.number_of_nodes();

Q.append(t);

dist[t] = 0;

count.init(0);

count[0] = 1;

while ( !Q.empty() )

{ node v = Q.pop();

int d = dist[v] + 1;

edge e;

for(e = G.first_adj_edge(v); e; e = G.adj_succ(e))

{ if ( flow[e] == 0 ) continue;

node u = target(e);

int& du = dist[u];

if ( du >= n )

{ du = d;

Q.append(u); count[d]++;

if ( excess[u] > 0 ) U.insert(u,d);

}

}

for(e = G.first_in_edge(v); e; e = G.in_succ(e))

{ if ( cap[e] == flow[e] ) continue;

node u = source(e);

int& du = dist[u];

if ( du >= n )

{ du = d;

Q.append(u); count[d]++;
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if (excess[u] > 0) U.insert(u,d);

}

}

}

}

The “backward” breadth-first search froms is simpler because it only needs to consider
edges inG∗

f .

〈maxflow dist st〉+�
template<class NT, class SET>

void compute_dist_s(const graph& G, node s, const edge_array<NT>& flow,

const node_array<NT>& excess, node_array<int>& dist,

SET& U, b_queue<node>& Q)

{

int n = G.number_of_nodes();

int max_level = 2*n - 1;

Q.append(s);

dist[s] = n;

while ( !Q.empty() )

{ node v = Q.pop();

int d = dist[v] + 1;

edge e;

for(e = G.first_adj_edge(v); e; e = G.adj_succ(e))

{ if ( flow[e] == 0 ) continue;

node u = target(e);

int& du = dist[u];

if ( du == max_level )

{ du = d;

if (excess[u] > 0) U.insert(u,d);

Q.append(u);

}

}

}

}

Before we describe the required changes to the initialization phase and the main loop we
describe one further optimization.

Two-Phase Approach: We partition the execution into two phases. The first phase ends
when there is no active node at a level belown anymore. At this point of the execution the
algorithm has determined a maximum preflow, i.e., a preflow which maximizesexcess[t ].
This follows from the observation that there can be no path inG f from an active node tot
at the end of phase one.

In the first phase we push only out of nodes with level belown and in the second phase
we push only out of nodes with level at leastn. Phase two ends when there are no active
nodes anymore.

For the first phase we initializedist[v] with the distance fromv to t (if v can reacht in
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G f where f is the flow obtained by saturating all edges out ofs) and we initializedist[v]
with n otherwise.

〈MF GRH: initialize dist and U for first phase〉�
node_array<int> dist(G);

dist.init(G,n);

compute_dist_t(G,t,flow,cap,excess,dist,U,Q,count);

The other initializations are as before:

〈MF GRH: initialization〉�
〈initialize flow and excess and saturate edges out of s〉
〈MF GRH: additional data structures〉
〈MF GRH: initialize dist and U for first phase〉
〈MF GRH: initialize counters〉

〈MF GRH: initialize counters〉�
num_relabels = num_pushes = num_edge_inspections = 0;

num_global_relabels = 0;

We need some additional data structures: the global distance calculations need a queue and
we need to know which phase we are in. We also need to introduce the arraycount: count[d]
is to contain the number of nodes at leveld for 0 ≤ d < n. It will be required by the gap
heuristic to be explained below.

〈MF GRH: additional data structures〉�
b_queue<node> Q(n);

int phase_number = 1;

array<int> count(n);

The main loop has the same structure as before.

〈MF GRH: main loop〉�
for(;;)

{

〈MF GRH: extract v from queue〉
NT ev = excess[v]; // excess of v

int dv = dist[v]; // level of v

int dmin = MAXINT;

edge e;

if ( dist[v] < n )

{ 〈push across edges out of v〉 }

if ( ev > 0 )

{ 〈push across edges into v〉 }

excess[v] = ev;

if (ev > 0)

{ 〈MF GRH: update distance label(s)〉 }

}
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We still need to describe how nodes are selected from the queue and how distance labels
are updated.

Let v be the node selected from the setU of active nodes. Ifv does not exist and we are
in the second phase, we break from the main loop. Ifv does not exist and we are in the
first phase, we start the second phase. Ifv is equal tot , we ignorev. In all other cases, we
proceed and attempt to push out ofv.

How do we start the second phase? We need to initialize the distance labels and also the
set of active nodes for the second phase. We first compute the set of nodes that can still
reacht (none of them is active) and collect its complement in a setS. None of the nodes in
S can reacht . We then compute the distance labels for all nodes inS by computing their
distances tos in G∗

f .

〈MF GRH: extract v from queue〉�
node v = U.del();

if (v == nil)

{

if ( phase_number == 2 ) break; // done

dist.init(G,n);

compute_dist_t(G,t,flow,cap,excess,dist,U,Q,count);

node u;

forall_nodes(u,G)

{ if (dist[u] == n)

{ S.append(u);

dist[u] = max_level;

}

}

phase_number = 2;

compute_dist_s(G,s,flow,excess,dist,U,Q);

continue;

}

if (v == t) continue;

The setS needs to be declared.

〈MF GRH: additional data structures〉+�
list<node> S;

It remains to describe how we update distance labels. We mentioned already that the
global relabeling heuristic has a cost of2(m) and that we want to apply it everyh · m edge
inspections for some constanth.

We therefore introduce two integer variableslimit heurandheuristic, initialize heuristic
to h · m, incrementlimit heurby heuristicwhenever the global relabel heuristic is applied,
and apply the global relabel heuristic whenever the number of edge inspections exceeds
limit heur. Thus
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〈MF GRH: update distance label(s)〉�
if (num_edge_inspections <= limit_heur)

{ 〈MF GRH: update the distance label of v〉 }

else

{ limit_heur += heuristic;

num_global_relabels++;

〈MF GRH: global relabel〉
}

and

〈MF GRH: additional data structures〉+�
int heuristic = (int) (h*m);

int limit_heur = heuristic;

In order to update the distance label ofv we incrementdminand then distinguish cases.
If we are in phase one anddmin is at leastn, we setdist[v] to n and do not insertv into the
set of active nodes (sincev cannot reacht in G f anymore). In all other cases, we setdist[v]
to dminand insertv into U .

〈MF GRH: update the distance label of v〉�
dmin++; num_relabels++;

if ( phase_number == 1 && dmin >= n) dist[v] = n;

else { dist[v] = dmin;

U.insert(v,dmin);

}

A global relabel operation clearsU and then distinguishes cases. In phase two the dis-
tance tos is recomputed for all nodes inS; recall that the nodes inV \ S can reacht in G f

and hence are irrelevant for phase two.
In phase one we compute the distance fromv to t in G f for all nodesv. For nodes that

cannot reacht we set the distance label ton. If no active node can reacht , phase one ends.
We setS to all nodes that cannot reacht and then proceed as described above for phase two.

〈MF GRH: global relabel〉�
U.clear();

if (phase_number == 1)

{ dist.init(G,n);

compute_dist_t(G,t,flow,cap,excess,dist,U,Q,count);

if ( U.empty() )

{ node u;

forall_nodes(u,G)

{ if (dist[u] == n)

{ S.append(u);

dist[u] = max_level;

}

}

phase_number = 2;
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compute_dist_s(G,s,flow,excess,dist,U,Q);

}

}

else

{ node u;

forall(u,S) dist[u] = max_level;

compute_dist_s(G,s,flow,excess,dist,U,Q);

}

The function MAX FLOW GRH T incorporates the distinction between low and high nodes,
the local and the global relabel heuristic, and the distinction between phases one and two.

〈maxflow GRH〉�
template<class NT, class SET>

NT MAX_FLOW_GRH_T(const graph& G, node s, node t,

const edge_array<NT>& cap, edge_array<NT>& flow,

SET& U, int& num_pushes, int& num_edge_inspections,

int& num_relabels, int& num_global_relabels, float h)

{ if (s == t) error_handler(1,"MAXFLOW: source == sink");

〈MF GRH: initialization〉
〈MF GRH: main loop〉

#ifndef LEDA_CHECKING_OFF

assert(CHECK_MAX_FLOW_T(G,s,t,cap,flow));

#endif

return excess[t];

}

Table 7.13 shows that the combined effect of the global relabel heuristic and the two-
phase approach is dramatic. The running times decrease considerably for all generators and
for all three selection rules.

The Gap Heuristic: We come to our last optimization.
Consider a relabeling of a nodev in phase one and letdv be the layer ofv before the

relabeling. If the layerdv becomes empty by the relabeling ofv, thenv cannot reacht
anymore inG f after the relabeling, since any edge crossing the now empty layer would be
steep.

If v cannot reacht in G f then no node reachable fromv in G f can reacht . We may
therefore movev and all nodes reachable fromv to layern whenever the old layer ofv
becomes empty by the relabeling ofv. This is called thegap heuristic.

We realize the heuristic as follows. For eachd, 0 ≤ d < n we keep a count of the
number of nodes in layerd. For this purpose we use the arraycount introduced in the
previous section.

The arraycountis recomputed incomputedist t and is updated whenever a node is rela-
beled. When a nodev is moved from a layerdv to a layerdmin, we decrementcount[dv]
and incrementcount[dmin] (if dvor dmin is smaller thann).

Whencount[dv] is decremented to zero we movev and all nodes reachable fromv in G f
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Gen Rule Pushes Inspections Relabels GR Time

rand FIFO 7.377e+05 7.354e+06 5.794e+05 — 4.8

6978 5.181e+04 4119 2 0.06

HL 7.254e+05 7.749e+06 5.32e+05 — 4.82

5.412e+04 5.264e+05 4.2e+04 21 0.43

MFIFO 8.907e+05 7.498e+06 5.631e+05 — 4.5

8048 5.171e+04 3918 2 0.06

CG1 FIFO 8.908e+05 2.789e+06 5.581e+05 — 2.87

5.02e+05 5.05e+05 994 6 0.91

HL 7.5e+05 4.373e+07 3.763e+05 — 20.92

5.015e+05 5.045e+05 988 12 1.22

MFIFO 6.713e+05 2.352e+06 4.619e+05 — 2.3

5.02e+05 5.05e+05 994 6 0.91

CG2 FIFO 8.851e+06 3.807e+07 7.277e+06 — 37.29

9.793e+05 9.939e+05 4710 9 1.76

HL 6.265e+06 3.002e+07 5.504e+06 — 29.81

1.928e+04 5.53e+04 6518 1 0.17

MFIFO 1.019e+07 4.012e+07 7.16e+06 — 36.53

5.033e+05 5.085e+05 1992 9 0.98

Table 7.13 Effect of low-high distinction, the local relabeling heuristic, the global relabeling
heuristic, and the two-phase approach. We show the behavior for three different kinds of graphs
and three different selection rules. For each generator we ran the casen = 1000. For the random
graph generator we usedm = 3n. For each case we give the running time of
MAX FLOW LRH T (first line) and of MAX FLOW GRH T (second line). The savings are
dramatic in all cases. The column GR shows the number of times the global relabeling heuristic
was applied. The parameterh of MAX FLOW GRH T was set to 5. Use maxflow grh time in
the demo directory to perform your own experiments.

to layern. We find these nodes by a breadth-first search starting inv. We reuse the queue
Q, which we introduced for the distance calculations, for the breadth-first search.

〈MF GAP: update the distance label of v〉�
num_relabels++;

if (phase_number == 1)

{ if ( --count[dv] == 0 || dmin >= n - 1)

{ // v cannot reach t anymore
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〈move all vertices reachable from v to level n〉
}

else

{ dist[v] = ++dmin; count[dmin]++;

U.insert(v,dmin);

}

}

else // phase_number == 2

{ dist[v] = ++dmin;

U.insert(v,dmin);

}

Let us see the details of the breadth-first search. The layerdmin is the highest layer con-
taining a node reachable fromv. If this layer is less thann, we start the breadth-first search
from v. We visit all nodes that are reachable fromv in G f and that live on a layer less than
n. We move all such nodes to layern. We count the number of nodes moved by the gap
heuristic innumgaps.

〈move all vertices reachable from v to level n〉�
dist[v] = n;

if ( dmin < n )

{ Q.append(v);

node w,z;

while ( !Q.empty() )

{ edge e;

w = Q.pop(); num_gaps++;

forall_out_edges(e,w)

{ if ( flow[e] < cap[e] && dist[z = G.target(e)] < n)

{ Q.append(z);

count[dist[z]]--; dist[z] = n;

}

}

forall_in_edges(e,w)

{ if ( flow[e] > 0 && dist[z = G.source(e)] < n)

{ Q.append(z);

count[dist[z]]--; dist[z] = n;

}

}

}

}

The main loop has the same structure as before and only one change is required. When
the gap heuristic moves a node to layern it does not remove it from the set of active nodes
(which it should because the node should stay inactive till the beginning of phase two). We
remedy the situation as follows. Whenever a node on leveln is removed from the set of
active nodes in phase one we ignore the node and continue to the next iteration.
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〈MF GAP: main loop〉�
for(;;)

{

〈MF GRH: extract v from queue〉
if (dist[v] == n && phase_number == 1) continue;

NT ev = excess[v]; // excess of v

int dv = dist[v]; // level of v

int dmin = MAXINT;

edge e;

if ( dist[v] < n ) { 〈push across edges out of v〉 }

if ( ev > 0 ) { 〈push across edges into v〉 }

excess[v] = ev;

if (ev > 0) { 〈MF GAP: update distance label(s)〉 }

}

〈MF GAP: update distance label(s)〉�
if (num_edge_inspections <= limit_heur)

{ 〈MF GAP: update the distance label of v〉 }

else

{ limit_heur += heuristic;

num_global_relabels++;

〈MF GRH: global relabel〉
}

Finally, we give the function MAXFLOW GAP T a further parameternumgaps, in which
we count the number of nodes that are moved by the gap heuristic.

〈maxflow GAP〉�
template<class NT, class SET>

NT MAX_FLOW_GAP_T(const graph& G, node s, node t,

const edge_array<NT>& cap, edge_array<NT>& flow,

SET& U, int& num_pushes, int& num_edge_inspections,

int& num_relabels, int& num_global_relabels,

int& num_gaps, float h)

{ if (s == t) error_handler(1,"MAXFLOW: source == sink");

〈MF GRH: initialization〉
num_gaps = 0;

〈MF GAP: main loop〉
#ifndef LEDA_CHECKING_OFF

assert(CHECK_MAX_FLOW_T(G,s,t,cap,flow));

#endif

return excess[t];

}

Table 7.14 shows the combined effect of all heuristics.
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Gen Rule Pushes Inspections Relabels GR Gaps Time

rand FIFO 1.394e+04 1.036e+05 8154 2 — 0.18

1.39e+04 1.036e+05 8142 2 2 0.17

HL 1.911e+05 1.929e+06 1.444e+05 38 — 1.59

2.536e+04 1.959e+05 1.258e+04 3 934 0.27

MFIFO 1.589e+04 1.033e+05 7674 2 — 0.15

1.589e+04 1.033e+05 7672 2 11 0.15

CG1 FIFO 2.002e+06 2.008e+06 1988 12 — 4.49

2.002e+06 2.008e+06 1988 12 0 4.05

HL 2.003e+06 2.009e+06 1975 25 — 5.41

2.003e+06 2.009e+06 1975 25 0 5.67

MFIFO 2.004e+06 2.01e+06 1988 12 — 3.64

2.004e+06 2.01e+06 1988 12 0 4.08

CG2 FIFO 3.951e+06 3.971e+06 6846 18 — 8.85

3.982e+06 3.992e+06 3983 18 2015 7.88

HL 3.852e+04 1.106e+05 1.302e+04 1 — 0.36

1.599e+04 4.396e+04 4002 0 3995 0.28

MFIFO 2.079e+06 2.098e+06 6684 18 — 3.93

2.001e+06 2.012e+06 3983 18 2017 4.27

Table 7.14 Effect of low-high distinction, the local relabeling heuristic, the global relabeling
heuristic, the two-phase approach, and the gap heuristic. We show the behavior for three
different kinds of graphs and three different selection rules. For each generator we ran the case
n = 2000. For the random graph generator we usedm = 3n. For each case we give the running
time of MAX FLOW GRH T (first line) and of MAX FLOW GAP T (second line). The effect
of the gap heuristic is small. The column GR shows the number of global relabels and the
column Gaps shows the number of nodes moved by the gap heuristic. Use maxflow gap time in
the demo directory to perform your own experiments.

Choice of H: How often should the heuristics be applied? Table 7.15 shows the behavior
for different values ofh. The choice ofh does not have a big influence on running time. We
have chosenh = 5 as the default value ofh.

Summary and Implementation History: Table 7.16 summarizes our experiments. It
shows the running times of our different implementations for four different kinds of graphs,
three selection rules, and two different graph sizes (n = 1000 andn = 2000). The heuristics
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Gen Rule h Pushes Inspections Relabels GR Gaps Time

rand FF 0.5 9988 6.362e+04 4850 3 9 0.14

2.5 1.18e+04 8.356e+04 6562 2 4 0.14

4.5 1.6e+04 1.236e+05 9753 2 7 0.19

6.5 1.989e+04 1.636e+05 1.287e+04 2 9 0.22

HL 0.5 1.425e+04 8.442e+04 5506 16 1333 0.36

2.5 1.967e+04 1.403e+05 9113 5 280 0.26

4.5 2.563e+04 1.998e+05 1.28e+04 4 811 0.28

6.5 2.347e+04 1.812e+05 1.18e+04 2 1279 0.25

MF 0.5 1.112e+04 5.376e+04 3592 10 17 0.2

2.5 1.328e+04 7.814e+04 5729 3 0 0.15

4.5 1.476e+04 9.33e+04 6992 2 0 0.15

6.5 1.956e+04 1.333e+05 9943 2 0 0.18

CG1 FF 0.5 1.992e+06 1.998e+06 1970 30 0 4.23

2.5 1.996e+06 2.002e+06 1985 15 0 4.11

4.5 2e+06 2.006e+06 1990 10 0 4.06

6.5 2.004e+06 2.01e+06 1993 7 0 4.05

HL 0.5 2.003e+06 2.009e+06 1750 250 0 8.6

2.5 2.003e+06 2.009e+06 1950 50 0 5.67

4.5 2.003e+06 2.009e+06 1973 27 0 5.33

6.5 2.003e+06 2.009e+06 1981 19 0 5.21

MF 0.5 2.004e+06 2.01e+06 1874 126 0 5.08

2.5 2.004e+06 2.01e+06 1975 25 0 4.19

4.5 2.004e+06 2.01e+06 1986 14 0 4.11

6.5 2.004e+06 2.01e+06 1991 9 0 4.06

Table 7.15 Effect of the choice ofh. We show the behavior for two different kinds of graphs and
three different selection rules. For each generator we ran the casen = 2000. For the random
graph generator we usedm = 3n. For each case we give the running time of
MAX FLOW GAP T for different values ofh. FF stands for FIFO and MF stands for MFIFO.

lead to dramatic savings in all cases, the global relabeling heuristic being the main source
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Gen Rule BASIC HL LRH GRH GAP LEDA

rand FF 5.84 6.02 4.75 0.07 0.07 —

33.32 33.88 26.63 0.16 0.17 —

HL 6.12 6.3 4.97 0.41 0.11 0.07

27.03 27.61 22.22 1.14 0.22 0.16

MF 5.36 5.51 4.57 0.06 0.07 —

26.35 27.16 23.65 0.19 0.16 —

CG1 FF 3.46 3.62 2.87 0.9 1.01 —

15.44 16.08 12.63 3.64 4.07 —

HL 20.43 20.61 20.51 1.19 1.33 0.8

192.8 191.5 193.7 4.87 5.34 3.28

MF 3.01 3.16 2.3 0.89 1.01 —

12.22 12.91 9.52 3.65 4.12 —

CG2 FF 50.06 47.12 37.58 1.76 1.96 —

239 222.4 177.1 7.18 8 —

HL 42.95 41.5 30.1 0.17 0.14 0.08002

173.9 167.9 120.5 0.3599 0.28 0.1802

MF 45.34 42.73 37.6 0.94 1.07 —

198.2 186.8 165.7 4.11 4.55 —

AMO FF 12.61 13.25 1.17 0.06 0.06 —

55.74 58.31 5.01 0.1399 0.1301 —

HL 15.14 15.8 1.49 0.13 0.13 0.07001

62.15 65.3 6.99 0.26 0.26 0.1399

MF 10.97 11.65 0.04999 0.06 0.06 —

46.74 49.48 0.1099 0.1301 0.1399 —

Table 7.16 The effect of the different heuristics. We show the behavior for four different kinds
of graphs and three selection rules. For each generator we ran the casesn = 1000 andn = 2000.
The last column stands for the default implementation in LEDA. It uses one further optimiziation
which we have not explained in the text.

of improvement. You may use the program maxflow summarytime in the demo directory
to perform your own experiments.



486 Graph Algorithms

Gen Rule GRH GAP LEDA

rand FF 0.16 0.41 1.16 0.15 0.42 1.05 — — —

HL 1.47 4.67 18.81 0.23 0.57 1.38 0.16 0.45 1.09

MF 0.17 0.36 1.06 0.14 0.37 0.92 — — —

CG1 FF 3.6 16.06 69.3 3.62 16.97 71.29 — — —

HL 4.27 20.4 77.5 4.6 20.54 80.99 2.64 12.13 48.52

MF 3.55 15.97 68.45 3.66 16.5 70.23 — — —

CG2 FF 6.8 29.12 125.3 7.04 29.5 127.6 — — —

HL 0.33 0.65 1.36 0.26 0.52 1.05 0.15 0.3 0.63

MF 3.86 15.96 68.42 3.9 16.14 70.07 — — —

AMO FF 0.12 0.22 0.48 0.11 0.24 0.49 — — —

HL 0.25 0.48 0.99 0.24 0.48 0.99 0.12 0.24 0.52

MF 0.11 0.24 0.5 0.11 0.24 0.48 — — —

Table 7.17 The asymptotic behavior of our implementations. We show the behavior for four
different kinds of graphs and three selection rules. For each generator we ran the cases
n = 5000· 2i for i = 0, 1, and 2. For the random graph generator we usedm = 3n. FF stands
for FIFO and MF stands for MFIFO. You may use the program maxflow large time in the demo
directory to perform your own experiments. The program maxflow time in the demo directory
times the default implementation.

The FIFO and MFIFO selection rule are superiour to the HL-rule on three of our four
generators, although never by a large margin. However, on the generator CG2 both rules do
very badly compared to the HL-rule. Figure 7.17 shows this even more clearly. For genera-
tors rand and AMO the running time seems to grow linearly (or maybe slightly more) for all
three selection rules, for generator CG1 the running time seems to grow quadratically for all
three selection rules, and for generator CG2 the running time seems to grow quadratically
for the FIFO and the MFIFO-rule and seems to grow linearly for the HL-rule.

We have chosen the HL-rule as the default selection rule for our max flow algorithm.
This is also what other researchers recommend [CG97, AKMO97].

The worst case running time of our max flow algorithm isO(mdeg· n2√m), wheremdeg
is the maximal degree of any node. This can be improved toO(n2√m) with the current
edge data structure. Theoretically more efficient algorithms are known. Goldberg and Tar-
jan [GT88] have shown that the so-called dynamic tree data structure can be used to improve
the running time of the preflow-push method toO(nm logn). In [CH95, CHM96] this was
further improved toO(nm+n2 logn). The dynamic tree data structure is available in LEDA.
Monika Humble [Hum96] has implemented the preflow-push algorithm with the dynamic
tree data structure. The observed running time was not impressive. Recently, Goldberg and
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Rao [GR97] improved the running time toO(min(n2/3, m1/2m log(n2/m)logU ), whereU
is the largest capacity of any edge (the capacities must be integral for their algorithm). It
remains to be seen whether the improved bound also leads to better observed running times.
A first experimental evaluation can be found in [HST98].

The first implementation of the preflow-push algorithm for LEDA was done by Cheriyan
and Näher in 1989. It used the FIFO selection rule, the distinction between low and high
nodes, and the local and global relabeling heuristic. Stefan N¨aher refined the implementa-
tion over the years and added the highest-level selection rule. For the book we added the
two-phase approach, the gap heuristic, and the possibility of choosing the selection rule.

7.10.5 Network Flow and Floating Point Arithmetic
The preflow-push algorithm computes the maximum flow iteratively (and so do all other
maximum flow algorithms). It starts with a preflow which it gradually transforms into a
flow. The flow across any single edge is changed by pushes across the edge. These pushes
may be in forward and backward direction, i.e., the flow across an edge is changed by
additions and subtractions: the final flow across an edge is a sum of flow portions and these
flow portions may be positive and negative.

What happens when the algorithm is executed with an arithmetic which may incur round-
ing error, e.g., floating point arithmetic? Then there may be cancellation in forming this
sum. As a consequence the correctness of the algorithm is no longer guaranteed. The algo-
rithm may not terminate or compute a functionf which is not a flow (because it violates
one of the constraints) or is a flow but not a maximal flow. Figure 7.45 shows an example
of the disastrous effect that rounding error may have.

The preflow-push algorithm uses only additions and subtractions to manipulate flow and
determines the flow to be sent across an edge as the maximum of the available excess and
the residual capacity of the edge. This implies that all flow values are integral when the
capacities are integral. Also the maximum excess of any node is bounded byD, whereD
is the sum of the capacities of the edges out ofs.

If the number typedoubleis used and all edge capacities are integral, there will be no
overflow as long asD < 253. If the number typedoubleis used and the edge capacities are
not integral, we replace the edge capacities by

cap1[e] = sign(cap[e])b|cap[e]| · Sc/S,

whereS is the largest power of two such thatS < 253/D, and apply the results of Sec-
tion 7.2. They guarantee that there is no rounding error in the computation of the maximum
flow with respect tocap1and that the value of the maximum flows with respect tocapand
cap1, respectively, differ by at mostm · D · 2−52. The bound follows from the fact that the
value of the maximum flow is equal to the capacity of a minimum cut, that the capacity of
a minimum cut is the sum of at mostm edge capacities and that the choice ofS guarantees
that for each edge the difference between the orginal capacity and the modified capacity is
at mostD · 2−52.

The paragraph above bounds the absolute error in the value of the flow resulting from
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0.27
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Figure 7.45 The effect of rounding error on the preflow-push algorithm: The capacities of the
edges are as shown. The preflow-push algorithm starts by saturating all edges out ofs. This will
create an excess of 0.27+ 0.32+ 0.71 = 1.3 in v. In the course of the execution, the algorithm
will determine that none of this excess can be forwarded tot and hence the excess will be
shipped back tos by sending 0.27, 0.32, and 0.71, respectively, across the three edges(v, s). The
final excess inv is 1.3 − 0.27− 0.32− 0.71 = 0.
Assume now that all calculations are carried out in afloating point system with a mantissa of two
decimal places and rounding by cut-off. Then the excess inv after saturating all edges out ofs
will still be 1.3 as there is no cancellation in the summation. However, when the flow is pushed
back tos the first subtraction 1.3 	 0.29 yields 1.1 as the last digit of 0.29 is dropped when the
two summands are aligned for the subtraction; here	 denotes floating point subtraction. The
effect of this is thatv ends up with an excess of 0.09, but no outgoing edge across which to push
flow. This may put the algorithm into an infinite loop.

scaling. It does not bound the relative error. Observe that the quotient betweenD and the
maximum flow may be arbitrarily large. Althaus and Mehlhorn [AM98] have shown that a
slightly more elaborate scaling scheme can be used to bound the relative error. The idea is
as follows. One modifies the edge capacities as described above and computes a maximum
flow f with respect to them. Then

|val( fopt ) − val( f )| ≤ m · D · 2−52,

where fopt is a maximum flow with respect to the original edge capacities. One now dis-
tinguishes cases. Ifm · D · 2−52 � val( f ), the relative error in the value of the flow is
small. Otherwise, letB = val( f ) + m · D · 2−52 and observe thatval( fopt) ≤ B and hence
any capacity which is larger thanB may be decreased toB without changing the maximum
flow. Next they recomputeD and S and repeat. After a smaller number of iterations the
relative error will be small.

Exercises for 7.10
1 Let G = (V , E) be a directed graph, letcap : E −→ IR≥0 be a non-negative capacity

function, and letd : V −→ IR be a function with
∑

v∈V d(v) = 0. A nodev with
d(v) > 0 is called asupply node, a nodev with d(v) < 0 is called ademand node, and
d is called a demand function. A flowf is a function f : E −→ IR≥0 satisfying the
capacity constraints and the supply-demand constraintsexcess(v) = d(v) for all v ∈ V .
Design an algorithm that decides whether a flow exists and, if so, computes a flow. Hint:
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Add two verticess and t , an edge(s, v) with capacityd(v) for every supply node, an
edge(v, t) with capacity−d(v) for every demand node, and compute a maximum(s, t)-
flow.

2 The problem is as above but a lower boundlb(e) on the flow across any edgee is also
specified, i.e., for each edge two valueslb(e) andub(e) with 0 ≤ lb(e) ≤ ub(e)are
specified and the flow across any edge must lie between the lower and the upper bound.
Hint: For any edgee = (v, w) introduce two additional verticesae andbe, replacee by
the edges(v, ae), (ae, be), and(be, w), giveae demand−lb(e), givebe supplylb(e), and
give (ae, be) capacityub(e) − lb(e). Solve the problem above.

3 Show that the number of non-saturating pushes isO(n3) when the MFIFO-rule is used.
Hint: Reuse the proof for the FIFO-rule.

4 Study alternative implementations of the highest-level-rule:Insert(v, d) andinsert0(v, d)

may addv to the front or the rear of thed-th list.
5 Incorporate the current edge data structure into our implementations.
6 Experiment with the global relabel heuristic but without the two-phase approach.

7.11 Minimum Cost Flows

The minimum cost maximum flow problem generalizes the maximum flow problem of the
preceding section.

Let G = (V, E) be a directed graph. For each edgee ∈ E let lcap(e) anducap(e) be
lower and upper bounds for the flow acrosse (we assume 0≤ lcap(e) ≤ ucap(e)) and let
cost(e) be the cost of shipping one unit of flow acrosse, and for each nodev let supply(v)

be the supply or demand at nodev. We talk about a supply ifsupply(v) > 0 and we talk
about a demand ifsupply(v) < 0. We assume that the supplies and demands balance, i.e.,∑

v∈V

supply(v) = 0.

A flow f is a function on the edges satisfying the capacity constraints and the mass balance
conditions, i.e.,

lcap(e) ≤ f (e) ≤ ucap(e)

for every edgee and

supply(v) =
∑

e; source(e)=v

f (e) −
∑

e; target (e)=v

f (e)

for every nodev.
For every edgee, cost(e) is the cost of sending one unit of flow across the edge. The total

cost of a flow f is therefore given by

cost( f ) =
∑
e∈E

f (e) · cost(e).

A minimum cost flowis a flow of minimum cost. The function
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bool MIN COST FLOW(graph& G, const edge array<int>& lcap,

const edge array<int>& ucap,

const edge array<int>& cost,

const node array<int>& supply,

edge array<int>& flow)

returnstrue if a flow exists and returnsfalseotherwise. If a flow exists, it returns a minimum
cost flow inflow. Observe that capacities and costs must be integers. The algorithm is based
on capacity scaling and successive shortest-path computation (cf. [EK72] and [AMO93])
and has running timeO(m logU (m + n logn)), wheren is the number of nodes ofG, m is
the number of edges ofG, andU is the largest absolute value of any capacity.

There is also a variant of this function where the lower bound on all flows is assumed to
be zero.

bool MIN COST FLOW(graph& G, const edge array<int>& cap,

const edge array<int>& cost,

const node array<int>& supply,

edge array<int>& flow);

The function

int MIN COST MAX FLOW(graph& G, node s, node t,

const edge array<int>& cap,

const edge array<int>& cost,

edge array<int>& flow)

computes a minimum cost maximal flow, i.e., it computes a maximal flow froms andt and
among these flows a flow of minimum cost. The value of the flow is returned.

The xlman-demo gwmin costflow illustrates minimum cost flows.

Exercises for 7.11
1 Consider an edgee = (u, v) with c = lcap(e) > 0. Change the problem as follows:

decreaselcap(e) anducap(e) by c, decreasesupply(u) by c, and increasesupply(v) by c.
Show that a solution to the modified problem yields a solution of the original problem.

2 Allow negative lower bounds. Describe a transformation that gets rid of negative lower
bounds.

3 Assume thatlcap(e) = 0 for all e. Introduce auxiliary nodess andt and edges(s, v)

with capacityc = supply(v) for all nodesv with supply(v) > 0 and edges(u, t) with
capacityc = −supply(u) for all nodesu with supply(u) < 0. Show that there is a
flow satisfying the capacity constraints and the bass balance constraints in the original
network iff there is a flow froms to t in the modified network that saturates all edges out
of s (and hence all edges intot). Based on this insight derive a necessary and sufficient
condition for the existence of a flow satisfying the capacity constraints and the mass
balance constraints.

4 Let f be a flow satisfying the capacity constraints and the mass balance constraints and
let G f be the residual network with respect tof . If e = (v, w) is an edge inG with
f (e) < ucap(e) then there is an edge(v, w) in G f with capacityucap(e) − f (e) and
costcost(e) and if e = (v, w) is an edge inG with f (e) > lcap(e) then there is an edge
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(w, v) in G f with capacity f (e)− lcap(e) and cost−cost(e). Show thatf is a minimum
cost flow iff there is no negative cycle inG f .

5 Derive a checker for minimum cost flows based on the preceding items.
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Figure 7.46 A minimum cutC in a graph. The nodes inC are shown as circles and the nodes
outsideC are shown as squares. The value of the cut is 47. You may generate your own figures
with the xlman-demo gwmin cut.

7.12 Minimum Cuts in Undirected Graphs

Let G = (V, E) be an undirected graph (self-loops and parallel edges are allowed) and let
w : E → IR≥0 be anon-negativeweight function on the edges ofG. A cut C of G is any
subset ofV with ∅ 6= C 6= V . The weight of a cut is the total weight of the edges crossing
the cut, i.e.,

w(C) =
∑

e∈E;|e∩C |=1

w(e).

A minimum cutis a cut of minimum weight. Figure 7.46 shows an example. The function

int MIN CUT(const graph& G,const edge array<int>& weight,

list<node>& C, bool use heuristic = true)



492 Graph Algorithms

5000 10000 15000 20000

NOH WH NOH WH NOH WH NOH WH

1000 9.22 3.52 17.11 17.11 27.86 29.36 38.88 39.46

2000 29.58 1.26 54.32 2.76 82.14 33.77 117.6 98.68

3000 62.51 3.71 107.2 3.64 145.6 8.76 191.1 85.17

4000 91.66 5.51 157 4.84 205.7 4.98 279.5 8.99

5000 144.2 15.62 213.5 11.8 273.8 11.7 378.6 18.22

Table 7.18 Running times of the minimum cut algorithms. We used random graphs withn
nodes andm edges and random edge weights. The rows are indexed byn and the columns are
indexed bym. For each combination ofn andm we ran the algorithm without (NOH) and with
the heuristic (WH). The use of the heuristic is the default.

takes a graphG and aweight function on the edges and computes a minimum cut. The
value of the cut is returned and the nodes in the cut are assigned toC. The running time of
the algorithm isO(nm + n2 logn). The algorithm is due to [NI92, SW97]. The algorithm
can be asked to use a heuristic. In some cases the heuristic improves the running time
dramatically; it never seems to harm, see Table 7.18. There is also a version of the function
where the cutC is the return value of the function.

list<node> MIN CUT(const graph& G, const edge array<int>& weight)

The function

int CUT VALUE(const graph& G,const edge array<int>& weight,

const list<node>& C)

returns the value of the cutC.

We use a particularly simple and nevertheless efficient min-cut algorithm due to Nag-
amochi and Ibaraki [NI92] and later refined by Stoer and Wagner [SW97]. The algo-
rithm runs in timeO(nm + n2 logn). Alternative minimum cut algorithms can be found
in [PR90, HO92, KS96]. The papers [CGK+97, JRT97] contain experimental comparisons
of minimum cut algorithms.

We need the notion of ans-t cut. For a pair{s, t } of distinct vertices ofG a cutC is
called ans-t cut if C contains exactly one ofs andt .

The algorithm works in phases. In each phase it determines a pair of verticess and t
and a minimums-t cut C. If there is a minimum cut ofG separatings andt thenC is a
minimum cut ofG. If not then any minimum cut ofG hass and t on the same side and
therefore the graph obtained fromG by combinings andt has the same minimum cut asG.
So a phase determines verticess andt and a minimums-t cutC and then combiness andt
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into one node. Aftern −1 phases the graph is shrunk to a single node and one of the phases
must have determined a minimum cut ofG.

〈min cut〉�
〈combine s and t〉
int MIN_CUT(const graph& G0, const edge_array<int>& weight,

list<node>& C, bool use_heuristic)

{ node v; edge e;

forall_edges(e,G0)

if ( weight[e] < 0 )

error_handler(1,"MIN_CUT: no negative weights");

〈initialization〉
while ( G.number_of_nodes() >= 2 ) { 〈a phase〉 }

return best_value;

}

We call our input graphG0 and our current GraphG. Every node ofG represents a set of
nodes ofG0. This set is stored in a linear list pointed to byG[v] and hence we use the type
GRAPH<list<node>∗, int> for G. Every edgee = {v, w} of G represents a set of edges of
G0, namely{{x, y } ; x ∈ G[v] and y ∈ G[w] }. The total weight of these edges is stored in
G[e].

It is easy to initializeG. We simply makeG a copy ofG0 (except for self-loops) and
initialize G[v] to the appropriate singleton set for every vertexv of G.

〈initialization〉�
typedef list<node>* nodelist_ptr;

GRAPH<nodelist_ptr, int> G;

G.make_undirected();

node_array<node> partner(G0);

forall_nodes(v,G0)

{ partner[v] = G.new_node(new list<node>);

G[partner[v]]->append(v);

}

forall_edges(e, G0)

if ( source(e) != target(e) )

G.new_edge(partner[source(e)], partner[target(e)],weight[e]);

We also fix a particular nodea of G and introduce variables to store the currently best cut.

〈initialization〉+�
node a = G.first_node();

int best_value = MAXINT;

int cut_weight = MAXINT;

We now come to the heart of the matter, a phase. A phase initializes a setA to the singleton
set{a} and then successively merges all other nodes ofG into A. In each stage the node
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v 6∈ A which maximizes

w(v, A) =
∑

e; e={v,y } for somey∈A

w(e)

is merged intoA. Let s and t be the last two vertices added toA in a phase. The cutC
computed by the phase is the cut consisting of nodet only; in the graphG0 this corresponds
to the cutG[t ].

Lemma 44Let s and t be the last two nodes merged intoA during a phase. Then{t } is a
minimums-t cut.

Proof Let C ′ be anys-t cut. We show thatw(C ′) ≥ w({t }). Let v1, . . . , vn be the order in
which the nodes are added toA. Thenv1 = a, vn−1 = s, andvn = t .

Call a vertexv = vi critical if i ≥ 2 andvi andvi−1 belong to different sides ofC ′. Note
thatt is critical. Letk be the number of critical nodes and leti1, i2, . . . , ik be the indices of
the critical nodes. Thenik = n. For integeri useAi to denote the set{v1, . . . , vi }. Then

w({t }) = w(vik , Aik −1)

and

w(C ′) ≥
k∑

j=1

w(vi j , Ai j −1 \ Ai j−1−1),

since any edge counted on the right side is also counted on the left and edge costs are
non-negative. We now show for all integersl, 1 ≤ l ≤ k, that

w(vil , Ail −1) ≤
l∑

j=1

w(vi j , Ai j −1 \ Ai j−1−1).

For l = 1 we have equality. So assumel ≥ 2. We have

w(vil , Ail −1) = w(vil , Ail−1−1) + w(vil , Ail −1 \ Ail−1−1)

≤ w(vil−1, Ail−1−1) + w(vil , Ail −1 \ Ail−1−1)

≤
l−1∑
j=1

w(vi j , Ai j −1 \ Ai j−1−1) + w(vil , Ail −1 \ Ail−1−1)

≤
l∑

j=1

w(vi j , Ai j −1 \ Ai j−1−1).

Here the first inequality follows from the fact thatvil−1 is added toAil−1−1 and notvil and
the second inequality uses the induction hypothesis.

〈a phase〉�
〈determine s and t and the value of the cut V-t,t〉;
bool new_best_cut = false;

if ( cut_weight < best_value )
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{ C = *(G[t]);

best_value = cut_weight;

new_best_cut = true;

}

combine_s_and_t(G,s,t);

〈heuristic〉

How can we determine the order in which the vertices are merged intoA? This can be
done in a manner akin to Prim’s minimum spanning tree algorithm. We keep the vertices
v, v 6∈ A, in a priority queue ordered according tow(v, A). In each stage we select the
node, sayu, with maximalw(u, A) and add it toA. This increasesw(v, A) by w({v, u })
for any vertexv 6∈ A andv 6= u. Since LEDA priority queues select minimal values we
store−w(v, A) in the queue. The node added last toA is the vertext . The valuecutweight
is w(t, At ).

〈determine s and t and the value of the cut V-t,t〉�
node t = a;

node s;

node_array<bool> in_PQ(G,false);

node_pq<int> PQ(G);

forall_nodes(v,G)

if (v != a)

{ PQ.insert(v,0);

in_PQ[v] = true;

}

forall_adj_edges(e,a)

PQ.decrease_inf(G.opposite(a,e),PQ.prio(G.opposite(a,e)) - G[e]);

while (!PQ.empty())

{ s = t;

cut_weight = -PQ.prio(PQ.find_min());

t = PQ.del_min();

in_PQ[t] = false;

forall_adj_edges(e,t)

{ if (in_PQ[v = G.opposite(t,e)])

PQ.decrease_p(v,PQ.prio(v) - G[e]);

}

}

It remains to combines andt . We do so by deletingt from G and moving all edges incident
to t to s. More precisely, we need to do three things:

• Add G[t ] to G[s] (G[s] → conc(∗(G[t ]))).

• IncreaseG[{s, v}] by G[{t, v}] for all verticesv with {t, v} ∈ E andv 6= s.

• Deletet and all its incident edges fromG (G.delnode(t)).

The second step raises two difficulties: the edge{s, v} might not exist and there is no
simple way to go from the edge{t, v} to the edge{s, v}. We overcome these problems by
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first recording the edge{s, v} in sedge[v] for every neighborv of s. We then go through
the neighborsv of t : if v is connected tos then we simply increaseG[{s, v}] by G[{t, v}],
if v is not connected tos and different froms then we add a new edge{s, v} with weight
G[{t, v}].

We formulate the piece of code to combines andt as a procedure because we want to
reuse it in the heuristic.

〈combine s and t〉�
static void combine_s_and_t(GRAPH<list<node>*,int>& G, node s, node t)

{ G[s]->conc(*(G[t]));

node_array<edge> s_edge(G,nil);

edge e;

forall_adj_edges(e,s) s_edge[G.opposite(s,e)] = e;

forall_adj_edges(e,t)

{ node v = G.opposite(t,e);

if ( v == s) continue;

if (s_edge[v] == nil) G.new_edge(s,v,G[e]);

else G[s_edge[v]] += G[e];

}

G.del_node(t);

}

This completes the description of the algorithm. The running time of our algorithm is
clearly at mostn times the running time of a phase. A phase takes timeO(m + n logn) to
merge all nodes into the setA ( the argument is the same as for Prim’s algorithm) and time
O(n) to record the cut computed and to merges andt . The total running time is therefore
O(nm + n2 logn).

We next discuss a heuristic improvement. Clearly, any edge whose weight is at least
bestvaluecannot cross a minimum cut whose value is smaller thanbestvalue. We therefore
might as well shrink any such edge.

Which edges might have weight at least as large asbestvalue? If bestvaluedecreased
in the current phase, then all edges ofG are candidates, and ifbestvaluestayed unchanged
in the current phase, then all edges incident tos are candidates, because their weight may
have increased .

〈heuristic〉�
if ( use_heuristic )

{ bool one_more_round = true;

while ( one_more_round )

{ one_more_round = false;

forall_adj_edges(e,s)

{ node t = G.opposite(s,e);

if ( G[e] >= best_value )

{ combine_s_and_t(G,s,t); one_more_round = true; break; }

}

}

if ( new_best_cut )
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{ bool one_more_round = true;

while ( one_more_round )

{ one_more_round = false;

forall_edges(e,G)

{ node s = G.source(e);

node t = G.target(e);

if ( G[e] >= best_value )

{ combine_s_and_t(G,s,t); one_more_round = true; break; }

}

}

}

}

Table 7.18 shows that the heuristic can lead to dramatic improvements in running time.
We will now argue that is does increase the asymptotic running time. If the phase did not
decreasebestvalue, the running time of the heuristic isO((1+ k)n), wherek is the number
of edges shrunken by the heuristic. If the phase decreasedbestvalue, the running time of
the heuristic isO((1 + k)m), wherek is the number of edges shrunken by the heuristic. In
either case the asymptotic running time of our procedure is not increased, since a phase has
cost�(m + n logn).

We considered an alternative implementation of the heuristic. We kept the edges ofG
in a priority queue according to negative weight and at the end of each phase selected all
edges from the queue which had weight at least as large asbestvalue. The alternative
implementation was slower than the simple implementation described above.
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Embedded Graphs

Drawings of graphs are ubiquitous. In this chapter we introduce important mathemati-
cal concepts related to embedded graphs and we discuss algorithms that draw and embed
graphs and that deal with embedded graphs. We provide only a minimum of the required
mathematics and refer the reader to [Whi73] for a detailed treatment.

We start with the definition of what it means to draw a graph and an example of a drawing
algorithm. We discuss bidirected graphs and maps, our technical vehicle for dealing with
embedded graphs, in Section 8.2 and the concepts of embedding and planar embedding in
Section 8.3. In this section we also introduce functions that test the planarity of a graph, that
construct a plane embedding of a planar graph, and that exhibit a Kuratowski subgraph in
a non-planar graph. Their implementation is discussed in Section 8.7. Sections 8.4 and 8.5
introduce order-preserving embeddings, plane maps, face cycles, and the genus of maps. In
Section 8.6 and 8.12 we relate combinatorics and geometry. In particular, we prove that a
map is plane if and only if its genus is zero, we derive an upper bound on the number of
edges of any planar graph and we show how to construct the map induced by geometric
positions assigned to the nodes of a graph. In Section 8.8 we show how to modify maps,
in Section 8.9 we discuss the generation of random plane maps, and in Section 8.13 we
introduce functions that five-color a planar graph and choose a large independent set in
a planar graph. Section 8.10 introduces face items as a means of dealing with faces in
the same way as with nodes and edges. In Section 8.11 we discuss our design choice of
representing maps by directed graphs instead of undirected graphs.

498
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Figure 8.1 A drawing produced by one of the graph drawing algorithms in AGD [JMN].

8.1 Drawings

We have already seen many drawings of graphs in this book. We have never defined what
we mean by a drawing, embedding, and planar embedding.

Let G be a graph and letS be a surface, e.g., the plane or the sphere or the torus. We will
be almost exclusively concerned with the plane in this book. However, the concepts also
apply to more complex surfaces.

A drawing I of G in S assigns a pointI (v) ∈ S to every nodev of G and a Jordan curve1

I (e) to every edgee = (v, w) such that:

(1) distinct points are assigned to distinct nodes, i.e.,I (v) 6= I (w) for v 6= w,
(2) the curve assigned to any edge connects the endpoints of the edge, i.e., ife = (v, w)

thenI (e)(0) = I (v) andI (e)(1) = I (w).

A drawing in the plane is called a straight line drawing if every edge is drawn as a straight
line segment. Figure 8.2 shows some drawings.

An algorithm, that takes a graph and produces a drawing for it, is called agraph drawing
algorithm2. LEDA provides some graph drawing algorithms; see the section on graph draw-
ing in the manual andtry the button layout in a GraphWin for a demonstration. Many more
graph drawing algorithms are available in the systems AGD [JMN] and GDToolkit [Bat].

1 A Jordan curvec is a curve without self-intersections, i.e., a continuous mappingc : [0, 1] −→ S with
c(x) 6= c(y) for 0 ≤ x < y < 1.

2 Graph drawing is an active area of research, see [BETT94, EM98, DETT98] for surveys.
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Figure 8.2 Some drawings of the same graph. All drawings except for the right upper drawing
are embeddings.

Both systems are based on LEDA. Figure 8.1 shows a drawing produced by an algorithm in
AGD.

The functions

void SPRING EMBEDDING(const graph& G,

node array<double>& xpos, node array<double>& ypos,

double xleft, double xright, double ybottom, double ytop,

int iterations = 250);

void SPRING EMBEDDING(const graph& G, const list<node>& fixed,

node array<double>& xpos, node array<double>& ypos,

double xleft, double xright, double ybottom, double ytop,

int iterations = 250);

compute straight line drawings of a graphG using a so-calledspring embedder3. A spring
embedder works iteratively. It models the nodes of a graph as points in the plane that repulse
each other, and it models each edge as a spring between the endpoints of the edge. In each
iteration the force acting on any node is computed as the sum of repulsive forces (from all
other nodes) and attractive forces (from incident edges), and the node is moved accordingly.
The number of iterations is determined by the parameteriterations.

Thex- andy-coordinates of the positions assigned to the nodes ofG are returned inxpos
andypos, respectively, and the points are constrained to lie in the rectangle defined byxleft,
xright, ybottom, andytop. The second version of the function keeps the positions of the
nodes infixedfixed.

Drawings in which edges do not cross are particularly nice. We call such drawings em-
beddings. Out of the four drawings shown in Figure 8.1 three are embeddings. Embeddings
are the topic of Section 8.3. The graphs in Figure 8.2 are undirected. For the purposes of

3 The name spring drawer would be more appropriate, as spring embedders do not produce embeddings, but
drawings. However, the name spring embedder is in general use.
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e1
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e5 e4

e0

e3

Figure 8.3 A bidirected graph: We havereversal(e2i ) = e2i+1 andreversal(e2i+1) = e2i for all i
with 0 ≤ i ≤ 2. Requirement (2) excludes the possibility thatreversal(e0) = e1, and
reversal(e3) = e0, and requirement (3) excludes the possibility thatreversal(e4) = e4 and
reversal(e5) = e5.

this chapter it is convenient to distinguish between the two orientations of an edge. This
leads to the concepts of bidirected graphs and maps, which we treat in the next section.

Exercise for 8.1
1 Implement a spring embedder.

8.2 Bidirected Graphs and Maps

A directed graphG = (V, E) is calledbidirectedif there is a bijective functionreversal:
E → E such that for every edgee = (v, w) with eR = reversal(e):

(1) eR = (w, v), i.e.,source(e) = target(eR) andtarget(e) = source(eR),
(2) reversal(eR) = e, and
(3) e 6= eR.

Property (1) ensures that reversal deserves its name, and properties (2) and (3) ensure that
reversal behaves properly in the presence of parallel edges and self-loops. Figure 8.3 shows
an example of a bidirected graph and also illustrates properties (2) and (3). A bidirected
graph has an even number of edges.

The function

bool G.is bidirected();

returnstrue if G is bidirected and returnsfalseotherwise. The function

void G.make bidirected(<list<edge>& R);

adds a minimum number of edges toG so as to makeG bidirected. The added edges are
returned inR.

Every edgee of any graphG has a reversal information associated with it. It is accessed
through

G.reversal(e)
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Figure 8.4 A map: Every pair of edges{e, eR} with reversal(e) = eR andreversal(eR) = e is
drawn as two half-edges. For each half-edge the name of the half-edge is shown on the left side
of the half-edge.

and has typeedge. The reversal information of an edge is either undefined (=nil) or is an
edgeeR satisfying (1) to (3). The operation

G.set reversal(e,f)

sets the reversal information ofe to f and the reversal information off to e. The function
checks whether the created reversal information is legal and aborts if it is not. If the reversal
information ofe was defined prior to the operation, the reversal information ofeR is set to
nil by the operation. The same holds true forf .

A map is a graph in which the reversal information of every edge is defined. A map
is always a bidirected graph and every bidirected graph can be turned into a map by setting
the reversal information appropriately. The function

bool G.is map()

returnstrue if G is a map and the functions

bool G.make map()

void G.make map(list<edge>& R)

turn G into a map by setting the reversal information of every edge. The first function
requires thatG is bidirected (ifG is not bidirected, the function returnsfalseand sets the
reversal information of a maximal number of edges), the second function adds a minimum
number of edges toG so as to makeG bidirected and then turnsG into a map. Both
functions preserve reversal information, i.e., ifreversal(e) is defined before the call, then
reversal(e) is not changed by either call.

We call a pair of edges{e, eR} with reversal(e) = eR (and hencereversal(eR) = e) a
uedge(undirected edge) and say thate andeR form the uedge. The uedge comprisinge
andeR is denoted{e, eR } or {v, w}, wherev andw are the two endpoints ofe. The latter
notation is ambiguous in the presence of parallel edges. We depict maps as shown in Figure
8.4. For every uedge{e, eR} we draw “two half-edges that meet” and label theme andeR,
respectively.

We have no iteration statement that iterates over the uedges of a graph. However, it is
easy to obtain the effect of iterating over uedges.
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forall edges(e,G)

{ if ( index(e) > index(G.reversal(e)) ) continue;

<body of loop>

}

Observe that the body of the loop is executed for exactly one edge in each uedge, namely
the one with smaller index.

We describe the implementations of some of the functions introduced above. We also
introduce a function that checks whether the reversal information of all edges is properly
defined. This section may be skipped on first reading.

We start with a functioncheckreversalinf that checks whether the reversal information
of every edge is either nil or satisfies (1) to (3) and raises an error if this is not the case4.
The function is non-trivial to write because it cannot assume that the reversal information
of an edge has a meaningful value, i.e., the function has to cope with the possibility that
G.reversal(e) is non-nil and not an edge ofG for somee.

We proceed as follows. We introduce a mapis edgeof G from edges to bool that we
initialize to false. We then setis edgeof G[e] to true for all edgese of G. Next, we iterate
again over all edgese of G and make sure thatreversal(e) is eithernil or an edge ofG. In
a third step we make sure that (1) to (3) holds for all edgese whose reversal information is
notnil.

〈checkreversalinf.c〉+�
bool check_reversal_inf(const graph& G)

{ map<edge,bool> is_edge_of_G(false);

edge e;

forall_edges(e,G) is_edge_of_G[e] = true;

forall_edges(e,G)

{ edge r = G.reversal(e);

if ( r == nil || !is_edge_of_G[r]) return false;

}

forall_edges(e,G)

{ edge r = G.reversal(e);

if (r == e || G.reversal(r) != e ||

G.source(e) != G.target(r) || G.target(e) != G.source(r) )

return false;

}

return true;

}

It is instructive to investigate what can go wrong when only the thirdforall edgesloop is
executed. It would then be possible thatr is different fromnil but not an edge ofG. The
access to the reversal, target, or source ofr could then result in a segmentation fault. The

4 We use the functioncheckreversalinf for testing purposes. Of course, all functions of the LEDA system are
designed to preserve the invariant that the reversal of every function is either nil or an edge ofG satisfying (1) to
(3) and hence, if none of the implementers of LEDA had ever made a mistake, the function would have never
raised an error.
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program above guards against this possibility by ensuring first that the reversal of any edge
e of G is eithernil or an edge ofG.

We next show the implementation of the functionmakemap. Its implementation is de-
rived from the functionIs Bidirectedgiven in Section 6.12.

A call of G.makemap( ) sets the reversal information of a maximal number of edges.
We proceed as follows: letv1, v2, . . . , vn be an arbitrary order on the nodes ofG, e.g., the
ordering given by the internal numbering of the nodes5. We make two listsESTandETS
of all edges whose reversal information is undefined.ESTstarts with all edges out ofv1,
followed by all edges out ofv2, . . . . For eachi , the edges out ofvi are in increasing order
of their target node.ETSstarts with all edges intov1, followed by all edges intov2, . . . .
For eachi , the edges intovi are in increasing order of the source node. We also want the
self-loops incident to anyvi to appear in reverse order in the two lists.

The listsEST and ETSare easy to generate. We collect all edges whose reversal in-
formation is undefined in a listEST and use bucket sort to rearrangeEST in increasing
lexicographic order. We use the index of the source node of an edge as the primary key and
the index of the target node as the secondary key. ForETSwe interchange the roles of the
primary and the secondary key, and we initializeETSto the reversal ofEST. The effect of
initializing ETSwith the reversal ofESTinstead of withETSis that the self-loops incident
to anyvi appear in reverse order in the two lists; this follows from the fact that bucket sort
is stable.

Having rearranged both lists we establish the reversal information.ESTstarts with all
edges out ofv1 sorted in order of increasing target andETSstarts with all edges intov1

sorted in order of increasing source. Both lists start with all self-loops incident tov1.
We scan over both lists and check whether the first edge onEST, call it e, can be paired

with the first edge onETS, call it r . We can paire and r if none of them was paired
previously and ifsource(e) = target(r), target(e) = source(r), ande 6= r . If e andr can
be paired, we pair them by setting their reversal information appropriately. The function
succeeds if all edges can be paired.

So assume thate andr cannot be paired. We show that at least one ofe andr will never
find a partner.

Assume first thatsource(e) 6= target(r). If source(e) < target(r) thenETScontains no
further edge which ends insource(e). Thuse cannot be paired. Similarly, ifsource(e) >

target(r) thenESTcontains no further edge that starts intarget(r). Thusr cannot be paired.
Assume next thatsource(e) = target(r) and target(e) 6= source(r). If target(e) is

less thansource(r) then ETScontains no further edge that starts insource(e) and ends
in target(e) and hencee cannot be paired. Iftarget(e) is greater thansource(r) thenEST
contains no further edge that ends intarget(r) and starts insource(r) and hencer cannot be
paired.

Assume finally thatsource(e) = target(r) andtarget(e) = source(r) ande = r , i.e.,e is
a self-loop. SinceESTandETScontain the self-loops incident to any node in reverse order

5 The internal number of a nodev is given byindex(v).
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this can only happen if there is an odd number of self-loops incident tosource(e) and if e
is the middle element of the block of self-loops incident tosource(e). In this situation it is
OK if e stays unpaired and all other self-loops incident tosource(e) are paired.

〈makemap.c〉�
static int map_edge_ord1(const edge& e) { return index(source(e)); }

static int map_edge_ord2(const edge& e) { return index(target(e)); }

bool graph::make_map()

{

int n = max_node_index();

int count = 0;

edge e,r;

list<edge> EST;

forall_edges(e,(*this)) if (e->rev == nil) EST.append(e);

int number_of_undefined_reversals = EST.length();

list<edge> ETS = EST; ETS.reverse();

EST.bucket_sort(0,n,&map_edge_ord2); // secondary key

EST.bucket_sort(0,n,&map_edge_ord1); // primary key

ETS.bucket_sort(0,n,&map_edge_ord1); // secondary key

ETS.bucket_sort(0,n,&map_edge_ord2); // primary key

// merge EST and ETS to find corresponding edges

while (! EST.empty() && ! ETS.empty())

{ e = EST.head();

r = ETS.head();

if ( e->rev != nil ) { EST.pop(); continue; }

if ( r->rev != nil ) { ETS.pop(); continue; }

if ( target(r) == source(e) )

{ if ( source(r) == target(e) )

{ ETS.pop(); EST.pop();

if ( e != r )

{ e->rev = r; r->rev = e;

count += 2;

}

continue;

}

else // target(r) == source(e) && source(r) != target(e)

{ if (index(source(r)) < index(target(e)))

ETS.pop(); // r cannot be matched

else

EST.pop(); // e cannot be matched

}

}

else // target(r) != source(e)

{ if (index(target(r)) < index(source(e)))

ETS.pop(); // r cannot be matched

else

EST.pop(); // e cannot be matched

}
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}

return count == number_of_undefined_reversals;

}

Given the function above, it is trivial to extend a graphG to a map. A callG.makemap( )

determines the reversal information of a maximal number of edges. For any edge whose
reversal information is still undefined, we add the reversed edge toG and set the reversal
information accordingly.

〈makemap.c〉+�
void graph::make_map(list<edge>& R)

{ if (make_map()) return;

list<edge> el = all_edges();

edge e;

forall(e,el)

{ if (e->rev == nil)

{ edge r = new_edge(target(e),source(e));

e->rev = r;

r->rev = e;

R.append(r);

}

}

}

Exercises for 8.2
1 Does the functioncheckreversalinf work if the mapis edgeof G is replaced by an edge

array?
2 Does the functioncheckreversalinf work if the last twoforall edgesloops are combined

into one?

8.3 Embeddings

Embeddingsare special drawings, namely drawings where no edge is drawn across a node,
where the images of distinct edges do not cross, and where the two edges comprising a
uedge are embedded the same. Formally, we define as follows:

A drawing I of a graphG into a surfaceS is called anembeddingif the images of edges
contain no images of points in their relative interiors6, if the images of edges belonging
to distinct uedges are disjoint except for endpoints7, and if the curves assigned to edges
belonging to the same uedge are reversals of each other8.

Figure 8.1 shows three embeddings of a mapM0 into the plane;M0 has nodesv1, v2, v3,

6 I (e)(x) 6= I (v) for any edgee, nodev, and realx with 0 < x < 1
7 I (e)(x) 6= I (e′)(y) for edgese ande′ with e 6= e′ ande′ 6= reversal(e) and allx andy with 0 < x, y < 1
8 I (eR )(x) = I (e)(1 − x) for all edgese, eR = reversal(e), and allx , 0 ≤ x ≤ 1
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andv4 and uedges{v1, v2}, {v1, v3}, {v1, v4}, and{v2, v3}, and will be used as the running
example in this chapter. An embedding into the plane is called aplanar embedding, and
a planar embedding in which every edge is mapped to a straight line segment is called a
straight line embedding. A graphG is calledplanar if it has a planar embedding.

The function

bool Is Planar(const graph& G)

tests whether the graphG = (V, E) has a planar embedding. It returnstrue if G is planar
andfalseotherwise. The running time isO(n + m).

The functions

bool PLANAR(graph& G, bool embed = false);

bool HT PLANAR(graph& G, bool embed = false);

bool BL PLANAR(graph& G, bool embed = false);

also test whether the graphG is planar. Whenembedis true, G is a map, andG is planar
(the functions rise an error whenembedis trueandG is not a map), the functions in addition
reorder the adjacency lists ofG such thatG becomes a plane map. The notion of plane map
is explained in Section 8.4. All of this takes timeO(n + m).

There are two implementations of the planarity test and planar embedding algorithm:
HT PLANAR realizes the planarity testing algorithm of Hopcroft and Tarjan, see [HT74]
or [Meh84c, IV.10], and the embedding algorithm of Mehlhorn and Mutzel, see [MM95].
BL PLANAR realizes the planarity testing algorithm of Lempel, Even, and Cederbaum, and
Booth and Lueker, see [LEC67, Eve79, BL76], and the embedding algorithm of Nishizeki
and Chiba, see [NC88]. The implementation of HTPLANAR is documented in [MMN94]
and the implementation of BLPLANAR is discussed in Section 8.7. BLPLANAR is the
faster of our implementations and hence PLANAR is synonymous to BLPLANAR.

The functions

bool PLANAR(graph& G, list<edge>& el, bool embed = false);

bool HT PLANAR(graph& G, list<edge>& el, bool embed = false);

bool BL PLANAR(graph& G, list<edge>& el, bool embed = false);

behave like the functions above whenG is planar. IfG is non-planar, the functions also
return a proof of non-planarity in the form of the edgesel of a Kuratowski subgraph. The
identification of Kuratowski subgraphs takes linear timeO(n + m) in BL PLANAR and
PLANAR, and takes quadratic timeO(n2) in HT PLANAR. We explain the notion ofKu-
ratowski subgraph.

Figure 8.5 shows two non-planar graphs, the complete graphK5 on five nodes and the
complete bipartite graphK3,3 with three nodes on each side. The non-planarity of both
graphs will be shown in Lemma 47 in Section 8.6. It is a famous theorem of Kuratowski,
see [Kur30, Whi73], that every non-planar graphG contains a subdivision9 of eitherK5 or
K3,3, i.e., there is a setel of edges inG forming a subdivision of eitherK5 or K3,3. Figure
8.6 shows a Kuratowski subgraph of a non-planar graph.

9 Let K be an arbitrary graph. A subdivision ofK is obtained fromK by subdividing edges. To subdivide an edge
means to split the edge into two by placing a new vertex on the edge.
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K5 K3,3

Figure 8.5 The Kuratowski graphsK5 andK3,3.

Figure 8.6 A non-planar graph and the Kuratowski subgraph proving non-planarity. The edges
of the Kuratowski subgraph are shown in bold. This figure was generated with the xlman-demo
gw plan demo.

There is also a function that gives more information about the Kuratowski subgraph than
just the list of its edges.

int KURATOWSKI(graph& G, list<node>& V, list<edge>& E,

node array<int>& deg);

returns zero ifG is planar and returns one otherwise. IfG is non-planar, it computes a
Kuratowski subdivisionK of G as follows:V is the list of all nodes and subdivision points
of K . For allv ∈ V which are subdivision points, the degreedeg[v] is equal to 2. IfK is a
K5, thendeg[v] is equal to 4 for all nodesv ∈ V that are not subdivision points. IfK is a
K3,3, thendeg[v] is equal to−3 (+3) for the nodesv on the left (right) side of theK3,3.

If G is a plane map, the function
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Figure 8.7 A straight line drawing produced by STRAIGHTLINE EMBEDDING. This figure
was generated with the xlman-demo gwplan demo.

int STRAIGHT LINE EMBEDDING(graph& G, node array<int>& xcoord,

node array<int>& ycoord);

computes for each nodev of G a point(xcoord[v], ycoord[v]) with integer coordinates in
the range [0.. 2(n−1)] such that the straight line embedding defined by these node positions
is an order preserving embedding ofG. The algorithm [F´ar48, dFPP88] has running time
O(n2). G must not have parallel edges and it must not have self-loops (since the existence of
parallel edges or self-loops excludes the existence of a straight line embedding). Figure 8.7
shows a straight line drawing produced by this algorithm.

The functionIs Planar played an important role in the development of LEDA. We added
the function to the system in 1991. The function had been implemented as part of a master’s
thesis and had been tested on a small number of examples (we did not have a large collection
of planar graphs available to us). The master’s thesis described the implementation; the
actual program was not part of the thesis.

In 1993 we were sent a planar graph which, however, our program declared non-planar.
When we started to revise the program we learned two things. First, we learned that writing
a function
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bool Is Planar(const graph& G)

means asking for trouble. A function that answers a complex question like

Is G planar?

should not just return “YES” or “NO”;it should justify its answer in a way that is easily
checked by the caller of the function.

Second, we learned that documentation and implementation had to be tied together more
closely by the use of literate programming. Literate programming, first advocated by
D.E. Knuth, suggests to embed an implementation into a document that describes the al-
gorithm. All programs in this book are presented in a literate programming style. We first
used CWEB [KL93] and later switched to noweb [Ram94].

In the case of planarity testing, the learning process led to reports [MMN94, MM95,
HMN96] and to function

bool PLANAR(graph& G, list<edge>& el, bool embed)

which justifies its answers:

• WhenG is non-planar the function returns a proof of non-planarity in the form of the
setel of edges of a Kuratowski subgraph. The caller can easily check that the edges in
el form a Kuratowski subdivision ofG.

• When G is planar,embedis set totrue, andG is a map, the function reorders the
adjacency lists ofG such thatG becomes a plane map. A caller of PLANAR has two
ways to check whether the returned map is plane. He can either produce a planar
drawing ofG with the help of STRAIGHTLINE EMBEDDING and visually inspect
the result, or he can compute the genus ofG. The genus of maps will be discussed in
Section 8.6 and it will be shown there that a map is plane iff its genus is zero. The
genus of a map can be computed by a simple program.

The fact that PLANAR justifies its answers and that the answers are easily checked can
be used to test the function on any input. Observe that testing is usually restricted to inputs
where the answer is known by other means. The following test program exploits the fact
that PLANAR can be tested on any input.

We choose integersn andm such that a random map withn nodes andm uedges has a
fair chance of being planar and a fair chance of being non-planar, generate random maps
with n nodes and aboutm edges, test them for planarity, and check the answer.

〈planar test.c〉+�
main(){

int n = read_int("n = "); int m = read_int("m = ");

graph G;

list<edge> el;

int P = 0; int K = 0;

while (P + K < 1000)
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{ random_graph(G,n,m);

list<edge> R;

G.make_map(R);

if ( PLANAR(G,el,true) )

{ assert(Genus(G) == 0); P++; }

else

{ assert(CHECK_KURATOWSKI(G,el)); K++; }

}

cout << "\n\nnumber of plane graphs = " << P;

cout << "\n\nnumber of non-plane graphs = " << K; newline;

}

In a run withn = 50 andm = 55, the program above found 308 planar graphs and 692
non-planar graphs.

The function PLANAR was the first function in LEDA that justified its answers. By now,
many functions do. We have seen many examples already in the preceding chapters and we
will see more in the chapters to come.A general discussion of the role of program checking
in LEDA can be found in Section 2.14.

Exercises for 8.3
1 Let G be a non-planar graph. Show that the following strategy identifies the edges of

a Kuratowski subgraph. Iterate over all edgese of G. If G \ e is non-planar, removee
from G, and if G \ e is planar leaveG unchanged. The edges remaining inG form a
Kuratowski subgraph.

2 Write a function

bool CHECK KURATOWSKI(const graph& G, const list<edge>& el)

that returnstrue if the edges inel form a Kuratowski subdivision ofG.

8.4 Order-Preserving Embeddings of Maps and Plane Maps

We define the notion of an order preserving embedding of a map.
For a vertexv, we useA(v) to denote the set of edges with sourcev. The setA(v) is

stored as a cyclic list. For an edgee,

G.cyclic adj succ(e);

G.cyclic adj pred(e);

return the successor and predecessor ofe, respectively, in the cyclic listA(source(e)).
We will, from now on, assume that the adjacency lists of the mapM0, our running exam-

ple, are ordered as follows:



512 Embedded Graphs

cyclic adj succ

e

cyclic adj pred

Figure 8.8 Order-preserving embeddings: The cyclic order of the edges inA(v) agrees with the
counter-clockwise ordering of the edges aroundv in the drawing.

v1 : e1 = (v1, v2), e2 = (v1, v4), e3 = (v1, v3)

v2 : e4 = (v2, v3), eR
1 = (v2, v1)

v3 : eR
3 = (v3, v1), eR

4 = (v3, v2)

v4 : eR
2 = (v4, v1).

Consider a drawing of a mapM into the plane (more generally, into any orientable sur-
face) and letv be any node ofM. The drawing defines a cyclic ordering on the edgesA(v)

emanating fromv, namely the counter-clockwise ordering10 of the curvesI (e), e ∈ A(v),
aroundI (v). A drawing is calledorder-preservingor order-compatibleif for every nodev
the counter-clockwise ordering of the curvesI (e), e ∈ A(v), aroundI (v) agrees with the
cyclic ordering of the edges inA(v), see Figure 8.8. In Figure 8.9 one of the embeddings
of M0 is order-preserving and one is not. In all further drawings of maps in this chapter we
will use order-preserving drawings.

A map is calledplaneif it has an order-preserving planar embedding. The function

bool Is Plane Map(const graph& G)

returnstrue if G is a plane map and returnsfalseotherwise. We will see its implementation
in Section 8.6.

8.5 The Face Cycles and the Genus of a Map

We define a partition of the edges of a map into cycles, the so-calledface cycles. We
introduce face cycles as purely combinatorial objects and will interpret them geometrically
in the next section. Based on the concept of face cycles we will define thegenusof a map.

10 A precise definition is as follows: for a positive realε consider the first intersections of the curvesI (e), e ∈ A(v),
with the circle of radiusε aroundI (v). For small enoughε this ordering does not depend onε.
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Figure 8.9 Two planar embeddings of the mapM0: In the embedding on the left the
counter-clockwise ordering of the edges inA(v1) is e1, e2, e3 and in the embedding on the right
the ordering ise1, e3, e2. The embedding on the left is order-preserving.

e0

e1

e2

e3

e4

Figure 8.10 Face cycle successors and predecessors: We haveei+1 = facecyclesucc(ei ) for all
i , 0 ≤ i < 5. Indices are mod 5. The drawing convention for maps is used.

For an edgee of a mapM we define the face cycle successor and face cycle predecessor
of e by:

face cycle succ(e) = cyclic adj pred(reversal(e))

face cycle pred(e) = reversal(cyclic adj succ(e)).

Figure 8.10 illustrates these definitions. The next lemma justifies the use of the namessucc
andpred and also shows that the functionfacecyclesuccdecomposes the edges of a map
into cycles.

Lemma 45Let M be a map and lete be an edge ofM. Then

(a) facecyclepred(facecyclesucc(e)) = e
(b) facecyclesucc(facecyclepred(e)) = e
(c) Let e0 = e and setei+1 = facecyclesucc(ei ) for i ≥ 0. Then there is ak such that

ek+1 = e0 andei 6= e j for all i and j with 0 ≤ i < j ≤ k.
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Proof (a) and (b) We have

facecyclepred(facecyclesucc(e))

= reversal(cyclicadj succ(cyclicadj pred(reversal(e))))

= reversal(reversal(e))

= e

and

facecyclesucc(facecyclepred(e))

= cyclicadj pred(reversal(reversal(cyclicadj succ(e))))

= cyclicadj pred(cyclicadj succ(e))

= e

(c) Let k be minimal such thatek+1 = ei for somei ≤ k. Assumei > 0. Fromek+1 =
facecyclesucc(ek) andei = facecyclesucc(ei−1) and part (a) we concludeek = ei−1, a
contradiction to the definition ofk. Thusi = 0.

For an edgee of a mapM we define theface cyclecontaininge as the cycle [e0, e1, . . . , ek ]
wheree0 = e, ei+1 = facecyclesucc(ei ) for i ≥ 0, ek+1 = e, ande j 6= ei for 0 ≤ i < j ≤
k. Part (c) of the lemma above guarantees that this is a good definition. Every edge ofM
belongs to exactly one face cycle and the face cycles partition the edges ofM.

We illustrate the concept of face cycle on our running example, the mapM0. The face
cycle containing the edgee1 = (v1, v2) is

[e1, e4, eR
3 , e2, eR

2 ],

and the face cycle containing the edgeeR
1 = (v2, v1) is

[eR
1 , e3, eR

4 ].

Let us verify that this is indeed the case. We have

facecyclesucc(eR
1 ) = cyclicadj pred(reversal(eR

1 )) = cyclicadj pred(e1) = e3,

facecyclesucc(e3) = cyclicadj pred(reversal(e3)) = cyclicadj pred(eR
3 ) = eR

4 ,

and

facecyclesucc(eR
4 ) = cyclicadj pred(reversal(eR

4 )) = cyclicadj pred(e4) = eR
1 .

We want to stress that the concept of face cycles is purely combinatorial. It is made
without any reference to a drawing of a map. A geometric interpretation is given in the next
section.

We close this section with the definition of thegenusof a map. LetM be a map withm
edges,c connected components,n nodes,nz isolated nodes, andfc face cycles. Then

genus(M) = (m/2 + 2c − n − nz− fc)/2.
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The genus of a map is always a non-negative integer, as we will show in the next section,
and characterizes the surfaces into which a map can be embedded. For the mapM0 we have
m = 8, c = 1, n = 4, nz = 0, and f = 2, and hencegenus(M0) = 0. We will see in the
next section that this implies thatM0 is a plane map.

The following program computes the genus of a map. We determine the number of nodes
and edges and the number of isolated nodes in the obvious way, and we callCOMPONENTS
to determine the number of connected components. We determine the number of face cycles
by tracing them one by one. We iterate over all edgese of G. If the face cycle ofe has not
been traced yet, we trace it and mark all edges on the cycle as considered.

〈genus.c〉�
int Genus(const graph& G)

{ if ( !Is_Map(G) ) error_handler(1,"Genus only applies to maps");

int n = G.number_of_nodes();

if ( n == 0 ) return 0;

int nz = 0;

node v;

forall_nodes(v,G) if ( outdeg(v) == 0 ) nz++;

int m = G.number_of_edges();

node_array<int> cnum(G);

int c = COMPONENTS(G,cnum);

edge_array<bool> considered(G,false);

int fc = 0;

edge e;

forall_edges(e,G)

{ if ( !considered[e] )

{ // trace the face to the left of e

edge e1 = e;

do { considered[e1] = true;

e1 = G.face_cycle_succ(e1);

}

while (e1 != e);

fc++;

}

}

return (m/2 - n - nz - fc + 2*c)/2;

}

8.6 Faces, Face Cycles, and the Genus of Plane Maps

The purpose of this section is to relate combinatorics and geometry. We will define the faces
of an embedding and relate it to the face cycles of a map. We will prove that a map is plane
if and only if its genus is zero. We will also show thatK5 andK3,3 are non-planar graphs.

Consider a mapM and an embeddingI of M into an orientable surfaceS. The removal
of the embedding fromS leaves us with a family of open connected subsets ofS, called
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the faces of the embedding. In an embedding into the plane exactly one of the faces is
unbounded and all other faces are bounded. The unbounded face is also called theouter
face. We associate a set of edges with each faceF , the boundary ofF . An edgee belongs
to the boundary ofF if the “left side” of I (e) is contained inF , formally, if for every pointp
in the relative interior of the embeddingI (e) of e and every sufficiently small disk centered
at p, the part of the disk lying to the left ofI (e) is contained inF .

Consider the embeddings ofM0 shown in Figure 8.9. In the embedding on the left, the
boundary of the unbounded face consists of the edgeseR

1 , e3, andeR
4 , and the boundary of

the bounded face consists of the edgese1, e4, eR
3 , e2, andeR

2 . In the embedding on the right,
the boundary of the unbounded face consists of the edgeseR

1 , e2, eR
2 , e3, andeR

4 , and the
boundary of the bounded face consists of the edgese1, e4, andeR

3 . In the embedding on the
left the face boundaries correspond to the face cycles ofM0.

The boundary of a face consists of one or more cycles11, which we callboundary cycles.
In the case of an order-preserving embedding boundary cycles and face cycles are the same.

Lemma 46Let I be an order-preserving embedding of a mapM. The boundary cycles of
the faces ofI are in one-to-one correspondence to the face cycles ofM.

Proof Let e = (v, w) be any edge ofM and consider the boundary cycleC containing
I (e). Let g = (w, z) be the edge such thatI (g) follows I (e) in C. Then I (g) follows
I (reversal(e)) in the clockwise ordering of the embedded edges aroundI (v). SinceI is an
order-preserving embedding we haveg = facecyclepred(e). Thus, boundary cycles and
face cycles are the same.

The next theorem shows that the genus of a map gives a combinatorial condition whether
a map is plane. It is more generally true, see [Whi73], that the genus of a mapM character-
izes the oriented surfaces into whichM can be embedded in an order-preserving way. The
following theorem is due to Euler [Eul53] and Poincar´e [Poi93].

Theorem 11Let M be any map. Then genus(M) ≥ 0. Moreover,M is a plane map iff
genus(M) = 0.

Proof We observe first that it suffices to prove the claims for a connected mapM. Let M1,
. . . , Mc be the connected components ofM. Then12 m = ∑

mi , n = ∑
ni , nz = ∑

nzi ,
fc = ∑

fci , andc = ∑
ci and hence

genus(M) =
∑

genus(Mi ).

Let us assume for the moment that the claims hold for connected maps, i.e., we have
genus(Mi ) ≥ 0 andMi is plane iffgenus(Mi ) = 0 for all i . We concludegenus(M) ≥ 0. If
M is plane then allMi ’s are plane. Thus,genus(Mi ) = 0 for all i and hencegenus(M) = 0.
Conversely,genus(M) = 0 impliesgenus(Mi ) = 0 for all i (sincegenus(Mi ) > 0 for some

11 In a connected graph the boundary of each face consists of exactly one cycle.
12 We usemi to denote the number of edges inMi and analogously forni , nzi , fci , andci .
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Figure 8.11 The edgese andeR belong to distinct face cyclese ◦ p andeR ◦ q. Removal ofe
andeR leaves us with a connected graph sincep andq provide alternative connections between
v andw. Let e1 = facecyclesucc(e), e2 = facecyclepred(e), e3 = facecyclepred(eR), and
e4 = facecyclesucc(eR). Removal ofe andeR makese1 the face cycle successor ofe3, ande4

the face cycle successor ofe2. No other successor relationship is affected. We conclude that the
removal ofe andeR generates the face cyclep ◦ q and affects no other face cycles. Thus,
fc′ = fc − 1.

i would imply genus(M j ) < 0 for some j ). Thus, Mi is plane for alli and henceM is
plane.

For connected maps we use induction on the number of edges. Ifm = 0 thenn = nz= 1
andfc = 0. Thus,M is plane andgenus(M) = 0. We turn to the induction step.

Assume first thatM contains a uedge{e, eR} such thate andeR belong to different face
cycles. Removal ofe andeR generates a mapM ′ with m ′ = m−2, n′ = n, c′ = c = 1,nz′ =
nz = 0, andfc′ = fc − 1, see Figure 8.11. Thus,genus(M) = genus(M ′). By induction
hypothesis,genus(M ′) ≥ 0 andM ′ is plane iffgenus(M ′) = 0. Fromgenus(M ′) ≥ 0 we
concludegenus(M) ≥ 0. We next show thatM is plane iffgenus(M) = 0. If M is plane
then M ′ is plane (since an order-preserving embedding ofM ′ is obtained from an order-
preserving embedding ofM by removing the images ofe andeR). Thusgenus(M ′) = 0
by induction hypothesis and hencegenus(M) = 0. Conversely, ifgenus(M) = 0 then
genus(M ′) = 0 and hence there is an order-preserving embeddingI ′ of M ′, by induction
hypothesis. By Lemma 46 there is a faceF in the embeddingI ′ with boundary cyclep ◦ q.
We embede andeR into F and obtain an order-preserving embeddingI of M.

Assume next that for every uedge{e, eR} of M, e andeR belong to the same face cycle.
Consider any nodev and letA(v) = (e0, e1, . . . , ek−1) be the cyclic list of edges out ofv.
Then

ei = facecyclesucc(eR
i+1)

for all i , 0 ≤ i < k, by the definition of face cycles, see Figure 8.12. Sinceei andeR
i

belong to the same face cycle by assumption, all edges incident tov belong to the same
face cycle and, sinceM is connected, all edges ofM belong to the same face cycle. Thus,
fc = 1. SinceM is connected, the number of uedges is at leastn − 1. Thus,m ≥ 2(n − 1),
c = 1, nz= 0, and hencegenus(M) ≥ 0. We next show thatM is plane iffgenus(M) = 0.
If M is plane consider an order-preserving embeddingI of M. The face cycles ofM are
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Figure 8.12 A nodev with A(v) = (e0, e1, e2, e3). There is a face cycle containingeR
i+1 andei

for all i , 0 ≤ i < 4. Indices are modulo 4.

in one-to-one correspondence to the faces of the embedding. Since there is only one face
cycle, there is only one face, and henceM cannot contain a cycle. Thus,m = 2(n − 1) and
hencegenus(M) = 0. Conversely, ifgenus(M) = 0 then(m/2+ 2− n − 1) = 0 and hence
m = 2(n − 1). The number of uedges is therefore equal ton − 1 and hence the uedges form
a tree. For a tree there is clearly an order-preserving embedding.

The theorem above implies that the test of whether a graphG is a plane map is trivial to
implement. We only have to test whetherG is a map and whether the genus ofG is zero.

bool Is Plane Map(const graph& G) { return Is Map(G) && Genus(G) == 0; }

We draw some more consequences of Theorem 11. It implies an upper bound on the
number of edges in a planar graph (without self-loops and parallel edges) and it implies that
the Kuratowski graphsK5 andK3,3 are non-planar.

Lemma 47

(a) Let M be a connected plane map in which every face cycle consists of at leastd edges,
whered ≥ 3. Then

m/2 ≤ d

d − 2
(n − 2),

i.e., M has at most(d/(d − 2)) · (n − 2) uedges.
(b) Let M be a connected planar map without self-loops and without parallel edges. Then

M has at most3n − 6 uedges, ifn > 3, and a node of degree at most five.
(c) Let M be a connected bipartite planar map without self-loops and without parallel

edges. ThenM has at most2n − 4 uedges, ifn ≥ 4.
(d) The complete graphK5 on five nodes is not planar.
(e) The complete bipartite graphK3,3 with three nodes on each side is not planar.
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Proof (a) If every face cycle consists of at leastd edges thenm ≥ d · fc. Thus,

0 = genus(M) = m/2 + 2 − n − fc ≥ m/2 + 2 − n − m/d

and hence(m/2) · (1 − 2/d) ≤ n − 2 or m/2 ≤ (d/(d − 2)) · (n − 2).
(b) and (c) Reorder the adjacency lists ofM such thatM becomes a plane map. IfM has

no self-loops and no parallel edges, every face cycle ofM consists of at least three edges.
If, in addition, M is bipartite, every face cycle ofM consists of at least four edges. The
bounds on the number of edges now follow from part (a). If every node would have degree
six or more, the total number of edges would be at least 6n/2 = 3n.

(d) A planar graph with five nodes and no self-loops and no parallel edges has at most
nine uedges by part (b). The graphK5 has 5· 4/2 = 10 uedges.

e) A planar bipartite graph with six nodes and no self-loops and no parallel edges has at
most eight uedges by part (c). The graphK3,3 has 3· 3 = 9 uedges.

Exercise for 8.6
1 It is obvious from the definition ofgenus(M) that 2·genus(M) is an integer. The purpose

of this exercise is to show thatgenus(M) is an integer. In the proof of Theorem 11 we
have constructed for every connected mapM a connected mapM ′ such thatgenus(M) =
genus(M ′) and such thatM ′ has a single face cycle. LetM ′′ be obtained fromM ′ by
removing an edgee and its reversaleR. Determine the number of edges, nodes, face
cycles, and connected components ofM ′′ and conclude thatgenus(M ′) − genus(M ′′) is
an integer. Use this observation and induction to show that the genus of every map is an
integer.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs

This section is joint work with D. Ambras, R. Hesse, Christoph Hundack, and E. Kalliwoda.

We give the details of the planarity test, the planar embedding algorithm, and the algo-
rithm for finding Kuratowski subgraphs. For each algorithm we will first derive the required
theory and then give an implementation. All implementations run in linear time and are col-
lected in the file

〈 bl planar.c〉�
#include <LEDA/graph_alg.h>

#include <LEDA/pq_tree.h>

#include <LEDA/array.h>

#include <assert.h>

〈auxiliary functions〉
〈planarity test〉
〈planar embedding of biconnected maps〉
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Figure 8.13 A biconnectedst-numbered graphG. Nodes is labeled 1 and nodet is labeled 9.

〈planar embedding of arbitrary maps〉
〈Kuratowski graphs in biconnected maps〉
〈Kuratowski graphs in arbitrary graphs〉

8.7.1 The Lempel–Even–Cederbaum Planarity Test
We discuss the planarity testing algorithm invented by Lempel, Even, and Cederbaum
[LEC67, Eve79]. We assume thatG = (V, E) is a biconnected graph13, thate0 = (s, t)
is an arbitrary edge ofG, and that the nodes ofG are st-numbered, i.e.,s is numbered 1,
t is numberedn, and every node distinct froms andt has a lower and a higher numbered
neighbor.

We will first discuss the required theory and then describe an implementation based on
PQ-trees.

The Theory: We identify nodes with their st-number, i.e.,V = {1, . . . , n}. Figure 8.13
shows an example of an st-numbered biconnected graph. We will use it as our running
example.

Let Vk = {1, . . . , k} and letGk = (Vk, Ek) be the graph induced byVk , i.e., Ek consists
of all edges ofG whose endpoints are both inVk. We extendGk to a graphBk. For each
edge(v, w) of G with v ≤ k andw ≥ k + 1 there is a node and an edge inBk. They
are called virtual nodes and virtual edges, respectively. We label every virtual node with its
counterpart inG. Figure 8.14 shows the graphB7 for our running example.

If G is planar,Bk has a plane embedding which resembles a bush: nodev, 1 ≤ v ≤ k, is
drawn at heightv, all virtual nodes are put on a horizontal line at heightk +1, and all edges
are drawn asy-monotone curves14. We call such an embedding abush formfor Bk and we

13 The rather trivial extension to arbitrary graphs will be given at the end of the section.
14 A curve isy-monotone if any horizontal line intersects the curve at most once.
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Figure 8.14 The graphB7 for the graphG of Figure 8.13. There are three virtual nodes labeled
8, one for each edge connecting node 8 to a node labeled 7 or less inG, and there are five virtual
nodes labeled 9, one for each edge connecting node 9 to a node labeled 7 or less inG. The nodes
4, 6, and 7 comprise a biconnected component which we denoteH0 for later reference.
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Figure 8.15 A bush form for the graphB7 of Figure 8.14.

call the horizontal line at heightk + 1 the horizon. The existence of bush forms will follow
from the discussion to come. Figures 8.15 and 8.16 shows two bush forms for the graph of
Figure 8.14.

Theleaf wordof a bush form is a sequence in{N, E}∗, whereE represents a virtual node
labeledk + 1, N represents a virtual node labeledk + 2 or larger, and the virtual nodes are
listed in their left-to-right order on the horizon. The bush form in Figure 8.15 has leaf word
E N N N E N E N and the bush form in Figure 8.16 has leaf wordN E E E N N N N . A bush
form for Bk is calledextendibleif all virtual nodes labeledk + 1 are consecutive on the
horizon, i.e., if its leaf word is inN∗ E∗N∗. An extendible bush form̂Bk is readily extended



522 Embedded Graphs

1

2

3

4

5

6

7

8 99 8 8 9 9 9

Figure 8.16 An extendible bush form forB7.

to a bush formB̂k+1 for Bk+1. We move all nodesv, v > k + 1, to heightk + 2, we merge
all virtual nodes labeledk + 1 into a single node (since they are consecutive on the horizon,
merging does not destroy planarity), and add a new virtual edge and node for each edge
(k + 1, w) with w > k + 1.

The question is now how to decide whetherBk has an extendible bush form, and how to
find an extendible bush form. We show:

Theorem 12Bk+1 has a bush form iffBk has a bush form and no obstructions. Moreover, if
Bk has no obstructions then any bush form̂Bk of Bk can be transformed into an extendible
bush form ofBk by a sequence of permutations and flippings.

We still need to define several of the terms used in the theorem above. An obstruction
is either an obstructing articulation point or an obstructing biconnected component. In
the definition of either kind of obstruction we need the concepts of clean, mixed, or full
subgraph. A subgraph ofBk is calledclean, mixed, or full if none, some but not all, or all
of its virtual nodes are labeledk + 1.

An articulation pointv of Bk is obstructingif there are three or more components of
Bk \ v that are mixed.

Consider the graphB7 of Figure 8.14. Node 4 is an articulation point andB7 \4 has three
components: Two of them are mixed and one is full. Node 4 is non-obstructing. Please
convince yourself that none of the articulation points is obstructing.

We come to biconnected components ofBk. A nodey of a biconnected componentH
is called anattachmentnode ofH if it is also the endpoint of an edge outsideH . Attach-
ment nodes are articulation points ofBk and hence are embedded on the boundary of the
outside face in every bush form ofBk. In the graphB7 the biconnected componentH0 has
attachment nodes 4, 6, and 7.

Let y0, y1, . . . , yp−1 be the attachment nodes of a biconnected componentH of Bk. We
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Figure 8.17 yh andyh+1 are adjacent attachment nodes on the boundary cycle ofH in B̂k , but
are separated byyi andy j in the boundary cycle ofH in B̂ ′

k .

usey0 for the lowest numbered attachment node;y0 is also the lowest numbered node in
H . Any bush formB̂k of Bk induces an embedding ofH (simply remove all nodes outside
H and their incident edges). In this embedding ofH the boundary of the outside face of
H is a simple cycle, which we call theboundary cycle15 of H in B̂k. A counter-clockwise
traversal of the boundary cycle yields a cyclic order on the attachment nodes, which we call
the cyclic order induced by the bush form. Consider Figures 8.15 and 8.16. The cyclic order
of the attachment nodes 4, 6, and 7 is 4, 6, 7 in the first figure and is 4, 7, 6 in the second
figure.

Lemma 48Let y0, y1, . . . , yp−1 be the attachment nodes of a biconnected componentH of
Bk in the cyclic order induced by some bush formB̂k of Bk. Then any other bush form ofBk

induces either the same cyclic order or its reversal.

Proof Assume otherwise, i.e., there is a bush formB̂ ′
k such that the attachment nodes appear

in a different cyclic order inB̂ ′
k. Then there must be indicesh, i , and j such thatyh and

yh+1 (indices are modp) are separated byyi andy j in the boundary cycle ofH in B̂ ′
k, see

Figure 8.17. The embeddinĝB ′
k implies that any pair of paths connectingyh to yh+1 andyi

to y j , respectively, must cross. On the other hand, the embeddingB̂k implies the existence
of non-crossing paths.

Let y0, y1, . . . , yp−1 be the attachments ofH in one of their cyclic orders16. Thecompo-
nent ofBk opposite toH at yi is the subgraph ofBk spanned by all nodes that are reachable
from yi without using an edge ofH . We denote it byCi . EachCi is either clean, mixed, or
full. We define the signature ofH as the word

s0s1 . . . sp−1 ∈ {clean,mixed,full}∗

wheresi describes the status ofCi . In the graphB7, the component opposite toH0 at 6 is
full, the component opposite toH0 at 7 is clean, and the component opposite toH0 at 4 is

15 A node ofH which is not an attachment node ofH may lie on the boundary cycle ofH in some bush forms and
may not lie on the boundary cycle in others. Attachment nodes belong to the boundary cycle in every bush form.

16 There are two by the preceding lemma. For the definition in this paragraph it does not matter which one is chosen.
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Figure 8.18 Permuting and flipping.

mixed. The signature ofH0 is “mixed clean full” for the ordering 4, 7, 6 and “mixed full
clean” for the ordering 4, 6, 7.

A biconnected componentH is non-obstructingiff a cyclic shift of its signature is in

clean∗ mixed1
0 full∗ mixed1

0 clean∗,

where mixed10 denotes zero or one occurrence of mixed, and is obstructing otherwise.
We come to permutations and flippings. Permutations apply to articulation points ofBk.

Let v be an articulation point ofBk. Then, if v > 1, exactly one component ofBk with
respect tov contains nodes lower thanv, and if v = 1, no component does17. We call
the component containing lower numbered nodes theroot componentof v and all other
componentsnon-root componentsof v.

In the graphB7 of Figure 8.14 the root component of node 4 contains nodes 5, 1, 2, 3,
two copies of 8, and three copies of 9.

Consider now any bush form̂Bk of Bk. A sub-bushof B̂k with lowest numbered node
v is the restriction ofB̂k to the union of some non-root components with respect tov. In
particular, each non-root component ofv corresponds to a sub-bush ofB̂k. A permutation
operationpermutes the sub-bushes corresponding to the non-root components with respect
to an articulation pointv and aflipping operationflips over a sub-bush, see Figure 8.18.

We are now ready for the if-direction of Theorem 12.

17 Observe that any nodeu with u < v can reach 1 without passing throughv by the virtue ofst-numberings.
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Figure 8.19 Permuting the sub-bushes ofB̂ with respect tov. C, M, and F stand for clean,
mixed, and full sub-bushes, respectively.

Lemma 49If Bk has a bush form and no obstructions then any bush formB̂k can be trans-
formed into an extendible bush form by a sequence of permutations and flippings.

Proof We want to use induction over sub-bushes and therefore prove a slightly stronger
claim. We call a sub-bushincompleteif there is a virtual node labeledk +1 outside the sub-
bush and we call a sub-bushstrongly extendibleif its leaf word is in N∗ E∗ or E∗N∗. We
show that every sub-bush can be transformed into an extendible sub-bush, i.e., a sub-bush
whose leaf word is inN∗ E∗N∗, and that every incomplete sub-bush can be transformed into
a strongly extendible sub-bush.

Let B̂ be any sub-bush. If̂B has only one virtual node, the claims are obvious. So, assume
otherwise and letv be the lowest numbered node in̂B. We distinguish cases according to
whetherv is an articulation point of̂B or not.

If v is an articulation point of̂B then at most two of the components ofB̂ with respect
to v are mixed. We can therefore permute the components such that all full and all clean
components are consecutive and such that the two mixed components bracket the full com-
ponents, see Figure 8.19. We apply the induction hypothesis to the sub-bushes and therefore
may assume that the sub-bushes are extendible or even strongly extendible (for incomplete
sub-bushes). We complete the induction step with two observations. First, the mixed sub-
bushes are incomplete except if there is at most one mixed sub-bush and this sub-bush
contains all virtual nodes labeledk + 1. Second, ifB̂ is incomplete then there is at most
one mixed sub-bush since the root component ofBk with respect tov is mixed. Thus,B̂ can
be transformed into an extendible bush form and into a strongly extendible bush form ifB̂
is incomplete. The transformation consists of transformations of the sub-bushes, permuting
the sub-bushes, and maybe flipping one of the mixed sub-bushes.

If v is not an articulation point of̂B, let H be the biconnected component ofB̂ containing
v. Let y0, y1, . . . , yp−1 with v = y0 be the attachment points ofH in Bk in one of their two
cyclic orders. We have a sub-bushB̂i of B̂ for the componentCi of Bk opposite toyi for
all i , 1 ≤ i ≤ p − 1. SinceH is non-obstructing and sinceC0 is either clean or mixed (it
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cannot be full since it contains the edge(s, t)), we have

s1 . . . sp−1 ∈ clean∗ mixed1
0 full∗ mixed1

0 clean∗

if C0 is clean and we have

s1 . . . sp−1 ∈ clean∗ mixed1
0 full∗ ∪ full∗ mixed1

0 clean∗

if C0 is mixed. In either case we conclude thatB̂ can be transformed into an extendible
bush form and into a strongly extendible bush form ifB̂ is incomplete and henceC0 is
mixed. The transformation consists of transformations of sub-bushes followed (maybe) by
a flipping of the two mixed sub-bushes.

Figure 8.20 illustrates Lemma 49. It shows a sequence of transformations that transform
the bush form of Figure 8.15 into the extendible bush form of Figure 8.16.

We summarize. The Lempel–Even–Cederbaum planarity test constructs a sequenceB̂0,
B̂1, B̂2, . . . , B̂n of bush forms. In iterationk + 1 the bush formB̂k is first transformed into
an extendible bush form̂B ′

k and then extended to a bush form̂Bk+1. The transformation to
an extendible bush form uses permutations and flippings and is possible ifB̂k contains no
obstructions.

The running time of the Lempel–Even–Cederbaum test isO(n2) in its original form.
Booth and Lueker improved the running time toO(n + m) by the introduction of thePQ-
tree data structure, which we will discuss in the next section. In Section 8.7.3 we will show
that the existence of an obstruction implies the existence of a Kuratowski graph inG.

The PQ-Tree Data Structure: Booth and Lueker [BL76] introduced the PQ-data structure
to keep track of the sequence of bush forms arising in the Lempel–Even–Cederbaum pla-
narity test. PQ-trees have wider applications than planarity testing but we will not discuss
them here.

PQ-trees have the following interface.

pq tree T(m);

declares a PQ-treeT which can represent bush forms in which every edge is labeled with
an integer in [1.. m]. After the declarationT represents the empty bush form with no nodes
and no edges. We useS to denote the set of virtual edges in the current bush form.S is
empty initially.

The operation

bool T.replace(list<int>& L, list<int>& U, list<int>& I)

adds a node to the current bush form. The node is incident to the virtual edgesL in the
current bush form and introduces new virtual edgesU . We must haveL ⊆ S, U is a set
of integers (= edges) that have never been inS before, andL = ∅ iff S = ∅; the latter
requirement corresponds to the fact that only node 1 is incident to no edge from below. The
new set of virtual edges becomes(S \ L) ∪ U .

The function returnstrue if the current bush form is extendible, i.e., can be transformed to
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Figure 8.20 Transforming the bush form of Figure 8.15 into an extendible bush form.

a bush form in which all edges inL are contiguous on the horizon. The function returnsfalse
otherwise. Once a call ofreplacehas returnedfalse, the PQ-tree becomes non-functional
and no further operations can be applied to it.

The last argumentI is irrelevant for the planarity test and is only required for the con-
struction of a planar embedding. We will discuss it in the next section.
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The amortized running time ofreplaceis proportional to the length ofL plus the length
of U and the running time of the declarationT (m) is O(m).

We are now ready for the planarity test. The function PLANTEST expects a biconnected
graphG, an st-numberingstnumof its nodes, and a listst list containing the nodes ofG in
increasing order of st-number, and returnstrue iff G is a planar graph.

If G has less than five nodes thenG is planar. So assume thatG has at least five nodes.
We declare a PQ-treeT (m), wherem is one larger than the maximal index of any edge18.
We useT to maintain the bush formŝBk for k = 0, 1, 2, . . . .

We iterate over the nodes in increasing order of st-number. For eachv, we collect the
edges that connectv to lower numbered nodes inL, and we collect the edges that connectv

to higher numbered nodes inU . Self-loops are ignored as they do not affect planarity. We
update the bush form by

T.replace(L,U,I),

where I is a dummy argument. If the call is not successful, we break from the loop and
returnfalse, if the call is successful, we proceed to the next node. If all nodes can be added
to the bush form we returntrue.

〈planarity test〉�
static bool PLANTEST(graph& G, node_array<int>& st_num,

list<node>& st_list)

{

int n = G.number_of_nodes();

int m = G.max_edge_index() + 1;

if (n < 5) return true;

pq_tree T(m);

int stv = 1;

node v;

forall(v,st_list)

{

list<int> L, U, I;

edge e;

forall_inout_edges(e,v)

{ node w = G.opposite(v,e);

int stw = st_num[w];

if (stw < stv) L.push(index(e)+1);

if (stw > stv) U.push(index(e)+1);

}

if ( !T.replace(L,U,I) ) break;

stv++;

}

return stv == n+1;

}

18 The data type graph numbers edges with non-negative integers. The number of an edge is called its index. Since
PQ-trees expect positive numbers, we identify any edge with its index plus one.
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The program above performs the planarity test in timeO(n +m). This follows from the fact
that the declaration ofT requires timeO(m) and that the total cost of allreplaceoperations
is O(n + m) and that an st-numbering can be computed in linear time (see Section 7.4).

The program above is short and elegant. It performs a complex task, namely, to test
whether a graph is planar, in linear time and a few lines of code. Of course, all the com-
plexity is hidden in the implementation of PQ-trees.

Can you trust the program above? “Yes, you can trust it”, but “ it would be unwise to do
so”. We have not explained the inner workings of PQ-trees, their implementation is complex
(almost 2000 lines), and most seriously there is no way to check the answer of the program
above. It just says “yes” or “no”. In the sections to come we will extend the program above
to a program that can be checked. We show how to compute planar embeddings of planar
graphs and Kuratowski subgraphs of non-planar graphs.

8.7.2 Planar Embeddings
Chiba et al [CNAO85, NC88] have shown how to extend the planarity test of Lempel,
Even, and Cederbaum to an embedding algorithm. We review their algorithm and give
the implementation of functions

static bool PLAN EMBED(graph& G, node array<int>& st num,

list<node>& st list);

bool BL PLANAR(graph& G, bool embed);

The first function takes a biconnected mapG, an st-numberingstnumof G, and the list of
nodes ofG in increasing order of st-number, and tests whetherG is planar. IfG is planar,
it reorders the adjacency lists ofG such thatG becomes a plane map.

The second function applies to any mapG. It returnstrue if G is planar and it returns
falseotherwise. IfG is planar andembedis true, G is turned into a plane map. Ifembedis
true andG is not a map, the function aborts. Ifembedis false, the function applies to any
graphG.

Biconnected st-numbered Maps:We discuss the function PLANEMBED. The planarity
testing algorithm constructs a sequence of bush formsB̂0, B̂1, B̂2, . . . , B̂n. The construction
is implicit in the sense that the bush forms are hidden in the internal structure of the PQ-
tree. We wantB̂n. The construction ofB̂k+1 from B̂k consists of two steps: first,̂Bk is
transformed into an extendible bush form̂B ′

k and then nodek + 1 is added to obtain̂Bk+1.
For a nodev let L(v) be the set of edges(v, w) with w < v, and for any integerk with

k ≥ v let Lk(v) be the counter-clockwise order of the edges inL(v) in the bush formB̂k.
The embedding algorithm is based on the following observations:

• The cyclic order of the adjacency listsA(v), v ∈ V , can be constructed from the lists
Ln(v), v ∈ V .

• The sequenceLk(k) is readily extracted from the PQ-tree data structure.

• The sequenceLk+1(v) is equal toLk(v) or L rev
k (v) for k ≥ v.
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We provide more details on the last item and postpone the discussion of the other two
items.

Bush forms are transformed by permutations and flippings. Permutations have no effect
on the order of the listsL(v) for anyv. They have a dramatic effect on the order of the lists
U (v), whereU (v) is the set of edges(v, w) with v < w. For this reason we do not keep
track of the order of theU (v)’s during the construction process but determine their orders
in a second phase (this is the subject of the first item). A flipping of a sub-bush with lowest
numbered vertexw reverses the order ofL(v) for all v in the sub-bush withv 6= w and does
not affect the order ofL(v) for any otherv. We conclude thatLk+1(v) is equal to either
Lk(v) or L rev

k (v) for anyv with v ≤ k. We say that nodev is flipped in iterationk + 1 if
Lk+1(v) = L rev

k (v). If v is not flipped in iterationk + 1 thenLk+1(v) = Lk(v).
We conclude thatLn(v) is equal toLv(v) if v is flipped an even number of times and is

equal toL rev
v (v) if v is flipped an odd number of times. We next show how to determine

efficiently how often nodes are flipped. We could maintain a counter for each node and
increment it whenever the node is flipped. Since a linear number of nodes may be flipped in
each iteration, this would result in a quadratic algorithm. We are aiming for linear running
time and hence need a more compact way to maintain the counters.

In the graphBk+1 there is a unique biconnected componentHk+1 havingk + 1 as its
highest numbered node. We callHk+1 the biconnected component formed in iterationk +1.

Lemma 50All edges inL(k + 1) are contained inHk+1 and any biconnected component
H of Bk is either contained inHk+1 or edge-disjoint fromHk+1, see Figure 8.21.

Proof Consider any two lower neighborsu andv of k + 1. They are connected by a path of
length two throughk + 1 and they are connected by a path which avoidsk + 1, the second
half-sentence being a consequence ofst-numbering. Thus, all edges inL(k + 1) belong to
Hk+1 and the first part of the lemma is shown.

Any two edges belonging to the same biconnected component ofBk belong to the same
biconnected component ofBk+1. This proves the second part of the lemma.

For a biconnected componentH of Bk let V +(H ) denote the set of nodes ofH except
for the lowest numbered node ofH . A flipping operation changes either the order ofL(v)

for all nodesv ∈ V +(H ) or for no nodev ∈ V +(H ). This follows from the fact that a
biconnected component is either contained in a sub-bush or disjoint from it. We say that a
biconnected componentH is flipped in iterationk + 1 if all nodes inV +(H ) are flipped in
iterationk + 1.

Lemma 51There is a transformation of̂Bk to an extendible bush form in which only bicon-
nected componentsH of Bk are flipped that become part ofHk+1.

Proof Let B̂ ′
k be the extendible bush form produced by the strategy of Lemma 49 and

assume that some biconnected componentH that does not become part ofHk+1 is flipped
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Figure 8.21 The biconnected components ofBk are indicated as ovals and articulation points
are indicated as solid circles. The hatched biconnected components become part ofHk+1.

by the transformation from̂Bk to B̂ ′
k. Let y = y(B̂ ′

k) be the lowest numbered node that
is part of a biconnected componentH that is flipped by the transformation tôB ′

k and does
not become part ofHk+1. Consider the bush form̂B ′′

k obtained by flipping the smallest
sub-bushB̂ that containsH . B̂ ′′

k is extendible since no leaf labeledk + 1 is contained inB̂.
Moreover, either no biconnected component that does not become part ofHk+1 is flipped in
B̂ ′′

k or y(B̂ ′′
k ) > y(B̂ ′

k).
We conclude that̂Bk can be transformed into an extendible bush form in which only

biconnected components are flipped that become part ofHk+1.

We can now explain the third argument of functionreplaceof classpqtree. It consists of
three parts, which in iterationk + 1 are as follows (see Figure 8.22):

• An integerl specifying the number of components ofBk that are merged intoHk+1.

• A sequencej0, j1, . . . , jl−1 of integers, whereH| j0|, . . . , H| jl−1| are the biconnected
components ofBk that are merged intoHk+1, and ji is positive if Hji is not flipped in
iterationk + 1 and is negative otherwise.

• The edges19 in L(k + 1) in their counter-clockwise order aroundk + 1 in B̂k+1.

We denote the third argument ofreplaceby I because it contains the instructions of how to
obtainB̂k+1 from B̂k.

19 More precisely, the sequence of numbers identifying the edges.
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Figure 8.22 The bush formB̂8 obtained from adding node 8 to the bush form of Figure 8.16.
The biconnected componentH8 consists of the biconnected componentsH3, H5, andH7 and the
edges inL(8). The counter-clockwise order of the edges inL(8) is (8, 3), (8, 1), (8, 6). The
biconnected componentsH3 andH7 are flipped when going from the bush form̂B7 of Figure
8.15 toB̂8. ThusI = 3, −3, 5, −7, (8, 3), (8, 1), (8, 6), where the first 3 indicates that three
components are merged intoH8, the sequence−3, 5, −7 indicates that the merged components
areH3, H5, andH7 and thatH3 andH7 are flipped, and where(8, 3), (8, 1), (8, 6) form L(8).

We are now ready for the implementation of PLANEMBED. It consists of three phases.
In the first phase, we run the planarity test of the preceding section with three changes:

• We are now dealing with a map and therefore store only one direction of each edge in
the PQ-tree. In phase one we are dealing with listsL(v) and hence we store the
direction from larger to smaller nodes. We construct the listsL(v) andU (v) by
iterating over all edges out ofv: edges to lower numbered nodes are put intoL(v) and
the reversals of edges to higher numbered nodes are put intoU (v). We put edge
reversals intoU (v) in order to guarantee that for each uedge the direction going from
higher to smaller st-number is put into the PQ-tree. Self-loops are ignored in phase
one.

• We define an arrayEDGE that stores for each integer in [1..m] the edge corresponding
to it.

• In iterationk we store the outputI of PQ-tree operationreplacein I [k].

Here comes phase one.

〈PLAN EMBED: phase 1〉�
int n = G.number_of_nodes();

if ( G.number_of_edges() == 0 ) return true;

int m = G.max_edge_index() + 1;

// interface for pq_tree

pq_tree T(m);

list<int>* I = new list<int>[n+1];
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edge* EDGE = new edge[m+1]; // EDGE[i+1] = edge with index i

edge e;

forall_edges(e,G) EDGE[index(e)+1] = e;

// planarity test

int stv = 1;

node v;

forall(v,st_list)

{

list<int> L, U;

edge e;

forall_adj_edges(e,v)

{ int stw = st_num[target(e)];

if (stw < stv) L.push(index(e) + 1);

if (stw > stv) U.push(index(G.reversal(e)) + 1);

}

if ( !T.replace(L,U,I[stv]) ) break;

stv++;

}

At the end of phase one, we either havestv< n +1 and thenG is non-planar, orstv= n +1
and thenG is planar andI [k] contains the instruction list of thek-th iteration for allk,
1 ≤ k ≤ n. Thus:

〈planar embedding of biconnected maps〉�
static int PLAN_EMBED_K(graph& G, node_array<int>& st_num,

list<node>& st_list)

{ 〈PLAN EMBED: phase 1〉
if (stv == n+1) { 〈PLAN EMBED: phase 2〉 }

delete[] EDGE;

delete[] I;

return stv - 1;

}

static bool PLAN_EMBED(graph& G, node_array<int>& st_num,

list<node>& st_list)

{ return PLAN_EMBED_K(G,st_num,st_list) == G.number_of_nodes(); }

The first version of the function is needed for the search for Kuratowski subgraphs in the
next section. It returns the largest integerk such thatBk has a bush form.

We come to the second phase. The purpose of the second phase is to determine for each
node the order ofL(v) in B̂n. This is eitherLv(v) or L rev

v (v) depending on whetherv is
flipped an even or an odd number of times.

Noden is not flipped at all. Consider now a nodej < n and assume thatHj is merged
into Hk in iterationk. Then j is not flipped in iterationsj +1 tok −1, is flipped in iteration
k if I [k] contains− j in its second part and is not flipped in iterationk if I [k] contains+ j
in its second part, and is flipped in iterations later thank iff node k is flipped. Thus it is
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easy to compute the number of times any nodev is flipped by iterating over all nodes in
downward order of st-number.

It actually suffices to compute the parity of the number of times a node is flipped; the
parity is+1 if the number is even and is−1 otherwise. Assume that we process nodek and
let j be such thatHj is merged intoHk in iterationk. Then the parity ofj is equal to the
sign of the occurrence ofj in I [k] times the parity ofk. In the piece of code below, node
k tells nodej , if the parity of j is odd, by putting the indicator ODD as the first element of
I [ j ].

The order ofLn(v) is equal to the third part ofI (v), if v is flipped an even number of
times, and is equal to the reversal of the third part ofI (v) otherwise.

〈PLAN EMBED: phase 2〉�
node_array<list<edge> > L_n(G);

const int EVEN = +1; const int ODD = -1;

int stv = n;

forall_rev(v,st_list)

{

if (stv == 1) break; // for v = t down to s+1

list<int>* I_v = &I[stv];

int d = 1;

int l = I_v->pop();

if ( l == ODD )

{ d = -1;

l = I_v->pop();

}

// l = number of components merged into H_v

int i;

for( i = 0; i < l; i++)

{ int j = d * I_v->pop();

if (j < 0) I[-j].push(ODD); // tell j that it is odd

}

if (d > 0)

forall(i,*I_v) L_n[v].append(EDGE[i]);

else

forall(i,*I_v) L_n[v].push(EDGE[i]);

stv--;

}

〈PLAN EMBED: phase 3〉

We come to the third and last phase of PLANEMBED. We knowLn(v) for every node
v and want to compute the counter-clockwise order of the edges inU (v), whereU (v) is the
set of edges connectingv to higher numbered nodes. Self-loops will be treated as an add-on.
We compute the ordering of the edges inU (v) by so-calledleftmost depth-first search.

Consider a depth-first search starting int that uses only edges inL(v) and that considers
the edges inL(v) in their counter-clockwise order. Such a depth-first search is called a
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Figure 8.23 A leftmost depth-first search starting int . For every nodev the edges going to
lower numbered neighbors are explored in left-to-right order. The edge labels indicate the order
in which the edges are explored.
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Figure 8.24 The edge(u, v) is after(u, w) in the clockwise order of edges inU(u) but (v, u) is
explored before(w, u).

leftmost depth-first search, as the edges inL(v) are explored in left-to-right order (if drawn
downwards fromv) for anyv and, more generally, the grapĥBn is explored in a left-to-right
fashion. This implies that for any nodev, the edges inU (v) are explored in left-to-right
fashion, i.e., clockwise order, see Figure 8.23.

Lemma 52A leftmost depth-first search explores the edges inU (u) in clockwise order for
any nodeu.

Proof Assume otherwise. Letu be the highest numbered node such thatU (v) is ordered
incorrectly, say edge(u, v) is after edge(u, w) in the clockwise order of edges inU (u), but
(v, u) is explored before(w, u). Consider the pathsPv andPw from t to u, which follow the
tree paths tov andw in the depth-first search tree, respectively, and then take the edge(v, u)
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or (w, u), respectively, see Figure 8.24. Letz be the node furthest fromt and different from
u that is common to both path. LetQv and Qw be the induced paths fromz to u passing
throughv andw, respectively, and letev andew be the first edges on these paths. Thenev

precedesew in the counter-clockwise order of the edges inL(z).
The pathsQv andQw arey-monotone,Qv is left of Qw “near” z, andQv is right of Qw

“near” u, and hence the two paths must cross. By definition ofz they do not cross in a node
and hencêBn is not a bush form ofBn.

The following function LMDFS realizes leftmost depth-first search and builds a list
embedlist containing all edges in∪uU (u) in the order in which they are explored; the edge
which is explored first comes last in the list, and the edge which is explored last comes first
(since edges are pushed on the list and not appended). In other words, for each nodeu the
edges inU (u) occur in counter-clockwise order inembedlist. The edges do not necessarily
occur consecutively.

LMDFS reuses the arraystnum to record whether a node has been visited. leftmost
depth-first search

〈auxiliary functions〉�
static void LMDFS(graph& G, node v, const node_array<list<edge> >& L_n,

node_array<int>& st_num, list<edge>& embed_list)

{

if (st_num[v] < 0) return;

st_num[v] = -1;

edge e;

forall(e,L_n[v])

{ embed_list.push(G.reversal(e));

LMDFS(G,target(e),L_n,st_num,embed_list);

}

}

We use LMDFS in a functionembeddingthat reorders the adjacency lists. We first build a
list embedlist containing for each nodev the set of edges inA(v) in counter-clockwise order
but not necessarily consecutively, and then use the sorting functionG.sort edges(embedlist)
to rearrange the adjacency lists accordingly.

We buildembedlist in three steps. In the first step we copy the listsL n[v] to embedlist,
in the second step we call LMDFS to add the edges in∪vU (v) in their counter-clockwise
order, and in the third step we deal with all self-loops. The self-loops can be added in any
order, we only have to make sure that the two directions of a self-loop are placed next to
each other. In this way there will be no crossings between self-loops.

〈auxiliary functions〉+�
static void embedding(graph& G, node t, node_array<int>& st_num,

node_array<list<edge> >& L_n)

{

list<edge> embed_list;

node v; edge e;
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forall_nodes(v,G)

forall(e,L_n[v]) embed_list.append(e);

LMDFS(G,t,L_n,st_num,embed_list);

// append self-loops at the end of the list

edge_map<bool> treated(G,false);

forall_nodes(v,G)

{ edge e;

forall_adj_edges(e,v)

if (target(e) == v && !treated[e])

{ embed_list.append(e); embed_list.append(G.reversal(e));

treated[e] = treated[G.reversal(e)] = true;

}

}

G.sort_edges(embed_list);

}

After all this preparatory work phase three reduces to a call of embedding.

〈PLAN EMBED: phase 3〉�
node t = st_list.tail();

embedding(G,t,st_num,L_n);

The running time of PLANEMBED is O(n + m). We have already argued that phase
one takes linear time. Phase two touches every edge once and hence takes also linear time.
Phase three consists of a depth-first search followed by extracting the adjacency lists from
embedlist and hence takes linear time.

Arbitrary Maps: We give the implementation ofBL PLANAR(G, embed). Recall thatG
must be a map ifembedis true. The implementation is fairly simple.

We extendG to a biconnected graph (ifembedis false) and to a biconnected map (if
embedis true), compute an st-numbering ofG, call the planarity test for biconnected graphs
and maps, respectively, and remove the added edges. The functionMakeBiconnectedis
discussed in the exercises of Section 7.4. It makes a graph biconnected by adding edges. It
does so without destroying planarity.

〈planar embedding of arbitrary maps〉�
bool BL_PLANAR(graph& G, bool embed)

{ if (G.number_of_edges() <= 0) return true;

// prepare graph

list<edge> el;

if (embed)

{ if ( !G.make_map() )

error_handler(1,"BL_PLANAR: can only embed maps.");

Make_Biconnected(G,el);

edge e;

forall(e,el)

{ edge x = G.new_edge(target(e),source(e));
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el.push(x);

G.set_reversal(e,x);

}

}

else

Make_Biconnected(G,el);

node_array<int> st_num(G);

list<node> st_list;

ST_NUMBERING(G,st_num,st_list);

bool plan;

if (embed)

plan = PLAN_EMBED(G,st_num,st_list);

else

plan = PLANTEST(G,st_num,st_list);

// restore graph

edge e; forall(e,el) G.del_edge(e);

return plan;

}

8.7.3 Kuratowski Subgraphs
We describe functions to extract Kuratowski subgraphs. We first give a simple algorithm
with quadratic running time, then a linear time algorithm for biconnected graphs, and finally
a linear time algorithm for arbitrary graphs.

We start with a simple algorithm that computes Kuratowski subgraphs in quadratic time
O((n + m)m). We iterate over all edgese of G. We hidee and check the planarity ofG \ e.
If G \ e is non-planar, we leavee hidden, and ifG \ e is planar, we adde to the set of edges
of the Kuratowski subgraph and restore it. At the end we restore all edges. The running
time of this algorithm ism times the running time of the planarity test. The running time
can be improved toO(n2) by observing that it suffices to consider 3n +7 uedges ofG, since
a planar graph withn nodes can have at most 3n + 6 edges according to Lemma 47. We
leave it to the exercises to implement this improvement.

〈auxiliary functions〉+�
static void KURATOWSKI_SIMPLE(graph& G, list<edge>& K)

{ K.clear();

if ( BL_PLANAR(G,false) )

error_handler(1,"KURATOWSKI_SIMPLE: G is planar");

list<edge> L = G.all_edges();

edge e;

forall(e,L)

{ G.hide_edge(e);

if (BL_PLANAR(G,false))

{ G.restore_edge(e);

K.append(e);

}
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}

G.restore_all_edges();

}

We turn to the linear time algorithm of Karabeg and Hundack, Mehlhorn, and N¨aher
[Kar90, HMN96] to find Kuratowski subgraphs. We assume thatG a biconnected non-
planar map without self-loops and parallel edges.

When the planarity test algorithm is run onG there will be a minimalk such thatBk has
a bush form butBk+1 does not, becauseBk contains an obstruction. Thenk + 1 < n since
B̂n−1 can always be extended. We show

Lemma 53If Bk has a bush form and contains an obstruction thenG contains a Kuratowski
subgraph.

An obstruction is either an obstructing articulation point or an obstructing biconnected
component. We deal with obstructing articulation points first and then with obstructing
biconnected components. For both cases we need some simple facts about trees. For a tree
T and a subsetS of its nodes we useT (S) to denote the smallest subtree ofT connecting
all nodes inS. If |S| ≤ 3 thenT (S) contains a noder , called thejoin of S in T , such that
the paths fromr to the nodes inS are pairwise edge-disjoint (r ∈ S is allowed). If|S| = 3,
the join is unique.

Lemma 54Letv be an articulation point ofBk and letT be a depth-first search tree ofBk

rooted atv. If w andz are distinct virtual nodes in some connected componentC of Bk with
respect tov then the join of{v, w, z} in T is distinct fromv, w, andz.

Proof Let u be the first node reached in a depth-first search ofC starting inv. SinceC is
a component with respect tov, C\v is connected. This implies that all nodes inC\v are
descendants ofu in T .

In the sequel we useTt to denote a tree on nodes{k + 1, . . . , n} rooted att (= n) and
where each nodev, v < n, has an incoming edge from a higher numbered node. Such a tree
exists sinceG is st-numbered.

We also useTs to denote a depth-first search tree ofBk. Ts is rooted ats except if
explicitly specified otherwise.

An Obstructing Articulation Point: Let v be an obstructing articulation point, i.e., at
least three of the components with respect tov are mixed. LetCi , 0 ≤ i ≤ 2, be a mixed
component with respect tov, let wi be a leaf20 labeledk + 1 in Ci and letzi be a large21

leaf inCi . Let Ts be a depth-first search tree ofBk rooted atv.
Let Ti be the subgraph ofTs spanned byv, wi , andzi , and letxi be the join ofTi . Consider

the subgraphK of G consisting of:

20 We will use leaf and virtual node as synonyms in this section.
21 A large leaf is a leaf that is labeledk + 2 or larger.
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Figure 8.25 A K3,3 with sides{x0, x1, x2} and{v, k + 1, r }.

• T0, T1, T2, and the treeTt (z0, z1, z2).

Let r be the join ofz0, z1, andz2 in Tt . Thenr 6= k + 1 and henceK is a subdivision of
K3,3 with sides{x0, x1, x2} and{k + 1, v, r }, see Figure 8.25.

An Obstructing Biconnected Component: Let H be a biconnected component with at-
tachment nodesy0, y1, . . . , yp−1. We assume thaty0 is the lowest numbered attachment
node and thaty0, y1, . . . , yp−1 appear in this order on the boundary cycle ofH in B̂k,
where B̂k is a bush form ofBk. Let Ci be the part ofBk opposite toH at yi and let
s(Ci) ∈ {clean, mixed, full } be the status ofCi . We have

s(C0)s(C1) . . . s(Cp−1) /∈ clean∗ mixed1
0 full∗ mixed1

0 clean∗,

sinceH is obstructing.

Lemma 55One of the cases below arises:

(1) There are indicesa, b, c, andd such thatya, yb, yc, and yd occur in this order on the
boundary cycle ofH , andCa andCc are non-clean andCb andCd are non-full.

(2) There are indicesa, b, andc such thatya, yb, andyc occur in this order on the boundary
cycle ofH , andCa, Cb, andCc are mixed.

In either case, 0 is among the selected indices.

Proof Observe first, thatC0 is either clean or mixed, but never full (since there is a leaf
labeledn in C0 andk + 1 < n). If

s(C1) . . . s(Cp−1) /∈ clean∗ mixed1
0 full∗ mixed1

0 clean∗,

then there area, b, c with 1 ≤ a < b < c ≤ p − 1 andCa andCc are non-clean andCb is
non-full. SinceC0 is non-full we are in case (1) withd = 0. So assume that

s(C1) . . . s(Cp−1) ∈ clean∗ mixed1
0 full∗ mixed1

0 clean∗.
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ThenC0 is non-clean (and hence mixed) andp − 1 ≥ 2 sinceH is non-obstructing other-
wise.

If case (1) does not arise witha = 0 then there are nob, c, andd with 1 ≤ b < c < d ≤
p − 1 with Cb andCd non-full andCc non-clean, i.e., anyCc between two non-fullCb and
Cd is clean. Thus, eitherp − 1 = 2 or

s(C1) . . . s(Cp−1) ∈ clean∗ mixed1
0 full∗ ∪ full∗ mixed1

0 clean∗.

In the latter situationH is non-obstructing, and hence this case is excluded. In the former
situationC1 andC2 must be mixed sinceH is non-obstructing otherwise. Thus, (2) arises.

We next exhibit Kuratowski subgraphs for cases (1) and (2).
Assume first that there are indicesa, b, c, andd such thatya, yb, yc, andyd occur in this

order on the boundary cycle ofH , Ca andCc are non-clean andCb andCd are non-full. We
call this anobstructing cycle with four alternating attachments. Consider the subgraphK
of G consisting of:

• the boundary cycle ofH ,

• a path fromya to a copy ofk + 1 in Ca,

• a path fromyc to a copy ofk + 1 in Cc,

• a path fromyb to a large leafzb in Cb,

• a path fromyd to a large leafzd in Cd ,

• the treeTt ({k + 1, zb, zd }).
Let r be a join ofk + 1, zb, andzd in Tt ; we may assume thatr 6= k + 1 (observe that
zb 6= k + 1 andzd 6= k + 1). K is a subdivision ofK3,3 with sides{yb, yd, k + 1} and
{ya, yd, r }, see Figure 8.26.

Assume next that there are indicesa, b, andc such thatya, yb, andyc occur in this order
on the boundary cycle ofH andCa, Cb, andCc are mixed. We call this acycle with three
mixed attachments. Consider the subgraphK of G consisting of:

• the boundary cycle ofH ,

• treesTs({yi, wi , zi }) wherei ∈ {a, b, c}, wi is a leaf labeledk + 1 in Ci , andzi is a
large leaf inCi ,

• treeTt ({k + 1, z1, z2, z3}).
Let y ′

i be the join ofyi , zi , andwi . Theny ′
i is distinct fromzi andwi but may be equal to

yi . Figure 8.27 illustrates the situation.
We can obtain aK5 from K by contracting the paths connectingyi with y ′

i for i ∈
{a, b, c} and by contracting the edges inTt({za, zb, zc }). We can now appeal to the fact that
if a graphK can be contracted to a subdivision ofK3,3 or K5 then it contains a subdivision
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r

zb zd k + 1

yd

yc

yb

ya

Figure 8.26 An obstructing cycle with four alternating attachments gives rise to aK3,3 with
sides{ya, yc, r } and{yb, yd , k + 1}.

k + 1 za zb zc

y ′
b

yby ′
a

ya

y ′
c

yc

Figure 8.27 An obstructing cycle with three mixed attachments yields aK5 after contraction of
the paths fromyi to y ′

i for i ∈ {a, b, c} and contraction of the edges in treeTt ({za , zb, zc }).

of K3,3 or K5 before the contraction, see [NC88, Lemma 1.2] and the exercises. We will
exploit this fact in our implementation.

For completeness we also exhibit the Kuratowski subgraphs directly. We distinguish
three cases.

If yi = y ′
i for all i ∈ {a, b, c} andTt ({k + 1, za, zb, zc }) contains a node of degree four

thenK is a subdivision ofK5.
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Figure 8.28 An obstructing cycle with three mixed attachments yields aK3,3 if yi = y ′
i for

i ∈ {a, b, c} andTt ({k + 1, za, zb, zc }) contains no node of degree four. In the figure,k + 1 is
paired withza .

If yi = y ′
i for all i ∈ {a, b, c} andTt ({k + 1, za, zb, zc }) contains no node of degree four

thenTt ({k + 1, za, zb, zc }) contains two nodes of degree three, sayr1 andr2. The removal
of the path joiningr1 andr2 pairsk + 1 with somezi . We remove fromK the path fromyi

to the copy ofk + 1 in Ci and the part of the boundary cycle ofH joining the other twoy’s
and obtain a subdivision ofK3,3, see Figure 8.28, with sides{ya, k + 1, r2} and{yb, yc, r1}.

If yi 6= y ′
i for somei ∈ {a, b, c}, say ya 6= y ′

a, let r be the join ofza, zb, zc in
Tt({za, zb, zc}). We obtain a subdivision ofK3,3 with sides{ya, k + 1, r } and{y ′

b, y ′
c, y ′

a}
from K by deleting the part of the boundary cycle ofH that connectsyb and yc, and by
replacingTt({k + 1, za, zb, zc }) by Tt ({za, zb, zc }), see Figure 8.29.

This completes the proof of Lemma 53.

We turn to a linear time implementation. The following function assumes thatG is a
biconnected non-planar map without self-loops and parallel edges. It computes the set of
edges of a Kuratowski subgraph ofG in K .

〈Kuratowski graphs in biconnected maps〉�
static void Kuratowski(graph& G, list<edge>& K)

{ node v; edge e;

string current_case; // for debugging purposes

〈compute st-numbering〉
int k = PLAN_EMBED_K(G,st_num,st_list);

if ( k == G.number_of_nodes() )

error_handler(1,"Kuratowski: G must be non-planar");

〈compute bush form B for Bk〉
〈obstructing articulation point〉
〈obstructing biconnected component〉

}
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k + 1 za zb zc

y ′
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y ′
c
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r

Figure 8.29 An obstructing cycle with three mixed attachments yields aK3,3 if ya 6= y ′
a.

We start by computing an st-numbering ofG. Next we call PLANEMBED K to find k
such thatBk has a bush form butBk+1 has not. We compute a bush formB for Bk and then
search for an obstruction inB. This will be the most difficult part of the implementation.
Having found an obstruction we extract a Kuratowski subgraph as shown in the proof of
Lemma 53.

Compute st-Numbering: We compute an st-numbering and the nodess andt .

〈compute st-numbering〉�
node_array<int> st_num(G);

list<node> st_list;

ST_NUMBERING(G,st_num,st_list);

node s = st_list.head();

node t = st_list.tail();

The Bush Form B for Bk: We construct a bush formB for Bk. We declareB of type
GRAPH<node, edge> and let every node and edge ofB know its original inG. We add a
nodetopB to B and connect it to every virtual node (by a uedge). In this wayB becomes a
biconnected map.

We st-number the nodes ofB by first numbering the non-virtual nodes, then the virtual
nodes, and finally the nodetopB. We store the st-numbering instnumB, the ordered list of
nodes inst listB. Finally, sB is the node inB that corresponds tos andtB is a virtual node
in B that is connected tosBby an edge.tB is a large leaf in the root component of every
articulation point and in the part ofB opposite toy0 for any biconnected componentH with
lowest attachment nodey0.
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Having constructed the st-numbering we call PLANEMBED to compute a planar em-
bedding ofB. We restore the st-numbers as they are destroyed by the planar embedding
program, and we delete the auxiliary nodetopB from B andst listB.

〈compute bush form B for Bk〉�
GRAPH<node,edge> B;

list<node> st_listB;

node_array<node> v_in_B(G,nil);

forall(v,st_list)

{ if ( st_num[v] > k ) break;

node vB = v_in_B[v] = B.new_node(v);

st_listB.append(vB);

}

node top_B = B.new_node();

forall_nodes(v,G)

{ if (st_num[v] > k) continue;

forall_adj_edges(e,v)

{ node w = G.target(e);

if ( st_num[w] < st_num[v] ) continue;

edge r = G.reversal(e);

node wB;

if ( st_num[w] > k )

{ wB = B.new_node(w);

st_listB.append(wB);

B.set_reversal(B.new_edge(wB,top_B),B.new_edge(top_B,wB));

}

else

wB = v_in_B[w];

edge e1 = B.new_edge(v_in_B[v],wB,e);

edge r1 = B.new_edge(wB,v_in_B[v],r);

B.set_reversal(e1,r1);

}

}

node sB = v_in_B[s]; node tB;

forall_adj_edges(e,sB)

if ( B[B.target(e)] == t) tB = B.target(e);

B.set_reversal(B.new_edge(sB,top_B),B.new_edge(top_B,sB));

st_listB.append(top_B);

node_array<int> st_numB(B);

int stn = 1;

forall(v,st_listB) st_numB[v] = stn++;

PLAN_EMBED(B,st_numB,st_listB); // destroys st-numbers

stn = 1;

forall(v,st_listB) st_numB[v] = stn++;

B.del_node(top_B); st_listB.Pop(); // remove top_B

Obstructing Articulation Points: We search for an obstructing articulation point and, if
successful, extract a Kuratowski subgraph.
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〈obstructing articulation point〉�
array<node> z(3);

array<node> spec(3);

A successful search for an obstructing articulation point will store the obstructing articula-
tion point inv, and fori , 0 ≤ i < 3, will store a large leaf in thei -th mixed component with
respect tov in z[i ] and a leaf labeledk + 1 in spec[i ].

The search (successful or not) will also compute some auxiliary information for internal
use and for later use in the search for obstructing biconnected components.

We define an enum that we use to distinguish between leafs labeledk + 1 and large leafs,
and we define two functions so that node arrays can be used as type parameters.

〈auxiliary functions〉+�
enum { K_PLUS_1 = 0, OTHERS = 1};

ostream& operator<<(ostream& o, const node_array<node>&) { return o; }

istream& operator>>(istream& i, node_array<node>&) { return i; }

We give the declarations of the auxiliary informations and explain them below.

〈obstructing articulation point〉+�
list<node> dfs_list;

node_array<edge> tree_edge(B,nil);

node_array<int> dfs_num(B,-1);

int dfs_count = 0;

DFS(B,sB,dfs_list,dfs_num,dfs_count,tree_edge);

edge_array<int> comp_num(B);

int num_comps = BICONNECTED_COMPONENTS(B,comp_num);

node_array<edge> up_tree_edge(G,nil);

array<node_array<node> > leaf(2);

leaf[K_PLUS_1] = leaf[OTHERS] = node_array<node>(B,nil);

array<node_array<node> > leaf_in_upper_part(2);

leaf_in_upper_part[K_PLUS_1] =

leaf_in_upper_part[OTHERS] = node_array<node>(B,nil);

node_array<int> num_mixed_non_root_comps(B,0);

node_array<node> spec_leaf_in_root_comp(B,nil);

array<node_array<node> > child(1,2); // want indices one and two

child[1] = child[2] = node_array<node>(B,nil);

The auxiliary information is as follows: letTs be a depth-first search tree ofB rooted ats.

treeedge[v] is the tree edge intov in Ts for v 6= s and isnil for v = s, dfsnum[v] is the
dfs-number ofv, anddfslist is the list of nodes ofB in increasing order of dfs-number. All
quantities just mentioned are computed by a call of the auxiliary function DFS, see below.

numcompsis the number of biconnected components, andcompnum[e] is the number of
the biconnected component containinge for any edgee of B. Both values are computed by
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calling the biconnected components function. We callcompnum[e] the component number
of e.

uptreeedge[v] is for any nodev of G with stnum[v] > k andv 6= t an edge from a higher
numbered node. It isnil for all other nodes ofG. The up-tree edges define a treeTt rooted
at t on the nodes labeledk + 1 and larger.

leaf[K PLUS1][v] is a leaf labeledk + 1 in the subtree ofTs rooted atv (nil if no such leaf
exists).

leaf[OTHERS][v] is a large leaf in the subtree ofTs rooted atv (nil if no such leaf exists).

The next four pieces of information are only defined for articulation points. Theupper
part with respect to an articulation pointis the union of the non-root components with
respect to the articulation point.

leaf in upperpart[K PLUS1][v] is a leaf labeledk + 1 in the upper part ofv (nil if there is
no such leaf).

leaf in upperpart[OTHERS][v] is a large leaf in the upper part ofv (nil if there is no such
leaf).

child[1][v] is a child ofv in Ts that lies in a mixed non-root component with respect tov

(nil if there is no such child).

child[2][v] is a child ofv in Ts that lies in a second mixed non-root component with respect
to v (nil if there is no such child).

We next discuss how the auxiliary information is computed. The quantities related to depth-
first search are computed by a variant of depth-first search.

〈auxiliary functions〉+�
void DFS(const graph& G, node v,

list<node>& dfs_list, node_array<int>& dfs_num,

int& dfs_count, node_array<edge>& tree_edge)

{ dfs_list.append(v);

dfs_num[v] = dfs_count++;

edge e;

forall_adj_edges(e,v)

{ node w = G.target(e);

if ( dfs_num[w] == -1 )

{ tree_edge[w] = e;

DFS(G,w,dfs_list,dfs_num,dfs_count,tree_edge);

}

}

}

The up-tree is easily computed. We simply select for each node labeled larger thank an
edge going to a node with higher st-number and then put the reversal of the edge into the
tree.
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k + 1
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s

Figure 8.30 The root component ofv consists of the nodess, v, a, andb. Tree edges are drawn
in bold. The tree edge(v, a) belongs to the same biconnected component as the tree edge intov,
but the tree edge(v, k + 1) does not. The tree edge(v, k + 1) belongs to a non-root component
with respect tov.

〈obstructing articulation point〉+�
forall_nodes(v,G)

{ if (st_num[v] <= k ) continue;

edge e;

forall_adj_edges(e,v)

{ node w = G.target(e);

if ( st_num[w] > st_num[v] )

{ up_tree_edge[v] = G.reversal(e); break; }

}

}

All other auxiliary information is computed by scans overTs . We start with some simple
observations, see Figure 8.30. We have, for any nodev, the following:

• The tree edge intov belongs to the root component with respect tov.

• A tree edge out ofv belongs to the root component with respect tov iff it belongs to
the same biconnected component as the tree edge intov iff it has the same component
number as the tree edge intov.

• A tree edge out ofv belongs to a non-root component with respect tov iff its
component number is different from the component number of the tree edge intov or
if v is equal to (the copy of)s in B.

• The non-root components with respect tov are in one-to-one correspondence to the
tree edges out ofv.

The node labelsleaf[K PLUS1] and leaf[OTHERS] are computed by a leaf to root scan
of Ts .
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〈obstructing articulation point〉+�
forall_nodes(v,B)

{ if (st_numB[v] <= k) continue;

if ( st_num[B[v]] == k + 1 )

leaf[K_PLUS_1][v] = v;

else

leaf[OTHERS][v] = v;

}

forall_rev(v,dfs_list) // down the tree

{ if (v == sB) continue;

node pv = B.source(tree_edge[v]);

assign(leaf[K_PLUS_1][pv],leaf[K_PLUS_1][v]);

assign(leaf[OTHERS][pv], leaf[OTHERS][v]);

}

where we used the following conditional assignment functionassignto propagate informa-
tion.

〈auxiliary functions〉+�
void assign(node& x, const node& y) { if ( x == nil) x = y; }

We next compute for each articulation pointv the number of mixed non-root components
with respect tov andleaf in upperpart[][ v].

A nodev identifies a non-root component of its parentpv if either pv is equal tosBand
sBhas more than one child or if the tree edges intov andpvbelong to different biconnected
components. Actually,sBalways has at least two children, one is a copy oft and the other
contains a copy ofk + 1 in its subtree. Note thatk + 1 6= t since the planarity test cannot
fail when nodet is to be added.

The non-root component ofpv identified byv is mixed if it contains a leaf labeledk + 1
as well as a large leaf.

We are propagating information from the leaves to the root and hence know the number
of mixed non-root components ofv whenv is reached. If a nodev has three mixed non-root
components we extract a Kuratowski subgraph.

〈obstructing articulation point〉+�
forall_rev(v,dfs_list) // down the tree

{ if (num_mixed_non_root_comps[v] >= 3)

{ 〈v has three mixed non-root components〉 }

if ( v == sB) continue;

node pv = B.source(tree_edge[v]);

if ( pv == sB || comp_num[tree_edge[v]] != comp_num[tree_edge[pv]] )

{ if ( leaf[K_PLUS_1][v] && leaf[OTHERS][v] )

num_mixed_non_root_comps[pv]++;

assign(leaf_in_upper_part[K_PLUS_1][pv],leaf[K_PLUS_1][v]);

assign(leaf_in_upper_part[OTHERS][pv],leaf[OTHERS][v]);

}

}
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Assume thatv has three mixed non-root components. We iterate over all children ofv

and search for three children that define mixed non-root components. Whenever such a
child is found we copy its two leaves toy[i ] andspec[i ] for i = 0, 1, and 2.

〈v has three mixed non-root components〉�
current_case = "three mixed non-root components";

int i = 0;

forall_adj_edges(e,v)

{ node w = B.target(e);

if ( w == sB || v != B.source(tree_edge[w]) ) continue;

if ( leaf[K_PLUS_1][w] && leaf[OTHERS][w] )

{ z[i] = leaf[OTHERS][w]; spec[i] = leaf[K_PLUS_1][w];

i++;

if ( i == 3) break;

}

}

〈obstructing articulation point: extract Kuratowski graph〉

The actual extraction of the Kuratowski subgraph will be discussed below.

If no articulation point has three mixed non-root components, we need to check whether
there is an articulation point with two mixed non-root components and a mixed root com-
ponent. It is slightly tricky to determine whether root components are mixed. We observe
first that nodes and hence nodet is contained in any root component. Thus there is always
a large leaf in the root component. In fact, it is the nodetB.

We want to compute for each nodev a leaf labeledk + 1 in its root component (if any).
Consider any pathp in Ts from v to a leaf labeledk + 1. The leaf belongs to the root
component ofv iff the target of the first edge ofp belongs to the root component ofv.
This is the case if the first edge ofp is the tree edge intov or is a tree edge out ofv
which belongs to the same biconnected component as the tree edge intov. We compute
specleaf in root compby considering the two kinds of paths separately.

For the second kind of path we propagate information down the tree. We pass information
about a leaf along a tree edge(v, w) if this edge belongs to the root component ofv, i.e., if
it has the same component number as the tree edge intov.

〈obstructing articulation point〉+�
forall_rev(v,dfs_list) // down the tree

{ if (v == sB) continue;

node pv = B.source(tree_edge[v]);

if ( pv != sB && comp_num[tree_edge[v]] == comp_num[tree_edge[pv]] )

assign(spec_leaf_in_root_comp[pv],leaf[K_PLUS_1][v]);

}

For the first kind of path we compute for every nodev, specleaf via treeedge[v], a leaf
labeledk + 1 in the root component ofv that is reachable through the tree edge intov (nil
if there is no such leaf). A leaf labeledk + 1 in the root component is then either a leaf that
was already computed above or the leaf that can be reached via the tree edge intov.
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specleaf via treeedgeis computed from the root towards the leaves ofTs . Let v be any
node and consider the time when we processv. Let c be any child ofv. A leaf in the root
component ofc that is reachable through the tree edge intoc is either reachable through the
tree edge intov or through a sibling ofc.

If v has a leaf labeledk + 1 that is reachable through the tree edge intov we simply pass
this leaf to all children ofv.

So assume thatv has no leaf labeledk + 1 that is reachable through the tree edge into
v. We try to determine two childrenc1 andc2 of v that have a leaf labeledk + 1 in their
subtree. If there is none, then no child ofv can reach a leaf labeledk + 1 through one of its
siblings, if there is exactly one child, then all siblings of this child can reach a leaf labeled
k + 1 through it, and if there are two children, then all children ofv can reach a leaf labeled
k + 1 through a sibling.

When a nodev is encountered that has two mixed non-root components and a mixed
root component we have found an obstructing articulation point and proceed to extract a
Kuratowski subgraph.

〈obstructing articulation point〉+�
node_array<node> spec_leaf_via_tree_edge(B,nil);

forall(v,dfs_list) // up the tree

{ assign(spec_leaf_in_root_comp[v],spec_leaf_via_tree_edge[v]);

if ( num_mixed_non_root_comps[v] == 2 && spec_leaf_in_root_comp[v] )

{ 〈v has two mixed non-root and a mixed root component〉 }

if ( spec_leaf_via_tree_edge[v] != nil )

{ forall_adj_edges(e,v)

{ node c = B.target(e);

if ( c == sB || v != B.source(tree_edge[c]) ) continue;

spec_leaf_via_tree_edge[c] = spec_leaf_via_tree_edge[v];

}

}

else

{ forall_adj_edges(e,v)

{ node c = B.target(e);

if ( c == sB || v != B.source(tree_edge[c]) ) continue;

if ( leaf[K_PLUS_1][c] )

{ if ( child[1][v] == nil )

child[1][v] = c;

else

child[2][v] = c;

}

}

if ( child[1][v] )

{ forall_adj_edges(e,v)

{ node c = B.target(e);

if ( c == sB || v != B.source(tree_edge[c]) ) continue;

if ( c != child[1][v] )

spec_leaf_via_tree_edge[c] = leaf[K_PLUS_1][child[1][v]];

else

if ( child[2][v] )
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spec_leaf_via_tree_edge[c] = leaf[K_PLUS_1][child[2][v]];

}

}

}

}

Assume thatv has two mixed non-root and a mixed root component. A leaf labeledk + 1
in the root component ofv is given byspecleaf in root comp[v] and a large leaf is given by
tB. For the other components we find the leaf labeledk + 1 and the large leaf as in the case
of three mixed non-root components.

〈v has two mixed non-root and a mixed root component〉�
current_case = "two mixed non-root and a mixed root component";

z[0] = tB;

spec[0] = spec_leaf_in_root_comp[v];

int i = 1;

forall_adj_edges(e,v)

{ node w = B.target(e);

if ( w == sB || v != B.source(tree_edge[w]) ) continue;

if ( v != sB && comp_num[e] == comp_num[tree_edge[v]] ) continue;

if ( leaf[K_PLUS_1][w] && leaf[OTHERS][w] )

{ z[i] = leaf[OTHERS][w]; spec[i] = leaf[K_PLUS_1][w];

i++;

if ( i == 3) break;

}

}

〈obstructing articulation point: extract Kuratowski graph〉

Obstructing Articulation Point: Extraction of Kuratowski Graph: The nodev is an
obstructing articulation point. For everyi , 0 ≤ i < 3, we have a large leaf in thei -th
component inz[i ] and a leaf labeledk + 1 in spec[i ].

We reroot the depth-first search tree atv and then extract the Kuratowski subgraph as
described in the proof of Lemma 53.

〈obstructing articulation point: extract Kuratowski graph〉�
// reroot the DFS-tree at v

dfs_list.clear();

dfs_num.init(B,-1);

tree_edge.init(B,nil);

int dfs_count = 0;

DFS(B,v,dfs_list,dfs_num,dfs_count,tree_edge);

list<edge> join_edges;

for (i = 0; i < 3; i++)

{ join(z[i],spec[i],v,tree_edge,B,join_edges);

translate_to_G(join_edges,B); K.conc(join_edges);

}

join(B[z[0]],B[z[1]],B[z[2]],up_tree_edge,G,join_edges);
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K.conc(join_edges);

check_before_return(G,K,st_num,leaf,tree_edge,dfs_num,k,

B,st_numB,sB,current_case);

return;

The functioncheckbeforereturncallsCHECKKURATOWSKI(G, K ) to check whetherK
is a Kuratowski subgraph. If not, it opens twoGraphWinsand displays the edges inK in
one of them and the bush formB in the other. We do not give details here. This visual
debugging aid proved very valuable during the development phase of the algorithm.

The Join Function: Let T be a tree and leta, b, andc be the three nodes to be joined in
T . For each nodev the tree edge intov is stored intreeedge[v].

We trace the paths to the root from all three nodes and count, for each node ofT , the
number of paths containing it. Letr be the highest node which is reachable from all three
nodes. The subtree joining the three nodes is the union of the paths from the three nodes to
r . This union is not necessarily a disjoint union. We want to output each edge in the subtree
only once and therefore mark nodes as we trace the paths. When a node is marked, its tree
edge is added to the setL of edges comprising the subtree. The function returnsr .

〈auxiliary functions〉+�
node join(node a, node b, node c, const node_array<edge>& tree_edge,

graph& B, list<edge>& L)

{ L.clear();

node_array<int> num_desc(B,0);

array<node> A(3); A[0] = a; A[1] = b; A[2] = c;

int i;

for (i = 0; i < 3; i++)

{ node v = A[i];

num_desc[v]++;

while ( tree_edge[v] != nil )

{ v = B.source(tree_edge[v]);

num_desc[v]++;

}

}

node r;

for (i = 0; i < 3; i++)

{ node v = A[i];

while (num_desc[v] < 3)

{ L.append(tree_edge[v]);

num_desc[v] = 3;

v = B.source(tree_edge[v]);

}

if ( i == 0 ) r = v;

}

return r;

}

void translate_to_G(list<edge>& L, const GRAPH<node,edge>& B)
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{ list_item it;

forall_items(it,L) L[it] = B[L[it]];

}

The functiontranslatetakes a listL of edges ofB and replaces each edge by its counterpart
in G.

Obstructing Biconnected Component:We come to obstructing biconnected components.
We describe the search for an obstructing biconnected component and the extraction of a
Kuratowski subgraph once an obstructing component has been found.

We exploit the fact thatB is a plane map in our search for obstructing biconnected com-
ponents. Consider any nodev and the cyclic listA(v) of edges out ofv. If v is not an
articulation point then all edges inA(v) belong to the same biconnected component. Ifv

is an articulation point thenA(v) decomposes into blocks, one for each biconnected com-
ponent containingv. This follows from the fact that the boundary cycles of all biconnected
component are part of the boundary of the outer face in every bush form.

Blocks that consist of at least two edges indicate the boundary cycle of a biconnected
component. We find such blocks as follows. We iterate over all edgesf out of v. If the
cyclic predecessor off in A(v) belongs to a different biconnected component and the cyclic
successor belongs to the same biconnected component, thenf belongs to the boundary cy-
cle of a non-trivial biconnected component, i.e., a biconnected component which is not just
a single uedge. We maintain an edge arraytreatedcomponentto record which biconnected
components have already been treated.

If the component havingf in its boundary cycle has not been treated yet, we determine
its boundary cycle incycleedgesand then determine whether one of the cases (1) or (2) of
Lemma 55 applies.

In our search for biconnected components we iterate over the nodes ofTs from the root
to the leaf. This has the advantage that we hit every biconnected component at its lowest
node.

Let H be a biconnected component with attachment cycle [y0, y1, . . . , yk ], wherey0 is
the lowest numbered node in the biconnected component. We need to know whether the
component ofB opposite toH at y0 is mixed, i.e., contains a leaf labeledk + 1. We
compute such a leaf inspecleaf in oppositepart. For all i different from zero, the part of
B opposite toH at yi is simply the upper part ofB with respect toyi . We have collected
information about upper parts already.

If the search for an obstructing biconnected component is unsuccessful, we give debug-
ging information. After all, there must be either an obstructing articulation point or an
obstructing biconnected component.

〈obstructing biconnected component〉�
array<bool> treated_component(num_comps);

edge f;

forall(v,dfs_list) // upwards
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Figure 8.31 Scanning the boundary of a biconnected componentH . We scan the boundary in
clockwise direction. At each node, the reversal of a boundary edge is turned clockwise (i.e.,
throughH ) until the next boundary edge is reached. Two stopping criteria apply to the turning
process: we stop if the cyclic adjacency successor does not belong toH or if all edges incident to
the boundary node have been considered.
The edgeerev is a boundary edge intou. We turn its reversale clockwise until the next boundary
edge is reached. At nodev the first stopping criterion applies and at a node which has no incident
edge outsideH the second stopping criterion applies.

{ forall_adj_edges(f,v)

{ edge e1 = B.cyclic_adj_succ(f);

edge e_pred = B.cyclic_adj_pred(f);

if ( comp_num[e1] != comp_num[f] ||

comp_num[f] == comp_num[e_pred] ) continue;

if ( treated_component[comp_num[f]] ) continue;

list<edge> cycle_edges;

treated_component[comp_num[f]] = true;

〈determine boundary cycle of component with lowest node y0 = v〉
node spec_leaf_in_opposite_part = nil;

〈compute leaf labeled k+1 in part opposite to y0〉
〈obstructing cycle with four alternating attachments〉
if ( spec_leaf_in_opposite_part )

{ 〈obstructing cycle with three mixed attachments〉 }

}

}

〈unreachable point: give debugging information〉

The boundary cycle of a biconnected componentH is easily traced. We start with an edge
f that emanates fromv, the lowest node in the component, and that lies on the boundary
cycle of the component. The unbounded face is to the right off , see Figure 8.31. We will
trace the boundary cycle in clockwise direction, i.e., keeping the unbounded face to our left,
and store it incycleedges.

Assume thate is an edge such that its reversal belongs to the boundary cycle. Initially,e
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is equal to f . We show how to find the successor edge oferev in the boundary cycle. Let
e1 be the cyclic adjacency successor ofe. We advancee1 until the successor ofe1 belongs
to a different biconnected component or the successor ofe1 is equal toe. The former case
happens for nodesv that are attachment nodes ofH and the latter case happens for nodes
that lie on the boundary cycle ofH but are not attachment nodes ofH . Edgee1 is the
successor oferev on the cycle. We proceed in this way until the cycle is completely traced.

〈determine boundary cycle of component with lowest node y0 = v〉�
edge e0 = f;

node y0 = v;

edge e = f; // e1 was set to B.cyclic_adj_succ(f) above

do { while ( comp_num[B.cyclic_adj_succ(e1)] == comp_num[e] &&

B.cyclic_adj_succ(e1) != e )

{ e1 = B.cyclic_adj_succ(e1); }

cycle_edges.append(e1);

e = B.reversal(e1);

e1 = B.cyclic_adj_succ(e);

} while ( e != e0 );

We next show how to compute a leaf labeledk + 1 in the part ofB opposite toH at y0 in
constant time. Constant time is needed sincey0 can be the lowest numbered node of many
biconnected components.

The part ofB opposite toH at y0 consists of the root component ofy0 and all non-root
components with respect toy0 that do not containH . We have computed above two children
of y0 (if they exist) that define mixed non-root components. A leaf labeledk + 1 can be
found in either the root component or in one of the mixed children that does not containH .
A non-root component does not containH if the tree edge into the child does not belong to
H .

〈compute leaf labeled k+1 in part opposite to y0〉�
spec_leaf_in_opposite_part = spec_leaf_in_root_comp[v];

for (int i = 1; i <= 2; i++)

{ node c = child[i][v];

if ( spec_leaf_in_opposite_part == nil

&& c && comp_num[tree_edge[c]] != comp_num[e0] )

spec_leaf_in_opposite_part = leaf[K_PLUS_1][c];

}

Obstructing Cycle with Four Alternating Attachments: We search for a cycle with four
alternating attachments. By Lemma 55 there are two ways such a cycle may occur: The
component opposite toy0 contributes either a large leaf or a leaf labeledk +1. We therefore
perform two searches. In the first search we sety0typeto OTHERS and letC0 contribute
a large leaf and in the second search we sety0type to K PLUS 1 and letC0 contribute a
leaf labeledk + 1. The second search is only performed whenspecleaf in oppositepart is
defined.
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For an attachmentyi different fromy0 the part opposite toH at yi is equal to the upper
part of B with respect toyi .

We store the four attachments iny[0] to y[3] and we store the selected leaf in thei -th
component inz[i ].

〈obstructing cycle with four alternating attachments〉�
list<int> kinds;

kinds.append(OTHERS); kinds.append(K_PLUS_1);

int y0_type;

forall(y0_type, kinds)

{ array<node> y(4);

y[0] = y0; y[1] = y[2] = y[3] = nil;

array<node> z(4);

if (y0_type == OTHERS)

{ z[0] = tB;

current_case = "cycle with 4 attachments; y_0 connects to t";

}

else

{ z[0] = spec_leaf_in_opposite_part;

current_case = "cycle with 4 attachments; y_0 connects to k + 1";

if ( !spec_leaf_in_opposite_part ) break;

}

list_item it0 = cycle_edges.first();

list_item it = cycle_edges.cyclic_succ(it0);

int i = 1;

while (it != it0)

{ node v = B.source(cycle_edges[it]);

int kind = (i == 2 ? y0_type : 1 - y0_type);

if ( leaf_in_upper_part[kind][v] )

{ y[i] = v;

z[i] = leaf_in_upper_part[kind][v];

i++;

}

if ( i == 4 )

{ 〈build the Kuratowski graph〉
return;

}

it = cycle_edges.cyclic_succ(it);

}

}

Assume that we have found an obstructing cycle with four alternating attachments. We have
the four attachments iny[0] to y[3] and the selected leaf in thei -th component inz[i ]. Also
y0typetells us the type of the componentC0.

In the upper tree we need to take the subtree spanned by the two large leaves and node
k + 1.
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〈build the Kuratowski graph〉�
translate_to_G(cycle_edges,B); K.conc(cycle_edges);

list<edge> join_edges;

int i;

for (i = 0; i < 4; i++)

{ join(y[i],z[i],z[i],tree_edge,B,join_edges);

translate_to_G(join_edges,B); K.conc(join_edges);

}

// subtree of T_t spanned by k+1 and two large leaves.

if (y0_type == OTHERS) i = 0; else i = 3;

join(B[z[i]],B[z[1]],B[z[2]],up_tree_edge,G,join_edges);

K.conc(join_edges);

check_before_return(G,K,st_num,leaf,tree_edge,dfs_num,k,

B,st_numB,sB,current_case);

Obstructing Biconnected Component with Three Mixed Opposing Parts:For case (2)
we need that the component opposite toy0 is mixed and that there areya, yb such thatCa

andCb are mixed.

〈obstructing cycle with three mixed attachments〉�
array<node> y(3);

array<node> spec_leaf_opposing(3);

array<node> other_leaf_opposing(3);

y[0] = y0;

spec_leaf_opposing[0] = spec_leaf_in_opposite_part;

other_leaf_opposing[0] = tB;

int i = 1;

list_item it0 = cycle_edges.first();

list_item it = cycle_edges.cyclic_succ(it0);

while (it != it0)

{ node v = B.source(cycle_edges[it]);

if ( leaf_in_upper_part[OTHERS][v] && leaf_in_upper_part[K_PLUS_1][v])

{ y[i] = v;

spec_leaf_opposing[i] = leaf_in_upper_part[K_PLUS_1][v];

other_leaf_opposing[i] = leaf_in_upper_part[OTHERS][v];

i++;

}

if ( i == 3 )

{ 〈obstructing cycle with three mixed attachments: extract Kuratowski〉
return;

}

it = cycle_edges.cyclic_succ(it);

}

It remains to extract the Kuratowski subgraph. We proceed as described in the proof of
Lemma 53. We collect all edges shown in Figure 8.27 inK . K is not a Kuratowski graph
yet, but is guaranteed to contain one.
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〈obstructing cycle with three mixed attachments: extract Kuratowski〉�
current_case = "obstructing cycle with three mixed attachments";

translate_to_G(cycle_edges,B); K.conc(cycle_edges);

list<edge> join_edges;

for(int j = 0; j <= 2; j++)

{ join(spec_leaf_opposing[j], other_leaf_opposing[j], y[j],

tree_edge,B,join_edges);

translate_to_G(join_edges,B); K.conc(join_edges);

}

node r = join(B[other_leaf_opposing[1]], B[other_leaf_opposing[2]],

B[spec_leaf_opposing[0]], up_tree_edge,G,join_edges);

K.conc(join_edges);

join(r,r,t,up_tree_edge,G,join_edges);

K.conc(join_edges);

{ 〈thin out K〉 }

check_before_return(G,K,st_num,leaf,tree_edge,dfs_num,k,

B,st_numB,sB,current_case);

Thinning Out: K is now an appropriate set of edges inG. It might still be too big. We
want to thin it out so that only aK3,3 or a K5 remains. This is easy to do. We construct
an auxiliary graphAG, which has a node for each node ofG that has degree three or more
in K and which has an edge for each path inK connecting two such nodes and having
only intermediate nodes of degree two. We associate with every edge ofAG the path inG
represented by it.

AG is a small graph; in fact, it has at most twelve nodes. We call the quadratic version of
the Kuratowski algorithm to find a Kuratowski subgraph ofAGand then translate is back to
G.

〈thin out K〉�
node v; edge e;

edge_array<bool> in_K(G,false);

node_array<int> deg_in_K(G,0);

forall(e,K)

{ in_K[e] = true;

deg_in_K[G.source(e)]++; deg_in_K[G.target(e)]++;

}

GRAPH<node,list<edge> > AG;

node_array<node> link(G,nil);

forall_nodes(v,G)

if ( deg_in_K[v] > 2 ) link[v] = AG.new_node(v);

forall_nodes(v,G)

{ if ( !link[v] ) continue;

edge e;

forall_inout_edges(e,v)

{ if ( in_K[e] )
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{ // trace path starting with e

list<edge> path;

edge f = e; node w = v;

while (true)

{ in_K[f] = false; path.append(f);

w = G.opposite(w,f);

if ( link[w] ) break;

// observe that w has degree two and hence ...

forall_inout_edges(f,w)

if ( in_K[f] ) break;

}

edge e_new = AG.new_edge(link[v],link[w]);

AG[e_new].conc(path); // O(1) assignment

}

}

}

list<edge> el;

KURATOWSKI_SIMPLE(AG,el);

K.clear();

forall(e,el) K.conc(AG[e]);

There is a small optimization in the program above which we want to mention. Instead of

edge e new = AG.new edge(link[v],link[w]);

AG[e new].conc(path); // O(1) assignment

we could have written more elegantly

AG.new edge(link[v],link[w],path);

The second version calls the copy constructor to construct a copy ofpathas the edge infor-
mation of the new edge ofAG, the first version concatenatespath to the edge information
of the new edge (which is initialized to the default value of lists, i.e., the empty list, by the
new edge operation). Concatenation is a constant time operation. Concatenation empties
path and this is all right. We have now completed the implementation of the linear time
Kuratowski graph finder for biconnected graphs.

Arbitrary Graphs: We extend the algorithm to arbitrary graphsG. We first call the em-
bedding algorithm to find out ifG is planar. If it is, we are done.

So assume thatG is non-planar. Then one of the biconnected components ofG is non-
planar. The idea is to search for a non-planar biconnected component ofG and to call the
algorithm of the preceding section for the biconnected component.

We give more details. A callBICONNECTEDCOMPONENTS(G, compnum) returns
the numbernumc of biconnected components ofG and computes for each edge ofG the
index of the biconnected component containinge.

We iterate over all edges ofG and construct for everyc, 0 ≤ c < numc, the setE [c] of
edges in the component and the setV [c] of nodes of the component. We determine the set
V [c] as the set of endpoints of edges inE [c] and hence this set may contain duplicates.
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When the edge and node sets of all biconnected components are determined, we iterate
over all components. For eachc, 0 ≤ c < numc, we construct a copy of the component
in H . The nodes and edges ofH know their counterparts inG. SinceV [c] may contain
duplicates, we maintain a node arraylink, in which we store for each nodev in G, whether
a copy ofv has already been constructed inH . We resetlink when the construction ofH is
completed. In this way the extraction of a biconnected component has cost proportional to
the size of the component.

When the extraction of a component is completed, we test it for planarity. We break from
the loop once a non-planar biconnected component is found.

If G is biconnected we take a short cut and makeH a copy ofG.
The identification of Kuratowski graphs is simplified ifH is a map without self-loops

and parallel edges. We therefore remove self-loops (or do not put them intoH in the first
place) and parallel edges, and we turnH into a map by adding edges. Every added edge
is made to point to the same edge inG as its reversal. We then callKuratowskito find a
Kuratowski subgraphK of H . We turnK into a Kuratowski subgraph ofG by replacing
every edge by its counterpart inG.

〈Kuratowski graphs in arbitrary graphs〉�
bool BL_PLANAR(graph& G, list<edge>& K, bool embed)

{

if (BL_PLANAR(G, embed)) return true;

edge_array<int> comp_num(G);

int num_c = BICONNECTED_COMPONENTS(G,comp_num);

GRAPH<node,edge> H;

edge e;

if ( num_c == 1 )

{ CopyGraph(H,G);

Delete_Loops(H);

}

else

{ node_array<node> link(G,nil);

array<list<edge> > E(num_c);

array<list<node> > V(num_c);

forall_edges(e,G)

{ node v = source(e); node w = target(e);

if (v == w) continue;

int c = comp_num[e]; E[c].append(e);

V[c].append(v); V[c].append(w);

}

int c; node v;

for(c = 0; c < num_c; c++)

{ H.clear();

forall(v,V[c]) if ( link[v] == nil ) link[v] = H.new_node(v);

forall(e,E[c])

{ node v = source(e); node w = target(e);

H.new_edge(link[v],link[w],e);

}



562 Embedded Graphs

forall(v,V[c]) link[v] = nil;

if (!BL_PLANAR(H,false)) break;

}

}

K.clear();

// H is a biconnected non-planar graph; we turn it into map

Make_Simple(H);

list<edge> R;

H.make_map(R);

forall(e,R) H[e] = H[H.reverse(e)];

// auxiliary edges inherit original edge from their reversal

Kuratowski(H,K);

list_item it;

forall_items(it,K) K[it] = H[K[it]];

return false;

}

8.7.4 Running Times
Table 8.1 shows the running times of the functions discussed in this section. We used five
kinds of graphs:

• Random planar maps withn nodes andm = 2n uedges (P).

• Random planar maps withn nodes andm = 2n uedges plus aK3,3 on six randomly
chosen nodes (P +K3,3).

• Random planar maps withn nodes andm = 2n uedges plus aK5 on five randomly
chosen nodes (P +K5).

• Maximal planar maps withn nodes (MP).

• Maximal planar maps onn nodes plus one additional edge between two random nodes
that are not connected inG (MP + e).

We constructed the graphs using the generators discussed in Section 8.9 and then permuted
the adjacency lists, so as to hide the graph structure.

We ran the following algorithms:

• BL PLANAR(G), the Booth–Lueker planarity test (T) that gives a yes-no answer, but
does not justify its answer.

• BL PLANAR(G, K , true), the Booth–Lueker planarity test that justifies its answers (T
+ J). If G is planar, it turnsG into a planar map, and ifG is non-planar, it exhibits a
Kuratowski subgraph ofG.
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Graph Gen BLPLANAR Check HTPLANAR

T T + J T T + J

P 0.76 1.59 1.82 0.23 2.6 4.18

1.72 3.27 3.71 0.47 5.41 8.87

3.47 6.67 7.43 0.95 11.38 19.22

P + K3,3 0.97 1.1 5.66 0.17 2.54 –

1.74 2.4 12.65 0.34 5.16 –

3.56 5.47 20.01 0.69 11.02 –

P + K5 1 0.98 5.72 0.16 2.61 –

1.75 1.81 12.91 0.34 5.35 –

3.58 3.26 22.06 0.67 10.86 –

MP 0.87 2.28 2.41 0.33 3.88 6.24

1.5 4.59 4.84 0.66 7.81 12.98

3.05 9.23 9.66 1.34 16.06 26.84

MP + e 0.87 1.26 5.47 0.23 1.05 –

1.49 2.19 9.61 0.49 2.1 –

3.06 5.87 23.81 0.96 4.28 –

Table 8.1 The running times of functions related to planarity: The column labeled Gen contains
the time needed to generate the input graph. All other columns are as described in the text. We
usedn = 2i · 5000 fori = 0, 1, and 2. This table was generated with the program planaritytime
in the demo directory.

• The check whether the algorithm in the previous item worked correctly, i.e., the check
Genus(G) == 0, if G is planar, andCHECKKURATOWSKI(G, K ), if G is
non-planar.

• HT PLANAR(G), the Hopcroft–Tarjan planarity test (T) that gives a yes-no answer,
but does not justify its answer.

• HT PLANAR(G, K , true), the Hopcroft–Tarjan planarity test that justifies its answers
(T + J). This algorithm was only run when the previous item declaredG planar. The
extraction of the Kuratowski subgraph would have taken hours, since there is no
efficient Kuratowski finder implemented for the Hopcroft–Tarjan planarity test.
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Exercises for 8.7
1 Show that the number of distinct permutations in which the virtual leaves ofBk can

appear on the horizon is

2C · P,

whereC is the number of biconnected components ofBk with three or more attachments
and P = ∏

pv! where the product is over all articulation points ofBk and pv is the
number of non-root components ofBk with respect tov.

2 Improve the running time of the simple search for Kuratowski subgraphs toO(n2). Make
sure that your algorithm works in the presence of parallel edges and self-loops.

3 Let G be a graph, lete = (a, b) be an edge ofG, and letG′ be obtained fromG by
contraction ofe. Show that ifG′ contains a Kuratowski subgraph thenG does.

4 We have shown in Lemma 53 that the existence of an obstruction inBk guarantees the
existence of the Kuratowski subgraph ofG. Show that it guarantees thatBk+1 has no
bush form.

8.8 Manipulating Maps and Constructing Triangulated Maps

In the chapter on graphs we saw functions that allow us to add new nodes and edges to a
graphG. In particular,

edge G.new edge(node v, node w)

adds a new edge(v, w) to G and returns it. The edge is appended tooutedges(v) and to
eitherin edges(w) (if G is directed) oroutedges(w) (if G is undirected).

In this chapter the cyclic ordering of the adjacency lists plays a crucial role and hence
we need much finer control over the positions where edges are inserted into adjacency lists.
The following function gives full control:

edge G.new edge(edge e1, edge e2,

int d1 = LEDA::after, int d2 = LEDA::after)

adds a new edgex = (v, w) to G, wherev = source(e1) andw = target(e2), and returns
the new edge. The new edge is inserted before or after edgee1into outedges(v) as directed
by d1. If G is directed, it is also inserted before or after edgee2into in edges(w) as directed
by d2. If G is undirected, it is also inserted before or after edgee2 into outedges(w) as
directed byd2. The constantsLEDA::after andLEDA::beforeare predefined constants.

If control about the position of insertion is needed at only one endpoint of the edge (or if
the new edge is the first edge incident to a node) the functions

edge G.new edge(edge e, node w, int dir = LEDA::after)

edge G.new edge(node v, edge e, int dir = LEDA::after)

should be used. The former function adds a new edgex = (source(e), w) to G. x is
inserted before or after edgee into outedges(source(e)) as directed bydir and appended to
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in edges(w) (if G is directed) oroutedges(w) (if G is undirected). The operation returns
the new edgex . If G is undirected we must havesource(e) 6= w. The latter function is
symmetric to the former.

Related to thenewedgefunction is themoveedgefunction. The call

G.move edge(edge e, node v, node w)

requires thate is an edge ofG. It makesv the source ofe andw the target ofe. For all
versions of thenewedgefunction mentioned above, there is a corresponding version of the
moveedgefunction, which takes the edge to be moved as an additional argument. The effect
of moveedge(e, v, w) is similar, but distinct to the combined effect ofdeledge(e) followed
by newedge(v, w). The effect is similar ase ceases to make the connection between its
old source and target and as there is now an edge fromv to w. The effect is distinct, as
moveedgemoves an already existing edge (which may for example have associated entries
in edge arrays) andnewedgecreates a new edge.

For maps it is frequently convenient to add an edge and its reversal in a single operation.

edge M.new map edge(edge e1, edge e2)

inserts a new edgee = (source(e1), source(e2)) aftere1into the adjacency list ofsource(e1)
and the reversal toe aftere2 into the adjacency list ofsource(e2).
The following function splits a uedge in a mapM.

edge M.split map edge(edge e)

splits edgee = (v, w) and its reversalr = (w, v) into edges(v, u), (u, w), (w, u), and
(u, v), whereu is a new node. It returns the edge(u, w).

We give an application of the functions above. We show how totriangulate a map. Let
M be a map. The task is to add edges toM such that:

• the genus is not increased, in particular, a plane map stays plane, and

• every face cycle of the resulting map consists of at most three edges.

Both items are easy to achieve. As long asM is not connected we take any two nodesv

andw in distinct components and join them by a uedge. This increases the number of edges
by two, decreases the number of components by one, and either decreases the number of
isolated nodes by two and increases the number of face cycles by one, or decreases the
number of isolated nodes by one and leaves the number of face cycles unchanged, or leaves
the number of isolated nodes unchanged and decreases the number of face cycles by one.
In either case the genus is unchanged.

So assume thatM is connected. As long as there is a face cycle consisting of four or
more edges, we consider any such face cycleC and two nodesv andw on C that are not
neighbors onC, say

C = [ . . . , e2, v, e4, . . . , e3, w, e1, . . .].

We splitC by adding edges(v, w) and(w, v). The edge(v, w) is added aftere4 to the list
of out-edges ofv and the edge(w, v) is added aftere1 to the list of out-edges ofw; this is
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the reverse of the operation illustrated in Figure 8.11. Adding the two edges increases the
number of face cycles by one; thus the genus is not changed.

We use the triangulation routine as a subroutine in our straight line drawing routine for
planar graphs. The straight line drawing routine assumes that its input is a triangulated
graph without parallel edges. We therefore have to make sure that the triangulation routine
does not introduce parallel edges. Unfortunately, when face cycles are split independently,
parallel edges may be introduced. We want to avoid this.

• If the genus ofM is zero then no new edge is parallel to another edge of the graph
(new or old).

Christian Uhrig and Torben Hagerup suggested a triangulation algorithm that achieves
all three items above. Their algorithm runs in linear timeO(n + m). The algorithm steps
through the nodes ofM. For each nodev, it triangulates all faces incident onv. For each
nodev, this consists of the following:

First, the neighbors ofv are marked. During the processing ofv, a node will be marked
exactly if it is a neighbor ofv.

Then the faces incident onv are processed in any order. A face with boundary [v =
x1, x2, . . . , xn ] is triangulated as follows: ifn ≤ 3, nothing is done. Otherwise,

(1) if x3 is not marked, a uedge{x1, x3} is added,x3 is marked, and the same strategy is
applied to the face with boundary [x1, x3, x4, ..., xn ].

(2) if x3 is marked, a uedge{x2, x4} is added, and the same strategy is applied to the face
with boundary [x1, x2, x4, x5, ..., xn ].

When all faces incident tov are triangulated, all neighbors ofv are unmarked.
The algorithm just described clearly triangulates all face cycles. We need to show that it

does not introduce parallel edges.
During the processing of a nodev, the marks on neighbors ofv clearly prevent the addi-

tion of a parallel edge with endpointv. After the processing ofv, such an edge is not added
because all faces incident onv have been triangulated. This takes care of the edges added
in (1).

Whenever a uedge{x2, x4} is added in step (2), the presence of a uedge{x1, x3} implies
that x2 andx4 are incident on exactly one common face, namely the face currently being
processed, see Figure 8.32. Hence another edge{x2, x4} will never be added.

The linear running time can be seen as follows. The time to process a nodev is propor-
tional to the degree ofv plus the number of edges added during the processing ofv. The
total running time is therefore proportional toO(n + m ′) wherem ′ is the number of edges
in the final graph. The number of uedges in the final graph is at most 3n by Lemma 47.

The following program implements the algorithm. We first add edges to make the graph
connected, then make sure that all reversal informations are properly set, and finally add
edges to triangulate the graph.
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x4

x3

x2

v = x1

Figure 8.32 x1, x2, x3, andx4 are consecutive nodes on a face and the uedge{x1, x3} exists.
Then{x2, x4} cannot exist.

〈triangulate.c〉�
list<edge> graph::triangulate_map()

{ node v;

edge x, e, e1, e2, e3;

list<edge> L;

〈add edges to make the graph connected〉
if ( !make_map() )

error_handler(1,"TRIANGULATE_PLANAR_MAP: graph is not a map.");

node_array<int> marked(*this,0);

forall_nodes(v,*this)

{ list<edge> El = adj_edges(v);

// mark all neighbors of v

forall(e1,El) marked[target(e1)] = 1;

〈process faces incident to v〉
//unmark all neighbors of v

node w;

forall_adj_nodes(w,v) marked[w] = 0;

} // end of stepping through nodes

return L;

}

The two sub-steps are both fairly easy to implement. For the first sub-step we call
COMPONENTs to determine the number of connected components and to label each node
with its component number. If there is more than one component, we create an array
still disconnectedwith index set [0.. c − 1], wherec is the number of connected com-
ponents. For each component except the one which containss, the first node ofG, we state
that the component still needs to be connected with the component containings. We then
iterate over all nodes. Whenever we encounter a nodev whose component still needs to
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be connected withs, we add the uedge{v, s }, and record that the component ofv is now
connected with the component ofs.

〈add edges to make the graph connected〉�
node_array<int> comp(*this);

int c = COMPONENTS(*this, comp);

if ( c > 1 )

{ node s = first_node();

array<bool> still_disconnected(c);

for (int i = 0; i < c; i++)

still_disconnected[i] = ( i == comp[s] ? false : true);

forall_nodes(v,(*this))

{ if ( still_disconnected[comp[v]] )

{ set_reversal(e1 = new_edge(s,v), e2 = new_edge(v,s));

L.append(e1); L.append(e2);

still_disconnected[comp[v]] = false;

}

}

}

The faces incident to a nodev are processed as described above. We store three consec-
utive edges of the face ine1, e2, ande3, respectively. If either of the three edges ends inv,
the face cycle has length at most three and we are done.

So assume otherwise and letw be the endpoint ofe2.
If w is not marked, we markw and add the uedge{v, w} inside the current face, i.e., we

add the edge(w, v) after e3 to A(w) and we add the edge(v, w) after e1 to A(v). Also
(v, w) becomes the newe1, e2becomese3, ande3becomes the face cycle successor ofe2.

If w is marked, we add the uedge{source(e2), target(e3)} inside the current face, i.e.,
after edgee2atsource(e2) and after the face cycle successor ofe3at target(e3).

〈process faces incident to v〉�
forall(e,El)

{

e1 = e;

e2 = face_cycle_succ(e1);

e3 = face_cycle_succ(e2);

if (target(e1) == v || target(e2) == v || target(e3) == v) continue;

while (target(e3) != v)

{ node w = target(e2);

if ( !marked[w] )

{ // we mark w and add the uedge {v,w}

marked[w] = 1;

L.append(x = new_edge(e3,v));

L.append(e1 = new_edge(e1,w));

set_reversal(x,e1);

e2 = e3;

e3 = face_cycle_succ(e2);

}

else
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{ //add the uedge {source(e2),target(e3)}

e3 = face_cycle_succ(e3);

L.append(x = new_edge(e3,source(e2)));

L.append(e2 = new_edge(e2,source(e3)));

set_reversal(x,e2);

}

}//end of while

} //end of stepping through incident faces

8.9 Generating Plane Maps and Graphs

We discuss the generation of random plane maps and random plane graphs. We describe two
methods to generate plane maps, a combinatorial method and a geometric method. We warn
the reader that neither method generates plane maps according to the uniform distribution.

Combinatorial Constructions: The function

void maximal planar map(graph& G, int n);

generates a plane map withn nodes and 3n − 6 uedges, no self-loops and no parallel edges.
The number of edges is the maximal possible, see Lemma 47, and, ifn ≥ 3, every face
cycle is a triangle.

We give the implementation. Ifn = 0 we return the empty graph, ifn = 1 we return the
graph consisting of a single isolated node, and ifn = 2 we return the graph consisting of
two nodes and a single uedge. So letn > 2 and assume, that we have already constructed a
maximal planar map withn −1 nodes. We select one of the existing edges, saye, at random
and put a new nodev into the face to the left ofe.

Let [e1, e2, e3] be the face cycle containinge (when the third node is inserted the face
cycle has length 2 instead of 3). For eachi we add the edge(source(ei ), v) to A(source(ei))

afterei and we append the edge(v, source(ei)) to A(v).

〈generateplanar map.c〉�
void maximal_planar_map(graph& G, int n)

{

G.clear();

if (n <= 0 ) return;

node a = G.new_node();

n--;

if (n == 0) return;

node b = G.new_node();

n--;

edge* E = new edge[n == 0? 2 : 6*n];

E[0] = G.new_edge(a,b); E[1] = G.new_edge(b,a);



570 Embedded Graphs

G.set_reversal(E[0],E[1]);

int m = 2;

while (n--)

{ edge e = E[rand_int(0,m-1)];

node v = G.new_node();

while (target(e) != v)

{ edge x = G.new_edge(v,source(e));

edge y = G.new_edge(e,v,LEDA::after);

E[m++] = x; E[m++] = y;

G.set_reversal(x,y);

e = G.face_cycle_succ(e);

}

}

delete[] E;

}

The function

void random planar map(graph& G, int n, int m);

generates a plane map withn nodes and min(m, 3n −6) uedges. It first generates a maximal
plane map and then deletes a random set of uedges until the desired number of edges is
obtained.

The functions

void maximal planar graph(graph& G, int n);

void random planar graph( graph& G, int n, int m);

first construct a plane map with the same parameters and then keep only one of the edges
comprising each uedge.

Geometric Constructions: Geometry is a rich source of planar graphs. A simple way
to generate a planar map is to choosen random points in the plane and to triangulate the
resulting point set. We will see how to triangulate a point set in Section 10.3. Alternatives
are to compute the Delaunay triangulation of a set of random points, see Section 10.4, or
to choose a random set of segments and to compute the arrangement of the segments, see
Section 10.7.

The functions

void triangulation map(graph& G, int n);

void triangulation map(graph& G, node array<double>& xcoord,

node array<double>& ycoord, int n);

void triangulation map(graph& G, list<node>& outer face,

node array<double>& xcoord,

node array<double>& ycoord,

int n);
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choosen random points in the unit square and setG to some triangulation.G will be a plane
map. The first function only returns the triangulation, the second function also returns the
point coordinates, and the third function also returns the list of vertices lying on the convex
hull (in clockwise order).

The function

void random planar map(graph& G, node array<double>& xcoord,

node array<double>& ycoord, int n, int m);

first constructs a triangulated planar map and then deletes all butm edges.
All functions above are also available withmapreplaced bygraph in the function name.

The modified functions keep only one edge of each uedge.

8.10 Faces as Objects

The face cycles of maps played an important role in the preceding sections. It is therefore
only natural to introduce them as a type of their own. For succinctness, we use the type
nameface.

8.10.1 Concepts
The operation

M.compute faces()

computes the set of face cycles of the mapM; the function aborts ifM is not a map. After
this operation and till the next modification ofM by a newnode, newedge, delnode, or
deledgeoperation, the face cycles ofM are available in much the same way as the edges
and nodes ofM are available.

For example,

int M.number of faces();

list<face> M.all faces();

return the number of faces and the list of all faces ofM, respectively. If f is a face, the
predecessor and successor face off in the list of all faces is returned byM.succface( f )

andM.predface( f ), respectively, and the first and last face in the list of all faces is returned
by M.first face( ) andM.last face( ), respectively. The four functions just mentioned return
nil if the requested object does not exist. The iteration statement

forall faces(f,M)

iterates over all face cycles ofM.
The function

face M.face of(edge e)

returns the face cycle ofM which contains the edgee and the functions
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list<edge> M.adj edges(face f)

edge M.first face edge(face f)

int M.size(face f)

return the list of all edges in the face cyclef , the first edge in this cycle, and the number of
edges in the face cycle, respectively. The iteration statement

forall face edges(e,f)

iterates over all edgese in the face cyclef .
For a nodev, the function

list<face> M.adj faces(node v)

returns the list of faces incident tov. More precisely, ifA(v) = [e0, e1, . . . , ek−1] is the list
of edges out ofv then the list [faceof(e0), . . . , faceof(ek−1)] is returned.

Similarly, for a facef , the function

list<node> M.adj nodes(face f)

returns the list of all nodes ofM incident to f . More precisely, if f = [e0, e1, . . . , ek−1],
the list [source(e0), . . . , source(ek−1)] is returned.

There is a small number of update operations which do not destroy the list of faces of a
map. The operation

edge M.split face(edge e1, edge e2)

inserts the edgee = (source(e1), source(e2)) and its reversal intoM and returnse. The
edgese1 and e2 must belong to the same face. This face cycle is split into two by the
operation by insertinge aftere1 into the list of edges out ofsource(e1) and by insertingeR

aftere2 into the list of edges out ofsource(e2). The operation

face M.join faces(edge e)

deletes the edgee and its reversal fromM and updates the list of faces accordingly. Letf
andg be the face cycles containinge andeR, respectively. Assume first thatf 6= g. If both
f andg consist of a single edge22 then the number of face cycles goes down by two andnil
is returned. If at least one off or g consists of more than one edge, thenf andg are joined
into a single face and this face is returned. When we coined the name for the operations we
assumed that the latter case would be the “normal” use of the operation. Assume next that
f = g. If f consists of exactly two edges, namelye andeR then the number of face cycles
goes down by one andnil is returned. If f consists of at least three edges and eithere or
eR is the face cycle successor of the other then the number of face cycles is unchanged and
f is returned. Finally, if neithere nor eR is the face cycle successor of the other, then the
number of faces goes up by one and one of the new faces is returned.
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Figure 8.33 The dual of our mapM0. The dual has two nodes (shown as squares) and four
uedges (drawn dashed).

8.10.2 The Dual of a Map
The (combinatorial) dual of a mapM is another mapD, see Figure 8.33:

• D has one node for each face cycle ofM. More precisely, the nodes ofD and the face
cycles ofM are in one-to-one-correspondence. We used( f ) to denote the node ofD
corresponding to the face cyclef of M.

• D has one edge for each edge ofM. Let e be any edge ofM, let f be the face cycle
containinge, and letg be the face cycle containingeR. ThenD contains the edge
d(e) = (d( f ), d(g)).

• Let f = [e0, e1, . . . , ek−1] be a face cycle ofM. Then the cyclic adjacency list of the
noded( f ) of D is equal to [d(e0), d(e1), . . . , d(ek−1)].

The following program computes the dualD of a mapM. We first compute the face
cycles ofM. We then put a node intoD for each face cycle ofM and record the corre-
spondence in afacearray<node>. We then iterate over all face cycles ofM and for each
face cycle over the edges comprising the face cycle. For each edge we constructs its dual
and record the correspondence. Observe that the edges incident to any dual node are con-
structed in the order in which they are supposed to appear in the adjacency list of the dual
node. Finally, we establish the reversal information of all dual edges.

〈dual.c〉�
void graph::dual_map(graph& D) const

{ D.clear();

graph& M = *((graph*)this); // cast away the const

M.compute_faces();

face f; edge e;

face_array<node> dual(M);

forall_faces(f,M) dual[f] = D.new_node();

22 This case occurs, for example, in a graph with one node and one uedge.
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edge_array<edge> dual_edge(M);

forall_faces(f,M)

{ node df = dual[f];

forall_face_edges(e,f)

{ face g = M.face_of(M.reversal(e));

dual_edge[e] = D.new_edge(df,dual[g]);

}

}

forall_edges(e,M)

D.set_reversal(dual_edge[e],dual_edge[M.reversal(e)]);

}

8.10.3 Faces of Planar Maps
There are two functions that deal with faces of planar maps. The function

void M.make planar map()

assumes thatM is a bidirected graph. It first callsM.makemap( ) to turn M into a map. It
then callsPLANAR(M, true) to turnM into a plane map. It finally callsM.computefaces( )

to compute the face cycles ofM.
The function

list<edge> M.triangulate planar map()

calls M.triangulatemap( ) followed by M.computefaces( ) and returns the list of edges
added toM by the former call.

Exercise for 8.10
1 Is the dual of the dual of a mapM isomorphic toM? Give a counterexample. Under

which conditions does the claim hold? State and prove a lemma.

8.11 Embedded Graphs as Undirected Graphs

The reader may wonder about the use of directed graphs in this chapter. After all, in maps
we always combine a pair of directed edges into a uedge. We chose bidirected graphs to
represent maps mainly for two reasons.

Although maps are basically undirected graphs, the two orientations of an undirected
edge play a major role in the functions operating on maps. In particular, the face cycle
successor of an edge and the reversal of an edge are “directed concepts” and hence would
require additional arguments if maps were realized by undirected graphs. For example, one
could distinguish the two orientations of an undirected edge by specifying a node to indicate
the source node of the oriented edge. This would, however, not work for self-loops.

The second reason is that maps are frequently constructed incrementally and that the two
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orientations of an edge are constructed at different moments of time. We saw one example
already in the programdualmapthat constructs the dual of a map. Such constructions are
difficult to implement with a representation that can only represent maps. The problem is
that we arrive at a map at the end of the construction process but have no map during the
construction process.

Our choice of directed graphs to represent maps wastes space, since the two edges com-
prising a uedge are stored in two lists at each endpoint of the uedge. One list for each
endpoint would suffice for most functions presented in this chapter.

8.12 Order from Geometry

The following problem arises frequently. A graph is constructed by drawing it in aGraphWin
and the combinatorial structure of the graph is supposed to reflect the drawing, i.e., for ev-
ery nodev the cyclic order ofA(v) is supposed to agree with the counter-clockwise order
of the edges out ofv in the drawing.

Let us be more precise. For every edgee let d(e) be a vector (not necessarily, non-zero) in
the plane. We define an order on two-dimensional vectors. For a non-zero vectord let α(d)

be the angle between the positivex-axis andd, i.e., the angle by which the positivex-axis
has to be turned in counter-clockwise direction until it aligns withd. A vectord1 precedes
a vectord2 if α(d1) < α(d2) and a vectord1 is equivalentto a vectord2 if α(d1) = α(d2).
The zero vector precedes all other vectors. The implementation of this order on vectors is
discussed in Chapter 9 on geometry kernels.

The functions

bool SORT EDGES(graph &G,

const edge array<NT>& dx, const edge array<NT>& dy)

bool SORT EDGES(graph &G,

const node array<NT>& x, const node array<NT>& y)

reorder all adjacency lists in non-decreasing order of the vectorsd(e), e ∈ E . For the first
function, the vector associated with an edgee is (dx[e], dy[e]), and for the second function,
the vector associated with an edgee = (v, w) is (x [w] − x [v], y[w] − y[v]).

The functions returntrue if G is a plane map after the reordering. When will this be the
case? Assume thatG is a map and that the vectorsd(e) come from a planar drawing ofG,
i.e., d(e) is a vector tangent to the image ofe as it leaves its source. IfG has no self-loops
and no parallel edges23 thenG will be a plane map after the call ofSORTEDGES. In fact,
it will be a plane map for which the given drawing is an order-preserving embedding.

We next give an application of the function SORTEDGES to the task described in the

23 Observe that sorting edges by angle leaves the relative order of self-loops and the relative order of parallel edges
undefined.
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introductory paragraph. The goal is to deduce a plane map from a straight line drawing of
the map. Assume thatgw is a GraphWin with an associated graphG, i.e., defined by

〈gw sort edgesdemo〉�
graph G;

〈gw sort edgesdemo: auxiliary functions〉
int main()

{ GraphWin gw(G,"Plane Map from Geometry");

gw.set_init_graph_handler(init_handler);

gw.set_new_edge_handler(new_edge_handler);

gw.set_del_edge_handler(del_edge_handler);

gw.set_new_node_handler(new_node_handler);

gw.set_del_node_handler(del_node_handler);

gw.set_directed(true);

gw.display();

gw.edit();

return 0;

}

We define an auxiliary functionsort that queries for each nodev of G its position ingwand
then calls SORTEDGES. We callsort whenever an edge is added to the graph (and hence
the new edge handler is called) or if a new graph is read in bygw (and hence the init handler
is called). When an edge is added, we also add the reversal to make sure that we deal with
a map.

The effect of the call ofsort is to rearrange the adjacency lists according to the counter-
clockwise order in which the edges incident to any node appear in the drawing. We print
the graph at the end of sort in order to allow a visual comparison between the drawing and
the representation of the graph. The graph will be a plane map as long as the drawing is a
planar embedding.

〈gw sort edgesdemo: auxiliary functions〉�
void sort(GraphWin& gw)

{

node_array<double> x(G), y(G);

node v;

forall_nodes(v,G)

{ point p = gw.get_position(v);

x[v] = p.xcoord(); y[v] = p.ycoord();

}

SORT_EDGES(G,x,y);

cout << "\n\nThe adjacency lists are:\n";

G.print();

}

void init_handler(GraphWin& gw)

{ list<edge> L;

G.make_map(L);
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sort(gw);

}

void new_edge_handler(GraphWin& gw, edge e)

{ G.set_reversal(e,gw.new_edge(G.target(e),G.source(e)));

sort(gw);

}

bool del_edge_handler(GraphWin& gw, edge e)

{ gw.del_edge(G.reversal(e)); return true; }

void new_node_handler(GraphWin& gw,node) {}

void del_node_handler(GraphWin& gw) {}

We will see more functions that relate geometry and graphs in Chapter 10 on geometric
algorithms.

Exercises for 8.12
1 Extend the gwdrawingdemo.c such that it can also cope with edges that contain bends.
2 Write a function that checks whether the geometric positions assigned to the nodes of

a map define a straight line embedding of the map. Hint: Read Section 10.7.2 on line
segment intersection before working on this exercise.

8.13 Miscellaneous Functions on Planar Graphs

There are many problems that are simpler for planar graphs than for arbitrary graphs. We
collect two in this section.

8.13.1 Five Coloring
Every planar graph can be four-colored, i.e., the nodes of the graph can be labeled with
the integers 1 to 4 such that any edge connects two nodes of distinct color. We have not
implemented a four coloring algorithm but only a five coloring algorithm.

The function

void FIVE COLOR(graph& G, node array<int>& C);

attempts to color the nodes ofG using five colors, more precisely, it computes for every
nodev a colorC[v] ∈ {1, . . . , 5}, such thatC[source(e)] 6= C[target(e)] for every edgee.
The function runs in linear time and is guaranteed to succeed ifG is planar and contains no
self-loops and no parallel edges24.

We sketch how the algorithms works. In a planar graph there is always a node with at
most five neighbors (Lemma 47). Letv be a node with at most five neighbors. Ifv has
less than five neighbors, we recursively five-color the graphG \ v and then use a color for
v which is not used by any of its neighbors. Ifv has degree 5, we have to work slightly

24 Self-loops are clearly an obstruction to colorability. Parallel edges are no “real” problem; it is just that our
algorithm is not able to handle them.
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harder. We observe that there must be two neighbors ofG which are not connected by an
edge (otherwise the neighbors ofv would form a complete graph on five nodes; this is,
however, impossible in a planar graph by Lemma 47). Letw andz be two neighbors ofv
that are not connected by an edge. We removev and mergew andz into a single node. This
can be done without destroying planarity as Figure 8.34 shows. When mergingw andz we
also delete any parallel edges which may result from the merging process. We five-color the
resulting graphG ′ recursively. In order to obtain a coloring ofG we unmergew andz, give
w andz the color of the node that represented them both inG ′, and givev a color which is
not used on its neighbors.

To obtain linear running time is slightly tricky and we leave it for the exercises.

w

v

z

w

z

Figure 8.34 Merging the neighborsw andz of v.

8.13.2 Independent Sets of Small Degree
An independent set in a graphG is a setI of nodes no two of which are connected by an
edge. A five coloring of a graph yields an independent set of size at leastn/5, since at least
one of the colors is used on at leastn/5 of the nodes and since all edges have their endpoints
in different color classes. Sometimes, it is desirable to have an independent set all of whose
nodes have small degree.

The function

void INDEPENDENT SET(const graph& G, list<node>& I)

computes an independent setI all of whose nodes have degree at most 9. IfG is planar
and has no parallel edges, it is guaranteed that|I | ≥ n/6. The algorithm is due to David
Kirkpatrick and Jack Snoeyink [KS97] and is extremely simple and elegant.

The algorithm starts by removing all nodes that have degree 10 or more. It then repeatedly
chooses a nodev of smallest degree, addsv to I , and removesv and its neighbors fromG.

We describe an implementation. We start by making an isomorphic copyH of G; H is
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of typeGRAPH<node, edge>, and each nodev of H stores inH [v] the node ofG to which
it corresponds. We saw the implementation ofCopyGraphin Section 6.1. We will work on
H .

We delete all self-loops fromH and turnH into a map. Recall that turning a graph into
a map pairs a maximum number of edges and adds reversals for the unpaired edges. After
turning H into a map, each edge is part of a uedge.

We then determine all nodes of degree at least 10 and delete all such nodes.
Next we collect all nodes ofH of degreei , 0 ≤ i ≤ 9 in a linear listLD[i ]. In the course

of the algorithm the listsLD[i ] may contain nodes that were already deleted fromH . We
need to be able to identify those nodes and therefore maintain an arraynodeof H.

The construction of the independent set can now begin. As long asH is not empty, we
select a nodev from the lowest indexed non-empty list. We continue the selection process
until we select a node that belongs to the currentH . We addH [v] to I (recall thatH [v] is
the node inG that corresponds tov), and we deletev and its neighbors fromH ; we do not
remove them from the listsLD though (this could be done by maintaining an arrayposin LD
that stores for each nodev the item inLD that containsv). We collect all neighbors ofv in
a listaffectednodesand add them to the listsLD according to their new degrees.

〈 independentset〉�
void INDEPENDENT_SET(const graph& G, list<node>& I)

{ I.clear();

GRAPH<node,edge> H;

CopyGraph(H,G);

node v; edge e;

list<edge> E = H.all_edges();

forall(e,E) { if (H.source(e) == H.target(e) ) H.del_edge(e); }

H.make_map(E); // E is a dummy argument

list<node> HD; // high degree nodes

forall_nodes(v,H) if (H.degree(v) >= 10) HD.append(v);

forall(v,HD) H.del_node(v);

array<list<node> > LD(10);

forall_nodes(v,H) LD[H.degree(v)].append(v);

node_array<bool> node_of_H(H,true);

while (H.number_of_nodes() > 0)

{ int i = 0;

while (i < 10)

{ if ( LD[i].empty() ) { i++; continue; }

v = LD[i].pop();

if ( node_of_H[v] ) break;

}

I.append(H[v]);

list<node> affected_nodes;

forall_inout_edges(e,v)

{ node w = H.opposite(v,e);

edge f;

forall_inout_edges(f,w)
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affected_nodes.append(H.opposite(w,f));

H.del_node(w); node_of_H[w] = false;

}

H.del_node(v); node_of_H[v] = false;

forall(v,affected_nodes)

if ( node_of_H[v] ) LD[H.degree(v)].append(v);

}

}

Exercises for 8.13
1 Extend the functionFIVE COLORINGso that it can handle parallel edges.
2 Implement the function FIVECOLORING. Try to achieve linear running time.
3 Modify the implementation of INDEPENDENTSET such that the listsLD contain only

nodes ofH and every node at most once.
4 A separator in a graphG is a setS of nodes ofG such that removal ofS decomposes

G into two or more subgraphs none of which has more than 2n/3 nodes. Planar graphs
have separators of sizeO(

√
n) and there are linear time algorithms to compute them, see

[LT77] or [Meh84c, IV.10]. Implement the planar separator theorem and provide it as a
LEP.
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The Geometry Kernels

A geometry kernel offers basic geometric objects, such as points, lines, segments, rays,
planes, circles,. . . , andgeometric primitives operating on these objects, e.g, the computa-
tion of the area of the triangle defined by three points and the computation of the intersection
of two lines.

LEDA offers geometric kernels for plane geometry, for three-dimensional geometry, and
for geometry in higher dimensional space. We discuss the kernels for two- and three-
dimensional geometry in the first eight sections. The kernel for higher dimensional ge-
ometry will be discussed in Section 9.9.

The two- and three-dimensional kernels come in two kinds: the rational kernel and the
floating point kernel. Write one of

#include <LEDA/rat kernel.h>

#include <LEDA/float kernel.h>

#include <LEDA/d3 rat kernel.h>

#include <LEDA/d3 float kernel.h>

to select a kernel. The kernels for two-dimensional geometry provide points, lines, seg-
ments, rays, vectors, circles, polygons, generalized polygons, and affine transformations.
We use the type namespoint, line, segment, ray, vector, circle, polygon, genpolygon,
and transform for the corresponding classes of the floating point kernel and the names
rat point, rat line, rat segment, rat ray, rat vector, rat circle, rat polygon, rat genpolygon,
andrat transformfor the corresponding classes of the rational kernel. If the distinction be-
tween rational and floating point kernel is immaterial, we use capital letters: POINT, LINE,
SEGMENT, . . . . The three-dimensional kernels provide lines and planes.

The header files above simply collect the header files of all relevant classes into one. For
example,

581
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〈rat kernel.h〉�
#include <LEDA/rational.h>

#include <LEDA/rat_point.h>

#include <LEDA/random_rat_point.h>

#include <LEDA/rat_segment.h>

#include <LEDA/rat_ray.h>

#include <LEDA/rat_line.h>

#include <LEDA/rat_circle.h>

#include <LEDA/rat_vector.h>

#include <LEDA/rat_polygon.h>

#include <LEDA/rat_gen_polygon.h>

It is important to understand the difference between the rational and the floating point
kernel.

In the rational kernel the Cartesian coordinates of points are rational numbers (in the
sense of mathematics) and the geometric primitives are exact, i.e., always give the correct
result.

In the floating point kernel the Cartesian coordinates of points are double precision float-
ing point numbers and the geometric primitives are approximate, i.e, they usually give the
correct result but there is no guarantee.The use of the floating point kernel is therefore not
without risk.

Why do we have the floating point kernel at all? There are several reasons: (1) the outside
world, e.g., the graphics systems used to visualize the results of geometric computations,
wants floating point numbers, (2) we started with the floating point kernel, and (3) floating
point computation is faster than computation with rational numbers. The last sentence re-
quires further explanation. First, floating point computation is unreliable and hence the cost
of efficiency is a reliability problem. The dangers of floating point arithmetic in geometric
computations are discussed in Section 9.6. Second, the overhead of exact computation is
surprisingly small due to our extensive use of so-called floating point filters. Our experi-
ments show that the cost of exact arithmetic is never more than a factor of three in running
time and usually much smaller. The efficient realization of exact geometric computation
and floating point filters are discussed in Section 9.7.

In our own work we do program development exclusively with the rational kernel. Only
when a program is stable, we might consider switching to the floating point kernel. We
switch only if the use of the rational kernel does not give the desired performance. A switch
to the floating point kernel should always be accompanied by a careful analysis of its limits,
see Section 9.8.

This chapter is organized as follows: the first two sections deal with geometric objects
and geometric predicates, respectively. Every user of LEDA geometry should read them.
The next three sections treat special topics: affine transformations, generators for geometric
objects, and writing kernel independent code. They may be skipped on first reading. We
then have three sections on arithmetic. We first discuss the danger of using floating point
arithmetic as an implementation of mathematics’ real numbers, then describe the efficient
implementation of exact geometric predicates in the rational kernel, and finally comment
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on the safe use of the floating point kernel. The last three sections give a glimpse at the
higher-dimensional kernel, briefly review the history of geometry in LEDA, and discuss the
relation between LEDA and CGAL.

9.1 Basics

We discuss points, segments, lines, rays, vectors, and circles.

Cartesian and Homogeneous Coordinates:We assume that the ambient space is equipped
with the standard Cartesian coordinate system and specify points by their Cartesian coordi-
nates. For a pointp in the plane the functions

p.xcoord();

p.ycoord();

return thex- andy-coordinate ofp, respectively. Of course, thez-coordinate of a point in
space is returned byp.zcoord( ). The Cartesian coordinates of apoint are of typedouble
and the Cartesian coordinates of arat point are of typerational. We use RATTYPE as the
generic name, i.e., RATTYPE stands fordoublewhen the floating point kernel is used and
stands forrational when the rational kernel is used.

Pointsare stored by their Cartesian coordinates. Forrat pointsit is more efficient to store
them by their homogeneous coordinates, i.e., to use the same denominator for thex- and
they-coordinate. The homogeneous coordinates of a point in the plane are a triple(x, y, w)

with w 6= 0; herew is called the homogenizing coordinate. The Cartesian coordinates of
a point with homogeneous coordinates(x, y, w) are(x/w, y/w). Observe that the homo-
geneous coordinates of a point are not unique. Two triples that are multiples of each other
specify the same point. The homogeneous coordinates of a pointp in the plane are returned
by

p.X();

p.Y();

p.W();

respectively. The homogeneous coordinates of arat point are of typeinteger. Do points
also have homogeneous coordinates? Yes, for compatibility withrat points they do. The
homogenizing coordinate of apoint is the constant 1.0 and theX - andY -coordinate is sim-
ply the corresponding Cartesian coordinate. Thus the homogeneous coordinates of apoint
are of typedouble. We use INTTYPE to denote the type of the homogeneous coordinates1,
i.e., INT TYPE stands forintegerwhen the rational kernel is used, and stands fordouble
when the floating point kernel is used.

We said above that homogeneous coordinates are not unique. We guarantee, however,
that all accesses to the homogeneous coordinates of a point return the same value. We do

1 We chose RATTYPE and INTTYPE as the names for the types of the Cartesian and the homogeneous
coordinates because we prefer the rational kernel.
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not guarantee, however, that these values are the homogeneous coordinates specified in the
constructor for the point. The constructor may simplify the representation by cancelling
out common factors. Moreover, we always store a positive value for the homogenizing
coordinate.

In mathematical context we also usex p andyp for the Cartesian coordinates of a pointp
andX p, Yp, andWp for the homogeneous coordinates.

Construction: Points are constructed by either specifying their Cartesian or their homoge-
neous coordinates. Thus

point p(0.2,0.8);

point q(1,4,5);

rat point r(1,4,5);

rat point s(rational(1,5),rational(4,5));

are four different ways of defining a point with coordinates(1/5, 4/5). In the first construc-
tor we have defined apoint by specifying its Cartesian coordinates, in the second construc-
tor we have specified apoint by giving a triple of doubles (the Cartesian coordinates are
obtained by performing the floating point divisions 1/5 and 4/5), in the third constructor
we have specified arat point by a triple ofintegers, and in the fourth constructor we have
specified arat point by a pair of rational numbers.

The generic form of the constructor is

POINT p(RAT TYPE x, RAT TYPE y)

for the construction from Cartesian coordinates, and

POINT p(INT TYPE X, INT TYPE Y, INT TYPE W = 1)

for the construction from homogeneous coordinates. The default constructor

POINT p;

constructs the origin. It is bad programming style to exploit this fact. We recommend
writing

POINT p(0,0);

to construct the origin.

We turn to segments, lines, and rays. A segment is constructed by specifying its two
endpoints. Thus

segment s(point p, point q);

rat segment s(rat point p, rat point q);

define asegmentand arat segment, respectively. The second point may also be specified
by a vector which defines the relative position of the second point with respect to the first
point. The generic forms are

SEGMENT s(POINT p, POINT q);

SEGMENT s(POINT p, VECTOR v); // same as s(p,p+v)
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The defining points of a segment can be accessed by

s.source();

s.target();

Lines and rays are also defined by two points or by a point and a vector.

LINE l(POINT p, POINT q);

LINE l(POINT p, VECTOR v); // same as l(p,p+v)

RAY r(POINT p, POINT q);

RAY r(POINT p, VECTOR v); // same as r(p,p+v)

Of course, the two defining points must not be equal and the vector must not be the zero-
vector.

The default constructors

SEGMENT s;

LINE l;

RAY r;

introduce variables of the appropriate type. They are initialized to some object of the type
(the manual even specifies which), but it is bad programming style to rely on this fact.

Vectors can be specified by either their Cartesian or their homogeneous coordinates.

vector v(double x, double y);

rat vector v(rational x, rational x);

rat vector v(integer X, integer Y, integer W = 1);

Observe that the analogy betweenvectorsandrat vectorsis not complete. There is no way
to define a two-dimensionalvectorby a triple of doubles. The reason is thatvectorsand
rat vectorsexist for arbitrary dimensions and that

vector v(double x, double y, double z);

constructs a three-dimensional vector. The default constructor defines the zero vector.

Circles can be constructed in many ways. We describe two:

CIRCLE C(POINT a, POINT b, POINT c);

CIRCLE C(POINT a, POINT b);

define a circle passing through pointsa, b, andc, and a circle with centera and passing
throughb respectively. Ifa = b in the second constructor, the circle has radius zero.

Some triples of points are unsuitable for defining a circle. A triple isadmissibleif
|{p1, p2, p3}| 6= 2. Assume now thatp1, p2, p3 are admissible. If|{p1, p2, p3}| = 1,
they define the circle with centerp1 and radius zero. Ifp1, p2, andp3 are collinear,C is a
straight line passing through them and the center ofC is undefined. Ifp1, p2, and p3 are
not collinear,C is the circle passing through them.

Affine transformations are discussed in Section 9.3 and polygons and generalized poly-
gons are discussed in Section 10.8.
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Points and Vectors: Points and vectors are related but clearly distinct geometric objects.
In order to work out the relationship between points and vectors it is useful to identify a
point with an arrow extending from the origin to the point. In this view a point is an arrow
attached to the origin. A vector is an arrow which is allowed to float freely in space2.

Points and vectors can be combined by arithmetical operations: for two pointsp andq
the differencep − q is a vector3 and for a pointp and a vectorv, p + v is a point.

For two vectorsv andw their sumv + w and their differencev − w are also vectors.
However, it does not make sense to add two points. The unary operator− reverses a vector.

The coordinates of a vectorv are accessed by

RAT TYPE v.coord(int i); // i-th Cartesian coordinate

RAT TYPE v[int i]; // i-th Cartesian coordinate

INT TYPE v.hcoord(int i); // i-th homogeneous coordinate

For a vectorv in d-space the Cartesian coordinates are indexed from 0 tod − 1 and the
homogeneous coordinates are indexed from 0 tod. The homogenizing coordinate has index
d. The homogenizing coordinate of avector is the constant 1. In two-dimensional space
the Cartesian and homogeneous coordinates can also be accessed byxcoord( ), ycoord( ),
X ( ), Y ( ), andW ( ), respectively.

Vectors may be stretched or shrunk. Ifv is a vector andr has INTTYPE or RAT TYPE
then

r * v;

v / r;

compute the vectors whose Cartesian coordinates are multiplied byr and divided byr ,
respectively.

If v andw are vectors then

v * w

returns the scalar product ofv andw. This is the component-wise product of the Cartesian
coordinates and has RATTYPE.

The scalar product of a vector with itself yields the squared length of the vector. Instead
of writing v ∗ v one can also write

v.sqr length();

Handle Types, Identity and Equality: All geometric types are so-called handle types or
independent item types, see Sections 2.2 and 2.2.2, i.e., an object of any geometric type
is a (smart) pointer to a representation object. For example, arat point is a pointer to a
rat point rep and asegmentis a pointer to asegmentrep. The objects of the representation
class contain the defining information about the geometric object and possibly additional
information for internal use.
2 More precisely, a vector is an equivalence class of arrows where two arrows are equivalent if one can be moved

into the other by a translation of space.
3 More precisely, it is the equivalence class of arrows containing the arrow extending fromp to q.
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We give more details forrat points. The classesrat point andrat point rep are derived
from handlebaseandhandlerep, respectively. The classhandlebasecontains a data mem-
berPTR, which is a pointer to ahandlerep. In rat pointwe have a private member function
ptr which casts this pointer to a pointer to arat point rep. The classhandlerep is discussed
in Section 13.7. Arat point rep contains the homogeneous coordinates of a point (three
integers), floating point approximations of the homogeneous coordinates (threedoubles)
and the id-number of the point. The floating point approximations of the homogeneous
coordinates are used in the floating point filter and will be discussed in Section 9.7. The
id-number is used as the hash key in maps and hashing arrays. Any twopoint repshave
distinct id-numbers.

class rat point rep : public handle rep {

integer x, y, w;

double xd, yd, wd;

unsigned long id;

};

class rat point : public handle base {

rat point rep* ptr() const { return (rat point rep*)PTR; }

};

We distinguish between identical and equal objects. Two pointsp andq are identical
(function identical(p, q)) if they point to the samepoint rep, and two pointsp andq are
equal(binary operator==) if they agree as geometric objects, i.e., have the same Cartesian
coordinates.

The assignment statement and the copy constructor preserve identity, i.e., are realized by
pointer assignment.

POINT p(0,0);

POINT q(0,0);

POINT r = p;

identical(p,q); // evaluates to false

p == q; // evaluates to true

identical(p,r); // evaluates to true

p == r; // evaluates to true

Linear Orders: There are several linear orders defined on points.

• cmpx compares points by theirx-coordinate.

• cmpy compares points by theiry-coordinate.

• cmpxycompares points by theirx-coordinates. Points with equalx-coordinate are
compared by theiry-coordinate.

• cmpyxcompares points by theiry-coordinates. Points with equaly-coordinate are
compared by theirx-coordinate.

• cmpis the same ascmpxy. It is the default order for points.
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Associating Information with Geometric Objects: Points, lines, segments, rays, and cir-
cles have id-numbers and hencemapsandh arrayscan be defined for them. Observe that
mapsandh arraysassociate information with representation objects, i.e, only identical ob-
jects share their information. For example,

map<POINT,int> color;

POINT p(0,0); color[p] = 0;

POINT q(0,0); color[q] = 1;

POINT r = p;

cout << color[p] << color[q] << color[r]; // outputs 010

For points we can also use dictionaries and dictionary arrays to associate information (for
the other geometric types this requires the definition of a compare function). In dictionaries
and dictionary arrays equal objects share their information. For example,

d array<POINT,int> color;

POINT p(0,0); color[p] = 0;

POINT q(0,0); color[q] = 1;

POINT r = p;

cout << color[p] << color[q] << color[r]; // outputs 111

Observe thatp andq are equal and hence the assignment tocolor[q] also changes the color
of p.

Dictionary arrays are useful for removing multiple occurrences of equal objects. For
example, ifL is a list of points, then

d array<POINT,bool> first occurrence(true);

list item it;

forall items(it,L)

{ if ( !first occurrence[ L[it] ] )

L.del item(it);

else

first occurrence[ L[it] ] = false;

}

removes all but the first occurrence of every point fromL. What will this program do when
amapis used instead of ad array?

Converting between the Rational and the Floating Point Kernel:Floating point objects
can be converted to rational objects and rational objects can be converted to floating point
objects. We illustrate conversion for points.

If p is apoint or rat point then

point p.to point();

returns apoint. If p is a point the call is equivalent to the call of the copy constructor,
and if p is a rat point, the Cartesian coordinates of the point returned are floating point
approximations of the Cartesian coordinates ofp.

The conversion from rational objects to floating point objects needs to be used whenever
an object is to be displayed in a window. For example, ifW is awindowand p is a POINT,
then
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W << p.to point();

drawsp in W . The output statement above could be written even more elegantly asW � p
if the classrat point provided a conversion operator topoint. We opted for the less elegant
code since the use of conversion operators can lead to unexpected side effects.

Both point classes have a constructor

POINT(const point& p, int prec = 0);

If POINT is rat point andprec is positive the constructor is equivalent to

rat point(integer(p.xcoord() * P), integer(p.ycoord() * P), P),

whereP = 2prec, i.e., the Cartesian coordinates ofp are approximated as rational numbers
with denominatorP. If prec is non-positive, the value ofprec is chosen such that there is
no loss of precision in the conversion.

When POINT ispoint andprec is positive, the point constructed has Cartesian coordi-
nates(bP ∗ xc/P, bP ∗ xc/P), wherep = (x, y) and P = 2prec. If prec is non-positive,
the new point has coordinatesx andy.

Immutability: All geometric objects areimmutable. There are no operations that change a
geometric object, there are only operations to generate new geometric objects from already
existing ones. For example, the operation

p.translate(1,1);

returns a point which is obtained fromp by translating it by the vector(1, 1); it does not
change the coordinates of the pointp. Of course, the translated point may be assigned top:

p = p.translate(1,1);

Input and Output: Geometric objects can be written on files and read from files. For
example, ifp is a POINT then

cout << p;

cin >> p;

writes p on standard output, and readsp from standard input, respectively. The input oper-
ators� are designed such that output written by� can be read by�.

Graphical input and output is very important for geometric objects. Thewindowclass
knows how to draw geometric objects and supports the construction of geometric objects
by mouse input. The simplest way to draw a geometric object is to use the operator�, for
example,

W << p.to point(); // W << p can be used if p is a point

W << s.to segment(); // W << s can be used if s is a segment

W << r.to ray(); // W << r can be used if r is a ray

W << l.to line(); // W << l can be used if l is a line

W << C.to circle(); // W << C can be used if C is a circle

W << P.to polygon(); // W << P can be used if P is a polygon
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If more control is needed, e.g, concerning the color or whether a circle should be drawn as
a disk, thedraw functions need to be used. For example,

W.draw segment(s,red); // draws s in red

W.draw disk(C,blue); // draws a blue filled circle

W.draw filled polygon(P,green); // draws a filled green polygon

Observe thats, C, andP must be floating point objects. Rational objects must be converted
to floating point objects first. For example,

W.draw filled polygon(P.to polygon(),green);

has to be used to draw a filledrat polygon. Observe that the call will also work forpolygons.
Why did we not overload thedraw-functions such that they also work for rational objects?

The reason is that this would have required to include the header files of the rational kernel
into the header file of the window class. The header file ofwindowis very large already and
we wanted to avoid a further increase in size.

We come to mouse input. The operator� can be used to read a point, segment, line, ray,
circle, or polygon. For example,

W >> p; // p is a point

W >> s; // s is a segment

read a point and a segment, respectively. The reading operations are blocking and wait
for mouse clicks. A point is constructed by a single click of the left mouse button, and a
segment, line, ray, and circle is constructed by two clicks of the left mouse button.

What happens when a mouse button different from the left mouse button is clicked?
Windows have an internal state in the same way as C++ input streams do. The state indicates
whether there is more input to read or not. The state is initially true and is set to false
by a click of the right mouse button (this is similar to ending stream input by the “eof”
character). If an input statement is used in the test of a conditional, an object of typewindow
is automatically converted to a boolean whose value is the internal state. For example,

list<point> L;

point p;

while ( W >> p ) L.append(p);

reads a sequence of points fromW . Every click of the left mouse button inputs a point
and a click of the right mouse button terminates the sequence. The three lines above are
essentially the implementation of the input operator for polygons.

In window.h the input operator� is only defined for the floating point objects. If you
want to use them for rational objects you must include the header file ratwindow.h. For
example,

#include <LEDA/rat window.h>

rat point p;

while (W >> p) W << p.to point();

reads a sequence ofrat pointsand echos them inW .
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Figure 9.1 The Voronoi vertexv is the center of the circle passing through the pointsa, b, andc.
The three points lie in the windowW (indicated as a solid frame) butv lies far outsideW . It is a
bad strategy to draw the rayr as a ray starting inv and having direction orthogonal to the
direction froma to b. A slight error in the computation of the coordinates ofv due to round-off
may change the appearance ofr in W dramatically.

Input and Output: A Warning: As already mentioned, thewindowclass offers functions
to draw lines, rays, and segments, and many other geometric objects. For example,

W.draw segment(point p, point q);

W.draw ray(point p, point q);

will draw the segment with endpointsp andq and the ray with start pointp passing through
q, respectively. These functions have the desired effect if the pointsp andq lie in a rectangle
whose side lengths are about 1000 times the side lengths ofW . If one of the points lies
further away fromW , the use of these functions is ill-advised.

Consider the following situation. We are given three pointsa, b, andc in a windowW
and want to display their Voronoi diagram. Voronoi diagrams are discussed in Section 10.5.
Except when the points lie on a common line, the Voronoi diagram will consist of a single
vertexv from which three rays emanate. The Voronoi vertex is the center of the circle
passing through the three points. When the three points lie almost on a line,v will lie far
outsideW , see Figure 9.1. Each ray is part of the perpendicular bisector of two sites. It
is natural to draw the ray which is part of the perpendicular bisector ofa and b by the
following piece of code:

POINT v = CIRCLE(a,b,c).center();

VECTOR vec = b - a;

POINT ray point = v + vec.rotate90();

W.draw ray(v.to point(),ray point.to point());

The drawing produced by this program will be a disappointment, ifa, b, andc lie suffi-
ciently close to a common line, since the conversion ofv and ray point to points of the
floating point kernel (note that this conversion cannot be avoided since the windows class
knows only floating point objects) will incur rounding error. Moving eitherv or ray point
slightly has a dramatic effect on the appearance ofr in W .
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We recommend using a different strategy to draw rays and segments whose defining
points may lie far outsideW . In this situation the underlying linel is frequently known by
other means. In our example,l is the perpendicular bisector of the pointsa andb.

LINE l = p bisector(a,b);

The defining elements ofl lie in W and are hence known with high precision. The window
class offers functions

W.draw segment(point p, point q, line l, color c);

W.draw ray(point p, point q, line l, color);

that draw the part of the linel betweenp andq, respectively, the part ofl on the ray with
sourcep and second pointq. Of course,p andq must lie onl or at least close to it. We give
the implementation of the second function.

If p is contained inW we simply draw the ray with sourcep and second pointq. If p lies
outside the window we clip the linel on W and call the resulting segments. The segment
s has the property that its source precedes its target in the lexicographic order of points;
equality is possible. We draws either if p is smaller than the source ofs andq is larger than
p, or if p is larger than the target ofs andq is smaller thanp, or if p lies lexicographically
between the source and the target ofs. The latter case cannot happen mathematically, but it
can happen numerically, ifp lies close to either the source or the target ofs but not exactly
on l.

void window::draw ray(point p, point q, line l, color col)

{

if ( contains(p) ) { draw ray(p,q,col); return; }

segment s;

point llc(xmin(),ymin()); // left lower corner

point rrc(xmax(),ymax()); // right upper corner

if ( !l.clip(llc,rrc,s) ) return;

if ( compare(p,s.source()) < 0 && compare(p,q) < 0 ||

compare(s.target(),p) < 0 && compare(q,p) < 0 ||

compare(s.source(),p) <= 0 && compare(p,s.target()) <= 0 )

draw segment(s,col);

}

We will see an application of the refined drawing functions in Section 10.10.

Exercises for 9.1
1 Write a program that allows to input points in a graphics window and colors the points

randomly red and blue.
2 Write a program that allows to input points in a graphics window and always highlights

a pair of points with smallest distance. For two pointsp andq, p.sqrdist(q) computes
the squared distance betweenp andq.

3 Write a program that removes duplicates from a list of segments.
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q
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p

r1

r3

Figure 9.2 orientation(p, q, r1) = 1, orientation(p, q, r2) = 0, andorientation(p, q, r3) = −1.
The triangle4(p, q, r1) is shown dashed.

9.2 Geometric Primitives

We discuss some of the geometric primitives available in LEDA, in particular, the orienta-
tion function and its variants, lengths and distances, angles, and intersections.

9.2.1 The Orientation Function in the Plane
Theorientation functionis probably the most useful geometric primitive. Letp, q, andr
be three points in the plane. The tuple(p, q, r) is said to havepositive orientationif p
andq are distinct andr lies to the left of the oriented line passing throughp andq and
oriented fromp to q, the tuple is said to havenegative orientationif r lies to the right of
the line, and the tuple is said to haveorientation zeroif the three points are collinear, see
Figure 9.2. An alternative way to define positive orientation is to say thatp, q, andr form
a counter-clockwise oriented triangle. The function

int orientation(POINT p, POINT q, POINT r)

computes the orientation of the triple(p, q, r). It returns+1 in the case of positive orienta-
tion, −1 in the case of negative orientation, and 0 in the case of zero orientation. There are
also predicates that test for special cases.

bool leftturn(p,q,r); // same as orientation(p,q,r) > 0

bool rightturn(p,q,r); // same as orientation(p,q,r) < 0

bool collinear(p,q,r); // same as orientation(p,q,r) == 0

We next derive a determinant formula for the orientation function. For pointsp, q, and
r we use4(p, q, r) to denote the triangle with verticesp, q, andr . We define thesigned
areaof the triangle4(p, q, r) as its area times the orientation of the triple(p, q, r).
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Figure 9.3 Proof of Lemma 56.

Lemma 56Let p, q, andr be points in the plane.
(a) The signed area of the triangle4(p, q, r) is given by

1

2

∣∣∣∣∣∣
1 1 1
x p xq xr

yp yq yr

∣∣∣∣∣∣
(b) The orientation of(p, q, r) is equal to the sign of the determinant above.

Proof Part( b) follows immediately from part (a) and the definition of signed area. So we
only need to show part (a). We do so in two steps. We first verify the formula for the case
that p is the origin and then extend it to arbitraryp. So let us assume thatp is equal to the
origin. We need to show that the signed areaA of 4(p, q, r) is equal to(xq yr − xr yq)/2.

Let α be the angle between the positivex-axis and the rayOq and letQ be the length
of the segmentOq, cf. Figure 9.3. Then cosα = xq/Q and sinα = yq/Q. Rotating
the triangle4(O, q, r) by −α degrees about the origin yields a triangle4(O, q ′, r ′) with
q ′ = (Q, 0) and the same signed area. Thus,A = Q · yr ′/2.

Next observe thaty ′
r = R sin(β − α), whereR is the length of the segmentOr andβ

is the angle between the positivex-axis and the rayOr . Since sin(β − α) = sinβ cosα −
cosβ sinα andR cosβ = xr andR sinβ = yr we conclude that

A = Q · yr ′/2 = Q · R · sin(β − α)/2

= (Q cosα · R sinβ − Q sinα · R cosβ)/2 = (xq yr − xr yq)/2.

This verifies the formula in the case wherep is the origin.
Assume next thatp is different from the origin. Translatingp into the origin yields the

triangle4(O, q ′, r ′) with q ′ = q − p andr ′ = r − p4 . On the other hand subtracting the

4 Strictly speaking, we would have to writeq ′ = 0 + (q − p) and similarly forr ′.
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first column from the other two columns of the determinant yields∣∣∣∣∣∣
1 1 1
x p xq xr

yp yq yr

∣∣∣∣∣∣ =
∣∣∣∣∣∣

1 0 0
x p xq − x p xr − x p

yq yq − yp yr − yp

∣∣∣∣∣∣ =
∣∣∣∣ xq ′ xr ′

yq ′ yr ′

∣∣∣∣
which by the above is twice the area of the translated triangle.

Part (b) of the lemma above is the implementation of the orientation function.

9.2.2 The Orientation Function in Higher-Dimensional Space
We define the orientation function for an arbitrary dimensional space and derive a determi-
nant formula for it. Less mathematically inclined readers may skip the proofs of the lemmas
to follow.

Let (p0, p1, . . . , pd) be ad + 1-tuple of points ind-dimensional space. Their orientation
is zero if the points lie in a common hyperplane. If they do not, their orientation is either
positive or negative as determined by the following rules:

• Let o be the origin and letei for i , 0 ≤ i < d, be the endpoint of thei -th coordinate
vector ofd-dimensional space. The tuple(o, e0, . . . , ed−1) has positive orientation.

• Two tuples(p0, p1, . . . , pd) and(q0, q1, . . . , qd) have the same orientation if the
affine map that mapspi into qi for i , 0 ≤ i ≤ d, has positive determinant.

Lemma 57Let (p0, p1, . . . , pd) be ad + 1-tuple of points ind-dimensional space. Then

orientation(p0, p1, . . . , pd) = signdet

(
1 · · · 1
p0 · · · pd

)
,

where thei -th column of the determinant consists of a1 followed by the vector of Cartesian
coordinates ofpi for all i , 0 ≤ i ≤ d.

Proof Observe first that the pointsp0, . . . , pd have orientation zero iff they lie in a common
hyperplane which is true iff the homogeneous linear system∑

0≤i≤d

λi = 0

∑
0≤i≤d

λi pi,l = 0 , 0 ≤ l ≤ d − 1

in variablesλ0, λ1, . . . , λd has a non-trivial solution. The determinant above is the deter-
minant of this system. We conclude thatorientation(p0, . . . , pd) = 0 iff the sign of the
determinant above is zero.

Assume next thatorientation(p0, p1, . . . , pd) 6= 0. The affine transformation that maps
(o, e0, . . . , ed−1) into (p0, p1, . . . , pd) is given byx 7→ p0 + P · x whereP has columns
p1 − p0, p2 − p0, . . . , pd − p0. Thus

detP = det
(

p1 − p0 p2 − p0 · · · pd − p0
)
.
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Adding an additional first row and first column to this determinant with the first entry in the
new row equal to one and all other entries in the new row equal to zero does not change the
value of the determinant (develop the determinant according to the new row). Therefore

detP = det
(

p1 − p0 p2 − p0 · · · pd − p0
)

= det

(
1 0 · · · 0
p0 p1 − p0 · · · pd − p0

)
= det

(
1 1 · · · 1
p0 p1 · · · pd

)
,

where the last equality follows from adding the first column to all other columns. We
conclude that(p0, p1, . . . , pd) has the same orientation as(o, e0, . . . , ed−1) if and only if
the determinant above is positive.

The lemma above generalizes Lemma 56. Observe that both lemmas give the same for-
mula for points in the plane.

We have already given an intuitive definition of orientation in the plane: three points
(p0, p1, p2) in the plane have orientation zero if they are collinear, have positive orientation
if they form a counter-clockwise oriented triangle, and have negative orientation if they
form a clockwise oriented triangle.

In three-dimensional space there is also an intuitive definition. Four points(p0, p1, p2, p3)

in three-dimensional space have orientation zero if they are coplanar, have positive orien-
tation if they form a right-handed system, and have negative orientation if they form a
left-handed system. We need to explain the terms right- and left-handed system. Imagine
that you place the base of your thumb at pointp0 and let the thumb (index finger, middle
finger) point top1, p2, and p3, respectively. Only one of your hands will work and this
determines the handedness of the system. For four three-dimensional pointsp, q, r , ands

int orientation(p,q,r,s);

computes their orientation.
An alternative definition of orientation in three-dimensional space is to say that the four-

tuple (p0, p1, p2, p3) has positive orientation ifp3 sees(p0, p1, p2) in counter-clockwise
orientation. The last sentence connects orientation in three-dimensional space with orien-
tation in two-dimensional space. The next lemma generalizes this connection to higher
dimensions.

Lemma 58Let(p′
0, p′

1, . . . , p′
d−1) be ad-tuple of points in(d − 1)-dimensional space with

positive orientation and let(p0, p1, . . . , pd) be ad + 1-tuple of points ind-dimensional
space such thatpi projects intop′

i for i , 1 ≤ i < d, i.e., the Cartesian coordinate vector
of p′

i is the Cartesian coordinate vector ofpi with the last entry removed. Leth be the
hyperplane spanned byp0, . . . , pd−1. Then(p0, p1, . . . , pd) has positive orientation ifpd

lies aboveh, has orientation zero ifpd lies onh, and has negative orientation ifpd lies
belowh.

Proof Let q be the projection ofpd into h. Then pd = q + c · ed−1 whereed−1 is the
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(d − 1)-th coordinate vector andc is positive if pd lies aboveh, is zero if pd lies onh, and
is negative ifpd lies belowh. Moreover there areλ0, λ1, . . . ,λd−1 such that∑

0≤i≤d−1

λi = 1,

and ∑
0≤i≤d−1

λi pi = q.

Thus

det

(
1 1 · · · 1
p0 p1 · · · pd

)
= det

(
1 1 · · · 1 1
p0 p1 · · · pd−1 q + c · ed−1

)

= det

(
1 1 · · · 1 0
p0 p1 · · · pd−1 c · ed−1

)

= c · det

(
1 1 · · · 1
p′

0 p′
1 · · · p′

d−1

)
,

where the second equality follows from subtracting theλi -th multiple of thei -th column
from the last column fori , 0 ≤ i < d, and the last equality follows by expanding the
determinant according to the last column. Observe that the last column has only one non-
zero entry and that this entry is in the last row.

In the plane we connected the orientation of a triple(p, q, r) to the signed area of the
triangle defined by the points. A similar connection holds in higher-dimensional space. The
signed area of the simplex with verticesp0, p1, . . . , pd is equal to1

d ! times the determinant
defined by the points.

9.2.3 Sidedness
Many geometric objects, such as lines and circles in the plane, planes and spheres in three-
dimensional space, and more generally hyperplanes and hyperspheres ind-dimensional
space, partition ambient space into two parts. We designate one of the parts as positive
and one as negative. The function

int O.side of(x);

whereO is a geometric object andx is a point in ambient space returns a positive number
(zero, a negative number, respectively) ifx lies in the positive part (lies onO, lies in the
negative part, respectively). Examples are

int l.side of(x); // l is a line

int C.side of(x); // C is a circle

int P.side of(x); // P is a polygon

What is the positive subspace with respect to a line or circle or hyperplane? We use the
orientation function for points to formulate general rules:
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• For a hyperplaneh in d-space defined by pointsp0, p1, . . . , pd−1 (in this order) the
positive subspace consists of all pointspd such that(p0, p1, . . . , pd) has positive
orientation. Thusline(p, q).sideof(x) is the same asorientation(p, q, x), if p andq
are distinct.

• For a hypersphereS in d-space defined by pointsp0, p1, . . . , pd (in this order) the
positive subspace consists of the interior of the sphere if(p0, p1, . . . , pd) is positively
oriented and consists of the exterior of the sphere otherwise. The same rule applies to
simplices.

In two-dimensional space the following alternative rule is also worth remembering. Two
points defining a line and three points defining a circle impose a sense of direction on the
line or circle respectively (from the first point to the second point in the case of a line, and
from the first point through the second point to the third point in the case of a circle).The
positive subspace is the region to the left of the object.

Let p, q, andr be points in the plane. We may want to inquire about the position of a
point x with respect tocircle(p, q, r). We could writecircle(p, q, r).sideof(x). Since this
test incurs overhead for the construction of a circle we also have an alternative syntactic
format that avoids this overhead and also gives an answer in the case where thep, q, andr
do not define a circle.

int side of circle(p,q,r,x);

returns+1 if x is to the left of the oriented circle throughp, q, andr , returns−1 if x is to
the right of the oriented circle throughp, q, andr , and returns 0 if either|{ p, q, r }| ≤ 2 or
x lies on the oriented circle throughp, q, andr . We give some more explanations.

Three pointsp, q, andr that are not collinear define a unique circle passing through
them. We give this circle an orientation by insisting thatp, q, andr occur in this order on
the circle. Consider now a fourth pointx . It is either left of, on, or right of the oriented circle
throughp, q, andr . Note that left corresponds to inside if the circle is counter-clockwise
oriented and to outside otherwise, see Figure 9.4. The case that the pointsp, q, andr are
collinear deserves special attention. If the three points are not pairwise distinct then the
whichsidefunction returns zero. If they are pairwise distinct then we orient the line passing
through them such that the order of the points along the line is a circular permutation of
(p, q, r), i.e., either(p, q, r) or (q, r, p) or (r, p, q), and use again+1 for the left side and
−1 for the right side of the line.

Circles, spheres, triangles, simplices, simple polygons, and many other geometric objects
partition ambient space into a bounded and an unbounded region. Since there is no standard
convention in mathematics that connects boundedness and unboundedness with positive
and negative respectively, we have an enumeration type for the outcome of theregionof
function.

enum region kind { BOUNDED REGION, ON REGION, UNBOUNDED REGION };

region kind O.region of(x); // the generic form

region kind C.region of(x); // C is a circle
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Figure 9.4 The sides of a circle:d lies on the negative side of the circle defined by pointsa, b,
andc, ands lies on the positive side of the circle defined by pointsp, q, andr .

Frequently, one only wants to test for one of the outcomes. We have appropriate predicates.

bool O.inside(x); // O.region of(x) == bounded region

bool O.on boundary(x); // O.region of(x) == on region

bool O.outside(x); // O.region of(x) == unbounded region

9.2.4 Length and Distance
If p andq are POINTs andl is a LINE,

RAT TYPE p.sqr dist(q);

RAT TYPE l.sqr dist(q);

compute the square of the distance betweenq and p or l, respectively.
In the rational kernel there are no functions to compute distances, in the floating point

kernel there are, but think twice before using them. Why?
The distance between two pointsp andq is equal to((x p − xq)

2 + (yp − yq)
2)1/2 and

is hence, in general, not a rational number. The squared distance is a rational number and
hence the rational kernel provides only functions to compute squared distances. The floating
point kernel uses thesqrt function from the standard math-library to compute distances.

We find that the computation of distances is rarely needed. Consider the following prob-
lem. Let p andq be points. We want to define the circle centered atp whose radius isρ
times the distance betweenp andq. This is best written as

CIRCLE C(p, p + rho * (q - p));

Observe thatq − p is the vector fromp to q and hencerho ∗ (q − p) is a vector whose
length isρ times the distance betweenp andq.

The distances betweenp andq andr , respectively, can be compared by

int p.cmp dist(q,r); // same as cmp(p.sqr dist(q),p.sqr dist(r));
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This is more efficient than computing the two squared distances and comparing them.

9.2.5 Angles
There is no type angle in either the rational or the floating point kernel. There are, however,
a number of functions related to angles. In particular, two vectorsv1 andv2 can be compared
by the angle which they form with the positivex-axis. For a vectorv let α(v) be the angle
by which the positivex-axis has to be turned counter-clockwise until it aligns withv. The
zero vector defines the angle zero.

int compare by angle(VECTOR v1, VECTOR v2);

returnscmp(α(v1), α(v2)).
We describe the implementation. If one of the vectors is the zero vector the comparison

is easily made. If both vectors are zero, they are equal, and if only one is zero, it is the
smaller. So assume that both vectors are non-zero. We say that a non-zero vector(x, y)

belongs to the upper half-plane if eithery > 0 or y = 0 andx > 0, and we say that it
belongs to the lower half-plane otherwise. Letupper1andupper2be the half-planes to
which our vectors belong (the value is+1 for a vector in the upper half-plane and−1 for a
vector in the lower half-plane). If the two vectors belong to distinct half-planes, the vector
in the upper half-plane is smaller and hence we may return the sign ofupper2− upper1. If
the two vectors lie in the same half-plane,v1 precedesv2 iff the triangle(O, O +v1, O +v2)

is counter-clockwise oriented iff the orientation of(O, O + v1, O + v2) is positive iff its
signed area is positive. The signed area is the length of the cross-product ofv1 andv2, i.e.,
x1y2 − x2y1. We may therefore return−sign(x1y2 − x2y1).

Rational vectors are stored by their homogeneous coordinates. Since the ordering of
angles does not depend on the length of vectors and since the homogenizing coordinate is
guaranteed to be non-negative, we may ignore it.

〈 angleorder.c〉+�
int compare_by_angle(const rat_vector& v1, const rat_vector& v2)

{ const integer& x1 = v1.hcoord(0);

const integer& y1 = v1.hcoord(1);

const integer& x2 = v2.hcoord(0);

const integer& y2 = v2.hcoord(1);

if ( x1 == 0 && y1 == 0 ) return ( x2 == 0 && y2 == 0 ? 0 : -1);

if ( x2 == 0 && y2 == 0 ) return 1;

// both vectors are non-zero

int sy1 = sign(y1); int sy2 = sign(y2);

int upper1 = ( sy1 != 0 ? sy1 : sign(x1) );

int upper2 = ( sy2 != 0 ? sy2 : sign(x2) );

if ( upper1 == upper2 ) return sign(x2*y1 - x1*y2);

return sign(upper2 - upper1);

}
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9.2.6 Intersections
There are functions to compute the intersections between lines, rays, and segments. For
example, ifl is a LINE ands is a SEGMENT then

bool l.intersection(s, p);

returnstrue if l ands have a single point in common and returnsfalseotherwise. In the
latter case, the unique point of intersection is assigned top.

Exercises for 9.2
1 Write a functioncircumcenterthat takes three pointsp, q, andr and returns the center of

the circle passing throughp, q, andr . The three points are assumed to be non-collinear.
2 Use the left-turn predicate to write a function that tests whether four pointsp, q, r , and

s in the plane form a convex quadrilateral.
3 Modify the test from the previous exercise such that it decides whether the four points

form a counter-clockwise oriented convex quadrangle.
4 Let p, q, r , ands be four points in three space not lying in a plane. Position your left or

right hand such thatp coincides with the base of your thumb, andq, r , ands coincide
with the tips of your thumb, index finger, and middle finger, respectively. Convince
yourself that only one of the two hands will work and relate the choice of hand to the
orientation of the four points.

9.3 Affine Transformations

An affine transformationT of the plane is specified by a 3×3 matrixT with T2,0 = T2,1 = 0
andT2,2 6= 0. It maps the pointp with homogeneous coordinate vector(px , py, pw) to the
point T · p. Transformations are calledtransformin the floating point kernel and are called
rat transformin the rational kernel. We use TRANSFORM as the generic name.

TRANSFORM T;

TRANSFORM T1(M);

declaresT as the identity transform and declaresT1 as the transform with transformation
matrix M. M must be a 3× 3 matrix in the floating point kernel and a 3× 3 integermatrix
in the rational kernel. Functional notation is used to apply an affine transformation to a
geometric object. For example,

p = T(q); // p and q are points

P = T(Q); // P and Q are polygons

v = T(w); // v and w are vectors

C = T(D); // C and D are circles; T must be rigid

The norm of an affine transformationT is defined as

|T | = (T0,0T1,1 − T0,1T1,0)/T 2
2,2.

A transformation is calledrigid iff its norm has absolute value one.



602 The Geometry Kernels

RAT TYPE T.norm();

returns the norm ofT .
If T andT1are transformations then

T(T1);

is the transformation obtained by first applyingT1and thenT .
Translations, rotations, and reflections are special cases of affine transformations.
A matrix of the form  w 0 x

0 w y
0 0 w


realizes a translation by the vector(x/w, y/w) and a matrix of the form a −b 0

b a 0
0 0 w


wherea2 + b2 = w2 realizes a rotation by the angleα about the origin, where cosα = a/w

and sinα = b/w. Rotations are in counter-clockwise direction.
It is inconvenient to specify transformations by their transformation matrix. We have

several functions that construct transformations. Observe that these functions are not con-
structors but functions that return transformations. For example

TRANSFORM T = translation(const INT TYPE& dx, const INT TYPE& dy,

const INT TYPE& dw);

TRANSFORM T = translation(const RAT TYPE& dx, const RAT TYPE& dy);

construct translations by the vector(dx/dw, dy/dw) and the vector(dx, dy), respectively.

TRANSFORM T = reflection(const POINT& q, const POINT& r);

TRANSFORM T = reflection(const POINT& q);

construct the reflection across the straight line passing throughq andr and the reflection
across the pointq, respectively.

TRANSFORM T = rotation90(const POINT & q);

TRANSFORM T = rotation(const POINT& q, double alpha, double eps);

construct rotations about the pointq. In the first case the rotation is byπ/4 and in the
second case the rotation is approximately byα. ε is a tolerance parameter.

We show the implementations of the last two functions. Rotation byπ/4 is achieved by
the rotation matrix  0 −1 0

1 0 0
0 0 1





9.3 Affine Transformations 603

and rotation about an arbitrary pointq is achieved by first translating by the vectorO − q,
rotating about the origin, and finally translating back by the vectorq − 0.

〈rotation〉�
static TRANSFORM rotation90_origin(const POINT& q)

{

INT_MATRIX M(3,3);

for (int i = 0; i < 3; i++)

for (int j = 0; j < 3; j++)

M(i,j) = 0 ;

M(0,1) = -1; M(1,0) = +1;

M(2,2) = 1;

return TRANSFORM(M);

}

TRANSFORM rotation90(const POINT& q)

{

TRANSFORM R = rotation90_origin(q);

TRANSFORM T0 = translation(-q.X(),-q.Y(),q.W());

TRANSFORM T1 = translation( q.X(), q.Y(),q.W());

TRANSFORM T = T1(R(T0));

T.simplify();

return T;

}

Observe that we have given the functionrotation90origin an artificial argument of type
POINT so that we can use the same code for both kernels. In the piece of code above,
we declaredrotation90origin static, as it is an auxiliary function that should not be visible
outside the filetransform.c.

We come to the rotation by an arbitrary angleα. We only show how to construct the
transformation matrix for the rotation about the origin. We construct a pointp on the unit
circle and in directionα (this is a member function of CIRCLE) and then use the coordinates
of p as the sine and cosine ofα.

〈rotation〉+�
static TRANSFORM rotation_origin(const POINT& q,

double alpha, double eps)

{ POINT origin(0,0);

POINT X(1,0);

CIRCLE C(origin,X); // unit circle centered at origin

POINT p = C.point_on_circle(alpha,eps);

INT_MATRIX M(3,3);

M(0,2) = M(1,2) = M(2,0) = M(2,1) = 0;

M(0,0) = M(1,1) = p.X() ;

M(0,1) = -p.Y(); M(1,0) = p.Y();

M(2,2) = p.W();

return TRANSFORM(M);

}
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It remains to explain the functionpointoncircle. In the floating point kernel we use the
sine and cosine function from the math-library to constructp; epsplays no role in this
construction. In the rational kernel we use the method described in [CDR92] to find integers
a, b, andw and an angleα′such that

a2 + b2 = w2

cosα′ = a/w

sinα′ = b/w

|α′ − α| ≤ ε.

General affine transformations are a fairly recent addition to our geometry kernels. In
earlier versions we had only functions for special affine transformations. They were member
functions of the geometric classes. For example,

p.translate(RAT TYPE dx,RAT TYPE dy);

returns the pointp + v wherev = (dx, dy).
Transformations are a good tool to generate difficult inputs for geometric algorithms. In

Section 10.8.4 we perform the following experiment. We first construct a regularn-gon P,
n = 20000, with its vertices on the unit circle. We then constructQ = T (P) whereT is a
rotation by 2π/(nm) andm is a large integer, e.g.,m = 109. We finally compute the union
of P andQ.

Exercises for 9.3
1 Implement the function that composes two transformations.
2 Implement the function that applies a transformation to a point.
3 Implement the function that applies a transformation to a vector. This is different from

the solution to the previous exercise.
4 Implement the function that constructs the transformation matrix for reflection at a point.
5 Implement the function that constructs the transformation matrix for reflection at a line.

9.4 Generators for Geometric Objects

There is a frequent need to generate geometric objects, random or otherwise. We describe
generators for random points in the plane and generators for polygons. There are also
generators for random points in space.

Generators for Random Points: We have generators for random points in squares, in
discs, near circles, and on circles. For each generator there is a version that generates a
single point and a version that generates a list of points.

random point in square(POINT& p, int maxc);

random points in square(int n, int maxc, list<POINT>& L);
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generate a random point with integer coordinates in the range [−maxc.. + maxc] and a list
of n such points, respectively.

random point in unit square(POINT& p, int D = (1<<30) - 1 );

random points in unit square(int n, int D, list<POINT>& L);

random points in unit square(int n, list<POINT>& L);

generate a point in the unit square, i.e., a point whose coordinates are of the formi/D for a
random integeri , 0 ≤ i ≤ D, n such points, andn such points with the default value ofD,
respectively.

For the remaining generators we only give the form that generates a single point.

random point in disc(POINT& p, int R);

random point in unit disc(POINT& p, int D = (1<<30) - 1);

generate a random point with integer coordinates in the disc with radiusR and a random
point with coordinates of the formi/D for integeri in the unit disc, respectively.

random point near circle(POINT& p, int R);

random point near unit circle(POINT& p, int D = (1<<30) - 1);

generate a random point with integer coordinates near the circle with radiusR and a random
point with coordinates of the formi/D for integeri near the unit circle, respectively.

The latter function is implemented as follows. We generate a random doublex in the unit
interval, setφ = 2πx , and construct the point(bD cosφc, bD sinφc, D).

void random point near unit circle(POINT& p, int D)

{ double a;

Rand Source >> a;

double phi = 2*a*LEDA PI;

int x = int(D*cos(phi));

int y = int(D*sin(phi));

p = POINT(x,y,D);

}

With the rational kernel we can also generate points that lieexactlyon a circle.

random point on circle(POINT& p, int R, int C = 1000000);

random point on unit circle(POINT& p, int C = 1000000);

constructs a point on the circle with radiusR and on the unit circle, respectively. This
assumes that the rational kernel is used. In both cases the point is chosen at random from a
set of at leastC candidates. With the floating point kernel the function is equivalent to the
nearcircle and thenearunit circle function with D = 1.0/C, respectively.

The implementation ofrandompointonunit circle with the rational kernel is as follows:

void random point on unit circle(rat point& p, int C)

{ rat point origin(0,0);

rat circle Circ(origin,origin + rat vector::unit(1));

double a; Rand Source >> a;
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double eps = 1.0/(2*C);

p = Circ.point on circle(2*LEDA PI*a,eps);

}

where the functionpointoncircle is as described at the end of Section 9.3.
The last two generators are much slower than all other generators when the rational kernel

is used. We have therefore generated files of 50000 random points (withC = 106). They
are available as:

LEDAROOT/data/geo/ratpointsunit circle random50000.ex
LEDAROOT/data/geo/pointsunit circle random50000.ex

Generating Polygons: We have two generators for polygons.

POLYGON P = reg n gon(int n, CIRCLE C, double epsilon);

POLYGON P = n gon( int n, CIRCLE C, double epsilon);

The first generator generates a nearly regularn-gon. Thei -th point is generated by the call
C.pointoncircle(2π i/n, epsilon). With the rational kernel the vertices of the n-gon are
guaranteed to lie on the circle, with the floating point kernel they are only guaranteed to lie
nearC.

The second generator generates a (nearly) regularn-gon whose vertices lie near the circle
C. For the floating point kernel the function is equivalent to the function above. For the
rational kernel the function first generates an n-gon with floating point arithmetic and then
converts the resultingpolygonto arat polygon.

9.5 Writing Kernel Independent Code

We use the C++ precompilation mechanism to write code that is independent of the kernel.
Recall that the kernels are designed such that all functions that are available in a rational
kernel are also available in the corresponding floating point kernel.

The only difference between the rational kernel and the floating point kernel is the inter-
pretation of the generic names POINT, SEGMENT, LINE, . . . . In order to give the generic
names the interpretation required in a particular kernel one of the files must be included:

#include <LEDA/rat kernel names.h>

#include <LEDA/float kernel names.h>

#include <LEDA/d3 rat kernel names.h>

#include <LEDA/d3 kernel names.h>

Every one of these files consists of a sequence of define-statements which define the generic
names for the corresponding kernel. For example,

// part of rat kernel names.h

#define KERNEL RAT KERNEL

#define INT TYPE integer

#define RAT TYPE rational
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#define VECTOR rat vector

#define POINT rat point

#define SEGMENT rat segment

#define TRANSFORM rat transform

We also have files that undefine all names used in a kernel. They are:

#include <LEDA/kernel names undef.h>

#include <LEDA/d3 kernel names undef.h>

Suppose now that we want to write a program that is supposed to work for both two-
dimensional kernels. We write a generic version of the program using only the generic
names and then derive the two specialized versions from it. For example,

〈FOO.c〉�
main(){

window W; W.display();

POINT p;

while ( W >> p) W << p.to_point();

}

〈rat foo test.c〉�
#include <LEDA/rat_point.h>

#include <LEDA/window.h>

#include <LEDA/rat_window.h> // lets W >> p work for rat_points

#include <LEDA/rat_kernel_names.h>

〈FOO.c〉
#include <LEDA/kernel_names_undef.h>

〈foo test.c〉�
#include <LEDA/point.h>

#include <LEDA/window.h>

#include <LEDA/float_kernel_names.h>

〈FOO.c〉
#include <LEDA/kernel_names_undef.h>

The header file window.h is included in both specializations and it is hence tempting to
write

〈BAD FOO.c〉�
#include <LEDA/window.h>

main(){

window W; W.display();

POINT p;

while ( W >> p) W << p.to_point();

}
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This will lead to a disaster. Never include a file in a piece of code that is subject to
renaming,except if you are absolutely sure that the renaming mechanism is not used in the
included file. Window.h includes the entire floating point kernel which in turn includes files
like transform.h. The latter file uses the renaming mechanism.

Why did we undefine all names at the end of footest.c and ratfoo test.c? We found that
it helps to guard against the error pointed out in the preceding paragraph. If footest.c is
included in a file that uses the renaming mechanism the compiler will generate a message
that certain names are undefined. For example

#include <LEDA/rat kernel names.h>

#include "rat foo test.c"

POINT p; // POINT is undefined here

We use the renaming mechanism just described for all source files in src/planealg and for
some source files in src/plane. We also use the mechanism for the header files for polygons,
generalized polygons, transformations, point sets, and generation of random points. In these
cases the generic header files are stored in incl/LEDA/generic.

Sometimes, a small part of the code is specific to a particular kernel. We use conditional
compilation in this situation. For example,

// an error was just discovered

#if ( KERNEL == FLOAT KERNEL )

cerr << "Please move to the rational kernel.";

#else

cerr << "Please report this error.";

#endif

The conversion functions between floating point objects and rational objects form a more
substantial example. In the case of POLYGONs we have:

// part of POLYGON.h

POLYGON(const POLYGON& P) : handle base(P) {} // copy constructor

#if ( KERNEL == RAT KERNEL )

rat polygon(const polygon& Q, int prec = 0);

#endif

#if ( KERNEL == FLOAT KERNEL )

polygon(const polygon& Q, int prec);

#endif

polygon to polygon() const;

The first declaration defines the copy constructor for both instantiations and the last dec-
laration defines the conversion function topolygonsfor both instantiations. The middle
declaration is conditional. In classrat polygonwe also have the constructors

rat polygon(const polygon&, int);

rat polygon(const polygon&);

and in classpolygonwe also have the constructor

polygon(const polygon&, int prec);
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It is important thatprec is not an optional argument in the latter case as this would clash
with the copy constructor.

We summarize: the pre-compilation mechanism of C++ allows us to write kernel inde-
pendent code. Files that use the renaming mechanism must never be included in a piece of
code that is subject to renaming.

9.6 The Dangers of Floating Point Arithmetic

We give two examples for the dangers of floating point arithmetic in geometric computation.
Both examples show that floating point geometric objects can exhibit bizarre behavior that
deviates widely from the behavior predicted by mathematics. We will see more examples
in the chapter on geometry algorithms.

9.6.1 Convex Hulls
The first example was suggested by Stefan Schirra. Consider the following piece of code.
We define a segments and construct a setL of points consisting of the endpoints ofL and
the intersections betweens and some number of random lines.

〈float hull test〉�
point p0(-LEDA_PI, -LEDA_PI);

point p1(+LEDA_PI, +LEDA_PI);

segment s(p0,p1);

list<point> L; L.append(p0); L.append(p1);

for (int i = 0; i < 10000; i++)

{ double ax, ay;

rand_int >> ax; rand_int >> ay; point p(ax*LEDA_PI, ay*LEDA_PI);

rand_int >> ax; rand_int >> ay; point q(ax*LEDA_PI, ay*LEDA_PI);

line l(p,q); point r;

if ( l.intersection(s,r) ) L.append(r);

}

list<point> CH = CONVEX_HULL(L);

We then compute the convex hull ofL, see Section 10.1. Since all points inL lie on s, the
convex hull should have exactly two vertices. Figure 9.5 shows the output of a sample run
of the program. The convex hull has more than two vertices, contrary to what mathematics
tells us. The explanation is simple. When the intersection betweens and a linel is computed
with the floating point kernel, the point of intersection does not necessarily lie ons but only
nears.
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Figure 9.5 The convex hull of points contained in a common line segment computed with the
floating point kernel. The hull has five vertices although there should be only two.

9.6.2 Braided Lines (Verzopfte Geraden)
The second example was suggested by Lyle Ramshaw who also coined the name braided
lines (verzopfte Geraden in German) for it. Consider the lines

l1 : y = 9833· x/9454 and l2 : y = 9366· x/9005.

Both lines pass through the origin and the slope ofl1 is slightly larger than the slope ofl2.
At x = 9454· 9005 we havey1 = 9833· 9005= 9366· 9454+ 1 = y2 + 1.

The following program runs through multiples of 0.001 between 0 and 1 and computes
the correspondingy-valuesy1 andy2. It compares the twoy-values and, if the outcome of
the comparison is different than in the previous iteration, printsx together with the current
outcome.

〈braided lines test.c〉�
#include <stream.h>

main(){

cout.precision(12);

float delta = 0.001;

int last_comp = -1;

float a = 9833, b = 9454, c = 9366, d = 9005;

for (float x = 0; x < 0.1; x = x + delta)

{ float y1 = a*x/b; // l1 is steeper

float y2 = c*x/d;

int comp = (y1 < y2? -1 : (y1 == y2? 0 : +1));
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if (comp != last_comp)

{ cout <<"\n" << x << ": ";

if (comp == -1) cout << "l1 is below l2";

if (comp == 0) cout << "l1 intersects l2";

if (comp == +1) cout << "l1 is above l2";

}

last_comp = comp;

}

cout <<"\n\n";

}

Clearly, we should expect the program to print

0.000: l1 intersects l2

0.001: l1 is above l2

Well, the first few lines of the actual output are5 :

0: l1 intersects l2

0.00300000002608: l1 is above l2

0.00400000018999: l1 intersects l2

0.0050000003539: l1 is above l2

0.00800000037998: l1 intersects l2

0.00900000054389: l1 is below l2

0.0100000007078: l1 is above l2

0.0110000008717: l1 intersects l2

0.0120000010356: l1 is above l2

0.0130000011995: l1 intersects l2

0.0140000013635: l1 is above l2

0.0150000015274: l1 is below l2

0.01600000076: l1 intersects l2

0.0180000010878: l1 is below l2

0.0190000012517: l1 intersects l2

We conclude that the lines intersect many times, contrary to what mathematics teaches us.
What went wrong? The typefloat consists of only a finite number of values and hence a

line is really a step function as shown in Figure 9.6. The width of the steps of our two lines
l1 andl2 are distinct and hence the lines intersect.

9.6.3 Overcoming the Dangers of Floating Point Arithmetic
The examples above show that the implementation of geometric algorithms may be a diffi-
cult task. How can we overcome the difficulties?

The first approach sticks with inexact arithmetic but uses it more carefully. The pa-
pers [Mil88, Mil89a, Mil89b, FM91, LM90, GSS93, GSS89] develop algorithms for line

5 This output is produced on the first author’s workstation. If the program is run on the same author’s notebook, it
produces the correct result. The explanation for this behavior is that on the notebook double precision arithmetic
is used to implement floats. According to the C++ standard floats must not offer more precision than doubles;
they are not required to provide less.
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l1 l2

Figure 9.6 Lines as step functions and their multiple intersections.

arrangements, intersections, convex hulls, and Voronoi diagrams based on imprecise primi-
tives. We suggest that the reader has a look at at least one of these papers in order to appre-
ciate the ingenuity needed to overcome the shortcomings of floating point arithmetic. We
were afraid of the required ingenuity and therefore did not adopt this approach for LEDA.

The alternative approach is to switch to exact arithmetic. This approach was pioneered by
Karasick, Lieber, and Nackman [KLN91]. They discussed the computation of Delaunay di-
agrams by exact rational arithmetic. The use of exact arithmetic overcomes the correctness
problems associated with floating point arithmetic, however, at the cost of a much increased
running time. Fortune and van Wyk [FvW96] showed that the use of floating point filters
can give exact geometric computation at low cost. We adapted their ideas6 to the LEDA
system [MN94b, MN94a]. Floating point filters are the topic of the next section.

Exercises for 9.6
1 Give a version of the intertwined lines fordoublearithmetic.
2 Play with the voronoi demo (in xlman) and try to find examples where it works incor-

rectly when run with the floating point kernel. Try to explain what goes wrong.

6 The conference version of their paper appeared in 1993.
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9.7 Floating Point Filters

Floating point filters apply to the evaluation of geometric predicates as used in the condi-
tionals of geometric programs. For example,

switch ( orientation(a,b,c) )

{ case -1: // negative orientation

case 0: // collinear points

case +1: // positive orientation

}

Evaluating a geometric predicate is tantamount to determining the sign of an arithmetic
expression. For example, the test above is equivalent to

switch (sign((ax*bw-bx*aw)*(ay*cw-cy*aw)-(ay*bw-by*aw)*(ax*cw-cx*aw)))

{ case -1: //

case 0: //

case +1: //

}

whereax, ay, awdenote the homogeneous coordinates of pointa and similarly for the points
b and c. The homogeneous coordinates of arat point are integersand hence evaluating
the conditional involves ten multiplications and four additions ofintegers. Unfortunately,
integerarithmetic is considerably more expensive than floating point arithmetic and hence
we might expect to pay a tremendous price for exact computation.

The observation that paves the way for floating point filters is that we only want to know
the sign of the arithmetic expression but not its value. It is frequently possible to determine
the sign of an expression with floating point arithmetic although it is impossible to determine
its value with floating point arithmetic.

In order to compute the sign of an expression7 E , a floating point filter computes an
approximationẼ of E using floating point arithmetic and also a boundB on the maximal
difference betweeñE and the (unknown) exact valueE , i.e.,

|E − Ẽ | ≤ B,

or ,

Ẽ − B ≤ E ≤ Ẽ + B.

Thus:

• if Ẽ > B thenE > 0,

• if Ẽ < −B thenE < 0,

• if neither of the above,B < 1 andE andẼ are integral thenE = 0.

For the third item observe that if neither of the first two cases applies then|Ẽ | ≤ B. If Ẽ
is integral andB < 1 this impliesẼ = 0. If E is integral this implies further thatE = 0.

In order to derive a specific floating point filter one has to:

7 We useE in the usual double meaning: it denotes an expression and also the value of the expression.
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E Ẽ mesE indE

a, integer fl(a) |fl(a)| 1

a, float integer fl(a) |fl(a)| 0

A + B Ã ⊕ B̃ mesA ⊕ mesB 1 + max(indA, indB) · δ
A − B Ã 	 B̃ mesA ⊕ mesB 1 + max(indA, indB) · δ
A · B Ã � B̃ mesA � mesB 1 + (indA + indB + 2−53 · indA · indB) · δ

Table 9.1 The recursive definition ofmesE andindE . The first column contains the case
distinction according to the syntactic structure ofE , the second column contains the rule for
computingẼ and the third and fourth columns contain the rules for computingmesE andindE ;
⊕ and� denote the floating point implementations of addition and multiplication. We use the
abbreviationsδ = 1 + 2−53 andfl(a) = a.to double( ). For the entry in the last row and last
column one may assumeindB ≤ indA.

• specify how the approximatioñE is computed,

• specify how the boundB is computed, and

• prove that|E − Ẽ | ≤ B holds.

In the next section we will describe a variant of the floating point filter used in the rational
kernel. In later sections we comment on other filters, we discuss an expression compiler for
the automatic generation of floating point filters, and we give theoretical and experimental
evidence for the efficacy and efficiency of floating point filters.

9.7.1 A Floating Point Filter
We discuss a variant of the filter used in the rational kernel. The filter described here is
slightly stronger that the one described in [MN94b, MN94a]. In the current kernel you will
find a mixture of both filters. The filter works for expressions with integer operands and
operations addition, subtraction, and multiplication. An extension to expressions with real
operands and the additional operations division and square root was later devised in [Bur96,
Fun97, BFS98].

The approximatioñE is simply the value obtained by evaluatingE with double precision
floating point arithmetic.

The boundB is computed according to the rules given in Table 9.1. This table contains
the recursive definitions of the indexindE and the measuremesE of an expressionE ; B is
defined as

B = 2−53 · indE · mesE .

Before we prove that̃E and B have the property required for a floating point filter, we
apply the filter to the orientation predicate. We obtain:
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// convert arguments to double

double axd = ax.to double(), ayd = ay.to double();

// and similarly for the other coordinates

// evaluate E with floating point arithmetic

double E tilde = (axd*bwd - bxd*awd) * (ayd*cwd - cyd*awd) -

(ayd*bwd - byd*awd) * (axd*cwd - cxd*awd);

// compute mes by replacing all arguments by their absolute

// values and by replacing - by + in E.

double axd = fabs(axd), ayd = fabs(ayd);

// and similarly for the other coordinates

double mes = (axd*bwd + bxd*awd) * (ayd*cwd + cyd*awd) +

(ayd*bwd + byd*awd) * (axd*cwd + cxd*awd);

double ind = 11.0; // see below

double B = ind * mes * eps; // eps = 2^{-53}.

if ( E tilde > B ) return 1;

if ( E tilde < -B ) return -1;

if ( B < 1) return 0;

// resort to integer arithmetic

return sign((ax*bw-bx*aw)*(ay*cw-cy*aw)-(ay*bw-by*aw)*(ax*cw-cx*aw));

Some comments on this program are in order.

(1) How did we compute the index? We have:
The index of an integera is s1 = 1;
The index of an expression of the forma · a is s2 = 1 + s1(δ + δ2) ≈ 3.
The index of an expression of the forma · a + a · a is s3 = 1 + s2δ ≈ 4.
The index of an expression of the form(a · a + a · a) · (a · a + a · a) is s4 = 1+ (s3 + s3 +
2−53 · s3 · s3) · δ ≈ 9.
The index of the orientation predicate iss5 = 1 + s4δ ≈ 10.
s5 is slightly larger than 10 and certainly less than 11. We may therefore use 11 as the
index of the expression predicate. This overestimate ofindE will also cover any rounding
error in the computation ofB. Note that we definedB as 2−53 · indE · mesE but compute
2−53 � indE � mesE , where� denotes floating point multiplication.

(2) The computation of̃E starts with the conversion of the homogeneous coordinates of
a, b, andc from integerto double. In the rational kernel we make this conversion when the
points are constructed. In this way the conversion is made only once for eachrat point and
not every time a predicate is evaluated for arat point.

(3) The computation ofmesE involves the same number of arithmetic operations as the
computation ofẼ . The computation ofB requires, in addition, to take the absolute val-
ues of the arguments and to multiplyindE , mesE , and 2−53. The number of operations to
computeB is therefore at least the number of operations to computeẼ . The actual time
required to computẽE and B is usually less than twice the time to computeẼ alone (see
Section 9.7.4 for some measurements), since modern micro-processors have highly effective
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floating point units with multiple pipelined arithmetic units and since the cost of arithmetic
is small once the data is in the processing unit.

(4) Our expressions have integer operands and operations+, −, and·. HenceE and Ẽ
are integral.

We will next prove that Table 9.1 indeed defines a valid boundB. We need to review
some properties of the IEEE floating point standard [Gol90, Gol91, IEE87].

A floating point number consists of a signs, a mantissam, and an exponente. In double
formats has one bit,m consists of fifty-two bitsm1, . . . ,m52, ande consists of the remaining
eleven bits of a double word. The number represented by the triple(s, m, e) is defined as
follows:

• e is interpreted as an integer in [0.. 211 − 1] = [0 .. 2047].

• If m1 = . . . = m52 = 0 ande = 0 then the number is+0 or−0 depending ons.

• If 1 ≤ e ≤ 2046 then the number iss · (1 +∑
1≤i≤52 mi 2−i) · 2e−1023.

• If somemi is non-zero ande = 0 then the number iss ·∑1≤i≤52 mi2−i2−1023. This is
a so-called denormalized number.

• If all mi are zero ande = 2047 then the number is+∞ or −∞ depending ons.

• In all other cases the triple represents NaN ( = not a number).

The largest positive double (except for∞) is MAXDOUBLE = (2 − 2−52) · 21023 and the
smallest positive double isMINDOUBLE = 2−52 · 2−1023.

In this section we are interested infloating point integers, i.e., integers that can be repre-
sented as floating point numbers. The set of floating point integers consists of:

• the number zero,

• all integers of the forms · (1 +∑
1≤i≤52 mi2−i) · 2e with 0 ≤ e ≤ 1023 (we must have

mi = 0 for i > e),

• the numbers+∞ and−∞.

We call an integerrepresentableif |a| ≤ 2 · 21023. For a representable integera, let fl(a)

be a floating point number nearest toa. For a non-representable integer letfl(a) = ±∞
depending on the sign ofa.

Floating point arithmetic incurs rounding error. It is therefore important to distinguish
between the mathematical operations addition, subtraction, multiplication and their floating
point implementations. We use+, −, and· for the exact operations and⊕, 	, and� for
their floating point implementations.

We need the following facts:

(a) If a is an integer then

|a − fl(a)| ≤ 2−53 · |fl(a)|,
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whereeps = 2−53 is called themachine precision. If a is a non-representable integer
(including±∞) thenfl(a) = ∞ and the claim is true. So, assume thata is representable.
The floating point approximation ofa is obtained by “rounding” in the 53-rd bit. More
precisely, if|a| < 253 thenfl(a) = a and if |a| ≥ 253 anda has the binary representation

a = s ·
∑

0≤i≤L

mi · 2L−i

with m0 = 1 andL ≥ 53, then

fl(a) = s · (
∑

0≤i≤52

mi · 2L−i + δ · 2L−52),

whereδ ∈ {0, 1} is chosen such that the better approximation ofa is obtained. Clearly,
|a − fl(a)| ≤ 2L−52/2 and|fl(a)| ≥ 2L . Thus,|a − fl(a)| ≤ 2−53 · |fl(a)|.

We want to remark that the assumption thata is integer is crucial for claim (a). If|a| ≤
MinDouble/2, the best floating point approximation ofa is zero. Thus, there is no bound
on the error|a − fl(a)| in terms offl(a). Life is easier for integers.

(b) If a is an integer thenfl(a) is a floating point integer.

(c) If f1 and f2 are floating point integers, op∈ {+, −, ·}, f = f1 op f2, andõp is the
floating point implementation of op, then

f1õp f2 = fl( f ),

i.e., the floating point operation returns a floating point integer closest tof . There is no
need to argue here. It is an “axiom” of the IEEE standard that every arithmetic operation is
implemented with the least possible error.

(d) Under the same hypothesis as in the preceding item:

| f1õp f2 − f1 op f2| ≤ 2−53| f1õp f2|.
Let f̃ = f1õp f2 and f = f1 op f2. Then f̃ = fl( f ) by (c) and hence| f̃ − f | ≤ 2−53| f̃ |
by part (a).

(e) If f is an integer thena.to double( ) returnsfl(a). That is the way we implemented
the functionto double.

(f) Floating point arithmetic is monotone, i.e., ifa1 ≤ a2 andb1 ≤ b2 thena1 ⊕ a2 ≤
b1 ⊕ b2 and if 0≤ a1 ≤ a2 and 0≤ b1 ≤ b2 thena1 � a2 ≤ b1 � b2.

(g) Multiplication by a power of two incurs no rounding error, i.e., ifa is a power of two
andb is a floating point integer such that 2a anda · b are representable, thena ⊕ a = 2 · a
anda � b = a · b.

Theorem 13If mesE and indE are computed according to Table 9.1 then|Ẽ | ≤ mesE and

|Ẽ − E | ≤ 2−53 · indE · mesE

≤ 2−53 � indE � mesE � (1 + 2−52).
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Proof We use induction on the structure of the expressionE . The claim|Ẽ | ≤ mesE follows
immediately from the monotonicity of floating point arithmetic. For the other claims we
have to work slightly harder. We first prove

|Ẽ − E | ≤ 2−53 · indE · mesE .

Assume first thatE is an integera. Then

|a − fl(a)| ≤ 2−53 · |fl(a)|
by item (a) and the claim is certainly true. Ifa is a floating point integer thenfl(a) = a and
hence the index can be set to zero for floating point integers.

We come to the induction step. LetA and B be the two subexpressions ofE and let Ã
andB̃ be their floating point values. Then

| Ã| ≤ mesA

| Ã − A| ≤ 2−53 · indA · mesA

| B̃| ≤ mesB

| B̃ − B| ≤ 2−53 · indB · mesB

by induction hypothesis.
We now make a case distinction according to the operation combiningA andB.
AssumeE = A + B. Then

|Ẽ − E | = | Ã ⊕ B̃ − (A + B)| ≤ | Ã ⊕ B̃ − ( Ã + B̃)| + | Ã − A| + | B̃ − B|.
Item (d) with f1 = Ã and f2 = B̃ implies that the first term is bounded by 2−53| Ã ⊕ B̃| and
monotonicity of floating point arithmetic implies that

| Ã ⊕ B̃| ≤ mesA ⊕ mesB = mesE .

For the other two terms we use the induction hypothesis to conclude

| Ã − A| + | B̃ − B| ≤ 2−53 · (indA · mesA + indB · mesB)

≤ 2−53 · max(indA, indB) · (mesA + mesB)

≤ 2−53 · max(indA, indB) · (1 + 2−53) · (mesA ⊕ mesB)

= 2−53 · max(indA, indB) · (1 + 2−53) · mesE .

Putting the two bounds together completes the induction step for the case of an addition.
The argument for subtractions is completely analogous.

We turn to multiplications,E = A · B. We have

|Ẽ − E | = | Ã � B̃ − A · B| ≤ | Ã � B̃ − Ã · B̃| + | Ã · B̃ − A · B̃| + |A · B̃ − A · B|.
Item (d) with f1 = Ã and f2 = B̃ implies that the first term is bounded by 2−53| Ã � B̃| and
monotonicity of floating point arithmetic implies that

| Ã � B̃| ≤ mesA � mesB = mesE .
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For the second term we use the induction hypothesis to conclude

| Ã · B̃ − A · B̃| = | Ã − A| · | B̃|
≤ 2−53 · indA · mesA · mesB

≤ 2−53 · indA · (1 + 2−53) · (mesA � mesB)

= 2−53 · indA · (1 + 2−53) · mesE ,

and for the third term we conclude

|A · B̃ − A · B| = |A| · | B̃ − B|
≤ (| Ã| + |A − Ã|) · | B̃ − B|
≤ (1 + 2−53 · indA) · mesA · 2−53 · indB · mesB

≤ (1 + 2−53 · indA) · 2−53 · indB · (1 + 2−53) · (mesA � mesB)

= 2−53 · (indB + 2−53 · indA · indB) · (1 + 2−53) · mesE .

Putting the three bounds together completes the induction step for the case of a multiplica-
tion.

It remains to prove the inequality

2−53 · indE · mesE ≤ 2−53 � indE � mesE � (1 + 2−52).

It follows from

indE · mesE ≤ (indE � mesE ) · (1 + 2−53) ≤ indE � mesE � (1 + 2−52)

and the fact that the multiplication by 2−53 incurs no rounding error.

9.7.2 Alternative Filters
We discuss the filter originally (and still mostly) used in the kernel, static and dynamic
filters, special methods for determinants, and specialized arithmetics.

The Filter Used Originally in the Kernel: In our original filter we computedindE and
mesE according to Table 9.2. In this table we also define a quantityPE . PE is a power of
two with |E | ≤ PE , |Ẽ | ≤ PE , andPE ≤ mesE . The boundB(E) is defined as

B = 2−53 � indE � mesE .

In order to see that this bound is correct one proves that

|E − Ẽ | ≤ 2−53 · indE · PE and PE ≤ mesE

and observes that

2−53 · indE · PE = 2−53 � indE � PE ≤ 2−53 � indE � mesE ,

since 2−53 andPE are powers of two and since floating point arithmetic is monotonic.
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The inequality

|E − Ẽ | ≤ 2−53 · indE · PE

is again shown by induction on the structure ofE . The base case is obvious. The induction
steps are as follows.

In the case of an addition we have

|E − Ẽ | = | Ã ⊕ B̃ − (A + B)| = | Ã ⊕ B̃ − ( Ã + B̃)| + | Ã − A| + | B̃ − B|
≤ 2−53(| Ã ⊕ B̃| + indA PA + indB PB)

≤ 2−53(PA ⊕ PB + (indA + indB) max(PA, PB))

≤ 2−53(1 + (indA + indB)/2) · 2 · max(PA, PB)),

where the last inequality follows from

PA ⊕ PB ≤ max(PA, PB) ⊕ max(PA, PB)

= max(PA, PB) + max(PA, PB) = 2 · max(PA, PB).

In the case of multiplication we have

|E − Ẽ | = | Ã � B̃ − Ã · B̃| + | Ã| · | B̃ − B| + |B| · | Ã − A|
≤ 2−53(| Ã � B̃| + | Ã|| B̃ − B| + |B|| Ã − A|)
≤ 2−53(PA � PB + PA · indB · PB + PB · indA · PA)

≤ 2−53(1 + indA + indB) · PA · PB .

The inequalityPE ≤ mesE is also shown by induction on the structure ofE . We leave
the induction step to the reader. For the basis of the induction we observe that 2log|a| ≤
2 · fl(a) = mesa for an integera.

This concludes the proof that Table 9.2 defines a filter.

For the orientation predicate Table 9.2 gives an index of 5 and a measure of 8· M, where
M is the measure according to Table 9.1. ThusB = 40 · M. Table 9.1 givesB = 11 · M,
which is significantly better.

Static Filters: Fortune and van Wyk [FvW96] invented the idea of a floating point filter.
They proposed a static filter in whichB is precomputed completely. Assume that it is known
a priori that|a| ≤ 2L for all integer arguments of an expressionE . Thenmesa ≤ 2L for all
argumentsa and we mayprecompute mesE by replacingmesa by 2L for all argumentsa.
This yieldsB = 2−53 ·11·24L+3 with Table 9.1. The filter of Fortune and van Wyk is called
staticbecauseB is precomputed entirely. In contrast, the filter used in the rational kernel
precomputesindE but computesmesE on the fly. Such a filter may be calledsemi-dynamic.

Static filters are faster than semi-dynamic filters, but they are less precise and they are
less convenient to use. For example, they cannot be used at all in an on-line algorithm,
where no a priori bound on the size of the arguments is known. We decided against static
filters because of their less convenient use.
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E Ẽ PE mesE indE

a, integer fl(a) 2dlog|a|e 2|fl(a)| 1

a, float integer fl(a) 2dlog|a|e 2|fl(a)| 0

A + B Ã ⊕ B̃ 2 max(PA, PB) 2(mesA ⊕ mesB) 1 + (indA + indB)/2

A − B Ã 	 B̃ 2 max(PA, PB) 2(mesA ⊕ mesB) 1 + (indA + indB)/2

A · B Ã � B̃ PA PB mesA � mesB 1 + indA + indB

Table 9.2 The recursive definition ofmesE andindE in the original filter.PE is a power of two
with |E | ≤ PE , |Ẽ | ≤ PE , andPE ≤ mesE ; it is only needed for the correctness proof of the
filter. We set 2dlog 0e = 0.

Dynamic Filters: Consider the expression

E = (a + b) − a

when a and b are float integers anda � b. The semi-dynamic filter of Section 9.7.1
assumes that the error in the subtraction may be as large as

2−53mesE ≈ 2−53(2a + b).

However, the actual error is approximately

2−53 · Ẽ ≈ 2−53 · b,

which is much smaller.
Dynamic filters attempt to exploit this differency by estimating the round-off error more

carefully. They use the formulae

| Ã ⊕ B̃ − (A + B)| ≤ | Ã ⊕ B̃ − ( Ã + B̃)| + | Ã − A| + | B̃ − B|
≤ 2−53| Ã ⊕ B̃| + | Ã − A| + | B̃ − B|

and

| Ã � B̃ − A · B| = | Ã � B̃ − Ã · B̃ + Ã · B̃ − A · B̃ + A · B̃ − A · B|
≤ 2−53| Ã � B̃| + | Ã − A| · | B̃| + |A|| B̃ − B|

to recursively compute a bound on the error. More precisely, in the case of an addition the
errorerrE for the expressionE is computed as

erre = (2−53 � |Ẽ | ⊕ errA ⊕ errB) � (1 + 2−51),

where the multiplication by 1+ 2−51 accounts for the error in the computation of the error
bound. We leave it to the reader to derive the corresponding formula for multiplication.

Dynamic filters are more costly but also more precise than semi-dynamic filters. Observe



622 The Geometry Kernels

that the computation oferrE in the case of an addition requires two additions and two
multiplications. The computation ofmesE requires only one addition. We concluded from
our experiments in [MN94b] that the additional cost is not warranted for the rational kernel.

We do use dynamic filters in the number typereal, see Section 4.4, since the cost of
exact computation is very high forrealsand hence a higher computation time for the filter
is justified.

Determinants: Many geometric predicates, e.g., the orientation and the insphere predi-
cates, are naturally formulated as the sign of a determinant. The efficient computation of the
signs of determinants has therefore received special attention [Cla92, ABDP97, BEPP97].
None of the methods is available in LEDA.

Specialized Arithmetics: Consider again the orientation predicate

sign((ax*bw-bx*aw)*(ay*cw-cy*aw) - (ay*bw-by*aw)*(ax*cw-cx*aw) )

and assume that it is known that the absolute value of all arguments is less than 2L . The
arguments are assumed to be integer. It is then easy to compute an a priori bound on the
maximal number of binary digits required for any of the intermediate results. We have:
The integera requiresL bits;
An expression of the forma · a requires 2L bits.
An expression of the forma · a + a · a requires 2L + 1 bits.
An expression of the form(a · a + a · a) · (a · a + a · a) requires 4L + 2 bits.
The orientation predicate requires at most 4L + 3 bits.
Given this knowledge one could try to optimize the arithmetic, i.e., instead of using a gen-
eral purpose package for the computation with arbitrary precision integers (such as the class
integer) one could design integer arithmetic optimized for a particular bit length. This av-
enue is taken in [FvW96, She97].

9.7.3 Expression Compilers
The incorporation of the floating point filter into the rational kernels was a tedious task;
it was done to a large extent by Ulrike Bartuschka. For each predicate she had to derive
manually the formulae forindE andmesE . For example, the code for the orientation test
contains the following comment:

---------------------------------------------------------------------------

ERROR BOUNDS

---------------------------------------------------------------------------

mes(E) = 2*(mes(aybw-byaw)*mes(axcw-cxaw) + mes(axbw-bxaw)*mes(aycw-cyaw))

= 2*(4*(fabs(aybw)+fabs(byaw)) * (fabs(axcw)+fabs(cxaw)) +

4*(fabs(axbw)+fabs(bxaw)) * (fabs(aycw)+fabs(cyaw)))

= 8*((fabs(aybw)+fabs(byaw)) * (fabs(axcw)+fabs(cxaw)) +

(fabs(axbw)+fabs(bxaw)) * (fabs(aycw)+fabs(cyaw)))

ind(E) = ((ind(aybw-byaw) + ind(axcw-cxaw) +0.5) +

(ind(axbw-bxaw) + ind(aycw-cyaw) +0.5) + 1 ) / 2
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= (4.5 + 4.5 + 1) / 2 = 5

eps(E) = ind(E) * mes(E) * eps0

= 40 * ((fabs(aybw)+fabs(byaw))*(fabs(axcw)-fabs(cxaw)) +

(fabs(axbw)-fabs(bxaw))*(fabs(aycw)-fabs(cyaw))) * eps0;

---------------------------------------------------------------------------

Already Fortune and Wyk [FvW96] observed that the generation of the filters can be
automated. Stefan Funke [Fun97, BFS98] adopted the idea for LEDA and generalized it to
a larger class of expressions and number types. His expression compiler generates floating
point filters automatically from suitably decorated expressions. For example, in order to
generate a filter for the orientation predicate one writes

int orientation(const rat point& a, const rat point& b,

const rat point& c)

{ int res sign;

BEGIN PREDICATE

{

DECLARE ATTRIBUTES integer type FOR a.X() a.Y() a.W() b.X()

b.Y() b.W() c.X() c.Y() c.W();

integer AX=a.X(); integer AY=a.Y(); integer AW=a.W();

integer BX=b.X(); integer BY=b.Y(); integer BW=b.W();

integer CX=c.X(); integer CY=c.Y(); integer CW=c.W();

integer D= (AX*BW-BX*AW) * (AY*CW-CY*AW) -

(AY*BW-BY*AW) * (AX*CW-CX*AW);

res sign=sign(D);

}

END PREDICATE

return res sign;

}

The expression compiler produces a (very lengthy) program of the following form.

int orientation(const rat point& a, const rat point& b,

const rat point& c)

{ int res sign;

{

/* a floating point evaluation of the predicate which assigns

one of -1, 0, +1, NO IDEA to res sign */

if (res sign == NO IDEA)

{ /* exact evaluation of predicate with result in res sign */

}

}

return res sign;

}

The expression compiler is available as an LEP.

9.7.4 Efficacy and Efficiency of Filters
We discuss the efficacy and the efficiency of floating point filters. Efficacy refers to the
percentage of tests, for which the filter is able to deduce the sign of the test, and efficiency
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refers to the cost of the evaluation of the filter and the relationship of this cost to the cost of
a computation with integers.

A floating point filter for an expressionE computes an approximatioñE of E and a
boundB for the maximal difference between the approximation and the exact value. The
following lemma is trivial but useful.

Lemma 59If E and Ẽ are integral andB < 1 then sign(Ẽ) = sign(E).

Under what conditions can we claim thatB < 1 without actually computing it? Consider
the orientation predicate for points with integer homogeneous coordinates(x, y, 1) with
|x |, |y| ≤ 2L . We assume thatL is small enough such that the coordinates are floating point
integers. The orientation predicate for pointsa, b, andc is given by the expression

E = (AX - BX) * (AY - CY) - (AY - BY) * (AX - CX)

and henceB ≤ 8 · 2−53 · 22L+3 according to Theorem 13; the index of the expression is 7
when computed withδ = 1. We rounded up to 8 to account for the fact thatδ = 1 + 2−53.

We have 8· 2−53 · 22L+3 < 1 iff 3 − 53+ 2L + 3 < 0 iff L < 47/2. We conclude that
double precision floating point arithmetic is guaranteed to give the correct result if thex-
andy-coordinates are at most 223.

What happens ifL is larger? The floating point computation is able to deduce the sign
of E if |Ẽ | > B. SinceE is twice the signed area (see Lemma 56) of the triangle with
vertices(a, b, c), the floating point computation is able to deduce the correct sign for any
triple of points which span a triangle whose area is at least 8· 2−53 · 22L+3/2. Devillers and
Preparata [DP98] have shown that for a random triple of points and forL going to infinity,
the probability that the area of the spanned triangle is at least 8· 2−53 · 22L+3/2 goes to one.
Thus for largeL and for triples of random points, the floating point computation will almost
always be able to deduce the sign ofE and exact computation will be rarely needed.

Observe that the result cited in the previous paragraph depends crucially on the fact that
the points are chosen randomly. In an actual computation orientation tests will not be per-
formed for random triples of points even if the input consists of random points. It is there-
fore not clear what the result says about actual computations.

The classrat point has a static member functionprint statisticswhich gives information
about the efficacy of its floating point filter. The call

rat point::print statistics();

prints a statistic of the following form:

compare: 167 / 44330 (0.38 %)

orientation: 71 / 48975 (0.14 %)

side of circle: 3194 / 22317 (14.31 %)

The statistic states for each of the functionscompare, orientation, andsideof circle how
many times it was evaluated and how many times the filter failed and an exact computation
was necessary. In this particular execution, 22317 side of circle tests were performed out of
which 3194 required exact computation. This amounts to 14.31 percent.
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Table 9.3 shows the results of a more substantial experiment. The table was generated by
the program below. We first generate a listL0 of n random points either on the unit circle or
in the unit square. We then construct a listL1 of points whose homogeneous coordinates are
d bit binary numbers for different values ofd by truncating the Cartesian coordinates tod
bits; ford = 60 no truncation takes place (this is indicated by the infinity-sign in Table 9.3.
We construct the Delaunay diagram for the points inL1.

〈produce efficacy of filter table〉�
int n = 10000;

list<rat_point> L0;

for (int k = 0; k < 2; k++)

{ if ( k == 0 ) random_points_on_unit_circle(n,L0);

else random_points_in_unit_square(n,L0);

for (int d = 8; d <= 60; d += d < 12 ? 2 : 10)

{ list<rat_point> L1;

rat_point p;

I.write_table("\n");

if ( d <= 50 )

{ double D = ldexp(1,d);

forall(p,L0) L1.append(rat_point(integer(p.xcoordD()*D),

integer(p.ycoordD()*D),1));

I.write_table("",d);

}

else

{ L1 = L0;

I.write_table("$ \\infty $");

}

〈reset counters to zero〉
GRAPH<rat_point,int> DT;

DELAUNAY_TRIANG(L1,DT);

〈write a line of the table〉
}

I.write_table(" \\hline");

}

For each experiment we generate one line in Table 9.3. The classrat point has static data
members that keep a count of the number of compare, orientation, and side of circle tests
performed and also of the number of tests where the filter fails. Before each experiment we
set the counters to zero. After each experiment we print a line of the table.

〈reset counters to zero〉�
rat_point::cmp_count = 0;

rat_point::exact_cmp_count = 0;

rat_point::orient_count = 0;

rat_point::exact_orient_count = 0;

rat_point::soc_count = 0;

rat_point::exact_soc_count = 0;
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Compare Orientation Side of circle

d N number exact % number exact % number exact %

8 1883 157814 0 0.00 19909 0 0.00 7242 0 0.00

10 5298 187379 0 0.00 58263 0 0.00 20736 5743 27.70

12 8383 216679 0 0.00 89307 0 0.00 35931 24693 68.72

22 9999 230556 0 0.00 98899 0 0.00 46410 42454 91.48

32 9999 231656 0 0.00 90664 137 0.15 40003 39797 99.49

42 9999 231665 0 0.00 91205 152 0.17 40083 40083 100.00

∞ 9999 231665 125 0.05 44279 87 0.20 13082 13082 100.00

8 9267 230060 0 0.00 130431 0 0.00 64176 0 0.00

10 9953 236690 0 0.00 147814 0 0.00 77409 136 0.18

12 9996 236661 0 0.00 149233 0 0.00 78693 105 0.13

22 10000 235727 0 0.00 149057 0 0.00 78695 113 0.14

32 10000 235729 0 0.00 149059 0 0.00 78695 115 0.15

42 10000 235729 0 0.00 149059 0 0.00 78695 115 0.15

∞ 10000 235729 574 0.24 149059 0 0.00 78695 115 0.15

Table 9.3 Efficacy of floating point filter: The top part contains the results for random points on
the unit circle and the lower part contains the results for random points in the unit square. In each
case we generated 10000 points. The first column shows the precision (= number of binary
places) used for the homogeneous coordinates of the points, the second column contains the
number of distinct points in the input. The other columns contain the number of tests, the
number of exact tests, and the percentage of exact tests performed for the compare, the
orientation, and the side of circle primitive.

Table 9.3 confirms the theoretical considerations from the beginning of the section. For
each test there is a value ofd below which the floating point computation is able to decide
all tests. For the orientation test this value ofd is somewhere between 22 and 32 (we argued
above that the value is 47/2) and for the side of circle test the value is somewhere between 8
and 10 (we ask the reader in the exercises to compute the exact value). Also, the percentage
of the tests, where the filter fails, is essentially an increasing function ofd.

The compare, orientation, and side of circle functions seem to be tests of increasing
difficulty. This is easily explained. The compare function decides the sign of a linear
function of the Cartesian coordinates of two points, the orientation function decides the
sign of a quadratic function of the Cartesian coordinates of three points, and the side of
circle function decides the sign of a polynomial of degree four in the Cartesian coordinates
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of four points. The larger the degree of the polynomial of the test, the larger the arithmetic
demand of the test.

Among the two sets of inputs, the random points on the unit circle are much more difficult
than the random points in the unit square, in particular, for the side of circle test. Again this
is easily explained.

For the side of circle test, four almost co-circular points or four exactly co-circular points
are the most difficult input, and for sufficiently larged the situation that|Ẽ | ≤ B and
B > 1 arises frequently. Points on (or near) the unit circle cause no particular difficulty for
the compare and the orientation function. Points on (or near) a segment would prove to be
difficult for the orientation test.

For random points in the unit square the filter is highly effective for all three tests; the
filter fails only for a very small percentage of the tests.

We turn to the question of how much a filter saves with respect to running time. Table 9.4
was produced by the following program.

〈produce efficiency of filter table〉�
forall(p,L1) Lf.append(p.to_point());

GRAPH<rat_point,int> DT;

GRAPH<rat_point,int> DT_no_filter;

GRAPH< point,int> DT_FK;

float T = used_time();

DELAUNAY_TRIANG(Lf,DT_FK);

I.write_table(" & ", used_time(T));

〈efficiency table: check correctness of float computation〉
used_time(T); // to set the timer

DELAUNAY_TRIANG(L1,DT);

I.write_table(" & ", used_time(T));

rat_point::use_filter = 0;

DELAUNAY_TRIANG(L1,DT_no_filter);

I.write_table(" & ", used_time(T));

rat_point::use_filter = 1;

We generated the same listL1 of rat pointsas above. We then converted eachrat point to
a point to obtain a listLf of points. Finally, we computed the Delaunay triangulation in
three different ways: first with the floating point kernel, then with the rational kernel, and
finally with the rational kernel without its floating point filter. The classrat pointhas a static
variableusefilter which controls the use of the floating point filter.

Table 9.4 has to be interpreted with care. Let us first inspect the individual columns.
The running time with the floating point kernel does not increase with the precision of the

input. Observe, that ford < 22 and points on the unit circle, the input contains a significant
fraction of multiple points (see the second column of Table 9.3) and hence the first three
lines really refer to simpler problem instances. Ford ≥ 22 and points on the unit circle and
for d ≥ 10 and points in the unit square the input contains almost no multiple points and
the running times are independent of the precision. The computation with the floating point
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d Float kernel Rational kernel RK without filter

8 0.73 1.12 4.35

10 1.3 2.43 7.8

12 1.85 5.09 11.18

22 2.17 7.93 14.4

32 2.02 7.79 13.29

42 2.01 8.32 15.46

∞ 2∗ 5.09 9.19

8 2.58 3.59 16.33

10 2.8 3.98 18.36

12 2.83 4.04 18.63

22 2.82 4.02 20.51

32 2.86 3.96 20.77

42 2.83 4.01 26.02

∞ 2.83 3.99 33.2

Table 9.4 Efficiency of the floating point filter: The top part contains the results for random
points on the unit circle and the lower part contains the results for random points in the unit
square. The first column shows the precision (= number of binary places) used for the Cartesian
coordinates of the points. The other columns show the running time with the floating point filter,
with the rational kernel with the floating point filter, and with the rational kernel without its
floating point filter. A star in the second column indicates that the computation with the floating
point kernel produced an incorrect result. geometry kernels!running time

kernel is not guaranteed to give the correct result. In fact, it produced an incorrect result in
one of the experiments (indicated by a∗). We come back to this point below.

The running time with the rational kernel and no filter increases sharply as a function of
the precision. This is due to the fact that larger precision means larger integers and hence
larger computation time for the integer arithmetic. We see one exception in the table. For
points on the unit circle the computation on the exact points is faster than the computation
with the rounded points. The explanation can be found in Table 9.3. The number of tests
performed is much smaller for exact inputs than for rounded inputs. Observe, that for points
that lie exactly on a circle any triangulation is Delaunay.

The running time for the rational kernel (with the filter) increases only slightly for the
second set of inputs and increases more pronouncedly for the points on the unit circle. This
is to be expected because the filter fails more often for the points on the unit circle.
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Let us next compare columns.
The comparison between the last two columns shows the efficiency gained by the floating

point filter. The gains are impressive, in particular, for the easier set of inputs. For random
points in the unit square, the computation without the filter is between five and almost
ten times slower. For random points on a unit circle the gain is less impressive, but still
substantial. The running time without the filter is between two and five times higher than
with the filter.

The comparison between the second and the third column shows what we might gain by
further improving our filter technology. For our easier set of inputs the computation with
the rational kernel is about 50% slower than the computation with the floating point kernel.
This increase in running time stems from the computation of the error boundB in the filter.
For our harder set of inputs the difference between the rational kernel and the floating point
kernel is more pronounced. This is to be expected since the rational kernel resorts to exact
computation more frequently for the harder inputs. The floating point kernel produced the
incorrect result in one of the experiments.

We used the following piece of code to check the correctness of the computation with
the floating point kernel. We make a copyDT FK1 of the graph computed with the floating
point kernel, in which everypoint is converted to arat point. This conversion is without
loss of precision. We then check whether the copy is a Delaunay triangulation; the check is
discussed in Section 10.4.3. The check is executed with the rational kernel and is therefore
exact.

〈efficiency table: check correctness of float computation〉�
GRAPH<rat_point,int> DT_FK1;

node v; edge e;

node_array<node> copy_of(DT_FK);

forall_nodes(v,DT_FK) copy_of[v] = DT_FK1.new_node(rat_point(DT_FK[v]));

forall_nodes(v,DT_FK)

forall_adj_edges(e,v)

DT_FK1.new_edge(copy_of[v],copy_of[DT_FK.target(e)],DT_FK[e]);

DT_FK1.make_map();

if ( !Is_Delaunay_Triangulation(DT_FK1,NEAREST) ) I.write_table("$^*$");

We were very surprised when we first saw Table 9.4. We expected that the floating point
computation would fail more often, not only when the full 52 bits are used to represent
Cartesian coordinates of points. After all, the rational kernel resorts to integer arithmetic
most of the time already for much smaller coordinate length and the difficult set of inputs.

We generated Table 9.5 to gain more insight8. It gives more detailed information ford
ranging from 43 to 52. For our difficult inputs the floating point computation fails whend

8 While writing this section, our work was very much guided by experiments. We had a theory of what floating
point filters can do. Based on this theory we had certain expectations about the behavior of filters. We made
experiments to confirm our intuition. In some cases the experiments contradicted our intuition and we had to
revise the theory.
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d 43 44 45 46 47 48 49 50 51 52

diff C C C F F F F F F F

easy C C C C C C C C C C

Table 9.5 Correctness of floating point computation: A detailed view ford ranging from 43 to
52. The second row corresponds to points on the unit circle and the last row corresponds to
points in the unit square. A “C” indicates that the computation produced the correct result and a
“F” indicates that a incorrect result was produced.

is 46 or larger and for our easy inputs it never fails. Ford < 45 and both sets of inputs it
produces the correct result. Our theoretical considerations give a guarantee only ford < 10.

In the remainder of this section we try to explain this discrepancy. We find the explanation
interesting9 but do not know at present whether it has any consequences for the design of
floating point filters.

Let D = 2d and consider four pointsa, b, c, andd on the unit circle10. We use points
a′, b′, c′, andd ′ with integer Cartesian coordinatesbax Dc, bay Dc, . . . . The side of circle
function is the sign of the determinant∣∣∣∣∣∣∣∣

1 1 1 1
ax bx cx dx

ay by cy dy

a2
x + a2

y b2
x + b2

y c2
x + c2

y d2
x + d2

y

∣∣∣∣∣∣∣∣
as will be shown in Section 10.9. The value of this determinant is a homogeneous fourth
degree polynomialp(ax , ay, . . .). We need to determine the sign ofp(a′

x , a′
y, . . .). Let us

relatep(ax , ay, . . .) and p(a′
x , a′

y, . . .).
We have

a′
x = bax Dc = ax D + δax ,

where−1 < δax ≤ 0, and analogous equalities hold for the other coordinates. Thus

p(a′
x , a′

y, . . .) = p(ax D + δax , ay D + δay , . . .)

= p(ax D, ay D, . . .) + q3(ax D, δax , ay D, δay , . . .)

+ q2(ax D, δax , ay D, δay, . . .) + q1(ax D, δax , ay D, δay, . . .)

+ q0(ax D, δax , ay D, δay, . . .),

whereqi has degreei in theax D, ay D, . . . and degree 4− i in theδax , δay , . . . . Since the
four pointsa, b, c, andd are co-circular, we have

p(ax D, ay D, . . .) = D4 p(ax , ay, . . .) = 0.

9 We all know from our physics classes that the important experiments are the ones that require a new explanation.
10 In the final round of proof-reading we noticed that we used with two meanings. In the sequeld is a point, except

in the final sentence of the section.
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Up to this point our argumentation was rigorous. From now on we give only plausibility
arguments. Since the valuesax D may be as large asD and since the valuesδax are smaller
than one, the sign ofp(a′

x , a′
y, . . .) is likely to be determined by the sign ofq3. Sinceq3 is

a third degree polynomial in theax D we might expect its value to be aboutf · D3 for some
constantf . The constantf is smaller than one but not much smaller. Expansion of the side
of circle determinant shows that the coefficient ofδax in q3 is equal to∣∣∣∣∣∣

1 1 1
by D cy D dy D

(b2
x + b2

y) · D2 (c2
x + c2

y) · D2 (d2
x + d2

y) · D2

∣∣∣∣∣∣ = D3(cy − ay − by),

where we used the fact thatp2
x + p2

y = 1 for a pointp on the unit circle. We conclude that
f has the same order as they-coordinate of a random point on the unit circle and hence
f ≈ 1/2.

We evaluatep(a′
x , a′

y, . . .) with floating point arithmetic. By Theorem 13, the maximal
error in the computation ofp is g · D4 · 2−53 for some constantg; the actual error will
be less. The argument in the proof of Lemma 60 shows thatg ≤ 28. Thus we might
expect that the floating point evaluation ofp(a′

x , a′
y, . . .) gives the correct sign as long as

g · D4 · 2−53 < f · D3 or d < 53− log g + log f ≈ 53− 8 − 1 = 44. This agrees quite
well with Table 9.5.

9.7.5 Conclusion
We discussed the floating point filter in the rational kernel. We have seen that floating point
filters give an exact implementation of geometric primitives at a reasonable cost.

Exercises for 9.7
1 The side of circle predicate determines for a four tuple(a, b, c, d) of points, whetherd

lies to the left, on, or to the right of the circle defined by the first three points. Derive a
formula for the side of circle predicate for points given by Cartesian coordinates and for
points given by homogeneous coordinates.

2 (Continuation) Derive a filter for both versions of the side of circle predicate according
to Tables 9.1 and 9.2. Compare your results with the implementation of the side of circle
predicate forrat points.

3 Dynamic Filter: Derive a formula to computeerrE from Ẽ , errA, anderrB for E = A·B.
4 In 〈produce efficacy of filter table〉 we generated points by truncating the Cartesian co-

ordinates toD bits, i.e., we generatedrat pointsby

rat point(integer(p.xcoordD()*D),integer(p.ycoordD()*D),1).

What will change if we generate the points by

rat point(integer(p.xcoordD()*D),integer(p.ycoordD()*D),D).

instead? Predict and then experiment.
5 Produce tables similar to Tables 9.3 and 9.4 for points that lie on a segment. Predict the

outcome of the experiment before making it.
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9.8 Safe Use of the Floating Point Kernel

The discussion of floating point filters in the previous section paves the way for a safe use
of the floating point kernel. The following statement is trivial but nevertheless important.

It is safe to use the floating point kernel if it is guaranteed to give the correct result.
Lemma 59 gives a sufficient condition for the correctness of a floating point computation.

If all arguments of an expression are integers, if the expression is a polynomial, i.e., uses
only operations addition, subtraction, and multiplication, and ifB < 1 then the evaluation
with floating point arithmetic gives the correct sign of the expression. We have seen in
Section 9.7.4 that the conditionB < 1 is guaranteed if the arguments of the expression
are sufficiently small; of course, the meaning of sufficiently small depends on the test. The
following lemma gives information.

Lemma 60Assume that all points have integer Cartesian coordinates whose absolute value
is less than2L . Then the floating point kernel correctly evaluates the compare function if
L ≤ 50, correctly evaluates the orientation function ifL ≤ 24, and correctly evaluates the
side of circle function ifL ≤ 11.

Proof We give the proof for the side of circle function. Leta, b, c andd be points. We use
axanday to denote the Cartesian coordinates ofa and similarly for the other points.

The side of circle function is the sign of the determinant∣∣∣∣∣∣∣∣
1 1 1 1
ax bx cx dx
ay by cy dy

ax2 + ay2 bx2 + by2 cx2 + cy2 dx2 + dy2

∣∣∣∣∣∣∣∣
as will be shown in Section 10.9.

If a is equal to the origin the determinant above reduces to a 3× 3 determinant. Ifa is
not equal to the origin, we may shifta into the origin without changing the side of circle
function. Shiftinga into the origin replaces any pointp by the pointO + (p − a).

This leads to the following program to compute the side of circle function. In this pro-
gram we indicate the bit length of all intermediate results as comments.

int side of circle(const point& a, const point& b, const point& c,

const point& d)

{ // comments indicate bit lengths of values if coordinates have

// at most L bits.

double ax = a.xcoord(); // L bits

double ay = a.ycoord();

double bx = b.xcoord() - ax; // L + 1 bits

double by = b.ycoord() - ay;

double bw = bx*bx + by*by; // 2L + 3 bits

double cx = c.xcoord() - ax; // L + 1 bits

double cy = c.ycoord() - ay;

double cw = cx*cx + cy*cy; // 2L + 3 bits
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double D1 = cy*bw - by*cw; // 2L + 3 + L + 1 + 1 = 3L + 5 bits

double D2 = bx*cw - cx*bw; // 3L + 5 bits

double D3 = by*cx - bx*cy; // 2L + 3

double dx = d.xcoord() - ax; // L + 1 bits

double dy = d.ycoord() - ay;

double D = D1*dx + D2*dy + D3*(dx*dx + dy*dy);

// 3L + 5 + L + 1 + 2 = 4L + 8 bits

if (D != 0)

return (D > 0) ? 1 : -1;

else

return 0;

}

The comments show that the maximal number of bits required for the determinantD is
4L +8. ThusD can be represented provided that 4L +8 ≤ 53; observe that the mantissa of
a double precision floating point number consists of 53 bitsm0, m1, . . . , m52, of which the
bit m0 is not stored, since it is always 1 (except if the number is zero or underflow occurred).

The computation of, for example, Delaunay diagrams uses only the compare, orientation,
and side of circle functions applied to input points and hence is safe as long as all input
points have integer Cartesian coordinates whose absolute value is less than 211 = 2048.

If the coordinates of the inputs come from a larger range, it is frequently possible to
round the input coordinates to a smaller precision without affecting the meaning of the
computation, for example, if the coordinates come from a physical measurement whose
precision is limited.

The following functiontruncateis useful in this situation. It takes a listL0 of points and
an integerprecand returns a listL of points. If all points inL0 are equal to the origin,L
is equal toL0. So assume otherwise and letM be the smallest power of two larger than
the absolute value of all coordinates of all points inL0, and letP = 2prec. For each point
p = (x, y) the point(b(x/M) · Pc · (M/P), b(y/M) · Pc · (M/P)) is added toL. Observe
that x/M (and similarlyy/M) is less than 1 and hence(x/M) · P is less than 2prec. The
multiplication byM/P (which is a power of two) moves the binary point for all points in
the same way. Thus the theorem above applies to the modified points (withL = prec).

The implementation is simple. We first determine the maximum absolute value of any
coordinate. If it is zero we are done. Otherwise, we setM to the smallest power of two
larger than any absolute value. This is easily done using the functionsfrexpandldexpfrom
the math-library. Recall thatfrexp(M, ∗exp) assigns toexp the exponent of the smallest
power of two larger thanM and thatldexp(1, k) returns 2k .

〈 truncate.c〉+�
list<point> truncate(const list<point>& L0, int prec)

{ double M = 0;

point p;

forall(p,L0)

M = leda_max(M,leda_max(fabs(p.xcoord()),fabs(p.ycoord())));
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if ( M == 0 ) return L0;

int exp;

frexp(M,&exp); // 2^(exp - 1) <= max < 2^exp

M = ldexp(1,exp); // round max to next power of two

double C = ldexp(1,prec - exp); // P/M

double C_inv = ldexp(1,exp - prec); // M/P

list<point> L;

forall(p,L0) L.append(point(floor(p.xcoord() * C)*C_inv,

floor(p.ycoord() * C)*C_inv));

return L;

}

There is also a version of truncate which operates on a list ofrat points. It simply converts
everyrat point p to a point by callingp.to point( ), then applies the function above to the
resulting list of points, and finally converts everypoint q in the resulting list to arat point
by calling the constructorrat point(q).

9.9 A Glimpse at the Higher-Dimensional Kernel

The higher-dimensional kernel provides points, vectors, directions, hyperplanes, segments,
lines, affine transformations, and operations connecting these types ind-dimensional Eu-
clidean space for arbitrary finited. Points have rational coordinates, hyperplanes have ratio-
nal coefficients, and analogous statements hold for the other types. All geometric primitives
are exact, since they are implemented using rational arithmetic. The computational basis
for the kernel is provided by the classes integer, integer vector, and integer matrix discussed
in Chapter 4. We refer the reader to [MMN+98] for details. The higher-dimensional kernel
is available as an LEP and was developed as part of the CGAL project.

9.10 History

The geometric part of LEDA evolved slowly and not without pain. We started with plane
geometry in 1991. We introduced classes point, line, and segment and some algorithms op-
erating on them, e.g., line segment intersection, Voronoi diagram construction, and convex
hull construction. The programs provided in 1991 were not robust; on some inputs they
failed by either delivering a wrong result or by crashing. The non-robustness of our original
implementations was mainly due to three reasons:

• The programs were only designed to handle so-called non-degenerate inputs, e.g., the
line segment intersection program assumed that no two input segments overlapped and
the convex hull program assumed that the first three points were not collinear.
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• Floating point arithmetic was used as the underlying arithmetic. We have seen in
Section 9.6 that floating point arithmetic can lead to bizarre behavior of geometric
objects.

• We had no checkers for geometric objects and hence were limited in our ability to test
our algorithms.

Based on the bad experiences made by us and many others, we and others laid the theoret-
ical foundations for correct and efficient implementations of geometric algorithms [FvW96,
For96, CDR92, Yap93, Cla92, MN94b, BMS94b, BMS94a, BFS98, BFMS97, MNS+96,
DLPT97, BR96, YD95, Sch, BEPP97].

Starting in 1994 we reimplemented the geometric classes and algorithms and simultane-
ously extended them considerably. We introduced the rational kernel with its built-in float-
ing point filter, we redesigned all geometric algorithms and freed them from the assumption
of non-degenerate inputs, and we added many new algorithms and checkers.

9.11 LEDA and CGAL

In 1997 the geometry effort of LEDA became part of project CGAL (= Constructing a Ge-
ometry Algorithms Library), a research project carried out by ETH Z¨urich, Freie Universit¨at
Berlin, INRIA Sophia Antipolis, Martin-Luther Universit¨at Halle-Wittenberg, Max-Planck-
Institut für Informatik and Universit¨at des Saarlandes, RISC Linz, Tel-Aviv University, and
Universiteit Utrecht, and funded by the European Union. The project was coordinated by
Mark Overmars from Utrecht and ran for twenty-four months. The successor project is
called GALIA and will be coordinated by the Max-Planck-Institut.

One of the goals of the projects is to build a comprehensive library for computational
geometry called CGAL (Computational Geometry Algorithms Library). CGAL [CGA]
goes much beyond LEDA geometry. Its distinctive features are:

• A geometry kernel [FGK+96] that can be instantiated with any number type. In LEDA
we only have a floating point kernel and a rational kernel. It would be a non-trivial
task to build a kernel based on the number typereal. In CGAL this is easily possible.

• Geometric algorithms that are decoupled from the geometry kernel and can be used
with any geometry kernel. Observe that LEDA’s geometric algorithms are tied to the
LEDA kernels and also to LEDA’s graphs and data structures. CGAL achieves the new
flexibility by the use of so-calledgeneric programming. In this paradigm the kernel
and the data structures are specified as template arguments of any geometric algorithm.
The algorithm can then be instantiated with different kernels and data structures.

• A large variety of geometric data structures and algorithms which will go beyond what
is offered by LEDA.
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• An open architecture that makes it easy to import modules from other libraries.

The development of CGAL will not make LEDA geometry obsolete. The systems can
be used side by side and both systems offer functionality which the other system does not
have.
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Geometry Algorithms

We discuss convex hulls, triangulations, the verification of geometric structures, Delaunay
triangulations and Delaunay diagrams, Voronoi diagrams, applications of Delaunay and
Voronoi diagrams, geometric dictionaries, line segment intersection, polygons, and close
with a glimpse at higher-dimensional computation geometry. For each problem we in-
troduce the required mathematics and derive algorithms and their implementations. The
books [Meh84d, Ede87, PS85, Mul94, Kle97, BY98, dBKOS97] provide a wider view of
computational geometry.

The chapter uses results of all preceding chapters and is, in this sense, the culmination
point of the book, e.g., we use lists and arrays from the basic data types, integers and
rationals from the number types, dictionaries, maps and sorted sequences from the advanced
data types, graphs and graph algorithms, embedded graphs, and the geometry kernels.

Computational geometry is a very rich area and LEDA certainly does not provide every-
thing there is to it. Other good sources of geometric software are CGAL [CGA] and the
LEDA extension packages [LEP].

10.1 Convex Hulls

The convex hull problem in the plane is one of the simplest geometric problems and hence
a good starting point for our exploration of geometry algorithms. It will allow us to address
five important themes in a simple setting:

• Thesweep paradigm: In this paradigm the input points are first sorted according to the
lexicographic order and then the desired geometric structure is constructed
incrementally during a single sweep over the points. We will derive and implement a

637
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Figure 10.1 A convex and a non-convex set.

Figure 10.2 A point set, its convex hull, and its width. The figure was generated with the
xlman-demo voronoidemo. The width of point sets is discussed in Section 10.1.3.

sweep algorithm for convex hulls. We will see more applications of the sweep
paradigm in later sections.

• The(randomized) incremental construction paradigm: In this paradigm the input
points are considered one by one in either arbitrary or random order and the desired
geometric structure is constructed incrementally. We will derive and implement an
incremental algorithm for convex hulls.

• The careful handling ofdegeneracies: The literature on computational geometry
frequently makes the so-calledgeneral position assumptionwhich states that only
inputs are considered for which none of the geometric predicates required by the
algorithm (recall that the evaluation of a geometric predicate calls for the evaluation of
the sign of an expression) ever evaluates to zero. For example, the incremental
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Figure 10.3 Two point sets and their convex hulls. The hulls are represented as cyclic lists of
points, namelyv0, v1, v2, v3 for the example on the left andw0, w1 for the example on the right.

algorithm for convex hulls uses the orientation predicate and hence the general
position assumption excludes all inputs containing three collinear points. Of course,
we do not want to exclude any inputs and hence cannot make the general position
assumption. Dropping the general position assumption typically requires a more
careful formulation of the algorithms. The sweep as well as the incremental algorithm
for convex hulls will work for all inputs. In fact, all algorithms in this chapter do.

• Verification of geometric structures: Geometric programs require checking. Although
the convex hull problem is one of the simplest geometric problems, the programs
derived in this section will be non-trivial. We will see how to partially check the output
of convex hull programs in Section 10.3.

• The importance ofexact geometric primitives: In the preceding chapter we introduced
the rational geometry kernel; in this section we will profit from it.

A setC is calledconvexif for any two pointsp andq in C the entire line segmentpq is
contained inC, see Figure 10.1. Theconvex hullconvS of a setS of points is the smallest
(with respect to set inclusion) convex set containingS. A point p ∈ S is called anextreme
point of S if there is a closed halfspace containingS such thatp is the only point inS that
lies in the boundary of the halfspace. A pointp ∈ S is called aweak extreme pointof S if
there is a closed halfspace containingS such thatp lies in the boundary of the halfspace.
Clearly, an extreme point is also a weak extreme point, but there may be weak extreme
points that are not extreme points. The pointp in Figure 10.3 is an example.

From now on we restrict our discussion to the plane. IfS contains no three collinear
points then every weak extreme point is also extreme, i.e., under the general position as-
sumption there is no need to distinguish between weak extreme points and extreme points.
We define the convex hull problem as the problem of computing the extreme points of a
finite set of points as a cyclically ordered list of point, see Figure 10.3. The cyclic order is
the clockwise order in which the extreme points appear on the hull.
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Figure 10.4 Adding point p. We determine the two tangents fromp by a clockwise and
counter-clockwise walk along the current hull starting at the most recently added pointq.

The function

list<POINT> CONVEX HULL(const list<POINT>& L);

computes the convex hull of the points inL and returns its list of vertices. The cyclic order
of the vertices in the result corresponds to the clockwise order of the vertices on the hull.
The algorithm uses randomized incremental construction and its expected running time is
O(n logn).

10.1.1 The Sweep Algorithm
The sweep algorithm for convex hulls consists of the following three steps:

• The input points are sorted in increasing lexicographic order.

• The convex hull is initialized with the two lexicographically smallest points inL.

• The remaining points are considered in increasing lexicographic order and the convex
hull is updated for each point. Assume thatp is the next point to be considered and
that we have already constructed the convex hull of the preceding points. The new hull
can be obtained from the old hull by constructing the two tangents fromp. The
construction of the tangents is simple sincep is guaranteed to see the pointq added
just beforep. We only have to walk fromq in clockwise and counter-clockwise
direction along the hull in order to determine the other endpoints of the tangents, see
Figure 10.4.

We now turn this strategy into a program. We assume that the setS is given as a listL0 of
points. We allow multiple occurrences of points. We follow the general outline above and
proceed in three steps. We first make a local copyL of L0 and sortL. Next we initialize
the list of hull vertices with the first two points (in the sorted version) ofL, and finally, we
add all other points ofL. We call the resulting program CONVEXHULL S since it uses
the sweep paradigm to compute convex hulls.
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〈convexhull.c〉�
list<POINT> CONVEX_HULL_S(const list<POINT>& L0)

{ list<POINT> CH;

list<POINT> L = L0;

L.sort();

〈initialize hull with two points〉
〈add all other points〉
return CH;

}

We prepare for the sweep by sorting the points according to the lexicographic order. A point
p precedes a pointq in the lexicographic orderif either its x-coordinate is smaller or the
two x-coordinates are equal and itsy-coordinate is smaller. The default ordering on points
is the lexicographic ordering and henceL.sort( ) rearrangesL in the desired way.

We can now start building the hull. We begin with the first two points inL and make
them the vertices of the first hull. As said above we represent the hull as a linear listCH
that contains the hull vertices inclockwiseorder. The list is to be interpreted as a cyclic list.
We maintain an itemlast vertexinto the list; it contains the point added last.

〈initialize hull with two points〉�
if ( L.empty() ) return CH;

POINT last_p;

CH.append(last_p = L.pop());

// remove duplicates of first point

while ( !L.empty() && last_p == L.head() ) L.pop();

if ( L.empty() ) return CH;

list_item last_vertex = CH.append(last_p = L.pop());

We process the remaining points. If the next pointp is equal to the last point added we
do nothing. If the current hull consists of only two vertices and the new pointp is collinear
with these vertices we replace the second vertex byp. Otherwise, we determine two items
upitemanddownitem in CH which correspond to the other endpoints of the two tangents
starting atp. To determineup itemwe scan the hull in counter-clockwise direction starting
at last vertex. If the point stored at the predecessor ofupitem, the point stored atup item,
and p do not form a right turn we moveupitem to its predecessor vertex. We determine
downitemby the symmetric procedure.

After having determinedupitemanddownitemwe update the hull. We delete all items
strictly betweenup itemanddownitemand insertp instead of them. Note thatupitemand
downitemare guaranteed to be different sincep sees at least one of the edges incident to
the most recently added vertex.

〈add all other points〉�
POINT p;

forall(p,L)

{ if ( p == last_p ) continue; // duplicate point
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last_p = p;

if (CH.length() == 2 && collinear(CH.head(),CH.tail(),p))

{ CH[last_vertex] = p; continue; }

// the interesting case

// compute up_item

list_item up_item = last_vertex;

while (!right_turn(CH[CH.cyclic_pred(up_item)], CH[up_item], p))

{ up_item = CH.cyclic_pred(up_item); }

// compute down_item

list_item down_item = last_vertex;

while (!left_turn(CH[CH.cyclic_succ(down_item)], CH[down_item], p))

{ down_item = CH.cyclic_succ(down_item); }

// update hull

while (down_item != CH.cyclic_succ(up_item))

{ CH.del_item(CH.cyclic_succ(up_item)); }

last_vertex = CH.insert(p,up_item,after);

}

The running time of the convex hull program isO(n logn). It takes timeO(n logn) to sort
the points lexicographically. After that everything is linear as the following amortization
argument shows. Adding a point to the hull takes constant time plus time proportional to
the number of points removed from the hull. Since any point can disappear from the hull
at most once, the total time to add all points is linear. The running time of the algorithm
is never better thann logn since it takes2(n logn) time to sort the points. The sweep
algorithm for convex hulls is due to Andrew ([And79]); it refines an earlier algorithm of
Graham ([Gra72]).

The convex hull program makes use of the primitives provided by the geometry kernels.
The rational kernel guarantees that all geometric primitives behave according to their math-
ematical specification and hence binding the program with the rational kernel will yield a
correct executable. The program may behave incorrectly if bound with the floating point
kernel. Consider the following example.

We compute the convex hull of the set{(−M +1, −M), (0, 0), (M, M +1), (0, −2)} for
M = 2m and increasing values ofm. All four points are extreme and hence the following
program will print “everything went fine”, when executed with the rational kernel.

〈convex hull and kernel〉�
for (int m = 20; m < 50; m++)

{

double M = ldexp(1.0,m);

INT_TYPE IM(M);

POINT p(-IM + 1, -IM) , q(0, 0), r(IM, IM + 1), s(0, -2);

list<POINT> L;

L.append(p); L.append(q); L.append(r); L.append(s);

list<POINT> CH = CONVEX_HULL_S(L);

if ( CH.length() != 4 )



10.1 Convex Hulls 643

{ cout << "\n\nlength = " << CH.length() << " for m = " << m;

return 0;

}

}

cout << "\n\neverything went fine";

However, when executed with the floating point kernel the program will print

length = 3 for m = 27,

since the floating point kernel believes that the triple(p, q, r) is collinear form ≥ 27.

10.1.2 Incremental Construction
We will next describe an alternative algorithm to compute convex hulls. The algorithm
is based on the paradigm of(randomized) incremental construction. The algorithm has a
worst case running time ofO(n2), an average running time ofO(n logn), and a best case
running time ofO(n).

The algorithm starts by searching for three non-collinear pointsa, b, andc. If there are
none, then all points are collinear and the vertices of the hull are simply the lexicographi-
cally smallest and largest point.

〈convexhull.c〉+�
〈ch edgeclass〉
list<POINT> CONVEX_HULL_IC(const list<POINT>& L)

{

if (L.length() < 2) return L;

list<POINT> CH;

POINT a = L.head(), b = L.tail();

POINT c, p;

if ( a == b ) { forall(p,L) if (p != a) { b = p; break; } }

if ( a == b ) { // all points are equal

CH.append(a);

return CH;

}

int orient;

forall(c,L) if ( (orient = orientation(a,b,c)) != 0 ) break;

if ( orient == 0 )

{ // all points are collinear

forall(p,L) { if ( compare(p,a) < 0 ) a = p;

if ( compare(p,b) > 0 ) b = p;

}

CH.append(a); CH.append(b);

return CH;

}

// a, b, and c are not collinear

if ( orient < 0 ) leda_swap(b,c);

〈full-dimensional case: initialization〉
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Figure 10.5 The initial convex hull consists of the pointsa, b, andc. When pointp1 is added
the edgese1 ande2 are deleted from the hull and the edgese4 ande5 are added, and whenp2 is
added to the hull the edgese3 ande4 are deleted from the hull and the edgese6 ande7 are added.
The boundary of the current hull consists of edgese7, e5, ande6 in counter-clockwise order.
Every edge ever deleted from the hull points to the two edges that replaced it, e.g.,e3 ande4

point toe6 ande7.

forall(p,L) { 〈full-dimensional case: insertion of p〉 }

〈full-dimensional case: prepare result and clean-up〉
return CH;

}

We come to the interesting case that not all points inL are collinear. We have already
determined three non-collinear pointsa, b, andc. Their orientation is positive, i.e., the three
points form a counter-clockwise oriented triangle.

The algorithm maintains the current hull as a cyclically linked list of edges and also keeps
all edges that ever belonged to a hull. Every edge that is not on the current hull anymore
points to the two edges that replaced it. More precisely, assume thatS is the set of points
already seen and thatp is a point outside the current hullCH(S). There is a chainC of
edges of the boundary ofCH(S) that do not belong to the boundary ofCH(S ∪ p). The
chain is replaced by the two tangents fromp to the previous hull. All edges inC are made
to point to the two new edges, see Figure 10.5.

We use a classchedgeto represent convex hulls. Every edge stores its two endpoints,
three linkssucc, pred, andlink to other edges, and a boolean flagoutside. We uselink to
collect all edges into a linear list in the order of their creation; every edge points to the edge
created just before it andlastedgepoints to the edge created last. The only purpose of this
linear list is to help in the destruction of edges.
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The boolean flagoutsideindicates whether an edge belongs to the current hull or not. All
edges in the current hull form a cyclic doubly linked list withsuccpointing to the clockwise
successor andpred pointing to the clockwise predecessor. All edges that do not belong
to the current hull anymore use theirsuccandpred fields to point to the two replacement
edges.

〈ch edgeclass〉�
class ch_edge;

static ch_edge* last_edge = nil;

class ch_edge {

public:

POINT source, target;

ch_edge* succ, pred, link;

bool outside;

ch_edge(const POINT& a, const POINT& b) : source(a), target(b)

{ outside = true;

link = last_edge;

last_edge = this;

}

~ch_edge() {}

};

In order to initialize the data structure we create the edges(a, b), (b, c) and(c, a), store
them in an arrayT , and turn them into a doubly-linked cyclic list. We initializelastedgeto
nil before doing any of this, such that the list of all edges has the correct anchor.

〈full-dimensional case: initialization〉�
last_edge = nil;

ch_edge* T[3];

T[0] = new ch_edge(a,b);

T[1] = new ch_edge(b,c);

T[2] = new ch_edge(c,a);

int i;

for(i = 0; i < 2; i++) T[i]->succ = T[i+1];

T[2]->succ = T[0];

for(i = 1; i < 3; i++) T[i]->pred = T[i-1];

T[0]->pred = T[2];

We are now ready to deal with the insertion of a pointp. We proceed in two steps. We first
determine whetherp is outside the current hull and then update the hull (ifp is outside).

In order to find out whetherp lies outside the current hull, we walk through the history
of hulls. We first find out whetherp can see one of the edges of the initial triangle:p lies
outside the initial triangle if there is an edgee of the initial triangle such thatp lies to the
right of the edge.

More generally,p is outside one of the intermediate hullsCH(S) if there is an edgee on
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C H (S)

q

p
e

r0

r1

Figure 10.6 e is a (counter-clockwise) edge of the current hull andp lies to the right of it;e is
replaced byr0 andr1 when the pointq is added. Ifp lies neither to the right ofr0 nor to the right
of r1 then p lies in the shaded region and hence inCH(S ∪ q).

its boundary such thatp lies to the right of the edge. Ife is an edge on the boundary of
the current hull thenp lies outside the current hull. Ife is not an edge on the boundary of
the current hull, letr0 andr1 be the two edges that replacede whenCH(S) was enlarged to
CH(S ∪ q). p is outsideCH(S ∪ q) if it lies to the right of eitherr0 or r1, see Figure 10.6.

〈full-dimensional case: insertion of p〉�
int i = 0;

while (i < 3 && !right_turn(T[i]->source,T[i]->target,p) ) i++;

if (i == 3) { // p inside initial triangle

continue;

}

ch_edge* e = T[i];

while (! e->outside)

{ ch_edge* r0 = e->pred;

if ( right_turn(r0->source,r0->target,p) ) e = r0;

else { ch_edge* r1 = e->succ;

if ( right_turn(r1->source,r1->target,p) ) e = r1;

else { e = nil; break; }

}

}

if (e == nil) continue; // p inside current hull

〈insertion of p: p is outside current hull〉

Assume now thatp lies outside the current hull and to the right of the counter-clockwise hull
edgee. We determine all edges visible fromp by walking along the hull in both directions.
This is exactly as in the previous algorithm. Letlow be the first predecessor ofe that is not
visible and lethighbe the first successor that is not visible.

We then add the new tangents betweenlow andhighand mark all edges that were deleted
from the hull as inside and make the two new tangents the replacement edges of all deleted
edges.
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〈insertion of p: p is outside current hull〉�
// compute "upper" tangent (p,high->source)

ch_edge* high = e->succ;

while (orientation(high->source,high->target,p) <= 0) high = high->succ;

// compute "lower" tangent (p,low->target)

ch_edge* low = e->pred;

while (orientation(low->source,low->target,p) <= 0) low = low->pred;

e = low->succ; // e = successor of low edge

// add new tangents between low and high

ch_edge* e_l = new ch_edge(low->target,p);

ch_edge* e_h = new ch_edge(p,high->source);

e_h->succ = high;

e_l->pred = low;

high->pred = e_l->succ = e_h;

low->succ = e_h->pred = e_l;

// mark edges between low and high as "inside"

// and define refinements

while (e != high)

{ ch_edge* q = e->succ;

e->pred = e_l;

e->succ = e_h;

e->outside = false;

e = q;

}

Having computed the hull we prepare the output and delete all edges. We prepare the
output by running around the hull once and we clean up by deleting all edges.

〈full-dimensional case: prepare result and clean-up〉�
ch_edge* l_edge = last_edge;

CH.append(l_edge->source);

for(ch_edge* e = l_edge->succ; e != l_edge; e = e->succ)

CH.append(e->source);

// clean up

while (l_edge)

{ ch_edge* e = l_edge;

l_edge = l_edge->link;

delete e;

}

What is the running time of the incremental construction of convex hulls?
The worst case running time isO(n2) since the time to insert a point isO(n). The time

to insert a point isO(n) since there are at most 2(k +1) edges after the insertion ofk points
and since every edge is looked at at most once in the insertion process.

The best case running time isO(n). An example for the best case is when the pointsa,
b, andc span the hull.
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The average case running time isO(n logn) as we will show next. What are we aver-
aging over? We consider a fixed but arbitrary setS of n points and average over then!
possible insertion orders. The following theorem is a special case of the by now famous
probabilistic analysis of incremental constructionsstarted by Clarkson and Shor [CS89].
The books [Mul94, BY98, MR95, dBKOS97] contain detailed presentations of the method.
The reader may skip the proof of Theorem 14. Why do we include a proof at all given the
fact that the method is already well treated in textbooks? We give a proof because the cited
references prove the theorem only for points in general position. We want to do without the
general position assumption in this book.

Theorem 14The average running time of the incremental construction method for convex
hulls is O(n logn).

Proof We assume for simplicity that the points inS are pairwise distinct. The theorem is
true without this assumption; however, the notation required in the proof is more clumsy.

The running time of the algorithm is linear iff all points inS are collinear. So let us
assume thatS contains three points that are not collinear. In this case we will first construct
a triangle and then insert the remaining points. Letp be one of the remaining points. When
p is inserted, we first determine the position ofp with respect to the initial triangle (time
O(1)), then search for a hull edgee visible by p, and finally update the hull. The time to
update the hull isO(1) plus some bounded amount of time for each edge that is removed
from the hull. We conclude that the total time (= time summed over all insertions) spent
outside the search for a visible hull edge isO(n).

In the search for a visible hull edge we perform testsrightturn(x, y, p) wherex andy are
previously inserted points. We call a testsuccessfulif it returns true and observe that in each
iteration of the while-loop at most two rightturn tests are performed and that in all iterations
except the last at least one rightturn test is successful. It therefore suffices to bound the
number of successful rightturn tests.

For an ordered pair(x, y) of distinct points inS we useKx,y to denote the set of points
z in S such thatrightturn(x, y, z) is true plus1 the set of points on the line through(x, y)

but not betweenx andy, see Figure 10.7. We usekxy to denote the cardinality ofKx,y, Fk

to denote the set of pairs(x, y) with kxy = k, F≤k to denote the set of pairs(x, y) with
kxy ≤ k, and fk and f≤k to denote the cardinalities ofFk andF≤k , respectively. We have

Lemma 61The average numberA of successful rightturn tests is bounded by
∑

k≥1 2 f≤k/k2.

Proof Consider a pair(x, y) with kxy = k. If some point inKx,y is inserted before both
x and y are inserted then(x, y) is never constructed as a hull edge and hence no rightturn

1 The set to be defined next is empty ifS is in general position. The probabilistic analysis of incremental
constructions usually assumes general position. We do not want to assume it here and hence have to modify the
proof somewhat.
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y

x

Figure 10.7 Kx,y consists of all points in the shaded region plus the two solid rays.

tests(x, y, −) are performed. However, ifx andy are inserted before all points inKx,y then
up tok successful rightturn tests(x, y, z) are performed.
The probability thatx andy are inserted before all points inKx,y is

2!k!/(k + 2)!

since there are(k + 2)! permutations ofk + 2 points out of which 2!k! havex and y as
their first two elements. Thus the expected number of successful rightturn tests(x, y, z) is
bounded by

2!k!/(k + 2)! · k = 2 · k/(k + 1)(k + 2) < 2/(k + 1).

The argument above applies to any pair(x, y) and hence the average number of successful
rightturn tests is bounded by ∑

k≥1

2 fk/(k + 1).

We next write fk = f≤k − f≤k−1 and obtain

A ≤
∑
k≥1

2( f≤k − f≤k−1)/(k + 1) =
∑
k≥1

2 f≤k(1/(k + 1) − 1/(k + 2))

=
∑
k≥1

2 f≤k/((k + 1)(k + 2)).

It remains to boundf≤k. We use random sampling to derive a bound.

Lemma 62 f≤k ≤ 2e2n · k for all k, 1 ≤ k ≤ n.

Proof There are onlyn2 pairs of points ofS and hence we always havef≤k ≤ n2. Thus,
the claim is certainly true forn ≤ 10 ork ≥ n/4.
So assume thatn ≥ 10 andk ≤ n/4 and letR be a random subset ofS of sizer . We will
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fix r later. Clearly, the convex hull ofR consists of at mostr edges. On the other hand, if
for some(x, y) ∈ F≤k, x andy are inR but none of the points inKx,y is in R, then(x, y)

will be an edge of the convex hull ofR. The probability of this event is(n−i−2
r−2

)(n
r

) ≥
(n−k−2

r−2

)(n
r

) ,

wherei = kx,y. Observe that the event occurs ifx andy are chosen and the remainingr −2
points inR are chosen fromS \ {x, y } \ Kx,y. The expected number of edges of the convex
hull of R is therefore at least

f≤k ·
(n−k−2

r−2

)(n
r

) .

Since the number of edges is at mostr we have

f≤k ·
(

n − k − 2

r − 2

)
/

(
n

r

)
≤ r

or

f≤k ≤ r ·
(

n

r

)
/

(
n − k − 2

r − 2

)
= r · n(n − 1)

r(r − 1)
· [n − 2]r−2

[n − k − 2]r−2
,

where [n]i = n(n − 1) · · · (n − i + 1). Next observe that

[n − 2]r−2

[n − k − 2]r−2
≤ [n]r

[n − k]r
=

r−1∏
i=0

n − i

n − k − i
=

r−1∏
i=0

(
1 + k

n − k − i

)

= exp

(
r−1∑
i=0

ln(1 + k/(n − k − i))

)
≤ exp(rk/(n − k − r)) ,

where the last inequality follows from ln(1 + x) ≤ x for x ≥ 0 and the fact thatk/(n −
k − i) ≤ k/(n − k − r) for 0 ≤ i ≤ r − 1. Settingr = n/(2k) and using the fact that
n − k − r ≥ n/4 for k ≤ n/4 andn ≥ 10, we obtain

f≤k ≤ e2n2/r = 2e2nk.

Putting our two lemmas together completes the proof of Theorem 14

A ≤ 4e2
∑
k≥1

nk/k2 = O(n logn).

There are two important situations when the assumptions of the theorem above are satis-
fied:

• When the points inS are generated according to a probability distribution for points in
the plane.

• When the points are randomly permuted before the incremental construction process is
started. We then speak about arandomized incremental construction.
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CONVEX HULL RIC realizes the randomized incremental construction of convex hulls.

〈convexhull.c〉+�
list<POINT> CONVEX_HULL_RIC(const list<POINT>& L)

{ list<POINT> L1 = L;

L1.permute();

return CONVEX_HULL_IC(L1);

}

list<POINT> CONVEX_HULL(const list<POINT>& L)

{ return CONVEX_HULL_RIC(L); }

It is important to understand the difference betweenIC and RIC. The former is adetermin-
istic procedure whose average running time isO(n logn) if the assumptions of Theorem 14
are satisfied. The latter is a randomized algorithm whose expected running time for any
input is O(n logn). Table 10.1 shows the difference. We generated a listL of n random
points for each of three distributions: random points in the unit square, random points in the
unit disk, and random points close to the boundary of the unit circle. We also generated a
second input setLSby sortingL lexicographically. On the random inputsIC does slightly
better thanRIC because the latter does something that is unnecessary for random inputs: it
randomly permutes an input that is already random. However, for the sorted inputs the situ-
ation is completely different.RIC behaves about the same as for random inputs. However,
IC behaves much worse. For the points on the circle the behavior seems to be quadratic

and for the points in the square and the disk the behavior seems to benδ for someδ > 1.
For this reason RIC is to be preferred over IC.

We next compare the sweep line algorithm with the randomized incremental construction
algorithm. Table 10.2 shows the results. Observe that we use much larger inputs sizes for
this table. The randomized incremental algorithm is faster than the sweep algorithm for
inputs with only few hull vertices and is somewhat slower for points on the unit circle. Ob-
serve that the proof of Theorem 14 implies that the running time of randomized incremental
construction iso(n logn) if a random subset of the input points has a small convex hull.

There are many more convex hull algorithms than sweep and (randomized) incremental
construction. Schirra [Sch98] discusses implementations.

10.1.3 The Width of a Point Set
The width of a point setL is the minimal width of a stripe containing all points inL. A
stripe is the region of the plane between two parallel lines. Minimum width stripes are
illustrated in the xlman-demo voronoi-demo, see Figure 10.2. The function

RAT TYPE WIDTH(const list<POINT>& L, LINE& l1, LINE& l2)

assumes thatL is non-empty and returns the square2 of the minimum width stripe containing
L and the boundaries of the stripe.

We show how to compute the minimum width stripe by the so-calledrotating caliber
method. We start with a partial characterization of the minimum width stripe.
2 We return the square of the width instead of the width because this choice avoids the use of square roots.
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IC RIC

K n Gen V Random Sorted Random Sorted

S 4000 0.29 18 0.09 0.27 0.11 0.13

S 8000 0.64 23 0.16 0.76 0.22 0.21

S 16000 1.34 29 0.33 2.53 0.42 0.41

D 4000 0.27 59 0.1 0.45 0.11 0.1

D 8000 0.59 66 0.17 1.26 0.23 0.2

D 16000 1.25 87 0.43 3.48 0.5 0.41

C 4000 9.32 4000 0.32 15.57 0.34 0.37

C 8000 18.87 7995 0.7 65.93 0.75 0.71

C 16000 37.62 1.599e+04 1.47 253.4 1.53 1.57

Table 10.1 A comparison of incremental and randomized incremental construction: We
generatedn points according to one of three distributions, either points with random integer
coordinates in [−R .. R], or random points with integer coordinates in the disc with radiusR
centered at the origin, or random points with integer coordinates that lie approximately on the
circle with radiusR centered at the origin. We usedR = 16000. The columns show from left to
right the kind of the point set (S for points in a square, D for points in the disc, and C for points
on a circle), the numbern of points, the time to generate then points, the number of vertices of
the hull, the running time of the incremental algorithm (IC), and the running time of the
randomized incremental algorithm (RIC). For both algorithms the first column gives the time
for random inputs and the second column gives the time for lexicographically sorted inputs.
Observe the bad behavior ofIC on sorted inputs. Also observe that the time to compute the hull
is usually smaller than the time to generate the points.

Lemma 63 Let S be a minimum width stripe containingL. Then one of the boundaries
contains an edge of the convex hull ofL and the other boundary contains at least one vertex
of the convex hull ofL.

Proof Clearly, both boundaries ofS must contain at least one vertex of the convex hull of
S. Assume that neither boundary contains an edge of the convex hull and letp andq be
the two vertices of the convex hull ofL that are contained in the boundary ofS. Since the
boundary ofL contains no edge of the convex hull we can rotate both lines aroundp and
q, respectively. Letα be the acute angle between the segmentpq and the boundary ofS
incident top, see Figure 10.8. Then

width(S) = |pq| · sinα

and hence the width decreases whenα is decreased.
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Sweep RIC

K n Gen V Random Sorted Random Sorted

S 20000 1.72 25 1.68 1.54 0.55 0.55

S 40000 3.77 29 3.6 3.26 1.26 1.43

S 80000 7.92 31 7.72 6.98 2.06 2.07

D 20000 1.62 106 1.75 1.59 0.55 0.56

D 40000 3.49 109 3.76 3.33 1.17 1.25

D 80000 7.32 152 8 7.02 2.42 2.58

C 20000 47 1.999e+04 1.82 1.67 2.13 2.12

C 40000 94.68 3.994e+04 3.96 3.57 4.46 4.41

C 80000 188.8 7.979e+04 8.6 7.78 10.31 10.04

Table 10.2 The running times of the sweep algorithm and the randomized incremental
construction algorithm for convex hulls. The meaning of the columns is the same as for
Table 10.1.

p

q
l2

l1

width

α

Figure 10.8 The stripeS with boundariesl1 andl2 contains all points ofL , but neither boundary
contains an edge of the convex hull ofL . Rotating its boundaries decreases the width of the
stripe.

We conclude from the lemma above that the minimum width stripe is defined by an edge
of the convex hull and the vertex of maximum distance from the line supporting this edge.
The next lemma constrains the part of the convex hull where this vertex of maximal distance
may lie.

Lemma 64Letv0, v1, . . . ,vk−1 be the vertices of the convex hull ofL, let l = l(vk−1, v0) be
the line passing throughvk−1 andv0, and letvm be the vertex of maximal distance froml.
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vm

vk−1 v0

v1

l

l ′

Figure 10.9 Illustration of the proof of Lemma 64.

Let l ′ = l(v0, v1), let vm′ be the vertex of maximal distance froml ′. Thenm ≤ m ′ ≤ k − 1.
Alsom ′ is minimal such thatvm′+1 has smaller distance tol ′ thanvm′ .

Proof Consider Figure 10.9. All verticesvi with 1 ≤ i ≤ m are contained in the triangle
with cornersv1, vm , and the intersection betweenl ′ and the line parallel tol throughvm.
Any point in this triangle has smaller distance tol ′ thanvm. Thusm ≤ m ′ ≤ k − 1.

For the second claim consider the distance betweenl ′ andvi as a function ofi and asi
ranges from 1 tok −1. It follows from convexity that this function is first strictly increasing
then reaches its maximum for either one or two vertices and is then again strictly decreasing.

It is easy to derive an algorithm from the preceding lemma. We determine for each hull
edgepq the vertexm of maximal distance from the linel(p, q). We initialize p andq to
the first two hull vertices and findm by a search over all vertices. We then scan once around
the convex hull ofL in order to check all other edges.

We maintain the square of the width of the currently best stripe inminsqrwidth and the
boundaries of the stripe inl1 andl2.

〈width.c〉�
RAT_TYPE WIDTH(const list<POINT>& L, LINE& l1, LINE& l2)

{

if ( L.empty() )

error_handler(1,"WIDTH applies only to non-empty sets");

list<POINT> CH = CONVEX_HULL(L);

if ( CH.length() == 1 )

{ l1 = l2 = LINE(L.head(), VECTOR(INT_TYPE(1),INT_TYPE(1)));

return 0;

}

if ( CH.length() == 2 )
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{ l1 = l2 = LINE(CH.head(), CH.tail()); return 0; }

list_item p_it = CH.first();

list_item q_it = CH.cyclic_succ(p_it);

list_item m_it = q_it;

list_item it;

LINE l(CH[p_it],CH[q_it]);

RAT_TYPE min_sqr_width = 0; RAT_TYPE sqr_dist;

// find vertex with maximal distance from l

forall_items(it,CH)

{ if ( (sqr_dist = l.sqr_dist(CH[it])) > min_sqr_width )

{ min_sqr_width = sqr_dist;

m_it = it;

}

}

l1 = l; l2 = LINE(CH[m_it], CH[q_it] - CH[p_it]);

〈rotate caliber around CH〉
return min_sqr_width;

}

Let r be the successor vertex ofq. We want to determine the vertexm ′ with maximal
distance froml ′ = l(q, r). The last sentence of the lemma above implies thatm′ is the
closest successor ofm (inclusive) such that the successor ofm ′ has smaller distance tol ′

thanm ′.

〈rotate caliber around CH〉�
do // move caliber to next edge

{

list_item r_it = CH.cyclic_succ(q_it);

LINE l(CH[q_it],CH[r_it]);

RAT_TYPE cur_sqr_dist = l.sqr_dist(CH[m_it]);

list_item new_m_it = m_it;

it = CH.cyclic_succ(m_it);

while ( (sqr_dist = l.sqr_dist(CH[it])) >= cur_sqr_dist )

{ new_m_it = it; it = CH.cyclic_succ(it);

cur_sqr_dist = sqr_dist;

}

if ( cur_sqr_dist < min_sqr_width )

{ min_sqr_width = cur_sqr_dist;

l1 = l; l2 = LINE(CH[new_m_it], CH[r_it] - CH[q_it]);

}

p_it = q_it; q_it = r_it; m_it = new_m_it;

} while ( p_it != CH.first() );

The running time of the width computation is the time to compute the convex hull plus an
amount of time that is linear in the number of vertices of the convex hull. It takes linear
time to compute the vertex of maximal distance from the first hull edge and it takes linear
time to compute the vertex of maximal distance for all other edges. The latter follows from
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the observation that both the edge and the vertex of maximal distance “travel around the
convex hull once”.

Exercises for 10.1
1 Design an example where the running time of CONVEXHULL IC is quadratic.
2 Design an example where the running time of CONVEXHULL IC is linear.
3 Redo the proof of Theorem 14 under the assumption that the expected number of hull

edges in the convex hull ofr random points isr1−δ for someδ > 0.
4 Modify either convex hull algorithm such that it returns all points that lie on the boundary

of the convex hull.
5 Let P andQ be two disjoint convex polygons given by their cyclic list of vertices. Write

a program that computes the common tangents ofP andQ.
6 Use the solution of the previous exercise to compute the convex hull by divide-and-

conquer. Sort the points lexicographically and split them into two halves. Compute
the hull of both halves recursively. Merge the two hulls by constructing the common
tangents.

7 Generaten random points in the unit square and compute their convex hull. Do so for
different values ofn and derive a conjecture concerning the expected number of extreme
points in a set ofn random points. Try to prove your conjecture or do a literature search
to find out what is known about the problem. Do the same for random points in the unit
disk.

10.2 Triangulations

A triangulationof S is a partition of the convex hull ofS into triangles. This assumes that
not all points ofS are collinear. Each triangle in the partition has three points ofS as its
vertices and any two triangles in the partition are either disjoint, or share a vertex, or an
edge and two vertices. The union of all triangles is the convex hull ofS, see Figure 10.10
for two examples. What is a triangulation of convS if all points of S are collinear? It is
simply a partition of convS into line segments3, see Figures 10.10 and 10.11.

Triangulations are a versatile data structure. We will use them for point location queries,
nearest neighbor queries, and range queries in Section 10.6 and describe their use ininter-
polationnow. Assume that we are given the values of some functionf at some finite set
S of points and want to interpolatef for all points in the convex hull ofS. Triangulations
offer an elegant way to approach this problem. We compute a triangulationT of S and lift
it to three-dimensional space. More precisely, for every triangle(p, q, r) of T we define

3 More generally, ifS has affine dimensiond then a triangulation ofS is a partition of convS into d-dimensional
simplices. Ad-dimensionalsimplexis the convex hull ofd + 1 affinely independent points. Thus, triangles are
two-dimensional simplices and line segments are one-dimensional simplices and hence a triangulation of a
one-dimensional setS is a partition of its convex hull into line segments, a triangulation of a two-dimensional set
is a partition of its convex hull into triangles, and a triangulation of a three-dimensional set is the partition of its
convex hull into tetrahedra.
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Figure 10.10 A triangulation of a two-dimensional and of a one-dimensional point set.

Figure 10.11 A triangulation computed by the function TRIANGULATEPOINTS discussed in
this section.

a triangle((p, f (p)), (q, f (q)), (r, f (r))) in three-space, see Figure 10.12. In this way
we obtain a surface in three-space. In order to determine the interpolating value at a point
x ∈ convS we determine the height of the interpolating surface abovex and return it. This
requires us to find the triangle ofT containingx (a point location query) and to determine
the height atx by linear interpolation from the height at the vertices of the triangle contain-
ing x . Assume thatx lies in the triangle with verticesp, q, andr . We writex as a convex
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(x, f (x))

Figure 10.12 A triangle in the plane and its lifting to three-space.

combination ofp, q, andr , i.e.,

x = cp p + cqq + crr,

wherecp + cq + cr = 1 and computef (x) as

f (x) = cp f (p) + cq f (q) + cr f (r).

The coefficientscp, cq , andcr are called thebarycentric coordinatesof x with respect to
the triangle(p, q, r).

We next discuss how to represent triangulations. We represent triangulations as straight
line embedded plane maps; embedded graphs are the subject of Chapter 8 and we recom-
mend that you read the first four sections of that chapter before proceeding. LetT be a
triangulation of a setS of points. We use a graphG of typeGRAPH<POINT, int> to repre-
sentT ; G has the following properties, see Figure 10.14:

• The nodes ofG are in one-to-one correspondence to the points inS. For a nodev of G
the point inS corresponding to it is stored asG[v].

• G is a directed graph whose edges will be calleddarts. We use the word dart instead
of edge in order to distinguish the edges of the representing graph from the edges of
the represented geometric object. The darts ofG come in pairs. For every dart
e = (v, w) of G the reversed darteR = (w, v) is also a dart ofG. Moreover, the
member functionreversalmaps each dart to its reversal, i.e.,G.reversal(e) = eR and
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cyclic adj succ

e

cyclic adj pred

Figure 10.13 The relationship between the cyclic ordering of the adjacency listA(v) of a nodev
and the counter-clockwise ordering of the edges incident toG[v].

G.reversal(eR) = e. We call a pair consisting of a dart and its reversal a uedge (=
undirected edge). The uedges ofG correspond to the edges ofT and a dart(v, w) of
G corresponds to the oriented edge(G[v], G[w]) of T .

• For each nodev of G the list A(v) of edges out ofv is ordered cyclically. For an edge
e with sourcev the functions

G.cyclic adj succ(e);

G.cyclic adj pred(e);

return the cyclic successor and the cyclic predecessor ofe in A(v). The cyclic ordering
of the edges inA(v) agrees with the counter-clockwise ordering of the edges incident
to G[v] in the triangulation, i.e.,G.cyclicadj succ(e) is the next dart out ofv in
counter-clockwise direction andG.cyclicadj pred(e) is the next dart out ofv in
clockwise direction, see Figure 10.13.

• The preceding items guarantee that the faces of the triangulation correspond to the
face cycles ofG. For each counter-clockwise triangle(G[u], G[v], G[w]) of the
triangulation the edges(u, v), (v, w), (w, u) form a face cycle ofG. There is also a
face cycle corresponding to the unbounded face ofT . As a face cycle is traversed the
face lies to the left of the face cycle. The functions

G.face cycle succ(e);

G.face cycle pred(e);

support the convenient traversal of the face cycles of a map. They give the successor
and predecessor ofe in the face cycle containinge, respectively. The face cycle
successor is the cyclic adjacency predecessor of the reversal ofe, see Figure 8.10.

• Each dart has an integer label (available asG[e]) that gives information about the dart.
The labels come from the enumeration type
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Figure 10.14 A graphG representing a triangulation. For each edge of the triangulation there
are two darts inG, e.g., the edgeG[v]G[w] is represented by the dartse1 = (v, w) and
e2 = (w, v). We haveG.reversal(e1) = e2 andG.reversal(e2) = e1. For each dart its name is
shown near the source of the dart and to the left of the dart. The listA(w) of edges out ofw is a
cyclic shift (it is not specified which) of(e5, e3, e2). The two triangles correspond to the face
cycles(e1, e3, e9) and(e5, e7, e4). The unbounded face corresponds to the face cycle
(e6, e2, e10, e8).

enum delaunay edge info{ DIAGRAM EDGE = 0, DIAGRAM DART = 0,

NON DIAGRAM EDGE = 1, NON DIAGRAM DART = 1,

HULL EDGE = 2, HULL DART = 2

};

defined in<LEDA/geoglobalenums.h>. We discuss them in Section 10.4.

A dart is called ahull dart if the unbounded face ofG lies to its left. If hull dart is any
hull dart, the following lines of code traverse all hull darts.

edge e = hull dart;

do { e = G.face cycle succ(e); } while (e != hull dart);

We next extend the hull program of the preceding section to a triangulation program.
This algorithm was first described in [Meh84b]. Again, we start by sorting the points lexi-
cographically. Then we set up the triangulation of the first two points and finally add point
by point to the triangulation.

〈triangulation.c〉�
inline int left_bend(const POINT& p, const GRAPH<POINT,int>& G,

const edge& e)

{ return (orientation(p,G[source(e)],G[target(e)]) > 0); }

edge TRIANGULATE_POINTS(const list<POINT>& L0, GRAPH<POINT,int>& G)

{

G.clear();
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if (L0.empty()) return nil;

list<POINT> L = L0;

L.sort();

if ( L.empty() ) return nil;

// initialize G with a single edge starting at the first point

POINT last_p = L.pop(); // last visited point

node last_v = G.new_node(last_p); // last inserted node

while (!L.empty() && last_p == L.head()) L.pop();

if (!L.empty())

{ last_p = L.pop();

node v = G.new_node(last_p);

edge x = G.new_edge(last_v,v,0);

edge y = G.new_edge(v,last_v,0);

G.set_reversal(x,y);

last_v = v;

}

〈triangulate points: scan remaining points〉
}

In order to facilitate the addition of points we maintain the dartelast; it is the hull dart that
leaves the most recently added vertex. Letp be the point to be added and leteupande low
be hull darts such that exactly the hull vertices between the target ofeup and the source
of e low are visible fromp, see Figure 10.15. All edgese betweeneup andelow are such
that p, the source ofe, and the target ofe form a left turn, buteup andelow do not have
this property. Moreover,eup is a proper face cycle predecessor ofelast, andelow is a
face cycle successor ofe last. Thus it is easy to determineeupande low. For example, the
former is the first proper face cycle predecessore of e last such thatp, the source ofe, and
target ofe do not form a left turn.

Having determinedeup we walk toelow and extend the triangulation by adding edges
betweenv, wherev is a new node corresponding to pointp, and the hull vertices visible
from p. We must be careful to add the new edges in a way that reflects the triangulation.
We iterate over the hull darts betweeneup inclusive andelow exclusive, starting ateup
and walking towardselow. Consider any suche and letesuccbe its face cycle succes-
sor. We add the dart(source(esucc), v) afteresuccto A(source(esucc)) and we append
the dart(v, source(esucc)) to A(v). Observe that this way of adding darts buildsA(v)

in counter-clockwise order and adds the dart(source(esucc), v) at the proper position to
A(source(esucc)).

The update step just described works correctly even if the new point is collinear with all
preceding points. In this situation only a line segment is added to the triangulation.

〈triangulate points: scan remaining points〉�
POINT p;

forall(p,L)

{ if (p == last_p) continue;

edge e = G.last_adj_edge(last_v);
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e up

e last

e low

p

Figure 10.15 Edgese last , e up, ande low.

last_v = G.new_node(p);

last_p = p;

// walk up to upper tangent

do e = G.face_cycle_pred(e); while (left_bend(p,G,e));

// now e = e_up

// walk down to lower tangent and triangulate

do { edge succ_e = G.face_cycle_succ(e);

edge x = G.new_edge(succ_e,last_v,after,0);

edge y = G.new_edge(last_v,source(succ_e),0);

G.set_reversal(x,y);

e = succ_e;

} while (left_bend(p,G,e));

}

〈mark edges of convex hull as HULLDARTS〉

In the pieces of code above we labeled all new edges with zero. We now relabel all hull
darts as such. The last edge added to the triangulation is a hull dart and all other hull darts
are reached by tracing the face cycle containing it. The labeling of the hull darts will prove
useful in the section on Delaunay diagrams.

We return a hull dart.

〈mark edges of convex hull as HULLDARTS〉�
edge hull_dart = G.last_edge();

if (hull_dart)

{ edge e = hull_dart;

do { G[e] = HULL_DART;
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K n Gen V Hull Hull check Triang Triang check

S 20000 0.44 25 1.71 0 3.1 23.7

S 40000 0.92 29 3.65 0 6.43 47.35

S 80000 1.84 35 7.52 0 13.04 94.31

D 20000 0.41 91 1.9 0 3.13 24.72

D 40000 0.73 123 3.6 0 6.26 47.29

D 80000 1.47 147 7.72 0 13.15 94.36

C 20000 47.3 19992 1.69 0.17 2.62 21.19

C 40000 95.59 39958 3.59 0.42 5.47 42.01

C 80000 190.9 79756 8.08 1.32 11.65 86.39

Table 10.3 The running times of the sweep algorithms for convex hulls and triangulations. We
generated unsorted lists ofn points according to the same distributions as in Table 10.1. The
meaning of the first four columns is as in Table 10.1. The column “Hull” shows the time to
compute the convex hull, the column “Hull check” shows the time to verify that any three
consecutive vertices ofCH form a right turn, the column “Triang” shows the time to compute the
triangulation, and the column “Triang check” shows the time to runIs Triangulation(G).

e = G.face_cycle_succ(e);

} while (e != hull_dart);

}

return hull_dart;

Table 10.3 compares the running times of the sweep algorithms for convex hulls and tri-
angulations. We generatedn random points in a square, a disc, and on a circle, respectively,
The triangulation algorithm takes about twice as long as the convex hull program. The table
also shows the time for partially checking the output of either program. For the convex hull
program we checked that any three consecutive vertices form a right turn and in the case
of triangulations we called the checkerIs Triangulation(G), which will be discussed in the
next section.

Both checks are only partial. In the case of triangulations we do not check that exactly
the input points appear as vertices of the triangulation. This omission could be corrected
by the use of a dictionary. In the case of the convex hull program we do not verify that all
input points lie inside the produced convex chain. This is an omission which is not easily
corrected; the obvious approach takes quadratic time.

Exercises for 10.2
1 Write a program that verifies that the nodes of aGRAPH<POINT, int> agree with the

points in alist<POINT>. Add this to the check of the triangulation program.
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2 Extend the randomized incremental construction of convex hulls to an incremental con-
struction of triangulations.

10.3 Verification of Geometric Structures, Basics

We have by now seen programs to compute convex hulls, minimum width stripes, and
triangulations. The programs are non-trivial and we will see more complex programs in
later sections. Although we wrote the documentation and the correctness proofs in parallel
to the development of these programs, we nevertheless made mistakes, some minor, like
testing for positive orientation instead of non-negative orientation, and some major, like
assuming that every set of points contains three non-collinear points.Visual debugging,
i.e., displaying the output of a geometric computation, was an indispensable aid in getting
the programs correct, but visual debugging has its limits. Visual debugging is most useful
in the plane; already displaying a partition of three-space is next to impossible. Also, the
representation underlying a geometric object may be incorrect, although the object itself
“looks correct”.

One of our key experiences was the development of a program to compute convex hulls in
arbitrary dimensions. It took some time to get the programs working for points in the plane,
but after some time it produced convex hulls which “looked right”. We moved to three-space
and a few hours later the convex hulls in three-space looked right. We got adventurous and
tried an example in seven-dimensional space. The program ran to completion and claimed
that it had computed the convex hull. Given our past experience we had every reason to
believe the contrary. At that time we had no way to check the result of the convex hull
computation. We teamed up with some colleagues and wrote [MNS+96]. In this paper
we discuss how to verify convex hulls, triangulations, Delaunay diagrams, and Voronoi
diagrams. Alternative checkers are discussed in [DLPT97].

In this section and in Sections 10.4.3, 10.4.6, and 10.5.3 we derive procedures to verify
properties ofgeometric graphs. A geometric graph is a straight line embedded map. Ev-
ery node is mapped to a point in the plane and every dart is mapped to the line segment
connecting its endpoints. We start with procedures to check that the edges around vertices
are cyclically ordered, that face cycles define convex polygons, and that a graph defines a
convex subdivision or a triangulation. In later sections we will extend these functions to
check Delaunay triangulations, Delaunay diagrams, and Voronoi diagrams.

We usegeograph as a template parameter for geometric graphs. Any instantiation
geographinst of geographmust provide a function

VECTOR edge vector(const geo graph inst& G, const edge& e)

that returns a vector from the source to the target ofe. We will use two instantiations of
geograph in this chapter:GRAPH<POINT, int> for triangulations, Delaunay triangula-
tions, and Delaunay diagrams, andGRAPH<CIRCLE, POINT> for Voronoi diagrams. In
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the first case, the position of a nodev is given by the pointG[v] and hence the edge vector
function can be realized as

〈GRAPH〈POINT,int〉: edge vector function〉�
static VECTOR edge_vector(const GRAPH<POINT,int>& G, const edge& e)

{ return G[G.target(e)] - G[G.source(e)]; }

In the second case, the position of a nodev is given by the center of the circleG[v]. We
will define the corresponding edge vector function in the section on Voronoi diagrams.

All functions that check properties of geometric graphs are collected in the file

〈geocheck.t〉�
〈comparing edges by angle〉
〈cyclically ordered lists〉
〈verifying the order of adjacency lists and the convexity of faces〉

in directory LEDA/templates. This file must be included to use any of these functions.

10.3.1 Monotone and Cyclically Monotone Sequences
Let x = (x1, x2, . . . , xn) be a sequence of elements from some ordered set;x is called
non-decreasingif xi ≤ xi+1 for all i , 1 ≤ i < n, andx is calledincreasingif xi < xi+1

for all i , 1 ≤ i < n, x is calledcyclically non-decreasingiff some cyclic shift ofx is non-
decreasing, andx is calledcyclically increasingiff some cyclic shift ofx is increasing. The
notions non-increasing, decreasing, cyclically non-increasing, and cyclically decreasing are
defined analogously.

The functionsIs C NondecreasingandIs C Increasingcheck whether a sequence is cycli-
cally non-decreasing or increasing. They take a listL of elements of some typeT and a
compare objectcmpfor typeT .

The implementation is simple. We iterate over the elements ofL and compare every
element with its cyclic successor. We count how often the successor is smaller (smaller or
equal for the second function). If the count reaches two, the sequence violates the property.

〈cyclically ordered lists〉�
template <class T>

bool Is_C_Nondecreasing(const list<T>& L, const leda_cmp_base<T>& cmp)

{ list_item it;

int number_of_less = 0;

forall_items(it,L)

if ( cmp(L[L.cyclic_succ(it)],L[it]) < 0 ) number_of_less++;

return (number_of_less < 2);

}

template <class T>

bool Is_C_Increasing(const list<T>& L, const leda_cmp_base<T>& cmp)

{ list_item it;
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int number_of_lesseq = 0;

forall_items(it,L)

if ( cmp(L[L.cyclic_succ(it)],L[it]) <= 0 ) number_of_lesseq++;

return (number_of_lesseq < 2);

}

The functionsIs C Nonincreasingand Is C decreasingare defined analogously. We leave
their implementation to the reader.

10.3.2 Comparing Edges by Angle
For a non-zero two-dimensional vectorv let α(v) be the angle between the positivex-axis
andv, i.e., the angle by which the positivex-axis has to be turned counter-clockwise until
it aligns withv. The geo kernels provide functions

int compare by angle(const VECTOR& v1,const VECTOR& v2)

that compare vectors by angle, i.e., the functions return−1 if v1 precedesv2, 0 if v1 and
v2 define the same angle, and+1 if v1 succeedsv2. The zero vector precedes all non-zero
vectors in the ordering by angle.

In a geometric graphG the functionedgevector(G, e) returns the vector from the source
to the target of edgee. The compare objectcmpedgesbyangle compares the edges of
any geograph G according to the vectors defined by the edges ofG. It is derived from
ledacmpbase<edge>, has a constructor that takes a geometric graphG and stores a refer-
ence to it in the object, and a function operator that takes two edgese and f and compares
them according to the vectors defined by them.

〈comparing edges by angle〉�
template <class geo_graph>

class cmp_edges_by_angle: public leda_cmp_base<edge> {

const geo_graph& G;

public:

cmp_edges_by_angle(const geo_graph& g): G(g){}

int operator()(const edge& e, const edge& f) const

{ return compare_by_angle(edge_vector(G,e), edge_vector(G,f)); }

};

10.3.3 Counter-Clockwise Ordered Adjacency Lists
The function

bool Is CCW Ordered(const geo graph& G)

returns true if for all nodesv the neighbors ofv are in increasing counter-clockwise order
aroundv, and the function

bool Is CCW Ordered Plane Map(const geo graph& G)

returns true if, in addition,G is a plane map. The function
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void SORT EDGES(geo graph& G)

reorders the adjacency lists such that for every nodev of G the edges inA(v) are in non-
decreasing order by angle.

All three functions are very easy to implement. For the first function, we define a compare
objectcmpto compare the darts ofG by angle, and then check whether the darts out of every
nodev are cyclically increasing. The second function calls the first and checks whetherG
is a plane map, and the third function sorts the set of darts and then rearranges the adjacency
lists.

〈verifying the order of adjacency lists and the convexity of faces〉�
template <class geo_graph>

bool Is_CCW_Ordered(const geo_graph& G)

{ node v;

cmp_edges_by_angle<geo_graph> cmp(G);

forall_nodes(v,G)

if ( !Is_C_Increasing(G.out_edges(v),cmp) ) return false;

return true;

}

template <class geo_graph>

bool Is_CCW_Ordered_Plane_Map(const geo_graph& G)

{ return Is_Plane_Map(G) && Is_CCW_Ordered(G); }

template <class geo_graph>

bool Is_CCW_Weakly_Ordered(const geo_graph& G)

{ node v;

cmp_edges_by_angle<geo_graph> cmp(G);

forall_nodes(v,G)

if ( !Is_C_Nondecreasing(G.out_edges(v),cmp) ) return false;

return true;

}

template <class geo_graph>

bool Is_CCW_Weakly_Ordered_Plane_Map(const geo_graph& G)

{ return Is_Plane_Map(G) && Is_CCW_Weakly_Ordered(G); }

template <class geo_graph>

void SORT_EDGES(geo_graph& G)

{

cmp_edges_by_angle<geo_graph> cmp(G);

list<edge> L = G.all_edges();

L.sort(cmp);

G.sort_edges(L);

}

10.3.4 Convex Faces
We define functions that check for convexity of faces. Consider any face cyclef of a
geometric graphG; f defines a closed polygonal chainC in the plane. We want to know
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Figure 10.16 A strictly convex counter-clockwise polygonal chain, a weakly convex clockwise
polygonal chain, and a chain which is not simple.

whether the polygonal chain is the boundary of a convex region. More precisely, we callC
a weakly convex counter-clockwise polygonal chainif C is simple, i.e., does not intersect
itself, and the region to the left ofC is convex. We callC astrictly convex counter-clockwise
polygonal chainor simplyconvex counter-clockwise polygonal chainif, in addition, any two
consecutive edges ofC do not have the same direction, see Figure 10.16. For clockwise
chains the region to the right ofC must be convex.

In a convex subdivision, e.g., a triangulation, the face cycles of all bounded faces form
convex counter-clockwise polygonal chains, and the face cycle of the unbounded face forms
a weakly convex clockwise polygonal chain.

Let p0, p1, . . . , pk−1 be the points associated with the nodes ofC.

Lemma 65 C is a counter-clockwise weakly convex polygonal chain iff the sequences =
(p1 − p0, p2 − p1, . . . , p0 − pk−1) is cyclically non-decreasing.

Proof If C is a counter-clockwise weakly convex polygonal chain thens is clearly cyclically
non-decreasing.

Assume next thats is cyclically non-decreasing. Then no pair of consecutive vectors
forms a right turn and the angles between all pairs of consecutive vectors sum to 2π . We
conclude thatC is simple, i.e, does not intersect itself, and that the region to the left ofC is
convex.

The functions

bool Is CCW Convex Face Cycle(const geo graph& G,const edge e)

bool Is CCW Weakly Convex Face Cycle(const geo graph& G, const edge e)

bool Is CW Convex Face Cycle(const geo graph& G, const edge e)

bool Is CW Weakly Convex Face Cycle(const geo graph& G, const edge e)

return true if the face cycle ofG containinge has the stated property, i.e., if the face cycle
forms a cyclically increasing, non-decreasing, decreasing, or non-increasing, respectively,
sequence of edges according to the compare-by-angles ordering.

We give the implementation of the first function. We collect the edges of the face cycle
in a list L, define a compare objectcmpthat compares edges ofG, and then check whether
L is cyclically increasing.
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〈verifying the order of adjacency lists and the convexity of faces〉+�
template <class geo_graph>

bool Is_CCW_Convex_Face_Cycle(const geo_graph& G, const edge& e)

{

list<edge> L;

edge e1 = e;

do { L.append(e1);

e1 = G.face_cycle_succ(e1);

} while ( e1 != e );

cmp_edges_by_angle<geo_graph> cmp(G);

return Is_C_Increasing(L,cmp);

}

10.3.5 Convex Subdivisions
A geometric graphG is aconvex planar subdivision, if G is a plane map and if the positions
assigned to the nodes ofG define a straight line embedding ofG in which all bounded faces
are strictly convex and in which the unbounded face is weakly convex.

The function

bool Is Convex Subdivision(const GRAPH<POINT,int>& G)

returns true ifG is a convex planar subdivision, and the function

bool Is Triangulation(const geo graph& G)

returns true ifG is a convex planar subdivision in which every bounded face is a simplex.
More precisely, if all nodes ofG lie on a common line, then every face cycle of a bounded
face is simply a pair of anti-parallel edges, and if the nodes ofG do not lie on a common
line, then every bounded face ofG is a triangle.

Both functions are implemented in terms of the function

bool Is Convex Subdivision(const GRAPH<POINT,int>& G,

bool& is triangulated)

that returns true ifG is a convex subdivision and setsis triangulatedto true if, in addition,
G is a triangulation.

We discuss the theory behind the latter function and then give its implementation. IfG is
a convex subdivision, then the following conditions are certainly satisfied:

• G is a connected plane map.

• All nodes ofG have counter-clockwise ordered adjacency lists.

• If all vertices lie on a common line, i.e., the underlying point set has affine dimension
less than 2, thenG is a path which reflects the ordering of its vertices on the line.

• If the underlying point set has affine dimension 2, then each face is either a bounded
counter-clockwise oriented convex polygon or a clockwise oriented weakly convex
polygon. There is only one face of the latter kind.
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Lemma 66If G satisfies the four conditions above, thenG is a convex planar subdivision.

Proof Assume first that all vertices ofG lie on a linel and letv1, v2, . . . ,vn be the ordering
of the vertices onl. Then the points assigned to adjacent vertices must be distinct,v1 and
vn must have degree one, andvi must have neighborsvi−1 andvi+1 for 1 < i < n. The
number of edges ofG is 2n − 2 wheren is the number of nodes ofG.

Assume next that not all vertices ofG lie on a common line. LetR be the region that is
enclosed by the unique face cyclef which is a weakly convex clockwise polygon. We claim
that all vertices that are not part off lie in the interior ofR. Assume otherwise. Then there
must be a vertexv that is not part off and a directiond such thatv is a maximal vertex ofG
in directiond (note that we said “a maximal vertex” and not “the maximal vertex”). Since
v is maximal there must be a pair of edges incident tov which span an angle of at leastπ

and hencev must be part of a weakly convex chain. Thusv belongs tof , a contradiction.
Every face cycle ofG different from f defines a counter-clockwise oriented convex

polygonal region in the plane. We need to show that these regions form a partition ofR.
Consider a pointp moving in the plane such that it avoids vertices ofG. Wheneverp crosses
a directed edgee it will enter another region (namely, the one to the left ofreversal(e)) ex-
cept whenreversal(e) belongs to f . This shows that all points in the interior ofR are
covered by the same number of regions. Also, since all vertices on the boundary ofR are
part of f , exactly one bounded region is incident to each edge off . Altogether we have
shown that the regions defined by the face cycles different fromf partition R. The number
of edges ofG must be at least 2n since every node must have degree at least two.

We turn to the implementation. We first check whetherG is a connected plane map in
which all adjacency lists are counter-clockwise ordered. Then we comparem and n. If
m = 2n −2 we must be in the situation that all vertices ofG are collinear and ifm > 2n −2
we must be in the situation that the underlying point set has affine dimension 2.

〈subdivisioncheck.c〉+�
static bool False(const string& s)

{ cerr << "Is_Convex_Subdivision: " << s; return false; }

bool Is_Convex_Subdivision(const GRAPH<POINT,int>& G,

bool& is_triangulated)

{

is_triangulated = true;

if ( !Is_Connected(G) ) return False("G is not connected");

if ( !Is_CCW_Ordered_Plane_Map(G) )

return False("G is not a CCW-ordered plane map");

int n = G.number_of_nodes();

int m = G.number_of_edges();

cmp_edges_by_angle<GRAPH<POINT,int> > cmp(G);

if ( m == 2*n - 2) { 〈ICS: collinear points〉 }

〈ICS: affine dimension is two〉
}
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If m = 2n − 2, the fact thatG is a connected bidirected graph guarantees thatG is a tree.
It therefore suffices to check that there is no vertex of degree three and that for every vertex
of degree two the two incident edges point in opposite directions.

〈ICS: collinear points〉�
node v;

if ( n <= 1 ) return true;

forall_nodes(v,G)

{ if ( G.outdeg(v) > 2 ) return False("G is a tree but not a chain");

if (G.outdeg(v) == 1) continue;

edge e1 = G.first_adj_edge(v), e2 = G.last_adj_edge(v);

node w = G.target(e1);

node u = G.target(e2);

if ( G[v] == G[w] || G[v] == G[u] )

return False("nodes at equal positions");

if ( cmp(e1,G.reversal(e2)) != 0 )

return False("direction not opposite");

}

return true;

It remains to deal with the situation that the affine dimension of the underlying point set is
2. We trace all face cycles ofG. One face cycle must be a weakly convex clockwise oriented
polygon and all other face cycles must be strongly convex counter-clockwise polygons. We
make the distinction by considering three consecutive nodes of a face cycle and determining
their orientation. If the orientation is positive, the face cycle must be a strongly convex
counter-clockwise polygon, and if the orientation is non-positive, the face cycle must be the
boundary of the unbounded face.

If the number of edges of the face cycle is three, the orientation test itself guarantees
strong convexity and there is no need to trace the face cycle to check convexity.

〈ICS: affine dimension is two〉�
edge e;

edge_array<bool> considered(G,false);

bool already_seen_unbounded_face = false;

forall_edges(e,G)

{ if ( !considered[e] )

{ // check the face to the left of e

POINT a = G[source(e)];

POINT b = G[target(e)];

POINT c = G[target(G.face_cycle_succ(e))];

int orient = orientation(a,b,c);

int n = 0;

edge e0 = e;

do { considered[e] = true;

e = G.face_cycle_succ(e);

n++;

} while ( e != e0);

if ( orient > 0 )
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{ if ( n > 3 )

{ is_triangulated = false;

if ( !Is_CCW_Convex_Face_Cycle(G,e) )

return False("non-convex bounded face");

}

}

else

{ if ( already_seen_unbounded_face )

return False("two faces qualify for unbounded face");

already_seen_unbounded_face = true;

if ( !Is_CW_Weakly_Convex_Face_Cycle(G,e) )

return False("unbounded face is not weakly convex");

}

}

}

return true;

Exercises for 10.3
1 Improve the implementation ofIs CWWOrderedand the functions checking convexity

of faces. In our implementation we first construct a list of edges and then check this list
for cyclic monotonicity. Avoid the construction of the list.

2 Improve the theory underlyingIs ConvexSubdivision. Is it necessary to check whether
the edges inA(v) are CCW-ordered or does this property follow from the condition that
all bounded faces are counter-clockwise strongly convex polygonal chains?

3 Extend the functionIs ConvexSubdivisionsuch that it works forgeographand not only
for GRAPH<POINT, int>.

10.4 Delaunay Triangulations and Diagrams

A point set may in general be triangulated in many different ways. Depending on the ap-
plication one triangulation is preferable over another. A triangulation that is useful in many
contexts is the so-calledDelaunay triangulation. A triangulation of a point setS is called
Delaunayif the interior of the circumcircle of any triangle in the triangulation contains
no point of S. Figure 10.17 shows a Delaunay triangulation. The voronoidemo and the
point setdemo in xlman illustrate Delaunay diagrams.

In this section we will first show the existence of Delaunay triangulations. The exis-
tence proof is constructive and yields a simple algorithms for the construction of Delaunay
triangulation, the so-callingflipping algorithm. We give an implementation of the algo-
rithm based on the so-calledincircle test, a powerful geometric primitive. The Delaunay
triangulation of a point set is in general not unique (if the point set contains co-circular
points); it has, however, a substructure which is unique, the so-calledDelaunay diagram.
We characterize Delaunay diagrams and give some applications of Delaunay diagrams and
triangulations.
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Figure 10.17 A Delaunay triangulation. The figure was produced with the voronoidemo in
xlman.

10.4.1 Delaunay Triangulations and the Flipping Algorithm
Our immediate goal is to prove that Delaunay triangulations exist. Consider the simplest
situation first, four pointsp, q, r , and s forming the corners of a convex quadrilateral.
There are two triangulations corresponding to the chordspr andqs, respectively, see Figure
10.18. We show that at least one of the two triangulations is Delaunay. Assume that the
triangulation corresponding to the chordpr is not Delaunay, say becauses is contained in the
circumcircle of triangle4(p, q, r ). Thenq is also contained in the circumcircle of triangle
4(p, r, s). We can obtain the circumcircle of triangle4(p, q, s) from the circumcircle of
4(p, q, r) by reducing the size of the circle while simultaneously insisting that it passes
throughp andq. This shows thatr is outside the circumcircle of triangle4(p, q, s) and
that the radius of the circumcircle of4(p, q, s) is smaller than the radius of the circumcircle
of 4(p, q, r). The symmetric argument shows thatp is outside the circumcircle of triangle
4(q, r, s) and that the radii of both circles in the Delaunay triangulation are smaller than
the radii of the circles in the other triangulation.

Let us next turn to point sets of larger cardinality. We show that any triangulation which
is not Delaunay contains two adjacent triangles, i.e., triangles sharing an edge, that form a
convex quadrilateral and such that the circumcircles of both triangles contain the third vertex
of the other triangle. Clearly, a triangulation which is not Delaunay contains a triangle,
say4(p, q, r) whose circumcircle is non-empty. Assume w.l.o.g. that there is a points
contained in the regionR formed by the chordpq and the circular arc connectingp andq
and not containingr , see Figure 10.19. Consider the other triangle incident to edgepq. If
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Figure 10.18 The two triangulations of a convex quadrilateral.
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Figure 10.19 A triangle4(p, q, r) with non-empty circumcircle. RegionR is shown shaded.

the third vertex of this triangle is also contained inR, we have identified the desired pair of
triangles. If the third vertex, sayt , is outsideR thens is also contained in the circumcircle
of triangle4(p, q, t) ands is closer to4(p, q, t) than to4(p, q, r ). Here, the distance of a
point to a triangle is the distance to the closest point of the triangle. We repeat the argument
with triangle4(p, q, t) and points. After a finite number of steps we must arrive at the first
case.

We have now shown that any triangulation that is not Delaunay contains a convex quadri-
lateral formed by two adjacent triangles such that the triangulation of this quadrilateral is
not Delaunay. The deletion of the common edge of both triangles and the insertion of the
other diagonal of the quadrilateral is called adiagonal-flipor simply flip. A flip makes
the triangulation locally Delaunay and also decreases the sum of the radii of the circumcir-
cles of all triangles. We have thus arrived at the so-called flipping algorithm for Delaunay
triangulations:
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T = some triangulation;
while (T is not Delaunay)
f find a pair of adjacent triangles that form a convex quadrilateral and whose triangula-

tion is not Delaunay;

flip the diagonal of the quadrilateral;
g

The algorithm terminates since every flip reduces the sum of the radii of all circumcircles
and hence no triangulation can repeat. The maximal number of flips performed by the
flipping algorithm is2(n2). We ask you in the exercises to construct a worst case point set.
The upper bound follows from the fact that once a segmentpq is flipped away it will never
be reintroduced into the triangulation. The flipping algorithm is due to Lawson ([Law72]).

For points in convex position4 there is also a so-calledfurthest site Delaunay triangula-
tion. In a furthest site Delaunay triangulation of a setS the circumcircle of any triangle has
no point ofS in its exterior. The flipping algorithm can also be used to construct furthest site
Delaunay triangulation. We start with an arbitrary triangulation of a set of points in convex
position and flip as long as the triangulation is not furthest site Delaunay. Of course, this
time we flip the diagonal of a convex quadrilateral if the third vertex of the other triangle is
outside the circumcircle.

When it is necessary to emphasize the difference between ordinary Delaunay triangu-
lations and furthest site Delaunay triangulations we call the former nearest site Delaunay
triangulations. Some algorithms work for nearest and furthest site Delaunay triangulations.
In these algorithms we use the enumeration type

enum delaunay voronoi kind { NEAREST, FURTHEST };

defined in LEDA/geoglobal enums.h to distinguish between the two kinds of triangula-
tions.

As in the preceding section we use the typeGRAPH<POINT, int> to represent trian-
gulations. For every nodev of G the associated point is given byG[v]. For every edge
e of G, G[e] is an integer in the enumeration typedelaunayedgeinfo. In the Delau-
nay triangulation all hull darts are labeled HULLDART, and every other dart is labeled
either DIAGRAM DART or NON DIAGRAM DART. A non-hull dart is labeled DIA-
GRAM DART if the circumcircles of the triangles incident to it are distinct and is la-
beled NONDIAGRAM DART otherwise. The reversals of hull darts are labeled DIA-
GRAM DART.

The functions

void DELAUNAY TRIANG( const list<POINT>& L, GRAPH<POINT,int>& G);

void F DELAUNAY TRIANG(const list<POINT>& L, GRAPH<POINT,int>& G);

compute the nearest site and the furthest site Delaunay triangulation of a listL of points.

4 A set S of points is in convex position if every point inS is a vertex of the convex hull ofS.
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10.4.2 The Flipping Algorithm
We turn the flipping algorithm into a program5. The flipping algorithm works for nearest
and furthest site Delaunay triangulations.

We assume that we start with a triangulationG in which all hull darts are labeled with the
label HULL DART and in which all other darts have a label different from HULLDART.
The algorithm terminates with a Delaunay triangulation and returns the number of flips
performed. For furthest site triangulations we assume further that the vertices ofG are in
convex position.

The algorithm maintains a setS of darts which may potentially violate the Delaunay
property. Initially, S consists of one dart in each uedge ofG. The algorithm terminates
whenS is empty. As long asS is non-empty, an arbitrary darte of S is chosen. If it violates
the Delaunay property, a flip is performed.

We define the integerf to be+1 if we are aiming for a nearest site diagram and to be
−1 if we are aiming for a furthest site diagram. It will be used in the test for the Delaunay
property.

〈flip delaunay.c〉�
int DELAUNAY_FLIPPING(GRAPH<POINT,int>& G, delaunay_voronoi_kind kind)

{

if (G.number_of_nodes() <= 3) return 0;

int f = ( kind == NEAREST ? +1 : -1);

list<edge> S;

edge e;

forall_edges(e,G) if ( index(e) < index(G.reversal(e)) ) S.append(e);

int flip_count = 0;

while ( !S.empty() )

{ edge e = S.pop();

edge r = G.reversal(e);

〈check e for the Delaunay property and flip if necessary〉
}

return flip_count;

}

Let e be a dart of the current triangulation. Ife is a hull dart or the reversal of a hull
dart, then no action is required as hull darts belong to every Delaunay triangulation. Ife is
not a hull dart, define edgesr , e1, ande3, and pointsa, b, c, andd as in Figure 10.20;r is
the reversal ofe, e1 is the face cycle successor ofr , e3 is the face cycle successor ofe, a
andb are source and target ofe1, andc andd are source and target ofe3. The quadrilateral
(a, b, c, d) is convex if and only if the interior angles at verticesa andc are less than 180◦,
i.e., if (d, a, b) and(b, c, d) are left turns.

5 The program delaunayflip anim in LEDAROOT/book/Geo animates the algorithm.
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Figure 10.20 The edgese, r , e1, e2, e3, ande4, and the pointsa, b, c, andd.

〈check e for the Delaunay property and flip if necessary〉�
if (G[e] == HULL_DART || G[r] == HULL_DART) continue;

G[e] = DIAGRAM_DART;

G[r] = DIAGRAM_DART;

// e1,e2,e3,e4: edges of quadrilateral with diagonal e

edge e1 = G.face_cycle_succ(r);

edge e3 = G.face_cycle_succ(e);

// flip test

POINT a = G[source(e1)];

POINT b = G[target(e1)];

POINT c = G[source(e3)];

POINT d = G[target(e3)];

if ( left_turn(d,a,b) && left_turn(b,c,d) )

{ // the quadrilateral is convex

〈check circle property and flip if necessary〉
}

Assume now that the quadrilateral(a, b, c, d) is convex. The triangulation is locally Delau-
nay if d does not lie inside the circle defined by(a, b, c), and can be improved by a flip ifd
lies inside the circle. For the furthest site triangulation the situation is reversed. The test

side of circle(a,b,c,d)

returns

+1 if d is left of the oriented circle througha, b, andc,
0 if |{a, b, c}| ≤ 2 or d lies on the oriented circle througha, b, andc,

−1 if d is right of the oriented circle througha, b, andc.

Let soc= f · sideof circle(a, b, c, d). If socis zero, the four points are co-circular, and
no flip is required. However,e andr have to be relabeled with NONDIAGRAM DART. If
socis positive,d lies inside the circumcircle of the triangle(a, b, c) (outside for furthest site
triangulations) and a flip is required. Lete2 ande4 be the other two edges of the quadrilateral
(a, b, c, d). We movee andr to the other diagonal of the quadrilateral. More precisely, we
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inserte after e2 into A(source(e2))
6 and makesource(e4) the target ofe, and we insertr

aftere4 into A(source(e4)) and makesource(e2) the target ofr . We also add all four sides
of the quadrilateral toS to make sure that their Delaunay property is rechecked. Observe
that flippinge may affect the “Delaunay-ness” of the sides of the quadrilateral.

〈check circle property and flip if necessary〉�
int soc = f * side_of_circle(a,b,c,d);

if (soc == 0) // co-circular quadrilateral(a,b,c,d)

{ G[e] = NON_DIAGRAM_DART;

G[r] = NON_DIAGRAM_DART;

}

if (soc > 0) // flip

{ edge e2 = G.face_cycle_succ(e1);

edge e4 = G.face_cycle_succ(e3);

S.push(e1);

S.push(e2);

S.push(e3);

S.push(e4);

// flip diagonal

G.move_edge(e,e2,source(e4));

G.move_edge(r,e4,source(e2));

flip_count++;

}

In order to construct the Delaunay triangulation for a set of points we first triangulate the
set of points and then call the flipping algorithm to turn the triangulation into a Delaunay
triangulation.

In the case of the furthest site Delaunay triangulation we first extract the vertices of the
convex hull, then construct a triangulation of them, and finally use the flipping algorithm to
obtain a furthest site Delaunay triangulation.

〈flip delaunay.c〉+�
int DELAUNAY_FLIP(const list<POINT>& L, GRAPH<POINT,int>& G)

{ TRIANGULATE_POINTS(L,G);

if (G.number_of_edges() == 0) return 0;

return DELAUNAY_FLIPPING(G,NEAREST);

}

int F_DELAUNAY_FLIP(const list<POINT>& L, GRAPH<POINT,int>& G)

{

list<POINT> H = CONVEX_HULL(L);

TRIANGULATE_POINTS(H,G);

if (G.number_of_edges() == 0) return 0;

return DELAUNAY_FLIPPING(G,FURTHEST);

}

6 Recall that for a nodev, A(v) is the counter-clockwise ordered cyclic list of darts out ofv.
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10.4.3 Verifying Delaunay Triangulations
The function

bool Is Delaunay Triangulation(const GRAPH<POINT,int>& G,

delaunay voronoi kind kind);

checks whetherG is a Delaunay triangulation of the points associated with its nodes. The
flagkind allows us to choose between nearest and furthest site diagrams.

Let S be the set of points associated with the nodes ofG. G is a Delaunay triangulation
of S, if G is a triangulation and every triangle ofG has the Delaunay property.

Thus the implementation is simple. First we check whetherG is a triangulation. If
the affine dimension ofS is less than 2 this suffices; the affine dimension is less than 2 if
m = 2n − 2. Otherwise, we walk over all edges. If an edge separates two triangles that
form a convex quadrilateral we check the Delaunay property.

〈delaunaycheck.c〉+�
static bool False(const string& s)

{ cerr << "Is_Delaunay_Triangulation: " << s; return false; }

bool Is_Delaunay_Triangulation(const GRAPH<POINT,int>& G,

delaunay_voronoi_kind kind)

{ if ( !Is_Triangulation(G) ) return False("G is no triangulation");

if (G.number_of_edges() == 2*G.number_of_nodes() - 2) return true;

〈check Delaunay property〉
return true;

}

where

〈check Delaunay property〉�
edge e;

edge_array<bool> considered(G,false);

forall_edges(e,G)

{ if (!considered[e])

{ // check the faces incident to e and reversal(e)

considered[e] = considered[G.reversal(e)] = true;

POINT a = G[source(e)];

POINT b = G[target(G.cyclic_adj_pred(e))];

POINT c = G[target(e)];

POINT d = G[target(G.face_cycle_succ(e))];

if (left_turn(a,b,c) && left_turn(b,c,d) &&

left_turn(c,d,a) && left_turn(d,a,b) )

{ // the faces to the left and right of e are bounded

int s = side_of_circle(a,b,c,d);

/* +1 for inside, -1 for outside */

if ( (kind == NEAREST && s > 0) || (kind == FURTHEST && s < 0) )

return False("violated Delaunay property");

}

}

}
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K n Flipping Guibas–Stolfi Dwyer Check

S 20000 26.4 17.36 8.57 25.63

S 40000 56.89 37.45 17.44 51.66

S 80000 122.1 79.61 36.35 102.7

D 20000 26.13 17.22 8.71 25.53

D 40000 56.28 37.1 17.62 51.09

D 80000 120.8 78.49 36.92 102.7

C 20000 14.66 10.6 11.09 27.72

C 40000 29.74 21.73 22.89 55.87

C 80000 60.74 44.55 45.29 111

Table 10.4 The running times of Delaunay triangulation algorithms. The first column designates
the kind of input (S for random points in a square, D for random points in a disk, C for random
points near a circle), and the other columns show the number of points, the running time of the
flipping algorithm, the running time of the algorithm of Guibas and Stolfi, the running time of
the algorithm of Dwyer, and the time to verify the correctness of the result, respectively.

10.4.4 Other Algorithms for Delaunay Triangulations
The flipping approach yields a simple but not the most efficient Delaunay triangulation
algorithm. There areO(n logn) algorithms based on sweeping [For87], on divide-and-
conquer [GS85, Dwy87], and on randomized incremental construction [BT93]. The pa-
per [SD97] compares many Delaunay algorithms.

In LEDA the divide-and-conquer algorithms of Guibas and Stolfi and of Dwyer are avail-
able. Table 10.4 shows an experimental comparison of the flipping algorithm with the two
divide-and-conquer algorithms. The algorithm of Dwyer is consistently the best and there-
fore we use it as our default implementation. For the furthest site diagram we only have the
flipping algorithm.

〈delaunay.c〉�
void DELAUNAY_TRIANG(const list<POINT>& L, GRAPH<POINT,int>& G)

{ DELAUNAY_DWYER(L,G); }

void F_DELAUNAY_TRIANG(const list<POINT>& L, GRAPH<POINT,int>& G)

{ F_DELAUNAY_FLIP(L,G); }

10.4.5 Delaunay Diagrams
The Delaunay triangulation of a setS is in general not unique, e.g., ifS consists of the cor-
ners of a square, or more generally of four co-circular points, then both triangulations ofS
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Figure 10.22 An essential segmentst with its disk D and an edgee = (a, b) of a Delaunay
triangulation intersectingst .

are Delaunay. We now characterize the segments that belong to all Delaunay triangulations.
Let s andt be two distinct points inS. A segmentst is calledessentialif there is a closed
disk D with S ∩ D = {s, t}. In other words, there is a circle passing throughs andt such
thats andt are the only points ofS contained in the closure of the circle, see Figure 10.21.
We have

Lemma 67Let S be a finite set of points in the plane and lets andt be distinct points inS.
The segment st is essential if and only if it belongs to every Delaunay triangulation ofS.
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Figure 10.23 The discsDa , Db, andD.

Proof We first show that essential segments belong to all Delaunay triangulations. Assume
otherwise, sayst is essential but does not belong to some Delaunay triangulationT . Then
st cannot be an edge of the convex hull ofS because any such edge belongs to every tri-
angulation. The open segmentst is therefore contained in the interior of convS. Imagine
traveling along the segmentst from s to t . In the vicinity of s the segmentst runs inside
some triangle ofT and in the vicinity oft it runs inside some other triangle ofT . We con-
clude that the segmentst must intersect an edgee = (a, b) of T . Sincest is essential there
is a closed diskD with S ∩ D = {s, t }. Let a′ andb′ be the intersections of the boundary
of D with edgee, see Figure 10.22. The four pointsa′, s, b′, andt form the corners of a
convex quadrilateral and are co-circular. This implies that any closed disk containing the
segmenta′b′ must also contain eithers or t . Consider next any of the triangles ofT incident
to e. The circumcircle of this triangle contains the segmenta′b′ in its interior and hence also
contains eithers or t in its interior. The triangle is therefore not Delaunay, a contradiction.
This proves that essential edges are part of every Delaunay triangulation.

To show the converse consider a non-essential segmentst. We will construct a Delaunay
triangulation that does not containst. Let T be any Delaunay triangulation ofS. If st is not
an edge ofT we are done. Otherwise, consider the two triangles4 and4′ incident tost in
T ; it is easy to see thatst is not a hull edge and hence the two triangles exist. Leta andb
be the third vertices of4 and4′, respectively. If the four pointss, a, t , b are co-circular
then we may replacest by ab and stay Delaunay. So, assume that the four points are not
co-circular. Thenb is outside the closed diskDa havings, a, andt on its boundary anda
is outside the closed diskDb havings, b, andt on its boundary, see Figure 10.23. Consider
the closed diskD havings andt on its boundary and having its center at the midpoint of the
centers ofDa andDb; all of D (except fors andt) is contained in the interior ofDa ∪ Db.
Thus,D ∩ S ⊆ {s, t} andst is essential, a contradiction.
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We can now define theDelaunay diagramof a setS of points. It consists of all essential
segments defined by the points inS and is denotedDD(S). The Delaunay diagram is a
subgraph of every Delaunay triangulation. The Delaunay diagram is a planar graph whose
bounded faces are convex polygons all of whose vertices are co-circular. If no four points
of S are co-circular then all bounded faces are triangles and the Delaunay diagram is a
triangulation.

It is trivial to construct the Delaunay diagram from a Delaunay triangulation. We only
have to delete all edges that are labeled NONDIAGRAM DART.

〈delaunay.c〉+�
void DELAUNAY_DIAGRAM(const list<POINT>& L, GRAPH<POINT,int>& DD)

{

DELAUNAY_TRIANG(L,DD);

list<edge> el;

edge e;

forall_edges(e,DD) if ( DD[e] == NON_DIAGRAM_DART) el.append(e);

forall(e,el) DD.del_edge(e);

}

For furthest site diagrams the construction is completely analogous and therefore not shown.

10.4.6 Verifying Delaunay Diagrams
We show how to verify Delaunay diagrams. The function

bool Is Delaunay Diagram(const GRAPH<POINT,int>& G,

delaunay voronoi kind kind);

checks whetherG is a Delaunay diagram of the points associated with its nodes. The flag
kind allows us to choose between nearest and furthest site diagrams. LetS be the set of
points associated with the nodes ofG.

It is clearly necessary thatG is a convex subdivision in which the vertices of every
bounded face (= a face whose face cycle is a convex counter-clockwise polygon) are co-
circular. Assume this is the case. ThenG is a Delaunay diagram if an arbitrary triangulation
of G is a Delaunay triangulation. It therefore suffices to check the Delaunay property of all
edges ofG as in〈check Delaunay property〉.
〈delaunaycheck.c〉+�

static bool False_IDD(const string& s)

{ cerr << "Is_Delaunay_Diagram: " << s; return false; }

bool Is_Delaunay_Diagram(const GRAPH<POINT,int>& G,

delaunay_voronoi_kind kind)

{

if ( !Is_Convex_Subdivision(G) )

return False_IDD("G is no convex subdivision");

edge e;

edge_array<bool> considered(G,false);

forall_edges(e,G)
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{ if (!considered[e])

{ // check the face to the left of e

POINT a = G[source(e)];

POINT c = G[target(e)];

POINT d = G[target(G.face_cycle_succ(e))];

if ( left_turn(a,c,d) )

{ // face is bounded

CIRCLE C(a,c,d);

edge e0 = e;

do { considered[e] = true;

if ( !C.contains(G[source(e)]) )

return False_IDD("face with non-co-circular vertices");

e = G.face_cycle_succ(e);

} while ( e != e0 );

}

else

{ // face is unbounded

edge e0 = e;

do { considered[e] = true;

e = G.face_cycle_succ(e);

} while ( e != e0 );

}

}

}

{ 〈check Delaunay property〉 }

return true;

}

10.4.7 Applications
Delaunay triangulations have several useful properties. We mention three:

• For a triangulationT let µ(T ) be the smallest interior angle of any triangle inT .
Delaunay triangulations maximizeµ(T ).

• Delaunay triangulations tend to produce “rounder” triangles than other triangulations,
see Figure 10.24, a property desirable for numerical applications of triangulations. For
example, the interpolation scheme presented at the beginning of Section 10.2 is
numerically more stable if the triangulation contains no “skinny” triangles.

• The Euclidean minimum spanning tree of a setS is a tree of minimum cost connecting
all points inS, where the cost of an edge is its Euclidean length. The Euclidean
minimum spanning tree is a subgraph of the Delaunay diagram.

The function

void MIN SPANNING TREE(const list<POINT>& L, GRAPH<POINT,int>& T)

computes the Euclidean minimum spanning tree for the points inL. It first constructs the
Delaunay diagramT for L, then runs the minimum spanning tree algorithm onT , and
finally deletes all edges fromT that do not belong to the minimum spanning tree.
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Figure 10.24 A Delaunay triangulation and a triangulation produced by sweeping. The
Delaunay triangulation is shown on the left. The triangles in the Delaunay triangulation are
“rounder” than in the triangulation by sweeping. The figure was generated with the
triangulationdemo (see LEDAROOT/demo/book/Geo).

Figure 10.25 A point set and its Euclidean minimum spanning tree. The figure was generated
with the voronoidemo in xlman.

Exercises for 10.4
1 Show that the flipping algorithm constructs a furthest site Delaunay triangulation for a

set of points in convex position.
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2 Extend the functions for checking Delaunay triangulations and Delaunay diagrams such
that they also check the edge labels.

3 Write a program that takes a Delaunay triangulation and draws it into a graphicswindow.
For each triangle the circumcircle should also be displayed.

4 Consider the points(i, i2), 0 ≤ i < n. Show that the Delaunay triangulation of this point
set has a fan-like shape. Show that the flipping algorithm may perform�(n2) flips when
starting with the “opposite fan”.

5 (Euclidean minimum spanning tree (EMST)) For a setS of points in the plane a treeT
of minimum cost connecting all points inS is called a Euclidean minimum spanning tree
of S. The cost of an edge is defined as its Euclidean length.
(a) Show that every edge of an EMST is essential. (Hint: For an edgee with endpoints
a andb consider the circle centered at the midpoint ofe and passing througha andb.
Assume that it contains a pointc ∈ S \ {a, b}. Show that a better tree can be obtained by
removinge and adding either(a, c) or (c, b).)
(b) Conclude from part (a) that an EMST is a subgraph of the Delaunay diagram. Write
a program to compute an EMST. Make use of programs for Delaunay diagrams and
minimum spanning trees. Try to work with the squared length of edges instead of their
length.

6 For a triangulationT let α(T ) be the sorted tuple of all interior angles of all triangles in
T . Consider Figure 10.18 and letT1 andT2 be the two triangulations shown withT2 being
Delaunay. Show thatα(T1) ≤ α(T2) where the ordering on tuples is the lexicographic
one. Consider next any triangulationT of a setS that is not Delaunay and letT ′ be
obtained fromT by a diagonal flip. Show thatα(T ) ≤ α(T ′). Conclude that Delaunay
triangulations maximize the smallest interior angle.

7 Improve the implementation of the flipping algorithm by ensuring that, for any pair of
darts in a uedge, at most one is inS. Observe that we ensure this property only at the
time of initialization. Does the running time improve?

10.5 Voronoi Diagrams

We discuss Voronoi diagrams. We define them and discuss their representation by graphs.
We relate them to Delaunay triangulations and show how to obtain Voronoi diagrams from
Delaunay triangulations. Finally, we discuss applications and the verification of Voronoi
diagrams.

10.5.1 Definition and Representation
A structure closely related to the Delaunay diagram is the so-calledVoronoi diagram. Let
S be a set of points in the plane. We will refer to the elements ofS assites. For any point
p of the plane letclose(p) be the set of sites that realize the closest distance betweenp and
the sites inS, i.e.,s ∈ close(p) if dist(s, p) ≤ dist(t, p) for all t ∈ S. In other words, there
is a circle with centerp passing through all points inclose(p) and having no points ofS
in its interior, see Figure 10.26. For most pointsp of the planeclose(p) consists of only a
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p1 p2 p3

Figure 10.26 Sites are shown as dots. The pointpi hasi sites inclose(pi ).

Figure 10.27 A Voronoi diagram. The figure was generated with the voronoidemo in xlman.

single site. For some pointsp, close(p) contains two or more sites. These points form the
so-called Voronoi diagramVD(S) of S.

VD(S) = {p ∈ IR2; |close(p)| ≥ 2}.
Figure 10.27 shows a Voronoi diagram. The Voronoi diagram is a graph-like structure.

Its vertices are all pointsp with |close(p)| ≥ 3, its edges are maximal connected sets of
points p with |close(p)| = 2, and its faces are maximal connected sets of pointsp with
|close(p)| = 1.

We derive some more properties of edges and faces. Consider any edgee of the Voronoi
diagram, and lets and t be the two sites ofS such thatclose(p) = {s, t} for all points p
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b

c

d

a

Figure 10.28 The Voronoi region ofd is the intersection of three open halfspacesVR(d, a),
VR(d, b), andVR(d, c).

of e. Any suchp lies on the perpendicular bisector ofs andt and hencee is a straight line
segment contained in the perpendicular bisector ofs andt .

Consider next any facef of the Voronoi diagram and lets be the site ofS such that
close(p) = {s} for all points p of f . Thendist(s, p) < dist(t, p) for all t ∈ S \ {s } and
hencef is contained in the open halfplane bounded by the perpendicular bisector ofs andt
and containings. We useVR(s, t) to denote this halfplane, see Figure 10.28, and call it the
halfplane wheres dominates overt . We have just shown thatf ⊆ VR(s, t) for all t ∈ S\{s}
and hence

f ⊆ VR(s) :=
⋂

t∈S\{s}
VR(s, t).

We even have equality sincep ∈ VR(s) implies p ∈ VR(s, t) for all t ∈ S\{s} which in turn
implies thatp is closer tos than to any other site inS. We callVR(s) theVoronoi regionof
sites. It is the intersection of open halfspaces and hence an open convex polygonal region.

How are we going to represent Voronoi diagrams? We use plane maps of type

GRAPH<CIRCLE,POINT>.

We defined the Voronoi diagramVD(S) as a set of points. We turn it into a graphG by plac-
ing a “vertex at infinity” on every unbounded edge ofVD(S)7 and by deleting the portion of
the edge that goes beyond the vertex at infinity, see Figure 10.29. A nodev of G has either
degree one or degree three or more. We callv a node at infinity in the former case and a
proper node in the latter case.

The node and edge labels give information about the positions of the node ofG in the
plane and about the Voronoi regions:

• Every dart is labeled with the site whose region lies to its left.

• Every proper nodev is labeled by a circleCIRCLE(a, b, c), wherea, b, andc are

7 If all sites are collinear and henceVD(S) consists of a set of parallel lines, we put two vertices at infinity on every
line.
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VD(S)

a

d

bc

d

d d

aa
c

c b

b

b
a

G

CIRCLE(a, c, d)

CIRCLE(b, c, d)

CIRCLE(a, c, c)

CIRCLE(c, b, b)

c

CIRCLE(a, b, d)

CIRCLE(b, a, a)

Figure 10.29 A Voronoi diagram for a set of four sites and its graph representation.

distinct sites whose regions are incident tov. The center of this circle is the position of
v in the plane.

• Every nodev at infinity lies on the perpendicular bisector of two sitesa andb. We
labelv by CIRCLE(a, x, b), wherex is an arbitrary point collinear toa andb (e.g.,a)
andv lies to the left of the oriented segment froma to b.

The function

void VORONOI(const list<POINT>& L, GRAPH<CIRCLE,POINT>& VD);

computes the Voronoi diagram of the sites inL in time O(n logn).
There is also a so-calledfurthest site Voronoi diagram, see Figure 10.30 for an example.

Its definition is the same as for (nearest site) Voronoi diagrams except for replacing closest
by furthest. For any pointp let furthest(p) be the set of sites that realize the furthest distance
betweenp and the sites inS, i.e., s ∈ furthest(p) if dist(s, p) ≥ dist(t, p) for all t ∈ S.
In other words, there is a circle with centerp passing through all points infurthest(p) and
having no points ofS in its exterior. For most pointsp of the planefurthest(p) consists of
only a single site. For some pointsp, furthest(p) contains two or more sites. These points
form the so-called furthest site Voronoi diagramFVD(S) of S.

FVD(S) = {p ∈ R2; |furthest(p)| ≥ 2}.
The furthest site Voronoi region of a sites is given by

FVR(s) :=
⋂

t∈S\{s}
FVR(t, s).

Only vertices of the convex hull have non-empty regions in the furthest site Voronoi digram.
The rules for the graph representation of furthest site diagrams are the same as for nearest
site diagrams.

The function

void F VORONOI(const list<POINT>& L, GRAPH<CIRCLE,POINT>& FVD);
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Figure 10.30 A furthest site Voronoi diagram. The figure was generated with the voronoidemo
in xlman.

computes the furthest site Voronoi diagram of the points inL.
We recommend that the readers exercise the Voronoi demo in xlman before proceeding.

10.5.2 The Duality between Voronoi and Delaunay Diagrams
Voronoi diagrams and Delaunay diagrams are closely related structures. In fact, each one
of them is easily obtained from the other. LetS be a set of sites and letVD(s) andDD(S)

be its Voronoi and Delaunay diagram, respectively. We show how to obtainVD(S) from
DD(S).

(1) For every bounded facef of DD(S) there is a vertexc( f ) of VD(S) located at the
center of the circumcircle off .

(2) Consider an edgest of DD(S) and let f1 and f2 be the faces incident to the two sides
of the edge.
(a) If f1 and f2 are both bounded, then the edgec( f1)c( f2) belongs toVD(S).
(b) If f1 is unbounded andf2 is bounded, then a ray with sourcec( f2) and contained
in the perpendicular bisector ofs andt belongs toVD(S). It extends into the halfplane
containing the unbounded face.
(c) If f1 and f2 are unbounded8 and hencef1 = f2, then the entire perpendicular bisector
of s andt belongs toVD(S).

8 Case (c) arises only if all sites inS are collinear. Then cases (a) and (b) do not arise.
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Figure 10.31 A Voronoi diagram and a Delaunay diagram for the same set of sites. This figure
was generated with the voronoidemo in xlman.

(3) That’s all.

Figure 10.31 shows a Delaunay and a Voronoi diagram for the same set of sites. Use
the Voronoi demo to construct your own examples. The rules above are called aduality
relation because they map faces (= 2-dimensional objects) into vertices (= 0-dimensional
objects), edges into edges, and vertices into faces. The latter map is implicit. There is a
corresponding set of rules that construct the Delaunay diagram from the Voronoi diagram.
We leave them to the exercises.

Theorem 15The rules above construct the Voronoi diagram from the Delaunay diagram.

Proof We proceed in two steps. We first show that everything that is constructed by the
rules does indeed belong to the Voronoi diagram and in a second step we show that the
complete Voronoi diagram is obtained.

Consider any bounded facef of DD(S). The vertices off are co-circular and hence the
circumcenterc( f ) is a point with|close(p)| ≥ 3, i.e., a vertex ofVD(S).

Consider next any edgest of DD(S). View it as oriented froms to t and let f1 and f2 be
the faces to its left and right, respectively. Assume first thatf1 and f2 are both bounded.
The centersc( f1) andc( f2) of the circumcircles off1 and f2 both lie on the perpendicular
bisector ofs and t and any point betweenc( f1) andc( f2) is the center of a diskD with
D ∩ S = {s, t}, see Figure 10.32. Thus,c( f1)c( f2) is an edge ofVD(S).

Assume next thatf1 is unbounded andf2 is bounded, i.e,st is a clockwise convex hull
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c( f1)

c( f2)

s t

Figure 10.32 An edgee = (s, t) of DD(S), the two incident facesf1 and f2 and the
circumcircles off1 and f2. Each point on the open line segmentc( f1)c( f2) is the center of an
empty circle passing throughs andt .

t

s
c( f2)

Figure 10.33 st is a clockwise convex hull edge and the facef2 to its right is bounded.

edge, see Figure 10.33. Then the same argument shows that the ray starting inc( f2), con-
tained in the perpendicular bisector ofs and t , and extending into the left halfplane with
respect tost belongs toVD(S).

Finally, if f1 and f2 are both unbounded then the entire perpendicular bisector ofs andt
is an edge ofVD(S).

We have now shown that the rules above construct only features of the Voronoi diagram.
We show next that the entire Voronoi diagram is constructed. Consider any edgee of VD(S),
say separating the regionsVR(s) andVR(t). Thenclose(p) = {s, t} for every pointp ∈ e,
i.e., everyp ∈ e witnesses that the segmentst is essential and hence is an edge ofDD(S).
Imagine a disk centered atp and havings andt in its boundary asp moves alonge. When
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p moves into an endpoint ofe (e may have 0, 1, or 2 endpoints),close(p) grows to at
least three points, namely the vertices of a face ofDD(S) incident tost. Thus, applying the
appropriate rule 2a, 2b, or 2c tost yieldse. Moreover, applying rule 1 to the bounded faces
incident tost produces the endpoints ofe (if any). We have now shown that all edges of
VD(S) are constructed and since every vertex ofVD(S) is incident to at least one (actually
three) edge we have also shown that all vertices are constructed.

We next give the program that constructs a Voronoi diagram from a Delaunay diagram.
The Voronoi diagram is empty if the number of sites is less than two. So assume that there
are at least two sites. We first determine a hull edge, then create all nodes of the Voronoi
diagram and finally all darts of the Voronoi diagram. We use an edge arrayvnodein order
to associate with each darte of DD the node ofVD that lies in the face to the left ofe.

〈voronoi.c〉�
void DELAUNAY_TO_VORONOI(const GRAPH<POINT,int>& DD,

GRAPH<CIRCLE,POINT>& VD)

{

VD.clear();

if (DD.number_of_nodes() < 2) return;

// determine a hull dart

edge e;

forall_edges(e,DD) if (DD[e] == HULL_DART) break;

edge hull_dart = e;

edge_array<node> vnode(DD,nil);

〈DD to VD: create Voronoi nodes〉
〈DD to VD: create Voronoi darts〉

}

We create the Voronoi nodes in two phases. We first create the nodes at infinity and then
the proper nodes.

There is one node at infinity for each hull dart. Ife is a hull dart anda andb are the sites
associated with the source and target ofe, respectively, then the label of the node at infinity
is CIRCLE(a, x, b), wherex is any point collinear witha andb. We use the midpoint ofa
andb for x .

If e is not a hull dart then there is a proper nodev associated with the face cycle ofe. We
labelv with CIRCLE(a, b, c), wherea, b, andc are any three vertices of the face cycle, and
associatev with every dart of the face cycle.

〈DD to VD: create Voronoi nodes〉�
// create Voronoi nodes for outer face

POINT a = DD[source(e)];

do { POINT b = DD[target(e)];

vnode[e] = VD.new_node(CIRCLE(a,center(a,b),b));

e = DD.face_cycle_succ(e);

a = b;

} while ( e != hull_dart );
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Figure 10.34 Tracing a face cycle in forward direction generates the darts incident to the node
dual to the face in counter-clockwise order.

// and for all other faces

forall_edges(e,DD)

{ if (vnode[e]) continue;

edge x = DD.face_cycle_succ(e);

POINT a = DD[source(e)];

POINT b = DD[target(e)];

POINT c = DD[target(x)];

node v = VD.new_node(CIRCLE(a,b,c));

vnode[e] = v;

do { vnode[x] = v;

x = DD.face_cycle_succ(x);

} while( x != e );

}

We come to the construction of the Voronoi darts. Lete be a dart ofDD, letr be its reversal,
and letp be the point associated with the target ofe. The dart dual toe starts at the node
associated withe, ends at the node associated withr , and is labeled byp.

We want to construct the darts incident to any node ofVD in their proper counter-
clockwise order. For the nodes at infinity this is no problem since they have degree one.
We therefore construct the Voronoi darts in two phases. We first construct the Voronoi darts
out of the nodes at infinity and then the Voronoi darts out of the proper nodes. Finally, we
link the two darts in each. For each darte of DD we record the dart dual to it in the edge
arrayvedge.

Consider a proper nodev. It corresponds to a bounded face ofDD and has one incident
dart for each dart of the face cycle. We construct the darts in their proper counter-clockwise
order if we trace the face cycle in forward direction, see Figure 10.34.
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〈DD to VD: create Voronoi darts〉�
edge_array<edge> vedge(DD,nil);

// construct Voronoi darts out of nodes at infinity

e = hull_dart;

do { edge r = DD.reversal(e);

POINT p = DD[target(e)];

vedge[e] = VD.new_edge(vnode[e],vnode[r],p);

e = DD.cyclic_adj_pred(r); // same as DD.face_cycle_succ(e)

} while ( e != hull_dart );

// and out of all other nodes.

forall_edges(e,DD)

{ node v = vnode[e];

if (VD.outdeg(v) > 0) continue;

edge x = e;

do { edge r = DD.reversal(x);

POINT p = DD[target(x)];

vedge[x] = VD.new_edge(v,vnode[r],p);

x = DD.cyclic_adj_pred(r);

} while ( x != e);

}

// assign reversal edges

forall_edges(e,DD)

{ edge r = DD.reversal(e);

VD.set_reversal(vedge[e],vedge[r]);

}

This completes the construction of Voronoi diagrams from Delaunay diagrams. The con-
struction runs in linear time.

In order to construct the Voronoi diagram for a setL of points we first construct the
Delaunay diagram and then the Voronoi diagram from the Delaunay diagram.

〈voronoi.c〉+�
void VORONOI(const list<POINT>& L, GRAPH<CIRCLE,POINT>& VD)

{ GRAPH<POINT,int> DD;

DELAUNAY_DIAGRAM(L,DD);

DELAUNAY_TO_VORONOI(DD,VD);

}

The construction of furthest site Voronoi diagrams from furthest site Delaunay triangula-
tions is completely analogous. We leave it to the exercises.

10.5.3 Verifying Voronoi Diagrams
Let G be a graph of typeGRAPH<CIRCLE, POINT>. We want to verify thatG is the
Voronoi diagram of the sites associated with its nodes. The procedure to be described is
fairly complicated and we wished we had a simpler one. The procedure is probably the
least elegant piece of code contained in this book. We considered to drop this section, but
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decided against it for two reasons. We had invested a lot of time in it, and more importantly,
the check discovered several mistakes.

G must satisfy the following conditions:

• G is a CCW-ordered plane map.

• The site information associated with edges is consistent, i.e., ife ande′ are
consecutive edges on some face cycle then both edges have the same associated site.

• The sites associated withe andreversal(e) are distinct.

• Call a vertex whose associated circle is non-degenerate non-trivial and call it trivial
otherwise. Every non-trivial vertex has degree at least three and every trivial vertex has
degree one.

• For each non-trivial vertex each of the three points defining the associated circle is
associated with one of the incident edges and the sites associated with all incident
edges lie on the associated circle.

• Each trivial vertex has an associated circle of the formCIRCLE(a, , c), wherea andc
are distinct. Lete be the unique outgoing edge. In a nearest site diagram the site
associated with the face to the left ofe is c and the site associated with the face to the
right of e is a and in a furthest site diagram the roles ofa andc are interchanged.

• For every edgee = (v, w) such thatv andw are non-trivial, the centers of the circles
associated withv andw are distinct. Letp andq be these centers and leta be the site
associated withe. In a nearest site diagrama lies to the left of the segmentpq and in a
furthest site diagrama lies to the right of the segmentpq.

• Each face is a convex polygonal region and the regions associated with the different
sites partition the plane.

In the implementation we first check the first six conditions and then distinguish cases
according to whetherG is connected or not. For the first item we want to use the function
Is CCWOrderedPlaneMap and therefore we need to define theedgevector function for
circle-points. Lete be an edge and letC and D be the circles associated with the source
and the target ofe, respectively. If both circles are non-degenerate the edge vector is simply
the vector from the center ofC to the center ofD. So assume that one of the circles is
degenerate. IfD is degenerate thenD = CIRCLE(a, , c) and D represents a point at
infinity on the perpendicular bisector ofa andc and to the right of the line segmentac.
Let m be the midpoint ofa andc and leta1 be the point obtained by rotatinga by 90◦

in a clockwise direction aboutm. We may return the vectorm − a1. The case thatC is
degenerate is symmetric.
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〈voronoi check: edge vector function〉�
static VECTOR edge_vector(const GRAPH<CIRCLE,POINT>& G, const edge& e)

{ const CIRCLE& C = G[G.source(e)];

const CIRCLE& D = G[G.target(e)];

if ( D.is_degenerate() ) { POINT a = D.point1();

POINT c = D.point3();

POINT m = midpoint(a,c);

return m - a.rotate90(m);

}

if ( C.is_degenerate() ) { POINT a = C.point1();

POINT c = C.point3();

POINT m = midpoint(a,c);

return a.rotate90(m) - m;

}

// both circles are non-degenerate

return D.center() - C.center();

}

and

〈voronoi check.c〉+�
〈voronoi check: edge vector function〉
static bool False_IVD(const string& s)

{ cerr << "Is_Voronoi_Diagram: " << s; return false; }

bool Is_Voronoi_Diagram(const GRAPH<CIRCLE,POINT>& G,

delaunay_voronoi_kind kind)

{ if ( G.number_of_nodes() == 0 ) return true;

node v,w; edge e;

if ( !Is_CCW_Ordered_Plane_Map(G) )

return False_IVD("G is not CCW-ordered plane map");

forall_edges(e,G)

{ if ( G.outdeg(target(e)) != 1 )

{ // e does not end at a vertex at infinity

if ( G[e] != G[G.face_cycle_succ(e)] )

return False_IVD("inconsistent site labels");

}

if ( G[e] == G[G.reversal(e)] )

return False_IVD("same site on both sides");

}

forall_nodes(v,G)

{ CIRCLE C = G[v];

if ( C.is_degenerate() )

{ // vertex at infinity

if ( G.outdeg(v) != 1 )

return False_IVD("degree of vertex at inf");

edge e = G.first_adj_edge(v); edge r = G.reversal(e);

POINT a = C.point1(); POINT c = C.point3();

if ( (kind == NEAREST) && (c != G[e] || a != G[r]) ||

(kind == FURTHEST) && (a!= G[e] || c != G[r]) )

return False_IVD("vertex at inf: wrong edge labels");
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}

else

{ // finite vertex

if ( G.outdeg(v) < 3 )

return False_IVD("degree of proper vertex");

forall_adj_edges(e,v)

{ if ( !C.contains(G[e]) )

return False_IVD("label of proper vertex");

}

for (int i = 1; i <= 3; i++)

{

POINT a = ( i == 1 ? C.point1() :

(i == 2 ? C.point2() : C.point3() ) );

bool found_a = false;

forall_adj_edges(e,v) if ( a == G[e] ) found_a = true;

if ( !found_a ) return False_IVD("wrong cycle");

}

forall_adj_edges(e,v)

{ w = G.target(e);

if ( G.outdeg(w) == 1 ) continue;

if ( C.center() == G[w].center() )

return False_IVD("zero length edge");

int orient = orientation(C.center(),G[w].center(),G[e]);

if ( kind == NEAREST && orient <= 0 ||

kind == FURTHEST && orient >= 0 )

return False_IVD("orientation");

}

}

}

if ( Is_Connected(G) )

{ 〈G is connected〉 }

else

{ 〈G is not connected〉 }

return true;

}

WhenG has passed all tests above we can construct a geometric object from it as follows.
We assign a positionpos(v) to each non-trivial vertexv and a segment, ray, or linegeo(e)
to each edgee. For a non-trivial vertexv let pos(v) be the center of the circle associated
with v. For an edgee = (v, w) let a andc be the sites separated bye, i.e., one ofa and
c is associated withe and the other withreversal(e). If v is non-trivial thena andc lie on
the circle associated withv and hencepos(v) lies on the perpendicular bisector ofa andb.
Definegeo(e) as follows. First assume thatv andw are both non-trivial. Thengeo(e) is the
segment directed frompos(v) to pos(w). Note that this segment has non-zero length and
is part of the perpendicular bisector ofa andc. Next assume that exactly one ofv andw

is non-trivial. Assume w.l.o.g. that the triple of points associated with the trivial vertex is
of the form(a, , c). If w is trivial thengeo(e) is the ray starting atpos(v), running along
the perpendicular bisector ofa andc, and extending to infinity to the right of the segment
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ac. If w is trivial thengeo(e) is the ray ending inpos(v), running along the perpendicular
bisector ofa andc, and coming from infinity to the right of the segmentac. Finally, assume
thatv andw are trivial and assume w.l.o.g. that the triple of points associated withv is of
the form(a, , c). Thengeo(e) is the bisector ofa andc oriented such thata lies to its left.

Now we distinguish cases according to whetherG is connected or not.

G is connected: Define a face chain as a minimal sequencee0, e1, . . . ,ek of edges such that
ei+1 is the face cycle successor ofei for all i , 0 ≤ i < k, and eithertarget(ek) = source(e0)

or source(e0) andtarget(e0) have degree one. We call face chains of the former kind closed
and face chains of the latter kind open. All face chains are strictly convex counter-clockwise
oriented. Moreover, the rays going to infinity wind around the origin once and open face
chains cover only a half-circle. There is no need to check the second half-sentence as it is
implied by the first half-sentence.

Below, we first search for a vertex of degree one and then check the open face chains
one by one. Simultaneously we build the list of all rays; note that they will wind clockwise
around the origin. Having checked all open face chains we turn to the closed face chains.

〈G is connected〉�
cmp_edges_by_angle<GRAPH<CIRCLE,POINT> > cmp(G);

node v;

forall_nodes(v,G) if ( G.outdeg(v) == 1 ) break;

edge_array<bool> considered(G,false);

list<edge> rays;

edge e = G.first_adj_edge(v);

do { rays.push(e);

list<edge> D;

do { considered[e] = true;

D.append(e);

e = G.face_cycle_succ(e);

} while ( G.outdeg(source(e)) != 1);

if ( !Is_C_Increasing(D,cmp) ) return False_IVD(": wrong order");

} while ( G.source(e) != v);

if ( !Is_C_Nondecreasing(rays,cmp) )

return False_IVD("wrong order, rays");

forall_edges(e,G)

{ if ( !considered[e] )

{ edge e0 = e;

do { considered[e] = true;

if ( G.outdeg(target(e)) == 1 )

return False_IVD("unexpected vertex of degree one");

e = G.face_cycle_succ(e);

} while ( e != e0);

if ( !Is_CCW_Convex_Face_Cycle(G,e) )

return False_IVD("wrong order");

}

}
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We claim that we are done at this point. Let us see why. Consider any face chainf . All
edges on the boundary off have the same associated site, saya, the circles associated
with all non-trivial vertices off pass througha, for each edgee of f , geo(e) is part of the
perpendicular bisector ofa and the site associated with the other side ofe, anda lies to the
left of geo(e) if kind is NEARESTand to the right of it ifkind is FURTHEST. Define

reg( f ) =
⋂

e; e is an edge off
H (a, siteof reversal(e)),

whereb = siteof reversal(e) is the site associated with the reversal ofe andH (a, b) is the
halfplane defined bya andb and containinga if kind is NEARESTand not containinga
otherwise. Thenreg( f ) is a convex polygonal region which contains the Voronoi region of
sitea (since in the definition of a Voronoi region the intersection is over all sites different
from a). We still need to show that the regions partition the plane. Consider a point moving
in the plane and avoiding vertices of regions. Such a point is always covered by the same
number of regions. Moreover, when the point travels along a cycle at infinity it is always
covered by exactly one region since the rays of the diagram wind around the origin once.
Altogether we have shown that the regions partition the plane.

G is not connected: If G is not connected it can only be the Voronoi diagram of a set of
collinear sites. As such it must have the following additional properties:

• All nodes have out-degree one.

• All sites are collinear.

• No site is associated with three edges ofG.

• The number of distinct sites is equal tom/2 + 1.

We show that these conditions suffice. Clearly, the geometric interpretation ofG is a set of
parallel line segments. Consider the placement of the sites on their common underlying line.
For each sites which is associated with two edges, it is guaranteed that the two adjacent
sites (= sites for which there is an edge havings on one of its sides) lie on opposite sides of
s; this follows from the fact that we have already checked that each edge incident to a trivial
node separates the sites it is supposed to separate. We conclude that the conditions above
suffice.

〈G is not connected〉�
forall_nodes(v,G)

if ( G.outdeg(v) > 1 ) return False_IVD("degree larger than 1");

d_array<POINT,int> count(0);

int n_dual = 0;

edge e = G.first_edge();

LINE l(G[e],G[G.reversal(e)]);

forall_edges(e,G)

{ if ( !l.contains(G[e]) )
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Figure 10.35 The smallest circle enclosing a set of points. The figure was generated with the
voronoi demo in xlman.

return False_IVD("non-collinear sites");

int& pc = count[G[e]];

if (pc == 0) n_dual++;

pc++;

if (pc == 3) return False_IVD(": site mentioned thrice");

}

if ( n_dual != (G.number_of_edges()/2 + 1) )

return False_IVD(": two many sites");

10.5.4 Applications of Voronoi Diagrams
We discuss some applications of Voronoi diagrams. All of them are illustrated in the
voronoi-demo of xlman.

Extremal Circles: Thesmallest enclosing circlefor a setL of points is the circle with the
smallest radius containing all points inL, see Figure 10.35. The smallest enclosing circle
is the best approximation ofL by a circle. It is easy to see that such a circle has at least two
points inL on its boundary and hence its center lies on the furthest site Voronoi diagram of
L.

We conclude that the center of the minimum enclosing circle is either a vertex of the
furthest site diagram (and then has three points inL on its boundary) or lies on an edge
of the furthest site diagram (and then is the circle of minimum radius passing through the
two sites defining the edge). In this way each edge and vertex of the furthest site Voronoi
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Figure 10.36 The largest empty circle for a set of points. The figure was generated with the
voronoi demo in xlman.

diagram defines a candidate circle. The minimum enclosing circle is the smallest of these
circles.

The function

CIRCLE SMALLEST ENCLOSING CIRCLE(const list<POINT>& L);

computes a smallest enclosing circle according to the strategy just described.

The largest empty circlefor a setL of points is the circle with the largest radius whose
interior is void of points inL and whose center lies inside the convex hull ofL, see Fig-
ure 10.36. We know of no good motivation for considering largest empty circles. It is easy
to see that such a circle has at least two points inL on its boundary and hence its center lies
on the nearest site Voronoi diagram ofL.

We conclude that the center of the largest empty circle is either a vertex of the nearest site
diagram (and then has three points inL on its boundary) or lies on an edge of the nearest site
diagram (and then is the circle of maximum radius passing through the two sites defining
the edge and having its center inside the convex hull). In this way each edge and vertex of
the nearest site Voronoi diagram defines a candidate circle. The largest empty circle is the
largest of these circles.

The function

CIRCLE LARGEST EMPTY CIRCLE(const list<POINT>& L);

computes a largest empty circle according to the strategy just described.



10.5 Voronoi Diagrams 703

Figure 10.37 The minimum width and the minimum area annulus for a set of points. The figure
was generated with the voronoidemo in xlman.

The application of Voronoi diagrams to find enclosing and empty circles is due to Shamos
and Hoey ([SH75]).

Minimum Width and Minimum Area Annuli: An annulusA is the region between two
concentric circles. When the common center of the circles is a point at infinity, an annulus
degenerates to a stripe between parallel lines. Annuli are closed sets. An annulus covers
a setL of points if all points inL are contained in the annulus. Thewidth of an annulus
is the difference between the radius of the outer circle and the radius of the inner circle of
the annulus (in the case of a stripe the width is the distance between the two boundaries of
the stripe). Theareaof an annulus is the area of the region between the outer and the inner
circle (it is infinite in the case of a stripe of non-zero width and is zero in the case of a stripe
of width zero). We are interested in computing minimum width and minimum area annuli
covering a given setL of points, see Figure 10.37 for an example. Minimum width and
minimum area annuli are used to estimate the “roundness” of a set of points.

It can be shown that there is always a minimum annulus covering a given setL of points
that is either:

• the minimum width stripe covering the points, or

• a pair of concentric circles whose center is either a vertex of the nearest site Voronoi
diagram, or a vertex of the furthest site diagram, or an intersection between an edge of
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the nearest site diagram and an edge of the furthest site diagram. This observation was
made in [SH75].

The idea for the proof is as follows. Consider an annulus covering the points inL.
Clearly, if one of the boundaries does not contain a point inL then the annulus can be
improved. So both boundaries must contain at least one point inL. If the two boundaries
together contain a total of four points ofL then the center of the annulus is either a vertex
of one the diagrams (if one boundary contains three points and the other contains one) or
an intersection between edges (if both boundaries contain two points). So assume that the
boundaries together contain less than four points, say there are two pointsp andq on one
of the boundaries and one pointr on the other boundary. Then the centerc lies on the
perpendicular bisector ofp andq. Let d be a vector in the direction of the perpendicular
bisector and consider the annulusA(ε) with centerc + ε · d and havingp, q andr on its
boundaries. For small enoughε, A(ε) coversL. Consider the optimization criterion as
a function ofε and conclude that the center can be moved either in the direction+d or
the direction−d without increasing the objective value. Move until a further point lies on
one of the boundaries. For example, if the objective value is the area, the area ofA(ε) is
proportional to

dist(p, c + ε · d)2 − dist(r, c + ε · d)2 = (p − c)2 − (r − c)2 + 2ε(p − r) · d,

i.e., is a linear function ofε. If (p − r) · d 6= 0 then the annulus can be improved by moving
the center, and if(p − r) · d = 0 then the center can be moved in either direction without
increasing the area of the annulus.

The two items above suggest a strategy to compute minimum width and minimum area
annuli. One simply checks all the candidates listed. This results in quadratic algorithms.

The functions

bool MIN AREA ANNULUS(const list<POINT>& L, POINT& center,

POINT& ipoint, POINT& opoint, LINE& l1);

bool MIN WIDTH ANNULUS(const list<POINT>& L, POINT& center,

POINT& ipoint, POINT& opoint,

LINE& l1, LINE& l2);

compute minimum area and minimum width annuli covering the points inL, respectively.
The functions returntrue, if the optimal annulus is the region between two circles, and return
false if the optimal annulus is a stripe. In the former case the center of the annulus and a
point on the inner and the outer circle are returned incenter, ipoint andopoint, respectively.
In the latter case the boundaries of the stripe are returned inl1 and l2. In the case of the
a minimum area annulus a stripe can only be optimal if it has width zero. Hence only one
line is returned in the former function.

Both functions have quadratic running time and hence should be used only for small
input size. There are much faster algorithms: the minimum area annulus can be computed
in linear time by linear programming ([Sei91]) and the minimum width annulus can be
computed in timeO(n8/5+ε) by parametric search ([AST94]).
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Figure 10.38 A set of points in the plane and the curve reconstructed byCRUST. The figure
was generated by the Voronoidemo in xlman.

Curve Reconstruction: The reconstruction of a curve from a set of sample points is an im-
portant problem in computer vision. We describe a reconstruction algorithm due to Amenta,
Bern, and Eppstein [ABE98]. Figure 10.38 shows a point set and the curves reconstructed
by their algorithm.

The precise problem formulation is as follows. LetF be a smooth curve in the plane and
let S ⊂ F be a finite set of sample points fromF . A polygonal reconstructionof F is a
graph that connects every pair of samples adjacent alongF , and no others.

The algorithmCRUSTto be described takes a listS of points and returns a graphG. The
graphG is guaranteed to be a polygonal reconstruction ofF if F is sufficiently densely
sampled byS. We refer the reader to [ABE98] to the definition of sufficient dense sampling
density.

The algorithm proceeds in three steps:

• It first constructs the Voronoi diagramVD of the points inS.

• It then constructs a setL = S ∪ V , whereV consists of all proper vertices ofVD.

• Finally, it constructs the Delaunay triangulationDT of L and makesG the graph of all
edges ofDT that connect points inL.

The algorithm is very simple to implement9.

9 In 1997 the authors attended a conference, where Nina Amenta presented the algorithm. We were supposed to
give a presentation of LEDA later in the day. We started the presentation with a demo of algorithmCRUST.
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〈crust.c〉+�
void CRUST(const list<POINT>& S, GRAPH<POINT,int>& G)

{

list<POINT> L = S;

map<POINT,bool> voronoi_vertex(false);

GRAPH<CIRCLE,POINT> VD;

VORONOI(L,VD);

// add Voronoi vertices and mark them

node v;

forall_nodes(v,VD)

{ if (VD.outdeg(v) < 2) continue;

POINT p = VD[v].center();

voronoi_vertex[p] = true;

L.append(p);

}

DELAUNAY_TRIANG(L,G);

forall_nodes(v,G)

if (voronoi_vertex[G[v]]) G.del_node(v);

}

The program above owes much of its elegance to the fact that we use graphs to represent
Delaunay diagrams and hence have the full power of the graph data type available to us.
Observe that after having constructed the Delaunay triangulation ofL in G, we treatG as
an “ordinary graph”. We simply delete all auxiliary nodes from it, a step that does not make
sense on the level of Delaunay triangulations.

10.5.5 Voronoi Diagrams of Line Segments
The Voronoi diagram of a set of point sites under the Euclidean metric is just one instance
in a wide class of Voronoi diagrams. Other diagrams are obtained by choosing a different
metric and/or a different class of sites.

Figure 10.39 shows a Voronoi diagram of line segments. In such a diagram the sites are
points and open line segments; the endpoints of every line segment must belong to the point
sites. The edges of a Voronoi diagram of line segments are part of angular bisectors between
line segments, of parabola, and of lines perpendicular to segments at their endpoints.

Michael Seel [See97] has written a package to compute Voronoi diagrams of line seg-
ments. It is available as a LEDA extension package.

The Voronoi diagram of line segments has played an important role in the development of
the number types in LEDA, see Section 4.4. Our first program for Voronoi diagrams of line
segments used floating point arithmetic in a naive way and worked only for a small number
of examples. The main difficulty was a correct implementation of the incircle test. Observe
that the coordinates of Voronoi vertices are non-rational algebraic numbers and hence the
incircle test requires to compute the sign of certain algebraic numbers. This computation is
very error-prone when executed with floating point arithmetic.

In [Bur96, BMS94a, BFMS97] we laid the theoretical basis for an efficient and correct
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Figure 10.39 A Voronoi diagram of line segments. The figure was generated with Michael
Seel’s extension package for Voronoi diagrams of line segments.

sign test of simple algebraic numbers which is used in [BMS96] to implement the number
typereal. Michael Seel uses this number type in his implementation.

Exercises for 10.5
1 Construct a setS where the Voronoi diagram contains no vertices andS has at least three

points. What is the Delaunay diagram ofS?
2 Give the rules for obtaining the Delaunay diagram from the Voronoi diagram for the

same set of sites.
3 Write a program that constructs the Delaunay diagram of a setS given its Voronoi dia-

gram.
4 Write a program to compute the largest empty circle.
5 Write a program to compute the smallest enclosing circle.
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10.6 Point Sets and Dynamic Delaunay Triangulations

The classPOINTSET10 maintains a set of points in the plane under insertions and dele-
tions. It offers dictionary operations, nearest neighbor queries, point location queries, and
circular, triangular and rectangular range queries. A point set is maintained as a Delaunay
triangulation of its elements and hence the class may equally well be called dynamic De-
launay triangulation11. The class is derived fromGRAPH<POINT, int> and hence all graph
algorithms and all operations for graphs are available for point sets12.

In this section we will first give an impression of the functionality and then give part
of the implementation. The full implementation can be found in [MN98a]. We close the
section with some experimental data. POINTSETS are illustrated by the pointsetdemo
in xlman, see Figure 10.40.

10.6.1 Functionality
The constructors

point set T; // set of points

point set T(list<point> L);

rat point set RT; // set of rat points

rat point set RT(list<rat point> L);

create a point set for the empty set and the set of points inL, respectively. We mentioned
already thatPOINTSET is derived fromGRAPH<POINT, int>. Every instance of class
POINTSET is an embedded planar map. The position of a vertexv is given byT.pos(v)

and also byT [v] and we use

S = {T.pos(v) | v ∈ T }
to denote the underlying point set. Each edge is labeled by an element in the enumeration
type delaunayedgeinfo defined in Section 10.2. If the listL in the constructor contains
multiple occurrences of equal points, only the last occurrence of each point is retained and
the others are discarded.

The function

int T.dim()

returns the affine dimension of the point set, i.e.,−1 if S is empty, 0 ifS consists of only one
point, 1 if S consists of at least two points and all points inS are collinear, and 2 otherwise.

The functionslookup, insertanddel give point sets the functionality of adictionary for
points.

node T.lookup(POINT p)

10 The instantiations arepoint setfor pointsandrat pointsetfor rat points.
11 In an earlier version of LEDA we called the classdelaunaytriang. We found, however, that the typical use of the

class emphasizes the query operations and hence we now find the name point set more appropriate.
12 Only constgraph operations and graph algorithms should be used as others may destroy the additional invariants

imposed by POINTSET.
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Figure 10.40 A screenshot of the pointsetdemo in xlman. A locate query for the highlighted
point was performed. The edge returned by the query is highlighted.

returns a nodev of T with T.pos(v) = p, if there is such a node, and returnsnil otherwise.

node T.insert(POINT p)

insertsp into T and returns the corresponding node. More precisely, if there is already
a nodev in T positioned atp (i.e., pos(v) is equal top) then pos(v) is changed top
(i.e., pos(v) is made identical top) and if there is no such node then a new nodev with
pos(v) = p is added toT . In either case,v is returned.

void T.del(node v)

removes nodev, i.e., makesT a point set forS \ {pos(v)}.
We come topoint locationandnearest neighborqueries. The function

edge T.locate(POINT p)
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performs point location. It returns a darte (nil if T has no edge) such thatp lies in the
closure of the face to the left ofe, see Figure 10.40.

The functions

node T.nearest neighbor(POINT p);

list<node> T.k nearest neighbors(POINT p, int k);

return a nodev of T that is closest top, i.e.,

dist(p, pos(v)) = min {dist(p, pos(u)) ; u ∈ T }
and the list of the min(k, |S|) closest points top, respectively. The points in the result list
are ordered by distance fromp. One can also ask for the nearest neighbor(s) of a node.

node T.nearest neighbor(node w);

list<node> T.k nearest neighbors(node w, int k);

return a nodev of T that is closest toT [w], i.e.,

dist(p, pos(v)) = min{dist(p, pos(u)) ; u ∈ T \ w }
and the list of the min(k, |S| − 1) closest points toT [w], respectively. The points in the
result list are ordered by distance fromT [w]. Figure 10.41 illustrates nearest neighbor
queries and the deletion of nodes.

The next three functions concernrange queries.

list<node> T.range search(const CIRCLE& C);

list<node> T.range search(node v,const POINT& b);

list<node> T.range search(const POINT& a,const POINT& b,const POINT& c);

list<node> T.range search(const POINT& a,const POINT& b);

return the list of points contained in the closure of diskC, in the closure of the disk centered
at T [v] and havingb in its boundary, in the closure of the triangle(a, b, c), and in the
closure of the rectangle with diagonal(a, b), respectively. Figure 10.42 illustrates circular
range queries.

list<edge> T.minimum spanning tree()

returns a list of edges ofT that comprise a minimum spanning tree ofS and

void T.compute voronoi(GRAPH<CIRCLE,POINT>& V)

computes the Voronoi diagramV for the sites inS. Each node ofV is labeled with its
defining circle and each edge is labeled with the site lying in the face to its left.

The class POINTSET also provides functions that support the drawing of Delaunay
triangulations, Delaunay diagrams, and Voronoi diagrams. For example,

void T.draw nodes(void (*draw node)(const POINT&))

callsdrawnode(pos(v)) for every nodev of T .
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Figure 10.41 Illustration of nearest neighbor searching plus deletion. We generated a point set
of 500 random point and then performed the following operation about thirty times: Locate the
nearest neighbor of a point in the center of the screen and delete it. The resulting point set is
displayed.

10.6.2 Implementation
We start with an overview and explain how point sets are represented.

〈POINT SET.h〉+�
class __exportC POINT_SET : public GRAPH<POINT,int>

{

private:

edge cur_dart;

edge hull_dart;

bool check; // functions are checked if true

// for marking nodes in search procedures

int cur_mark;

node_map<int> mark;

〈handler functions for animation〉
〈functions to mark nodes〉
〈auxiliary functions〉

public:

〈public member functions〉
〈public member functions for checking〉

};

〈inline functions〉
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Figure 10.42 We generated a point set of 500 random points and then performed a circular
range query. The points returned by the query are highlighted.

We store a POINTSET as a planar mapGRAPH<POINT, int> T plus two edgescur dart
andhull dart. For each nodev of T we store its position in the plane inT [v] and for each
edgee we store its type inT [e]. The edge type is an element of the global enumeration type
delaunayedgeinfo defined in geoglobal enums.

enum delaunay edge info { DIAGRAM EDGE = 0, DIAGRAM DART = 0,

NON DIAGRAM EDGE = 1, NON DIAGRAM DART = 1,

HULL EDGE = 2, HULL DART = 2

}

The darts ofT are labeled as defined in Section 10.4 on static Delaunay diagrams. Hull
darts are labeledHULL DART and non-hull darts are labeled eitherDIAGRAMDART or
NONDIAGRAMDART. The former label is used for non-hull darts that belong to the
Delaunay diagram.

In hull dart we always store a dart of the convex hull and incur dart we store an arbitrary
dart of the triangulation. We usecur dart as the starting point for searches.

Many member functions ofPOINTSETcome with a checker. The booleancheckcon-
trols whether checking is done or not.

Most query operations require graph searches. We use anodemap<int> mark and an
integercur markto mark visited nodes in these searches. More precisely, a nodev is marked
if mark[v] == cur markand in order to unmark all nodes we increasecur markby one. We
start withcur markequal to zero and all node marks equal to−1 and hence this solution is
safe as long ascur markdoes not wrap around by overflow. Overflow occurs after MAXINT
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search operations. Assuming that a query takes at least 100 instructions one can do at most
106 (about 220) queries per second. Thus the solution would work for at least 212 seconds
or about an hour. We conclude that we should guard against this error, in particular, since it
will be very difficult to locate once it occurs. The solution is simple. Whenevercur mark
reaches MAXINT we reinitialize.

〈functions to mark nodes〉�
void init_node_marks() { mark.init(*this,-1);

cur_mark = 0;

}

void mark_node(node v) const { ((node_map<int>&)mark)[v] = cur_mark; }

void unmark_node(node v) const

{ ((node_map<int>&)mark)[v] = cur_mark - 1; }

bool is_marked(node v) const { return mark[v] == cur_mark; }

void unmark_all_nodes() const

{ ((int&)cur_mark)++;

if ( cur_mark == MAXINT)

((POINT_SET*)this) -> init_node_marks(); //cast away constness

}

Checking: We have two general routines for purposes of checking:

• savestate(POINT p) saves the current state of the data structure and the pointp
(which is typically the argument of a query operation) to a file, and

• checkstate(string loc) checks the state of the data structure and prints diagnostic
information tocerr if an error is found.

Checking is controlled by the boolean flagcheck, i.e., if check is true, savestate and
checkstateperform as described, and ifcheckis false, they do nothing andcheckstate
returnstrue.

A typical functionF of class POINTSET has a body of the following form.

if ( check ) save state(POINT p);

/* proper body of F */

if ( check && !check state("POINT SET::F") )

{ cerr << additional information ; }

Assume now that check is set totrueand that some functionF contains an error. The error
will be caught bycheckstate. Since the state before the execution ofF was saved, the
error is reproducible. We added this feature to POINTSET because an earlier version of
POINT SET contained errors which arose very infrequently. For example, at one point we
ran a test program for more than an hour before it failed.
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Auxiliary Functions: The functionmarkedgeis used to assign adelaunayedgeinfo to
an edge. The call tomarkedgehandler is for the purposes of animation which we do not
discuss here. Readers interested in the animation of the point set class should read [MN98a].

〈auxiliary functions〉�
void mark_edge(edge e, delaunay_edge_info k)

{ assign(e,k);

if (mark_edge_handler) mark_edge_handler(e);

}

The Constructors: The constructors allow us to construct a point set for either the empty
set of points or for a setS of points. In the latter case the Delaunay triangulation algorithm
of Section 10.4 is used, i.e., an arbitrary triangulation is constructed by plane sweep and then
Delaunay flips are performed to obtain a Delaunay triangulation. The work horse for the
second step is a member functionmakedelaunay(E) that takes a list of edges (it is required
that all edges not inE have the Delaunay property) and turns the current triangulation into
a Delaunay triangulation.

Locate: The function

edge T.locate(POINT p)

is the basis for all query functions. It returns an edgee of T (nil if T has no edge) with the
following properties:

• If there is an edge ofT containingp, such an edge is returned. Ifp lies on the
boundary of the convex hull then a hull dart is returned (and not the reversal of a hull
dart).

• If p lies in the interior of a facef of T (if p lies outside the convex hull ofS, f is the
unbounded face) then a dart on the boundary off is returned. This dart hasp to its
left, except if all points inS are collinear andp lies on the line passing through the
points inS. In this case,target(e) is the point inS closest top.

The implementation oflocateis non-trivial. We therefore define a functionchecklocate
that checks the output oflocate.

〈auxiliary functions〉+�
void check_locate(edge answer,const POINT& p) const;

The implementation ofchecklocateis left to the reader; it can be found in [MN98a]. We
turn to the implementation oflocate. We distinguish cases according to the dimension of
the triangulation.

〈POINT SET.c〉+�
edge POINT_SET::locate(POINT p) const

{

if (number_of_edges() == 0) return nil;
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if (dim() == 1) { 〈locate: one-dimensional case〉 }

〈locate: two-dimensional case〉
}

If the dimension is less than one we return nil.
Let us assume next that the affine dimension ofS is one. If p does not lie in the affine

hull of S, i.e., p does not lie on the line supportinghull dart, we return eitherhull dart or
its reversal. Ifp lies on the line supportinghull dart we determine the answer by a walk in
the triangulation. triangulations!walk through a triangulation

We initializee to eitherhull dart or its reversal such thatp lies in the halfspace orthogo-
nal13 to e. We walk in the direction ofe. Let e1be the face cycle successor ofe. As long
ase1points into the same direction ase, i.e., is not the reversal ofe, and containsp in the
halfspace orthogonal to it, we advancee to e1.

The walk ends whene1 is either the reversal ofe or does not containp in the halfspace
orthogonal to it. In the former casep lies one or target(e) is the point inS closest top and
in the latter casep lies one. In either case we may therefore returne.

〈locate: one-dimensional case〉�
edge e = hull_dart;

int orient = orientation(e,p);

if (orient != 0) { if (orient < 0) e = reversal(e);

if (check) check_locate(e,p);

return e;

}

// p is collinear with the points in S. We walk

if ( !IN_HALFSPACE(e,p) ) e = reversal(e);

// in the direction of e. We know IN_HALFSPACE(e,p)

edge e1 = face_cycle_succ(e);

while ( e1 != reversal(e) && IN_HALFSPACE(e1,p) )

{ e = e1;

e1 = face_cycle_succ(e);

}

if (check) check_locate(e ,p);

return e;

We come to the two-dimensional case. Assume w.l.o.g thatcur dart is not a hull dart
(otherwise, replacecur dart by its reversal).

If p is equal to the source ofcur dart, we are done and return the reversal ofcur dart;
recall that we want to return a hull dart ifp lies on the boundary of the convex hull.

So assume thatp is distinct from the source ofcur dart. The face cycle containing
cur dart is a triangle sincecur dart is not a hull dart and hencep either does not lie on
the line supportingcur dart or the line supportingfacecyclepred(cur dart). Let e be the

13 The halfspace orthogonal toe has normal vectore, hassource(e) in its boundary, and contains the target ofe. We
need this definition only for this paragraph.
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Figure 10.43 In order to locatep we walk along the segments from source(e0) to p; s
intersects the half-closures of the dartse0, e1, . . . , e5; e0, . . . ,e5 are directed downwards.

appropriate dart and assume thatp lies in the positive halfspace14 of e (replacee by its
reversal otherwise).

We walk along the rays starting in the source ofe and ending inp, see Figure 10.43. We
will maintain the following invariant during the walk:

• p lies in the positive subspace with respect toe.

• s intersects the half-closure ofe, where the half-closure ofe consists of the interior of
e plus its source. However, the target of the dart does not belong to the half-closure.

〈locate: two-dimensional case〉�
edge e = is_hull_dart(cur_dart) ? reversal(cur_dart) : cur_dart;

if (p == pos_source(e) ) return reversal(e);

int orient = orientation(e,p);

if (orient == 0) { e = face_cycle_pred(e);

orient = orientation(e,p);

}

if (orient < 0) e = reversal(e);

SEGMENT s(pos_source(e),p);

while ( true )

{

if (is_hull_dart(e)) break;

〈locate: determine the next edge e or break from the loop〉
}

if (check) check_locate(e ,p);

((edge&)cur_dart) = e;

return e;

The while-loop performs the walk. We distinguish cases according to whethere is a hull
dart or not. Ife is a hull dart, we stop and returne.

Otherwise, lete, e1, e2 be the face cycle of the triangleF to the left ofe. We need to find
out whether the walk ends inF or whether we are leaving the triangle throughe1 or through

14 The positive halfspace with respect toe is the halfspace to the left of the oriented line supportinge.
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Figure 10.44 A step of the walk through the triangulation: In the left part of the figure,c lies to
the right ofs and in the right part it does not.

e2. Let c be the common endpoint ofe1 ande2. We distinguish cases according to whether
c lies to the right ofs or not.

Assume first thatc lies to the right ofs, i.e., s intersects the half-closure of the reversal
eR

2 of e2, see Figure 10.44. Ifp lies to the left ofeR
2 , we replacee by eR

2 and continue. Ifp
lies oneR

2 , we returneR
2 , and if p lies to the right ofeR

2 and hence in the interior ofF , we
returne.

Assume next thatc does not lie to the right ofs, i.e., s intersects the half-closure of the
reversaleR

1 of e1, see Figure 10.44. Ifp lies to the left ofeR
1 , we replacee by eR

1 and
continue. If p lies oneR

1 , we returneR
1 , and if p lies to the right ofeR

1 and hence in the
interior of F or one2 (the latter case can only occur whens passes through the source ofe
andp lies one2), we returne in the former case andeR

2 in the latter.

〈locate: determine the next edge e or break from the loop〉�
edge e1 = face_cycle_succ(e);

edge e2 = face_cycle_pred(e);

int d = ::orientation(s,pos_target(e1));

edge e_next = reversal( (d < 0) ? e2 : e1 );

int orient = orientation(e_next,p);

if ( orient > 0 ) { e = e_next; continue; }

if ( orient == 0 ) { e = e_next; break; }

if ( d == 0 && orient < 0 && orientation(e2,p) == 0 ) e = reversal(e2);

break;

This completes the description oflocate. We still need to argue termination. We clearly
make progress when the new darte intersectss closer to p than the old darte. It may,
however, be the case that the intersections are the same. In this situation the new darte
forms a smaller angle withs than the old one.

Having locate, we can easily implement thelookupoperation.



718 Geometry Algorithms

s
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a

e1 e2 e3e0

p

Figure 10.45 The nodea lies in the interior of darte0 but infinitesimally close to the source
node ofe0. The dartse0, e1, . . . havep on their left and are directed downwards. The rays ′
intersects only the interior of darts.

〈POINT SET.c〉+�
node POINT_SET::lookup(POINT p) const

{ if (number_of_nodes() == 1) { node v = first_node();

return (pos(v) == p) ? v : nil;

}

edge e = locate(p);

if (pos(source(e)) == p) return source(e);

if (pos(target(e)) == p) return target(e);

return nil;

}

It took us a long time to come up with the short and elegant inner loop forlocategiven
above. Earlier attempts were longer and less elegant (and some were plain wrong). Why
did we have such difficulties and how did we finally arrive at the program given above?
The difficulties stemmed from degeneracies; we had difficulties handling the case that the
ray s passes through some node of the triangulation or even runs on top of an edge of the
triangulation. Under the additional assumption that there are no degeneracies, i.e., thats
enters and leaves triangles through relative interiors of edges, it was easy to write a correct
program. We had difficulties extending the solution to the case wheres enters and/or leaves
through a vertex. Our original solution was clumsy because we used the weaker invariant
that s intersects the closure ofe (and not only the half-closure as we stated above). This
resulted in a lengthy case distinction.

The key to the simpler program was a thought experiment usingperturbation. Recall
that we locatep by a walk through the triangulation starting at the source node of some
darte0. The idea of perturbation is to simulate the walk along a perturbed rays′ that starts
in a nodea that lies in the interior ofe0 but infinitesimally close to the source ofe0, see
Figure 10.45. The perturbed ray will only pass through the interior of darts (except maybe
at p); it may pass infinitesimally close to the source of a dart but not infinitesimally close to
the target. We concluded that source nodes of darts play a different role than target nodes of
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darts and came up with the concept of the half-closure of a dart. Once we had the concept
of a half-closure, we arrived at a correct program within an hour.

We close this section with a remark about the efficiency oflocate. Clearly, the running
time of locate is proportional to the number of darts of the Delaunay triangulation crossed
by the segments. Bose and Devroye [BD95] have shown that the expected number of
edges of a Delaunay triangulation of random points crossed by a line segment of lengthl is
O(l

√
γ ), whereγ is the point density.

Insert: The function

node T.insert(POINT p);

inserts the pointp into T and returns the corresponding node. More precisely, if there is
already a nodev in T positioned atp (i.e., pos(v) is equal top) thenpos(v) is changed to
p (i.e., pos(v) is made identical top) and if there is no such node then a new nodev with
pos(v) = p is added toT . In either case,v is returned.

We first define our return statement

〈insert::check and return v〉�
if ( check && !check_state("POINT_SET::insert") )

{ cerr << "The point inserted was " << p;

exit(1);

}

return v;

and then give an overview. We first deal with the case thatT has at most one node. IfT
has more than one node, we locatep in the triangulation. Lete be the edge returned by
locate(p). If p is equal to an endpoint ofe, we replace the endpoint byp and return.

Otherwise, we determine whetherp lies on e and then distinguish cases according to
the dimension of the triangulation after the insertion. The dimension is one if the current
dimension is one andp lies in the affine subspace ofS.

〈POINT SET.c〉+�
node POINT_SET::insert(POINT p)

{ if ( check ) save_state(p);

node v;

〈T has zero or one node〉
edge e = locate(p);

if (p == pos_source(e)) { assign(source(e),p); return source(e); }

if (p == pos_target(e)) { assign(target(e),p); return target(e); }

bool p_on_e = seg(e).contains(p);

if ( dim() == 1 && orientation(e,p) == 0 )

{ 〈dimension is one after the insertion〉 }

〈dimension is two after the insertion〉
}
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Assume first thatT has at most one node. IfT has no node, we create a node, label it
with p and return it, ifT has one node, we either relabel this node withp or we create a
new node with labelp and connect it to the old node.

〈T has zero or one node〉�
if (number_of_nodes() == 0)

{ v = new_node(p); 〈insert::check and return v〉 }

if (number_of_nodes() == 1)

{ node w = first_node();

if (p == pos(w))

{ assign(w,p);

v = w;

〈insert::check and return v〉
}

else

{ v = new_node(p);

edge x = new_edge(v,w); edge y = new_edge(w,v);

mark_edge(x,HULL_DART); mark_edge(y,HULL_DART);

set_reversal(x,y);

hull_dart = cur_dart = x;

〈insert::check and return v〉
}

}

If dim is one andp lies in the affine hull ofS there are two cases. Ifp is one then we
split e into two edges and ifp does not lie one we simply add new edges betweenp and
target(e).

〈dimension is one after the insertion〉�
v = new_node(p);

edge x = new_edge(v,target(e)); edge y = new_edge(target(e),v);

mark_edge(x,HULL_DART); mark_edge(y,HULL_DART);

set_reversal(x,y);

if (p_on_e)

{ x = new_edge(v,source(e));

y = new_edge(source(e),v);

mark_edge(x,HULL_DART);

mark_edge(y,HULL_DART);

set_reversal(x,y);

hull_dart = cur_dart = x;

del_edge(reversal(e));

del_edge(e);

}

〈insert::check and return v〉

In the remaining case the hull is guaranteed to be two-dimensional after the insertion. We
now have to triangulate the face that containsp. p lies in the interior of the convex hull iff
e is not a hull dart.

If p lies in a bounded face (= triangle), we connect it to all (three) nodes of the face.
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One of the three new triangles could have height zero. We made sure thatmakedelaunay
handles this case correctly.

If p lies in the outer face or on its boundary, we first determine the set of hull darts visible
from p by walking in both directions along the hull starting ine. We call the two extreme
darts reached by these walkse1ande2. We then add an edge for each visible vertex, i.e. for
all vertices fromtarget(e1) to source(e2).

There is one subtle point. It is important how ties are broken whenp lies on a hull dart.
Only one triangle should be added to the triangulation and not three (the latter would be
the case if we break the tie in favor of the triangle incident to the hull dart). In order to
guarantee that ties are broken correctly, we havelocatereturn a hull dart ifp does not lie in
the interior of the triangulation.

In the implementation we retriangulate the outer face and bounded faces in a uniform
way; we add new edges for all nodes fromtarget(e1) to source(e2) for two dartse1ande2.
In the case of a bounded face we choosee1= e2= e and in the case of the outer face we set
e1ande2 to the extreme (tangent) darts as described above.

〈dimension is two after the insertion〉�
v = new_node(p);

edge e1 = e;

edge e2 = e;

list<edge> E;

bool outer_face = is_hull_dart(e);

if (outer_face)

{ // move e1/e2 to compute upper/lower tangents

do e1 = face_cycle_pred(e1); while (orientation(e1,p) > 0);

do e2 = face_cycle_succ(e2); while (orientation(e2,p) > 0);

}

// insert edges between v and target(e1) ... source(e2)

e = e1;

do { e = face_cycle_succ(e);

edge x = new_edge(e,v);

edge y = new_edge(v,source(e));

set_reversal(x,y);

mark_edge(e,DIAGRAM_DART);

E.append(e);

E.append(x);

} while (e != e2);

if (outer_face)

{ // mark last visited and new edges as hull edges

mark_edge(face_cycle_succ(e1),HULL_DART);

mark_edge(face_cycle_pred(e2),HULL_DART);

mark_edge(e2,HULL_DART);

hull_dart = e2;

}

make_delaunay(E); // restores Delaunay property

〈insert::check and return v〉
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Deletion: The functions

void T.del(node v)

void T.del(POINT p)

remove the nodev and the pointp, respectively, i.e., makeT a Delaunay triangulation for
S \ {pos(v)} andS \ p, respectively.

The strategy to remove a node is simple. Removal of a node from the interior of a two-
dimensional triangulation (of course, the program also has to handle the removal of a node
from a triangulation that is not two-dimensional or of a node which lies on the boundary
of the convex hull) creates a cavity in the triangulation. The cavity is retriangulated in an
arbitrary way and thenmakedelaunay(E) is called to restore the Delaunay property, where
E is the set of new edges and the set of edges on the boundary of the cavity.

After this general outline we define our return statement and give an overview of the
deletion procedure.

〈del: check and return〉�
if ( check && !check_state("POINT_SET::del(node v)") )

{ cerr << "deleted the node with position " << pos(v);

exit(1);

}

return;

〈POINT SET.c〉+�
void POINT_SET::del(node v)

{

if (v == nil) error_handler(1,"POINT_SET::del: nil argument.");

if (number_of_nodes() == 0)

error_handler(1,"POINT_SET::del: graph is empty.");

if (check) save_state(inf(v));

if ( dim() < 2 )

{

if ( outdeg(v) == 2)

{ node s = target(first_adj_edge(v));

node t = target(last_adj_edge(v));

edge x = new_edge(s,t); edge y = new_edge(t,s);

mark_edge(x,HULL_DART); mark_edge(y,HULL_DART);

set_reversal(x,y);

}

del_node(v);

cur_dart = hull_dart = first_edge();

〈del: check and return〉
}

〈removal of v from a two-dimensional triangulation〉
〈del: check and return〉

}
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Figure 10.46 The right part of the figure shows the effect of flipping the edges(v, a), (v, c) and
(v, e).

If the dimension of the triangulation is less than two, the removal ofv is trivial. If the
dimension is zero or the dimension is one andv is an extreme node of the triangulation (i.e.,
the outdegree ofv is one), we simply removev. If v has outdegree two, we connect the two
neighbors ofv by a new edge and then deletev. Of course,cur dart or hull dart could have
been incident tov and hence have to be given new values.

We come to the interesting case, the removal ofv from a two-dimensional triangulation.
We first discuss the case thatv lies in the interior of the triangulation. We will later see that
the same strategy also handles the case wherev lies on the boundary of the convex hull.

Removal ofv creates a faceP that is, in general, not a triangle. It is only a triangle if
the degree ofv is three. We need to retriangulate this face. A natural approach would be
to removev and to retriangulate after the removal ofv. However, this approach does not
exploit the fact thatP is a so-calledstar-shaped polygonwith respect tov, i.e., thatv can
see all vertices ofP. We will exploit this fact as follows in the retriangulation process.
We will show below that there is always an edgee incident tov such that the two triangles
incident tov form a convex quadrilateral. We “flipe away fromv” by replacing it by the
other diagonal of the triangle. In this way the degree ofv is decreased by one. We continue
until the degree ofv is three. At this point,v is removed and the created face is a triangle,
see Figure 10.46.

We now give the details. We need a slightly more general definition of star-shapedness
than was alluded to in the text above. The more general definition is needed to cope with
the case that three or more points ofS lie on a common line.

We call a polygonP star-shapedwith respect to a pointv if either:

• v lies in the interior ofP and for every vertexp of P the open line segmentvp is
contained in the interior ofP, or

• v lies in the relative interior of an edgee of P and for every vertexp of P that is not
an endpoint ofe the open line segmentvp is contained in the interior ofP.

Lemma 68 Let P be a polygon which has at least four vertices and is star-shaped with
respect to some pointv. Then there are three consecutive verticesp, q, r of P such that
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Figure 10.47 (p, q, r, v) forms a convex quadrilateral. In the situation on the leftv will lie on
an edge ofP ′ after the flip of edge(v, q) and in the situation on the right it will still lie in the
interior of P ′. The quadruple(q, r, r ′, v) does not qualify for a flip.

(v, p, q, r) form a convex quadrilateral. In this quadrilateral the angle atv maybe equal to
π . The angle atv can be equal toπ only if v lies in the interior ofP, see Figure 10.47.

Let P ′ be the polygon obtained fromP by replacing the edgespq andqr by the edgepr .
ThenP ′ is star-shaped with respect tov.

Proof Consider any triangulationT of P. T consists of at least two triangles. Since the dual
of a triangulation is a tree and every tree has at least two leaves, there must be at least two
triangles inT whose edges consist of two consecutive edges ofP plus the chord connecting
the source of the first edge with the target of the second edge and hence there must be at
least one such triangle which, in addition, does not containv in its interior. Consider one
such triangle, sayt , and lete1 = (p, q) ande2 = (q, r) be the edges ofP that are contained
in its boundary. Since(p, q, r) is a triangle ofT the angle atq is less thanπ .

Sincev is not contained in the interior oft , (v, p, q, r) forms a convex quadrilateral.
In this quadrilateral the angles atp andr must be less thanπ sinceP is star-shaped with
respect tov. Also by the star-shapedness, the angle atv can be equal toπ only if v lies in
the interior ofP.

P ′ is clearly star-shaped with respect tov.

Call an edge incident tov flipableif the two triangles incident to it form a convex quadri-
lateral. As long as there is a flipable edge incident tov flip it. The lemma above guarantees
that the process does not terminate beforev has degree three.

How can we find flipable edges quickly? We scan through the edges incident tov. Let e
be the current edge. Ife is not flipable, we advancee to the cyclic successor ofe, and ife is
flipable, we flip it and sete to the cyclic predecessor ofe.

When do we terminate? We terminate whenv has degree three. Since we want to use the
same procedure also for nodes on the hull we develop a more general termination condition.
We terminate when the degree ofv reachesmindeg, wheremindegis three for nodes in the
interior and is two for hull nodes. We also keep a countercountwhich is a lower bound on
the number of edges out ofv that are certainly not flipable. We incrementcountwhenever a
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non-flipable edge is found, we decrementcountby two whenever a flip is performed, as this
may make the two neighbors of the flipped edge flipable, and we terminate ifcountreaches
outdeg(v).

Why is this correct? Call an edgecertified non-flipableif it has been tested for flipping
and its two neighbors have not changed since. In the procedure just outlined the edges that
are certified non-flipable are consecutive in the cyclic adjacency list ofv andcount is a
lower bound on their number. This shows correctness.

The running time of retriangulation is linear in the initial degree ofv. This follows from
the fact that the total decrement ofcount is bounded by twice the initial degree ofv and
hence the total increase ofcountis bounded by thrice the initial degree ofv.

We obtain the following code.

〈removal of v from a two-dimensional triangulation〉�
list<edge> E;

int min_deg = 3;

edge e;

forall_adj_edges(e,v)

{ E.append(face_cycle_succ(e));

if (is_hull_dart(e)) min_deg = 2;

}

int count = 0;

e = first_adj_edge(v);

while ( outdeg(v) > min_deg && count < outdeg(v) )

{ edge e_pred = cyclic_adj_pred(e);

edge e_succ = cyclic_adj_succ(e);

POINT a = pos_target(e_pred); POINT c = pos_target(e_succ);

if ( !right_turn(a,c,pos(v)) && right_turn(a,c,pos_target(e)) )

{ // e is flipable

edge r = reversal(e);

move_edge(e,reversal(e_succ),target(e_pred));

move_edge(r,reversal(e_pred),target(e_succ),LEDA::before);

mark_edge(e,DIAGRAM_DART);

mark_edge(r,DIAGRAM_DART);

E.append(e);

e = e_pred;

count = count - 2;

if ( count < 0 ) count = 0;

}

else

{ e = e_succ;

count++;

}

}

if ( min_deg == 2 )

{ 〈adjust marks of new hull darts and their reversals〉 }
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cur_dart = E.head();

del_node(v);

make_delaunay(E);

We give some more explanations. The while-loop performs the retriangulation. During the
retriangulation we build up a listE of edges whose Delaunay property needs to be checked:
E consists of all edges in the boundary of the cavity created by the removal ofv and all
edges created during retriangulation.

After retriangulation we removev and add callmakedelaunay(E) to restore the Delaunay
property.

We also have to take care ofcur dart. It may have been incident tov. We set it to an
arbitrary edge in the boundary of the cavity created by the removal ofv.

This completes the discussion of the case when a node in the interior of the triangulation
is removed. We will next argue that the same retriangulation strategy works whenv is a
node in the boundary of the triangulation.

Again we flip edges away fromv until no further edges are flipable. When this is the
case, the neighbors ofv form a chain that is concave as seen fromv and hence removal
of v leaves us with a triangulation of the remaining nodes. Removal ofv also turns some
darts into hull darts. Their labels have to be changed toHULL DARTand the edges of their
reversal have to be changed toDIAGRAMDART. There is a small exception to the latter
rule, namely when a reversal is a hull dart itself. This will be the case when the removal of
v reduces the dimension of the triangulation from two to one.

〈adjust marks of new hull darts and their reversals〉�
edge e,x;

forall_adj_edges(e,v)

{ x = face_cycle_succ(e);

mark_edge(x,HULL_DART);

if ( !is_hull_dart(reversal(x)) ) mark_edge(reversal(x),DIAGRAM_DART);

}

hull_dart = x;

Nearest Neighbor Searching:The functions

node T.nearest neighbor(POINT p);

list<node> T.k nearest neighbors(POINT p, int k);

return a nodev closest top, i.e.,dist(p, pos(v)) = min{dist(p, pos(u)) ; u ∈ T }, and the
list of the min(k, |S|) closest points top, respectively. The points in the result list are
ordered by distance fromp. One can also ask for the nearest neighbor(s) of a node.

node T.nearest neighbor(node w);

list<node> T.k nearest neighbors(node w, int k);

return a nodev different fromw that is closest toT [w] and the list of the min(k, |S| − 1)

closest points toT [w], respectively.
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The following observation paves the way for a simple algorithm for both problems and
is also the basis of the range query algorithms to be discussed in the next section.

Lemma 69 Let s and t be two nodes of a Delaunay triangulationT and let d be their
distance. Then there is a path froms to t in T such that all intermediate nodes have distance
less thand from s.

Proof We use induction ond. Let D be the disk with radiusd centered ats. If st is an edge
of T , we are done. Otherwise leta andb be the two neighbors oft such that the segment
st runs between the edgesta andtb of T . The pointsa, b, andt form a triangle ofT . If
one ofa andb has distance less thand from s, we can apply the induction hypothesis and
are done. So assume otherwise, i.e., neithera nor b lies in the interior ofD. The segments
st andab intersect (sinces cannot lie in the interior of the triangle with cornersa, b, andt)
and hence(s, a, t, b) is a convex quadrilateral. The diskD proves that the segmentab does
not belong to the Delaunay triangulation of{a, b, s, t } and hence cannot be an edge ofT .

The lemma suggests a simple strategy to find thek-nearest neighbors ofp = T [v]. If
the number of points inT is no more thank, we simply return all nodes inT . So assume
otherwise. We start a graph search starting inv. We keep all reached nodes in a priority
queue according to their (squared) distance fromv and always continue the exploration
from a node with smallest distance. The lemma above guarantees that this strategy explores
the nodes ofT in order of increasing distance fromv.

〈POINT SET.c〉+�
#include <LEDA/p_queue.h>

list<node> POINT_SET::nearest_neighbors(node v, int k) const

{ list<node> result;

int n = number_of_nodes();

if ( k <= 1 ) return result;

if ( n + 1 <= k )

{ node w;

forall_nodes(w,*this) if ( w != v ) result.append(w);

return result;

}

POINT p = pos(v);

unmark_all_nodes();

p_queue<RAT_TYPE,node> PQ;

PQ.insert(0,v); mark(v);

while ( k > 0 )

{ pq_item it = PQ.find_min();

node w = PQ.inf(it); PQ.del_item(it);

if ( w != v ) { result.append(w); k--; }

node z;

forall_adj_nodes(z,w)
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{ if ( !is_marked(z) ) { PQ.insert(p.sqr_dist(pos(z)),z);

mark(z);

}

}

}

return result;

}

We come to the case where we want to search for the nearest neighbors of a pointp. We
simply insertp into T and then use the procedure above.

A small complication arises from the fact thatp may lie on a node ofT . We test for this
case by performing a lookup forp. If p does not lie on a node ofv, we insert it. Of course,
it has to removed again after calling the procedure above andp has to be removed from the
list of answers.

〈POINT SET.c〉+�
list<node> POINT_SET::nearest_neighbors(POINT p, int k)

{ list<node> result;

int n = number_of_nodes();

if ( k <= 0 ) return result;

if ( n <= k ) return all_nodes();

// insert p and search neighbors graph starting at p

node v = lookup(p);

bool old_node = true;

if ( v == nil ) { v = ((POINT_SET*)this)->insert(p);

old_node = false;

}

else k--;

result = nearest_neighbors(v,k);

if ( old_node )

result.push_front(v);

else

((POINT_SET*)this)->del(v);

return result;

}

The nearest neighbor of a nodev in a Delaunay diagram is a node adjacent tov. Thus
one only has to find the minimum (squared) distance betweenv and its neighboring nodes.

〈POINT SET.c〉+�
node POINT_SET::nearest_neighbor(node v) const

{

if (number_of_nodes() <= 1) return nil;

POINT p = pos(v);

edge e = first_adj_edge(v);

node min_v = target(e);

while ((e = adj_succ(e)) != nil)
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n I NN NNA

50000 128.2 2.32 18.08

Table 10.5 We constructed a point set ofn random points in the unit square and performed a
nearest neighbor query for each node in the triangulation. NN shows the time for the function
nearestneighborand NNA shows the time with alternative implementation of the inner loop.
Column I shows the time for then insertions. The table was made with the rational kernel.

{ node u = target(e);

if ( p.cmp_dist(pos(u),pos(min_v)) < 0 ) min_v = u;

}

return min_v;

}

An alternative way to write the inner loop is:

〈alternative inner loop〉�
node min_v = target(e);

RAT_TYPE min_d = p.sqr_dist(pos(min_v));

while ((e = adj_succ(e)) != nil)

{ node u = target(e);

RAT_TYPE d_u = p.sqr_dist(pos(u));

if ( d_u < min_d ) { min_v = u;

min_d = d_u;

}

}

This is much slower, see Table 10.5. Why is the alternative so much slower; aren’t the two
programs doing exactly the same thing? Both programs compute the squared distance from
v to all its neighbors and find the minimum.

The difference is that the alternative version computes all squared distancesexactlyas
rational numbers15 and finds the minimum of these rational numbers. The original version
asks the kernel to compare distances. The kernel first computes floating point approxi-
mations to the squared distances and uses them in the comparisons. If the floating point
approximation suffices to decide the comparison, the exact squared distance is never com-
puted and a lot of work is saved.

Range Searches:We have functions for circular, triangular, and rectangular range searches.
In order to perform a circular range query with centerv we perform a DFS starting atv.

The search is restricted to the nodes that lie in the circular range. Correctness follows from
Lemma 69.
15 We assume for this paragraph that the rational kernel is used.
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〈POINT SET.c〉+�
void POINT_SET::dfs(node s, const POINT& pv,

const POINT& p, list<node>& L) const

{ L.append(s);

mark_node(s);

node u;

forall_adj_nodes(u,s)

if (!is_marked(u) && pv.cmp_dist(pos(u),p) <= 0 ) dfs(u,pv,p,L);

}

list<node> POINT_SET::range_search(node v,const POINT& p) const

{

list<node> L;

POINT pv = pos(v);

unmark_all_nodes();

dfs(v,pv,p,L);

return L;

}

The other two kind of queries can be reduced to circular queries by first performing a
range query with the circumcircle of the triangle or rectangle and then filtering the returned
list of points with the triangle or rectangle, respectively. We leave the implementation of
the other queries to the reader.

Experimental Data: Table 10.6 contains running times. The table shows that nearest
neighbor queries for nodes are very efficient in comparison to nearest neighbor queries
for points. This comes from the fact that the latter involve a lookup, an insertion, a deletion,
as well as a nearest neighbor query for a node. For queries that ask for the ten nearest neigh-
bors the difference is not as pronounced. This stems from the fact thatk-nearest neighbor
queries involve rational arithmetic.

Exercises for 10.6
1 Implement circular range queries.
2 Implement triangular and rectangular range queries. You may use circular range queries.
3 Animate the Delaunay class such that the actions performed after the insertion of a point

are visualized.
4 Thenearestneighborsalgorithm uses ap queue<RATTYPE, node>. The code becomes

slightly simpler if anodepq<RATTYPE> is used. Why is it better to use ap queue
instead of anodepq? Time both programs and explain.

5 Develop a version of thek-nearest neighbor search that cuts down on the use of rational
arithmetic.

6 Our implementation ofnearestneighbor(POINT p) modifies the Delaunay triangulation
by an insertion and a deletion. It is not guaranteed that the original Delaunay triangu-
lation is restored. Can you modify the implementation such that it becomes a const-
operation? Try to determine the setL of all edges of the current triangulation whose
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K n I L NNP NNV NNP(10) NNV(10) D

S 1000 1.14 0.66 2.15 0.05 10.22 7.07 1.16

2000 2.79 1.83 4.92 0.09 21.25 14.06 2.77

4000 6.83 5.36 11.68 0.2 44.4 28.29 6.65

D 1000 1.15 0.68 2.22 0.03999 10.27 7.03 1.18

2000 2.78 1.89 4.99 0.11 21.21 14.04 2.75

4000 6.76 5.23 11.53 0.2 44.25 28.25 6.65

C 1000 0.82 0.41 0.99 0.03 5.43 4.65 2.84

2000 1.75 0.9 2.08 0.06 11.09 9.31 8.2

4000 3.78 2.03 4.42 0.13 22.35 18.48 29.09

Table 10.6 The performance of point sets. As in the other tables of this chapter we used three
kinds of inputs: random points in the unit square, random points in the unit disk, and random
points on the unit circle. We generated two setsL andLQ of n points, built a point setT by
inserting the points inL (I), performedn lookups for the points inLQ (L), performed nearest
neighbor queries for the points inLQ (NNP), performed nearest neighbor queries for the nodes of
T (NNV), computed the ten nearest neighbor queries for the points inLQ (NNP(10)), computed
the ten nearest neighbor queries for nodes ofT (NNV(10)), and finally deleted all points.

Delaunay property is destroyed byp. The nearest neighbor ofp must be a vertex of the
triangle containingp or an endpoint of an edge inL.

10.7 Line Segment Intersection

The line segment intersection problem asks to compute the set of intersections of a setS
of line segments in the plane. It is one of the basic geometric problems and has numerous
applications, e.g., in computer aided design, geographic information systems, and cartogra-
phy. We will see an application to boolean operations on polygons in Section 10.8. Many
different algorithms have been designed for the problem and several of them are available in
LEDA. The line segment intersection problem comes in many different flavors as different
applications have different output requirements. One may be interested in the number of
intersections, or one may want to trigger an action for every pair of intersecting segments,
or one may want to compute the graph induced by the segments, or one may want to com-
pute the trapezoidal decomposition induced by the set of segments. In LEDA we provide
functions for several output conventions which we survey in Section 10.7.1. We also give
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Figure 10.48 A screen shot of the intersectsegments demo in xlman. The sweep line algorithm
was used to compute the graph induced by a set of 203 random segments. The induced graph has
1424 nodes and 2638 edges.

some experimental data in this section. In the remaining sections we discuss the sweep line
algorithm for segment intersection.

The algorithms discussed in this section are illustrated by the intersectsegments demo in
xlman. Figure 10.48 shows a screen shot.
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S G(S)

Figure 10.49 A setS of segments and the induced planar graph.

10.7.1 Functionality
We first introduce some terminology. Two segmentss1 and s2 intersectif they have at
least one point in common andoverlapif they have more than one point in common. Two
segmentss1 ands2 are said to have aproper intersectionif they share exactly one point and
this point lies in the relative interior of both segments. A segment of length zero is called a
trivial segment.

The undirected graphU (S) induced byS is defined as follows. The vertices ofU (S)

are all endpoints of segments and all proper intersection points between segments inS.
The edges ofU are the maximal relatively open and connected subsets of segments in
S that contain no vertex ofU (S). Figure 10.49 shows an example. Note that the graph
U (S) contains parallel edges ifS contains segments that overlap. We usen to denote the
number of segments inS, s to denote the number of nodes ofU , m to denote the number
of edges ofU , andk to denote the number of pairs of intersecting segments. IfS contains
no overlapping segments,m = O(n + s). If S contains overlapping segments,m may be as
large asn(n + s) since an input segment may be divided inton + s pieces by the endpoints
and intersection points. The number of nodes ofU is at mostn + k ≤ n + n(n − 1)/2. If
many segments have a common intersection,k may be much larger thans. For example, if
all n segments pass through a common point thens = n + 1 andk = n(n − 1)/2.

The function

void SEGMENT INTERSECTION(const list<SEGMENT>& S,

GRAPH<POINT,SEGMENT>& G, bool embed = false)

computes a directed graphG(s) representingU (S). The algorithm makes no assumption
about the segments inS. They may be overlapping, they may have multiple intersections,
they may share endpoints, they may have length zero, . . . .

G andU have the same set of nodes; each node ofG is labeled by its position in the
plane.

The edges ofG correspond to the edges ofU . If embedis false, there is exactly one dart
in G for each edge inU ; the dart is labeled by the segment inS containing it and inherits
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its direction from the segment containing it, i.e, ife = (v, w) is a dart ofG thenG[e] is
directed fromG[v] to G[w].

If embedis true,G is a plane map. For each edge ofU there are two darts inG and the
two darts are reversal of each other. For each nodev of G the cyclic list of darts out ofv
are counter-clockwise ordered.

The function

void SEGMENT INTERSECTION(const list<SEGMENT>& S, list<POINT>& P)

returns the list of points that correspond to nodes ofG of degree two or more and the
function

SEGMENT INTERSECTION(const list<SEGMENT>& S,

void (*report)(const SEGMENT&, const SEGMENT&) )

calls report(s1, s2) for every pair(s1, s2) of intersecting segments. Observe that the points
in P are a subset of the points for whichreport is called. For example, ifS consists of two
identical trivial segments, thenG(S) consists of a single node and no edge and henceP will
be empty. On the other hand,report will be called for this pair of segments.

For all functions above several implementations are available. The implementations are
based on the algorithms of Bentley and Ottmann ([BO79]), Mulmuley ([Mul90]), and Bal-
aban ([Bal95]). For the reporting version of segment intersection we also have the trivial
implementation which simply checks every pair of segments inS for an intersection.

void MULMULEY SEGMENTS(const list<SEGMENT>& S, GRAPH<POINT,SEGMENT>& G,

bool embed = false);

void SWEEP SEGMENTS(const list<SEGMENT>& S, GRAPH<POINT,SEGMENT>& G,

bool embed = false, bool use optimization = true);

void SWEEP SEGMENTS(const list<SEGMENT>& S , list<POINT>& P);

void BALABAN SEGMENTS(const list<SEGMENT>& S,

void (*report)(const SEGMENT&, const SEGMENT&));

void TRIVIAL SEGMENTS(const list<SEGMENT>& S,

void (*report)(const SEGMENT&, const SEGMENT&));

The asymptotic running time of the Bentley–Ottmann algorithm isO(m +(n+s) logn), the
asymptotic running time of the Mulmuley algorithm isO(m +s +n logn). Both algorithms
can be used for all functions above. Ifembedis true the running time of the Bentley–
Ottmann algorithm increases byO(m logm), since an additional sorting step is required.
The asymptotic running time of the Balaban algorithm isO(n log2 n + k). It can only be
used for the functions that report intersections. The asymptotic running time of the trivial
implementation isO(n2).

Table 10.7 compares the running time of our various implementations. In the examples,
Balaban’s algorithm is always better than the trivial algorithm. Mulmuley’s algorithm is
better than the Bentley–Ottmann algorithm when the number of intersections is large. It also
incurs a smaller additional cost for turningG(S) into a planar map (as it always computes an
undirected planar map). When the number of intersections is small, the Bentley–Ottmann
algorithm and Mulmuley’s algorithm behave about the same.
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n d V E S S + E M M + E T B

2000 22 4007 2014 1.14 1.3 1.74 1.76 15.13 1.94
2000 23 4026 2052 1.18 1.37 2.25 2.29 14.87 2.07
2000 24 4136 2272 1.25 1.42 2.91 2.91 15.26 2.17
2000 25 4428 2856 1.39 1.63 3.44 3.47 15.06 2.33
2000 26 5857 5714 1.81 2.37 4.44 4.5 15.31 2.48
2000 27 10954 15908 3.03 5.02 5.93 6.02 15.41 2.74
2000 28 29683 53366 7.57 16.43 9.71 10.02 16.01 3.22
2000 29 91789 177578 22.84 58.31 20.04 20.94 16.62 5.38
2000 30 267045 528090 70.24 193.7 48.96 51.95 18.42 11.54

Table 10.7 The running time of the functions related to segment intersections. S stands for the
sweep line algorithm of Bentley and Ottmann ([BO79]), M and B stand for the algorithms of
Mulmuley and Balaban ([Mul90, Bal95]), and T stands for the trivial algorithm that checks every
pair of segments for an intersection. The “+ E” indicates that the graphG(S) is returned as a
planar map. The first three columns contain the number of input segments, the number of nodes
of G, and the number of edges ofG, respectively.
We chosen segments. For each segment we chose randomk bit integer for the Cartesian
coordinates of the first endpoint and obtained the second endpoint from the first by adding a
vector with randomd bit integer coordinates. We usedk = 30 and different values ofd. The
number of intersections is an increasing function ofd.

Let us interpret the experimental findings in terms of asymptotic running time. When
the number of intersections is very large, theO(k logn) term16 in the time bound of the
sweep algorithm dominates theO(k) term in the time bound of the other algorithms. The
trivial algorithm has a running time2(n2 + k · Treport), whereTreport is the cost of calling
the functionreport. In our tests,report increases a counter and hence does minimal work.
Thus the constant factor in the big-O expression is small. This explains why the running
time of the trivial algorithm depends very little on the number of intersections and why
the trivial algorithm is competitive when the number of intersections is large. When the
number of intersections is small the Bentley–Ottmann algorithm and Mulmuley’s algorithm
have running timeO(n logn) and Balaban’s algorithm has running timeO(n log2 n). We
should therefore expect that the former two algorithms are superior when the number of
intersections is small. This is confirmed by the experiments.

10.7.2 The Sweep Line Algorithm
We discuss the Bentley–Ottmann sweep line algorithm for line segment intersection and
give an implementation of the function

16 In our examples, there are hardly any intersections of three or more segments and hences ≈ k. Observe that if all
nodes are endpoints or proper intersections of exactly two segments thenE = n + 2(V − 2n), asU(S) contains
2n nodes of degree one and(V − 2n) nodes of degree four. In our examples we haveE ≈ n + 2(V − 2n). We
will therefore replaces by k in the discussion to follow.
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SWEEP SEGMENTS(const list<SEGMENT>& S, GRAPH<POINT,SEGMENT>& G,

bool embed, bool use optimization)

that takes a listS of segments and computes the graphG induced by it. For each vertexv
of G it also computes its position in the plane, and for each edgee of G it computes the
segment containing it.

If embed= true, the algorithm turnsG into a planar map, i.e.,G is made bidirected and
the adjacency lists are sorted according to the geometric embedding in clockwise order.

If useoptimization= true, an optimization described below is used.
The algorithm runs in timeO((n+s) log(n+m)+m), wheren is the number of segments,

s is the number of nodes ofG, and m is the number of edges ofG. If S contains no
overlapping segments thenm = O(n + s). If embedis true, the running time is increased
by an additive factor ofO(m logm). Note thats ≤ 3(n + k) and thatk can be as large as
s2.

We want to stress that the implementation makes no assumptions about the input, in
particular, segments may have length zero, may be vertical or may overlap, several segments
may intersect in the same point, endpoints of segments may lie in the interior of other
segments, . . . .

We achieve this generality by reformulating the plane sweep algorithm so that it can
handle all geometric situations. The reformulation makes the description of the algorithm
shorter and it also makes the algorithm faster, sincek is replaced bys in the time bound17.
The only previous algorithm that could handle all degeneracies is due to Myers [Mye85].
Its expected running time for random segments isO(n logn + k) and its worst case running
time is O((n + k) logn).

In the sweep line paradigm a vertical line is moved from left to right across the plane
and the output (here the graphG(S)) is constructed incrementally as it evolves behind the
sweep line. One maintains two data structures to keep the construction going: the so-called
Y-structurecontains the intersection of the sweep line with the scene (here the setS of
line segments) and the so-calledX-structurecontains the events where the sweep has to be
stopped in order to add to the output or to update the X- or Y-structure. In the line segment
intersection problem an event occurs when the sweep line hits an endpoint of some segment
or an intersection point. When an event occurs, some nodes and edges are added to the graph
G(S), the Y-structure is updated, and maybe some more events are generated. When the
input is in general position (no three lines intersecting in a common point, no endpoint lying
on a segment, no two endpoints or intersections having the samex-coordinate, no vertical
lines, no overlapping segments,. . . ) then at most one event canoccur for each position of
the sweep line and there are three clearly distinguishable types of events (left endpoint, right
endpoint, intersection) with easily describable associated actions, cf. [Meh84d, VII.8]. We
want to place no restrictions on the input and therefore need to proceed slightly differently.
We now describe the required changes.

We define the sweep line by a pointp sweep= (x sweep, y sweep). Let ε be a positive
17 Bentley and Ottmann formulated their algorithm for line segments in general position and stated a time bound of

O((n + k) logn).
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infinitesimal (readers not familiar with infinitesimals may think ofε as an arbitrarily small
positive real). Consider the directed lineL consisting of a vertical upward ray ending in
point(x sweep+ε2, y sweep+ε) followed by a horizontal segment ending in(x sweep−
ε2, y sweep + ε) followed by a vertical upward ray. We callL thesweep line. Note that18

no endpoint of any segment lies onL, that no two segments ofS intersectL in the same
point except if the segments overlap, and that no non-vertical segment ofS intersects the
horizontal part ofL. All three properties follow from the fact thatε is arbitrarily small but
positive. Figure 10.50 illustrates the definition ofL and the main data structures used in the
algorithm: the Y-structure, the X-structure, and the graphG.

The Y-structure contains all segments intersecting the sweep lineL ordered as their in-
tersections withL appear on the directed lineL. Overlapping segments are ordered by their
ID-numbers. Every segment has an associated ID-number; distinct segments are guaranteed
to have distinct IDs.

The X-structure contains all endpoints that are to the right of the sweep line and also
some intersection points between segments in the Y-structure. More precisely, for each
pair of segments adjacent in the Y-structure their intersection point is contained in the X-
structure (if it exists and is to the right of the sweep line). The X-structure may contain
other intersection points. The graphG contains the part ofG(S) that is to the left of the
sweep line.

Initially, the Y-structure and the graphG are empty and the X-structure contains all end-
points of all input segments. The events in the X-structure are then processed in left to right
order. Events with the samex-coordinate are processed in bottom to top order.

Assume that we need to process an event at pointp and that the X-structure and Y-
structure reflect the situation forp sweep= (p.x, p.y − 2ε). Note that this is true initially,
i.e., before the first event is removed from the X-structure. We now show how to establish
the invariants forp sweep= p. We proceed in seven steps.

1. We add a nodev at positionp to our graphG.
2. We determine all segments in the Y-structure containing the pointp. These segments

form a possibly empty subsequence of the Y-structure.
3. For each segment in the subsequence we add an edge to the graphG.
4. We delete all segments ending inp from the Y-structure.
5. We update the order of the subsequence in the Y-structure. This amounts to moving

the sweep line across the pointp.
6. We insert all segments starting inp into the Y-structure.
7. We generate events for the segments in the Y-structure that become adjacent by the

actions above and insert them into the X-structure.

This completes the description of how to process the eventp. The invariants now hold
for p sweep= p and hence also forp sweep= (p′.x, p′.y − 2ε) wherep′ is the new first
element of the X-structure.
18 We defined the sweep line in this seemingly complicated way in order to be able to write this “Note that”. The

note will allow us to define a linear order on the segments intersecting the sweep line.
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Figure 10.50 A scene of nine segments. The segmentss1 ands8 overlap. The sweep line is
shown in bold. The part ofG(S) to the left of the sweep line is already constructed. Its nodes are
shown filled. The sweep line intersects the segmentss1, s8, s2, s9, s4, ands3 and in this order.
The Y-structure contains one item for each one of them. The X-structure contains pointsa, b, c,
d, e, f , g, h, andi and in this order.
The information associated with the items in the X- and Y-structure will be explained in the next
section.

10.7.3 The Implementation of the Sweep Line Algorithm
This section is joint work with Ulrike Bartuschka.

The implementation follows the algorithm closely. It makes use of several data types
discussed in earlier chapters. The main “ingredients” are the basic geometric objects and
primitives, sorted sequences for the X- and Y-structure, priority queues for storing events,
and graphs for representing the output.

To make this section self-contained we briefly review the data types used.

Points and Segments:The typesrat point andrat segmentrealize points and segments in
the plane with rational coordinates and are part of the rational kernel. Arat point is specified
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by its homogeneous coordinates of typeinteger– the type of arbitrary precision integers.
If p is a rat point then p.X ( ), p.Y ( ), and p.W ( ) return its homogeneous coordinates
and p.xcoord( ) and p.ycoord( ) return its Cartesian coordinates. Ifx , y, andw are of
type integer with w 6= 0 thenrat point(x, y) and rat point(x, y, w) create therat point
with homogeneous coordinates(x, y, 1) and(x, y, w), respectively. Two points are equal
(operator==) if they agree in their Cartesian coordinates. Arat segmentis specified by its
two endpoints; so ifp andq arerat points thenrat segment(p, q) is the directed segment
with sourcep and targetq. If s is a rat segmentthens.source( ) ands.target( ) return the
source and target ofs, respectively.

There are also points (classpoint) with coordinates of typedouble. The corresponding
segment class is calledsegment. The classespoint andsegmenthave the same interface
asrat point andrat segment. However, the internal representation is different: instead of
storing the homogeneous coordinates asintegers, the Cartesian coordinates are stored as
doubles.

The sweep program can be executed with either the rational or the floating point geometry
kernel. Be aware, however, that the instantiation with the floating point kernel is not fully
reliable, see Section 10.7.2. In the sequel we use POINT to denote the point class and
SEGMENT to denote the segment class.

POINTS and SEGMENTS come with a large number of geometric primitives. In the
sweep program the following primitives are used:

• int compare(POINT p, POINT q)

compares points by their lexicographic order;p precedesq if either
p.xcoord( ) < q.xcoord( ) or
p.xcoord( ) = q.xcoord( ) and p.ycoord( ) < q.ycoord( ). The function returns−1 if
p precedesq, returns 0 ifp andq are equal, and returns+1 otherwise. The
lexicographic order of points is the default order on points.

• int orientation(POINT p, POINT q, POINT r)

computes the orientation of pointsp, q, andr in the plane, i.e., 0 if the points are
collinear,−1 if they define a clockwise oriented triangle, and+1 if they define a
counter-clockwise oriented triangle.

• int orientation(SEGMENTs, POINT p)

computesorientation(s.source( ), s.target( ), p).

• int cmpslopes(SEGMENT s1, SEGMENT s2)
compares the slopes ofs1ands2. If one of the segments is degenerate, i.e., has length
zero, the result is zero. Otherwise, the result is the sign ofslope(s1) − slope(s2).

• bool intersectionof lines(SEGMENT s1, SEGMENT s2, POINT& p)

returnsfalseif segmentss1ands2are parallel or one of them is degenerate.
Otherwise, it computes the point of intersection of the two straight lines supporting the
segments, assigns it to the third parameterq, and returnstrue.
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Our program maintains its own set of segments which we callinternal segmentsor simply
segments and store in the listinternal; input segments are called input segments or original
segments when the need for distinction arises. Internal segments are directed from left to
right; vertical segments are directed upwards. There is one internal segment for every non-
trivial input segment. Themap<SEGMENT, SEGMENT> original stores for each internal
segment the corresponding original segment.

〈local declarations〉�
list<SEGMENT> internal;

map<SEGMENT,SEGMENT> original;

Sorted Sequences:The typesortseq<K , I> realizes sorted sequences of pairs inK ×
I , see Section 5.6;K is called the key type andI is called the information type of the
sequence. The key type must be linearly ordered, i.e., the functionint compare(constK & ,

constK & ) must be defined for the typeK and the relation< on K defined byk1 < k2 iff
compare(k1, k2) < 0 must be a linear order onK . An object of typesortseq<K , I> is a
sequence of items (typeseqitem) each containing a pair inK × I . We use<k, i> to denote
an item containing the pair(k, i) and callk the key andi the information of the item. The
keys in a sorted sequence〈k1, i1〉, 〈k2, i2〉, . . . , 〈km, im〉 form an increasing sequence, i.e.,
kl < kl+1 for 1 ≤ l < m.

Let S be a sorted sequence of typesortseq<K , I> and letk and i be of typeK and I ,
respectively. The operationS.lookup(k) returns the itemit = 〈k, .〉 in S with keyk if there is
such an item and returnsnil otherwise. IfS.lookup(k) == nil thenS.insert(k, i) adds a new
item 〈k, i〉 to S and returns this item. IfS.lookup(k) == it then S.insert(k, i) changes the
information in the itemit to i . If it = 〈k, i〉 is an item ofS thenS.key(it) andS.inf (it) return
k andi , respectively, andS.succ(it) andS.pred(it) return the successor and predecessor item
of it, respectively; the latter operations returnnil if these items do not exist. The operation
S.min( ) returns the first item ofS, S.empty( ) returnstrue if S is empty andfalseotherwise.
Finally, if it1 andit2 are items ofS with it1 beforeit2 thenS.reverseitems(it1, it2) reverses
the subsequence ofS starting at itemit1 and ending at itemit2.

In our implementation the X-structure has typesortseq<POINT, seqitem> and the Y-
structure has typesortseq<SEGMENT, seqitem>. The Y-structure has one item for each
segment intersecting the sweep line. The information field in the Y-structure is used for
cross-links with the X-structure and for linking overlapping segments.

The X-structure is ordered according to the default order of points and the Y-structure is
ordered according to the intersections of the segments with the directed sweep lineL. The
position of the sweep line is determined byp sweepand the comparison objectcmprealizes
the order in the Y-structure. The classsweepcmpwill be defined below.
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〈local declarations〉+�
POINT p_sweep;

sweep_cmp cmp(p_sweep);

sortseq<POINT,seq_item> X_structure;

sortseq<SEGMENT, seq_item> Y_structure(cmp);

In the example of Figure 10.50 the sweep line intersects the segmentss1, s8, s2, s9, s4, and
s3. The Y-structure therefore consists of six items, one each for segmentss1, s8, s2, s9, s4,

ands3.
The X-structure contains an item for each endpoint of an input segment that is to the right

of the sweep line and an item for each intersection point between segments that are adjacent
in the Y-structure and that intersect to the right of the sweep line. It may also contain
intersection points between segments that are not adjacent in the Y-structure.19 The points
in the X-structure are ordered according to the lexicographic ordering of their Cartesian
coordinates. As mentioned above this is the default order on points.

In the example of Figure 10.50 the X-structure contains items for the endpointsb, c, d, e,
g, h, i and for intersectionsa and f . Here,a and f are the intersections between segments
s4 ands3, ands1 ands2, respectively.

The informations associated with the items of both structures serve as cross-links between
the two structures: the information associated with an item in the X-structure is eithernil
or an item in the Y-structure; the information associated with an item in the Y-structure is
eithernil or an item of either structure. The precise definition follows: consider first an item
〈s, it〉 in the Y-structure and lets ′ be the segment associated with the successor itemit ′ in
the Y-structure. Ifs ands ′ overlap thenit = it ′. If s ands ′ do not overlap ands ∩ s ′ exists
and lies to the right of the sweep line thenit is the item in the X-structure with keys ∩ s ′.
In all other cases we haveit = nil.

Consider next an item〈p, sit〉 in the X-structure. Ifsit 6= nil thensit is an item in the
Y-structure and the segment associated with it containsp. Moreover, if there is a pair of
adjacent segments in the Y-structure that intersect inp thensit 6= nil. We may havesit 6= nil
even if there is no pair of adjacent segments intersecting inp.

In our example, the Y-structure contains the items〈s1, sit8〉, 〈s8, xit f 〉, 〈s2, nil〉, 〈s9, nil〉,
〈s4, xita〉, and〈s3, nil〉 wheresit8 is the item of the Y-structure with associated segments8

andxita andxit f are the items of the X-structure with associated pointsa and f , respec-
tively. Let’s turn to the items of the X-structure next. All items except〈d, nil〉 point back
to the Y-structure. Ifsiti denotes the item〈si , . . .〉, i ∈ {1, 2, 9, 4, 3}, of the Y-structure
then the items of the X-structure are〈a, sit4〉, 〈b, sit4〉, 〈c, sit1〉, 〈d, nil〉, 〈e, sit9〉, 〈 f, sit1〉,
〈g, sit2〉, 〈h, sit3〉, and〈i, sit1〉.
The Order on the Y-structure: The segments in the Y-structure are ordered according to
their intersection with the sweep line. Overlapping segments are ordered according to their

19 Our X-structure may contain intersection points between segments that are no longer adjacent in the Y-structure.
These events could be removed from the X-structure. Removing these events would guarantee an X-structure of
linear size, however, at the cost of complicating the code. Since the size of the X-structure is always bounded by
the size of the output graph we do not remove these events.
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ID-number. All segments in the Y-structure are non-trivial and the position of the sweep
line is determined byp sweep.

The Y-structure is realized as a sorted sequence. In a sorted sequence comparisons be-
tween keys are only made during insertions and lookups and then one of the keys involved
in the comparison is an argument of the operation. We conclude that compare is only called
for segmentss1 ands2 where one of the segments has its source point equal top sweep.
Also, at least one of the segments is non-trivial and if one of the segments is trivial it has
both endpoints equal top sweep. Let us assume first that both segments are non-trivial.

Assumesi has its source point equal top sweep. If p sweepdoes not lie ons1−i , i.e.,
orientation(s1−i , p sweep) 6= 0, then the orientation test is also the outcome of compare.

If both segments containp sweepwe compare the slopes ofs1 ands2 (orientation(s2,
s1.target( ))). Only overlapping segments are equal after this comparison. They are ordered
according to their ID-numbers. Since only internal segments are stored in the Y-structure
and since internal segments are pairwise non-identical, any two internal segments have
different ID-numbers.

The compare classsweepcmpis derived fromledacmpbase, see Section 2.10. It has a
private data memberp sweepwhose value will always be equal to the position of the sweep
line; in the constructor the data member is initialized to the initial position of the sweep line
andsetpositionis used to inform the compare object about any advance of the sweep line.

〈geometric primitives〉�
class sweep_cmp : public leda_cmp_base<SEGMENT>

{

POINT p_sweep;

public:

sweep_cmp(const POINT& p) : p_sweep(p) {}

void set_position(const POINT& p) { p_sweep = p; }

int operator()(const SEGMENT& s1, const SEGMENT& s2) const

{ // Precondition:

// p_sweep is identical to the left endpoint of either s1 or s2.

if (identical(s1,s2)) return 0;

int s = 0;

if ( identical(p_sweep,s1.source()) ) s = orientation(s2,p_sweep);

else

if ( identical(p_sweep,s2.source()) ) s = orientation(s1,p_sweep);

else error_handler(1,"compare error in sweep");

if (s || s1.is_trivial() || s2.is_trivial()) return s;

s = orientation(s2,s1.target());

// overlapping segments will be ordered by their ID_numbers :

return s ? s : (ID_Number(s1) - ID_Number(s2));

}

};

We still need to explain the purpose of the testsis trivial . We will also have to locate trivial
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segments in the Y-structure. These segments will have both endpoints equal top sweep.
We want the search to be successful iff the Y-structure contains a segment passing through
p sweep. In the order defined above, the trivial segment(p sweep, p sweep) is larger than
all segments intersecting the sweep line beforep sweep, is equal to all segments passing
throughp sweep, and is larger than all segments intersecting the sweep line afterp sweep.
We conclude that a search for the trivial segment will return a segment passing through
p sweepif there is one.

It is important to observe that the compare function for segments changes as the sweep
progresses. What does it mean then that the keys of the items in a sorted sequence form
an increasing sequence? The requirement is that whenever a lookup or insert operation
is applied to a sorted sequence, the sequence must be sorted with respect to the current
compare function. The other operations may be applied even if the sequence is not sorted.

The Graph G: The graphG has typeGRAPH<POINT, SEGMENT>, i.e., it is a directed
graph where aPOINT, respectivelySEGMENT, is associated with each node, respectively
edge, of the graph. The graphG is the part ofG(S) that is left of the sweep line. The
point associated with a vertex defines its position in the plane and the segment associated
with an edge is an input segment containing the edge. We use two operations to extend the
graphG. If p is a POINT thenG.newnode(p) adds a new node toG, associatesp with
the node, and returns the new node. Ifv andw are nodes ofG ands is aSEGMENTthen
G.newedge(v, w, s) adds the edge(v, w) to G, associatess with the edge, and returns the
new edge. In order to facilitate the addition of edges we maintain amap<SEGMENT, node>
lastnode: it gives for each segment in the Y-structure the rightmost vertex lying on the
segment.

〈local declarations〉+�
map<SEGMENT,node> last_node(nil);

The Priority Queue: We use a priority queuesegqueueto drive the insertion of segments
into the Y-structure. The queue contains all internal segments that are ahead of the sweep
line ordered according to their left endpoint. In particular, the first segment insegqueue
is always the segment that is encountered next by the sweep line.Segqueuehas type
p queue<POINT, SEGMENT>.

The data typep queue<P, I> realizes priority queues with priority typeP and informa-
tion typeI . P must be linearly ordered. Priority queues are an item-based data type. Every
item (of typepqitem) stores a pair(p, i) from P × I , p is called the priority andi is called
the information of the item. The usual operations on priority queues (insert, deletemin,
findmin) are available.

〈local declarations〉+�
p_queue<POINT,SEGMENT> seg_queue;

We are now ready for the program. It has the following structure:
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〈sweepsegments.c〉+�
〈geometric primitives〉
〈embedding〉
void SWEEP_SEGMENTS(const list<SEGMENT>& S, GRAPH<POINT, SEGMENT>& G,

bool embed, bool use_optimization)

{ 〈local declarations〉
〈initialization〉
〈sweep〉
〈post processing〉

}

Initialization: We describe the initialization of the data structures. We clear the graphG,
we compute a coordinateInfinity that is larger than the absolute value of the coordinates
of all endpoints and that plays the role of∞ in our program, we insert the endpoints of
all input segments into the X-structure, and we create for each non-trivial input segment an
internal segment with the same endpoints, insert this segment intosegqueueand link the
input segment to it (through maporiginal), we create two sentinel segments at−∞ and
+∞, respectively, and insert them into the Y-structure, we put the sweep line at its initial
position by settingp sweepto (−∞, −∞), and we add a stopper point with coordinates
(+∞, +∞) to segqueue. The sentinels avoid special cases and thus simplify the code.
Finally, we introduce a variablenextsegthat always contains the first segment insegqueue.

〈initialization〉�
G.clear();

COORD Infinity = 1;

SEGMENT s;

forall(s,S)

{

COORD x1 = s.xcoord1(), y1 = s.ycoord1();

COORD x2 = s.xcoord2(), y2 = s.ycoord2();

if (x1 < 0) x1 = -x1;

if (y1 < 0) y1 = -y1;

if (x2 < 0) x2 = -x2;

if (y2 < 0) y2 = -y2;

while (x1 >= Infinity || y1 >= Infinity ||

x2 >= Infinity || y2 >= Infinity ) Infinity *= 2;

seq_item it1 = X_structure.insert(s.source(), seq_item(nil));

seq_item it2 = X_structure.insert(s.target(), seq_item(nil));

if (it1 == it2) continue; // ignore zero-length segments

POINT p = X_structure.key(it1);

POINT q = X_structure.key(it2);

SEGMENT s1 = ( compare(p,q) < 0 ? SEGMENT(p,q) : SEGMENT(q,p) );

original[s1] = s;

internal.append(s1);

seg_queue.insert(s1.source(),s1);

}

SEGMENT lower_sentinel(-Infinity,-Infinity,Infinity,-Infinity);
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SEGMENT upper_sentinel(-Infinity, Infinity,Infinity, Infinity);

p_sweep = lower_sentinel.source();

cmp.set_position(p_sweep);

Y_structure.insert(upper_sentinel,seq_item(nil));

Y_structure.insert(lower_sentinel,seq_item(nil));

POINT pstop(Infinity,Infinity);

seg_queue.insert(pstop,SEGMENT(pstop,pstop));

SEGMENT next_seg = seg_queue.inf(seg_queue.find_min());

There is one subtle point in the code above. An insert operation into a sorted sequence with
a key that is already present in the sorted sequence returns the item containing the key; it
does not add a new item to the sequence and its does not change the key of the item returned.
We exploit this feature of sorted sequences to ensure that internal segments share endpoints.
Assume for concreteness thats1 ands2 are two input segments with a common source point
and assume thats1 is processed first. When the source point ofs2 is inserted into the X-
structure, the item containing the source point ofs1 will be returned and hence the internal
segments corresponding tos1 ands2 have the same (not just equal) source point20.

Processing Events:We now come to the heart of procedure sweep: processing events. Let
event= 〈p, sit〉 be the first event in the X-structure and assume inductively that our data
structure is correct forp sweep= (p.x, p.y − 2ε). Our goal is to changep sweepto p, i.e.,
to move the sweep line across pointp. As long as the X-structure is not empty we perform
the following actions.

We first extract the next event pointp sweepfrom the X-structure by assigning the min-
imal key in the X-structure top sweep, adjusting the compare function for segments to the
new position of the sweep line, and adding a vertexv with positionp sweepto the output
graphG. Then, we handle all segments passing through or ending atp sweep. Finally,
we insert all segments starting atp sweepinto the Y-structure, check for possible intersec-
tions between pairs of segments now adjacent in the Y-structure, and update the X-structure.
Finally, we delete the event from the X-structure.

〈sweep〉�
while ( !X_structure.empty() )

{ seq_item event = X_structure.min();

p_sweep = X_structure.key(event);

cmp.set_position(p_sweep);

node v = G.new_node(p_sweep);

〈handle passing and ending segments〉
〈insert starting segments〉
〈compute new intersections and update X-structure〉
X_structure.del_item(event);

}

20 A point is realized as a pointer to a representation class. Two points are equal if they have the same Cartesian
coordinates and two points are identical if they share the representation. Testing two points for identity is faster
than testing them for equality.
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Handling Passing and Ending Segments:We first determine the segments passing through
or ending inp sweepand then handle them by reversing their order in the Y-structure.

〈handle passing and ending segments〉�
seq_item sit = X_structure.inf(event);

if (sit == nil) sit = Y_structure.lookup(SEGMENT(p_sweep,p_sweep));

seq_item sit_succ = nil;

seq_item sit_pred = nil;

seq_item sit_pred_succ = nil;

seq_item sit_first = nil;

if (sit != nil)

{ 〈determine passing and ending segments〉
〈reverse order of passing segments〉

}

We first determine whether there is any segment passing through or ending inp sweep.
Recall that the current event is〈p sweep, sit〉.

If sit 6= nil, the segment associated withsit containsp sweep. If sit = nil, there is no pair
of adjacent non-overlapping segments in the Y-structure intersecting inp sweep. However,
there may be a bundle of overlapping segments in the Y-structure that containp sweep. We
can decide whether there is such a bundle and determine some segment in the bundle by
locating the pointp sweepin the Y-structure21. We defined the comparison function for
segments such that a search for the trivial segment(p sweep, p sweep) in the Y-structure is
successful iff the Y-structure contains a segment containingp sweep.

If there is no segment in the Y-structure containingp sweep, there is nothing to do. As-
sume otherwise. Thensit points to one such segment. We determine all such segments. The
corresponding items form a subsequence of the Y-structure, see Figure 10.51. We compute
the first (sit first) and last (sit last) item of this bundle of items and also the predecessor
(sit pred) and successor (sit succ) item of the bundle. We also store insit predsucc the
successor ofsit predbefore the insertion, i.e,sit first.

The items in the bundle are easily recognized by their informations. The information of
every item in the bundle except for the last is either equal to the current event itemevent
or equal to the successor item in the Y-structure (in the case of a segment overlapping with
its successor). The information of the last item in the bundle is eithernil or an item in the
X-structure different fromevent(such an item stands for an intersection withsit succ).

We determine the items in the bundle as follows. Starting atsit we first walk up until
sit succis reached. Then we walk down tosit pred. During the downward walk we also
start to update the data structures. For every segments in the bundle we do the following:

• We add an edge toG connectinglastnode[s] andv and label it withs. The new edge
gets its direction from the original segment containing it, ifembedis false, and is
directed fromv to lastnode[s], if embedis true.

21 The Y-structure contains segments and hence only segments can be located in it. In order to locate the point
p sweepin the Y-structure, we locate the zero-length segment(p sweep, p sweep) instead.
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Figure 10.52 The edges out ofv are constructed in the order(v, u1), (v, u2), (v, u3), (v, u4).

• If s ends atp sweepthen we delete it from the Y-structure. If the predecessor segment
overlaps withs, we copy the information about the successor segment ofs (if any) to
the predecessor and set a flag that the downward walk is not finished yet.

• If s continues throughp sweepthen we change the intersection information associated
with it to nil and setlastnodeto v.

We explain why we direct the edge constructed for a segments from v to lastnode[s] if
embedis true. Sincenewedgeappends the edge constructed to the list of outgoing edges
of v and since we construct edges during the downward walk the edges out ofv will be
constructed in their proper counter-clockwise order, see Figure 10.52. We will exploit this
fact when we construct the planar embedding ofG in the post-processing step.

The identification of the subsequence of segments incident top sweeptakes constant time
per element of the sequence. Moreover, the constant is small since the test of whetherp
is incident to a segment involves no geometric computation but only identity tests between
items. The code is particularly simple due to our sentinel segments:sit can never be the
first or last item of the Y-structure.
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〈determine passing and ending segments〉�
// walk up

while ( Y_structure.inf(sit) == event ||

Y_structure.inf(sit) == Y_structure.succ(sit) )

sit = Y_structure.succ(sit);

sit_succ = Y_structure.succ(sit);

seq_item sit_last = sit;

if ( use_optimization ) { 〈optimization, part 1〉 }

// walk down

bool overlapping;

do

{ overlapping = false;

s = Y_structure.key(sit);

if ( !embed && s.source() == original[s].source() )

G.new_edge(last_node[s], v, s);

else

G.new_edge(v, last_node[s], s );

if ( identical(p_sweep,s.target()) ) // ending segment

{

seq_item it = Y_structure.pred(sit);

if ( Y_structure.inf(it) == sit )

{ overlapping = true;

Y_structure.change_inf(it, Y_structure.inf(sit));

}

Y_structure.del_item(sit);

sit = it;

}

else // passing segment

{

if ( Y_structure.inf(sit) != Y_structure.succ(sit) )

Y_structure.change_inf(sit, seq_item(nil));

last_node[s] = v;

sit = Y_structure.pred(sit);

}

} while ( Y_structure.inf(sit) == event || overlapping ||

Y_structure.inf(sit) == Y_structure.succ(sit) );

sit_pred = sit;

sit_first = Y_structure.succ(sit_pred);

sit_pred_succ = sit_first;

All segments in the bundle starting withsit first and ending insit last pass through node
v and moving the sweep line throughp sweepchanges the order of these segments in the
Y-structure. More precisely, ifs and s′ are two segments passing throughp sweepthen
moving the sweep line throughp sweepreverses their order iffs ands′ do not overlap.

If the bundle is non-empty, we update its order as follows: first we reverse all subse-
quences of overlapping segments and then we reverse the entire bundle, see Figure 10.53.

The bundle of segments passing throughp sweepis empty iffsit first is equal tosit succ.
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Figure 10.53 Three segments passing throughp sweep, two of them overlapping. The order of
the segments is reversed, but the order within the sub-bundle of overlapping segments is retained.

〈reverse order of passing segments〉�
sit = sit_first;

// reverse subsequences of overlapping segments (if existing)

while ( sit != sit_succ )

{ seq_item sub_first = sit;

seq_item sub_last = sub_first;

while (Y_structure.inf(sub_last) == Y_structure.succ(sub_last))

sub_last = Y_structure.succ(sub_last);

if ( sub_last != sub_first )

Y_structure.reverse_items(sub_first, sub_last);

sit = Y_structure.succ(sub_first);

}

// reverse the entire bundle

if ( sit_first != sit_succ )

Y_structure.reverse_items(Y_structure.succ(sit_pred),

Y_structure.pred(sit_succ));

Insertion of Starting Segments:The last step in handling the event pointp sweepis to in-
sert all segments starting atp sweepinto the Y-structure and to test the new pairs of adjacent
items(sit pred, . . .) and(. . . , sit succ) for possible intersections. If there were no segments
passing through or ending inp sweepthen the itemssit succandsit predstill have the value
nil and we have to compute them now.

We use the priority queuesegqueueto find the segments to be inserted. As long as the
first segment insegqueuestarts atp sweep, i.e.,nextseg.source( ) is identical22 to p sweep,
we remove it from the queue and locate it in the Y-structure. Lets it be the item returned by
locateand letp sit be its predecessor.

We insertnextsegafters it into the Y-structure; this will add an itemsit to the Y-structure.
We set the information ofsit to ssit if the new segment overlaps with the segment associated

22 Recall that we ensured that endpoints of internal segments that are equal are identical.
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with ssit and we set it tonil otherwise. Similarly, if the new segment overlaps with the
segment associated withp sit we change the information ofp sit to sit.

We associate the new itemsit with the right endpoint ofnextsegin the X-structure; note
that the point is already there but it does not have its link to the Y-structure yet. We also set
lastnode[s] to v, and if sit succandsit pred are still undefined, i.e, there was no segment
passing through or ending inp sweep, we set them to the successor and predecessor of the
new item, respectively, and we setsit predsuccto sit succ.

〈insert starting segments〉�
while ( identical(p_sweep,next_seg.source()) )

{ seq_item s_sit = Y_structure.locate(next_seg);

seq_item p_sit = Y_structure.pred(s_sit);

s = Y_structure.key(s_sit);

if ( orientation(s, next_seg.start()) == 0 &&

orientation(s, next_seg.end()) == 0 )

sit = Y_structure.insert_at(s_sit, next_seg, s_sit);

else

sit = Y_structure.insert_at(s_sit, next_seg, seq_item(nil));

s = Y_structure.key(p_sit);

if ( orientation(s, next_seg.start()) == 0 &&

orientation(s, next_seg.end()) == 0 )

Y_structure.change_inf(p_sit, sit);

X_structure.insert(next_seg.end(), sit);

last_node[next_seg] = v;

if ( sit_succ == nil )

{ sit_succ = s_sit;

sit_pred = p_sit;

sit_pred_succ = sit_succ;

}

// delete minimum and assign new minimum to next_seg

seg_queue.del_min();

next_seg = seg_queue.inf(seg_queue.find_min());

}

Computing New Intersections: If sit pred still has the valuenil, there were no ending,
passing or starting segments and hencep sweepis an isolated point and we are done. Iso-
lated points result from segments of length zero.

So assume thatsit pred exists. We have to update its information field (which still has
the value from before the event). We set it tonil if there is no intersection betweensit pred
and its successor. If the intersection exists, we insert it into the X-structure and set the
information field ofsit pred to it. If there are segments leavingp sweep, i.e, sit pred is
not the predecessor ofsit succ, we also check for an intersection betweensit succand its
predecessor.



10.7 Line Segment Intersection 751

〈compute new intersections and update X-structure〉�
if ( sit_pred != nil )

{ if ( !use_optimization )

{ Y_structure.change_inf(sit_pred,seq_item(nil));

compute_intersection(X_structure, Y_structure, sit_pred);

sit = Y_structure.pred(sit_succ);

if ( sit != sit_pred )

compute_intersection(X_structure, Y_structure, sit);

}

else

{ 〈optimization, part 2〉 }

}

The functioncomputeintersectiontakes an itemsit0 of the Y-structure and determines
whether the segment associated withsit0 intersects the segment associated with its suc-
cessor itemsit1 to the right of the sweep line. If so, it updates the X- and the Y-structure.
Let s0 ands1 be the segments associated withsit0 andsit1, respectively, and let̀0 and`1

be the supporting lines ofs0 ands1, respectively.
We know thats0 intersects the sweep lineL befores1. Thuss0 ands1 intersect right of the

sweep line if the right endpoint ofs1 lies below or oǹ 0 (orientation(s0, s1.target( )) ≥ 0)
and the right endpoint ofs0 lies above or oǹ1 (orientation(s1, s0.target( )) ≤ 0).

If the segments intersect, we compute the point of intersection, call itq, by a call of
s0.intersectionof lines(s1, q), insert a new pair (q, sit0) into the X-structure and associate
this pair withsit0 in the Y-structure.

〈geometric primitives〉+�
static void compute_intersection(sortseq<POINT,seq_item>& X_structure,

sortseq<SEGMENT,seq_item>& Y_structure, seq_item sit0)

{ seq_item sit1 = Y_structure.succ(sit0);

SEGMENT s0 = Y_structure.key(sit0);

SEGMENT s1 = Y_structure.key(sit1);

if ( orientation(s0,s1.target()) <= 0 &&

orientation(s1,s0.target()) >= 0 )

{ POINT q;

s0.intersection_of_lines(s1,q);

Y_structure.change_inf(sit0, X_structure.insert(q,sit0));

}

}

Post Processing:We associate with each edge ofG an input segment containing it. This is
easily done as each edge has an internal segment associated with it. Thus we only have to
replaceG[e] by original[G[e]].

The graphG constructed during the sweep is planar but is not in the form of a planar map
yet. In particular, the order of the adjacency lists depends on the insertion order.

Whenembedis true, we turnG into a planar map.
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Figure 10.54 Before the call of embedding there is only one edge leaving node 1, namely, the
edgee. There are three parallel edges(2, 1); their counter-clockwise order around node 2 is in
decreasing order of ID-number. We need to add the reversals of the edgesa, b, c, andd to the list
of edges out of 1. Sorting the edges by increasing slope and edges of equal slope by ID-number
gives the desired order.

〈post processing〉�
if (embed) construct_embedding(G);

edge e;

forall_edges(e, G) G[e] = original[G[e]];

Whenembedis trueall edges ofG are directed from right to left (vertical edges are directed
downwards). Moreover, the edges out of any node are already in their proper counter-
clockwise order.

In order to turnG into a planar map we need to add the reversal of every edge and to
insert the new edges at their proper position into the adjacency lists.

Edge reversals are directed from left to right (the reversal of a vertical edge is directed
upwards). The proper order of edge reversals is therefore by slope. Reversals of parallel
edges should be ordered by ID-number. Consider Figure 10.54.

Let R be a copy (!!!) of the set of all edges ofG. We useR instead ofE to indicate thatR
represents the set of edge reversals. We sort the edges inR according to slope and then add
for each edgee in R the edge(target(e), source(e)) to G. Since new edges are appended to
the lists of outgoing edges, this will result in properly ordered adjacency lists.

〈embedding〉�
class sweep_cmp_edges : public leda_cmp_base<edge>

{

const GRAPH<POINT,SEGMENT>& G;

public:

sweep_cmp_edges(const GRAPH<POINT,SEGMENT>& g): G(g) {}

int operator()(const edge& e1, const edge& e2) const

{ SEGMENT s1 = G[e1];

SEGMENT s2 = G[e2];

int c = cmp_slopes(s1,s2);

if (c == 0) c = compare(ID_Number(s1),ID_Number(s2));

return c;

}

};
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static void construct_embedding(GRAPH<POINT,SEGMENT>& G)

{

list<edge> R = G.all_edges();

sweep_cmp_edges cmp(G);

R.sort(cmp);

edge e;

forall(e,R)

{ edge r = G.new_edge(target(e),source(e),G[e]);

G.set_reversal(e,r);

}

}

In the post-processing step we first compute the embedding and then replace internal seg-
ments by input segments. It would be incorrect to change the order of two steps: first, the
ordering of the Y-structure is an ordering on internal segments and we must use the same
ordering in the embedding step. Second, the input may contain multiple occurrences of
the same segment and the ordering by ID-number does not break ties between identical
segments.

An Optimization: The running time of SWEEPSEGMENTS isO((n+s) log(n+m)+m)

wheren is the number of segments,s is the number of nodes ofG andm is the number of
edges ofG. If there are no overlapping segments thenm = O(n + s) sinceG is planar.
In the presence of overlapping segments,m may be as large asn(n + s). The time bound
can be seen as follows. There areO(n + k) lookups, insertions, and deletions in the X- and
Y-structure, each for a cost ofO(log(n + m)). Observe thatn + m is an upper bound on
the number of items in the Y-structure and thatn + s is an upper bound on the number of
items in the X-structure. Sinces ≤ n2 we have log(n + s + m) = O(log(n + m)). The total
number of items handled by thereverseitemsoperations on the Y-structure isO(m). Since
the cost ofreverseitemsis proportional to the number of items reversed, the total cost for
all reverseitemsoperations isO(m). The number of operations onG is O(n +k +m), each
for a cost ofO(1).

Experiments show that a significant fraction of the running time is spent in the geometric
primitivessweepcmpandcomputeintersection, in particular, if the rational kernel is used
(which we recommend). The rational kernel has a built-in floating point filter, i.e., all geo-
metric tests are first performed in floating point arithmetic, the rounding error is estimated,
and only if the error estimation indicates that the result of the floating point computation
may be wrong, the computation is repeated with exact arithmetic. The floating point filter
is discussed in detail in Section 9.7.

The functioncomputeintersectionperforms orientation tests and computes an intersec-
tion point. The floating point filter applies to the orientation tests but does not apply to the
computation of intersection points since constructions of new points are always performed
with exact arithmetic.

The functioncomputeintersectionis called whenever two segments become adjacent in
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Figure 10.55 The intersectionp is first discovered whent is inserted into the Y-structure and is
rediscovered whens is removed from the Y-structure.

the Y-structure. Segments may become adjacent in the Y-structure more than once, see
Figure 10.55. We show how to avoid the recomputation of intersections.

We maintain a dictionaryinter dic which maps pairs of segments to items in the X-
structure. The appropriate data type is a two-dimensional map.

〈local declarations〉+�
map2<SEGMENT,SEGMENT,seq_item> inter_dic(nil);

Whenever a pair of segments that is adjacent in the Y-structure becomes non-adjacent we
store their intersection in the dictionary and whenever a pair of segments becomes adjacent
we consult the dictionary to find out whether their intersection was already computed.

When processing an event two intersections may get lost. Consider the sequence of
items corresponding to segments passing through or ending inp sweep. Let sit last be the
last item in this sequence and letsit pred and sit succbe the items before and after the
sequence, respectively;sit last does not exist if there are no segments passing through or
ending inp sweep.

Sweeping throughp sweepreverses the subsequence starting withsit first and ending
with sit last and hence two intersections can get lost, the intersection stored insit last and
the intersection stored insit pred. The intersection stored insit last is with the segment
associated withsit succand the intersection stored insit pred is with the segment associated
with the successor ofsit pred. This is the itemsit predsucc.

〈optimization, part 1〉�
seq_item xit = Y_structure.inf(sit_last);

if (xit) { SEGMENT s1 = Y_structure.key(sit_last);

SEGMENT s2 = Y_structure.key(sit_succ);

inter_dic(s1,s2) = xit;

}

〈optimization, part 2〉�
seq_item xit = Y_structure.inf(sit_pred);
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if ( xit )

{ SEGMENT s1 = Y_structure.key(sit_pred);

SEGMENT s2 = Y_structure.key(sit_pred_succ); // sit_first

inter_dic(s1,s2) = xit;

Y_structure.change_inf(sit_pred, seq_item(nil));

}

compute_intersection(X_structure, Y_structure,inter_dic,sit_pred);

sit = Y_structure.pred(sit_succ);

if ( sit != sit_pred )

compute_intersection(X_structure, Y_structure,inter_dic,sit);

We also need to change the functioncomputeintersection. Before computing an intersection
point we check whether the two segments already have an intersection event in the X-
structure by a lookup ininter map. If the lookup fails we compute the intersection and add
it to the X-structure.

〈geometric primitives〉+�
static void compute_intersection(sortseq<POINT,seq_item>& X_structure,

sortseq<SEGMENT,seq_item>& Y_structure,

const map2<SEGMENT,SEGMENT,seq_item>& inter_dic,

seq_item sit0)

{ seq_item sit1 = Y_structure.succ(sit0);

SEGMENT s0 = Y_structure.key(sit0);

SEGMENT s1 = Y_structure.key(sit1);

if ( orientation(s0,s1.target()) <= 0 &&

orientation(s1,s0.target()) >= 0 )

{

seq_item it = inter_dic(s0,s1);

if ( it == nil)

{ POINT q;

s0.intersection_of_lines(s1,q);

it = X_structure.insert(q,sit0);

}

Y_structure.change_inf(sit0, it);

}

}

10.7.4 Experimental Evaluation of the Sweep Line Algorithm
We report about tests forthree kinds of test data, namely random, difficult, and highly de-

generate inputs,three different implementations of points and segments, namely the floating
point kernel (FK), the rational kernel (RK) and the rational kernel with turned-off floating
point filter (FK−), andwith and without the optimization. We describe the test data, list
running times, and comment on the results.

Random Inputs: The random data set consists ofn segments whose endpoints have random
k bit coordinates. Table 10.8 gives the number of nodes and edges of the output graph and
the running time forn = 200 and different values ofk. The experiments indicate that the
optimization described above and the floating point filter are effective. The optimization
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k V E RK− RK−O RK RKO FK FKO

10 4813 9028 2.27 2 1.2 1.09 0.73 0.67
20 4742 8884 2.63 2.19 1.31 1.1 0.7 0.67
30 5467 10334 3.07 2.57 1.52 1.26 0.8 0.77
40 5478 10356 3.78 3.13 1.69 1.38 0.81 0.77
50 5168 9736 3.66 3.13 1.62 1.3 0.76 0.73
60 5558 10516 4.36 3.59 1.81 1.43 0.82 0.79
70 5909 11218 5.2 4.23 2.13 1.6 0.86 0.83
80 5174 9748 4.75 3.78 1.86 1.43 0.78 0.74
90 4808 9016 4.86 3.82 1.77 1.34 0.71 0.68

100 5080 9560 5.92 4.5 2.12 1.54 0.75 0.73

Table 10.8 200 random segments, coordinates are randomk-bit integers. An “O” indicates the
use of the optimization.

is more effective for the rational kernels because the computation of intersections is more
costly in exact arithmetic. Floating point arithmetic is faster than exact arithmetic but the
difference is never more than a factor of two in running time. We have to admit though that
the difference can be made arbitrarily larger by choosing larger values ofk.

Difficult Inputs: Let size= 2k and lety = 2size/(n − 1). The random data set consists
of n segments where thei -th segment has endpoints(size+ rx1, size+ i · y + ry1) and
(3 · size+ rx2, 3 · size− i · y + ry2) andrx1, rx2, ry1, ry2 are random integers in [−s, s] for
some small integers. For s = 0 all segments in the difficult data set pass through the point
(2·size, 2·size), and for small but non-zero values ofs they intersect in the neighborhood of
this point. Table 10.9 gives the results for the difficult data set withs = 10,k = 10, 20,. . .
, 100, andn = 200. The floating point filter and the optimization are again quite effective.
The floating point implementation produced incorrect results for all values ofk; the floating
point implementation does, however, work correctly for smaller values ofn and/or larger
values ofs.

Highly Degenerate Inputs: The highly degenerate test set consists ofn segments with
random coordinates in a small grid with side lengths. For example, forn = 100 and
s = 10 one should expect a large number of degeneracies. We used this test set to support
our claim that the algorithm handles all degeneracies. We do not report running times for
the highly degenerate inputs.

The readers may perform their own experiments by running either the sweeptime pro-
gram in the demo directory or the sweepsegmentsdemo in xlman.

We were surprised by two outcomes of our experiments.
First, we expected the implementation using the rational kernel to be much slower than

the floating point computation and not just by a factor of two. We achieve the small factor by
the use of the floating point filter, by the optimization which avoids the costly recomputation
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k V E RK− RK−O RK RKO FK FKO

10 20134 39669 9.84 8.29 5.07 4.46 error error
20 20298 39997 11.75 9.71 5.65 4.64 error error
30 20296 39994 12.33 10.5 6.04 4.88 error error
40 20298 39997 14.79 11.71 6.5 5.13 error error
50 20300 40000 16.12 12.5 6.7 5.22 error error
60 20298 39997 16.32 12.95 6.91 5.45 error error
70 20300 40000 18.77 14.84 7.51 5.69 error error
80 20300 40000 19.82 15.91 7.62 5.72 error error
90 20298 39997 21.27 16.25 7.68 5.71 error error

100 20296 39994 24.61 18.39 8.58 6.24 error error

Table 10.9 The difficult example with 200 segments. An “O” indicates the use of the
optimization and error indicates that the computation with the floating point kernel gave the
incorrect result.

of intersections, and by the observation that many equality tests for points can be replaced
by tests for identity of points.

Second, we expected the floating point implementation to have difficulties with the dif-
ficult example. However, we were surprised by the fact that it never crashed. It always
produced an output, albeit an incorrect one. We try to explain this phenomenon by argu-
ing that the program does not crash as long as the sentinels are handled correctly, i.e, the
segmentslowersentinelanduppersentinelhave all segments between them and all inter-
section points precedepstop. We do not care what the geometric tests do with segments
that are not sentinels. If sentinels are handled correctly, every lookup in the Y-structure will
return an item different from the first item in the Y-structure23. Also the walks performed in
the Y-structure will determine a subsequence that does not include the sentinel items. For
this reason none of the operations on the Y-structure will fail; i.e., it will never happen that
we ask for the successor of the last or the predecessor of the first item. Also sincepstopis
handled correctly, we will never attempt to extractnextsegfrom an emptysegqueue.

Exercises for 10.7
1 Let G0 andG1 be graphs of typeGRAPH<POINT, SEGMENT>. Write a function that

checks whether the graphs are isomorphic, i.e., whether there are bijectionsiV : V0 →
V1 andiE : E0 → E1 such thatG0[v] = G1[iV (v)] for all nodes ofG0 and such that
iE (e) = (iV (v), iV (w)) andG0[e] = G1[iE (e)] for all edgese = (v, w) of G0.

2 Use the solution to the previous exercise to write a function that runs two implemen-
tations of SEGMENTINTERSECTION and then checks the computed graphs for iso-
morphism.

23 This sentence requires knowledge of the implementation of sorted sequences. The implementation is such that if
the comparisons with the first and the last element of the sorted sequence are correct and the outcome of any other
comparison is arbitrary, lookup will not return the first element.
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3 Write a trivial implementation ofSEGMENTINTERSECTION(G, report) that simply
checks every pair of segments for an intersection.

4 Extend the sweep line algorithm or any of the other algorithms such that it computes the
trapezoidal decomposition induced by a set of segments.

10.8 Polygons

We define the types polygon and generalized polygon. A polygon is an open region of the
plane whose boundary is a closed polygonal chain24 and a generalized polygon is anything
that can be obtained from polygons by regularized set operations. Both classes offer func-
tions for point location, for intersection with lines and segments, and for moving objects
around. Generalized polygons offer, in addition, the regularized set operations complement,
union, intersection, difference, and symmetric difference.

This section is structured as follows: in Section 10.8.1 we discuss the functionality of
polygons and generalized polygons, in Section 10.8.2 we give the essentials of the im-
plementation of polygons, in Section 10.8.3 we give the mathematics underlying the rep-
resentation of generalized polygons, and in Section 10.8.4 we give the highlights of the
implementation of generalized polygons.

We advise you to exercise the polygon demo in xlman before reading this section, see
Figure 10.56.

10.8.1 Functionality
A closed polygonal chainP is a cyclic sequence(p0, p1, . . . , pn−1) of points. The points
are called the vertices of the chain and the number of vertices is called the size of the chain.
The vertices of a closed polygonal chain are indexed modulo the sizen of the chain, in
particular, pn = p0. A closed polygonal chain induces a setS(P) of segments, namely
the set of segmentspi pi+1, 0 ≤ i ≤ n − 1, connecting consecutive vertices. A closed
polygonal chain is calledsimpleif all nodes of the graphG(S(P)) defined by the segments
in S(P) have degree equal to two, i.e., if no two segments inS(P) except for consecutive
segments share a point. A closed polygonal chainP is calledweakly simpleif the segments
in S(P) are disjoint except for common endpoints25 and if the chain does not cross itself.
Figure 10.57 shows some examples.

A weakly simple polygonal chain splits the plane into an unbounded region and one or
more bounded regions. For a simple polygonal chain there is just one bounded region.
When a weakly simple polygonal chainP is traversed either the bounded region is consis-
tently to the left ofP or the unbounded region is consistently to the left ofP; this follows
from the fact that a weakly simple chain does not cross itself. We say thatP is positively
oriented in the former case and negatively oriented in the latter case. We call the region

24 A precise definition is given below.
25 It is allowed that segments that are not consecutive onP share an endpoint.
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Figure 10.56 A screen shot of the polygon demo in xlman. The display shows a generalized
polygon. The boundary cycles are indicated by arrows and the inside of the polygon is shaded.
The various buttons allow the user to construct polygons by mouse input or by calling
generators, to force vertices to a grid, to compute intersections, unions, differences, and
symmetric differences, to perform point location queries, and to compute complements.

to the left of P the positive side ofP. We overload notation and useP also to denote the
positive side ofP, see Figure 10.58. The positive side ofP is an open set andP is its
boundary.

Frequently, we do not want to distinguish between a polygonal chain and the polygonal
region defined by it. We use the wordpolygonto cover both aspects.

We have two classes of polygons:rat polygonshave rat points as their vertices and
polygonshavepointsas their vertices. Both classes offer essentially the same function-
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Figure 10.57 P is simple andQ is weakly simple but not simple.R is not weakly simple
because it crosses itself atr = r1 = r4, andS is not weakly simple sinces2 lies in the interior of
another segment.
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P

Figure 10.58 The bounded region is to the left ofP; P is positively oriented. The unbounded
region is to the left ofQ, Q is negatively oriented.

ality, but, of course, onlyrat polygonsguarantee correct results. We userat polygonsin this
section.

The declarations

rat polygon P1;

rat polygon P2(const list<rat point>& pl,

CHECK TYPE check = rat polygon::SIMPLE,

bool respect orientation =

rat polygon::RESPECT ORIENTATION);

introduce polygonsP1 andP2; P1 is initialized to the empty polygon andP2 is initial-
ized to the polygon with vertex sequencepl. The second argument takes one of the values



10.8 Polygons 761

NO CHECK, SIMPLE, WEAKLY SIMPLE of a local enumeration type CHECKTYPE.
If check is SIMPLE, the polygon must be simple, and ifcheck is WEAKLY SIMPLE,
the polygon must be weakly simple. The third argument takes one of the values RE-
SPECTORIENTATION or DISREGARDORIENTATION. If respectorientationis DIS-
REGARD ORIENTATION, the orientation ofpl is chosen such that the bounded region
with respect topl lies to the left ofpl. The meaning of this flag is undefined ifpl is not
weakly simple.

Simplicity and weak simplicity can also be checked by the functions

bool P.is simple();

bool P.is weakly simple();

Assignment and copy constructor are available for polygons. The functions

list<rat point> P.vertices();

list<rat segment> P.edges();

return the list of vertices and the list of segments ofP, respectively. The second function is
also available asP.segments( ).

Let l be a line and lets be a segment. The functions

list<rat point> P.intersection(l);

list<rat point> P.intersection(s);

return the crossings between the chainP andl or s, respectively. The function

rat polygon P.complement()

returns the polygon whose list of vertices is the reversal ofP ’s list. If P is weakly simple,
the positive side of the complement is the negative side ofP and vice versa.

The remaining functions for polygons assume thatP is weakly simple. Their meaning is
undefined ifP is not weakly simple.Recall that a weakly simple polygonP splits the plane
in an unbounded region and one or more bounded regions. Also recall that we designated
the region(s) to the left ofP as the positive side ofP and useP also for the positive side of
P.

Let p be a point. The function

int P.side of(p);

returns the side ofP to which p belongs, i.e.,+1 if p belongs to the positive side, 0 ifp
lies onP, and−1 if p belongs to the negative side, see Figure 10.59. The function

region kind P.region of(p);

returns the region with respect toP to which p belongs, i.e., BOUNDEDREGION if p lies
in the bounded region ofP, ON REGION if p lies onP, and UNBOUNDEDREGION if
p lies in the unbounded region. One can also ask for the containment in a specific region
by

bool P.inside(p);

bool P.on boundary(p);

bool P.outside(p);
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Figure 10.59 Side-of tests: We performed side-of tests with respect to the generalized polygon
of Figure 10.56 for 5000 random points. The points on the different sides are shown at different
grey level.

P Q

R

Figure 10.60 The intersection ofP andQ is a line segment;R \ (P ∩ Q) is a rectangle minus a
line segment.

The function

RAT TYPE P.area();

returns the signed area of the bounded region ofP. The sign of the area is positive ifP is
positively oriented and is negative ifP is negatively oriented.

We come to generalized polygons. The class of polygons is not closed under boolean
operations. In fact, very strange objects can be generated from polygons by boolean opera-
tions, see Figure 10.60. The class of generalized polygons encompasses all sets that can be
constructed from polygons by the so-calledregularized set operations, see [Req80, TR80,
Hof89]. We refer the reader to [Nef78] for the general case.

In order to define the regularized set operations we need to review some elementary
concepts of topology. For a setX we use intX , cl X , bdX , and cplX to denote itsinterior,
closure, boundary, andcomplement, respectively. An open setX is calledregular if X =
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Figure 10.61 In (a), the polygonsPandQ share an edge,P ∩ Q is a closed line segment, and
reg(P ∩ Q) is the empty set. In (b),P \ Q is the half-closed region between the cyclesP andQ;
the chainP does not belong toP \ Q and the chainQ belongs to it. The regularized set
difference reg(P \ Q) is the open region with boundariesP andQ.

int cl X . The following sets are non-regular: the plane minus a single point or the plane
minus a line. A set is calledpolygonalif its boundary consists of a finite number of points
and open line segments. The regularization of a setX is defined as int clX ; we use regX
as a shorthand for int clX . We show that regularization generates regular sets and that the
regularized set operations26 applied to regular polygonal regions generate regular polygonal
regions, see Figure 10.61.

Lemma 70

(a) Let X be any set. ThenregX is regular.
(b) Let X be any open set.X is regular iff X and int cpl X have the same boundary.
(c) Let P be a weakly simple polygonal chain. Then the bounded region and the unbounded

region with respect toP are regular polygonal sets.
(d) If P andQ are regular polygonal regions then so arereg cplP, reg(P ∩Q), reg(P ∪Q),

reg(P \ Q), andreg(P ⊕ Q).

Proof We start with part (a). LetX be any set and letY = regX . We need to show thatY
is regular. We haveY ⊆ cl Y and henceY ⊆ int cl Y sinceY is open. We haveY ⊆ cl X by
definition ofY and hence clY ⊆ cl cl X = cl X . Thus int clY ⊆ int cl X = Y .

We turn to part (b). Assume first thatX is regular, i.e.,X = int cl X , and letx be any
point in the boundary ofX . Thenx ∈ cl X \ X sinceX is open. Assume that there is a
neighborhoodU of x such thatU ∩ int cpl X = ∅. ThenU ⊆ cl X and hencex ∈ int cl X ,
a contradiction to the regularity ofX .

To prove the converse we observe thatX ⊆ int cl X sinceX is open. We need to show
that the containment is not proper. Consider any pointx ∈ bdX . By assumption every
neighborhoodU of x hasU ∩ int cpl X 6= ∅. Thusx 6∈ int cl X and hence int clX ⊆ X .

For part (c) we observe that the boundary of the bounded as well as the unbounded
region with respect toP is equal toP and hence both regions are certainly polygonal. The
regularity of both regions follows from part (b) and the fact thatP is weakly simple.

26 The regularized union of two setsX andY is defined as reg(X ∪ Y ); the definition of the other regularized set
operations is analogous.
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The results of the regularized set operations are certainly polygonal; regularity follows
from part (a).

The classesrat genpolygonandgenpolygonrepresent regular polygonal regions over the
rational and the floating point kernel, respectively. In our examples we userat genpolygons;
genpolygonstands for generalized polygon.

The constructors

rat gen polygon P;

rat gen polygon Q(rat polygon R);

construct the empty generalized polygon and the generalized polygon corresponding toR,
respectively. The second constructor requires thatR is a weakly simple polygon. There are
two special generalized polygons, the empty one and the full one. Thefull polygonis the
entire plane.

The functions

bool P.is empty();

bool P.is full();

return true ifP is the empty set or the entire plane, respectively.
If p is a point andP is a generalized polygon then

bool P.side of(p)

returns+1 if p ∈ P, returns 0 ifp lies onP, and returns−1 otherwise, see Figure 10.59.
The function

region kind P.region of(p);

returns the region with respect toP to which p belongs, i.e., BOUNDEDREGION if p lies
in the bounded region ofP, ON REGION if p lies onP, and UNBOUNDEDREGION if
p lies in the unbounded region. The bounded region of the empty polygon is empty and the
bounded region of the full polygon is the entire plane.
The function

RAT TYPE P.area();

returns the signed area of the bounded region ofP. The sign of the area is positive ifP
is bounded and is negative ifP is unbounded. This function cannot be applied to the full
polygon.

For the following operations letP andQ be generalized polygons.

rat gen polygon P.complement()

returns the regularized complement ofP and

gen rat polygon P.unite(Q);

gen rat polygon P.intersection(Q);

gen rat polygon P.diff(Q);

gen rat polygon P.sym diff(Q);
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P

Q
P ∩ Q

P ∪ Q

P \ Q

Figure 10.62 Two polygonsP andQ and the results of the three boolean operations∩, ∪, and\.

P

Q
P ∩ Q

P ∪ Q

P \ Q

Figure 10.63 Two polygonsP andQ and the results of the three boolean operations∩, ∪, and
\. Observe that the positive side ofQ is unbounded.

return reg(P ∪ Q), reg(P ∩ Q), reg(P \ Q), and reg(P ⊕ Q), respectively. The wordunion
is a reserved word of C++, hence the nameunite for the union-operation. Figures 10.62
and 10.63 show some examples.

A generalized polygon can be represented by its boundary cycles as will be explained in
Section 10.8.3. The function
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Figure 10.64 The complement of the generalized polygon of Figure 10.56. Observe that the
orientation of all boundary cycles is reversed.

list<rat polygon> P.polygons();

returns the list of boundary cycles ofP. The list is ordered according to nesting, i.e., if a
boundary cycleD is nested in a boundary cycleC, thenC is beforeD in the list of boundary
cycles.

10.8.2 The Implementation of Polygons
Polygons are a handle type, i.e., a polygon is realized as a pointer to a representation class
(calledpolygonrepandrat polygonrep, respectively) which contains the actual representa-
tion. The member functionptr( ) of class polygon returns the pointer to the representation
object.

The representation consists of a list of points, a list of segments, four extreme points,
and an integer which stores the orientation of the polygon. The orientation is positive if the
bounded region is to the left of the polygon and is negative otherwise.

list<POINT> pt list;

list<SEGMENT> seg list;

POINT xmin, ymin, xmax, ymax;

int orient;

Here,pt list contains the list of points,seglist contains the list of segments (thei -th segment
in seglist connects thei -th point inpt list to thei + 1-th point inpt list), andxmin, ymin,
xmax, andymaxare vertices with minimalx-coordinate, minimaly-coordinate, maximal
x-coordinate, and maximaly-coordinate, respectively.
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We will next discuss some of the member functions ofpolygon.

The Signed Area of a Simple Polygon:Assume thatseglist is the list of boundary seg-
ments of a simple polygonP. We show how to compute the signed areaA(P) of the
bounded face ofP. The sign of the area is positive if the bounded face lies to the left ofP
and is negative otherwise.

Lemma 71Let P be a simple polygon and letn be the number of segments in the boundary
of P. For 0 ≤ i < n, let pi be the source point of thei -th boundary segment. Letp
be an arbitrary point in the plane and letAi = A(1i ) be the signed area of the triangle
1i = (p, pi , pi+1). Then

A(P) =
∑

0≤i<n

Ai

is the signed area ofA.

Proof We use induction onn and assume w.l.o.g. that the signed area is positive. Assume
first that P is a triangle, see Figure 10.65. Ifp lies in the bounded face ofP or on P,
the bounded face ofP is partitioned by the triangles40, 41, and42, and henceA(P) =
A(40) + A(41) + A(42). If p lies in the unbounded face ofP, thenp can see either one
or two edges ofP. If p can see one edge ofP, sayp0 p1, then

A(P) = |A(41)| + |A(42)| − |A(40)| = A(41) + A(42) + A(40),

where the second equality follows from the fact that41 and42 are positively oriented and
40 is negatively oriented. Ifp can see two edges ofP, sayp0 p1 and p1 p2, then

A(P) = |A(42)| − |A(41)| − |A(40)| = A(42) + A(41) + A(40),

where the second equality follows from the fact that the orientation of42 is positive and
the orientations of40 and41 are negative. This completes the base step of the induction.

Assume next thatn ≥ 4. Then there is ani such that the segmentpi pi+2 is contained
in the interior ofP 27. Let Q be the polygon obtained fromP by replacing the segments
pi pi+1 and pi+1 pi+2 by the segmentpi pi+2. Then

A(P) = A(Q) + A(4)

where4 = (pi , pi+1, pi+2). Applying the induction hypothesis toQ yields

A(Q) =
i−1∑
j=0

A(4 j ) + A(p, pi , pi+2) +
n−1∑

j=i+2

A(4 j )

and applying the induction hypothesis to4 yields

A(4) = A(4i ) + A(4i+1) + A(pi+2, pi , p) = A(4i ) + A(4i+1) − A(p, pi , pi+2).

27 Consider an arbitrary triangulation ofP. The dual of the triangulation is a tree and hence there is at least one
triangle in the triangulation which has two edges ofP in its boundary. The two edges arepi pi+1and pi+1 pi+2
for somei.
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Figure 10.65 Let 4i = (p, pi , pi+1) for i = 0, 1, 2, and letP = (p0, p1, p2). Then
A(P) = A(40) + A(41) + A(42) in all three cases.

Adding the two equations completes the induction step.

The implementation follows directly from the lemma above.

〈polygon: compute area〉�
static RAT_TYPE compute_area(const list<SEGMENT>& seg_list)

{

if (seg_list.length() < 3) return 0;

list_item it = seg_list.get_item(1);

POINT p = seg_list[it].source();

it = seg_list.succ(it);

RAT_TYPE A = 0;

while (it)

{ SEGMENT s = seg_list[it];

A += ::area(p,s.source(),s.target());

it = seg_list.succ(it);

}

return A;

}

The time to compute the signed area of a polygon isO(n). The constant factor in theO-
expression is fairly large, in particular, with the rational kernel. Observe that the areas ofn
triangles are computed and that an area computation of a triangle amounts to the evaluation
of a 3× 3 determinant.

Determining the Orientation: The simplest way to compute the orientation of a polygon
P is to take the sign of the area. This takes linear time but is slow; see the remark at the end
of the preceding section. A faster approach is as follows.

Let q be the lexicographically smallest vertex ofP and let p andr be the predecessor
and successor vertices ofq on P. Then the orientation ofP is equal to the orientation of
the triple(p, q, r), see Figure 10.66. Observe that this statement is not true for an arbitrary
vertexq; it is only true for a vertex that is extreme in some direction.
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Figure 10.66 The triple(p, q, r) has positive orientation. Ifq is the lexicographically smallest
vertex of the polygon, the region to the left of the polygonal chain is bounded. This conclusion
cannot be drawn for an arbitrary vertex.

The implementation oforientationfollows directly from the preceding paragraph.

〈polygon: compute orientation〉�
static int compute_orientation(const list<SEGMENT>& seg_list)

{ list_item q_it = seg_list.first();

POINT q = seg_list[q_it].source();

list_item it;

forall_items(it,seg_list)

if ( compare(seg_list[it].source(),q) < 0 )

{ q_it = it;

q = seg_list[q_it].source();

}

POINT p = seg_list[seg_list.cyclic_pred(q_it)].source();

POINT r = seg_list[seg_list.cyclic_succ(q_it)].source();

return ::orientation(p,q,r);

}

Point Containment: Let P be a weakly simple polygon. The function

region kind P.region of(const POINT& p) const

returns the region ofP containingp. In order to decide containment we first use the extreme
vertices for a quick test. Ifp lies to the left ofxminor to the right ofxmaxor belowymin
or aboveymax, we return UNBOUNDEDREGION. Next we check whetherp lies on P.
Assume this is not the case, i.e.,p lies either in the bounded face or the unbounded face of
P.

We use the following observation. Consider a vertical upward rayrp starting in p and
assume thatrp does not pass through any vertex ofP. Thenrp intersects an odd number of
segments ofP iff p lies in the bounded region ofP. The observation solves the problem iff
rp does not pass through any vertex ofP.

We useperturbationto extend the solution to arbitrary pointsp. If p does not lie onP,
the pointq obtained fromp by moving p by an infinitesimal amount to the right belongs
to the same face with respect toP as p. Moreover, the vertical upward rayrq starting atq
does not pass through any vertex ofP. In particular,rq does not intersect any vertical edge
of P.
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Consider a segments of P. If s is vertical,rq does not intersect it. So assume thats is
not vertical. Leta be the endpoint ofs with the smallerx-coordinate and letb be the other
endpoint ofs. Thenrq intersectss if xa < xq < xb andq lies to the right of the oriented
line ` througha andb. Here, we usedxz to denote thex-coordinate of a pointz. Since
xq = x p + ε for an infinitesimalε, the first condition is equivalent toxa ≤ x p < xb and the
second condition is equivalent top being to the right of̀ .

We obtain the following code.

〈polygon: regionof and sideof〉�
region_kind POLYGON::region_of(const POINT& p) const

{

// use extreme vertices for a quick test.

int cx1 = POINT::cmp_xy(p,ptr()->xmin);

int cx2 = POINT::cmp_xy(p,ptr()->xmax);

int cy1 = POINT::cmp_yx(p,ptr()->ymin);

int cy2 = POINT::cmp_yx(p,ptr()->ymax);

if (cx1 < 0 || cx2 > 0 || cy1 < 0 || cy2 > 0) return UNBOUNDED_REGION;

list<SEGMENT>& seglist = ptr()->seg_list;

// check boundary segments

list_item it;

forall_items(it,seglist)

{ SEGMENT s = seglist[it];

if (s.contains(p)) return ON_REGION;

}

// count intersections with vertical ray starting in p

int count = 0;

forall_items(it,seglist)

{ SEGMENT s = seglist[it];

POINT a = s.source(); POINT b = s.target();

int orient = POINT::cmp_x(a,b);

if ( orient == 0 ) continue;

if ( orient > 0 ) { // a is right of b

leda_swap(a,b);

}

if ( POINT::cmp_x(a,p) <= 0 && POINT::cmp_x(p,b) < 0

&& ::orientation(a,b,p) < 0 )

count++;

}

return ( count % 2 == 0 ? UNBOUNDED_REGION : BOUNDED_REGION );

}

Given the functionregionof it is easy to implementsideof . The positive side ofP is
equal to the bounded region ifP is positively oriented and is equal to the unbounded region
otherwise.
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〈polygon: regionof and sideof〉+�
int POLYGON::side_of(const POINT& p) const

{ region_kind k = region_of(p);

switch (k) {

case ON_REGION: return 0;

case BOUNDED_REGION: return ptr()->orient;

case UNBOUNDED_REGION: return -(ptr()->orient);

default: assert( 0 == 1); return 0;

}

}

The Complement of a Polygon:The complement of a weakly simple polygon is easy
to compute. We simply reverse the list of segments. The complement has the opposite
orientation.

〈polygon: complement〉�
POLYGON POLYGON::complement() const

{ list<SEGMENT> R;

SEGMENT s;

forall(s,ptr()->seg_list) R.push(SEGMENT(s.target(),s.source()));

return POLYGON(R, - orientation());

}

10.8.3 The Mathematics of Generalized Polygons
The purpose of this section is to give the mathematical underpinning for the representation
of regular polygonal sets. We show that a regular polygonal set can be represented by its
list of boundary cycles.

If X is a regular polygonal set andp is an arbitrary point in the plane the intersection
U ∩ X for U a sufficiently small neighborhood ofp has one of the following three forms:

• If p is contained in (the interior of)X thenU ∩ X ⊆ X .

• If p is contained in the interior of the complement ofX thenU ∩ X = ∅.

• If p is contained in the boundary ofX thenU ∩ X andU ∩ int cpl X are unions of
“pieces of pie” as shown in Figure 10.67.

We call a setX trivial if either X = ∅ or X = IR2. Let X be a non-trivial polygonal set.
We call a collectionP1, . . . , Pk of weakly simple polygons arepresentationof X if:

• the set of segments in the boundary ofX is the disjoint union of the set of segments of
the Pi ’s, and

• the orientation of eachPi is such thatX is locally to the left ofPi , and

• the Pi are pairwise non-crossing, i.e., there are no consecutive segmentspq andqr on
somePi andxq andqy on somePj with i 6= j and the segments interleaving around
q, see Figure 10.68.
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p
p

Figure 10.67 The shaded part of the plane belongs to the polygonal regionX and p lies in the
boundary ofX . If p is a vertex ofX andU is a sufficiently small neighborhood ofp thenU ∩ X
andU ∩ int cpl X are unions of pieces of pie. Ifp lies in the relative interior of a boundary
segment ofX thenX looks like an open half-plane in the vicinity ofp.

q

x

r

p

y

Figure 10.68 The chains(. . . , p, q, r, . . .) and(. . . , x, q, y, . . .) cross inq.

Figure 10.69 shows an example.

Lemma 72Every non-trivial polygonal set has a representation.

Proof Consider a boundary segments of X . SinceX is regular,X lies on only one of the
sides ofs and hences can be oriented such thatX is locally to the left ofs.

Consider next a pointp as shown in Figure 10.67. SinceX is the union of pieces of pie
in the neighborhood ofp we can join the boundary segments ofX incident top such that
any two consecutive segments define one of the pieces of the pie. In this way no crossings
are introduced. Also, since none of the pieces of the complement ofX is degenerated to a
line, every boundary segment incident top is used only once.

The construction guarantees that the polygons formed are weakly simple and satisfy the
two properties of a representation stated above.

The representation of a polygonal set is not unique as Figure 10.69 shows. We still need
to justify the choice of the name representation. In what sense does a representation of a
polygonal set “represent” the set?

We start with the observation that the polygons in a representation form a so-called nested
family. Let Pi and Pj be two polygons in a representation. SincePi and Pj do not cross,
we have either bRPi ∩ bR Pj = ∅ or bRPi ⊂ bR Pj or bRPj ⊂ bR Pi , where bRP
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Figure 10.69 The open shaded region consists of two connected sets, one of which is simple.X
can be represented by(p0, p1, p2, p4, p5, p6, p2, p3, p9, p8, p7, p3) or by (p0, p1, p2, p3),
(p2, p4, p5, p6), (p3, p9, p8, p7), or by(p0, p1, p2, p4, p5, p6, p2, p3), (p9, p8, p7, p3).

denotes the bounded region with respect to a polygonP. We say thatPj is nestedin Pi if
bR Pj ⊂ bR Pi .

We can now define a forestF on the polygons in a representation. A polygonPj is a
child of a polygonPi if Pj is nested inPi and there is noPk such thatPj is nested inPk and
Pk is nested inPi . If Pj is a child of Pi in F , we say thatPj is directly nested inPi . We
have:

Lemma 73 If Pj is a child of Pi in F then Pj and Pi have different orientations. All roots
of F have the same orientation.

Proof If Pi is positively oriented then bRPi belongs toX in the vicinity of Pi and to the
left of Pi . SincePj is directly nested inPi and since it is part of the boundary ofX , Pj

must be negatively oriented. IfPi is negatively oriented then bRPi belongs to int cplX in
the vicinity of Pi and to the left ofPi . SincePj is directly nested inPi and since it is part
of the boundary ofX , Pj must be positively oriented.

If X is bounded, all roots ofF are positively oriented and ifX is unbounded, all roots of
P are negatively oriented.

It is convenient to turn the forestF into a tree by adding an artificial root. The polygon
associated with the root represents the “circle at infinity”. The circle at infinity is positively
oriented ifX is unbounded and is negatively oriented ifX is bounded. We useP0 to denote
the artificial polygon representing the circle at infinity. Every point of the plane is contained
in the bounded region with respect to the circle at infinity.

We assume from now on that the polygonsP0, P1, . . . , Pk in a representation are ordered
such that noPi is nested in aPj for i < j . In other words, parents precede their children.

Lemma 74Let P0, P1, . . . , Pk be a representation of a polygonal setX and letp be a point
in the plane that does not lie on any of the polygons in the representation. Leti be maximal
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such thatp ∈ bR Pi . If Pi is positively oriented thenp ∈ X and if Pi is negatively oriented
thenp 6∈ X .

Proof Observe first thati exists since every point is contained in the bounded region of
the circle at infinity. Assume w.l.o.g. thatPi is positively oriented. LetPj1 to Pjl be the
children ofPi in F . We have

bR Pi \ (bR Pj1 ∪ . . . ∪ bR Pjl ) ⊆ X

andi < j1, . . . , i < jl. Thusp 6∈ (bR Pj1 ∪ . . . ∪ bR Pjl ) by the definition ofi . This shows
that p ∈ X .

10.8.4 The Implementation of Generalized Polygons
Generalized polygons are a handle type, i.e., a generalized polygon is realized as a pointer to
a representation class (calledgenpolygonrep andrat genpolygonrep, respectively) which
contains the actual representation. The member functionptr( ) returns the pointer to the
representing object.

The representation consists of a flagk which indicates whether the polygon is trivial and
a list pol list of polygons. More precisely, we have a local enumeration typekind with
elements EMPTY, FULL, and NONTRIVIAL and k is equal to EMPTY or FULL iff the
polygon is empty or full and is equal to NONTRIVIAL, otherwise. If the polygon is trivial,
pol list is empty, and if the polygon is non-trivial,pol list is the list of boundary cycles.

enum kind { EMPTY, FULL, NON TRIVIAL };

kind k;

list<rat polygon> pol list;

We next discuss some member function of generalized polygons.

Checking a Representation:We define a functioncheckrepresentationthat applies to a
list pol list of polygons. It returns true ifpol list is a legal boundary representation, i.e., if:

• the segments of the polygons inpol list meet only at endpoints, i.e, the planar mapG
defined by them has 2m edges, wherem is the number of segments, and no parallel
edges.

• there are no crossings between polygons,

• if D is directly nested inC thenD andC have alternate orientations, andC is before
D in the list of polygons, and

• all outermost polygons have the same orientation.
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In the following program we check only the first two items. We know of no method to
check the other items that is substantially different from our method to compute boundary
representations. The latter method will be described in Section 10.8.4.

〈genpolygon: check representation〉�
static bool check_rep(const list<POLYGON>& pol_list)

{ GRAPH<POINT,SEGMENT> G;

list<SEGMENT> seg_list;

POLYGON P;

forall(P,pol_list)

{ list<SEGMENT> SL = P.segments();

seg_list.conc(SL);

}

SEGMENT_INTERSECTION(seg_list,G,true);

if ( G.number_of_edges() != 2*seg_list.length() )

return False("check_rep: wrong number of edges");

// no parallel edges

node v; edge e;

forall_edges(e,G)

if ( target(e) == target(G.cyclic_adj_succ(e)) )

return False("check_rep: parallel edges");

〈checkrepresentation: check for crossings〉
return true;

}

bool GEN_POLYGON::check_representation() const

{ if ( trivial() ) return polygons().empty();

return check_rep(polygons());

}

We describe how to check for crossings. Consider any nodev of G. Each edgee out
of v corresponds to a segments of one of the polygons inpol list. The polygons running
throughv introduce a pairing on the edges incident tov, where two edges are paired if they
correspond to consecutive edges of one of the polygons. We number the pairs and replace
each edge by the label of its pair. Then it must not happen that we have distinct labelsa
andb interlacing aroundv, i.e., the cyclic sequence of labels induced by the edges out ofv

must not contain a subsequence of the forma, . . . , b, . . . , a, . . . , b. This is easily checked
by means of a push down storeS. We iterate over the edgese out of v. If the edge label of
e agrees with the label on the top ofS, we popS, if it does not agree, we push the label of
e. There is no crossing atv iff the push down store is empty at the end of the iteration.

〈checkrepresentation: check edge labels〉�
forall_nodes(v,G)

{ stack<int> S;

forall_adj_edges(e,v)

{ if ( S.empty() || label[e] != S.top() )

S.push(label[e]);

else
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S.pop();

}

if ( !S.empty() ) return False("check_rep: crossing");

}

It remains to compute the edge labels. We do so in a two step process. We first construct a
dictionary that stores for every segments the edgee(s) in G corresponding to it, i.e., having
the same source and sink. We then iterate over all pairs(s, t) of consecutive segments and
givee(s)rev ande(t) the same label.

〈checkrepresentation: check for crossings〉�
map<SEGMENT,edge> segment_to_edge;

forall_edges(e,G)

{ SEGMENT s = G[e];

node v = G.source(e);

segment_to_edge[s] = ( s.source() == G[v] ? e : G.reversal(e) );

}

edge_array<int> label(G);

int count = 0;

forall(P,pol_list)

{ list_item it;

const list<SEGMENT>& seg_list = P.segments();

forall_items(it,seg_list)

{ edge e = segment_to_edge[seg_list[it]];

e = G.reversal(e);

edge f = segment_to_edge[seg_list[seg_list.cyclic_succ(it)]];

label[e] = label[f] = count++;

}

}

〈checkrepresentation: check edge labels〉

Point Containment: The implementation ofsideof follows directly from Lemma 74. If
P is either empty or full, the answer is obvious. IfP is non-trivial, we scan through the list
of polygons in the representation. Ifp lies on one of the polygons, we return ONREGION.
Otherwise, we find the lastPi such thatp lies in the bounded region ofPi ; Pi might not
exist, i.e., be equal to the fictitious polygonP0. We return the orientation ofPi .

〈genpolygon: sideof〉�
int GEN_POLYGON::side_of(const POINT& p) const

{ if ( empty() ) return -1;

if ( full() ) return +1;

POLYGON P, P_i;

bool P_i_exists = false;

forall(P,polygons())

{ region_kind k = P.region_of(p);

if ( k == ON_REGION ) return 0;

if ( k == BOUNDED_REGION ) { P_i = P; P_i_exists = true; }

}
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if ( P_i_exists ) return P_i.orientation();

P = (ptr()->pol_list).front();

return -P.orientation(); // = P0.orientation()

}

Boolean Operations: We only discuss the binary boolean operations and leave the im-
plementation ofcomplementas an exercise. The implementations of all binary boolean
operations follow a common principle. LetP0 and P1 be two generalized polygons and let
R be the result of the boolean operation. We constructR in stages:

(1) We first deal with the case that eitherP0 or P1 is trivial. The remaining stages are not
needed if this is the case.

(2) We construct the planar mapG induced byP0 andP1.
(3) We classify the face cycles ofG, i.e., compute for each face its status with respect to

P1 andP2.
(4) Given the classification of the edges computed in the preceding stage, we mark all edges

of G that are relevant for the resultR of the boolean operation. An edge is relevant if the
face to its left belongs toR.

(5) We simplify the graphG by deleting edges. We keep only those edges that separate a
face belonging toR from a face belonging to the complement ofR.

(6) We trace the face cycles ofG and compute the representation ofR.

Only the first and the fourth stage depend on the boolean operation. All other stages are
generic and apply to all boolean operations. In the sequel we concentrate on theintersection
routine.

We define constantsP0 face, non P0 face, P1 face, andnon P1 face which we use
to label edges in stages two and three. The constants are chosen such that boolean operations
are possible on them. After stages two and three every edgee of G will have a label
describing the status of the face to its left with respect toP0 andP1.

The functions defined in〈construct labeled map〉 realize stages two and three, the func-
tions defined in〈simplify graph〉 realize stage five, and the functions defined in〈collect
polygon〉 realize stage six. We will discuss them below.

Stage one is easy. If either argument is empty the intersection is empty, and if either
argument is full the result is the other argument.

In stage four we label those edges as relevant which border a face ofG which belongs to
P0 andP1. These are precisely the edges whose label is equal toP0face+ P1face.

〈genpolygon: boolean operations〉+�
static int P0_face = 1;

static int not_P0_face = 2;

static int P1_face = 4;

static int not_P1_face = 8;

〈construct labeled map〉
〈simplify graph〉
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〈collect polygon〉
GEN_POLYGON GEN_POLYGON::intersection(const GEN_POLYGON& P1) const

{ // stage I

if ( empty() || P1.empty() )

return GEN_POLYGON(GEN_POLYGON_REP::EMPTY);

if ( full() ) return P1;

if ( P1.full() ) return *this;

// stages II and III

〈gen boolean operations: set up labeled map〉
// label relevant edges, stage IV

edge_array<bool> relevant(G,false);

int d = P0_face + P1_face;

edge e;

forall_edges(e,G) if (label[e] == d) relevant[e] = true;

// stages V and VI

〈gen boolean operations: extract result〉
}

We come to stages two and three. We define the graphG, we introduceP0 as a syn-
onym for thethis-argument of the intersection, we define an edge arraylabel, and call
constructlabeledmap. It computes the planar map defined by the segments ofP0 and P1

and labels all edges of this map.

〈gen boolean operations: set up labeled map〉�
GRAPH<POINT,SEGMENT> G;

const GEN_POLYGON& P0 = *this;

edge_array<int> label;

construct_labeled_map(P0,P1,G,label);

The functionconstructlabeledmaprealizes stages two and three. It first callsconstructinitial map
for stage two and then usesextendlabeling for stage three. A call ofextendlabelingwith
argumente labels the edges of the face cycle ofG containinge.

〈construct labeled map〉�
〈construct initial map〉
〈extend labeling〉
static void construct_labeled_map(const GEN_POLYGON& P0,

const GEN_POLYGON& P1,

GRAPH<POINT,SEGMENT>& G,

edge_array<int>& label)

{ construct_initial_map(P0,P1,G,label);

edge_array<bool> visited(G,false);

edge e;

forall_edges(e,G)

{ if (visited[e]) continue;
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extend_labeling(P0,P1,G,e,visited,label);

}

}

Stage two is realized byconstructinitial map. It takes two generalized polygonsP0 andP1

and computes the planar mapG induced by their segments using the segment intersection
algorithm of Section 10.7. It also computes a label for every dart ofG. The label of a dart
e = (v, w) of P0 is P0 face if P0 is locally to the left ofe and isnon P0 face otherwise.
The analogous statement holds true for darts ofP1.

We proceed in several steps. In the first step we collect the segments ofP0 and P1 into
a list seglist and label each segment with the genpolygon to which it belongs. Note that a
segment may belong toP0 andP1. We therefore use the labels 1, 2 and 3, where 3 indicates
that a segment belongs to both polygons and labeli , 1 ≤ i ≤ 2, indicates that the segment
belongs toPi−1.

In a second step we compute the planar map induced by the segments inseglist. In
this planar map every node must have even degree. If the floating point kernel is used the
map returned by SEGMENTINTERSECTION may be non-plane or have a vertex of odd
degree; if this is the case we recommend use of the rational kernel.

In the third step we compute the label of each dart. We discuss it below.

〈construct initial map〉+�
static void construct_initial_map(const GEN_POLYGON& P0,

const GEN_POLYGON& P1,

GRAPH<POINT,SEGMENT>& G,

edge_array<int>& label)

{

list<SEGMENT> seg_list;

map<SEGMENT,int> seg_label(0);

const list<SEGMENT>& L0 = P0.edges();

const list<SEGMENT>& L1 = P1.edges();

SEGMENT s;

forall(s,L0) { seg_label[s] = 1;

seg_list.append(s);

}

forall(s,L1) { seg_label[s] += 2;

seg_list.append(s);

}

SEGMENT_INTERSECTION(seg_list,G,true);

node v;

#if ( KERNEL == FLOAT_KERNEL )

if ( Genus(G) != 0 ) error_handler(1,mes + "Genus(G) != 0.");

forall_nodes(v,G)

{ int deg = G.outdeg(v);

if (deg % 2 != 0) error_handler(1,mes + "odd degree vertex.");

}
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#endif

〈constructinitial map: compute dart labels〉
}

It remains to compute the dart labels.
Consider a darte and its reversal. We assign a polygon toe as follows. If the segment

s = G[e] belongs to a unique polygon,e inherits the polygon fromG[e]. Otherwise, either
the cyclic adjacency predecessor or the cyclic adjacency successor ofe must be parallel to
e, i.e., have the same target ase. We arbitrarily assigne to P0 in the former case and toP1

in the latter case.
The polygonPi is locally to the left ofe if s ande point into the same direction, i.e., if

the dot product of the underlying vectors is positive.

〈constructinitial map: compute dart labels〉�
label.init(G,0);

edge e0;

forall_edges(e0,G)

{ if ( label[e0] != 0 ) continue;

edge e = e0; edge e_rev = G.reversal(e);

POINT a = G[source(e)];

POINT b = G[target(e)];

SEGMENT s = G[e];

if ( (b - a) * (s.target() - s.source()) <= 0 )

leda_swap(e,e_rev);

// now s and e point into the same direction

switch ( seg_label[s] )

{ case 1: label[e] = P0_face;

label[e_rev] = not_P0_face;

break;

case 2: label[e] = P1_face;

label[e_rev] = not_P1_face;

break;

case 3: { edge f = G.cyclic_adj_pred(e);

if ( target(f) != target(e) ) f = G.cyclic_adj_succ(e);

label[e] = P0_face;

label[e_rev] = not_P0_face;

label[f] = P1_face;

label[G.reversal(f)] = not_P1_face;

}

}

}

The functionextendlabelingclassifies the faceF to the left of darte. It scans the face
cycle containinge, marks all darts of the cycle as visited, and computes the “or” of all dart
labels on the cycle ind.
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If all darts of the face cycle originate from eitherP0 (d is less than four) orP1 (d is
divisible by four), we still have to classify the face cycle with respect to the other polygon
and updated accordingly. This will be discussed below.

Finally, the labeld is propagated to all darts of the cycle. If the label is contradictory, i.e.,
claims that the face is aPi -face and a not-Pi-face, we raise an error.

〈extend labeling〉�
static void extend_labeling(const GEN_POLYGON& P0,const GEN_POLYGON& P1,

const GRAPH<POINT,SEGMENT>& G, edge e,

edge_array<bool>& visited,

edge_array<int>& label)

{ int d = 0; int length = 0;

edge x = e;

do { visited[x] = true; length++;

//node v = source(x);

//if (G.outdeg(v) == 2) v2 = v;

d |= label[x];

x = G.face_cycle_succ(x);

} while (x != e);

if ( d % 4 == 0 || d < 4 )

{ 〈extendlabeling: face cycle has only darts from one polygon〉 }

x = e;

#if ( KERNEL == FLOAT_KERNEL )

if ( d % 4 == P0_face + not_P0_face ||

(d/4)*4 == P1_face + not_P1_face )

error_handler(1,mes + "contradicting edge labels.");

#endif

do { label[x] = d;

x = G.face_cycle_succ(x);

} while (x != e);

}

It remains to deal with the case that all darts of the face cycleF belong to the same
genpolygon, say Pi . Let v be the source ofe. We distinguish two cases: either no dart
out of v has a determined status with respect toP1−i or this is not the case. In the former
casev cannot lie on the boundary ofP1−i and hencev’s side with respect toPi−1 determines
the status ofF with respect toPi−1. In the latter case letf be the nearest adjacency pre-
decessor ofe such that the status off with respect toP1−i is already known. For all darts
betweene and f the status is still unknown and hence none of them can be contained in the
boundary ofP1−i ; f may be contained in the boundary ofP1−i or not (in the latter case,f
belongs to a face cycle which was already considered and hence its status with respect to
both polygons is known). In either case the status ofF with respect toP1−i is given by the
status off with respect toP1−i , see Figure 10.70.
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y
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e f

Figure 10.70 The dart f is the nearest adjacency predecessor ofe whose status with respect to
P1−i is known. The edges betweene and f do not belong to the boundary ofP1−i and henceF
and the face to the left off have the same status with respect toP1−i .

〈extendlabeling: face cycle has only darts from one polygon〉�
edge f;

for ( f = G.cyclic_adj_pred(e); f != e; f = G.cyclic_adj_pred(f) )

{ if ( d % 4 == 0 && label[f] % 4 != 0 || d < 4 && label[f] > 4 )

break;

}

if ( f == e )

{ node v = source(e);

if ( d % 4 == 0 )

d |= ( P0.side_of(G[v]) == 1 ? P0_face : not_P0_face );

if ( d < 4 )

d |= ( P1.side_of(G[v]) == 1 ? P1_face : not_P1_face );

}

else

{ if ( d % 4 == 0 ) d |= ( label[f] % 4 );

if ( d < 4 ) d |= ( ( label[f] / 4 ) * 4 );

}

We come to stage five. At this point all darts ofG are labeled as relevant or non-relevant.
A dart is labeled relevant if the face to its left belongs to the resultR of the boolean opera-
tion.

We simplify the graph by removing darts. We proceed in two steps. In the first step
we remove parallel darts that come from overlapping segments in the two arguments of the
boolean operation, see Figure 10.71. This turns all face cycles ofG into weakly simple
polygons. In the second step we remove all edges from the graph that do not separateR
from its complement.

The details of the first step are as follows. Lete and f be two parallel darts and assume
that f is the cyclic adjacency successor ofe. This implies that we have a face cycle(e, f rev)

of length two. This face cycle defines a polygon of area zero which we can remove. We
remove the face cycle by removing its two constituent darts and makingf anderev reversals
of each other. There cannot be a set of three parallel darts and hence the target off should
be different from the target of its cyclic adjacency successor.
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u v

Figure 10.71 The dartse and f come from a segment ofP0 andP1, respectively. The face cycle
(e, f rev) consists of only two darts. We removee and f rev and makef anderev reversals of each
other.

The first simplification step leaves us with a planar map without parallel darts. This im-
plies that all face cycles are weakly simple polygons. In the second step we merge adjacent
faces that belong to the same side of the result polygon.

A darte does not separateR from its complement ife anderev are either both relevant or
both irrelevant. In the former caseR exists on both sides of the edge and in the latter case
the complement ofR lives on both sides of the edge.

The second step may remove all edges from the graph. This will be the case if the result
is either empty or full. We need to distinguish these cases. We have the former case if
there are no relevant edges before simplification and we have the latter case if all edges are
relevant before simplification. We return true in the latter case.

〈simplify graph〉�
static bool simplify_graph(GRAPH<POINT,SEGMENT>& G,

edge_array<bool>& relevant)

{ edge e; node v;

forall_nodes(v,G)

{ list<edge> E = G.out_edges(v);

forall(e,E)

{ edge f = G.cyclic_adj_succ(e);

if ( target(e) != target(f) ) continue;

edge e_rev = G.reversal(e);

G.del_edge(e); G.del_edge(G.reversal(f));

G.set_reversal(e_rev,f);

}

}

bool non_trivial_result = false;

forall_nodes(v,G)

{ list<edge> E = G.out_edges(v);

forall(e,E)

{ if ( relevant[e] || relevant[G.reversal(e)] )

non_trivial_result = true;

if ( relevant[e] == relevant[G.reversal(e)] )

{ G.del_edge(G.reversal(e)); G.del_edge(e); }

}

}

return non_trivial_result;

}
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After simplification every uedge ofG separatesR from its complement and hence be-
longs to the boundary representation. Also all face cycles are weakly simple polygons.
We conclude that the face cycles ofG form the representation of the result of the boolean
operation.

The following functioncollectpolygontakes a darte, marks all darts in the face cycle of
e as visited, and collects the segments corresponding to the face cycle in a listpol.

〈collect polygon〉�
static void collect_polygon(const GRAPH<POINT,SEGMENT>& G, edge e,

edge_array<bool>& visited,

list<SEGMENT>& pol)

{ pol.clear();

edge x = e;

do { visited[x] = true;

node v = source(x);

node w = target(x);

POINT a = G[v];

POINT b = G[w];

pol.append(SEGMENT(a,b));

x = G.face_cycle_succ(x);

} while (x != e);

}

The function above is the main ingredient for the last stage. We first simplifyG. If this
trivializes G, i.e., removes all edges from it, we either return the full genpolygon or the
empty genpolygon; the return value ofsimplifygraphtells us which.

〈gen boolean operations: extract result〉�
bool non_trivial_result = simplify_graph(G,relevant);

if (G.number_of_edges() == 0 )

{ if ( non_trivial_result )

return GEN_POLYGON(GEN_POLYGON_REP::FULL);

else

return GEN_POLYGON(GEN_POLYGON_REP::EMPTY);

}

edge_array<bool> visited(G,false);

list<POLYGON> result;

〈gen boolean operations: form boundary cycles〉
return GEN_POLYGON(result,GEN_POLYGON::NO_CHECK);

So assume thatG is non-trivial. We cycle over all darts ofG and collect all face cycles
consisting of relevant darts.

〈gen boolean operations: form boundary cycles, first try〉�
forall_edges(e,G)

{ if ( visited[e] || !relevant[e] ) continue;

list<SEGMENT> pol;



10.8 Polygons 785

(a) (b)

v v

e

f

e

f

Figure 10.72 The dashed boundary cycle is nested in the solid cycle and both cycles havev as
their leading node. In situation (a) the leading dart of the solid cycle ise and the leading dart of
the dashed cycle isf rev . In situation (b) the leading dart of the solid cycle iserev and the leading
dart of the dashed cycle isf . In either case the leading dart of the solid cycle has smaller slope.

collect_polygon(G,e,visited,pol);

POLYGON P(pol);

result.append(P);

}

The code above generates the boundary cycles in no particular order. We want an order that
reflects nesting, i.e., no polygon should be nested in a polygon following it.

There are several ways to achieve a proper ordering. Our first solution took timeO(n +
k logk) and, moreover, was burdened with a fairly large constant factor. We exploited the
fact that if D is nested inC then D has smaller unsigned area thanC. We generated the
polygons in an arbitrary order and then sorted the polygons in decreasing order of their
unsigned area.

We describe an alternative approach. We show that one can rearrange the darts ofG such
that the code above generates the polygons in the proper order. Our approach is based on
the following definition and observation. Define the leading node and dart of a boundary
cycle as follows:

• The leading nodev(C) of a boundary cycleC is the lexicographically smallest node of
the boundary cycle.

• The leading darte(C) of a boundary cycle is the shallowest (= smallest slope) dart of
C starting inv(C) if C is positively oriented, and is the reversal of the shallowest dart
in C ending inv(C) if C is negatively oriented.

Lemma 75If D is nested inC then either:

• v(C) is lexicographically smaller thanv(D) or

• v(C) is equal tov(D) ande(C) has smaller slope thane(D).
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Proof Clearly the leading node ofC cannot be lexicographically larger than the leading
node ofD. If C andD have the same leading node, the situation is as shown in Figure 10.72
and the leading dart ofC has smaller slope than the leading dart ofD.

Consider the following order on darts. A darte = (v, w) precedes a dartf = (x, y) if
eitherv lexicographically precedesx or v is equal tox ande has smaller slope thanf . This
order has the following properties:

• For any boundary cycleC the leading dart ofC precedes all darts ofC.

• If D is nested inC then the leading dart ofC precedes the leading dart ofD.

The following compare class realizes the dart ordering; the base classledacmpbaseis
discussed in Section 2.10.

〈collect polygon〉+�
template <class POINT, class SEGMENT>

class cmp_for_cycle_tracing : public leda_cmp_base<edge> {

const GRAPH<POINT,SEGMENT>& G;

public:

cmp_for_cycle_tracing(const GRAPH<POINT,SEGMENT>& g): G(g) {}

int operator()(const edge& e1, const edge& e2) const

{ node v = G.source(e1);

node w = G.source(e2);

if ( v != w ) return compare(G[v],G[w]);

SEGMENT s1 = G[e1];

SEGMENT s2 = G[e2];

return cmp_slopes(s1,s2);

}

};

It is now easy to generate the boundary cycles in the appropriate order. We sort the darts
of G according to the ordering above and then iterate over all darts ofG. Whenever we
encounter a uedge that is not contained in a boundary cycle yet, we collect the boundary
cycle. The uedge is a pair{e, erev } and eithere or its reversal is relevant (but not both). If
e is relevant, the cycle to be traced is positively oriented, and iferev is relevant, the cycle
to be traced is negatively oriented, see Figure 10.72. Thus there is no need to compute
the orientations of the boundary cycles; our method of generating boundary cycles in an
ordered fashion yields the orientations as a by-product.

We obtain:

〈gen boolean operations: form boundary cycles〉�
cmp_for_cycle_tracing<POINT,SEGMENT> cmp(G);

list<edge> E = G.all_edges();

E.sort(cmp);

edge e0;

forall(e0,E)



10.8 Polygons 787

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

P

Q

P ∩ Q

P \ Q

Q \ P

cpl P ∩ cpl Q

Figure 10.73 The vertexv is an intersection between the boundaries ofP andQ. There are four
faces incident tov and at least one but not all of them belong to the result of the boolean
operation.

{ edge e = e0;

if ( visited[e] || visited[G.reversal(e)]) continue;

int orient;

if ( relevant[e] )

{ orient = +1; }

else

{ e = G.reversal(e); orient = -1; }

list<SEGMENT> pol;

collect_polygon(G,e,visited,pol);

POLYGON P(pol,orient);

result.append(P);

}

We conclude our treatment of boolean operations on polygons with a discussion of their
asymptotic running time. Consider a boolean operation with input polygonsP andQ and
result polygonR. Let n be the total number of vertices ofP, Q, andR, and letG be the
graph induced by the two input polygons. Any vertex ofG is either a vertex of one of the
input polygons or is an intersection between the boundaries of the input polygons. In the
latter case it will be a vertex of the result polygon, as Figure 10.73 shows. We conclude that
G has at mostn vertices and hence can be computed in timeO(n logn). The time required
to sort the edges before tracing the boundary cycles is alsoO(n logn). Let f be the number
of face cycles ofG which have darts from only one of the polygons;f can be as large
as O(n). For each such face cycle we spend timeO(n) to classify it with respect to the
other polygon for a total time ofO( f n) (this time bound could be reduced toO( f logn)

by using a more refined data structure for point location). All other steps take timeO(n).
We conclude that the total time to compute boolean operations isO(n + n logn + f n).

A Demo Program: We give a small demo program. We construct an n-gonP with vertices
near the unit circle. We also construct an affine transformationT that rotates the plane by
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n m P T Q P ∩ Q |P ∩ Q|

5000 6.175e+06 1.35 0 0.36 12.92 20000

5000 2.47e+07 1.33 0 0.37 13.06 20000

5000 9.88e+07 1.35 0.01 0.39 13.44 20000

5000 3.952e+08 1.35 0 0.35 13.71 20000

5000 1.581e+09 1.35 0 0.36 – –

20000 2.47e+07 5.65 0 1.47 56.13 80000

20000 9.88e+07 5.71 0 1.61 – –

Table 10.10 Execution times with floating point kernel: The first two columns shown andm,
respectively, the next four columns show the time to constructP, T , Q = T (P), andP ∩ Q,
respectively, and the last column shows the number of vertices ofP ∩ Q. A dash in the next to
last column indicates that the program produced an error message and recommended use of
rat polygons.

an angleα = 2π/(2nm) ± epsabout the origin, whereeps= 1/(10nm). Let Q = T (P) be
the result of turningP by angleα and letR be the union ofP andQ.

〈n gon time〉�
double eps = 1/(10.0*n*m);

POLYGON P = N_GON(n,C,eps);

GEN_POLYGON PG(P,GEN_POLYGON::NO_CHECK);

report_time("time to generate P = ");

TRANSFORM T = rotation(ORIGIN, LEDA_PI/(n * m), eps);

report_time("time to generate the transformation T = ");

POLYGON Q = T(P);

GEN_POLYGON QG(Q,GEN_POLYGON::NO_CHECK);

report_time("time to compute T(P) = ");

GEN_POLYGON R = PG.unite(QG);

report_time("time to compute P union T(P) = ");

Tables 10.10 and 10.11 show the execution times for the floating point and the rational
kernel and different values ofn andm. Observe that we ran extreme examples. We took
5000-gons and 20000-gons and rotated them by angles 2π/(2 ∗ n ∗ m), wherem ranges
between 106 and 109. This amounts to rotations by angles between 10−8 and 10−10 degrees.

The floating point kernel did not always obtain a result. In the two cases where it did not
obtain a result, it discovered that there is a problem. Forn = 5000 andn = 1.581 · 109

it reported that the map computed by SEGMENTINTERSECTION is not planar and for
n = 20000 andm = 9.88 · 107 it reported that there is a node of odd degree in the map.
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n m P T Q P ∩ Q |P ∩ Q|

5000 6.175e+06 1.69 0 1.4 30.8 20000

5000 2.47e+07 1.73 0 1.41 31.45 20000

5000 9.88e+07 1.74 0.01 1.4 33.93 20000

5000 3.952e+08 1.77 0 1.41 34.01 20000

5000 1.581e+09 1.78 0.009995 1.41 34.7 20000

20000 2.47e+07 7.25 0 5.66 140.9 80000

20000 9.88e+07 7.37 0 5.69 141.6 80000

20000 3.952e+08 7.45 0 5.66 143.2 80000

20000 1.581e+09 7.52 0.01001 5.58 145.1 80000

20000 6.323e+09 7.53 0 5.6 149.2 80000

Table 10.11 Execution times with rational kernel: The meaning of the columns is the same as
for Table 10.10.

It is instructive to study the output of the program when the test for the planarity ofG
is not made. The graphG constructed by SEGMENTINTERSECTION had 19994 nodes
(and so 6 nodes are missing) and 59952 edges, 10012 nodes had degree two (12 too many)
and 9982 nodes had degree four (18 too few). The genus ofG was one.G had face cycles
of length two and three andonly oneface cycle of length larger than three (there should be
two). All edges of the graph were declared relevant and hence removed bysimplifygraph.
The full polygon was returned. It took several hours of detective work to discover this
explanation for the behavior of the floating point implementation. The detective work was
considerably helped by the fact that the execution with the rational kernel produced the
correct result and hence weknewthat the error must be in the floating point arithmetic.

It would be fantastic if the floating point implementation would always degrade grace-
fully, i.e., either compute the correct result or tell that the problem is too difficult for a
floating point computation. We are not making this claim.

Although the floating point implementation did not always obtain the correct result it can
handle surprisingly difficult cases.

The rational kernel always worked correctly, as it is supposed to do. There is about a
factor three overhead for the use of the rational kernel.

Exercises for 10.8
1 Implement the functioncomplementfor generalized polygons.
2 Implement the functionunite for generalized polygons. Start from the implementation

of intersectionand describe the required modifications.
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10.9 A Glimpse at Higher-Dimensional Geometric Algorithms

We give an overview of the extension package for higher-dimensional computational geom-
etry, exhibit a relationship between convex hulls and Delaunay triangulations, and use it to
derive the formula for the side-of-sphere test. For a detailed treatment of higher-dimensional
geometry we refer the reader to [Ede87].

10.9.1 The Extension Package for Higher-Dimensional Geometry
The extension package [MMN+98] features a higher-dimensional kernel, simplicial com-
plexes, convex hulls and Delaunay diagrams.

Thehigher-dimensional kerneloffers points, lines, segments, rays, vectors, hyperplanes,
spheres, affine transformations, and geometric operations and predicates ind-dimensional
Euclidian space for arbitrary dimensiond. Examples for geometric predicates are the ori-
entation test, the side-of-sphere test, the test of whether a point is contained in a simplex,
and the computation of the affine rank of a set of points. Examples for geometric construc-
tions are the construction of a hyperplane from a set of points, or the computation of the
intersection of a line and a hyperplane.

The extension package offers three geometric data structures: regular simplicial com-
plexes, convex hulls and Delaunay diagrams.

A simplicial complexis a collection of simplices in which the intersection of any two
simplices in the collection is a face of both28. A simplicial complex isregular iff all max-
imal simplices of the collection29 have the same dimension and if its maximal simplices
are connected under the neighboring relation30. The data typeregl complexrealizes regular
simplicial complexes. It supports navigation in the complex (go to thei -th neighbor) and
update operations on the complex (add a new simplex and make it the neighbor of some
existing simplices). Regular simplicial complexes generalize triangulations to arbitrary di-
mension.

Convex hullsare represented as regular simplicial complexes, namely by a complex aris-
ing from a triangulation of the hull. Figure 10.11 shows an example in two-dimensional
space.

The convex hull complex is built by a natural generalization of the incremental hull algo-
rithm of Section 10.1.2. Whenever a pointp is added to a convex hull, a simplex with peak
p is added to the convex hull for every facet of the hull visible fromp.

The data typeconvexhull supports navigation through the underlying triangulation, navi-
gation over the boundary of the hull, visibility queries (find all facets visible from a pointp),
point location queries (does a pointp lie in the interior, on the boundary, or in the exterior
of the hull) and insertion of new points.

Delaunay triangulationsare also represented as simplicial complexes. The data type

28 The empty set is a face of any simplex.
29 A simplex is maximal if it is not contained in any other simplex.
30 Two simplices of dimensionk are neighbors if they share a face of dimensionK − 1.
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delaunayextends the functionality of the typepointsetof Section 10.6 to higher dimen-
sions. It supports navigation in the complex, insertion of new points, point location queries
(return the simplex containing a query pointp), nearest neighbor queries (return the point
closest to a query pointp), and range searches with spheres and simplices (return all points
contained in a query sphere or query simplex, respectively).

10.9.2 Delaunay Diagrams and Convex Hulls
The implementation of Delaunay diagrams in higher-dimensional space is based on a pow-
erful relationship between Delaunay diagrams, Voronoi diagrams, and convex hulls in one
higher dimension.

Let d be a positive integer. We usex0, x1, . . . , xd−1, andz for the Cartesian coordinates of
ad +1-dimensional space. Our Delaunay triangulations live in thed-dimensional subspace
with coordinatesx0, x1, . . . , xd−1 and the corresponding convex hulls will live in thed + 1-
dimensional space with coordinatesx0, x1, . . . , xd−1, andz. We call the former space the
base space.

Theparaboloid of revolutionP is defined by

z = x2
0 + x2

1 + . . . + x2
d−1.

It is obtained by rotating the two-dimensional parabolaz = x2
0 about thez-axis. The key

for the entire section is the following observation.

Lemma 76 The intersection betweenP and any hyperplaneh that is not parallel to the
z-axis is a curveC whose projection into the base space is a sphere and any sphere in the
base space can be obtained in that way.

Proof Sinceh is not parallel to thez-axis it is defined by an equation

z = a0x0 + a1x1 + . . . + ad−1xd−1 + ad .

Any point (x0, x1, . . . , xd−1, z) in the intersection betweenP andh satisfies

x2
0 + x2

1 + . . . + x2
d−1 = z = a0x0 + a1x1 + . . . + ad−1xd−1 + ad

and hence

(x0 − a0/2)2 + . . . + (xd−1 − ad−1/2)2 = ad + (a2
0 + . . . + a2

d−1)/4.

This is the equation of a sphere in base space with centerc and radiusr where

c = (a0/2, . . . ad−1/2) and r =
√

ad + (a2
0 + . . . + a2

d−1)/4.

Thus the projection ofP ∩ h into base space is a sphere. Conversely, if we start with any
sphereB with centerc and radiusr in base space and define coefficientsa0, a1, . . . , ad

throughc = (a0/2, . . . ad−1/2) andr2 = ad + (a2
0 + . . . + a2

d−1)/4 then the hyperplane
z = a0x0 + a1x1 + . . . + ad−1xd−1 + ad will intersectP in a curve projecting intoB.
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Figure 10.74 The connection between Delaunay diagrams in the plane and convex hulls in
three-space. The lifting map is indicated by dashed lines. The four points on the left are not
co-circular and hence the convex hull of the lifted points is a tetrahedron. The Delaunay diagram
is the projection of the lower part of the tetrahedron.
The four points on the right are co-circular and hence the lifted points lie in a common plane.
The convex hull of the lifted points is a rectangle contained in this plane. The Delaunay diagram
is the projection of the rectangle and the projection of any triangulation of the rectangle is a
Delaunay triangulation.

For a pointp = (x0, x1, . . . , xd−1) in base space we call

lift (p) = (x0, x1, . . . , xd−1, x2
0 + x2

1 + . . . + x2
d−1)

its lifting onto P, i.e., the intersection ofP with a vertical upward ray starting inp. We use
the lifting map to establish a surprising connection between Delaunay diagrams and convex
hulls.

Let S be any full-dimensional finite set of points in base space and letp0, p1, . . . , pd be
d +1 affinely independent points inS. The lifted pointslift (p0), lift (p1), . . . , lift (pd ) define
a hyperplaneh. By the above, this hyperplane intersectsP in a curveC whose projection
into the base space is a sphereB. Of course,B passes throughp0, p1, . . . , pd . In other
words,B is the circumsphere of the simplex spanned byp0, p1, . . . , pd .

Next consider an arbitrary additional pointp in base space. Ifp lies insideB thenlift (p)

lies belowh, if p lies on B then lift (p) lies onh, and if p lies outsideB then lift (p) lies
aboveh. We conclude that the interior of the circumsphere ofp0, p1, . . . , pd is void of
points ofS if and only if no point of

lift (S) = {lift (p) | p ∈ S}
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Figure 10.75 A screen shot of the delaunayand convexhull demo (in demo/book/Geo). The
screen shot shows the lower convex hull of 32 random points in the unit square lifted to the
paraboloid of revolution.

lies belowh, or in other words, ifh supports the lower convex hull oflift (S). The lower
convex hullof a point set consists of all points of the convex hull which are visible from
z = −∞.

Let us take a closer look at the lower convex hull. We need to distinguish cases according
to whether the points inS are co-spherical or not, see Figures 10.74 and 10.75.

If the points inS are not co-spherical, the dimension oflist(S) is one higher than the
dimension ofS and hencelist(S) is full-dimensional. The convex hull oflift (S) is ad + 1-
dimensional object. The lower convex hull consists of all facets with a downward normal.

If the points inS are co-spherical, the points inlift (S) lie in a common hyperplane and
the dimension oflift (S) is the same as the dimension ofS. The Delaunay diagram ofS
is identical to the convex hull ofS and any triangulation of the convex hull is a Delaunay



794 Geometry Algorithms

triangulation. The convex hull oflift (S) is ad-dimensional object; it is simply the lifting of
the convex hull ofS to a plane ind + 1-dimensional space.

We summarize.

Theorem 16For any finite point setS in base space the Delaunay diagram DD(S) is the
vertical projection of the lower convex hull of lift(S) into base space31. A Delaunay trian-
gulation is the vertical projection of a triangulation of the lower hull.

The preceding theorem is the basis for the implementation of Delaunay diagrams. We
maintain the convex hull of the lifted points. All queries about Delaunay diagrams are
translated into queries about the corresponding hull.

10.9.3 Sidedness and Orientation
In this section we show how the results of the preceding section can be used to define the
orientation, side-of, and region-of predicate for spheres.

Let p0, p1, . . . , pd be d + 1 points in base space and letp be an additional point in
base space and letS be the sphere passing throughp0, p1, . . . , pd . Defineorientation(S),
sideof sphere(S, p), andregionof sphere(S, p) by

orientation(S) = orientation(p0, p1, . . . , pd),

sideof sphere(S, p) = −orientation(lift (p0), lift (p1), . . . , lift (pd), lift (p)),

regionof sphere(S, p) =


boundedregion if o(S) · o(S, p) > 0
onregion if o(S) · o(S, p) = 0
unboundedregion if o(S) · o(S, p) < 0

where we usedo as an abbreviation fororientationin the last formula to save space.
We will next show thatsideof sphere(S, p) and regionof sphere(S, p) have their in-

tended meaning.

Lemma 77Let p0, p1, . . . , pd bed + 1 affinely independent points in base space and letp
be an additional point in base space. Then we have

sideof sphere(S, p) =


+1 if p lies insideS
0 if p lies onS

−1 if p lies outsideS

if orientation(S) > 0 and

sideof sphere(S, p) =


+1 if p lies outsideS
0 if p lies onS

−1 if p lies insideS

31 In the discussion above we assumed thatS is full-dimensional. IfS is contained in a lower dimensional subspace,
we only need to restrict the discussion to this subspace. More precisely, assume thatS is contained in a
k-dimensional subspace. We may assume w.l.o.g that the firstk coordinates span this subspace and can then use
the argument above withd replaced byk.
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if orientation(S) < 0. Also

regionof sphere(S, p) =


boundedregion if p lies insideS
onregion if p lies onS
unboundedregion if p lies outsideS

Proof Observe first that the assumption thatp0, p1, . . . , pd are affinely independent implies
that

orientation(S) = orientation(p0, p1, . . . , pd) 6= 0.

Furthermore, by symmetry, we may assume without loss of generality that the pointsp0,
p1, . . . , pd are positively oriented. Under the assumption thatp0, p1, . . . , pd are positively
oriented the following three statements are equivalent:

(a) p is inside (on, outside) the sphereS.
(b) lift (p) lies below (on, above) the hyperplane through pointslift (p0), lift (p1), . . . , lift (pd).
(c) (lift (p0), lift (p1), . . . , lift (pd), lift (p)) is negatively oriented.

We argued the equivalence of the first two items in the preceding section. The equivalence
between the last two items follows from Lemma 58 in Section 9.2.2. This establishes the
first claim. The second claim follows directly from the first.

Exercises for 10.9
1 Let p0, p1, . . . , pd bed + 1 affinely dependent points (orientation(p0, p1, . . . , pd) = 0)

in base space and letp be an additional point. Discuss the possible values ofsideof sphere
andregionof spherefor thed + 2 tuple(p0, p1, . . . , pd, p).

2 Assume that the base space is two-dimensional and that all points inS lie on the line
x0 + x1 = 1. What does the convex hull oflift (S) look like?

3 Assume that the base space is two-dimensional and that all points inS lie on a circle.
What does the convex hull oflift (S) look like?

4 Consider a circular range query with a squareC in a setS. Translate the query by the
lifting map. What is the result?

5 Show how to implement a nearest neighbor query by use of the lifting map.

10.10 A Complete Program: The Voronoi Demo

We discuss the voronoidemo in xlman. The demo illustrates many of the geometric algo-
rithms available in LEDA and we have already seen several screen shots. The demo is also a
representative example for the design of geometric demos in LEDA and useful as a starting
point for the development of further demos. We start with an overview, then give the details
of the implementation, and end with a discussion of what can go wrong when the demo is
run with the floating point kernel.

It is best to have the demo running while reading this section. Figure 10.76 shows yet
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another screen shot of the demo. The window consists of a panel part and a display part.
The panel part in turn is structured in four parts. There is a list of eleven choice items which
control which geometric structures are to be displayed; in the situation shown only the
button for the Delaunay diagram is pressed and hence only the Delaunay diagram is shown.
There is a list of three choice items which control how mouse clicks in the display part of
the window are to be interpreted. In the situation shown every click of the left mouse button
adds a point. The other two buttons allow the user to input points and circles respectively.
There is a choice item which allows the user to switch between the rational kernel and the
floating point kernel, and there is a boolean item and a slider item that control whether the
input points are rounded to a grid and how many grid lines there are. Finally, there are six
buttons for opening sub-menus, for clearing the window, for asking for help, and for exiting
the demo.

10.10.1Overview
The Voronoi demo allows the user to construct a scene of points and to visualize several
fundamental geometric data structures for it: the nearest and furthest site Delaunay diagram,
the nearest and furthest site Voronoi diagram, the convex hull and the width, the minimum
spanning tree, the minimum enclosing and the maximum empty circle, the minimum width
and the minimum area annuli, and the crust of the point set.

The point set is constructed either by mouse input or by calling one of the generators
(sub-menu points). For mouse input there is the choice between single points, points on
a line segment, and points on a circle. The current set of points is maintained as a list
p list of rat points. The list is initially empty and is cleared by the clear-button. Any newly
constructed point is added to it. It is important to remember that adding a line segment or
adding a circle adds points that lieexactlyon a line or a circle.

The geometric structures to be displayed can be computed with the use of three differ-
ent geometry kernels: the rational kernel with the built-in floating point filter (this is the
default), the rational kernel without the built-in floating point filter, and the floating point
kernel. This allows the user to compare the relative speeds of the kernels and also to check
visually whether the floating point kernel worked correctly.When the floating point kernel
is used, the program may abort or produce incorrect results.

The geometric structures are not computed directly for the points inp list but for a derived
set of points. The derived set of points is calledrp list for use with the rational kernel and
is calledfp list for use with the floating point kernel. The following procedure adds a point
to rp list andfp list.

〈manipulate plist, rp list, and fplist〉�
void move_point(const rat_point& p)

{ point fp = p.to_point();

if ( !round_to_grid )

{ fp_list.append(fp); rp_list.append(p); return; }

double x = truncate(fp.xcoord(),truncation_prec);

double y = truncate(fp.ycoord(),truncation_prec);
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Figure 10.76 A screen shot of the Voronoi demo. A Delaunay triangulation is displayed.

point tp(x,y);

fp_list.append(tp);

rp_list.append(rat_point(tp));

}

The addition of a point is controlled by variablesroundto grid andtruncationprec. Let p
be arat point. If roundto grid is false,p is added torp list andfp = p.to point( ) is added
to fp list; the Cartesian coordinates offp are the optimal approximations of the rational
coordinates ofp by doubles. Observe that whenroundto grid is false, the pointsp and
fp are in general distinct. In particular, ifp list contains points on a circle or segment, the
corresponding points infp list will lie close to the circle or segment but not exactly on it.
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Such inputs will frequently overburden the floating point kernel, e.g., try to construct the
crust of co-circular points.

Whenroundto grid is true, the mantissae of the Cartesian coordinates offp are truncated
to truncationprecbinary places, i.e., all but the firsttruncationprecbits are set to zero. This
moves the points on a grid with 2truncat ion prec grid lines. The point with the truncated coor-
dinates is then added tofp list andrp list. Truncation with small values oftruncationprec
will visibly move the points. Whenroundto grid is true,rp list andfp list contain the same
set of points.

The demo also gives a feeling for the running time of the various algorithms. Whenever
the user requests to change the display (for example, by requesting for an additional ge-
ometric structure, by dropping a request, or by switching to another kernel)all requested
structures are recomputed.

The demo can make mistakes when run with the floating point kernel. When using the
floating point kernel, setroundto grid to true and play withtruncationprecto get a feeling
for the limits of the floating point kernel. You can always switch to the rational kernel for
a visual comparison of the result. We want to point out one frequently occurring mistake.
When the crust of points on a circle is constructed and a high value oftruncationprec
is used, the output is frequently completely wrong. This comes from the fact that crust
constructs the Delaunay diagram offp list ∪ VD(fp list), whereVD(fp list) denotes the set
of vertices of the Voronoi diagram offp list. The latter set contains many points crowding
near the center of the circle and this confuses the computation of the Delaunay diagram.

When the scene contains many points on circles or segments, the running time with the
rational kernel may go up sharply. The reason is that these inputs are very difficult, because
our generators guarantee that the points lie exactly on a circle or line, respectively.

10.10.2Implementation
We start with the global structure of the program.

We use a global variablep list to store the current set of points, a listfp list to store the
corresponding list of float points, a pointerWp to the display window, and integersdisplay
andinput that govern which geometric structure to display and which kind of geometric ob-
ject is selected for input. The variablekernelcontrols which kernel is used and the variable
usefilter controls whether the filter is used in the rational kernel (it can be changed in the
settings menu). We have already explained the role ofuseto grid andtruncationprec.

In the main program we first set up the display windowW and then go into an infinite
loop. At the beginning of the loop we wait for a mouse button to be pressed. The mouse
button is either pressed on one of the seven buttons in the lower row of the panel section
(cases zero to six) or in the display part of the window (case MOUSEBUTTON(1)); the
buttons in the top row of the display part are handled elsewhere as will be explained below.

In case of the event MOUSEBUTTON(1) we put back the event, so that the mouse click
can be processed again, and callgetinput(W, input) to further process the mouse click.

At the end of the inner loop we draw the window as governed by the variabledisplay.
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〈voronoi demo.c〉�
#include <LEDA/plane_alg.h>

#include <LEDA/vector.h>

#include <LEDA/rat_vector.h>

#include <LEDA/window.h>

#include <LEDA/graphwin.h>

#include <LEDA/bitmaps/button32.h>

#include <math.h>

#include <LEDA/rat_window.h>

〈definition of bit maps〉
〈definition of display mask〉
static list<rat_point> p_list, rp_list;

static list<point> fp_list;

static window* Wp;

static int display = 0;

static int input = 0;

enum { RK = 0, FK = 1};

static int kernel = RK;

static bool use_filter = true;

static int truncation_prec = 40;

static bool round_to_grid = true;

〈further global variables〉
〈manipulate plist, rp list, and fplist〉
#include <LEDA/rat_kernel_names.h>

〈displaying geometric structures〉
〈graph edit for graphwin〉
#include <LEDA/kernel_names_undef.h>

#include <LEDA/float_kernel_names.h>

〈displaying geometric structures〉
〈graph edit for graphwin〉
#include <LEDA/kernel_names_undef.h>

〈global drawing functions〉
〈action functions〉
〈point generators〉
〈adding a geometric object〉
int main()

{

window W(630,720,"VORONOI DIAGRAMS");

Wp = &W;

〈set up window〉
for(;;)

{

int but = W.read_mouse();

rat_point::use_filter = use_filter;

if (but == 0) break;
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switch (but) {

case MOUSE_BUTTON(1): put_back_event();

get_input(W,input);

break;

case 1: { 〈generate points menu〉; break; }

case 2: { 〈settings menu〉; break; }

case 3: clear_all(); break;

case 4: // start GraphWin

if ( kernel == FK )

graph_edit(display,fp_list);

else

graph_edit(display,rp_list);

break;

case 5: // help

help_win.open(W); break;

}

draw(display);

}

rat_point::print_statistics();

return 0;

}

The drawing functions are needed for both kernels and hence are included twice. We com-
ment below why we did not use templates.

We give more details.

Setting up the Window: We start by defining ahelpstringand the panelhelpwin that pops
up when the “about”-button is pressed. We then define the panel section ofW . It consists of
three sets ofchoiceitems, a boolean item, a slider item, and a set of six buttons. We come
back to them below.

Having defined the panel part we open the display, state that window coordinates for the
x-coordinate are between 0 and 1000 and that they start at 0 for they-coordinate (the upper
bound for they-coordinate depends on the actual geometry ofW , state that nodes are drawn
with width two, and that coordinates are to be shown.

〈set up window〉�
string help_string;

help_string += "This program demonstrates some of the algorithms ";

help_string += "for two dimensional geometry of points based on ";

help_string += "Delaunay triangulations and Voronoi Diagrams.";

panel help_win;

help_win.text_item("\\bf Voronoi Demo");

help_win.text_item("");

help_win.text_item("K. Mehlhorn and S. Naeher (1997)");

help_win.text_item("");

help_win.text_item("see LEDAROOT/demo/documentation/voronoi_demo.ps");
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help_win.text_item(help_string);

help_win.button("ok");

W.set_bitmap_colors(black,blue);

W.choice_mult_item("",display,11,32,32,display_bits,draw);

W.choice_item("",input,3,32,32,input_bits);

list<string> kernel_choices;

kernel_choices.append("RK"); kernel_choices.append("FK");

W.choice_item("kernel",kernel,kernel_choices,change_kernel);

W.bool_item("round_to_grid",round_to_grid,change_round_to_grid);

W.int_item("# of grid lines = 2^x, where x =",truncation_prec,

2,52,change_truncation_prec);

W.button("points", 1, "Opens a point generator panel.");

W.button("clear", 3, "Clears point set and window.");

W.button("graphwin", 4, "Loads graph into GraphWin.");

W.button("settings", 2, "Opens an option setting dialog.");

W.button("exit", 0, "Exits the program.");

W.button("about", 5, "Displays information about this program.");

W.display();

W.init(0,1000,0);

W.set_redraw(redraw);

W.set_node_width(2);

W.set_show_coordinates(true);

We need to say a few more words about the panel part of the window. The first choice
item controls the variabledisplayand consists of eleven items. Whenever thei -th button
is pressed thei -th bit of display is flipped and the function calldraw(display) is made.
Each item is drawn as a 32x32 pixel map taken from the collection of pixel maps defined in
LEDA/bitmaps/button32.h. The pixel maps selected are defined by the arraydisplaybits.
The pixel maps are shown black when the corresponding button is released and are shown
in blue when the button is pressed.

The second choice item controls the variableinput. The effect of pressing one of the
buttons in this collection of buttons is to setinput to the number of the button.

The third choice item controls the use of the filter, the boolean item controls whether the
input is rounded to a grid, and the slider item controls the number of grid lines.

The other buttons are added by the sevenbuttonstatements. Each button is given a name,
a number, and a help string that is displayed when the mouse rests over the button for an
extended period of time.

〈definition of bit maps〉�
static char* input_bits [] = { point_bits, line_bits, circle_bits };

static char* display_bits [] = { triang_bits, voro_bits, f_triang_bits,

f_voro_bits, tree_bits, hull_bits, empty_circle_bits,

encl_circle_bits, w_annulus_bits, a_annulus_bits, help_bits };
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Action Functions: Some of the items in the menu part of the window have action functions
associated with them. Recall that action functions are called with the new value of the
variable associated with the item (the value of the variable itself is only changed after return
from the action function such that new and old values of the variable are available during the
action). All action functions follow the same scheme. They set the corresponding variable
to the new value (since we want the new value during the execution of the action), clear the
window and redraw the sites, recomputerp list andfp list, and recompute the display. The
functiondrawwill be discussed below.

〈action functions〉�
void change_truncation_prec(int new_prec)

{ truncation_prec = new_prec;

Wp->clear();

draw_sites(p_list);

recompute_rp_and_fp_list();

draw(display);

}

void change_round_to_grid(int new_mode)

{ round_to_grid = new_mode;

Wp->clear();

draw_sites(p_list);

recompute_rp_and_fp_list();

draw(display);

}

void change_kernel(int new_kernel)

{ kernel = new_kernel;

Wp->clear();

draw_sites(p_list);

draw(display);

}

The functionrecomputerp andfp list clears both lists and then moves all points fromp list.
The functionaddpoint will be called whenever a new point is added top list andclearall
clears the window and all lists.

〈manipulate plist, rp list, and fplist〉+�
void add_point(const rat_point& p)

{ p_list.append(p);

move_point(p);

}

void recompute_rp_and_fp_list()

{ fp_list.clear(); rp_list.clear();

rat_point p;

forall(p,p_list) move_point(p);

}

void clear_all()

{ Wp->clear();

p_list.clear(); fp_list.clear(); rp_list.clear();

}
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Global Drawing Functions: The functiondrawarea(disp, x0, y0, x1, y1, L) draws the part
of W covered by the rectangle with lower corner(x0, y0) and upper corner(x1, y1). It is
our master drawing function. The geometric structures shown are governed bydispandL
is eitherp list or fp list. If L is p list the drawing functions use the rational kernel and ifL
is fp list the drawing functions use the floating point kernel.

〈global drawing functions〉�
template <class POINT>

void draw_area(int disp, double x0, double y0, double x1, double y1,

const list<POINT>& L)

{

if (L.empty()) return;

Wp->start_buffering();

Wp->clear();

if (disp & MWA_MASK) draw_min_width_annulus(L);

if (disp & MAA_MASK) draw_min_area_annulus(L);

if (disp & HULL_MASK) draw_convex_hull(L);

if (disp & DT_MASK) draw_delaunay(L);

if (disp & VD_MASK) draw_voronoi(L);

if (disp & FDT_MASK) draw_f_delaunay(L);

if (disp & FVD_MASK) draw_f_voronoi(L);

if (disp & LEC_MASK) draw_max_empty_circle(L);

if (disp & SEC_MASK) draw_min_encl_circle(L);

if (disp & MST_MASK) draw_min_span_tree(L);

if (disp & CRUST_MASK) draw_crust(L);

draw_sites(L);

Wp->flush_buffer(x0,y0,x1,y1);

Wp->stop_buffering();

}

If our current set of sites is empty,drawareahas nothing to do. Otherwise we clear the win-
dow, draw the selected geometric structures (the constants MWAMASK, MAA MASK, . . .
are defined in an enumeration type and denote 20, 21, 22, . . . ), and draw thesites. The ap-
pearance of the window is better if the sites are displayed after the selected geometric struc-
tures. We want the new drawing to appear in a single blow and therefore put the window in
buffering mode before constructing the drawings of the selected geometric structures.

Once all drawings are constructed we flush the buffer and stop the buffering mode.

〈definition of display mask〉�
enum display_mask {

DT_MASK = 1, VD_MASK = 2, FDT_MASK = 4,

FVD_MASK = 8, MST_MASK = 16, HULL_MASK = 32,

LEC_MASK = 64, SEC_MASK = 128, MWA_MASK = 256,

MAA_MASK = 512, CRUST_MASK = 1024

};

The master drawing function is used by the functionsdrawarea, drawandredraw.
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Draw area (now without thelist<POINT>-argument) makes the distinction between the
use of the rational kernel and the floating point kernel.

Draw is called whenever one of the choice items changingdisplay is called and at the
end of each iteration of the main loop and redraw is called whenever the geometry of the
window is changed. Accordingly, we redraw either only the display part of the window (in
draw) or the entire window (inredraw).

〈global drawing functions〉+�
void draw_area(int disp, double x0, double y0, double x1, double y1)

{

if ( kernel == FK ) draw_area(disp,x0,y0,x1,y1,fp_list);

else draw_area(disp,x0,y0,x1,y1,rp_list);

}

void draw(int disp)

{ draw_area(disp,Wp->xmin(),Wp->ymin(),Wp->xmax(),Wp->ymax()); }

void redraw(window* wp, double x0, double y0, double x1, double y1)

{ draw_area(display,x0,y0,x1,y1); }

Displaying Specific Geometric Structures:For each of our geometric structures we have
a function that displays it. We discuss only a representative sample of the functions.

We draw each site as a filled node of colorsitecolor, wheresitecolor is a global variable
defined in〈further global variables〉. This code is not shown. The default value ofsitecolor
is red; the color can be changed in the settings menu.

〈displaying geometric structures〉�
void draw_sites(const list<POINT>& L)

{ POINT p;

forall(p,L) Wp->draw_filled_node(p.to_point(),site_color);

}

Most of our geometric structures are graphs. We have to deal with two kinds of graphs.
Voronoi diagrams have typeGRAPH<CIRCLE, POINT> and Delaunay diagrams have type
GRAPH<POINT, int>. We define a drawing function for each kind of graph. Recall that we
use bidirected graphs to represent Delaunay diagrams and Voronoi diagrams. We therefore
have to draw uedges and not edges.

In order to draw aGRAPH<POINT, int> we simply draw each uedge as the segment
defined by the endpoints of the edge.

〈displaying geometric structures〉+�
void draw_graph_edges(const GRAPH<POINT,int>& T, color col)

{ edge_array<bool> drawn(T,false);

edge e;

forall_edges(e,T)

if (!drawn[e])

{ drawn[e] = true;

edge r = T.reversal(e);
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if (r) drawn[r] = true;

POINT p = T[source(e)];

POINT q = T[target(e)];

Wp->draw_edge(p.to_point(),q.to_point(),col);

}

}

Voronoi diagrams are a bit harder to draw. The positions of the nodes are determined
by the circles associated with them. A proper node, i.e., a node of degree at least three, is
positioned at the center of the circle associated with it. A node of degree one is positioned at
the circle at infinity. If its circle isCIRCLE(a, , b) then the node lies on the perpendicular
bisector ofa andb, and to the left of the oriented segment froma to b. Each edge is labeled
by the site owning the region to the left of the edge. An edgee is part of the perpendicular
bisector of sitesa andb, wherea = G[e] andb = G[G.reversal(e)].

After these preliminaries it is clear how to draw a Voronoi edge(v, w). An edge con-
necting two improper nodes is drawn as the perpendicular bisector of the pointsa andb, an
edge connecting a proper node and an improper node is drawn as a ray starting at the proper
node, running along the perpendicular bisector of pointsa andb and extending towards the
position of the improper node at the circle at infinity, and an edge connecting two proper
nodes is drawn as a segment connecting the nodes. We obtain the following code.

〈draw voro edges〉�
void draw_voro_edges(const GRAPH<CIRCLE,POINT>& VD, color col)

{

edge_array<bool> drawn(VD,false);

edge e;

forall_edges(e,VD)

{ if (drawn[e]) continue;

drawn[VD.reversal(e)] = drawn[e] = true;

node v = source(e);

node w = target(e);

POINT a = VD[e];

POINT b = VD[VD.reversal(e)];

VECTOR vec = (b - a).rotate90();

line l = p_bisector(a,b).to_line();

if (VD.outdeg(v) == 1 && VD.outdeg(w) == 1){ Wp->draw_line(l,col); }

else

if (VD.outdeg(w) == 1)

{ POINT cv = VD[v].center();

VECTOR vec = VD[w].point3() - VD[w].point1();

POINT rp = cv + vec.rotate90();

Wp->draw_ray(cv.to_point(),rp.to_point(),col);

}

else

if (VD.outdeg(v) == 1)

{ POINT cw = VD[w].center();

VECTOR vec = VD[v].point3() - VD[v].point1();

POINT rp = cw + vec.rotate90();
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Wp->draw_ray(cw.to_point(),rp.to_point(),col);

}

else

{ POINT cv = VD[v].center();

POINT cw = VD[w].center();

Wp->draw_segment(cv.to_point(),cw.to_point(),col);

}

}

}

The procedure above has serious numerical differences. Consider the following example.
Assume that we compute the Voronoi diagram of three points that lie almost on a common
line. The Voronoi diagram consists of one vertex and three rays. The vertex has very
large coordinates and even if its coordinates are computed exactly (as they will be with the
rational kernel) the conversion to point indrawray will suffer some loss of accuracy. We
are now drawing a ray from a distant point. It is unlikely that this ray intersects the window
in the desired form.

The window class offers drawing functions that are appropriate for this situation as dis-
cussed in Section 9.1. The modified drawing functions have an additional argumentl of
type line, which is supposed to be the line underlying the segments or rayr to be drawn.
In our casel is the bisector ofa and b and hence determined with high precision. The
additional argument is used as follows.

If the source ofr lies in W or the two endpoints ofs lie in W , l is ignored. Otherwise, the
intersectiont betweenl and the window is determined and the part oft which also belongs
to r or s is drawn.

〈displaying geometric structures〉+�
// template <class POINT, class CIRCLE, class VECTOR, class LINE>

void draw_voro_edges(const GRAPH<CIRCLE,POINT>& VD, color col)

{

edge_array<bool> drawn(VD,false);

edge e;

forall_edges(e,VD)

{ if (drawn[e]) continue;

drawn[VD.reversal(e)] = drawn[e] = true;

node v = source(e);

node w = target(e);

POINT a = VD[e];

POINT b = VD[VD.reversal(e)];

line l = p_bisector(a,b).to_line();

if (VD.outdeg(v) == 1 && VD.outdeg(w) == 1){ Wp->draw_line(l,col); }

else

if (VD.outdeg(w) == 1)

{ POINT cv = VD[v].center();

VECTOR vec = VD[w].point3() - VD[w].point1();

POINT rp = cv + vec.rotate90();

Wp->draw_ray(cv.to_point(),rp.to_point(),l,col);
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}

else

if (VD.outdeg(v) == 1)

{ POINT cw = VD[w].center();

VECTOR vec = VD[v].point3() - VD[v].point1();

POINT rp = cw + vec.rotate90();

Wp->draw_ray(cw.to_point(),rp.to_point(),l,col);

}

else

{ POINT cv = VD[v].center();

POINT cw = VD[w].center();

Wp->draw_segment(cv.to_point(),cw.to_point(),l,col);

}

}

}

The function above uses points, lines, circles, and vectors and hence would require four
template arguments. Moreover, we would have to add artificial arguments of type LINE and
VECTOR such that the appropriate type inference can be made by the compiler. We decided
to use our primitive renaming mechanism instead. An alternative would be to introduce a
classrat kernel

class rat kernel{

typedef rat point POINT;

typedef rat segment SEGMENT;

// and so on

}

and a similar classfloatkernel, to use a single template argument calledkernel, and to use
qualified type names such askernel::POINT andkernel::SEGMENTin drawvoroedges.
This design is used extensively in CGAL [CGA].

We come to the drawing functions for the individual geometric structures. Nearest and
furthest sites Delaunay diagrams, crusts, and minimum spanning trees are drawn by first
computing the structure and then callingdrawgraphedges. For example,

〈displaying geometric structures〉+�
void draw_delaunay(const list<POINT>& L)

{ GRAPH<POINT,int> DT;

DELAUNAY_TRIANG(L,DT);

draw_graph_edges(DT,triang_color);

}

Nearest and furthest site Voronoi diagrams are drawn by computing the structure and calling
drawvoroedges. For example,
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〈displaying geometric structures〉+�
void draw_voronoi(const list<POINT>& L)

{ GRAPH<CIRCLE,POINT> VD;

VORONOI(L,VD);

draw_voro_edges(VD,voro_color);

}

In order to display the convex hull and the width of our set of points we compute the convex
hull (a list of POINTs), convert the list to a list ofpoints, and draw the list of points as a
filled polygon ofhull color and as a black polygonal line. We also compute the minimum
width slab containing our set of points and display the two lines bounding the slab.

〈displaying geometric structures〉+�
void draw_convex_hull(const list<POINT>& L)

{ list<POINT> CH = CONVEX_HULL(L);

list<point> pol;

POINT p;

forall(p,CH) pol.append(p.to_point());

Wp->draw_filled_polygon(pol,hull_color);

Wp->draw_polygon(pol,black);

// width

LINE l1,l2;

WIDTH(L,l1,l2);

Wp->draw_line(l1.to_line(),blue);

Wp->draw_line(l2.to_line(),blue);

}

In order to draw a minimum width annulus we either draw the two circles or the two
parallel lines defining the annulus. In the first case we want the annulus to be shown in
orange. We therefore draw the larger disk in orange first and then the smaller disk in white.
This leaves the annulus in orange.

〈displaying geometric structures〉+�
void draw_min_width_annulus(const list<POINT>& L)

{ POINT a,b,c; LINE l1,l2;

if ( MIN_WIDTH_ANNULUS(L,a,b,c,l1,l2) )

{ // proper annulus

circle c1(a.to_point(),b.to_point());

circle c2(a.to_point(),c.to_point());

Wp->draw_disc(c2,orange);

Wp->draw_disc(c1,white);

Wp->draw_circle(c1,black);

Wp->draw_circle(c2,black);

Wp->draw_point(a.to_point(),orange);

}

else

{ // strip

Wp->draw_line(l1.to_line(),black);
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Wp->draw_line(l2.to_line(),black);

}

}

Adding a Geometric Object: We come to the mouse input of points, lines, and circles.
The functiongetinput(W, input) reads either a point, or a segment, or a circle and then
calls the appropriate insertion function.

〈adding a geometric object〉�
〈adding a point, segment or circle〉
void get_input(window& W, int inp)

{ rat_point p; rat_segment s; rat_circle c;

switch (inp) {

case 0: if (W >> p) insert_point(p); break;

case 1: if (W >> s) insert_segment(s); break;

case 2: if (W >> c) insert_circle(c); break;

}

}

〈adding a point, segment or circle〉�
void insert_point(rat_point p)

{ Wp->draw_filled_node(p.to_point(),site_color);

add_point(p);

}

Addition of a point does the obvious. In order to add points on a segment we generaten
points on the segment, wheren is determined by the ratio between the length of the segment
and the global variablepointdist.

In order to add a circle we generaten uniformly spaced points on the circle, wheren
is determined by the ratio between the circumference of the circle and the global variable
pointdist.

〈adding a point, segment or circle〉+�
void insert_segment(rat_segment s)

{

double l = s.to_segment().length();

int n = Wp->real_to_pix(l)/point_dist + 1;

list<rat_point> L;

points_on_segment(s,n,L);

rat_point p;

forall(p,L)

{ add_point(p);

Wp->draw_filled_node(p.to_point(),site_color);

}

}

void insert_circle(rat_circle C)
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{

double L = 2 * C.to_circle().radius() * LEDA_PI;

int n = Wp->real_to_pix(L)/point_dist + 1;

double d = (2*LEDA_PI)/n;

double eps = 0.001;

double a = 0;

for(int i = 0; i < n; i++)

{ rat_point q = C.point_on_circle(a,eps);

add_point(q);

Wp->draw_filled_node(q.to_point(),site_color);

a += d;

}

}

Point Generators: The point generator menu allows the user to select between three gen-
erators. A generator for random points in a square, a generator for regularly spaced points,
and a generator for random points near a circle. The third generator produces inputs which
are useful to illustrate the computation of annuli.

〈generate points menu〉�
panel P;

P.text_item("\\bf Generate input points");

P.text_item("");

P.choice_item("",k_gen,"random","lattice","near circle");

P.int_item("",n_gen,0,500);

P.button("create",0);

P.button("cancel",1);

if (P.open(W) == 0)

{ switch (k_gen) {

case 0: random_square(n_gen); break;

case 1: lattice_points(n_gen); break;

case 2: near_circle(n_gen,point_dist); break;

}

}

We only show thenearcircle generator. It generates points in an annulus with inner radius
rmin and outer radiusrmax; rmax is chosen such that the annulus fits nicely on the screen
andrmin is chosen as 90% ofrmax.

For each point to be generated we generate a random point on a circle of radiusr where
r is randomly chosen betweenrmin andrmax.

〈point generators〉+�
void near_circle(int n, int point_dist)

{

double x0 = Wp->xmin(), y0 = Wp->ymin();

double x1 = Wp->xmax(), y1 = Wp->ymax();

point cent((x0+x1)/2,(y0+y1)/2);

int rmax = int(0.35 * (x1-x0));
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int rmin = int(0.9 * rmax);

clear_all();

for(int i=0; i < n; i++)

{ //circle C(cent,rand_int(rmin,rmax));

circle C(cent,(double)rand_int(rmin,rmax));

double a;

rand_int >> a;

point q = C.point_on_circle(2*a*LEDA_PI);

int x = (int)q.xcoord();

int y = (int)q.ycoord();

add_point(rat_point(x,y,1));

Wp->draw_filled_node(x,y,site_color);

}

}

Calling GraphWin: The functiongrapheditvisualizes the graphs underlying our geomet-
ric structures. We do not discuss it here.

Settings: The settings menu allows the user to set some of the global variables. It is self-
explanatory.

〈settings menu〉�
panel SP("SETTINGS");

SP.bool_item("use filter in rat kernel", use_filter);

SP.bool_item("draw lines with width 2",thick_lines);

SP.int_item("grid", grid_width,0,50,10);

SP.int_item("pix dist", point_dist,1,64);

SP.color_item("sites ", site_color);

SP.color_item("voro ", voro_color);

SP.color_item("triang", triang_color);

SP.color_item("hull", hull_color);

SP.color_item("tree", tree_color);

SP.button("continue");

SP.open(W);

W.set_grid_mode(grid_width);

W.clear();

W.set_line_width( thick_lines ? 2 : 1);

draw_sites(p_list);

recompute_rp_and_fp_list();

draw(display);

10.10.3Floating Point Errors
What can go wrong when the demo is executed with the floating point kernel?

When a segment or circle is added a certain number of points on the segment or circle are
added top list. The rational kernel guarantees that these points lie exactly on the segment
or circle, respectively. When therat pointsare converted topoints, they will lie only almost
on the circle or segment.
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Consider now a scene that consists of points on two segments. The Delaunay triangula-
tion will contain extremely flat triangles. This can cause the computation of the Delaunay
diagram and the Voronoi diagram to fail.

Crust is also a good source of error. It computes the Delaunay diagram of the points is
fp list plus the vertices of the Voronoi diagram ofp list. Whenfp list contains points that lie
almost on a circle there will be many Voronoi vertices near the center of the circle and the
Delaunay diagram computation will get confused. This can lead to strange crusts.
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Windows and Panels

The data typewindow is the base type for all visualization and animation support in the
LEDA system. It provides an interface for the graphical input and output of basic geometric
objects for both theX11system on Unix platforms and for MicrosoftWindowssystems.

An instanceW of typewindowis a rectangular window on the display screen. The width
w and heighth of W are measured in pixels and can be defined in the constructor. The
default constructor initializes the width and height ofW to default values depending on the
system and screen resolution of the display. The position on the display is given by the pixel
coordinates of the upper left corner ofW . It can be specified in thedisplayoperation.

A window consists of two rectangular regions, apanel sectionin the upper part and a
drawing sectionin the rest of the window. Either section may be empty. The panel section
containspanel itemssuch as sliders, choice fields, string items, and buttons. They have to
be created by the operations described in Section 11.14 before the window is displayed for
the first time. Figure 11.1 shows a typical LEDA window. If a window has no drawing
section we call it apanel. Figure 11.2 shows the LEDA panel used for thexlmanmanual
reader.

The drawing section can be used to draw geometric objects such as points, lines, seg-
ments, arrows, circles, polygons, graphs,. . . and to input any of these objects using the
mouse input device.

In this chapter we discuss LEDA windows and show how to use them in demo and visu-
alization programs.

813
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Figure 11.1 A typical LEDA window.

Figure 11.2 A typical LEDA panel: xlman.

11.1 Pixel and User Coordinates

The underlying graphics systems (X11 or Windows) maps windows to rectangular regions
of the display screen using a pixel based coordinate system. In thispixel coordinate sys-
tem, the upper left corner of the window rectangle has coordinates(0, 0), x-coordinates
increase from left to right, and y-coordinate increase from top to bottom. This is illustrated
in Figure 11.3.

All drawing and input operations in the drawing section use theuser coordinate system
whose y-axis is oriented in the usual mathematical way, i.e., from bottom to top. The
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Figure 11.3 The pixel coordinate system: the pixel with coordinates(3, 4).

user coordinate system is defined by three numbers of typedouble: xmin, the minimal x-
coordinate,xmax, the maximal x-coordinate, andymin, the minimal y-coordinate. The two
parametersxminandxmaxdefine the scaling factor

scaling= w/(xmax− xmin),

wherew is the width of the window in pixels. The maximal y-coordinateymaxof the
drawing section is equal toymin+ h · scaling, whereh is the height of the drawing section
in pixels. The user coordinates(x, y) correspond to the pixel

(scaling· (x − xmin), scaling· (y − ymin)).

The window type provides operations for translating user coordinates into window coor-
dinates and vice versa.

11.2 Creation, Opening, and Closing of a Window

We describe how to create, open, and close a window.
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Figure 11.4 The LEDA default icon.

window W;

creates a window of default size.

window W(int w, int h);

creates a windowW of sizew × h pixels.

void W.display();

opensW and displays it at the default position on the screen. Note thatW .display() has to
be called before all drawing operations and that all operations adding panel items toW (cf.
Section 11.14) have to be called before the first call ofW .display().

void W.display(int x, int y);

opensW and displays it with its left upper corner at position(x, y) in pixel coordinates.
The three special constantswindow::min, window::center, window::maxcan be used for
positioningW at the minimal or maximalx- or y-coordinate or centering it horizontally or
vertically on the screen.

void W.display(window W0, int x=window::center, int y=window::center);

opensW and displays it at position(x, y) above windowW0 which must be displayed
already.

void W.iconify();

closesW and displays it as a small icon. If no user-defined icon is specified (see theicon
pixrectparameter) the LEDA default icon, as shown in Figure 11.4, is used.

void W.close();

closesW and removes it from the display.
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11.3 Colors

The data typecolor represents all colors available in drawing operations.
Each color value corresponds to a triple of integers(r, g, b) with 0 ≤ r, g, b ≤ 255, the

so-calledrgb-valueof the color. The number of available colors is restricted and depends
on the underlying hardware. A color can be created from rgb-values,

color col(int r, int g, int b);

from a color name in a system data base (X11 only)

color col(string color name);

or from one of the integer color constants defined in<LEDA/impl/x window.h>

color col(int color const);

wherecolor constis one of the constants from the enumeration

enum { black, white, red, green, blue, yellow, violet,

orange, cyan, brown, pink, green2, blue2,

grey1, grey2, grey3, ivory, invisible }

A drawing operation with the special colorinvisiblehas no effect on the display.
The definition of a color may fail due to one of the following reasons:

• There is a system dependent limitation on the total number of different colors any
application may use and the construction exceeds this limit.

• One of the specified(r, g, b)-values is illegal, i.e., not in the range [0, . . . , 255].

• The color name is not present in the systems color data base or the system does not
support this method of specifying colors.

If the definition of a color fails, we say that the constructed color isbad; it is calledgood
otherwise. The operation

bool col.is good()

tests whether a color is good or bad.
It is also possible to retrieve the(r, g, b)-values of a color by

void col.get rgb(int& r, int& g, int& b);

The following program tries to construct all 256 possible grey colors and reports how
many of them are available.

〈greyscales.c〉�
#include <LEDA/window.h>

#include <LEDA/array.h>

main()

{

array<color> grey(256);

int n = 0;
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for(int i = 0; i < 256; i++)

{ color c(i,i,i);

if (c.is_good()) grey[n++] = c;

}

cout << n << " different greys available." << endl;

return 0;

}

Exercises for 11.3
1 How man different versions of “red” are available on your system? Write a program to

find out.
2 Write a program that displays a rainbow.

11.4 Window Parameters

Every window has a list of parameters which control its appearance and the way drawing
operations are performed on the window. In this section we will first survey the available
window parameters and then show how to read and to change them.

The Available Parameters: We list the parameters together with their type, default value,
and a short description of their meaning.

background color: A parameter of typecolor (default valuewhite) defining the default
background color (e.g., used byW.clear( ) to erase the drawing area).

background pixrect: A parameter of typechar∗ (default value:NULL) defining a pixrect
(see Section 11.8) that is used to tile the background of the window. If it is different from
NULL the background color parameter is ignored.

foreground color: A parameter of typecolor (default value:black) defining the default
color to be used in all drawing operations. All drawing operations have an optional color
argument that can be used to override the default foreground color temporarily.

mouse cursor: A parameter of typeint (default value:−1) defining the shape of the
mouse cursor. Its value must be either the default value or one of the values listed in
<LEDA/X11/cursorfont.h>.

text font: A parameter of type string (default value: system dependent) defining the name
of the font to be used in text drawing operations. Possible values are strings of the form:
T<num>, F<num>, I<num>, and B<num>. HereT stands for (normal) text,F for fixed
size,I for italic, andB for bold, andnum gives the font size in points. These special names
are used by the window class to provide a platform independent way of specifying fonts.
For example, ”B14” specifies a “usual” 14pt bold font of the underlying operating system.
Note, however, that, in general, a font specified in this way will look different for different
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platforms. On Unix systems fonts can also be specified by an X11 font name as for instance
-adobe-helvetica-medium-r-*-*-14-*-*-*-*-*-*-*.

window coordinates (xmin, xmax, ymin): Parameters of typedouble (default values:
(0, 100, 0)) defining the user coordinate space of the window, i.e.,xmin is the minimal
x-coordinate,xmaxthe maximalx-coordinate, andymin the minimaly-coordinate of the
drawing area. The maximaly-coordinateymaxdepends on the shape and size of the draw-
ing area.

grid width: A parameter of typeint (default value: 0) defining the width of the grid used
in the drawing area. A grid width of 0 indicates that no grid is to be used.

grid style: A parameter of typegrid style(default value:pointgrid) defining how a grid
is represented in the window. Possible values areinvisiblegrid, pointgrid, andline grid.

frame label: A parameter of typestring (default value: LEDA header) defining the frame
label of the window that is used by the graphics system or window manager.

icon label: A parameter of typestring (default value: empty) defining the icon label of
the window.

icon pixrect: A parameter of typechar∗ (default value:NULL) defining a pixrect (see
Section 11.8) that is used as the icon of the window. If it has valueNULL the default icon
is used.

show coordinates: A parameter of typebool (default value:false) determining whether
the current coordinates of the mouse pointer are displayed in the upper right corner of the
window.

line width: A parameter of typeint (default value: 1) defining the width of all kinds of
lines (segments, arrows, edges, circles, polygons) in pixels.

line style: A parameter of typeline style(default value:solid) defining the style of all
kinds of lines. Possible styles aresolid, dashed, dotted, anddasheddotted.

node width: A parameter of typeint (default value: 10) defining the diameter of nodes
created by thedrawnodeanddrawfilled nodeoperations.

text mode: A parameter of typetextmode(default value:transparent) defining how text
is inserted into the window. Possible values aretransparentandopaque.

drawing mode: A parameter of typedrawingmode(default value:srcmodedefining the
logical operation that is used for setting pixels in all drawing operations. Possible values are
srcmodeandxor mode. In srcmodepixels are set to the respective color value, inxor mode
the value is bitwise added to the current pixel value.

clip region: A parameter defining the clipping region of the window, i.e., the region of
the window to which drawing operations are applied (default value: the entire drawing
area). In the current implementation clip regions are restricted to rectangles (defined by
setclip rectangle) and ellipses (defined bysetclip ellipse).

redraw function: A parameter of typevoid (∗func)(window∗) (default value: NULL).
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Its value is a pointer to a function that is called with a pointer to the corresponding win-
dow, whenever a redrawing of the window is necessary, e.g., if the shape of the window is
changed or previously hidden parts of the window become visible.

client data: A parameter of typevoid∗ (default value: NULL). Its value is an arbitrary
pointer value that can be set or read by client applications. In most cases it is used to
associate user-defined data with a window for use inredrawor other call-back functions.

buttons per line: A parameter of typeint (default value:∞) defining the maximal number
of buttons in one line of the panel section.

Reading and Changing Parameters:Most parameters may be retrieved or changed by
getandsetfunctions. We useparamto denote any of the window parameters andparamt
to denote its type.

param t W.get param()

returns the current value of parameterparam, and

param t W.set param(param t val)

sets the value of parameterparamof type paramt to the new valueval and returns the
former value of the parameter.

Here are some simple examples:

line style = W.get line style();

int lw = W.get line width();

W.set cursor(XC dotbox);

W.set bg pixrect(leda pixmap);

W.set grid dist(10);

W.set grid style(line grid);

W.set line width(1)

W.set bg color(ivory)

W.set color(blue)

W.set redraw(redraw func);

The fact that theset-operation returns the old value of the parameter is very convenient
when a parameter is to be changed only temporarily. For instance, in order to change the
mouse cursor to a “watch symbol” during the execution of a time consuming operation, one
writes:

int old cursor = W.set cursor(XC watch);

// some time consuming computation

W.set cursor(old cursor);

There are a few operations for changing parameters that do not follow the scheme de-
scribed above, e.g., theinit operation for changing the user coordinate system that is ex-
plained in the next section.
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11.5 Window Coordinates and Scaling

We discuss the connection between coordinates and pixels. We usew andh for the width
and the height of the drawing section in pixels. Both values are determined by the appear-
ance of a window on the screen. The coordinate system underlying the drawing area is
defined by theinit operation.

void W.init(double x0, double x1, double y0, int grid dist=0);

defines the coordinate system underlying the drawing area ofW by settingxminto x0, xmax
to x1, andymin to y0. It also defines implicitly a scaling factorscalingand the maximal
y-coordinateymaxof the drawing area.

scaling= w/(xmax− xmin) and ymax= ymin+ h · scaling.

If, in addition, agrid dist argument is supplied, it is used to initialize the grid distance of
the window. The following function give information about the window coordinates and the
scaling factor:

double W.xmin()

returnsxmin, the minimalx-coordinate of the drawing area ofW , i.e., the coordinate of
the left window border in user space. The analogous functionsW.xmax( ), W.ymin( ), and
W.ymax( ) are also available.

double W.scale()

returns the scaling factor of the drawing area ofW , i.e. the number of pixels of a unit length
line segment in user space.

double W.pix to real(int p)

translates pixel distances into user space distances, more precisely, returns the length of ap
pixel horizontal or vertical line segment in the user coordinate system.

double W.real to pix(double d)

translates user space distances into pixel distances, more precisely, returns the number of
pixels contained in a horizontal or vertical line segment of lengthd.

11.6 The Input and Output Operators � and �
For the input and output of basic two-dimensional geometric objects of the floating point
kernel (point, segment, ray, line, circle, polygon) the� and� operators can be used. In
analogy to C++ input streams, windows have an internal state indicating whether there was
more input to read or not. The state is true initially and is turned to false if an input sequence
is terminated by clicking the right mouse button (similar to ending stream input by theeof-
character). In conditional statements, objects of typewindoware automatically converted
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to boolean by returning this internal state. Thus, window-objects can be used in conditional
statements in the same way as C++ input streams. For example, to read a sequence of points
terminated by a right button click, use

while (W >> p) { .... }

The following program uses the� operator to read points defined by mouse clicks and
draws each point using the� operator until input is terminated by clicking the right mouse
button.

〈draw points.c〉�
#include <LEDA/window.h>

main()

{

window W(400,400);

W.display(window::center,window::center);

point p;

while (W >> p) W << p;

W.screenshot("draw_points.ps");

}

Graphical input and output for LEDA windows can be extended to user-defined types by
overloading the� and� operators. This is in analogy to C++ stream input and output. For
example,<LEDA/rat window.h> contains input and output operators for the objects of the
rational kernel.

window& operator<<(window& W, const rat point& p)

{ return W << p.to point(); }

window& operator>>(window& W, rat point& p)

{ point q;

W >> q;

p = rat point(q);

return W;

}

Exercises for 11.6
1 Modify the programdrawpoints.c such that segments (circles, line, or polygons) are

echoed. The modified program is supposed to work for only one of the mentioned ob-
jects.

2 Write operators� and� for rat polygons.

11.7 Drawing Operations

The W � objectoutput operators apply to the basic objects of the floating point kernel.
The windows class also provides a large number of additional drawing operations that give
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more flexibility. In this book we can only give a few examples. For the complete list of
operations we refer the reader to the LEDA User Manual.

There are two kinds of drawing operations

void W.draw object(coords, color col=window::fg color);

void W.draw object(object, color col=window::fg color);

For the first variant, a geometric object is given by its coordinates in the user coordinate
system of the window, and for the second variant, the object is given as an object of the
floating point kernel. For example,

W.draw circle(double x, double y, double r, color col);

draws a circle with center(x, y) and radiusr ,

W.draw polygon(list<point> P, color col);

draws a polygon with vertex sequenceP,

W.draw circle(circle C, color col);

draws the circleC, and

W.draw polygon(polygon P, color col);

draws the polygonP.
The allowed objects are points, pixels, segments, lines rays, ellipses, circles and disks,

triangles (unfilled and filled), polygons (unfilled and filled), rectangles and boxes, arcs,
Bezier curves, splines, arrows, text, nodes, and edges. The window data type can draw
many more types of objects than are available in the geometry kernel. For these types only
the first variant exists that takes an explicit coordinate representation as input.

The optional color argument at the end of the parameter list can be used to specify a color
that is to be used as foreground color by the operation. If it is omitted the current value of
the foreground color parameter (cf. Section 11.4) is used.

The clear operation erases the window by painting it with the background color or tiling
it using the background pixrect (if defined).

void W.clear();

void W.clear(double x0, double y0, double x1, double y1);

The second variant only clears rectangle(x0, y0, x1, y1).

Exercises for 11.7
1 Write a program that draws a red circle, a green line segment, and a blue filled polygon.
2 Write a program that draws a filled box for each available shading of grey.

11.8 Pixrects and Bitmaps

Pixrects and bitmaps are rectangular regions of pixels and bits, respectively.
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11.8.1 Pixrects
Pixrects (often called pixmaps) are rectangles of pixels of a certain width and height. Each
pixel has a color value from the possible set of colors available in the underlying graphics
system. In this way pixrects represent rectangular pictures.

There are operations to copy a pixrect into a rectangle of the drawing area of a displayed
window of the appropriate size and to construct a pixrect from a rectangle of the drawing
area. Pixrects can also be constructed from external representations of pictures stored inxpm
files orxpmdata strings. xpm data strings are of typechar∗ ∗, i.e., they are represented by
arrays of C++ strings. An xpm file contains the (C++) definition of an xpm data string,
see Figure 11.5 for an example. For the exact definition of the xpm format we refer the
reader to one of theX11handbooks or manuals [Nye93]. LEDA provides a small collection
of icon pictures stored in xpm files in the<LEDA/pixmaps/button32> directory. A typical
X11 system provides tools for the construction and manipulation of xpm files.

In the current implementation of LEDA pixrects and bitmaps are not realized by real data
types but by pointers (of typechar∗). In particular, there is no constructor and destructor,
i.e., the user must explicitly create and destroy pixrects or bitmaps by callingcreateand
destroyoperations.

Constructing and Destroying Pixrects: We discuss functions for constructing and de-
stroying pixrects.

char* W.create pixrect(double x0, double y0, double x1, double y1)

constructs a pixrect of all pixels contained in the rectangle(x0, y0, x1, y1) of the drawing
area ofW and returns it.

char* W.get window pixrect()

constructs a pixrect of all pixels in the drawing area ofW and returns it.

char* W.create pixrect(char** xpm)

constructs a pixrect from the xpm pixmap data string xpm.

char* W.create pixrect(string xpm file)

constructs a pixrect from the xpm pixmap data in filexpmfile.

void W.del pixrect(char* prect)

destroys pixrectprect.

Drawing Pixrects: We discuss the functions for drawing picrects.

void W.put pixrect(double x, double y, char* prect)

void W.put pixrect(point p, char* prect)

copies the pixels of pixrectprect into a rectangle of the drawing area ofW which is placed
with its left lower corner at the specified position of the drawing area.
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<<xpm_example_file.h>>=

/* XPM */

static char *example_xpm[] = {

/* width height ncolors chars_per_pixel */

"32 32 6 1",

/* colors */

"` c #000000",

"a c #F5DEB3",

"b c #E6E6FA",

"c c #DBDBDB",

"d c #CC9933",

"e c #FFFFCC",

/* pixels */

"cccccccccccccccccccccccccccccccc",

"cccccccccccccccccccccccccccccccc",

"cccccccccccc````cccccccccccccccc",

"ccccccccc```bebe``c```cccccccccc",

"ccccccc``bebebebeb`beb`c`ccccccc",

"cccccc`ebebebebebebebeb`b`cccccc",

"cccccc`bebebebebeb`bebebeb`ccccc",

"ccccccc`bebe``b```bebebebe`ccccc",

"cccccccc```b```dd``beb`bebe`cccc",

"ccccccccc```ddddddd````ebebe`ccc",

"ccccc``````dddddddddddd`ebeb`ccc",

"cccc``aaa``d`ddd`ddd`dd```be`ccc",

"ccc``aaaa``dd`ddd`ddd`d```eb`ccc",

"ccc`aaa````dd`ddd`ddd`d``eb`cccc",

"ccc`aa`cc``dd`ddd`ddd`d``be`cccc",

"ccc`aa`cc``dd`ddd`ddd`d``eb`cccc",

"ccc`aa`cc``dd`ddd`ddd`d``b`ccccc",

"ccc`aa`cc``dd`ddd`ddd`d``e`ccccc",

"ccc`aa`cc``dd`ddd`ddd`d``b`ccccc",

"ccc`aa`cc``dd`ddd`ddd`d``e`ccccc",

"ccc`aa`cc``dd`ddd`ddd`d``b`ccccc",

"ccc`aa`cc``dd`ddd`ddd`d``e`ccccc",

"ccc`aaa````dd`ddd`ddd`d``b`ccccc",

"ccc``aaaa``dd`ddd`ddd`d``e`ccccc",

"cccc``aaa``dd`ddd`ddd`d```cccccc",

"ccccc``````dd`ddd`ddd`d``ccccccc",

"ccccccccc``d`dd``dd``dd``ccccccc",

"ccccccccc``dddddddddddd``ccccccc",

"ccccccccc````````````````ccccccc",

"cccccccccc``````````````cccccccc",

"cccccccccccccccccccccccccccccccc",

"cccccccccccccccccccccccccccccccc"

};

Figure 11.5 A pixrect stored inxpmformat.

void W.center pixrect(double x, double y, char* prect)

void W.center pixrect(point p, char* prect)

copies the pixels of pixrectprect into a rectangle of the drawing area ofW that is placed
with its center at the specified position of the drawing area.

In the following example we construct a pixrect representing the LEDA icon and put
it (with its lower left corner) at positions defined by mouse clicks. Figure 11.6 shows a
screenshot.
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Figure 11.6 A screenshot of the putpixrect program.

〈put pixrect.c〉�
#include <LEDA/window.h>

#include <LEDA/pixmaps/leda_icon.xpm>

main()

{

window W(400,400);

W.display();

char* pr = W.create_pixrect(leda_icon);

point p;

while (W >> p) W.put_pixrect(p,pr);

W.del_pixrect(pr);

W.screenshot("put_pixrect.ps");

return 0;

}

11.8.2 Bitmaps
Bitmaps are pixrects containing pixels of only two possible colors: black and white. The
name indicates that each pixels in a bitmap can be represented by a single bit and that is
exactly the way bitmaps are usually represented: by a triple(w, h, s), wherew andh give
the width and height of the bitmap ands is a string of bits (of typechar∗). A file that
contains the (C++) definition of such a string is called a bitmap file. Usually the suffixxbm
(x bit map) is used for such a file. LEDA provides a small collection of bitmap pictures
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stored inxbm files in the<LEDA/bitmaps/button32.h> directory. As for pixmaps there are
many programs for constructing and manipulatingxbm files.

Bitmap Operations:

char* W.create bitmap(int w, int h, char* xbm)

creates a bitmap of widthw and heighth from the bits in the xbm stringxbm. The length
of xbm must be at leastw · h bits, i.e.,d(w · h)/8e characters.

void W.put bitmap(double x, double y, char* bmap, color c)

void W.put bitmap(point p, char* bmap, color c)

places the bitmapbmapwith its left lower corner at the specified position of the drawing
area and draws with colorc all pixels in the drawing area that correspond to a pixel ofbmap
with value one.

void W.del bitmap(char* bmap)

destroys bitmapbmap.
The following program is very similar to the last example program but uses a bitmap

instead of a pixrect. First, we construct a bitmap representing the LEDA icon and put it
(with its lower left corner) at positions defined by mouse clicks.

〈bitmap.c〉�
#include <LEDA/window.h>

#include <LEDA/bitmaps/leda_icon.xbm>

main()

{

window W(400,400);

W.set_bg_color(yellow);

W.display();

// construct bitmap from the bitmap data in

// <LEDA/bitmaps/leda_icon.xbm>

char* bm = W.create_bitmap(leda_icon_width, leda_icon_height,

(char*)leda_icon_bits);

// copy copies of bm into the window

point p;

while (W >> p) W.put_bitmap(p.xcoord(),p.ycoord(),bm,blue);

W.del_bitmap(bm);

W.screenshot("bitmap.ps");

return 0;

}

Exercises for 11.8
1 Write a program that converts a bitmap into a pixrect.
2 Construct a pixrect containing your picture.
3 What is shown in the pixrect of Figure 11.5



828 Windows and Panels

11.9 Clip Regions

Sometimes it is necessary to limit the effect of a drawing operation to some restricted area,
a so-calledclipping regionof the window. The following operations allow us to define
clipping regions.

void W.set clip rectangle(double x0, double y0, double x1, double y1);

sets the clipping region to rectangle(x0, y0, x1, y1).

void W.set clip ellipse(double x0, double y0, double r1, double r2);

sets the clipping region to the ellipse with center(x0, y0), horizontal radiusr1 and vertical
radiusr2.

void W.reset clipping();

resets the clipping region to the entire drawing area of the window.

We give an example for the usefulness of clipping. We show how to fill a circle with a
pixrect picture. In this situation, we have to restrict the effect of aputpixrectoperation to
the interior of this circle. This can be done by defining a corresponding clip-ellipse. Here is
the program and the resulting picture (Figure 11.7).

〈clip pixrect.c〉�
#include <LEDA/window.h>

#include <LEDA/pixmaps/leda_icon.xpm>

void draw_pix_circle(window& W, const circle& C, char* prect)

{

point p = C.center();

double x = p.xcoord();

double y = p.ycoord();

double r = C.radius();

W.draw_disc(C,black);

W.set_clip_ellipse(x,y,r,r);

W.center_pixrect(x,y,prect);

W.reset_clipping();

}

main()

{

window W(400,400, "Clipping a Pixmap");

W.display();

// create a pixrect using LEDA's xpm icon

char* leda_pix = W.create_pixrect(leda_icon);

circle c;

while (W >> c) draw_pix_circle(W,c,leda_pix);

W.del_pixrect(leda_pix);

W.screenshot("clip_pixrect.ps");

return 0;

}
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Figure 11.7 A screenshot demonstrating the effect of clip regions.

11.10 Buffering

The default behavior of all drawing operations discussed in the preceding sections is to draw
immediately into the drawing area of the displayed window. There are, however, situations
where this behavior is not desired, and where it is very useful to construct an entire drawing
in a memory buffer before copying it (or parts of it) into the drawing area.

Buffering allows us to draw complex objects, which require several primitive drawing
operations, in a single blow. One draws the complex object into a buffer and then copies the
buffer to the drawing area. In this way, the illusion is created that the entire object is drawn
by a single drawing operation. The ability to draw complex objects in a single operation is
frequently needed inanimations, where one wants to display a sequence of snapshots of a
scene that changes over time. Another application of buffering is to create a pixrect copy of
a drawing without displaying it in the drawing area. At the end of this section we will give
example programs for both applications.

These are the most important buffering operations:

void W.start buffering()

starts buffering of windowW , i.e, all subsequent drawing operations have no effect in the
drawing area of the displayed window, but draw into an internal buffer with the same size
and coordinates as the drawing area ofW .

void W.flush buffer()

copies the contents of the internal buffer intoW .
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void W.flush buffer(double x0, double y0, double x1, double y1)

copies all pixels in the rectangle(x0, y0, x1, y1) of the buffer into the corresponding rectan-
gle of W . This can be much faster if the rectangle is significantly smaller than the entire
drawing area ofW and is often used in animations when the drawing changes only locally
in a small rectangular area.

void W.stop buffering()

stops buffering and deletes the internal buffer; all subsequent drawing operations again draw
into the drawing area ofW . The alternative

void W.stop buffering(char*& pr)

stops buffering and converts the internal buffer into a picrect that is assigned topr.

The following program uses buffering to move the LEDA pixrect ball that was drawn
by the previous example program smoothly across the window and to let it bounce at the
window border lines.

〈buffering1.c〉�
#include <LEDA/window.h>

#include <LEDA/pixmaps/leda_icon.xpm>

void move_ball(window& W, circle& ball, double& dx, double& dy,

char* prect)

{

ball = ball.translate(dx,dy);

point c = ball.center();

double r = ball.radius();

if (c.xcoord()-r < W.xmin() || c.xcoord()+r > W.xmax()) dx = -dx;

if (c.ycoord()-r < W.ymin() || c.ycoord()+r > W.ymax()) dy = -dy;

W.clear();

W.set_clip_ellipse(c.xcoord(),c.ycoord(),r,r);

W.center_pixrect(c.xcoord(),c.ycoord(),prect);

W.reset_clipping();

W.draw_circle(ball,black);

}

main()

{

window W(300,300, "Bouncing Leda");

W.set_bg_color(grey1);

W.display(window::center,window::center);

circle ball(50,50,16);

double dx = W.pix_to_real(2);

double dy = W.pix_to_real(1);

char* leda = W.create_pixrect(leda_icon);

W.start_buffering();

for(;;)

{ move_ball(W,ball,dx,dy,leda);
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W.flush_buffer();

}

W.stop_buffering();

W.del_pixrect(leda);

W.screenshot("buffering1.ps");

return 0;

}

We next show how to use buffering to construct a pixrect copy of a drawing. The follow-
ing program uses an auxiliary windowW1 in buffering mode to create a pixrect picture that
is used as an icon for the primary windowW .

〈buffering2.c〉�
#include <LEDA/window.h>

main()

{

window W1(100,100);

W1.set_bg_color(grey3);

W1.init(-1,+1,-1);

W1.start_buffering();

W1.draw_disc(0,0,0.8,blue); W1.draw_circle(0,0,0.8,black);

W1.draw_disc(0,0,0.6,yellow);W1.draw_circle(0,0,0.6,black);

W1.draw_disc(0,0,0.4,green); W1.draw_circle(0,0,0.4,black);

W1.draw_disc(0,0,0.2,red); W1.draw_circle(0,0,0.2,black);

char* pr;

W1.stop_buffering(pr);

window W(400,400);

W.set_icon_pixrect(pr);

W.display(window::center,window::center);

point p;

while (W >> p) W.put_pixrect(p,pr);

W.del_pixrect(pr);

W.screenshot("buffering2.ps");

return 0;

}

Exercises for 11.10
1 Draw ten random line segments, once without buffering and once with buffering.
2 Extend the “Bouncing LEDA” program, such that the ball is compressed when it hits the

boundary of the window.

11.11 Mouse Input

The main input operation for reading positions, mouse clicks, and buttons from a window
W is the operationW.readmouse( ). This operation is blocking, i.e., waits for a button to be
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pressed which is either a “real” button on the mouse device or a button in the panel section
of W . In both cases, the number of the selected button is returned. Mouse buttons have
predefined numbersMOUSEBUTTON(1) for the left button,MOUSEBUTTON(2) for the
middle button, andMOUSEBUTTON(3) for the right button. The numbers of the panel
buttons can be defined by the user. If the selected button has an associated action function
or sub-window, this function/window is executed/opened (cf. Section 11.14 for details).

There is also a non-blocking input operationW.getmouse( ), it returns the constant
NOBUTTONif no button was pressed since the last call ofgetmouseor readmouse, and
there are even more general input operations for reading window events. Both will be dis-
cussed at the end of this section.

Read Mouse: The function

int W.read mouse();

waits for a mouse button to be pressed inside the drawing area or for a panel button of
the panel section to be selected. In both cases, the numbern of the button is returned.
The number is one of the predefined constantsMOUSEBUTTON(i) with i ∈ {1, 2, 3} for
mouse buttons and a user defined value (defined when adding the button withW.button( ))
for panel buttons. If the button has an associated action function, this function is called with
parametern. If the button has an associated windowM, M is opened andM.readmouse( )

is returned.
The functions

int W.read mouse(double& x, double& y)

int W.read mouse(point& p)

wait for a button to be pressed. If the button is pressed inside the drawing area, the position
of the mouse cursor (in user space) is assigned to(x, y) or p, respectively. If a panel button
is selected, no assignment takes place. In either case the operation returns the number of
the pressed button.

The following program shows a trivial but frequent application ofreadmouse. We exploit
the fact thatreadmouseis blocking to stop the program at the statementW.readmouse( ).
The user may then leisurely view the scene drawn. Any click of a mouse button resumes
execution (and terminates the program).

〈read mouse1.c〉�
#include <LEDA/window.h>

main()

{

window W;

W.init(-1,+1,-1);

W.display();

W.draw_disc(0,0,0.5,red);

W.read_mouse();
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W.screenshot("read_mouse1.ps");

return 0;

}

The next program prints the different return values ofreadmousefor clicks on mouse
and panel buttons.

〈read mouse2.c〉�
#include <LEDA/window.h>

main()

{

window W;

W.button("button 0"); W.button("button 1");

W.button("button 2"); W.button("button 3");

int exit_but = W.button("exit");

W.display();

for(;;)

{ int but = W.read_mouse();

if (but == exit_but) break;

switch (but) {

case MOUSE_BUTTON(1): cout << "left button click" << endl; break;

case MOUSE_BUTTON(2): cout << "middle button click" << endl; break;

case MOUSE_BUTTON(3): cout << "right button click" << endl; break;

default: cout << string("panel button: %d",but) << endl; break;

}

}

W.screenshot("read_mouse2.ps");

return 0;

}

Get Mouse: The functions

int W.get mouse()

int W.get mouse(double& x, double& y)

int W.get mouse(point& p)

are non-blocking variants ofreadmouse, i.e., they do not wait for a mouse click, but check
whether there is an unprocessed click in the input queue of the window. If a click is avail-
able, it will be processed in the same way as by the correspondingreadmouseoperation. If
there is no click, the special button valueNOBUTTONis returned.

The following program draws random points. It usesgetmouseat the beginning of every
execution of the main loop to check whether a mouse button has been clicked or not. If the
right button has been clicked the loop is terminated, if the left button has been clicked the
drawing area is erased.
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〈get mouse.c〉�
#include <LEDA/window.h>

random_source& operator>>(random_source& ran, point& p)

{ int x,y;

ran >> x >> y;

p = point(x,y);

return ran;

}

main()

{

window W(400,400);

W.display(window::center,window::center);

W.message("left button: clear right button: stop");

random_source ran(0,100);

int but;

while ( (but = W.get_mouse()) != MOUSE_BUTTON(3) )

{

if (but == MOUSE_BUTTON(1)) W.clear();

point p;

ran >> p;

W.draw_point(p,blue);

}

W.screenshot("get_mouse.ps");

return 0;

}

Exercises for 11.11
1 The following lines of code wait for a mouse click.

int but;

do but = W.get mouse(); while (but == NO BUTTON);

What is the difference tobut = W.readmouse( )?
2 Write a program that implements the input operator� for polygons.

11.12 Events

In window systems like theX11 or Windowssystem, the communication between input
devices such as the mouse or the keyboard and application programs is realized by so-called
events. For example, if the mouse pointer is moved across a window, the system generates
motion events that can be handled by an application program to keep track of the current
position of the mouse pointer, or, if a mouse button is clicked, an event is generated that
carries the information which button was pressed at what position of the mouse pointer, or,
if a key is pressed, a keyboard event is triggered that tells application programs which key
was pressed and what window had the input focus, i.e., should receive this character input.
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Events are buffered in anevent queuesuch that applications can access them in a similar
way as character input of a C++ input stream. It is possible to read and remove the next
event from this queue, to test whether the queue is empty, and to push events back into the
queue.

LEDA supports only a restricted set of events. Each event is represented by a five-tuple
with the fields type, window, value, position, and time stamp.

Thetypeof an event defines the kind of input reported by this event, e.g., a click on a mouse
button or pressing a key on the keyboard. Event types are specified by integers from the
enumeration

enum {button press event, button release event, key press event,

key release event, motion event, configure event, no event}

Thewindowof an event specifies the window to which the event refers. This is usually the
window under the mouse cursor.

Thevalueof an event is an integer whose interpretation depends on the type of the event,
e.g., the number of a mouse button for a button press event. See below for a description of
the possible values for each event type.

The position of an event gives the position of the mouse pointer in the user coordinate
system of the window at the time the event occurred.

Thetime stampof an event is the time of a global system clock at which the event occurred.
It is measured in milliseconds.

The following event types are recognized by LEDA and can be handled in application
programs:

buttonpresseventindicates that a mouse button has been pressed. The value of the event is
the number of the pressed button. The mouse buttons are numberedMOUSEBUTTON(1),
MOUSEBUTTON(2), andMOUSEBUTTON(3).

buttonreleaseeventindicates that a mouse button has been released. The value of the event
is the number of the released button.

keypresseventindicates that a keyboard key has been pressed down. The value of the event
is the character associated with the key or in the case of a special key (such as a cursor or
function key) a special key code.

keyreleaseeventindicates that a keyboard key has been released, value as above.

motioneventindicates that the mouse pointer has been moved inside the drawing area. The
value of this event is unspecified.

configureeventindicates that the window size has changed.

Blocking Event Input: Similar to thereadmouseinput operation, there is areadeventop-
eration that removes the first event of the system’s event queue. This operation is blocking,
i.e., if the event queue is empty, the program waits until a new event occurs.

int W.read event(int& val, double& x, double& y, unsigned long& t)
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waits for an event with windowW (discarding all events with a different window field) and
returns its type, assigns the value of the event toval, its position to(x, y), and the time
stamp of the event tot .

int W.read event(int& val, double& x, double& y,

unsigned long& t, int timeout)

is similar, but waits (if no event forW is available) for at mosttimeoutmilliseconds; if no
event occurs during this period of time, the special eventnoeventis returned.

The next program implements a click and drag input routine for the definition of rect-
angles. In its main loop the program waits for a mouse click and stores the corresponding
position in a variablep by calling W.readmouse(p). If the right button was clicked, the
program terminates. Otherwise, we takep as the first endpoint of the diagonal of the rect-
angle to be defined, wait until the mouse button is released, say at some positionq, and take
q as the other endpoint of the diagonal of the rectangle. Waiting for the release of the button
is implemented by the inner loop

while (W.read event(val,x,y) != button release event) { ... }

This loop handles all events of windowW and terminates as soon as abuttonreleaseevent
occurs. For every event processed the value of the event is assigned toval and the position is
assigned to(x, y), in particular for motion events, the pair(x, y) keeps track of the position
of the mouse pointer in the drawing area ofW . In the body of the inner loop we draw
the (intermediate) rectangle with diagonal fromp to (x, y) as a yellow box with a black
border on top of the current drawing. The current drawing is kept as a pixrectwin buf and
is constructed by a call toW.getwindowpixrect( ) before the execution of the inner loop.
This allows us to restore the picture without the intermediate rectangles by copying the
pixels ofwin buf into the drawing area (W.putpixrect(win buf)). Of course,win buf has to
be destroyed after the inner loop has terminated.

In addition, we use buffering as discussed in Section 11.10, to prevent any flickering
effects. Figure 11.8 shows a screenshot.

〈event.c〉�
#include <LEDA/window.h>

#include <math.h>

int main()

{

window W(450,500,"Event Demo");

W.display();

W.start_buffering();

for(;;)

{

// read the first corner p of the rectangle

// terminate if the right button was clicked

point p;
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Figure 11.8 A screenshot of the Event Demo.

if (W.read_mouse(p) == MOUSE_BUTTON(3)) break;

// draw rectangle from p to current position

// while button down

int val;

double x,y;

char* win_buf = W.get_window_pixrect();

while (W.read_event(val,x,y) != button_release_event)

{ point q(x,y);

W.put_pixrect(win_buf);

W.draw_box(p,q,yellow);

W.draw_rectangle(p,q,black);

W.flush_buffer();

}

W.del_pixrect(win_buf);

}

W.stop_buffering();

W.screenshot("event.ps");

return 0;

}

The next example program uses the timeout-variant ofreadeventto implement a function
that recognizesdouble clicks. But what is a double click?

A double click is a sequence of three button events, a button press event followed by
button release event followed by a second button press event, with the property that the time
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interval between the two button press events is shorter than a given time limit. Usually, the
time limit is given in milliseconds by atimeoutparameter that can be adjusted by the user.
In our example we fix it at 500 milliseconds.

In the program we first wait for a button press event and store the corresponding time
stamp in a variablet press. If the pressed button was the right button the program is termi-
nated, otherwise, we wait for the next button release event and store the corresponding time
stamp in a variablet release. Now t release− t pressgives the time that has passed between
the pressing and releasing of the button. If this time is larger than our timeout parameter we
know that the next click cannot complete a double click. Otherwise, we wait for the next
click but no longer thantimeout− (t release− t press) milliseconds. If and only if a click
occurs within this time interval, we have a double click.

The program indicates double clicks by drawing a red ball and simple clicks by drawing
a yellow ball. The middle button can be used to erase the window. Figure 11.9 shows a
screenshot of the program.

〈dblclick.c〉�
#include <LEDA/window.h>

int main()

{

unsigned long timeout = 500;

window W(400,400,"Double Click Demo");

W.set_grid_dist(6);

W.set_grid_style(line_grid);

W.display(window::center,window::center);

for(;;)

{

int b;

double x0,y0,x,y;

unsigned long t, t_press, t_release;

while (W.read_event(b,x0,y0,t_press) != button_press_event);

// a button was pressed at (x0,y0) at time t_press

// the middle button erases the window

if (b == MOUSE_BUTTON(2) ) { W.clear(); continue; }

// the right button terminates the program

if (b == MOUSE_BUTTON(3) ) break;

while (W.read_event(b,x,y,t_release) != button_release_event);

// the button was released at time t_release

color col = yellow;

// If the button was held down no longer than timeout msecs

// we wait for the remaining msecs for a second press, if the

// the button is pressed again within this period of time we

// have a double click and we change the color to red.

if (t_release - t_press < timeout)

{ unsigned long timeout2 = timeout - (t_release - t_press);

if (W.read_event(b,x,y,t,timeout2) == button_press_event)

col = red;
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Figure 11.9 A screenshot of the double click program.

}

W.draw_disc(x0,y0,2.5,col);

W.draw_circle(x0,y0,2.5,black);

}

W.screenshot("dblclick.ps");

return 0;

}

Putting Back Events: The function1

void put back event();

puts the event handled last back to the system’s event queue, such that it will be processed
again by the nextreadeventor readmouseor basic input operation.

The function is very useful in programs that have to handle different types of input objects
using the basic input operators. We give an example. We partition the drawing area of a
window into four quadrants and want to draw points in the first, segments in the second,
circles in the third, and polygons in the fourth quadrant. The kind of object to be drawn
is defined by the position of the first mouse click. The main loop of the program waits for
a mouse click and performs, depending on the quadrant that contains the position of this
click, the corresponding input and output operation. The difficulty is that already the first

1 Observe that this function is a global function and not a member function of classwindow.
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click that we use to distinguish between the different input objects is part of the definition
of the object.

We use theputbackevent( ) function to push the first mouse click back into the event
queue and to make it available as the first event for the following basic input operator. The
details are given in the following code. Figure 11.10 shows a screenshot.

〈putback.c〉�
#include <LEDA/window.h>

int main()

{

window W(400,400, "Putback Event Demo");

W.init(-100,+100,-100);

W.display(window::center,window::center);

// partition the drawing area in four quadrants

W.draw_hline(0);

W.draw_vline(0);

for(;;)

{

double x,y;

// wait for first click

int but = W.read_mouse(x,y);

// middle button erases the window

if (but == MOUSE_BUTTON(2))

{ W.clear();

W.draw_hline(0);

W.draw_vline(0);

continue;

}

// right button terminates the program

if (but == MOUSE_BUTTON(3)) break;

// now we put the mouse click back to the event queue

put_back_event();

// and distinguish cases according to its position

if (x < 0)

if (y > 0)

{ point p;

if (W >> p) W.draw_point(p,red);

}

else

{ segment s;

if (W >> s) W.draw_segment(s,green);

}

else

if (y > 0)

{ polygon pol;

if (W >> pol) W.draw_polygon(pol,blue);

}

else
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Figure 11.10 A screenshot of the putback program.

{ circle c;

if (W >> c) W.draw_circle(c,orange);

}

}

W.screenshot("putback.ps");

return 0;

}

Non-Blocking Event Input: Similar to the non-blocking versions of thereadmouseoper-
ation, there are non-blocking variants of thereadeventoperation.

int W.get event(int& val, double& x, double& y)

looks for an event forW . More precisely, if there is an event for windowW in the event
queue, aW.readeventoperation is performed, otherwise the integer constantnoeventis
returned.

There is also a more general non-member variant that allows us to read events of arbitrary
windows.

int read event(window*& wp, int& val, double& x, double& y)

waits for an event. When an event occurs, it returns its type, assigns a pointer to the corre-
sponding window towp, the value toval, and the position to(x, y).

This version ofreadeventcan be used to write programs that can handle events for sev-
eral windows simultaneously. The following program opens two windowsW1andW2. The
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main loop reads all events, determines for each event in which of the two windows it oc-
curred, and puts the event back to the systems event queue. If the event occurred inW1, it
reads and draws a point inW1, if the event occurred inW2, it reads and draws a segment in
W2using the basic input and output operators discussed in Section 11.6.

〈two windows.c〉�
#include <LEDA/window.h>

main()

{

window W1(500,500,"Window 1: points");

W1.display(window::min,window::min);

window W2(500,500,"Window 2: segments");

W2.display(window::max,window::min);

for(;;)

{ window* wp;

double x,y;

int val;

if (read_event(wp,val,x,y) != button_press_event) continue;

if (val == MOUSE_BUTTON(3)) break;

put_back_event();

if (wp == &W1) { point p; W1 >> p; W1 << p; }

if (wp == &W2) { segment s; W2 >> s; W2 << s; }

}

return 0;

}

Exercises for 11.12
1 Write a “click and drag” program for drawing circles.
2 Write a program that displays text written on the keyboard of your computer in a LEDA

window.
3 Implement a simple graph editor that can be used to draw the nodes and edges of a graph.

Your program should allow you to move a node by clicking on it and dragging it with
the mouse to a new position.

11.13 Timers

Each LEDA window has atimer clock that can be used to execute periodically a user-
defined function. The function and the time interval between two consecutive calls of the
function are specified in the start operation

void W.start timer(int msec,void (*func)(window*);

A call of this operation starts the timer ofW and makes it call the functionfunc with a
pointer toW as the actual parameter (func(& W )) everymsecmilliseconds.
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Figure 11.11 A screenshot of the dclock program.

void W.stop timer();

stops the timer.

We show the usefulness of timers by writing a simple digital clock demo program. Fig-
ure 11.11 shows a screenshot of the clock.

〈dclock.c〉�
#include <LEDA/window.h>

#include <time.h>

void display_time(window* wp)

{

window& W = *wp;

// get the current time

time_t clock;

time(&clock);

tm* T = localtime(&clock);

// and display it (centered in W)

double x = (W.xmax() - W.xmin())/2;

double y = (W.ymax() - W.ymin())/2;

W.clear();

W.draw_ctext(x,y,string("%2d:%02d:%02d",

T->tm_hour,T->tm_min,T->tm_sec));

}

int main()

{

window W(150,50, "dclock");

W.set_bg_color(grey1);

W.set_font("T32");

W.set_redraw(display_time);

W.display(window::center,window::center);

W.start_timer(1000,display_time);

W.read_mouse();

W.screenshot("dclock.ps");

return 0;

}

Exercises for 11.13
1 Implement an analog clock.
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2 Write a program that draws randomly colored balls are random times.

11.14 The Panel Section of a Window

The panel section of a window is used for displaying text messages and for updating the
values of variables. It consists of a list of panel items and a list of panel buttons. We discuss
panel items and panel buttons in separate subsections.

11.14.1Panel Items
A panel item consists of a string label and an associated variable of a certain type. The
value of this variable is visualized by the appearance of the item in the window (e.g. by the
position of a slider) and can be manipulated through the item (e.g. by dragging the slider
with the mouse) during areadmouseor getmouseoperation.

There are five types of items. Figure 11.12 shows the representation of the items in a
panel. It also shows some menu buttons at the bottom of the panel. The program that
generates this panel can be found inLEDAROOT/demo/win/paneldemo.c.

Text itemshave only an associated string, but no variable. The string is formatted and
displayed in the panel section of the window.

Simple itemshave an associated variable of typeint, double, andstring. The item displays
the value of the variable as a string. The value can be updated in a small sub-window
by typing text and using the cursor keys. For string items there exists a variant called
string menu itemthat in addition displays a menu from which strings can be selected.

Choice itemshave an associated variable of typeint whose possible values are from
an interval of integers [0.. k]. With every valuei of this range there is a choice string
si associated. These strings are arranged in a horizontal array of buttons and the current
value of the variable is displayed by drawing the corresponding button as pressed down and
drawing all other buttons as non-pressed (if the value of the variable is out of the range
[0 .. k] no button is pressed). The value of the variable is set toi by pressing the button
with labelsi . Pressing a button will release the previously pressed button. It is tempting to
confuse the semantics of the stringsi with the integeri . LEDA will not hinder you to use
the string “seven” for the third button. Pressing the button with name “seven” will assign 3
to the variable assigned with the button.

For multiple choice itemsthe state (pressed or unpressed) of the button with labelsi

indicates the value of thei -th bit in the binary representation of the integer value of the
associated variable. Multiple choice buttons allow several buttons to be pressed at the same
time. For example, the value of the variable associated with the item named “multiple
choice” in Figure 11.12 is 1· 20 + 0 · 21 + 1 · 22 + 1 · 23 + 0 · 24 = 13.

In both cases there exist variants that use bitmapsb0, . . . ,bk instead of strings to label the
choice buttons. Furthermore, there are special choice items for choosing colors (color item)
and line styles (line styleitem).
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Figure 11.12 Panel items and buttons.

Slider itemshave associated variables of typeint with values from an interval [low .. high].
The current value is shown by the position of a slider in a horizontal box. It can be changed
by moving the slider with the mouse.

Boolean itemsare used for variables of typebool. They consist of a single small button
whose state (pressed or unpressed) represents the two possible values (trueor false).
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We discuss the operations for adding panel items to a panel in Section 11.14.4. It is
possible to associate a so-calledcall-backor action function with a panel item. This is a
function of type

void (*action)(T x)

whereT is the type of the variable of the item. The action function is called after each item
manipulation (e.g. dragging a slider or pressing down a choice button) with thenewvalue
of the item as its argument. However, the value of the variable associated with the item is
only changedafter the return of the action function. In this way, both the old and the new
values of the item variable are available in the action function. This is very useful as the
following program shows.

〈callback.c〉�
#include <LEDA/window.h>

static int i_slider = 0;

static int i_choice = 0;

static int i_multi = 0;

void f_slider(int i_new)

{ cout << "slider: old = " << i_slider << ", new = " << i_new << endl; }

void f_choice(int i_new)

{ cout << "choice: old = " << i_choice << ", new = " << i_new << endl; }

void f_multi(int i_new)

{ cout << "multi: old = " << i_multi << ", new = " << i_new << endl; }

main()

{

list<string> L;

for(int i = 0; i < 8; i++) L.append(string("%d",i));

window W(300,300);

W.int_item("slider", i_slider, 0, 100, f_slider);

W.int_item("choice", i_choice, 1, 8, 1, f_choice);

W.choice_mult_item("multi", i_multi, L, f_multi);

W.display();

W.read_mouse();

W.screenshot("callback.ps");

return 0;

}

In the main program we define three panel items, each with an associated action function.
In each case the action function prints the old value and the new value of the variable. The
slider item has a range [0.. 100], the choice item has eight buttons with associated values 1
to 8 (the smallest value is one, values are increased by one, and the largest value is no larger
than eight), and the multiple choice item has eight buttons labeled with strings “0”, “1”,. . . ,
“7”. The button with labeli represents thei -th bit of variablei multi.

An action function associated with a panel item of a windowW may obtain a pointer to
W by calling the static member functionwindow::getcall window( ).
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The program below implements a simple color definition panel. It uses three slider items
for adjusting the(r, g, b)-values of the color. With each slider a call-back function is asso-
ciated that paints the window background with the current color. A screenshot is shown in
Figure 11.13.

〈defcolor.c〉�
#include <LEDA/window.h>

static int r,g,b;

void slider_red(int x){window::get_call_window()->clear(color(r,g,b));}

void slider_green(int x){window::get_call_window()->clear(color(r,g,b));}

void slider_blue(int x)window::get_call_window()->clear(color(r,g,b));}

int main()

{

window W(320,300,"define color");

color col = green2;

col.get_rgb(r,g,b);

W.int_item("red ",r,0,255,slider_red);

W.int_item("green",g,0,255,slider_green);

W.int_item("blue ",b,0,255,slider_blue);

W.set_bg_color(col);

W.display(window::center, window::center);

W.read_mouse();

W.screenshot("defcolor.ps");

return 0;

}

The values of item variables may also be changed in the program. This hasno effect on
the display until the panel is redrawn for the next time. Theredrawpaneloperation redraws
the panel area.

We use a simple progress indicator as an example. It uses a slider item to visualize the
increasing value of a counter. Figure 11.14 shows a screenshot.

〈progress.c〉�
#include <LEDA/window.h>

main()

{

int count = 0;

window W(400,100);

W.set_item_width(300);

W.int_item("progress",count,0,1000);

W.display(window::center, window::center);

for(;;)

{ count = 0;

while (count < 1000)

{ W.redraw_panel();

W.flush();
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Figure 11.13 A screenshot of the defcolor program.

Figure 11.14 A screenshot of the progress program.

leda_wait(0.05);

count++;

}

if (W.read_mouse() == MOUSE_BUTTON(3)) break;

}

W.screenshot("progress.ps");

return 0;

}

11.14.2Panel Buttons
Panel buttons are special panel items. They can be pressed by clicking a mouse button
when the mouse pointer is positioned inside their area. Pressing a panel button during a
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readmouseor getmousecall has the same effect as pressing a mouse button in the drawing
area: the operation terminates and the number of the pressed button is returned.

Each panel button has a label or a pixrect image (displayed on the button) and an asso-
ciated number. The number of a button is either defined by the user or is the rank of the
button in the list of all buttons. If a button is pressed (i.e. selected by a mouse click) during
a readmouseoperation its number is returned. Buttons can haveaction functionsof type

void (*action)(int but)

Whenever a button with an associated action function is pressed this function is called with
the number of the button as its actual parameter.

Instead of an action function, a button may have an attached sub-window, in which case
we call it amenu button(since in most cases such a sub-window is used to realize a menu).
Whenever a menu button is pressed the attached sub-window (or menu)M will open and
the result ofM.readmouse( ) will be returned by the currently activereadmouseoperation.
Of course,M again can have menu buttons, . . .

11.14.3Panels and Menus
The data typespanelandmenuare two special types representing windows that have no
drawing area. Panels (windows of typepanel) support all panel operations of the general
windowtype described in the following section. In addition, they have a specialP.open( )

operation that displays a panelP, executesP.readmouse( ), closesP, and returns the result
of the readmouseoperation. There are variants of theopenoperation allowing us to pass
parameters for the (initial) positioning of the panel (see thedisplayoperations for windows
for an explanation).

int P.open(int xpos=window::center, int ypos=window::center);

int P.open(window& W, int xpos=window::center, int ypos=window::center);

Menus (windows of typemenu) are special panels that only consist of a vertical array of
buttons. They support only one kind of panel operation, the addition of buttons, and can be
used as sub-windows attached to (menu) buttons only.

11.14.4Adding Panel Items
The operations in this section add panel items or buttons to the panel section ofW . Note
that they have to be called before the window is displayed the first time.

All operations return a pointer to the corresponding panel item (typepanelitem)
The generic interface of an operation for adding a panel item (of kindXXXitem) for a

variablex of typeT is as follows:

panel item W.XXX item(string label, T x&, void (*action)(T) );

The last parameter is optional. We give some examples. In all examples we use . . . to
indicate the optional action function argument.
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Simple Items: The following functions add simple items with names and associated vari-
ablex .

panel item W.bool item(string s, bool& x, ...);

panel item W.double item(string s, double& x, ...);

panel item W.int item(string s, int& x, ...);

panel item W.string item(string s, string& x, ...);

panel item W.color item(string s, color& x, ...);

String Menu Items: The functions

panel item W.string item(string s, string& x, list<string> L, ...);

panel item W.string item(string s, string& x, list<string> L,int h,...);

add string menu items with names, associated variablex , and a menu listL of candidate
values forx . The first version displays the strings ofL in a rectangular table of appropriate
size. The second version uses a scroll box of heighth with a vertical slider that can be used
to scroll through the list.

Choice Items: The functions

panel item W.int item(string s, int& x, int l, int h, int step);

panel item W.choice item(string s, int& x, const list<string>& L, ...);

panel item W.choice item(string s, int& x, int n, int w, int h,

char** bm, ...);

panel item W.choice mult item(string s, int& x,

const list<string>& L, ...);

panel item W.choice mult item(string s, int& x, int n, int w,

int h, char** bm, ...);

define choice and multi-choice items with names and associated variablex . The first variant
defines a choice item with buttonsl, l + step, . . . , the second variant defines a choice item
whose buttons are labeled by the strings inL, the third variant defines a choice item withn
buttons each of which is labeled by a bitmap of widthw and heighth (bm is the array that
contains the bitmaps). The fourth and fifth variant are analogous to the second and third
variant, but define multi-choice items instead of choice items.

Slider Items: The function

panel item W.int item(string s, int& x, int l, int h);

adds a slider item with names, associated variables, and range [l .. h].

11.14.5Adding Buttons
The following operations add buttons to the panel section of a window. Note that buttons
are always positioned at the bottom of the panel area. There are three basic kinds of buttons:
buttons with string labels, buttons with bitmaps, and buttons with pixrects.
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String Buttons:

int W.button(string label, int n);

adds a new button toW with labels and numbern.

int W.button(string label);

adds a new button toW with labels and number equal to its rank in the list of all buttons.

int W.button(string s, int n, void *(F)(int));

adds a button with labels, numbern, and action functionF to W . FunctionF is called with
actual parametern whenever the button is pressed.

int W.button(string s, void (*F)(int));

adds a button with labels, number equal to its rank, and action functionF to W . Function
F is called with the value of the button as argument whenever the button is pressed.

int W.button(string s, int n, window& M);

adds a button with labels, numbern, and attached sub-window (menu)M to W . Window
M is opened whenever the button is pressed.

int W.button(string s, window& M);

adds a button with labels and attached sub-windowM to W . The number returned by
readmouseis the number of the button selected in sub-windowM.

Bitmap Buttons: Bitmap buttons are labeled with bitmaps instead of string labels. Each
bitmap button has an associated bitmap(w, h, bm) that is specified in the operation for
adding the button (see below). There exist the same variants (with and without a user-
defined number, with action function or with sub-window) as for string buttons.

int W.button(int w, int h, char* bm, string s, int n);

int W.button(int w, int h, char* bm, string s);

int W.button(int w, int h, char* bm, string s, int n, void (*F)(int));

int W.button(int w, int h, char* bm, string s, void (*F)(int));

int W.button(int w, int h, char* bm, string s, int n, window& M);

int W.button(int w, int h, char* bm, string s, window& M);

The following program creates the panel shown in Figure 11.15.

〈bm buttons.c〉�
#include <LEDA/window.h>

#include <LEDA/bitmaps/button32.h>

int main()

{

panel P("Bitmap Buttons");

P.buttons_per_line(8);

P.set_button_space(3);

for(int i=0; i < num_button32; i++)

P.button(32,32,bits_button32[i],string(name_button32[i]));
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Figure 11.15 A screenshot of the bmbuttons program.

int button = P.open();

P.screenshot("bm_buttons.ps");

return 0;

}

Pixrect Buttons: Pixrect buttons are labeled with pixrects instead of string labels. Each
button has two pixrects, the first one (pr1) is used for unpressed buttons and the second
(pr2) is used for pressed-down buttons. Again we have the same variants as for string
buttons.

int button(char* pr1, char* pr2, string s, int n);

int button(char* pr1, char* pr2, string s);

int button(char* pr1, char* pr2, string s, int n, void (*F)(int));

int button(char* pr1, char* pr2, string s, void (*F)(int));

int button(char* pr1, char* pr2, string s, int n, window& M);

int button(char* pr1, char* pr2, string s, window& M);

The following program creates the panel shown in Figure 11.16. For simplicity, we have
used the same pixrect for unpressed and pressed buttons.

〈pm buttons.c〉�
#include <LEDA/window.h>

#include <LEDA/pixmaps/button32.h>

int main()

{

panel P("Pixrect Buttons");

P.buttons_per_line(10);

P.set_button_space(3);

for(int i = 0; i < num_button32; i++)

{ char* pr = P.create_pixrect(xpm_button32[i]);

P.button(pr,pr,name_button32[i],i);

}

int button = P.open();
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Figure 11.16 A screenshot of the pmbuttons program.

P.screenshot("pm_buttons.ps");

return 0;

}

Creating a Menu Bar: There are two styles for menu buttons, i.e., buttons with an attached
sub-window. In the default style menu buttons are displayed as buttons with an additional
menu-sign. In the second style the menu buttons are arranged into a menu bar at the top of
the panel section. Figure 11.17 shows both styles. The call

void W.make menu bar()

selects the menu button style.
The following program and the screenshots in Figure 11.17 demonstrate both alternatives.

With the command line argument “menu bar”, the menu bar version is chosen.

〈menubar.c〉�
#include <LEDA/window.h>

int main(int argc, char** argv)

{

menu M;

M.button("button 1"); M.button("button 2"); M.button("button 3");

M.button("button 4"); M.button("button 5");

window W(400,300,"Menu Demo");

W.button("File",M); W.button("Edit",M); W.button("Help",M);

W.button("exit");

if (argc > 1 && string(argv[1]) == "menu_bar") W.make_menu_bar();

W.display();

W.read_mouse();
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Figure 11.17 Menu buttons: The upper screenshot shows the default style and the lower
screenshot shows the menu bar style.

W.screenshot("menu_bar.ps");

return 0;

}

Exercises for 11.14
1 Implement a simple desk calculator with a graphical input.
2 Implement quicksort and use a panel to monitor the values of all variables.
3 Implement a simple file viewer program with a menu bar containing a “File” menu with

operations for loading and saving text, and an “Option” menu for defining global param-
eters such as the font and color of the text.



11.15 Displaying Three-Dimensional Objects: d3window 855

11.15 Displaying Three-Dimensional Objects: d3window

The data typed3windowuses a LEDA window to visualize and animate three-dimensional
drawings of graphs. If the graph to be shown is a planar map (as in the following application)
the faces are drawn in different grey scales.

The following program uses ad3windowto visualize the convex hull of a set of three-
dimensional points. Figure 11.1 at the beginning of this chapter shows a screenshot of the
programLEDAROOT/demo/geo/d3hulldemo.c which expands on the program below.

The convex hull algorithm

CONVEX HULL(const list<d3 rat point>& L, GRAPH<d3 rat point,int>& H)

takes a listL of three-dimensional points and constructs the surface graphH of their convex
hull. H is a planar map that is embedded into three-dimensional space.

To visualize this graph we create a d3-windowd3win, whose constructor takes a window
W (that has to be displayed before), the graphH , and a node arrayposof vectors that gives
for every nodev of H the positionH [v] of v in space as a three-dimensional vector.

Finally, we calld3win.readmouse( ) that does something very similar to thereadmouse
operation for (two-dimensional) windows. It waits for a mouse click and returns the num-
ber of the mouse button pressed. While waiting for a click, the graphH is shown in a
two-dimensional projection and is, depending on the current position of the mouse pointer,
rotated in space. IfH is a planar map (as it is in this case), the d3-window, in addition,
computes its faces and paints them in different grey scales.

There are many parameters for controlling the appearance of the graph, e.g., whether
faces should be painted as described above, for the center and speed of rotation, for changing
colors of nodes and edges, . . . . For details, we refer the reader to the user manual.

〈d3 hull.c〉�
#include <LEDA/d3_hull.h>

#include <LEDA/d3_window.h>

main()

{

// construct a random set of points L

list<d3_rat_point> L;

random_d3_rat_points_in_ball(50,75,L);

// construct the convex hull H of L

GRAPH<d3_rat_point,int> H;

CONVEX_HULL(L,H);

// open a window W

window W(400,400,"d3 hull demo");

W.init(-100,+100,-100);

W.display(window::center,window::center);

// extract the node positions into an array of vectors

node_array<rat_vector> pos(H);

node v;

forall_nodes(v,H) pos[v] = H[v].to_vector();

// and display H in a d3_window for window W
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d3_window d3win(W,H,pos);

d3win.read_mouse();

W.screenshot("d3_hull.ps");

return 0;

}

Exercise for 11.15
1 Extend the 3d convex hull program by adding a panel section to the window that allows

you to choose between different types of input points and to specify the size of the input
point set. Your window should look like the window of Figure 11.1.
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GraphWin

TheGraphWindata type combines thegraphand thewindowdata type. An object of type
GraphWin(short: a GraphWin) is a window, a graph, and a drawing of the graph, all at
once. The graph and its drawing can be modified either by mouse operations or by running
a graph algorithm on the graph. The GraphWin data type can be used to:

• construct and display graphs,

• visualize graphs and the results of graph algorithms,

• write interactive demos for graph algorithms,

• animate graph algorithms.

All demos and animations of graph algorithms in LEDA are based on GraphWin, many of
the drawings in this book have been made with GraphWin, and many of the geometry demos
in LEDA have a GraphWin button that allows us to view the graph structure underlying a
geometric object.

In this chapter we discuss GraphWins and teach the reader the use of GraphWin. We give
an overview and discuss the interactive interface of GraphWins. Next we discuss the node
and edge attributes and the global parameters that control how graphs are displayed. In
the remaining section we discuss the programming interface of GraphWins and show how
to write demos using GraphWins. You will see that it is surprisingly simple to write nice
demos of graph algorithms.

857
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Figure 12.1 A GraphWin. The display part of the window shows a graphG and the panel part
of the window features the default menu of a GraphWin. We discuss the default menu in
Section 12.1.G can be edited interactively, e.g., nodes and edges can be added, deleted, and
moved around. It is also possible to run graph algorithms onG and to display their result or to
animate their execution.

12.1 Overview

Figure 12.1 shows a GraphWin. We advise that you open a GraphWin before reading on,
e.g., by starting the program gwin in xlman. A window as shown in Figure 12.1 will pop
up, but with an empty display region. Press the Help button to learn about the interactive
use of GraphWin and then construct a graph.

Most of the interaction is with theleft mouse button. A single click on the background
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Figure 12.2 GraphWin: File, Edit, and Graph menus.

creates a new node. Asingle click on a nodeselects the node as the source of a new edge.
The next click defines the target of the edge which is either an existing node or a new
node (if clicked on the window background). Before defining the target node, bends may
be introduced using the middle button. The creation of the new edge can be canceled by
clicking the right button.

Nodes can be moved by dragging.Select the node with the left mouse button, hold the
button down, and drag the object by moving the cursor. Simultaneously pressing a SHIFT
key will move the connected component containing the node. The entire graph can be
moved by selecting the background. Of course, when a node is moved all edges incident to
it will move with it.

A node isresizedby clicking on its boundary and dragging the border line of the node.
A double clickon a node or edge opens a dialog box for setting or changing its attributes.

We will discuss the geometric and visual attributes of nodes and edges in Section 12.2.
For the functionality of the middle and the right mouse button we refer the reader to the

help menu of GraphWin. Please construct and edit a graph before reading on.

Let us next have a look at the default menu of a GraphWin . We have menu buttons “File”,
“Edit”, “Graph”, “Layout”,“Window”, “Options”, “Help”, “undo (�)”, “redo (�)”, and
“done”. The first six buttons give access to sub-menus as shown in Figures 12.2 and 12.3.
We next briefly discuss all buttons and the associated menus.

File: A menu that offers file I/O operations for graphs in either of two formats, allows one
to export drawings of graphs, and contains theexit button (see Section 12.3 for the effect of
theexit button).

Edit: A menu with panels for setting the (default) attributes of nodes and edges.

Graph: A menu that offers graph generators, modifiers, and checkers. The generators
allow us to construct random, planar, complete, bipartite, grid graphs, . . . . The modi-
fiers change the current graph (e.g., by removing or adding edges) to make it connected,
biconnected, bidirected, . . . . The checkers can be used to check graph properties, like con-



860 GraphWin

Figure 12.3 GraphWin: Layout, Window and Option menus.

nectedness, biconnectedness, and planarity. Figure 12.4 shows the output of the planarity
test for a graph that is non-planar. Many of the checkers can be asked for a proof by clicking
theproof button. In the case of the planarity test this will either generate a planar drawing
or highlight a Kuratowski subgraph as shown in Figure 12.5.

Layout: A menu that gives access to tools for simple layout manipulations (e.g., removing
all edge bends or fitting the graph into a box or window) and a collection of graph drawing
algorithms. If the graph drawing systems AGD [JMN] or GraVis [Lau98] are installed, their
layout algorithms are included into the menu as shown in Figure 12.3.

Window: A menu with (zoom) operations for changing the user space of the drawing
window, e.g., thezoom graphbutton adjusts the window coordinates to the bounding box
of the current graph.

Options:A menu with various sub-panels for editing the various window and editor pa-
rameters.

undo (�):A button to undo the last update operation.

redo (�): A button to undo the undo.

done: The done button, see Section 12.3.

The drawing of a graph in a GraphWin is controlled by node and edge attributes and by
global parameters. We discuss attributes and parameters in the next section.

Exercises for 12.1
1 Call a GraphWin, construct a graph, and test whether it is biconnected.
2 Construct a graph and then change all node shapes from circular to rectangular.
3 Construct the dependency graph for the chapters of this book as shown in the preface.

Apply some of the layout algorithms to the graph.
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Figure 12.4 An outcome of a planarity test.

12.2 Attributes and Parameters

In this section we discuss global parameters and node and edge attributes. The node and
edge attributes control how nodes and edges are drawn and the global parameters control the
general behavior of a GraphWin. Attributes and parameters can be changed either by setup
panels (as shown in Figures 12.6 and 12.7) or by operations of the programming interface
as discussed in Section 12.3.

Node Attributes: The node attributes are:

position:An attribute of typepoint (default value: (0, 0)) defining the position of the
center of the node in the user coordinate system of the window.

shape:An attribute of typegwnodeshape(default value:circle node) defining the shape
of the node. Possible values arecircle node, ellipsenode, squarenode, andrectanglenode.
The size of a node is determined by its width and its height. Width and height are measured
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Figure 12.5 The effect of clicking the proof button in Figure 12.4.

in pixels. The horizontal and vertical dimension can also be measured in user space; we use
radius1andradius2for the dimensions in user space.

width:An attribute of typeint (default value: 20) defining the width of the node in pixels.
The horizontal dimension of a node is also available as an attribute with nameradius1that
gives the horizontal dimension of the node in user space. Any change of one of these two at-
tributes also changes the other, maintaining the relationradius1 = W.pix to real(width)/2.

height:An attribute of typeint (default value: 20) defining the height of the node in pixels.
As for the width attribute the vertical dimension of a node can be accessed or changed
through aradius2attribute giving the vertical dimension of the node in user space.

color:An attribute of typecolor (default value:ivory) defining the color used to fill the
interior of the node.

pixmap:An attribute of typechar∗ (default value:NULL) defining a pixrect used to fill
the interior of the node.
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Figure 12.6 The node setup panel.

border color:An attribute of typecolor (default value: black) defining the color used to
draw the boundary line of the node.

border width: An attribute of typeint (default value: 1) defining the line width in pixels
used to draw the border line of the node. We also have a user space variant of this attribute
calledborder thickness: borderwidthandborderthicknessare related through the equation
borderthickness= W.pix to real(borderwidth).

label type:An attribute of typegwlabel type(default value:indexlabel) specifying which
label of a node is displayed. Possible values arenolabel, userlabel, datalabel, andindexlabel.
Every node of a GraphWin has three labels associated with it: an index label generated au-
tomatically from the internal numbering of the nodes, a user label (of typestring), and a
data label that is used to represent the node data of parameterized graphs.
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Figure 12.7 The edge setup panel.

user label: An attribute of typestring defining the user label of the node. The default
value is the empty string.

label position: An attribute of typegwposition(default value:centralpos) defining the
position of the label. Possible values arecentralpos, northwestpos, northpos, northeastpos,
eastpos, southeastpos, southpos, southwestpos, andwestpos. Each value defines one of
the eight neighboring cells in a rectangular grid of appropriate dimension or the node posi-
tion itself as the position of the label.

label color: An attribute of typecolor (default value:black) defining the color used to
draw the label of the node.

Edge Attributes: Edges have the following attributes:

shape:An attribute of typegwedgeshape(default value:polyedge) defining the shape
of the edge. Possible values arepolyedge(polygonal edges),circle edge(circular arcs),
bezieredge(Bezier curves),splineedge(spline curves).

bends:An attribute of typelist<point> (default value: empty list) defining the sequence
of bends of the edge. The interpretation of the bends depends on the shape of the edge.
For polyedgethis list defines the sequence of bends of the poly-line. Forcircle edgeonly
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the first pointp of the sequence is used. Together with the two terminal node positions it
defines a circular arc starting at the source position, passing throughp and ending in the
target position of the edge. Forbezieredgeandsplineedgeedges the list gives the sequence
of control points that define the corresponding Bezier or spline curve.

direction:An attribute of typegwedgedir defining whether the edge is drawn as a di-
rected or an undirected edge. Possible values areundirectededge(the edge is drawn undi-
rected),directededge(the edge is drawn directed from source to target),redirectededge
(the edge is drawn directed from target to source), andbidirectededge(the edge is drawn
bidirected).

width:An attribute of typeint (default value: 1) defining the width of the edge in pix-
els. The width of an edge can also be specified by an attribute calledthicknessthat gives
the line width of the edge in user coordinates;thicknessand width are related through
thickness= W.pix to real(width).

color:An attribute of typecolor (default value:black) defining the color of the edge.

style:An attribute of typegwedgestyle(default value:solid) defining the line style of the
edge. Possible values aresolid, dashed, dotted, anddasheddotted.

label type:An attribute of typegwlabel type(default value:no label) defining the type
of the label of the edge. Possible values arenolabel, userlabel, datalabel, andindexlabel
(see the corresponding attribute for nodes for an explanation).

user label: An attribute of typestring defining the user label of the edge. The default
value is the empty string.

label position: An attribute of typegwposition (default value:westpos) defining the
position of the label. Possible values arecentralpos (the label is placed centered on the
edge),eastpos(the label is placed to the right of the edge), andwestpos(the edge is placed
to the left of the edge).

label color: An attribute of typecolor (default value:black) defining the color of the
edge label.

slider positions:Every edge has threeslidersassociated with it. They are only visible if
the corresponding handler (see Section 12.5.1) is defined. For each slider theslider position
is an attribute of typedouble(default value: 0) defining the relative position of the slider
on the (directed) edge. The value of slider position lies between zero and one. Edge sliders
can be used to adjust the value of an edge label interactively.

Global Parameters: A GraphWinhas thewindow parameters background color, back-
ground pixmap, grid style, and grid distance, and the following additional parameters.

flush: A parameter of typebool (default value:true) that controls whether changes of
node and edge attributes are shown directly or not. Ifflushis false, changes are invisible up
to the next call of theredrawoperation. In this way, it is possible to hide all intermediate
steps of a sequence of operations and to show only the end result.

animation steps: A parameter of typeint (default value: 16) that defines the number
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of intermediate drawings used in the animation of layout changes and zoom operations.
Setting animation steps to 0 disables all animations.

zoom objects: A parameter of typebool (default value: true). If this flag is true, the size
of nodes and edges is adjusted automatically during zoom operations. If the flag is false,
the pixel width and height of all objects is preserved during zoom operations.

show status:A parameter of typebool (default value: true). If this flag is true, some
selected parameters, e.g., the number of nodes and edges and the current position of the
mouse cursor in user coordinates, is shown in a status line at the bottom of the display
region.

12.3 The Programming Interface

So far we have concentrated on the interactive interface of GraphWins, as most LEDA users
will become acquainted with GraphWins through their interactive use. We now turn to the
programming interface. You must read this section if you want to write programs that use a
GraphWin.

TheGraphWindata type offers a large variety of operations. We discuss the most impor-
tant one in the remainder of this chapter and refer the reader to the manual for the complete
list of operations.

12.3.1 Creating and Opening a Graph Window
A GraphWin has an associated graph and an associated window. Either one of them may or
may not be specified in the constructor.

GraphWin gw;

creates a graph windowgw that uses its own (private) graphG and windowW . G is initial-
ized with the empty graph. Three optional arguments may be passed to initializeW : a label
of typestring, the initialwidth, and the initialheightboth of typeint.

GraphWin gw(graph& G);

creates a graph windowgw and associates the graphG with it. G may also be a param-
eterized graph of some typeGRAPH<vtype, etype>. In this case, every nodev has an ad-
ditional data labelattribute that contains a string representation of thevtypevalue G[v]
associated withv. This representation is constructed using the stream output operator
(operator� (ostream& , const vtype& )). In the same way, every edgee has a data label
representingG[e]. In Section 12.6 we give a program that usesGraphWinto display a
graph of typeGRAPH<point, int> representing a Delaunay triangulation.

GraphWin gw(window& W);

GraphWin gw(graph& G, window& W);
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Figure 12.8 A GraphWin panel for editing a graph in a different window.

do not create their own window but use the supplied windowW for displaying the graph.
In this case, the display operation opens a small panel window (see Figure 12.8) containing
only the standard menu.

References to the graph and window of aGraphWin gwcan be retrieved by

window& W = gw.get window();

and

graph& G = gw.get graph();

respectively.

A graph window is opened and displayed by calling one of the two followingdisplay
operations:

gw.display()

opensgwand displays it at the default position of data typewindowand

gw.display(x,y)

opensgw and displays it with its left upper corner at the position with pixel coordinates
(x, y). As for windows the special coordinatewindow::centercan be used to center the
graph window in either coordinate on the screen.

The interactive interface is started by theedit operation.

bool gw.edit();

putsgw into edit mode(also calledinteractive mode). The buttons ofgware now enabled; in
particular the graph associated withgwmay now be changed interactively. The edit session
is terminated when either thedonebutton is pressed orexit is selected from the file menu.
The edit operation returnstrue in the first case andfalsein the second case.

We are now ready for the first example program. We declare and display a graph window
gw, and then start an edit loop (while (gw.edit( ))) that lets the user construct or modify the
graphG associated withgw. If edit is terminated by pressing thedonebutton, the graph is
tested for planarity, the outcome of the planarity test is written to standard output, andgw
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is again put into edit mode. If the editor is left by pressing theexit button in thefile menu,
the loop and the program terminate.

〈gw.c〉�
#include <LEDA/graphwin.h>

#include <LEDA/graph_alg.h>

main()

{

GraphWin gw("Leda Graph Editor");

graph& G = gw.get_graph();

gw.display(window::center,window::center);

while ( gw.edit() )

{ if (PLANAR(G))

cout << "This graph is planar." << endl;

else

cout << "This graph is non-planar." << endl;

}

return 0;

}

The structure of the program above is generic for many simple interactive demos of graph
algorithms. The program runs in a loop. In each iteration the graph is edited and the graph
algorithm is run. We call this scheme theedit-and-run paradigmfor interactive demos. We
will see a more elaborate use of the paradigm in Section 12.4.

12.3.2 Graph Operations
A GraphWin has an associated graph. There are two methods to update this graph through
the programming interface.

The first method uses the update operations offered by GraphWin. For example,

node gw.new node(const point& p);

creates a new nodev with default attributes. The position ofv is set top.

void gw.del node(node v);

removesv from the graph,

edge gw.new edge(node v, node w);

creates a new edgee = (v, w) with default attributes,

void gw.del edge(edge e);

removese from the graph, and

void gw.clear graph();

makes the graph empty.

The second method reuses the update operations for graphs. We obtain a reference to the
graph associated withgwby callinggw.getgraph( ) and then apply graph update operations
to it.
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graph& G = gw.get graph();

// some update operations on G

G.new node();

G.del edge(e);

gw.update graph(); // CRUCIAL

Observe thegw.updategraph( ) statement at the end of the sequence. This statement in-
formsgw about the fact that its graph was modified and allows it to update its internal data
structures. Without the statement the graphG and the internal data structures ofgwwill go
out of sync and disasters may occur.

We illustrate the use ofupdategraph operation by giving an implementation of the
newnodeoperation of GraphWin; the actual implementation is different and more efficient.

node gw new node(GraphWin& gw, const point& p)

{ graph& G = gw.get graph();

node v = G.new node();

gw.update graph();

gw.set position(v,p);

return v;

}

12.3.3 Attribute and Parameter Operations
Attributes of nodes and edges and global parameters are manipulated byget andsetoper-
ations. In the case of attributes we distinguish between the individual attributes of existing
nodes and edges and thedefault attributeswhich are used to initialize the attributes of new
nodes and edges.

Individual Attributes of Nodes and Edges: The attributes of existing nodes and edges
can be retrieved or changed by the following operations. We useobjectfor eithernodeor
edgeandattrib (of typeattrib type) for an arbitrary attribute.

attrib type gw.get attrib(object x);

returns the current value of attributeattrib of objectx .

attrib type gw.set attrib(object x, attrib type a);

sets the attributeattrib of objectx to a and returns the previous value of the attribute.

void gw.set attrib(list<object>& L, attrib type a);

sets attributeattrib for all objects inL to a.

void gw.reset attributes();

resets the attributes of all objects to their default values.

The current attributes of all nodes and edges may be saved and restored later to the saved
values by the following functions.
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void gw.save node attributes();

void gw.save edge attributes();

void gw.restore node attributes();

void gw.restore edge attributes();

These functions are very useful if the appearance of the graph has to be changed temporarily,
e.g., to highlight a substructure of the graph.

We give an example. We replace all nodes of elliptic shape by yellow rectangular nodes
and all blue edges by black dashed edges, wait five seconds, and then restore all attributes
to their original values.

graph& G = gw.get graph();

void gw.save node attributes();

void gw.save edge attributes();

node v;

forall nodes(v,G) {

if (gw.get shape(v) == ellipse node)

{ gw.set shape(v,rectangle node);

gw.set color(v,yellow);

}

}

edge e

forall edge(e,G) {

if (gw.get color(e) == blue)

{ gw.set style(e,dashed);

gw.set color(e,black);

}

}

gw.redraw();

leda wait(5);

void gw.restore node attributes();

void gw.restore edge attributes();

Default Attribute Values: Every attribute has a default value which is used to initialize
the attributes of new objects. The default attribute values can be changed by the following
operations. Note that changing a default attribute also affects all existing objects, unless the
optional boolean flagapply in the correspondingsetnodeattrib operation is set tofalse.

attrib type get node attrib();

attrib type set node attrib(attrib type x, bool apply=true);

reads or sets the default value of node attributeattrib. If applyis true, theattrib attribute of
all existing nodes is changed in the same way.

attrib type get edge attrib();

attrib type set edge attrib(attrib type x, bool apply=true);
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reads or sets the default value of edge attributeattrib. If apply is true, theattrib attribute of
all existing edges is changed in the same way.

The current default values of all attributes can be saved to a file and later reloaded by the
following operations.

void gw.save defaults(string fname);

void gw.read defaults(string fname);

We close with an example. We declare a GraphWingw, change the default values of
some attributes, open the window associated withgw, and putgw into edit mode.

〈gw attributes.c〉�
#include <LEDA/graphwin.h>

main()

{

GraphWin gw;

// default attributes of nodes

gw.set_node_shape(rectangle_node);

gw.set_node_color(yellow);

// default attributes of edges

gw.set_edge_width(2);

gw.set_edge_color(blue);

gw.set_edge_direction(undirected_edge);

gw.display();

gw.edit();

}

Almost every program using a GraphWin starts with a small preamble that changes default
attributes to settings that are appropriate for the application.

Global Parameters: Global parameters can be retrieved or changed by a collection of
get- andset-operations. We useparamtype for the type andparam for the value of the
corresponding parameter.

There is agetandsetoperation for each global parameterparam.

param type gw.get param();

param type gw.set param(param type x);

The set operation returns the previous value of the corresponding parameter.

In the following example we set theflushparameter tofalsebefore changing the individ-
ual attributes of some nodes. Then we redraw the graph to display the changes and reset the
flushparameter to its previous value;

gw.set animation steps(12);

bool fl = gw.set flush(false);

forall(v,L) {

gw.set color(v,blue);
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gw.set shape(v,rhombus node);

}

gw.redraw();

gw.set flush(fl);

12.3.4 I/O Operations
GraphWinsupports two file formats for the permanent storage of graphs and their attributes,
the (native) gw-format and the GML-format [Him97] of Himsolt. It can also generate a
Postscript representation of the current drawing that can easily be included into LATEX doc-
uments. Many of the figures of this book have been produced in this way. The operations
in this section are available in the file-menu.

The read operations

int gw.read gw(istream& istr);

int gw.read gw(string fname);

int gw.read gml(istream& istr);

int gw.read gml(string fname);

clear the current graph and read a new graph and its attributes from the input streamistr
or file fname, respectively. The operations return 0 on success and a special error code if
something goes wrong (see the manual for details). The write operations

int gw.save gw(ostream& ostr);

int gw.save gw(string fname);

int gw.save gml(ostream& ostr);

int gw.save gml(string fname);

write the current graph and its layout to output streamostr or to file fname, respectively.
The operations return 0 on success and a non-zero error code if something goes wrong.

Postscript representations of drawings are generated by

bool gw.save ps(ostream& ostr);

bool gw.save ps(string fname);

which write the current drawing as a Postscript file to output streamostr or to file fname,
respectively.

12.3.5 Layout Operations
We discuss operations for manipulating thelayoutof the graph associated with a GraphWin,
i.e., the positions of the nodes and the sequence of bends of the edges. The operations are,
for example, used to realize the functions in the layout-menu.

The arguments of the layout operations specify new node positions and/or new sequences
of bends. The layout operation moves the nodes and changes the drawings of edges ac-
cordingly. The animation of the layout operations (and also of the zooming operations) is
controlled by theanimationstepsparameter.GraphWinanimates changes in the layout by
linear interpolation. It shows a sequence ofanimationstepsintermediate layouts, where
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each node and edge moves a fraction of 1/animationstepsof its total movement in each
step. Ifanimationstepsis set to zero, the layout change is performed instantaneously.

In most layout operations the new node position can be specified either aspointsor as
pairs ofdoubles. We list both versions for the first layout function and only one for the
others. The operations

void gw.set position(const node array<double>& xpos,

const node array<double>& ypos);

void gw.set position(const node array<point>& pos);

move every nodev of gw from its old position to position(xpos[v], ypos[v]) or pos[v],
respectively, and leave the bends of all edges unchanged,

void gw.set layout(const node array<point>& pos,

const edge array<list<point> >& bends);

moves every nodev to positionpos[v] and sets the bend sequence of every edgee to
bends[e],

void gw.set layout(const node array<point>& pos);

moves every nodev of the graph to positionpos[v] and removes all edge bends from the
layout,

void gw.remove bends();

removes all bends from the layout and leaves the node positions unchanged,

void gw.place into box(double x0, double y0, double x1, double y1);

moves the graph into the rectangular box(x0, y0, x1, y1) by scaling and translating the
layout, and

void gw.place into win();

moves the graph into the drawing window by scaling and translating.

Layout coordinate computations: Consider the following situation. We have a graph
windowgwand its associated graphG. We have computed a new layout forG, but the new
layout does not conform to the coordinate space ofgw. We want to adjust the layout data
before applying it. Section 12.4 gives an application.

The operations in this section are very helpful in this situation. They apply the transfor-
mationsplaceinto boxandplaceinto win to the layout data supplied separately in node and
edge arrays.

void gw.adjust coords to box(node array<double>& xpos,

node array<double>& ypos,

edge array<list<double> >& xbends,

edge array<list<double> >& ybends,

double x0, double y0, double x1, double y1);
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transforms the layout given byxpos, ypos, xbends, andybendsin the same way as a call
placeinto box(x0, y0, x1, y1) would do. However, the actual layout of the current graph is
not changed by this operation.

void gw.adjust coords to box(node array<double>& xpos,

node array<double>& ypos,

double x0, double y0, double x1, double y1);

transforms the layout given byxpos, yposasgw.placeinto box(x0, y0, x1, y1) would do.
It ignores any edge bends. The actual layout of the current graph is not changed by this
operation.

void gw.adjust coords to win(node array<double>& xpos,

node array<double>& ypos,

edge array<list<double> >& xbends,

edge array<list<double> >& ybends);

callsadjustcoordsto box(xpos, ypos, xbends, ybends, wx0, wy0, wx1, wy1) with the current
window rectangle(wx0, wy0, wx1, wy1). Finally,

void gw.adjust coords to win(node array<double>& xpos,

node array<double>& ypos);

callsadjustcoordsto box(xpos, ypos, wx0, wy0, wx1, wy1), where as in the preceding oper-
ation(wx0, wy0, wx1, wy1) is the current window rectangle.

12.3.6 Zoom Operations
Zoom operations change the coordinate system of the window but do not change the layout
of the graph. A zoom operation is a combination of a stretch or shrink transformation
(changing the scaling factor of the window) with a translation of the window in user space.
The animation stepparameter specifies the number of intermediate window positions to
be shown in the animation of the zoom operation; if the parameter is zero the zoom is
performed instantaneously.

void gw.zoom(double f)

zooms the window by the factorf ; this multiplies the scaling factor byf and leaves the
coordinates of the center of the window unchanged.

void gw.zoom area(double x0, double y0, double x1, double y1)

zooms the window to rectangle(x0, y0, x1, y1). More precisely, if the aspect ratio of the
zoom rectangler = (y1− y0)/(x1− x0) is equal to the aspect ratiowr of the current
window, the window coordinates are set to(x0, y0, x1, y1). Otherwise, ifr is smaller than
wr the new window coordinates are(x0, y0, x1, y′) with y ′ = y0+ wr ∗ (x1− x0) and if r
is greater thanwr the new coordinates are(x0, x ′, y0, y1) with x ′ = x0+ (y1− y0)/wr.

void gw.center graph()

performs a zoom operation that does not change the scaling of the window and moves the
center of the bounding box of the current graph layout to the center of the window.
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void gw.zoom graph();

calls gw.zoomarea(x0, y0, x1, y1) such thatx0, x1, andy0 are the left, right and lower
coordinates of the bounding box of the current layout of the graph.

12.3.7 Miscellaneous Operations
We close our discussion of the programming interface with a list of small, but useful func-
tions.

void gw.message(string msg);

displaysmsgat the top of the window. Ifmsgis the empty string, the previous message is
deleted.

bool gw.wait(const msg);

displaysmsgand waits until the done-button is pressed or exit is selected from the file menu.
The result of the operation istrue in the first case andfalsein the second case.

int gw.open panel(panel& P)

displays panelP centered ongw and returns the result ofP.open( ). During the execution
of P.open( ) all menus ofgw are disabled.

node gw.ask node();

asks the user to select a node by clicking with the left mouse button on it. The selected node
is returned;nil is returned if the click does not hit a node.

edge gw.ask edge();

asks the user to select an edge by clicking with the left mouse button on it. The selected
edge is returned;nil is returned if the click does not hit an edge.

void gw.get bounding box(double& x0, double& y0, double& x1, double& y1);

computes the coordinates(x0, y0, x1, y1) of a minimal area rectangular bounding box con-
taining the current layout of the graph.

12.4 Edit and Run: A Simple Recipe for Interactive Demos

We implement a simple demo that illustrates planarity testing based on the edit-and-run
paradigm for interactive demos of graph algorithms. The demo illustrates many of the
functions discussed in the preceding sections.

We define a GraphWingwwith frame label “Planarity Test Demo” and open it. We then
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enter the edit-loop. After each edit operation, we run the graph algorithm on the graphG
associated withgwand display the result.

〈gw plandemo.c〉�
#include <LEDA/graphwin.h>

#include <LEDA/graph_alg.h>

〈plandemo: highlight〉
int main()

{

GraphWin gw("Planarity Test Demo");

gw.display(window::center,window::center);

while (gw.edit())

{

graph& G = gw.get_graph();

〈run graph algorithm and display result〉
}

return 0;

}

So far the program is generic (except for the frame label). We now come to the part specific
to the planarity demo.

We testG for planarity. If G is planar and has at least three nodes (otherwise the current
drawing is already without crossings), we compute a straight line embedding and display
it. The computation of the straight line embedding returns the coordinates of a straight line
embedding in some coordinate system. We adjust the coordinates to the coordinate space
of gw by calling adjustcoordsto win. Finally, we display the straight line embedding by
callinggw.setlayout(. . .).

If the graph is non-planar, we compute a Kuratowski subdivisionK = (Vk, Ek) and
display it by calling thehigh light function. We wait until the user clicks done and then
restore the old drawing. The function KURATOWSKI computes the set of nodes and edges
of the subdivision and for each node ofG the degree of the node in the subdivision. For all
v ∈ V the degreedeg[v] is equal to 2 for subdivision points, 4 for all other nodes ifK is a
K5, and−3 (+3) for the nodes of the left (right) side ifK is a K3,3.

〈run graph algorithm and display result〉�
if (PLANAR(G))

{ if (G.number_of_nodes() < 3) continue;

node_array<double> xcoord(G);

node_array<double> ycoord(G);

STRAIGHT_LINE_EMBEDDING(G,xcoord,ycoord);

gw.adjust_coords_to_win(xcoord,ycoord); // !!!

gw.set_layout(xcoord,ycoord);

}

else

{ list<node> V_k;

list<edge> E_k;
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node_array<int> kind(G);

KURATOWSKI(G,V_k,E_k,kind);

gw.save_all_attributes();

highlight(gw,V_k,E_k,kind);

gw.wait("This Graph is not planar. I show you a\

Kuratowski Subdivision (click done).");

gw.restore_all_attributes();

}

We still have to define the functionhighlight that highlights the Kuratowski subgraph.
We setflushto false at the beginning ofhighlight and callredrawand restore the old value
of flushat the end. This ensures that all changes made byhighlightwill become effective at
the same time.

We highlight the Kuratowski subgraph by drawing its edges with width two and black
(all other edges are drawn grey and with width one) and by using color and shape codes to
highlight its nodes. Figure 12.9 shows an example.

〈plandemo: highlight〉�
void highlight(GraphWin& gw, list<node> V, list<edge> E,

node_array<int>& kind)

{

const graph& G = gw.get_graph();

bool flush0 = gw.set_flush(false);

node v;

forall_nodes(v,G) {

switch (kind[v]) {

case 0: gw.set_color(v,grey1);

gw.set_border_color(v,grey1);

gw.set_label_color(v,grey2);

break;

case 2: gw.set_color(v,grey1);

gw.set_label_type(v,no_label);

gw.set_width(v,8);

gw.set_height(v,8);

break;

case 3:

case 4: gw.set_shape(v,rectangle_node);

gw.set_color(v,red);

break;

case -3: gw.set_shape(v,rectangle_node);

gw.set_color(v,blue2);

break;

}

}

edge e;

forall_edges(e,G) gw.set_color(e,grey1);

forall(e,E)

{ gw.set_color(e,black);
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Figure 12.9 The planarity test demo: Highlighting a Kuratowski subdivision.

gw.set_width(e,2);

}

gw.redraw();

gw.set_flush(flush0);

}

Exercises for 12.4
1 Write a program that animates quicksort. Have a graph with one node for each input and

no edges. Change the layout of the graph as the sort progresses.
2 Write a program that animates heapsort.
3 Write a program that always shows a DFS-structure of the currently edited graph by

drawing the different edge types (tree, backward, forward, cross) in different colors or
styles.
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12.5 Customizing the Interactive Interface

We describe three ways for customizing the interactive interface:

• Call-back functions,

• Extended and/or additional menus, and

• Redefined edit actions.

Each method will allow us to write nicer demos.

12.5.1 Call-Back Functions
Call-back or handler functions can be used to associate arbitrary functionality with the edit
operations ofGraphWin. Two handlers can be defined for every operation. The first one,
the so-calledpre-handler, is called immediately before the corresponding edit operation.
The second one, the so-calledpost-handler, is called at the end of the operation. For move
operations of nodes and sliders, there is a third handler, the so-calledmove-handlerwhich
is called for all intermediate positions.

The pre-handlers have a boolean return value which tellsGraphWinwhether the corre-
sponding edit operation is to be executed or not. This provides a simple way of disallowing
edit operations under certain conditions. In general, pre- and post-handler also have differ-
ent parameter lists.

The null-handler (NULL) can be used to remove a pre- or post-handler from an edit
operation.

We give a list of the most important handlers and the correspondingsetoperations. There
are two versions of eachsethandler, one each for defining the pre- and post-handler. The
functions have the same name and differ in the type of the function pointer argument: func-
tions for setting pre-handlers take an argument of typebool (∗func)(GraphWin& ,...) and
functions for setting post-handlers take an argument of typevoid (∗func)(GraphWin& ,...).

void gw.set new node handler(bool (*f)(GraphWin&,point));

sets the pre-handler of the new-node operation tof , i.e., f (gw, p) is called before a node
is created at positionp.

void gw.set new node handler(void (*f)(GraphWin&,node));

sets the post-handler of the new-node operation tof , i.e., f (gw, v) is called after a new
nodev has been created.

void gw.set new edge handler(bool (*f)(GraphWin&,node,node));

sets the pre-handler of the new-edge operation tof , i.e., f (gw, v, w) is called before a new
edge(v, w) is created.

void gw.set new edge handler(void (*f)(GraphWin&,edge));

sets the post-handler of the new-edge operation tof , i.e., f (gw, e) is called after a new
edgee has been created.
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void gw.set del node handler(bool (*f)(GraphWin&,node));

sets the pre-handler of the del-node operation tof , i.e., f (gw, v) is called each time before
a nodev is deleted.

void gw.set del node handler(void (*f)(GraphWin&));

sets the post-handler of the del-node operation tof , i.e., f (gw) is called each time a node
has been deleted.

void gw.set del edge handler(bool (*f)(GraphWin&,edge));

sets the pre-handler of the del-edge operation tof , i.e., f (gw, e) is called each time before
an edgee is deleted.

void gw.set del edge handler(void (*f)(GraphWin&));

sets the post-handler of the del-edge operation tof , i.e., f (gw) is called each time an edge
has been deleted.

void gw.set init graph handler(bool (*f)(GraphWin&));

sets the pre-handler of the init-graph operation tof , i.e., f (gw) is called every time before
any global update of the graph, e.g., in a clear, generate, or load operation.

gw.set init graph handler(void (*f)(GraphWin&));

sets the post-handler of the init-graph operation tof , i.e., f is called after each global
update of the graph.

Node moving and edge slider moving operations may have three different handlers. The
first is called before the moving starts, the second is called for every intermediate position,
and the third one is called at the final position of the node after the moving has been finished.
The handlers are set by:

gw.set start move node handler(bool (*f)(GraphWin&,node));

gw.set move node handler(bool (*f)(GraphWin&,node,point));

gw.set end move node handler(void (*f)(GraphWin&,node));

gw.set start edge slider handler(

void (*f)(GraphWin& gw,edge,double),int i);

gw.set edge slider handler(

void (*f)(GraphWin& gw,edge,double),int i);

gw.set end edge slider handler(

void (*f)(GraphWin& gw,edge,double),int i);

Recall that each edge has three sliders associated with it. The integer argumenti in the last
three functions selects the slider, 0≤ i ≤ 2.
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12.5.2 A Recipe for On-line Demos of Graph Algorithms
The edit-and-run paradigm for demos of graph algorithms requires an explicit user action,
namely a click on the done-button, to start the graph algorithm to be demonstrated. Call-
back or handler functions allow us to write on-line demos which show the result of a graph
algorithm while the graph is edited and not only after editing.

We give the generic structure of a demo that calls a graph algorithm after every addition
or deletion of a node or edge and after the initialization of the graph (for example, by
reading it from a file). We define a functionrun anddisplaythat runs the graph algorithm
on the graph associated withgw and updates the display. We then define post-handlers for
thenewnode, newedge, delnode, deledge, andinit graphoperations; each handler simply
calls run anddisplay(gw). In the main program we tellGraphWinwhich handlers to use
by calling the correspondingsethandlerfunctions, display the window, and callgw.edit( ).
That’s all.

〈gw handler.c〉�
#include <LEDA/graph_alg.h>

#include <LEDA/graphwin.h>

void run_and_display(GraphWin& gw)

{ 〈run algorithm and update display〉 }

void new_node_handler(GraphWin& gw, node) { run_and_display(gw); }

void new_edge_handler(GraphWin& gw, edge) { run_and_display(gw); }

void del_edge_handler(GraphWin& gw) { run_and_display(gw); }

void del_node_handler(GraphWin& gw) { run_and_display(gw); }

void init_graph_handler(GraphWin& gw) { run_and_display(gw); }

int main()

{

GraphWin gw;

gw.set_init_graph_handler(init_graph_handler);

gw.set_new_edge_handler(new_edge_handler);

gw.set_del_edge_handler(del_edge_handler);

gw.set_new_node_handler(new_node_handler);

gw.set_del_node_handler(del_node_handler);

gw.display();

gw.edit();

return 0;

}

We will next derive a specific demo from this framework by instantiating therun anddisplay
function. We illustrate the strongly connected components of the graph associated withgw;
all nodes belonging to the same component should be colored the same and nodes in differ-
ent components should be colored differently.

The “work horse” of our demo is a functionvoid runanddisplay(GraphWin& ) that uses
the graph algorithmSTRONGCOMPONENTSto compute a numberingcompnumof the
nodes of the current graph, such that all nodes of a strongly connected component receive
the same number. Each node is painted with the number of its component.
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Figure 12.10 An screen shot of an on-line demo for the strongly connected components of a
graph.

〈run algorithm and update display〉�
graph& G = gw.get_graph();

node_array<int> comp_num(G);

STRONG_COMPONENTS(G,comp_num);

node v;

forall_nodes(v,G) gw.set_color(v,color(comp_num[v]));

Figure 12.10 shows a screen shot of the program after a few editing operations.

12.5.3 Defining and Changing Menus
The menus ofGraphWinare not fixed. New sub-menus and buttons can be added to the
main window and any sub-menu, in this way extending the set of functions and algorithms
that can be applied to the current graph by a mouse click. Furthermore, the set of default
menus in the main window’s menu bar can be changed by removing standard menus. All



12.5 Customizing the Interactive Interface 883

operations for changing menus have to be called before the window is displayed for the first
time.

Changing the Standard Main Menu: The default menus inGraphWin’s menu bar are
determined by a bit mask that is the bitwise-or of an arbitrary subset of the predefined con-
stantsM FILE, M EDIT, M GRAPH, M LAYOUT, M WINDOW, M OPTIONS, M HELP,
andM DONE. Each of these constants represents the corresponding standard menu dis-
cussed in Section 12.1. The valueM COMPLETEis defined as the bitwise-or of all con-
stants above, i.e., it specifies a menu bar containing all standard menus. The operation

long gw.set default menu(long mask);

defines the set of standard menus, wheremaskis the bitwise-or of an arbitrary subset of the
predefined constants listed above. The operation

void gw.del menu(long mask);

removes all menus corresponding to 1-bits inmaskfrom the menu bar.

Adding New Menus: New sub-menus can be added to an existing menu (or the main menu
bar) by calling theaddmenuoperation. Each menu is represented by an integer (menuid)
from an internal numbering of all menus. The main menu bar hasmenuid zero.

int gw.add menu(GraphWin& gw, string label, int menu id = 0),

creates a sub-menu in menu with idmenuid. The corresponding button is labeled with
label. The operation returns the menu id of the new menu. The menu id of a standard menu
can be obtained by callinggetmenu(string) with the name of the menu, e.g.,

get menu("Help");

returns the menu id of the help menu.

Adding Simple Functions: We call functions of typevoid func(GraphWin& gw) simple.
Theaddsimplecall operation ofGraphWincan be used to add (buttons for starting) simple
functions to an existing menu or the main menu bar.

void gw.add simple call(void (*func)(GraphWin&),

string label, int menu id = 0);

adds a new button with labellabel to the menu with menu idmenuid. Whenever this button
is pressed during edit modefunc(gw) is called.

We give an example. Assume we want to add a button to the main menu that runs a DFS
algorithm of type

void dfs(graph& G, node s, node array<bool>& reached)

on the current graph. We write a simple functionvoid (run dfs)(GraphWin& ) that tells
GraphWinhow to calldfsand how to display its result.
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void run dfs(GraphWin& gw)

{

// provide arguments

graph& G = gw.get graph();

node s = gw.ask node();

node array<bool> reached(G,false);

// call function

dfs(G,s,reached);

// display result

node v;

forall nodes(v,G) if (reached[v]) gw.set color(v,red);

}

and add the function to the main menu by calling

gw.add simple call(run dfs,"dfs");

The string argument “dfs” will be used as the label of the new menu button. We may also
want to extend the help menu. We define a simple functionaboutdfsthat opens a panel and
displays a help string

void about dfs(GraphWin& gw)

{ window& W = gw.get window();

panel P;

P.set panel bg color(win p->mono() ? white : ivory);

P.text item("The dfs-button runs dfs on the current graph.");

P.button("OK");

W.disable panel();

P.open(W);

W.enable panel();

}

and add it to the help menu.

int h menu = gw.get menu("Help");

gw.add simple call(about dfs, "About DFS",h menu);

Adding GraphWin Member Functions: Not every operation of the programming inter-
face ofGraphWinis available in the interactive interface. However, there is an easy way of
adding operations of typevoid GraphWin::func( ), i.e., member functions without parame-
ters and without a result. The operation

gw.add member(void (*GraphWin::func)(), string label, int menu id = 0);

adds a new button with labellabel to the menu with menu idmenuid. Whenever this button
is pressed during edit modegw.func( ) is called.

As an example, we add a ”redraw” button, that calls thegw.redraw( ) operation, to the
main panel.

gw.add member call(&GraphWin::redraw,"redraw");
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Adding Families of Functions: Sometimes, one wants to add an entire group of functions,
all with the same interface, to a menu. In this case it would be tedious to write a wrapper
for each of these functions. It is more convenient to write only a singlecaller function that
can deal with all functions of the group. The caller takes a reference to aGraphWinand a
pointer to the function to be called as arguments. More precisely, if the function to be called
is of typefunctiont, the caller has typevoid (∗caller)(GraphWin& , functiont).

Thegwaddcall function template adds a function together with its caller to a menu. This
operation should better be realized by a member function template. However, only a few
compilers currently support this feature of C++.

template <class function t>

void gw add call(GraphWin& gw, function t func,

void (*caller)(GraphWin&, function t),

string label, int menu id=0);

adds a new button with labellabel to the menu with menu idmenuid. Whenever this button
is pressed in edit mode, the functioncaller is called with argumentsgwandfunc.

We use a family of graph drawing functions as an example. Assume we have a library
of graph drawing algorithms (e.g., the AGD library [JMN]) and want to build agraphdraw
menu which makes all functions in the library available on a mouse click. We assume that
all graph drawing algorithms take a graphG and compute for every nodev of G a position
(xcoord[v], ycoord[v]).

void draw alg1(const graph& G, node array<double> xcoord,

node array<double> ycoord);

void draw alg2(const graph& G, node array<double> xcoord,

node array<double> ycoord);

...

A generic caller function for this type of graph algorithm is as follows:

typedef void (*draw alg)(graph&, node array<double>&,

node array<double>&);

void call draw alg(GraphWin& gw, draw alg draw)

{

// provide arguments

graph& G = gw.get graph();

node array<double> xcoord(G);

node array<double> ycoord(G);

// call function

draw(G,xcoord,ycoord);

// display result

gw.adjust coords to win(xcoord,ycoord);

gw.set layout(xcoord,ycoord);

if (!gw.get flush()) gw.redraw();

}

The new menu is now easily created.
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int draw menu = gw.add menu("graph drawing");

gw add call(gw,draw alg1,call draw alg,"draw alg1",draw menu)

gw add call(gw,draw alg2,call draw alg,"draw alg2",draw menu)

...

A Complete Example: We give a complete example that illustrates the possibilities to ex-
tend and modify menus. We will write a demo that illustrates dfs, spanning trees, connected
components, and strongly connected components.

For dfs and spanning trees we use simple functions.

〈simple functions〉�
void dfs_num(GraphWin& gw)

{ graph& G = gw.get_graph();

node_array<int> dfsnum(G);

node_array<int> compnum(G);

DFS_NUM(G,dfsnum,compnum);

node v;

forall_nodes(v,G) gw.set_label(v,string("%d|%d",dfsnum[v],compnum[v]));

if (gw.get_flush() == false) gw.redraw();

}

void span_tree(GraphWin& gw)

{ graph& G = gw.get_graph();

list<edge> L = SPANNING_TREE(G);

gw.set_color(L,red);

gw.set_width(L,2);

if (gw.get_flush() == false) gw.redraw();

}

The LEDA functions to compute components of a graph all have the same interface. They
take a graph and compute a node array ofints, and return an int. Any such function can be
added to a GraphWin using the caller

〈components caller〉�
// a caller for component algorithms

void call_comp(GraphWin& gw,

int (*comp)(const graph& G, node_array<int>& compnum) )

{ graph& G = gw.get_graph();

node_array<int> compnum(G);

comp(G,compnum);

node v;

forall_nodes(v,G)

{ int i = compnum[v];

gw.set_label(v,string("%d",i));

gw.set_color(v,(color)(i%16));

}

if (gw.get_flush() == false) gw.redraw();

}
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In the main program we define a GraphWin, delete some of the standard menus (just
to illustrate how it is done), add our simple calls, add a reset button, and finally create a
sub-menu for the components functions.

〈gw menu.c〉�
#include <LEDA/graphwin.h>

#include <LEDA/graph_alg.h>

#include <LEDA/graph_misc.h>

〈components caller〉
〈simple functions〉
int main()

{

GraphWin gw;

// we delete some of the standard menus

gw.set_default_menu(M_COMPLETE & ~M_LAYOUT & ~M_HELP);

// add two simple function calls

gw.add_simple_call(dfs_num, "dfsnum");

gw.add_simple_call(span_tree, "spanning");

// a member call

gw.add_member_call(&GraphWin::reset,"reset");

// and a menu with three non-simple functions using

// a common call function

int menu1 = gw.add_menu("components");

gw_add_call(gw,COMPONENTS, call_comp,"simply connected", menu1);

gw_add_call(gw,COMPONENTS1, call_comp,"simply connected1", menu1);

gw_add_call(gw,STRONG_COMPONENTS,call_comp,"strongly connected",menu1);

gw.display();

gw.edit();

return 0;

}

Figure 12.11 shows a screen shot of this demo.

12.5.4 Defining Edit Actions
Mouse operations in the display region of aGraphWingenerate events. An event is charac-
terized by its event bit maskeventmask(which is the or of elementary masks to be defined
below) and the current positionmousepositionof the mouse pointer. Event masks have
associatededit actions. All edit actions are functions of type

void action(GraphWin& gw, const point& pos);

When an event occurs, the associated action function is called with theGraphWinobject and
the current mouse pointer positionmousepositionas arguments. The object (node or edge)
under the current position can be queried by thegetedit nodeor getedit edgeoperation.

Event masks are the bitwise-or of some of the following predefined constants:

A LEFT, AMIDDLE, ARIGHT: If one of these bits is set, the corresponding mouse
button (left, middle, or right) has been clicked.
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Figure 12.11 Extending the menu: Computing a DFS-numbering.

A DRAG: This bit indicates that the mouse is moved with one or more buttons (specified
by the bits discussed above) held down.

A DOUBLE: This bit indicates a double click , i.e., the event that a mouse button has
been clicked twice.

A SHIFT, ACTRL, AALT: If one of these bits is set, the corresponding keyboard control
key (Shift,Ctrl,Alt) is pressed.

A NODE: If this bit is set, the mouse pointer is located over a node and the node can be
queried by thegw.getedit node( ) operation.

A EDGE: If this bit is set, the mouse pointer is located over an edge and the edge can be
queried by thegw.getedit edge( ) operation.
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A SLIDER: If this bit is set, the mouse pointer is located over a slider of an edge. The
corresponding edge can be queried as above and the number of the slider (0,1, or 2) can be
obtained by calling thegw.getedit slider( ) operation.

An event mask is defined by a combination of these bits, for instance

( A LEFT | A NODE | A DOUBLE )

describes a double click of the left mouse button on a node.

Setting Edit Actions: The following operations can be used to change the action functions
associated with events.

gw action gw.set action(long mask,void (*func)(GraphWin&, const point&));

sets the action on conditionmaskto funcand return the previous action of this condition.
After this call func is called with theGraphWinobject and the current edit position as
arguments whenever the condition defined bymaskbecomes true.

void gw.reset actions();

resets all actions to their default values and

void gw.clear actions();

sets all actions toNULL.

The following piece of code shows part of the initialization of the default edit actions.

// left button (create,move,scroll,zoom)

set action( A LEFT , gw new node);

set action( A LEFT | A NODE , gw new edge);

set action( A LEFT | A DRAG |A NODE , gw move node);

set action( A LEFT | A DRAG |A EDGE , gw move edge);

set action( A LEFT | A DRAG , gw scroll graph);

set action( A LEFT | A DRAG |A SLIDER, gw move edge slider);

set action( A LEFT |A SHIFT |A DRAG |A NODE , gw move component);

set action( A LEFT |A DOUBLE | A NODE , gw setup node);

set action( A LEFT |A DOUBLE | A EDGE , gw setup edge);

An Example Program: The following program redefines some of the default actions, for
example, when the left mouse button is clicked over a node with the control key pressed,
the node color will be increased by one.

〈gw action.c〉�
#include<LEDA/graphwin.h>

void change_node_color(GraphWin& gw, const point&)

{ node v = gw.get_edit_node();

int col = (gw.get_color(v) + 1) % 16;

gw.set_color(v,color(col));

}

void change_edge_color(GraphWin& gw, const point&)
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{ edge e = gw.get_edit_edge();

int col = (gw.get_color(e) + 1) % 16;

gw.set_color(e,color(col));

}

void center_node(GraphWin& gw, const point& p)

{ node v = gw.get_edit_node();

gw.set_position(v,p);

}

void delete_node(GraphWin& gw, const point&)

{ node v = gw.get_edit_node();

gw.del_node(v);

}

void zoom_up(GraphWin& gw, const point&) { gw.zoom(1.5); }

void zoom_down(GraphWin& gw, const point&) { gw.zoom(0.5); }

main()

{

GraphWin gw;

gw.set_action(A_LEFT | A_NODE | A_CTRL, change_node_color);

gw.set_action(A_LEFT | A_EDGE | A_CTRL, change_edge_color);

gw.set_action(A_LEFT | A_NODE | A_SHIFT, center_node);

gw.set_action(A_RIGHT| A_NODE, delete_node);

gw.set_action(A_LEFT | A_CTRL, zoom_up);

gw.set_action(A_RIGHT| A_CTRL, zoom_down);

gw.display(window::center,window::center);

gw.edit();

}

12.6 Visualizing Geometric Structures

Many geometric data structures of LEDA are implemented by labeled graphs, e.g., Delau-
nay diagrams are represented by graphs of typeGRAPH<point, int> and Voronoi diagrams
are represented as graphs of typeGRAPH<CIRCLE, POINT>. Many geometry demos have
a GraphWin-button for viewing the underlying graph structures.

We sketch how this button is realized. In the demo below we compute the Delaunay
triangulationDT of a setL of twenty-five points on a regular grid. We then declare a
GraphWingw for DT, tell gw that we want each nodev to be drawn at positionDT[v], as
a circle of radius eight pixels, and without label, and that we want each edge to be drawn
with a color indicating its label. Start the demo and the graph shown in Figure 12.12 will
appear.

〈gw delaunay.c〉�
#include <LEDA/plane_alg.h>

#include <LEDA/graphwin.h>

main()
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Figure 12.12 GraphWin displaying a Delaunay triangulation.

{

GRAPH<rat_point,int> DT;

list<rat_point> L;

lattice_points(25,100,L);

DELAUNAY_TRIANG(L,DT);

GraphWin gw(DT);

node v;

forall_nodes(v,DT)

{ rat_point p = DT[v];

gw.set_position(v,p.to_point());

gw.set_label_type(v,no_label);

gw.set_width(v,8);

gw.set_height(v,8);

}

edge e;

forall_edges(e,DT)

{ switch (DT[e]) {

case DIAGRAM_EDGE: gw.set_color(e,green2); break;

case NON_DIAGRAM_EDGE: gw.set_color(e,yellow); break;
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case HULL_EDGE: gw.set_color(e,red); break;

}

}

gw.display();

gw.zoom_graph();

gw.edit();

}

12.7 A Recipe for On-line Demos of Network Algorithms

Networks are graphs whose edges (and sometimes nodes) are labeled with numbers, e.g.,
capacities or costs. On-line demos of network algorithms should allow the user to edit the
underlying graph as well as the edge capacities. We have already seen how to react on-
line to update operations. In this section we will show how to implement capacity changes
by edge sliders. All demos of network algorithms follow the paradigm presented in this
section. We use the min cost flow algorithm as our example. All other demos are simpler.
Figure 12.13 shows a screenshot.

The global structure of our demo is as follows. We define edge mapscap andcost in
order to make edge capacities and edge costs globally available for the handler functions.
We then define a function that runs the min cost flow algorithm and displays the result and
we define handlers for edge events and handlers for slider events.

In the main program we generate the grid graphG shown in Figure 12.13 and associate
the edge mapscapandcostwith it. We define a GraphWingw for G and set its header to
“Min Cost Max Flow”. We disable edge bends since sliders can be used for straight line
edges only. We set the node and edge attributes to the colors hinted at in the figure, and we
adjust the size of the layout such that it uses about 90% of the window. Finally, we open the
window and put it into edit mode.

〈gw mcmflow.c〉�
#include <LEDA/graphwin.h>

#include <LEDA/graph_alg.h>

static edge_map<int> cap;

static edge_map<int> cost;

〈run min cost flow and display result〉
〈edge handlers〉
〈capacity and cost sliders〉
int main()

{

// construct a (grid) graph

graph G;

node_array<double> xcoord;

node_array<double> ycoord;
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Figure 12.13 Animation of a min-cost-flow algorithm.

grid_graph(G,xcoord,ycoord,5);

// initialize cap and cost maps

cap.init(G);

cost.init(G);

GraphWin gw(G,"Min Cost Max Flow");

// disable edge bends

gw.set_action(A_LEFT | A_DRAG | A_EDGE , NULL);

〈set handlers〉
〈set attributes of nodes and edges〉
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//adjust layout

gw.adjust_coords_to_win(xcoord,ycoord);

gw.set_layout(xcoord,ycoord);

gw.zoom(0.9);

// open gw

gw.display();

gw.edit();

return 0;

}

Setting the node and edge attributes is routine.

〈set attributes of nodes and edges〉�
gw.set_node_color(yellow);

gw.set_node_shape(circle_node);

gw.set_node_label_type(no_label);

gw.set_node_width(14);

gw.set_node_height(14);

gw.set_edge_direction(directed_edge);

node s = G.first_node();

gw.set_shape(s,rectangle_node);

gw.set_width(s,22);

gw.set_height(s,22);

gw.set_color(s,cyan);

gw.set_label(s,"S");

node t = G.last_node();

gw.set_shape(t,rectangle_node);

gw.set_width(t,22);

gw.set_height(t,22);

gw.set_color(t,cyan);

gw.set_label(t,"T");

The function that runs the min cost flow algorithm and displays its result is similar to the
display function in the strongly connected components demo of Section 12.4, but slightly
more complex because we are aiming for a more elaborated visualization.

We obtain the graphG from gw, we sets andt to the first and last node, respectively, and
compute the flow using the global edge mapscapandcost. We compute the flow value and
the cost of the flow and we set the width of every edge proportional to the flow through the
edge. Edges with flow zero are faded to grey. We reset flush, write a message containing
flow value and cost, and redraw.

〈run min cost flow and display result〉�
void run_mcm_flow(GraphWin& gw)

{ bool flush = gw.set_flush(false);

graph& G = gw.get_graph();

node s = G.first_node();

node t = G.last_node();

gw.message("\\bf Computing MinCostMaxFlow");
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edge_array<int> flow(G);

int F = MIN_COST_MAX_FLOW(G,s,t,cap,cost,flow);

int C = 0;

// sum up total cost and indicate flow[e] by the width of e

edge e;

forall_edges(e,G)

{ C += flow[e]*cost[e];

gw.set_label_color(e,black);

gw.set_label(e,string("%d",flow[e]));

gw.set_width(e,1+int((flow[e]+4)/5.0));

if (flow[e] == 0)

gw.set_color(e,grey2); // 0-flow edges are faded to grey

else

gw.set_color(e,black);

}

gw.set_flush(flush);

gw.message(string("\\bf Flow: %d \\bf Cost: %d",F,C));

gw.redraw();

}

We come to the edge handlers. We first define an auxiliary functioninit edgethat sets the
capacity and the cost of an edge to random values and sets the slider values for the zeroth
and the first slider of the edge accordingly. Theinit handlerinitializes all edges, computes
a min cost flow and displays it. The new edge handler initializes the edge, computes a min
cost flow and displays it.

The init handler and the node and edge handlers ofgware set in the obvious way.

〈edge handlers〉�
void init_edge(GraphWin& gw, edge e)

{ // init capacity and cost to a random value

cap[e] = rand_int(10,50);

cost[e] = rand_int(10,75);

// set sliders accordingly

gw.set_slider_value(e,cap[e]/100.0,0); // slider zero

gw.set_slider_value(e,cost[e]/100.0,1); // slider one

}

void init_handler(GraphWin& gw)

{ edge e;

forall_edges(e,gw.get_graph()) init_edge(gw,e);

run_mcm_flow(gw);

}

void new_edge_handler(GraphWin& gw, edge e)

{ init_edge(gw,e);

run_mcm_flow(gw);

}

〈set handlers〉�
gw.set_init_graph_handler(init_handler);
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gw.set_del_edge_handler(run_mcm_flow);

gw.set_del_node_handler(run_mcm_flow);

gw.set_new_edge_handler(new_edge_handler);

We come to the sliders. The cap slider handlers handle the change of capacities. We use
the zeroth edge slider for the capacities. When an edge slider is picked up we display an
appropriate message. As long as the slider is moved we display the new capacity. When the
edge slider is released we recompute the flow and display it.

〈capacity and cost sliders〉�
// capacity sliders

void start_cap_slider_handler(GraphWin& gw, edge, double)

{ gw.message("\\bf\\blue Change Edge Capacity"); }

void cap_slider_handler(GraphWin& gw,edge e, double f)

{ cap[e] = int(100*f);

gw.set_label_color(e,blue);

gw.set_label(e,string("cap = %d",cap[e]));

}

void end_cap_slider_handler(GraphWin& gw, edge, double)

{ run_mcm_flow(gw); }

〈set handlers〉+�
gw.set_start_edge_slider_handler(start_cap_slider_handler,0);

gw.set_edge_slider_handler(cap_slider_handler,0);

gw.set_end_edge_slider_handler(end_cap_slider_handler,0);

gw.set_edge_slider_color(blue,0);

Cost sliders are treated completely analogously.

〈capacity and cost sliders〉+�
// cost sliders

void start_cost_slider_handler(GraphWin& gw, edge, double)

{ gw.message("\\bf\\red Change Edge Cost"); }

void cost_slider_handler(GraphWin& gw, edge e, double f)

{ cost[e] = int(100*f);

gw.set_label_color(e,red);

gw.set_label(e,string("cost = %d",cost[e]));

}

void end_cost_slider_handler(GraphWin& gw, edge, double)

{ run_mcm_flow(gw); }

〈set handlers〉+�
gw.set_start_edge_slider_handler(start_cost_slider_handler,1);

gw.set_edge_slider_handler(cost_slider_handler,1);

gw.set_end_edge_slider_handler(end_cost_slider_handler,1);

gw.set_edge_slider_color(red,1);
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Figure 12.14 Visualization of an AVL tree.

Exercises for 12.7
1 Add menus to the main window for running and displaying the result of the different

shortest-path and network flow algorithms of LEDA. Use edge sliders for the input of
edge cost and capacities.

2 Design and implement an animation of the vertex addition planarity test algorithm dis-
cussed in Chapter 8.

3 Write an animation program of the generic preflow-push algorithm for computing a max-
imum flow in a network.

12.8 A Binary Tree Animation

We close this chapter with a demo which animates several implementations of balanced
binary trees, namely AVL-trees, BB[α]-trees, and red-black trees.

All balanced binary tree implementations use a common base, the classesbin tree and
bin treenode. A bin treeis a collection ofbin treenodes. Eachbin treenodestores pointers
to its parent and its children, and a balance of typeint. The interpretation of the balance
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of a node depends on the tree structure. In the case of AVL-trees it is the height difference
between the left and right subtree, in the case of BB[α]-trees it is the number of nodes in
the subtree rooted at the node, and in the case of red-black trees it encodes the color of the
node. The access functions

int T.get bal(bin tree node*)

bin tree node* T.parent(bin tree node*)

bin tree node* T.l child(bin tree node*)

bin tree node* T.r child(bin tree node*)

give access to the fields of a node. One can also ask whether a node is a root or a leaf

bool T.is root(bin tree node*)

bool T.is leaf(bin tree node*)

and one can inquire about the type and name of a tree. The name of a tree is one of “AVL
Tree”, “BB[alpha] Tree”,. . . , and the type of a tree is an integerfrom an enumeration type
encoding the same information as the name.

int T.tree type()

char* T.tree name()

A pointer to abin treenodeis abin treeitem.

The overall structure of the demo is as follows. We define the control parametersn, the
number of insertions,input, the choice between random and sorted insertions, andkind, the
type of tree to be used, we define a panel that allows us to set the control parameters, and we
define threebin treesand initialize them to an empty AVL-tree, BB[α]-tree, and red-black
tree, respectively. We then enter a loop.

In each iteration of the loop we open the panel and ask the reader to set the control
parameters. We then define an objectT of classanimbin treefor the GraphWingwand the
tree selected bykind. The classanimbin tree will be discussed below and does the bulk
of the work. We performn insertions onT with either random inputs or increasing inputs.
Finally, we display the message “Press done to continue” and putgw into edit mode such
that the user can reply.

〈gw bintree.c〉�
#include <LEDA/graphwin.h>

#include <LEDA/impl/bin_tree.h>

#include <LEDA/impl/avl_tree.h>

#include <LEDA/impl/bb_tree.h>

#include <LEDA/impl/rb_tree.h>

#include <LEDA/impl/rs_tree.h>

#include <LEDA/map.h>

〈class animbin trees〉
int main()

{

GraphWin gw(500,400);

gw.set_node_width(18);

gw.set_node_height(18);
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gw.set_node_label_type(no_label);

gw.set_node_label_font(roman_font,10);

gw.set_edge_direction(undirected_edge);

gw.set_show_status(false);

gw.display(window::center,window::center);

int n = 16;

int input = 0;

int kind = 0;

// define a panel P to control n, input, and kind

panel P;

P.text_item("\\bf\\blue Binary Tree Animation");

P.text_item("");

P.choice_item("tree type",kind, "avl-tree","bb-tree","rb-tree");

P.choice_item("input data",input,"random", "1 2 3 ...");

P.int_item("# inserts",n,0,64);

P.button("ok",0);

P.button("quit",1);

bin_tree* tree[3];

tree[0] = new avl_tree;

tree[1] = new bb_tree;

tree[2] = new rb_tree;

while ( gw.open_panel(P) == 0)

{

anim_bin_tree T(gw,tree[kind]);

switch (input) {

case 0: { // random

for(int i=0;i<n;i++) T.insert(rand_int(0,99));

break;

}

case 1: { // increasing

for(int i=0;i<n;i++) T.insert(i);

break;

}

}

gw.message("Press done to continue.");

gw.edit();

}

delete[] tree;

return 0;

}

It remains to explain the classbin treeanim. An object of this class consists of a reference
T to a bin tree and a referencegw to a GraphWin, aGRAPH<point, int> G, and a map
NODE from tree items to graph nodes;T andgw are set in the constructor to references of
our GraphWin and the selected tree, respectively.

The idea is thatG represents a drawing ofT and thatNODEmakes the translation from
tree nodes to graph nodes. In the constructor we makeG the graph ofgw and setflush
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to false, and in the destructor we resetT to the empty tree. The other functions will be
discussed below.

〈class animbin trees〉�
class anim_bin_tree {

GraphWin& gw;

bin_tree& T;

GRAPH<point,int> G;

map<bin_tree_item,node> NODE;

〈functions to compute a drawing of T〉
public:

anim_bin_tree(GraphWin& gwin, bin_tree* tptr) : gw(gwin), T(*tptr)

{ gw.message(string("\\bf\\blue %s",T.tree_name()));

//G.clear();

gw.set_flush(false);

gw.set_graph(G);

}

~anim_bin_tree() { T.clear(); }

〈anim bin tree:: insert〉
};

We next explain the functionscantree that computes the layout and sets the visual pa-
rameters of the nodes by callingsetnodeparamsfor each itemr of T . Setting the node
parameters is easy. We draw leaves and the root as rectangles and all other nodes as el-
lipses. For non-leaves we display the balance of the node in an appropriate form: in the
case of AVL-trees we use the labels<, =, and>, in the case of BB[α]-trees we display the
balance, and in the case of red-black trees we display the balance as a color.

〈functions to compute a drawing of T〉�
void set_node_params(bin_tree_item r)

{

node v = NODE[r];

if ( T.is_leaf(r) )

{ gw.set_color(v,ivory);

gw.set_label(v,string("%d",T.key(r)));

gw.set_shape(v,rectangle_node);

return;

}

if ( T.is_root(r) )

gw.set_shape(v,rectangle_node);

else

gw.set_shape(v,ellipse_node);

gw.set_color(v,grey1);

int bal = T.get_bal(r);

switch ( T.tree_type() ) {

case LEDA_AVL_TREE:
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switch (bal) {

case 0: gw.set_label(v,"="); break;

case -1: gw.set_label(v,">"); break;

case 1: gw.set_label(v,"<"); break;

}

break;

case LEDA_BB_TREE:

gw.set_label(v,string("%d",bal));

break;

case LEDA_RB_TREE:

gw.set_label_type(v,no_label);

gw.set_color(v,(bal == 0) ? red : grey3);

break;

}

}

The functionscantree computes the layout for the subtree rooted atr and also adds the
edges in the subtree toG. The subtree is placed in the rectangle with left boundaryx0, right
boundaryx1, upper boundaryy, and vertical displacementdy between parents and their
children. Such a layout is easily computed. We set thex-coordinate ofr to the midpoint
of x0 andx1 and they-coordinate to the upper boundary and then place the left subtree in
the left half of the rectangle and the right subtree in the right half of the rectangle. In both
halves we lower the upper boundary bydy.

〈functions to compute a drawing of T〉+�
node scan_tree(bin_tree_item r,double x0, double x1, double y, double dy)

{

set_node_params(r);

node v = NODE[r];

double x = (x0 + x1)/2;

G[v] = point(x,y);

bin_tree_item left = T.l_child(r);

bin_tree_item right = T.r_child(r);

if (left) G.new_edge(v,scan_tree(left,x0,x,y-dy,dy));

if (right) G.new_edge(v,scan_tree(right,x,x1,y-dy,dy));

return v;

}

We finally explain the insertion procedure. We lookupx ; our trees store generic pointers of
typevoid∗ as explained in Chapter 13. We therefore need to convertx to a generic pointer.
If x is already in the tree, we do nothing. Otherwise, we insert the pair(x, 0) into T and
store the tree item returned inp. If p is the root ofT , i.e., the current insertion was the first
insertion intoT , we add a node togw (and henceG), place it at the origin, and associate it
with p. If p is not the root ofT and hence the current insertion is not the first, the insertion
added two nodes to the tree as shown in Figure 12.15. The nodep is a leaf ofT and p and
r = T.getlastnode( ) are the new nodes ofT .
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Figure 12.15 Insertion of a new key adds a new leafp and a new noder . The search for the key
of p in the old tree ended inq and the key ofp is either smaller or larger than the key ofq. In the
former case,p will be the left child orr and in the latter case it will be the right child. After the
addition of the new leaf the tree is rebalanced andr might move to a different position in the
tree. A call ofT.getlast node( ) after the insertion returnsr . We set the initial positions ofp and
r to the position ofq before the insertion.

We add two new nodes togw, one corresponding top and the other one corresponding
to r . We place both nodes on top ofq. We next compute the drawing area and update the
drawing. We compute the drawing area as follows. We leave four pixels unused on either
side and we divide they-extension of the window into ten (since our trees will never grow
deeper than eight) strips. We leave the two top-most strips unused.

〈anim bin tree:: insert〉�
void insert(int x)

{

if (T.lookup(GenPtr(x))) return;

bin_tree_item p = T.insert(GenPtr(x),0);

if ( T.is_root(p) )

NODE[p] = gw.new_node(point(0,0));

else

{ bin_tree_item f = T.parent(p);

bin_tree_item q = T.l_child(f);

if (p == q) q = T.r_child(f);

point pos = gw.get_position(NODE[q]);

bin_tree_item r = T.get_last_node();

NODE[p] = gw.new_node(pos);

NODE[r] = gw.new_node(pos);

}

node v = NODE[p];

// compute drawing area

double dx = gw.get_window().pix_to_real(4);

double x0 = gw.get_xmin() + dx;

double x1 = gw.get_xmax() - dx;

double y0 = gw.get_ymin();

double y1 = gw.get_ymax();
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double dy = (y1-y0)/10;

〈update drawing〉
}

It remains to explain how we update the drawing. We first remove all edges fromG and then
call scantreefor the root ofT and the entire drawing area. This buildsT in G and computes
a new layout in the node data ofG. We then informgw thatG has changed and set the color
of the new node to green. We set flush to true so that changes go into effect and change the
node positions to the node data ofG by the callgw.setposition(G.nodedata( )). Because
layout changes are animated this will make the tree move slowly into its new shape. You
may change the speed in the options menu. When the tree is in its new form we reset the
color ofv and set flush back to false.

〈update drawing〉�
G.del_all_edges();

scan_tree(T.root(),x0,x1,y1-2*dy,dy);

gw.update_graph();

color col = gw.set_color(v,green2);

gw.set_flush(true);

gw.set_position(G.node_data());

gw.set_color(v,col);

gw.set_flush(false);

Exercise for 12.8
1 Extend the binary tree animation of this chapter to allow deletions of keys by clicking

on the corresponding leaves.
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On the Implementation of LEDA

This chapter deals with the implementation of LEDA. It gives the details of the implemen-
tation of parameterized data types, implementation parameters, handle types, the memory
management, and iteration macros. We close the chapter with a comprehensive example
that illustrates all concepts discussed.

13.1 Parameterized Data Types

The definition of parameterized data types of LEDA has been discussed in Chapter 2. In the
next sections we describe how they are implemented. We first describe the C++ template
approach to parameterized data types using a simple list data type. Then we use the same
example to explain the basic idea of the LEDA solution for implementing parameterized
data types and discuss the reasons for choosing this solution. Finally, we extend the basic
solution and apply it to more advanced data types and develop optimizations for the case
where the actual type parameters are small (fit into one memory word) or are basic built-in
types.

13.2 A Simple List Data Type

We start this section by giving a very simple implementation for a data typelist of singly
linked lists of integers. It offers about the same set of operations as the LEDAstackdata
type. There is apushoperation that inserts a given integer at the front of the list and apop
operation that removes the first element from the list and returns it. Operationheadreturns
the first element without changing the list, and finally, operationsizereturns the number

904
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of elements of the list. Of course, we also have to provide a constructor, destructor, copy
constructor and an assignment operator in order to makelist a fully equipped C++ data type.

Note that we use this simple type only as a first example for introducing some aspects
of the LEDA mechanism for implementing parameterized data types. Of course, LEDA
contains much more powerful and useful list types, see Section 3.2.

As usual, the declaration (or specification) of our list class is contained in a header file
called list.h and the implementations of its operations are contained in a separate source
code file list.c. We let the file names start with, because we want to use the file names
without the underscore later in the section.

The header filelist.h might look as follows:

〈 list.h〉�
class list {

struct list_elem

{ // a local structure for representing the elements of the list

int entry;

list_elem* succ;

list_elem(const int& x, list_elem* s) : entry(x), succ(s) {}

friend class list;

};

list_elem* hd; // head of list

int sz; // size of list

public:

void push(int);

void pop(int&);

int head() const;

int size() const;

list();

~list();

list(const list&);

};

The corresponding source code filelist.c is as follows:

〈 list.c〉�
#include "_list.h"

#define NULL 0

int list::head() const { return hd->entry; }

void list::push(int x)

{ hd = new list_elem(x,hd);

sz++;

}

void list::pop(int& y)

{ y = hd->entry;

list_elem* p = hd;

hd = p->succ;

delete p;

sz--;
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}

list::list()

{ // construct an empty list

hd = NULL;

sz = 0;

}

list::list(const list& L)

{ // construct a copy of L

hd = NULL;

sz = L.sz;

if (sz > 0)

{ hd = new list_elem(L.hd->entry,0); // first element

list_elem* q = hd;

// subsequent elements

for (list_elem* p = L.hd->succ; p != NULL; p = p->succ)

{ q->succ = new list_elem(p->entry,NULL);

q = q->succ;

}

}

}

list::~list()

{ // destroy the list

while (hd)

{ list_elem* p = hd->succ;

delete hd;

hd = p;

}

}

13.3 The Template Approach

Most data types in LEDA are parameterized. LEDA does not only offer lists of integers but
lists of an arbitrary element typeE . In this section we discuss the C++ standard approach
to parameterized data types. We explain the approach and discuss why we have not taken it
in LEDA. The solution which we adopted in LEDA is described in the next section.

C++ supports parameterized classes by means of itstemplate feature. How can one obtain
lists of char from our implementation of lists ofint? It seems to be very simple. Replace
in files list.h and list.c all occurrences ofint by char. Well, that’s not quite true. Actually,
we should replace only those occurrences ofint that refer to the element type of the list.
So the declarations of variableszand the return type ofsize( ) stay unchanged. Since it is
completely mechanical to derive list of characters from lists of integers we might as well
ask the compiler to do it. All we have to do is to mark those occurrences ofint that are to
be replaced. The template feature of C++ is an elegant way to automate this transformation.
The following simple textual transformation changes the definition of our list class into the
definition of a parameterized list class:
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• Replace in list.h all occurrences ofint that refer to the element type of our lists by a
new class name, sayE .

• Prefix the definition of classlist in the file list.h and the definition of each member
function in the file list.c bytemplate<classE>. This informs the compiler thatE is
the name of a type parameter and not the name of a concrete type.

• Replace in list.c all occurrences oflist that refer to the name of the list class by
t list<E>. This replacement is not really necessary. We make it so that we can later
contrast classeslist andt list.

For concreteness, we include excerpts from the modified files tlist.h and tlist.c.

〈t list.h〉�
template <class E>

class t_list {

struct list_elem

{ E entry;

list_elem* succ;

list_elem(const E& x, list_elem* s) : entry(x), succ(s) {}

};

list_elem* hd; // head of list

int sz; // size of list

public:

void push(const E&);

void pop(E&);

const E& head() const;

int size() const;

t_list();

t_list(const t_list<E>&);

~t_list();

};

and file t list.c is as follows:

〈t list.c〉�
#include "t_list.h"

#define NULL 0

template <class E> t_list<E>::t_list()

{ hd = NULL;

sz = 0;

}

template <class E> const E& t_list<E>::head() const

{ return hd->entry; }

template <class E> void t_list<E>::push(const E& x)

{ hd = new list_elem(x,hd);

sz++;

}
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template <class E> void t_list<E>::pop(E& y)

{ y = hd->entry;

list_elem* p = hd;

hd = p->succ;

delete p;

sz--;

}

In an application program we can now write

t list<char> L1;

t list<segment> L2;

to define a listL1 of char and a listL2 of line segments, respectively. When the compiler
encounters these definitions it constructs two versions of files list.c and list.h by substituting
E by char and bysegment, respectively, which it can then process in the standard way. Let
us summarize:

• The template feature is powerful and elegant. The implementer of a data type simply
prefixes his code bytemplate<classE> and otherwise writes his code as usual, and the
user of a parameterized data type only needs to specify the actual type parameter in
angular brackets.

• The template feature duplicates code. This increases code length and compilation time.
It has to duplicate code because the layout of the elements of a list in memory (type
list elem) depends on the size of the objects of typeE and hence the code generating
new list elements depends on the size of the objects of the actual type parameter.

• Separate compilation is impossible. Since the code to be generated depends on the
actual type parameter one cannot precompile tlist.c to obtain an object file tlist.o.
Rather both files tlist.h and tlist.c have to be included in an application and have to
be compiled with the application. For an application, that uses many parameterized
data types from the library, this leads to a large source and therefore large compilation
times. Moreover, it forces the library designer to make his .c-files public.

• When we started this project, most C++ compilers did not support templates and, even
today, many do not support them fully. Some compilers use repositories of
precompiled object code to avoid multiple instantiations of the same template code.
However, there is no standard way for solving this problem.

We found in particular the drawback of large compilation times unacceptable and there-
fore decided against the strategy of implementing parameterized data types directly by the
template feature of C++.

The LEDA solution uses templates in a very restricted form. It allows separate com-
pilation, it allows us to keep the .c-files private, and it does not over-strain existing C++

compilers. We discuss it in the next section.
Let us summarize. The template feature is an elegant method to realize parameterized
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data types (from a user’s as well as an implementor’s point of view). However, it also has a
certain weakness. It duplicates code, it does not allow us to precompile the data types, and
it is only partially supported by compilers.

13.4 The LEDA Solution

In LEDA every parameterized data type is realized by a pair of classes: aclass for the ab-
stract data typeand aclass for the data structure, e.g., we have a dictionary class (= the data
type class) and a binary tree class (= the data structure class). Only the data type classes
use the template mechanism. All data type classes are specified in the header file directory
LEDAROOT/incl/LEDA and only their header files are to be included in application pro-
grams. All data structures are precompiled into the object code libraries (libL, libG, libP,
libW, . . . ) and are linked to application programs by the C++ linker. Instead of abstract data
type class we will also say data type class or data type template or abstract class and instead
of data structure class we will also say implementation class or concrete class.

Precompilation of a data structure is only possible if its implementation does not depend
on the actual type parameters of the corresponding parameterized data type. In particular:

• the layout of the data structure in memory must not depend on the size of the objects
stored in it. We achieve this (in a first step) by always storing pointers to objects
instead of the objects themselves in our data structures. Observe that the space
requirement of a pointer is independent of the type of the object pointed to. In a
second step (cf. Section 13.5.1) we show how to avoid this level of indirection in the
case of small types (types whose size in memory is at most the size of a pointer).

• all functions used in the implementation whose meaning depends on the actual type
parameters use the dynamic binding mechanism of C++, i.e., are realized as virtual
functions. A prime example is the comparison function in comparison based data
structures. The comparison function is defined as a virtual member function of the
implementation class, usually calledcmpkey. In the definition of the abstract data type
template we bindcmpkeyto a functioncomparethat defines the linear order on the
actual type parameter.

The remainder of this section is structured as follows. We first give the basic idea for pa-
rameterized data types in LEDA. Then we discuss the use of virtual functions and dynamic
binding for the implementation of assignment, copy constructor, default constructor, and
destruction. In the sections to follow we describe an improvement for so-called one-word
or small types, and show how implementation parameters are realized. Finally, we give the
full implementation of priority queues by Fibonacci heaps and illustrate all features in one
comprehensive example.
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x1 x2 x3

x1 x2 x3

Figure 13.1 A t list and alist: The top part shows at list<E> with three elementsx1, x2, x3. The
bottom part shows the correspondinglist data structure in the LEDA approach.

13.4.1 The Basic Idea
We introduce the basic idea for realizing parameterized data types in LEDA, the idea will
be refined in later sections:

• The data fields in the containers of all data structures are of typevoid∗, the generic
pointer type of C++. They contain pointers to objects of the actual type parameters.
Consider a data structure whose containers have a slot for storing objects of a typeT ,
e.g., the typet list<T>.

• In the LEDA approach the objects of typeT are not stored directly in the containers of
the data structure but on the heap. The data slots of the containers have typevoid∗, the
generic pointer type of C++, and contain pointers to the objects on the heap. More
precisely, if a container has a slot of typeT in the template solution andt is the object
stored in it (at a particular time) then the corresponding container in the LEDA
solution will have a field of typevoid∗ and this field will contain a pointer tot . See
Figure 13.1 for an illustration.

• The abstract data type class uses the template mechanism and is derived from the
implementation class.

• Type casting is used to bridge the gap between the untyped world of the
implementation class (all data isvoid∗) and the typed world of the abstract class.

We use our singly linked list data type as a first example to illustrate our approach. We
saw an implementation of lists, calledt list, using the template approach in the preceding
section.

Our goal is to realize the parameterized data typelist<T> by a concrete data structure
list impl that stores pointers of typevoid∗. The definition oflist impl is straightforward. It
is essentially a list of typet list<void∗ >
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〈list impl.h〉�
class list_impl {

struct list_impl_elem

{ void* entry;

list_impl_elem* succ;

list_impl_elem(void* x,list_impl_elem* s):entry(x),succ(s) {}

friend class list_impl;

};

list_impl_elem* hd;

int sz;

protected:

list_impl();

~list_impl();

void* head() const;

void* pop();

void push(void* x);

void clear();

int size() const;

};

and

〈list impl.c〉�
#include "list_impl.h"

list_impl::list_impl() : hd(0), sz(0) {}

list_impl::~list_impl() { clear(); }

void* list_impl::head() const { return hd->entry; }

void list_impl::push(void* x)

{ hd = new list_impl_elem(x,hd);

sz++;

}

void* list_impl::pop()

{ void* x = hd->entry;

list_impl_elem* p = hd;

hd = p->succ;

delete p;

sz--;

return x;

}

void list_impl::clear() { while (hd) pop(); }

int list_impl::size() const { return sz; }

We declared the member functions oflist impl protected so that they can only be used in
derived classes. We can now easily derive the data type templatelist<T> for arbitrary types
T from list impl. We makelist impl a private base class oflist<T> and implement the
member functions oflist<T> in terms of the member functions of the implementation class.
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Making the implementation class a private base class makes it invisible to the users of the
list<T> class. This guarantees type safety as we argue at the end of the section.

A member function oflist<T> with an argument of typeT first copies the argument into
the dynamic memory (also called heap), then casts a pointer to the copy tovoid∗, and finally
passes the pointer to the corresponding function of the implementation class.

All member functions oflist<T> that return a result of typeT call the corresponding
function of the implementation class (which returns a result of typevoid∗), cast the pointer
to T ∗, and return the dereferenced pointer.

We next give the details.

template<class T>

class list : private list impl {

public:

list() : list impl() {}

The constructor oflist<T> constructs an emptylist impl.

void push(const T& x) { list impl::push((void*) new T(x)); }

L.push(x) makes a copy ofx in dynamic memory (by calling the copy constructor ofT in
the context of thenewoperator) and passes a pointer to this copy (after casting it tovoid∗)
to list impl::push. The conversion fromT ∗ to void∗ is a built-in conversion of C++ and
hence we may equivalently write

void push(const T& x) { list impl::push(new T(x)); }

Let us relatelist<T> ::push(x) to t list<T> ::push(x). The latter operation stores a copy of
x directly in the entry-field of a new list element and the former makes a copy ofx on the
heap and stores a pointer to the copy in entry-field.

const T& head() const { return *(T*)list impl::head(); }

L.head( ) casts thevoid∗ result oflist impl::head( ) to aT ∗ pointer, dereferences the result,
and returns the object obtained as a const-reference. It thus returns the element of the list
that was pushed last.

T pop()

{ T* p = (T*)list impl::pop();

T x = *p;

delete p;

return x;

}

L.pop(x) casts and dereferences thevoid∗ result oflist impl::pop, assigns it to a local vari-
ablex , deletes the copy (made bylist<T> ::push), and returnsx . Observe that the assign-
ment tox makes a copy, and it is therefore OK to delete the copy made bypush. It is also
necessary to delete it, as we would have a memory leak otherwise.

int size() const { return list impl::size(); }

void clear()

{ while (size() > 0) delete (T*)list impl::pop();
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list impl::clear();

}

~list() { clear(); }

};

The implementations ofclear and of the destructor are subtle.Clear first empties the list
and then callslist impl::clear. The latter call is unnecessary as popping all elements from
the list already has the effect of clearing the list. We make the call for reasons of unifor-
mity (all clear functions of abstract classes in LEDA first destroy all objects contained in
the data structure and then call theclear function of the implementation). It is, however,
absolutely vital to destroy the objects stored in the list before callinglist impl::clear. An
implementation

void clear() { list impl::clear(); }

has a memory leak as it leaves the elements contained in the list as orphans on the heap.
The destructor first callsclear and then the destructor of the base class (the latter call

being automatically inserted by the compiler). The base class destructor∼list impl deletes
all list elements. Observe that it does not suffice to call this destructor as this will leave all
entries contained in the elements of the list on the heap.

If our list implementation class would support iteration in the LEDAforall style an alter-
native implementation of the clear function would be

void clear()

{ void* p;

forall(p,*this) delete (T*)p;

list impl::clear();

}

Let us assess our construction:

• The construction is non-trivial. Please read it several times to make sure that you
understand it and try to mimic the approach for other data types (see the exercises).
The construction is certainly more complicated than the pure template approach
presented in the preceding section.

• The data typelist<T> simulates the data typet list<T>. Suppose that we perform the
same sequence of operations on alist<T> S and at list<T> TS. Assume thatx0, . . . ,
xt−1 are the entries ofTSafter performing the sequence. ThenS also hast elements
and the corresponding entries contain pointers to copies ofx0 to xt−1 in dynamic
memory, see Figure 13.1.

• All operations oflist<T> are implemented by very simple inline member functions.
Except forpop, clear, and∼list( ) they do not produce any additional code. We will
show in the next section how the code forpopandclear can also be moved into the
data structure by the use of virtual functions. This will make the definition of the
abstract class cleaner.
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• The implementation class can be precompiled; see below.

• The above implementation of lists is incomplete. In particular, the definitions of the
copy constructor and of the assignment operator are missing. We will discuss them in
Section 13.4.3.

The abstract data typelist<T> can be used in the usual way.

list<string> L;

L.push("fun");

L.push("is");

L.push("LEDA");

while (L.size() > 0) cout << L.pop() << endl;

Separate Compilation: We defined two classes, the implementation classlist impl and the
abstract data type classlist<T>, in three files: the filelist impl.h contains the skeleton of
the class definition oflist impl, namely the definition of the private data of the class and the
declarations of the member functions, the filelist impl.c contains the implementation of all
member functions oflist impl and the filelist.h contains the definition of the abstract data
type and its implementation in terms of the implementation class. We have shown all three
files above. It is still worthwhile to repeat their global structure.

〈list impl.h〉�
class list_impl {

〈definition of private data〉
protected:

〈declaration of member functions〉
};

The file list impl.c contains the implementations of all member functions. It must include
list impl.h

〈list impl.c〉�
#include <list_impl.h>

〈implementation of all member functions〉

The abstract class templatelist<T> is defined in filelist.h. It is derived from classlist impl
and all member functions of the abstract class are realized by calling the corresponding
member function of the implementation class as described above. The calls also do the
appropriate type conversions from typeT to void∗ and vice versa. Since classlist impl is
only used to implement its derived classeslist<T> it is qualified as a private base class of
the list template. Of course, we have to includelist impl.h before usinglist impl as a base
class.
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〈list.h〉�
#include "list_impl.h"

template<class T>

class list : private list_impl {

public:

void push(const T& x) { list_impl::push(new T(x)); }

const T& head() const { return *(T*)list_impl::head(); }

void pop(T& x)

{ T* p = (T*)list_impl::pop();

x = *p;

delete p;

}

int size() const { return list_impl::size(); }

void clear()

{ while (size() > 0) delete (T*)list_impl::pop();

list_impl::clear();

}

list() : list_impl() {}

~list() { clear(); }

};

The file list impl.c can be compiled into the object code filelist impl.o. An application pro-
gram, saylist prog.c, using lists needs to includelist.h and can be compiled separately into
file list prog.o. Finally, list prog.o andlist impl.o can be linked to an executable program.

In the LEDA system the header files of implementation classes are collected in the
directory LEDAROOT/incl/LEDA/impl and the header files of abstract classes are col-
lected inLEDAROOT/incl/LEDA. All .c-files are contained in the various subdirectories
of LEDAROOT/src.

Type Safety: We next comment on the type safety of the construction described above.
The implementation classlist impl is untyped in the sense that anything can be pushed onto
a list of typelist impl, the classlist is typed in the sense that only objects of typeT can
be pushed onto a list of typelist<T>. In the definition of classlist we make the transition
from the safer (typed) world to a potentially unsafer (untyped) world. Since we declared all
operations oflist impl protected and madelist impl a private base class oflist, the untyped
world is completely encapsulated inside classlist and invisible to any application program.
Only the implementation classlist implworks in the untyped world; we designed it carefully
so as to avoid the dangers of the untyped world. We conclude that the construction is type
safe.

Efficiency: The construction is also efficient. Note that no code needs to be generated for
the type conversions; the casts simply tell the compiler how the entries of the list are to
be interpreted. Also all member functions of the abstract class are trivial inline functions
and their calls can be eliminated by optimizing compilers, i.e., there is, for example, no
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need first to call the abstract functionlist ::pushwhich in turn calls the concrete function
list impl::push. The compiler will directly call the concrete function.

Genericness:Finally, the construction is elegant, although not as elegant as the solution
relying completely on templates. The definition of the implementation class is completely
natural1, it is essentiallyt list<void∗>. The definition of the abstract class in terms of the
implementation class is somewhat inelegant because of the required type conversions. How-
ever, these type conversions follow a very simple rule. In-going values are converted to
void∗ and return-values are converted back to typeT .

13.4.2 Virtual Functions and Dynamic Binding
In the example of the preceding section the implementation classlist impl required no know-
ledge about the actual type argument of the data type templatelist<T>. This is an excep-
tional situation; in most situations the implementation needs to have some knowledge about
the actual type argument. We give two examples.

The first example is a print operation for our list type that prints all elements to the
standard output. We want to realize this operation by aprint member function in the im-
plementation classlist impl. Of course, this function needs to know how to print an object
of the actual type parameter. The second example is comparison-based implementations
of dictionaries, e.g., binary search trees. Any comparison-based implementation of the
parameterized data typedictionary<K , I> (cf. Section 5.3) needs to know how to com-
pare keys. In LEDA, the linear order on a key typeK is defined by a global function
int compare(constK & , constK & ) (cf. Section 2.10) and hence the implementation class
must be able to call this function.

In both examples we need a mechanism to transfer functionality of the actual type pa-
rameters from the abstract data type template to the implementation class. The appropriate
C++ feature is dynamic binding and virtual functions. Detailed discussions of this concept
can be found in [Str91, ES90]. The following should be clear even without prior knowledge
of the concept.

In the first example, the classlist impl uses a virtual functionprint elem(void∗ p) to print
elements to standard output. This function is declared in the implementation class but its
implementation is left undefined by labeling it as pure virtual. Syntactically, pure virtual
functions are designated by the key wordvirtual and the assignment “=0” which replaces
the body. The implementation class may use the virtual function in its other member func-
tions, e.g.,list impl usesprint elemin a functionprint that prints the entire list.

class list impl {

...

virtual void print elem(void*) const = 0;

...

void print() const

1 You may want to include atypedef void∗ T ; to make it look even more natural.
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{ for(list impl elem* p = hd; p; p = p->succ) print elem(p->entry); }

...

};

The implementation ofprint elemis provided in the derived classlist<T>. It converts its
argument fromvoid∗ to T ∗ (observe that this conversion makes sense on the level of the
data type template) and then hands the object pointed to to the output operator (�) of type
T (assuming that this operator is defined forT ).

template<class T>

class list : private list impl {

...

void print elem(void* p) const { cout << *(T*)p << endl; }

void print() const { list impl::print(); }

...

};

When a list is created, say through the declarationlist<char∗ > L; the definition ofprint elem
in terms ofoperator� (ostream& , char∗) is associated withL. In a callL.print( ) which
leads vialist impl::print( ) to a call oflist impl::print elemthe implementation ofprint elem
bound toL is used. In this way, information about the actual type parameter is transported
into the implementation class.

We turn to our second example. All implementations ofdictionary<K , I> use a virtual
member functionint cmpkey(void∗, void∗) for comparing keys. We discuss the implemen-
tation classbin tree. As in the previous example,cmpkeyis declared as pure virtual in the
implementation class. In the derived class templatedictionary<K , I> we definecmpkeyin
terms of the compare function of typeK . We have

class bin tree {

...

virtual int cmp key(void*,void*) const = 0;

...

};

in the implementation class and

template<class K, class I>

class dictionary: private bin tree {

...

int cmp key(void* x, void* y) const { return compare(*(K*)x,*(K*)y); }

...

};

in the data type template (note the conversion fromvoid∗ to K∗ in the implementation of
cmpkey).

The construction associates the appropriate compare function with every dictionary, e.g.,
compare(const int& , const int& ) with dictionary<int, int>. Furthermore, the compare func-
tion is available in the implementation classbin treeand can be called by its member func-
tions (e.g. lookup).
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In the remainder of this section and in the next section we give more details of thebin tree
class. This will allow us to discuss further aspects of the LEDA approach to parameterized
data types.

The nodes of abin treeare realized by a classbin treenode. Each node contains a key and
an information, both of typevoid∗, and additional data members for building the actual tree.
For unbalanced trees the pointers to the two children suffice. For balanced trees additional
information needs to be maintained. All implementations of balanced trees in LEDA are
derived from thebin treeclass.

In the remainder of this chapter we will use the type nameGenPtrfor the generic pointer
typevoid∗.

typedef void* GenPtr;

class bin tree node {

GenPtr key;

GenPtr inf;

bin tree node* left child;

bin tree node* right child;

// allow bin tree to access all members

friend class bin tree;

};

The classbin treecontains some private data, such as a pointer to the root of the tree. The
member functions realizing the usual dictionary operations are declared protected to make
them accessible for derived classes (e.g.,dictionary<K , I>) and thecmpkey function is
declared a private pure virtual function. Finally, we define the item type (cf. Section 2.2.2)
for classbin tree(bin tree::item) to be equal to typebin treenode∗.

class bin tree {

private:

bin tree node* root;

int cmp key(GenPtr,GenPtr) const = 0;

protected:

typedef bin tree node* item;

item insert(GenPtr,GenPtr);

item lookup(GenPtr) const;

void del item(item);

GenPtr key(item p) const { return p->key; }

GenPtr inf(item p) const { return p->inf; }

bin tree();

~bin tree();

};

The virtualcmpkeyfunction is used to compare keys, e.g., in thelookupmember function
that returns a pointer to the node storing a given keyk or nil if k is not present in the tree.

bin tree node* bin tree::lookup(GenPtr k) const

{ bin tree node* p = root;

while (p)
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{ int c = cmp key(k,p->key);

if (c == 0) break;

p = (c > 0) ? p->right child : p->left child;

}

return p;

}

In the definition of the data type templatedictionary<K , I> we definecmpkey in terms
of the compare function for typeK . The dictionary operations are realized by calling the
corresponding member functions ofbin tree. As in the list example, we also need to perform
the necessary type conversions. The item type of dictionaries (dic item) is defined to be
equal to the item type of the implementation classbin tree::item.

typedef bin tree::item dic item;

template<class K, class I>

class dictionary : private bin tree {

int cmp key(GenPtr x, GenPtr y) const

{ return compare(*(K*)x,*(K*)y); }

public:

const K& key(dic item it) const { return *(K*)bin tree::key(it); }

const I& inf(dic item it) const { return *(I*)bin tree::inf(it); }

dic item insert(const K& k const I& i)

{ return bin tree::insert(new K(k), new I(i)); }

dic item bin tree::lookup(const K& k) const

{ return bin tree:lookup(&k); }

};

Observe thatbin tree::lookupexpects aGenPtrand hence we pass the address ofk to it.
The code for classesbin treeanddictionary<K , I> is distributed over the filesbin tree.h,

bin tree.c, anddictionary.h as described in the previous section: classesbin treenodeand
bin treeare defined inLEDA/impl/bin tree.h, the implementation ofbin treeis contained in
LEDAROOT/src/dict/bin tree.c, anddictionary<K , I> is defined inLEDA/dictionary.h.

The above implementation of dictionaries has a weakness (which we will overcome in the
next section). Consider the insert operation. According to the specification of dictionaries
(see Section 5.3) a callD.insert(k, i) adds a new item〈k, i〉 to D when there is no item
with key k in D yet and otherwise replaces the information of the item with keyk by i .
However, in the implementation given abovedictionary<K , I> ::insert(k, i) makes a copy
of k and then passes a pointer to this copy tobin tree::insert. If k is already in the tree
bin tree::insertmust destroy the copy again (otherwise, there would be a memory leak). It
would be better to generate the copy ofk only when needed.

In the next section we show how to shift the responsibility for copying and deleting data
objects to the implementation class by means of virtual functions. We will also show how
to implement the missing copy constructor, assignment operator, and destructor.
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13.4.3 Copy Constructor, Assignment, and Destruction
Copying, assignment, and destruction are fundamental operations of every data type. In
C++ they are implemented by copy constructors, assignment operators, and destructors. Let
us see how they are realized in LEDA. As an example, consider the assignment operation
D1 = D2 for the data typedictionary<K , I>. A first approach would be to implement this
operation on the level of abstract types, i.e., in the data type templatedictionary<K , I>. We
could simply first clearD1 by a call ofD1.clear( ) and then insert the key/information pairs
for all itemsit of D2 by callingD1.insert(D2.key(it), D2.inf (it)) for every one of them. This
solution is inflexible and inefficient; the assignment would take timeO(n logn) instead of
time O(n).

A second approach is to realize the operation on the level of the implementation class
bin tree. This requires thatbin tree knows how to copy a key and an information. In the
destructor it also needs to know how to destroy them. There are also many other reasons
why the implementation class should have these abilities, as we will see. In LEDA, we use
virtual functions and dynamic binding to provide this knowledge.

In the dictionary example, we have the following virtual member functions in addition to
cmpkey:

void copykey(GenPtr& x) andvoid copyinf (GenPtr& x) that make a copy of the object
pointed to byx and assign a pointer to this copy tox ,

void clearkey(GenPtrx) andvoid clearinf (GenPtrx) that destroy the object pointed to
by x , and finally

void assignkey(GenPtrx, GenPtry) andvoid assigninf (GenPtrx, GenPtry) that as-
sign the object pointed to byy to the object pointed to byx .

We exemplify the use of the virtual copy and clear function in two recursive member
functionscopysubtreeandclearsubtreeof bin tree that perform the actual copy and clear
operations for binary trees. The copy constructor, the assignment operator, the destruc-
tor, and theclear function of classbin treeare then realized in terms ofcopysubtreeand
clearsubtree. The use ofassigninf will be demonstrated later in the realization of the
operationchangeinf .

In the header filebin tree.h we extend classbin treeas follows.

class bin tree {

private:

...

virtual void copy key(GenPtr&) const = 0;

virtual void clear key(GenPtr) const = 0;

virtual void assign key(GenPtr x, GenPtr y) const =0;

virtual void copy inf(GenPtr&) const = 0;

virtual void clear inf(GenPtr) const = 0;

virtual void assign inf(GenPtr x, GenPtr y) const =0;

void clear subtree(bin tree node* p);

// deletes subtree rooted at p

bin tree node* copy subtree(bin tree node* p);

// copies subtree rooted at p, returns copy of p
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protected:

void clear();

bin tree(const bin tree& T);

bin tree& operator=(const bin tree& T);

~bin tree() { clear(); }

};

In the data type templatedictionary<K , I> we realize the virtual copy, assign, and clear
functions by type casting, dereferencing, and calling the new, assignment, or delete opera-
tors of the corresponding parameter typesK andI . Copy constructor, assignment operator,
and destructor of typedictionaryare implemented by calling the corresponding operations
of the base classbin tree.

template<class K, class I>

class dictionary: private bin tree {

...

void copy key(GenPtr& x) const { x = new K(*(K*)x); }

void copy inf(GenPtr& x) const { x = new I(*(I*)x); }

void clear key(GenPtr x) const { delete (K*)x); }

void clear inf(GenPtr x) const { delete (I*)x); }

void assign key(GenPtr x, GenPtr y) const { *(K*)x = *(K*)y; }

void assign inf(GenPtr x, GenPtr y) const { *(I*)x = *(I*)y; }

...

public:

...

dictionary(const dictionary<K,I>& D) : bin tree(D) {}

dictionary<K,I>& operator=(const dictionary<K,I>& D)

{ bin tree::operator=(D); return *this; }

~dictionary() { bin tree::clear(); }

};

The functionsbin tree::copysubtree, bin tree::clearsubtree, bin tree::clear, the copy con-
structor, the destructor, and the assignment operator are implemented in bintree.c.

bin tree node* bin tree::copy subtree(bin tree node* p) {

if (p == nil) return nil;

bin tree node* q = new bin tree node;

q->l child = copy subtree(p->l child);

q->r child = copy subtree(p->r child);

q->key = p->key;

q->inf = p->inf;

copy key(q->key);

copy inf(q->inf);

return q;

}

void bin tree::clear subtree(bin tree node* p) {

if (p == nil) return;

clear subtree(p->l child);

clear subtree(p->r child);

clear key(p->key);

clear inf(p->inf);
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delete p;

}

void bin tree::clear() {

clear subtree(root);

root = nil;

}

bin tree& bin tree::operator=(const bin tree& T) {

if (this != &T)

{ clear();

root = copy subtree(T.root);

}

return *this;

}

The implementation of the copy constructor is subtle. It is tempting to write (as in
operator=)

bin tree::bin tree(const bin tree& T) { root = copy subtree(T.root); }

This will not work. The correct implementation is

bin tree::bin tree(const bin tree& T) { root = T.copy subtree(T.root); }

What is the difference? In the first case we callcopysubtreefor the object under con-
struction, and in the second case we callcopysubtreefor the existing treeT . The body of
copysubtreeseems to make no reference to eitherT or the object under construction. But
note that all member functions of a class have an implicit argument, namely the instance
to which they are applied. In particular, the functionscopykeyandcopyinf are eitherT ’s
versions of these functions or the new object’s versions. The point is that these versions are
different.

ObjectT belongs to classdictionary<K , I> and hence knows the correct interpretation
of copykeyandcopyinf . The object under construction does not know them yet. It knows
them only when the construction is completed. As long as it is under construction the
functionscopykeyandcopyinf are as defined in classbin tree and not as defined in the
derived classdictionary<K , I>. In other words, when an object of typedictionary<K , I> is
constructed we first construct abin treeand then turn thebin tree into adictionary<K , I>.
The definitions of the virtual functions are overwritten when thebin tree is turned into a
dictionary<K , I>.

What will happen when the wrong definition of thecopysubtreefunction is used, i.e.,
when the copy constructor ofbin tree is defined as

bin tree::bin tree(const bin tree& T) { root = copy subtree(T.root); }

In this situation, the original definition ofcopykey is used. According to the specification
of C++ the effect of calling a virtual function directly or indirectly for the object being
constructed is undefined. The compilers that we use interpret a pure virtual function as a
function with an empty body and hence the program above will compile but no copies will
be made. One may guard against the inadvertent call of a pure virtual function by using a
virtual function whose call rises an error instead, e.g., one may define
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virtual void copy key(GenPtr&) { assert(false); return 0; }

Destructors give rise to the same problem as constructors. In a destructor of a base
class virtual member functions also have the meaning defined in the base class and not
the meaning given in a derived class. What does this mean for the destructor of class
dictionary<K , I>? It first callsbin tree::clear and then the destructor of the base class
bin tree(the latter call is generated by the compiler). The destructor ofbin treeagain calls
bin tree::clear. So why do we need the first call at all? We need it because the second
call uses the “wrong” definitions of the virtual functionsclearkey andclear inf . When
bin tree::clear is called for the second time the object to be destroyed does not know any-
more that it was adictionary<K , I>. The second call of theclear is actually unnecessary.
We put it for reasons of uniformity; it incurs only very small additional cost.

Sincebin treenow knows how to copy and destroy the objects of typeK and I , respec-
tively, we can write correct implementations of the operationsdel item and insert on the
level of the implementation class, i.e., use precompiled versions of these functions, too.

void bin tree::del item(bin tree node* p) {

// remove p from the tree

...

clear key(p->key);

clear inf(p->inf);

delete p;

}

bin tree node* bin tree::insert(GenPtr k, GenPtr i) {

bin tree node* p = lookup(k);

if (p != nil) { // k already present

change inf(p,i);

return p;

}

copy key(k);

copy inf(i);

p = new bin tree node();

p->key = k;

p->inf = i;

// insert p into tree

...

return p;

}

By using the virtualassigninf function we can realize thechangeinf operation on the level
of the implementation class, too.

void bin tree::change inf(bin tree node* p, GenPtr i) {

assign inf(p->inf,i);

}

With this modification the corresponding operations in thedictionary<K , I> template do
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not need to copy or destroy a key or an information anymore. They just pass the addresses
of their arguments of typeK andI to the member functions of classbin tree.

template<class K, class I>

class dictionary: private bin tree {

...

public:

...

void del item(dic item it) { bin tree::del item(it); }

void change inf(dic item it, const I& i)

{ bin tree::change inf(it,&i); }

dic item insert(const K& k, const I& i) { bin tree::insert(&k,&i); }

13.4.4 Arrays and Default Construction
Some parameterized data types require that the actual element type has a default constructor,
i.e., a constructor taking no arguments, that initializes the object under construction to some
default value of the data type. The LEDA data typesarray andmapare examples for such
types.

The declaration

array<string> A(1,100);

creates an array of 100 variables of typestringand initializes every variable with the empty
string (using the default constructor of typestring).

The declaration

map<int,vector> M;

creates a map with index typeint and element typevector, i.e., a mapping from the set of
all integers of typeint to the set of variables of typevector. All variables are initialized with
the vector of dimension zero (the default value of typevector).

Note that a default constructor does not necessarily need to initialize the object under
construction to a unique default value. There are data types that have no natural default
value (for example, a line segment) and there are others where initialization to a default
value is not done for efficiency reasons. In these cases, the default constructor simply
constructs some arbitrary object of the data type. Examples for such types are the built-in
types of C++. The declaration

int x;

declaresx as a variable of typeint initialized to some unspecified integer, and the declaration

array<int> A(1,100);

creates an array of 100 variables of typeint each holding some arbitrary integer.
As for copying, assignment, and destruction, LEDA implements default initialization of

parameterized data types in the corresponding implementation class by virtual functions
and dynamic binding. We use the array data type as an example.
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The parameterized data typearray<T> is derived from the implementation classgenarray
of arrays for generic pointers. The classgenarray provides two operationsinit all entries
and clearall entrieswhich can be called to initialize or to destroy all entries of the ar-
ray, respectively. They use the virtual member functionsvoid init entry(GenPtr& ) and
void clearentry(GenPtr) to do the actual work, i.e., they use the first function to initial-
ize an array entry and the second function to destroy one.

class gen array {

GenPtr* first;

GenPtr* last;

...

virtual void init entry(GenPtr& x) = 0;

virtual void clear entry(GenPtr x) = 0;

...

protected:

...

void init all entries()

{ for(GenPtr* p = first; p <= last; p++) init entry(*p); }

void clear all entries()

{ for(GenPtr* p = first; p <= last; p++) clear entry(*p); }

};

In the data type classarray<T> we defineinit entryandclearentryby calling the new and
delete operator of typeT , respectively. The constructor ofarray<T> usesinit all entries
to initialize all elements of the array and the destructor usesclearall entriesto destroy all
objects stored in the array.

template <class T>

class array : private gen array {

void init entry(GenPtr& x) { x = new T; }

void clear entry(GenPtr x) { delete (T*)x; }

public:

...

array(int l, int h) : gen array(l,h) { init all entries(); }

~array() { clear all entries(); }

};

We give one more example of default construction, thenewnodeandnewedgeoperations
of parameterized graphsGRAPH<vtype, etype>. There are two variants of these operations:
the first one takes an argument that is used to initialize the information associated with the
new object (node or edge).

node G.new node(const vtype&)

edge G.new edge(node, node, const etype&)

The second one does not take such an argument. Here the information associated with the
object is initialized by the default constructor of the corresponding type (vtypeor etype).

node G.new node()

edge G.new edge(node v, node w)
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The following piece of code constructs a graph with two nodesv andw connected by an
edgee = (v, w). The nodes are labeled with the default value of typestring, i.e., the empty
string, and edgee is labeled with a vector of dimension zero, the default value of type
vector.

GRAPH<string,vector> G;

node v = G.new node();

node w = G.new node();

edge e = G.new edge(v,w);

Default initialization for nodes and edges is also used by LEDA’s various graph generators.
If G is a parameterized graph of typeGRAPH<vtype, etype>, a callrandomgraph(G, n, m)

constructs a random graph withn nodes andm edges where each node information is ini-
tialized by the default constructor of typevtypeand each edge information is initialized by
the default constructor of typeetype.

13.4.5 Some Useful Function Templates
In <LEDA/paramtypes.h> we define five function templates that are useful to define the
virtual functions required in the LEDA approach.

template <class T>

inline T& leda access(const T*, const GenPtr& p) { return *(T*)p; }

returns a reference to the object of typeT pointed to byp. The first argument of this
function template is a dummy pointer argument of typeT ∗ that is used for selecting the
correct instantiation. For instance, to access an object of typeT through a generic pointer
p we write ledaaccess((T ∗)0, p). As an abbreviation LEDA provides the macro.

#define LEDA ACCESS(T,p) leda access((T*)0,p)

The function template

template <class T>

inline GenPtr leda create(const T*) { return new T; }

returns a generic pointer to an object of typeT initialized with the default value of typeT .
Again, there is a dummy pointer argument of typeT ∗.

The function template

template<class T>

inline GenPtr leda copy(const T& x) { return new T(x); }

returns a generic pointer to an object of typeT initialized with a copy ofx .
The function template

template <class T>

inline void leda clear(T& x) { T* p = &x; delete p; }

destroys the object stored atx and the function template
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template <class T>

inline GenPtr leda cast(const T& x) { return (GenPtr)&x; }

returns the address ofx casted to a generic pointer.

Given these function pointers it is easy to define the virtual function required in the LEDA
approach in a generic way for every type parameterT .

void create T(GenPtr& p) { p = leda create((T*)0); }

void copy T (GenPtr& p) { p = leda copy(LEDA ACCESS(T,p)); }

void clear T (GenPtr p) { leda clear(LEDA ACCESS(T,p)); }

void assign T(GenPtr& p, GenPtr q)

{ LEDA ACCESS(T,p) = LEDA ACCESS(T,q); }

We return to the dictionary and array data type templates to demonstrate the use of the
above defined function templates and macros. We have

class dictionary : public bin tree {

int cmp(GenPtr x, GenPtr y) const

{ return compare(LEDA ACCESS(K,x), LEDA ACCESS(K,x,y); }

void clear key(GenPtr& x) const { leda clear(LEDA ACCESS(K,x)); }

void clear inf(GenPtr& x) const { leda clear(LEDA ACCESS(I,x)); }

void copy key(GenPtr& x) const { x = leda copy(LEDA ACCESS(K,x)); }

void copy inf(GenPtr& x) const { x = leda copy(LEDA ACCESS(I,x)); }

void assign inf(GenPtr& x, GenPtr y) const

{ LEDA ACCESS(I,x) = LEDA ACCESS(I,y); }

public:

...

K key(dic item it) const

{ return LEDA ACCESS(K,bin tree::key(it)); }

I inf(dic item it) const

{ return LEDA ACCESS(I,bin tree::inf(it)); }

dic item insert(const K& k, const I& i)

{ return bin tree::insert(leda cast(k),leda cast(i)); }

dic item lookup(const K& k) const

{ return bin tree::lookup(leda cast(k)); }

void change inf(dic item it, const I& i)

{ bin tree::change inf(it,leda cast(i)); }

...

};

and

template <class T>

class array : private gen array {

void init entry(GenPtr& x) { x = leda create((T*)0); }

void clear entry(GenPtr x) { leda clear(LEDA ACCESS(T,x)); }

...

};
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13.4.6 Further Uses of Virtual Functions
There are many other situations where LEDA uses virtual functions for transferring func-
tionality of actual type arguments from the data type class to the implementation class.
Examples are:

• Printing and Reading

• Hashing

• Id-Numbers

• Type Information (see the next section)

• Rebalancing of binary trees

We touched upon printing and reading in Section 5.7.3, an example of the use of id-
numbers can be found in Section 5.1.2, and we will see type information in Section 13.5.3.

Exercises for 13.4
1 Write a template implementation of the LEDA data typequeue.
2 Is it correct to change the interface ofpopto const T& pop()?
3 The implementation oflist<T> ::clear which simply callslist impl::clear has a memory

leak, as it leaves the entries contained in the elements of the list as orphans on the heap.
Why doest list<T> ::clear not have a memory leak?

4 Define a classdlist<T> that implements doubly linked lists for elements of typeT . Use
the template approach and convert the solution to the LEDA approach.

5 Add an operationpop(T & x) to the list data type that returns the result of the pop oper-
ation in the reference parameterx .

6 In the text we established a relationship between corresponding states oft list<T> and
list<T>. Argue that the implementations of the various functions of the list data type
leave this correspondence invariant.

7 Consider the following skeleton for the functionbin tree::insert.

bin tree node* insert(void* k, void* i)

{ bin tree node *p = root, *q = nil; // q is always the parent of p

int c;

while (p)

{ c = cmp key(k,p->key);

if (c == 0)

{ // something is missing here

return p;

}

q = p;

p = (c > 0) ? p->right child : p->left child;

}

if ( c > 0 ) return q->right child = new bin tree node(k,i);

else return q->left child) = new bin tree node(k,i);

}

Complete the code. Make sure that your implementation has no memory leak.
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13.5 Optimizations

In this section we describe some optimizations that can be applied to special type arguments
of parameterized data types.

13.5.1 Small Types
The LEDA solution for parameterized data types presented in the preceding sections uses
one additional (generic) pointer field for every value or object that is stored in the data
type. The method incurs overhead in space and time, in space for the additional pointer
and in time for the additional indirection. We show how to avoid the overhead for types
whose values are no larger than a pointer. In C++ the space requirement of a type is easily
detemined:sizeof(T ) returns the size of the objects of typeT in bytes. We call a typeT
small if sizeof(T ) ≤ sizeof(GenPtr) and large otherwise. By definition, all pointer types
are small. On 32 bit systems the built-in typeschar, short, int, long, float are small as well,
and typedoubleis big. On 64 bit systems even the typedoubleis small. Note that class
types can be small too, e.g., a class containing a single pointer data member. An example
for small class types are the LEDAhandle typesthat will be discussed in Section 13.7.

Values of any small typeT can be stored directly in a data field of typevoid∗ or GenPtr
by using thein-place new operatorof C++. If p is a pointer of typevoid∗

new(p) T(x);

calls the copy constructor of typeT to construct a copy ofx at the address in memory that
p points to, in other words withthis = p. Similarly,

new(p) T;

calls the default constructor of typeT (if defined) to construct the default value of typeT
at the location thatp points to.

We use the in-place new operator as follows. Ify is a variable corresponding to a data
field of some container andT is a small type then

new(&y) T(x);

new(&y) T;

constuct a copy ofx and the default value ofT directly in y.
Of course, small objects have to be destroyed too. For this purpose we will use theexplicit

destructor callof C++. If z is a variable of some typeT ,

z.~T()

calls the destructor ofT for the object stored inz. Destructor calls for named objects are
constructed automatically in C++ when the scope of the object ends, and therefore few C++

programmers ever need to make an explicit destructor call.
We have to. Observe that we construct objects of typeT in variables of typevoid∗ and

therefore cannot rely on the compiler to generate the destructor call. We destroy an object
of typeT stored in a variabley of typevoid∗ by casting the address ofy to a pointer of type
T ∗ and calling the destructor explicitly as in
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((T*)&y)->~T();

To access the value of a small typeT stored in avoid∗ data fieldy we take the address of
y, cast it into aT ∗ pointer, and dereference this pointer.

*((T*)&y)

13.5.2 Summary of LEDA Approach to Parameterized Data Types
We summarize the LEDA approach to parameterized data types. We store values of arbitrary
typesT in data fields of typevoid∗ (also calledGenPtr). We distinguish between small and
large types.

For objects of a large typeT (sizeof(T ) > sizeof(GenPtr)) we make copies in the dy-
namic memory using thenewoperator and store pointers to the copies.

For objects of a small typeT (sizeof(T ) ≤ sizeof(GenPtr)) we avoid the overhead of an
extra level of indirection by copying the value directly into thevoid∗ data field using the
“in-place” variant of thenewoperator.

We next give versions ofledacopy, ledacreate, ledaclear, ledaaccess, and ledacast
that can handle small and large types. The functions are defined in LEDA/paramtypes.h.

GenPtr ledacopy(constT & x) makes a copy ofx and returns it as a generic pointer of type
GenPtr. If T is a small type, the copy ofx is constructed directly in aGenPtrvariable using
the in-place new operator ofT , and if T is a big type, the copy ofx is constructed in the
dynamic memory (using the default new operator) and a pointer to this copy is returned.

template<class T>

inline GenPtr leda copy(const T& x)

{ GenPtr p;

if (sizeof(T) <= sizeof(GenPtr)) new(&p) T(x);

if (sizeof(T) > sizeof(GenPtr)) p = new T(x);

return p;

}

GenPtr ledacreate(constT ∗) constructs the default value of typeT by a call of either the
in-place new or the normal new operator ofT .

template <class T>

inline GenPtr leda create(const T*)

{ GenPtr p;

if (sizeof(T) <= sizeof(GenPtr)) new(&p) T;

if (sizeof(T) > sizeof(GenPtr)) p = new T;

return p;

}

void ledaclear(T & x) destroys the object stored inx either by calling the destructor ofT
explicitly or by calling thedeleteoperator on the address ofx .

template <class T>

inline void leda clear(T& x)

{ T* p = &x;
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if (sizeof(T) <= sizeof(GenPtr)) p->~T();

if (sizeof(T) > sizeof(GenPtr)) delete p;

}

T & ledaaccess(constT ∗, const GenPtr& p) returns a reference to the object of typeT
stored inp or pointed to byp respectively.

template <class T>

inline T& leda access(const T*, const GenPtr& p)

{ if (sizeof(T) <= sizeof(GenPtr)) return *(T*)&p;

if (sizeof(T) > sizeof(GenPtr)) return *(T*)p;

}

GenPtr ledacast(constT & x) either returns the value ofx or the address ofx casted to a
generic pointer.

template <class T>

inline GenPtr leda cast(const T& x)

{ GenPtr p;

if (sizeof(T) <= sizeof(GenPtr)) *(T*)&p = x;

if (sizeof(T) > sizeof(GenPtr)) p = (GenPtr)&x;

return p;

}

The functions above incur no overhead at run time. Note that all comparisons between
the size ofT and the size of a pointer can be evaluated at compile-time when instantiating
the corresponding function template and therefore do not cause any overhead at run time.

13.5.3 Optimizations for Built-in Types
Our method of implementing parameterized data types stores the objects of the data type in
void∗ data fields and uses virtual member functions for passing type-specific functionality
from the data type template to the implementation class.

In a previous section we already showed how to avoid the space overhead of an additional
pointer for small types. However, there is also an overhead in time. Every type-dependent
operation, such as comparing two keys in a dictionary, is realized by a virtual member
function. Calling such a function, e.g., in the inner loop when searching down a tree, can
be very expensive compared to the cost of applying a built-in comparison operator.

LEDA has a mechanism for telling the implementation class that an actual type parameter
is one of the built-in types in order to avoid this overhead. For the identification of these
types we use an enumeration. For every built-in typexyz this enumeration contains an
elementXYZTYPEID. There is also anUNKNOWNTYPEID member used for indicating
that the corresponding type is unknown, i.e., is not one of the built-in types.

enum { UNKNOWN TYPE ID, CHAR TYPE ID, SHORT TYPE ID, INT TYPE ID,

LONG TYPE ID, FLOAT TYPE ID, DOUBLE TYPE ID };

To compute the type identification for a given type we use a global functionledatypeid.
Given a pointer to some typeT this function returns the corresponding type identification,
e.g., ifT = int, it will return INT TYPEID, if T is not one of the recognized types, the result
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is UNKNOWNTYPEID. We first define a default function template returning the special
valueUNKNOWNTYPEID and then define specializations for all built-in types.

template <class T>

inline int leda type id(const T*) { return UNKNOWN TYPE ID; }

inline int leda type id(const char*) { return CHAR TYPE ID; }

inline int leda type id(const int*) { return INT TYPE ID; }

inline int leda type id(const long*) { return LONG TYPE ID; }

inline int leda type id(const double*){ return DOUBLE TYPE ID; }

...

Now we can add a virtual functionkeytypeid to the dictionary implementation and de-
fine it in the corresponding data type template by calling theledatypeid function with an
appropriate pointer value.

class bin tree {

...

virtual int key type id() = 0;

...

};

template <class K, class I>

class dictionary {

...

int key type id() { return leda type id((K*)0); }

...

};

In the implementation of the various dictionary operations (inbin tree.c) we can now
determine whether the actual key type is one of the basic types and choose between different
optimizations. We use thebin tree::searchmember function as an example. Let us assume
we want to write a special version of this function for the built-in typeint that does not call
the expensivecmpkey function but compares keys directly. First we calltypeid( ) to get
the actual key type id and in the case ofINT TYPEID we use a special searching loop that
compares keys using theLEDAACCESSmacro and the built-in comparison operators for
type int.

bin tree node* bin tree::search(GenPtr x) const

{

bin tree node* p = root;

switch ( type id() ) {

case INT TYPE ID: {

int x int = LEDA ACCESS(int,x);

while (p)

{ int p int = LEDA ACCESS(int,p->k);

if (x int == p int) break;

p = (x int < p int) ? p->left child : p->right child;

}

break;

}

default: {
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n myint int

1000000 6.74 0.68

Table 13.1 The effect of the optimization for built-in types. The time to sort an array ofn
random elements is shown. The table was generated with the program
built in typesoptimization in directory LEDAROOT/demo/book/Impl.

while (p)

{ int c = cmp(x,p->k);

if (c == 0) break;

p = (c < 0) ? p->left child : p->right child;

}

break;

}

}

return p;

}

The above piece of code is easily extended to other built-in types.

Table 13.1 shows the effect of the optimization. We defined a classmyint that encapsu-
lates anint

〈class myint〉�
class myint {

int x;

public:

myint() {}

myint(const int _x): x(_x) {}

myint(const myint& p) { x = p.x; }

friend void operator>>(istream& is, myint& p) { is >> p.x; };

friend ostream& operator<<(ostream& os, myint& p)

{ os << p.x; return os; };

friend int compare(const myint&,const myint&);

};

int compare(const myint& p,const myint& q)

{

if (p.x == q.x) return 0;

if (p.x < q.x) return -1; else return +1;

}

and then built two arrays of sizen, one filled with randomints and the other one filled with
the samemyints. We then sorted both arrays. Table 13.1 shows that the optimization leads
to a considerable reduction in running time.
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Exercise for 13.5
1 Extend the search procedure for binary trees such that it uses the optimization also for

doubles.

13.6 Implementation Parameters

There are many implementations of dictionaries: binary trees, skiplists, hashing, sorted
arrays, self-adjusting lists, . . . . Which implementation should be included in a library?

If one provides only one implementation, then this implementation should clearly be the
“best” possible. This was the direction taken in the first versions of LEDA. In the case of
the dictionary data type, we included red-black trees because they are asymptotically as
efficient as any other implementation. But, of course, only asymptotically. Also, there are
better implementations for special cases, e.g., for integer keys from a bounded universe.
For other data types, e.g., range trees, there are implementations with vastly differing per-
formance parameters (time-space tradeoff) and so there is not even an asymptotically best
implementation. All of this implies that providing only one implementation for each data
type is not satisfactory.

So, one has to provide many and allow for the possibility of adding more. What properties
should a mechanism for choosing between different implementations have?

(1) There should be a simple syntax for choosing between different implementations. In
LEDA, the declaration

dictionary<K,I,rb tree> D;

creates an empty dictionary with key typeK and information typeI and selects red-black
trees as the implementation variant,dictionary<K , I, impl> selects the implementation
impl. The actual type parameter forimpl has to be a dictionary implementation, i.e., must be
a class that provides a certain set of operations and uses virtual functions for type dependent
operations. This will be discussed below. The declaration

dictionary<K,I> D;

selects the default implementation (skiplists in the current version).
Remark: Because templates cannot be overloaded in C++ we have to use different names

dictionaryand dictionary. The general rule is that the data type variant with implementation
parameter starts with an underscore.

(2) Applications can be written that work with any implementation. For example, ap-
plications that use a dictionary are written as functions with an additional parameter of the
abstract dictionary type. Then the function can be called with any implementation of the
dictionary type. We illustrate this feature with the word-count example.

void WORD COUNT(const list<string>& L, dictionary<string,int>& D)

{ string s;

forall(s,L)
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p queue<K,I,rb tree>

dictionary<K,I,rb tree>

p queue<K,I,f heap>

p queue<K,I> dictionary<K,I> rb tree fibonacci heap

ABSTRACT DATA TYPES DATA STRUCTURES

CONCRETE DATA TYPES

��
��

��
��

��
��

��
��

�
�
�
�
�
�
�
�
�
�HHHHHHHHHHHHHHHH�
�
�
�
�
�
�
�

Figure 13.2 Multiple inheritance combines abstract data types and data structures to concrete
data types.

{ dic item it = D.lookup(s);

if (it == nil)

D.insert(s,1);

else

D.change inf(it,D.inf(it)+1);

}

dic item it;

forall items(it,D)

cout << D.key(it) << " appeared " << D.inf(it) << " times.";

}

In the context of the declarations

dictionary<string, int> SL D; // skiplists

dictionary<string, int, rb tree> RB D; // red-black trees

dictionary<string, int, my impl> MY D; // user implementation

the calls

WORD COUNT(L,SL D);

WORD COUNT(L,RB D);

WORD COUNT(L,MY D);

are now possible.

The realization of the implementation parameter mechanism makes use of multiple in-
heritance, cf. Figure 13.2. Every concrete data type, say dictionary with the rbtree imple-
mentation, is derived from the abstract data type and the data structure used to implement it.
In the abstract data type class, all functions are virtual, i.e., have unspecified implementa-
tions. In the data structure class the details of the implementation are given and the classes
in the bottom line of Figure 13.2 are used to match the abstract functions with the concrete
implementations.
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template<class K,class I> class dictionary : private default impl

{

int cmp key(GenPtr x, GenPtr y)

{ return compare(LEDA ACCESS(K,x), LEDA ACCESS(K,y)); }

void clear key(GenPtr x) { leda clear(LEDA ACCESS(K,x)); }

public:

virtual K key(dic item it) = 0;

virtual dic item lookup(K y) = 0;

virtual dic item insert(K x, I y) = 0;

virtual void del(K y) = 0;

...

};

Dictionaries with implementation parameter can now be derived from the abstract dictionary
class.

template<class K, class I,class IMPL>

class dictionary : private IMPL, public dictionary<K,I>

{

public:

K key(dic item it) { return LEAD ACCESS(K,IMPL::key(it)); }

dic item lookup(K y) { return IMPL::lookup(leda cast(y)); }

dic item insert(K x, I y)

{ return IMPL::insert(leda cast(x),leda cast(y)); }

void del(K y) { IMPL::del(leda cast(y)); }

...

};

Of course, an implementation classIMPL can be used as actual implementation parame-
ter of a parameterized data type only if it provides all necessary operations and definitions
and calls type-dependent functions through the appropriate virtual member functions. For
item-based types, it must in addition define a local typeitem representing the items of the
data type. In the case of dictionaries, any classdic impl with the following definitions and
declarations can be used as implementation class.

class dic impl {

// type dependent functions

virtual int cmp(GenPtr, GenPtr) const = 0;

virtual int type id() const = 0;

virtual void clear key(GenPtr&) const = 0;

virtual void clear inf(GenPtr&) const = 0;

virtual void copy key(GenPtr&) const = 0;

virtual void copy inf(GenPtr&) const = 0;

virtual void assign inf(GenPtr&, GenPtr) const = 0;

public:

// definition of the item type

typedef ... item;

// construction, destruction, copying

dic impl();
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dic impl(const dic impl&);

~dic impl();

dic impl& operator=(const dic impl&);

// dictionary operations

GenPtr key(item) const;

GenPtr inf(item) const;

item insert(GenPtr,GenPtr);

item lookup(GenPtr) const;

void change inf(item,GenPtr);

void del item(item);

void del(GenPtr);

void clear();

int size() const;

// iteration

item first item() const;

item next item(item) const;

};

For most of its parameterized data types LEDA provides several implementation classes.
Before using an implementation classxyzthe corresponding header file<LEDA/impl/xyz.h>
has to be included. The following dictionary implementations are currently available: AVL-
Trees (avl tree), (a,b)-Trees (abtree), BB[α]-Trees (bbtree), Skiplists (skiplist), Red-Black-
Trees (rb tree), Randomized Search Trees (rs tree), Dynamic Perfect Hashing (dphashing),
and Hashing with Chaining (chhashing).

Section “Available Implementations” of the LEDA user manual gives the complete list of
all available implementations.

Exercises for 13.6
1 Write an implementation class for dictionaries based on thesosetclass of Section 3.2.
2 Write an implementation class for priority queues.

13.7 Independent Item Types (Handle Types)

All independent item types of LEDA (cf. Section 2.2.2) are implemented by so-calledhan-
dle types. Basically, a handle typeH is a pointer (or handle) to some representation class
H rep that contains all data members used for the representation of objects of typeH . As-
signment and copy operations translate to simple pointer assignments and the test for iden-
tity translates to the equality test for pointers. Thus assignment, copy operations, and iden-
tity functions are easily handled, but destruction of representation objects causes a problem.

A representation object has to be destroyed as soon as no handle is pointing to it anymore.
To detect this situation we use a technique calledreference counting. Every representation
object has a reference counterref count that contains the number of handles which are
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still in scope and point to the object. The counters are updated in the copy constructor,
assignment operator, and destructor of the corresponding handle class.

We use a two-dimensional point classpoint as an example. The representation class
point rephas three data members, a pair of floating-point coordinates(x, y) and a reference
counterref count. A constructor initializing the coordinates to two given values and setting
the reference counter to one is the only member function.

class point rep {

double x, y;

int ref count;

point rep(double a, double b) :x(a),y(b),ref count(1) {}

};

Now we could implement points by pointers to the representation classpoint rep. However,
just using the typepoint rep∗ for representing points, as in

typedef point rep* point;

would not make reference counting work automatically when variables of typepoint are
created, assigned to each other, or destroyed. Thereforepoint has to be implemented by a
real C++ class with constructors, destructor, and assignment operator.

The only data member of classpoint is a pointer to the corresponding representation class
point rep.

class point {

point rep* ptr;

public:

point(double,double);

point(const point&);

point& operator=(const point&);

~point();

double xcoord() const;

double ycoord() const;

point translate() const;

friend bool identical(const point& x, const point& y);

};

The constructor of classpoint creates a new representation object (withref countequal
to one) in the dynamic memory and assigns the pointer toptr. The copy constructor copies
the corresponding pointer and increases the reference counter of the representation object
by one. The destructor decreases the corresponding reference counter by one and deletes
the representation object if the new value of the counter is zero.

point::point(double x, double y) { ptr = new point rep(x,y); }

point::point(const point& p)

{ ptr = p.ptr;

ptr->count++;

}

point::~point() { if (--ptr->ref count == 0) delete ptr; }
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In an assignment operationq = p we first increase the reference counter of the repre-
sentation object pointed to byp and then decrease the counter of the representation object
pointed to byq. If the counter of the representation object pointed to byq is zero afterwards
thenq was the only handle pointing to the representation object and we have to delete it.
Note that in the case thatp andq are identical the same reference counter is first increased
and then decreased and hence is unchanged in the end.

point& point::operator=(const point& p)

{ p.ptr->count++;

if (--ptr->count == 0) delete ptr;

ptr = x.ptr;

return *this;

}

Two handles are identical if they share a common representation object, i.e., theidentical
function reduces to pointer equality.

bool identical(const point& x, const point& y)

{ return x.ptr == y.ptr; }

The above defined member functions and operators are common to all handle types. We
will show how to put them in a common base class for all handle types below.

In order to complete the definition ofpoints, we still have to implement the individual
operations specific to them. For example,

double point::xcoord() const { return ptr->x; }

double point::ycoord() const { return ptr->y; }

point point::translate(double dx, double dy) const

{ return point(ptr->x+dx, ptr->y+dy); }

Classes handlerep and handle base: As mentioned above, there is a group of opera-
tions that is the same for all handle types (copy constructor, assignment, destructor, iden-
tity). LEDA encapsulates these operations in two classeshandlerep andhandlebase(see
<LEDA/handletypes.h>). Concrete handle types and their representation classes are de-
rived from them. This will be demonstrated for thepoint type at the end of this section.

Thehandlerepbase class contains a reference counter of typeint as its only data member,
a constructor initializing the counter to 1, and a trivial destructor. Later we will derive
representation classes of particular handle types (e.g.,point rep) from this base class adding
type specific individual data members (e.g.,x- andy-coordinates of typedouble).

class handle rep {

int ref count;

handle rep() : ref count(1) {}

virtual ~handle rep() {}

friend class handle base;

};
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Thehandlebaseclass has a data memberPTRof typehandlerep∗, a copy constructor, an
assignment operator, and a destructor. Furthermore, it defines a friend functionidenticalthat
declares twohandlebaseobjects identical if and only if theirPTRfields point to the same
representation object. Specific handle types (e.g.,point) derived fromhandlebaseuse the
PTRfield for storing pointers to the corresponding representation objects (e.g.,point rep)
derived fromhandlerep.

class handle base {

handle rep* PTR;

handle base(const handle base& x)

{ PTR = x.PTR;

PTR->ref count++;

}

handle base& operator=(const handle base& x)

{ x.PTR->ref count++;

if (--PTR->ref count == 0) delete PTR;

PTR = x.PTR;

return *this;

}

~handle base() { if (--PTR->ref count == 0) delete PTR; }

friend bool identical(const handle base& x, const handle base& y)

{ return x.PTR == y.PTR; }

};

This completes the definition of classeshandlebaseandhandlerep. We can now derive an
independent item typeT from handlebaseand the corresponding representation classT rep
from handlerep. We demonstrate the technique using the point example.

point rep is derived fromhandlerepadding two data members for thex- andy-coordinates
and a constructor initializing these members.

class point rep : public handle rep {

double x, y;

point rep(double a, double b) x(a), y(b) { }

~point rep() {}

};

We will next derive classpoint from handlebase. The classpoint uses the inherited
PTRfield for storingpointerrep∗ pointers. The constructor constructs a new object of type
point rep in the dynamic memory and stores a pointer to it in thePTRfield, and copy con-
structor and assignment reduce to the corresponding function of the base class. In order to
access the representation object we castPTRto point rep∗. This is safe sincePTRalways
points to apoint rep. For convenience, we add an inline member functionptr( ) that per-
forms this casting. Now we can writeptr( ) wherever we usedptr in the originalpointclass
at the beginning of this section. The full class definition is as follows:
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class point : public handle base

{

point rep* ptr() const { return (point rep*)PTR; }

public:

point(double x=0, double y=0) { PTR = new point rep(x,y); }

point(const point& p) : handle base(p) {}

~point() {}

point& operator=(const point& p)

{ handle base::operator=(p); return *this; }

double xcoord() const { return ptr()->x; }

double ycoord() const { return ptr()->y; }

point translate(double dx, double dy) const

{ return point(xcoord() + dx, ycoord() + dy); }

};

Note that all the “routine work” (copy construction, assignment, destruction) is done by the
corresponding functions of the base classhandlebase.

Exercises for 13.7
1 Explain why the destructorhandlerep::∼handlerep( ) is declaredvirtual.
2 How would the above code have to be changed if it were notvirtual?
3 Implement astring handle type using the mechanism described above.
4 Add an array subscript operatorchar& string::operator[](int i) to your string class.

What kind of problem is caused by this operator and how can you solve it?

13.8 Memory Management

Many LEDA data types are implemented by collections of small objects or nodes in the
dynamic memory, e.g., lists consist of list elements, graphs consist of nodes and edges, and
handle types are realized by pointers to small representation objects.

Most of these data types are dynamic and thus spend considerable time for the creation
and destruction of these small objects by calling thenewanddeleteoperators.

Typically, the C++ defaultnewoperator is implemented by calling themallocfunction of
theC standard library

void* operator new(size t bytes) { return malloc(bytes) }

and the defaultdeleteoperator by calling thefree library function

void operator delete(void* p) { free(p); }

Unfortunately,mallocandfreeare rather expensive system calls on most systems.

LEDA offers an efficient memory manager that is used for all node, edge and item types.
The manager can easily be applied to a user defined classT by adding the macro call
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“LEDA MEMORY(T )” to the declaration of the classT . This redefines the new and delete
operators for typeT , such that they allocate and deallocate memory using LEDA’s internal
memory manager.

The basic idea in the implementation of the memory manager is to amortize the expen-
sive system calls tomalloc and free over a large sequence of requests (calls ofnewand
delete) for small pieces of memory. For this purpose, LEDA usesmalloc only for the al-
location of large memory blocks of a fixed size (e.g., 4 kbytes). These blocks are sliced
into chunks of the requested size and the chunks are maintained in a singly linked list. The
strategy just outlined is efficient if the size of the chunks is small compared to the size of
a block. Therefore the memory manager applies this strategy only to requests for memory
pieces up to a certain size. Requests for larger pieces of memory (often called vectors)
are directly mapped tomalloccalls. The maximal size of memory chunks handled by the
manager can be specified in the constructor. For the standard memory manager used in the
LEDAMEMORYmacros this upper bound is set to 255 bytes.

The heads of all lists of free memory chunks are stored in a tablefreelist[256]. Whenever
an application asks for a piece of memory of sizesz < 256 the manager first checks whether
the corresponding listfreelist[sz] is empty. If the list is non-empty, the first element of the
list is returned, and if the list is empty, it is filled by allocating a new block and slicing it as
described above. Freeing a piece of memory of sizesz < 256 in a call of thedeleteoperator
is realized by inserting it at the front of listfreelist[sz].

Applications can call the global functionprint statisticsto get a summary of the current
state of the standard memory manager. It prints for every chunk size that has been used in
the program the number of free and still used memory chunks.

The following example illustrates the effect of the memory manager. We defined a class
pair and a classdumbpair. The definitions of the two classes are identical except that
dumbpair does not use the LEDA memory manager.

〈class pair〉�
class pair {

double x, y;

public:

pair(double a=0, double b=0) : x(a), y(b) { }

pair(const pair& p) : x(p.x), y(p.y) { }

friend ostream& operator<<(ostream& ostr, const pair&) {return ostr;}

friend istream& operator>>(istream& istr, pair&) { return istr; }

LEDA_MEMORY(pair) // not present in dumb_pair

};

We then built a list ofn pairs or dumb pairs, respectively, and cleared them again. Table 13.2
shows the difference in running time. We also printed the memory statistics before and after
theclear operation.
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n LEDA memory C++ memory

1000000 0.94 2.77

Table 13.2 The effect of the memory manager. We built and destroyed a list ofn pairs or dumb
pairs, respectively. Pairs use the LEDA memory manager and dumb pairs do not. The table was
generated with program memmgrtest.c in LEDAROOT/demo/book/Impl.

〈timing for dumb pair〉�
list<dumb_pair> DL;

for (i = 0; i < n; i++ ) DL.append(dumb_pair());

print_statistics();

DL.clear();

print_statistics();

UT = used_time(T);

13.9 Iteration

For most of its item-based data types LEDA provides iteration macros . These macros can
be used to iterate over the items or elements of lists, arrays, sets, dictionaries, and priority
queues or over the nodes and edges of graphs. Iteration macros can be used similarly to the
C++ for-statement. We give some examples.

For all item-based data types:

forall items(it,D) { ... }

iterates over the itemsit of D and

forall rev items(it,D) { ... }

iterates over the itemsit of D in reverse order.

For sets, lists and arrays:

forall(x,D) { ... }

iterates over the elementsx of D and

forall rev(x,D) { ... }

iterates over the elementsx of D in reverse order.

For graphs:

forall nodes(v,G) { ... }

iterates over the nodesv of G,
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STD_MEMORY_MGR (memory status)

+--------------------------------------------------+

| size used free blocks bytes |

+--------------------------------------------------+

| 12 1000001 388 1469 12004668 |

| 16 1000000 110 1961 16001760 |

| 20 29 379 1 8160 |

| 28 1 290 1 8148 |

| 40 2 201 1 8120 |

| > 255 - - 1 300 |

+--------------------------------------------------+

| time: 0.64 sec space:27450.88 kb |

+--------------------------------------------------+

STD_MEMORY_MGR (memory status)

+--------------------------------------------------+

| size used free blocks bytes |

+--------------------------------------------------+

| 12 1 1000388 1469 12004668 |

| 16 0 1000110 1961 16001760 |

| 20 29 379 1 8160 |

| 28 1 290 1 8148 |

| 40 2 201 1 8120 |

| > 255 - - 1 300 |

+--------------------------------------------------+

| time: 0.98 sec space:27450.88 kb |

+--------------------------------------------------+

Figure 13.3 Statistic of memory usage. We built a list ofn = 106 pairs of doubles. A list ofn
pairs requiresn list items of 12 bytes each andn pairs of 16 bytes each. The upper statistic
shows the situation before the clear operations and the lower statistic shows the situation after
the clear operations. The figure was generated with program memmgrtest.c in
LEDAROOT/demo/book/Impl.

forall edges(e,G) { ... }

iterates over the edgese of G,

forall adj edges(e,v) { ... }

iterates over all edgese adjacent tov, and

forall adj nodes(u,v) { ... }

iterates over all nodese adjacent tov.

Inside the body of a forall loop insertions into or deletions from the collection iterated
over are not allowed, with one exception, the current item or object of the iteration may be
removed, as in

// remove self-loops

forall edges(e,G) { if (G.source(e) == G.target(e)) G.del edge(e); }
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Theforall item(it, S) iteration macro can be applied to instancesS of all item-based data
typesT that defineT ::itemas the corresponding item type and that provide the following
member functions:

T::item S.first item()

returns the first item ofS andnil if S is empty

T::item S.next item(T::item it)

returns the successor of itemit in S (nil if it = S.last item( ) or it = nil).
The forall revitems(it, S) macro can be used if the following member functions are de-

fined:

T::item S.last item()

returns the last item ofS andnil if S is empty, and

T::item S.pred item(T::item it)

returns the predecessor of itemit in S (nil if it = S.first item( ) or it = nil).
The forall(x, S) andforall rev(x, S) iteration macros in addition require that the opera-

tion S.inf (T ::item it) is defined and returns the information associated with itemit.
A first try of an implementation of theforall itemsmacro could be

#define forall items(it,S)\

for(it = S.first item(); it != nil; it = S.next item(it))

However, with this implementation the current item of the iteration cannot be removed from
S. To allow this operation we use a temporary variablep always containing the successor
item of the current itemit. Since our macro has to work for all item-based LEDA data types,
the item type (e.g.,dic item for dictionaries) is not known explicitly, but is given implicitly
by the type of the variableit. We therefore use a temporary iteratorp of typevoid∗ and a
function templateLoopAssign(itemtype& it, void∗ p) to copy the contents ofp to it before
each execution of the for-loop body. The details are given by the following piece of code.

template <class T>

inline bool LoopAssign(T& it, void* p) { it = (T)p; }

#define forall items(it,S)\

for( void* p = S.first item(); \

LoopAssign(it,p), p = S.next item(it), it != nil; )

#define forall rev items(it,S)\

for( void* p = S.last item(); \

LoopAssign(it,p), p = S.pred item(it), it != nil; )

With the above implementation of theforall itemsloop the current item (but not its succes-
sor) may be deleted. There are many situations where this is desirable.

The following piece of code deletes all occurrences of a given numberx from a list L of
integers:
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list item it;

forall items(it,L) if (L[it] == x) L.del item(it);

The following piece of code removes self-loops from a graphG:

edge e;

forall adj edges(e,G) if (source(e) == target(e)) G.del edge(e);

Exercises for 13.9
1 Design a forall macro allowing insertions at the end of the collection.
2 Implement an iteration macro for the binary tree classbin tree traversing the nodes in

in-order.

13.10 Priority Queues by Fibonacci Heaps (A Complete Example)

We give a comprehensive example that illustrates most of the concepts introduced in this
chapter, the implementation of the priority queue data typep queue<P, I> by Fibonacci
heaps. The data typep queue<P, I> was discussed in Section 5.4 and is defined in the
header file<LEDA/p queue.h>. We show the header file below, but without the manual
comments that generate the manual page.

We call the implementation classPRIOIMPL. There is one slight anomaly in the deriva-
tion of p queue<P, I> from PRIOIMPL: What is calledpriority in the data type template
is calledkeyin the implementation class, since in the first version of LEDA priorities were
called keys and this still shows in the implementation class.

13.10.1The Data Type Template
We start with the data type template.

〈p queue.h〉�
#define PRIO_IMPL f_heap

typedef PRIO_IMPL::item pq_item;

template<class P, class I>

class p_queue: private PRIO_IMPL

{

int key_type_id() const { return leda_type_id((P*)0); }

int cmp(GenPtr x, GenPtr y) const

{ return compare(LEDA_ACCESS(P,x),LEDA_ACCESS(P,y)); }

void clear_key(GenPtr& x) const { leda_clear(LEDA_ACCESS(P,x)); }

void clear_inf(GenPtr& x) const { leda_clear(LEDA_ACCESS(I,x)); }

void copy_key(GenPtr& x) const { x = leda_copy(LEDA_ACCESS(P,x)); }

void copy_inf(GenPtr& x) const { x = leda_copy(LEDA_ACCESS(I,x)); }

public:

p_queue() {}
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p_queue(const p_queue<P,I>& Q):PRIO_IMPL(Q) {}

~p_queue() { PRIO_IMPL::clear(); }

p_queue<P,I>& operator=(const p_queue<P,I>& Q)

{ PRIO_IMPL::operator=(Q); return *this; }

P prio(pq_item it) const

{ return LEDA_CONST_ACCESS(P,PRIO_IMPL::key(it)); }

I inf(pq_item it) const

{ return LEDA_CONST_ACCESS(I,PRIO_IMPL::inf(it)); }

pq_item find_min() const { return PRIO_IMPL::find_min(); }

void del_min() { PRIO_IMPL::del_min(); }

void del_item(pq_item it) { PRIO_IMPL::del_item(it); }

pq_item insert(const P& x, const I& i)

{ return PRIO_IMPL::insert(leda_cast(x),leda_cast(i)); }

void change_inf(pq_item it, const I& i)

{ PRIO_IMPL::change_inf(it,leda_cast(i)); }

void decrease_p(pq_item it, const P& x)

{ PRIO_IMPL::decrease_key(it,leda_cast(x)); }

int size() const { return PRIO_IMPL::size(); }

bool empty() const { return (size()==0) ? true : false; }

void clear() { PRIO_IMPL::clear(); }

pq_item first_item() const { return PRIO_IMPL::first_item(); }

pq_item next_item(pq_item it) const { return PRIO_IMPL::next_item(it); }

};

Every implementation classPRIOIMPL for p queue<P, I> has to provide the following
operations and definitions.

class PRIO IMPL

{

virtual int key type id() const = 0;

virtual int cmp(GenPtr, GenPtr) const = 0;

virtual void clear key(GenPtr&) const = 0;

virtual void clear inf(GenPtr&) const = 0;

virtual void copy key(GenPtr&) const = 0;

virtual void copy inf(GenPtr&) const = 0;

public:

typedef ... item;

protected:

PRIO IMPL();

PRIO IMPL(const PRIO IMPL&);

virtual ~PRIO IMPL();

PRIO IMPL& operator=(const PRIO IMPL&);

item insert(GenPtr,GenPtr);

item find min() const;

GenPtr key(item) const;

GenPtr inf(item) const;

void del min();

void del item(item);
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Figure 13.4 A heap-ordered forest.

void decrease key(item,GenPtr);

void change inf(item,GenPtr);

void clear();

int size() const;

//iteration

item first item() const;

item next item(item) const;

};

13.10.2Fibonacci Heaps
In the remainder of this section we give the Fibonacci heap realization ofPRIOIMPL.

Definition and Header File: Fibonacci heaps (classf heap) are one of the best realizations
of priority queues [FT87]. They represent priority queues as heap-ordered forests. The
items of the priority queue are in one-to-one correspondence to thenodesof the forest; so it
makes sense to talk about the key and the information of a node. A forest isheap-ordered
if each tree in the forest isheap-ordered, and a tree is heap-ordered if the key of every non-
root node is no less than the key of the parent of the node. In other words, the sequence of
keys along any root to leaf path is non-decreasing. Figure 13.4 shows a heap-ordered forest.

In the storage representation off heaps every node contains a pointer to its parent (the
parent pointer of a root isnil) and to one of its children. The child-pointer isnil if a node
has no children. The children of each node and also the roots of the trees in af heapform
a doubly-linked circular list (pointersleft andright). In addition, every node contains the
four fieldsrank, marked, next, andpred. Therank field of each node contains the number
of children of the node and themarkedfield is a boolean flag whose purpose will be made
clear below. Thenextandpred fields are used to keep all nodes of a Fibonacci heap in a
doubly-linked linear list. This list is needed for theforall items-iteration. Anf heap-item
(typeF heap::item) is a pointer to a node. Figure 13.5 shows the storage representation of
the heap-ordered forest of Figure 13.4.

The constructor of classf heapnodecreates a new node〈k, i〉 and initializes some of the
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Figure 13.5 The storage representation of the heap-ordered forest of Figure 13.4. Thekey, rank,
marked, next, andpredfields are not shown, informations are integers and nil-pointers are shown
as pointing to “ground”.

fields to their obvious values. It also adds the new item to the front of the list of all items of
the heap. The LEDA memory management is used forf heapnodes (cf. Section 13.8).

〈f heap.h〉�
#include <LEDA/basic.h>

class f_heap_node;

typedef f_heap_node* f_heap_item;

class f_heap_node {

friend class f_heap;

f_heap_item left; // left and right siblings (circular list)

f_heap_item right;

f_heap_item parent; // parent node

f_heap_item child; // a child

f_heap_item next; // list of all items

f_heap_item pred;

int rank; // number of children

bool marked; // mark bit

GenPtr key; // key

GenPtr inf; // information

f_heap_node(GenPtr k, GenPtr info, f_heap_item n)

{
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// the third argument n is always the first item in the list

// of all items of a Fibonacci heap. The new item is added

// at the front of the list

key = k;

inf = info;

rank = 0;

marked = false;

parent = child = nil;

next = n;

if (n) n->pred = this;

}

LEDA_MEMORY(f_heap_node)

};

The storage representation of anf heapconsists of five fields:
numberof nodes the number of nodes in the heap
power the smallest power of two greater than or equal tonumberof nodes
logp the binary logarithm of power
minptr a pointer to a root with minimum key
nodelist first element in the list of all nodes

〈f heap.h〉+�
class f_heap {

int number_of_nodes;

int power;

int logp;

f_heap_item minptr;

f_heap_item node_list;

〈virtual functions related to keys and infs〉
〈auxiliary functions〉

public:

typedef f_heap_item item;

protected:

// constructors, destructor, assignment

f_heap();

f_heap(const f_heap&);

f_heap& operator=(const f_heap&);

virtual ~f_heap();

// priority queue operations

f_heap_item insert(GenPtr, GenPtr);

f_heap_item find_min() const;

void del_min();

void decrease_key(f_heap_item,GenPtr);

void change_inf(f_heap_item,GenPtr);

void del_item(f_heap_item);

void clear();

GenPtr key(f_heap_item) const;

GenPtr inf(f_heap_item) const;
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int size() const;

bool empty() const;

// iteration

f_heap_item first_item() const;

f_heap_item next_item(f_heap_item) const;

};

We turn to the implementation of the member functions. The filef heap.c contains the
implementations of all operations onf heaps.

Construction: To create an emptyf heapsetnumberof nodesto zero,powerto one,logp
to zero, andminptr andnodelist to nil.

〈 f heap.c〉�
#include <LEDA/basic.h>

#include "f_heap.h"

f_heap::f_heap()

{ number_of_nodes = 0;

power = 1;

logp = 0;

minptr = nil;

node_list = nil;

}

Simple Operations on Heaps:We discuss create, findmin, size, empty, key, inf, and
changekey. A findmin operation simply returns the item pointed to byminptr. The empty
operation comparesnumberof nodesto zero, and thesizeoperation returnsnumberof nodes.
Both operations take constant time.

Thekeyandinf operations apply to an item and return the appropriate component of the
item.

Thechangeinf operations applies to an itemx and an informationinf and changes the
information associated withx to a copy ofinf . It also clears the memory used for the old
information.

〈 f heap.c〉+�
f_heap_item f_heap::find_min() const { return minptr; }

int f_heap::size() const { return number_of_nodes; }

bool f_heap::empty() const

{ return number_of_nodes == 0; }

GenPtr f_heap::key(f_heap_item x) const { return x->key; }

GenPtr f_heap::inf(f_heap_item x) const { return x->inf; }

void f_heap::change_inf(f_heap_item x, GenPtr i)

{ clear_inf(x->inf);

copy_inf(i);

x->inf = i;

}
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We have used functionsclearkeyandcopykeywithout defining them. Both functions be-
long to the set of virtual functions of classf heapwhich we need to makef heapa param-
eterized data structure. We declare these functions as pure virtual and define them in the
definition of the classp queue<K , I> as discussed in Section 13.4.

The six virtual functions are:cmpcompares two keys (of typeP), clearkeyandclear inf
deallocate a key and an information, respectively,copykeyandcopyinf return a copy of
their argument, andkeytypeid( ) determines whether its argument belongs to a built-in
type as discussed in Section 13.5. It is used to bypass the calls to compare function for such
types.

〈virtual functions related to keys and infs〉�
virtual int cmp(GenPtr,GenPtr) const = 0;

virtual void clear_key(GenPtr&) const = 0;

virtual void clear_inf(GenPtr&) const = 0;

virtual GenPtr copy_key(GenPtr&) const = 0;

virtual GenPtr copy_inf(GenPtr&) const = 0;

virtual int key_type_id() const = 0;

Some Theory: The non-trivial operations areinsert, decreaseinf anddelmin. We discuss
them in some detail now. The discussion will be on the level of heap-ordered forests. All
implementation details will be given later.

An insert adds a new single node tree to the Fibonacci heap and, if necessary, adjusts the
minptr. So a sequence ofn inserts into an initially empty heap will simply createn single
node trees. The cost of an insert is clearlyO(1).

A delmin operation removes the node indicated byminptr. This turns all children of
the removed node into roots. We then scan the set of roots (old and new) to find the new
minimum. To find the new minimum we need to inspect all roots (old and new), a potentially
very costly process. We make the process even more expensive (by a constant factor) by
doing some useful work on the side, namely combining trees of equal rank into larger
trees. A simple method to combine trees of equal rank is as follows. Letmaxrank be
the maximal rank of any node. Maintain a set of buckets, initially empty and numbered
from 0 tomaxrank. Then step through the list of old and new roots. When a root of ranki
is considered inspect thei -th bucket. If thei -th bucket is empty then put the root there. If
the bucket is non-empty then combine the two trees into one (by making the root with the
larger information a child of the other root). This empties thei -th bucket and creates a root
of rank i + 1. Try to throw the new tree into thei + 1st bucket. If it is occupied, combine
. . . . When allroots have been processed in this way, we have a collection of trees whose
roots have pairwise distinct ranks. What is the running time of thedelminoperation?

Let K denote the number of roots before the call ofdelmin. The cost of the operation is
O(K + maxrank) (since the deleted node has at mostmaxrank children and hence there
are at mostK + maxrank roots to start with. Moreover, every combine reduces the number
of roots by one). After the call there will be at mostmaxrank roots (since they all have
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B0 B1 B2 B3 B4

Figure 13.6 Binomial trees. Deletion of the high-lighted node and all high-lighted edges
decomposesB4 into binomial trees.

different ranks) and hence the number of roots decreases by at leastK − maxrank. Thus,
if we use the potential function81 with

81 = number of roots

then the amortized cost of adeletemin operation isO(maxrank). The amortized cost of
an insert isO(1); note thatn inserts increase the potential81 by one. We will extend the
potential by a second term82 below.

What can we say about the maximal rank of a node in a Fibonacci heap? Let us consider
a very simple situation first. Suppose that we perform a sequence of inserts followed by
a singledelmin. In this situation, we start with a certain number of single node trees and
all trees formed by combining are so-calledbinomial treesas shown in Figure 13.6. The
binomial treeB0 consists of a single node and the binomial treeBi+1 is obtained by joining
two copies of the treeBi . This implies that the root of the treeBi has ranki and that the
tree Bi contains exactly 2i nodes. We conclude that the maximal rank in a binomial tree
is logarithmic in the size of the tree. If we could guarantee in general that the maximal
rank of any node is logarithmic in the size of the tree then the amortized cost of thedelmin
operation would be logarithmic.

We turn to thedecreasekeyoperation next. It is given a nodev and a new information
newkeyand decreases the information ofv to newkey. Of course,newkeymust not be larger
than the old information associated withv. Decreasing the information associated withv

will in general destroy the heap property. In order to maintain the heap property we delete
the edge connectingv to its parent and turnv into a root. This has the side effect that for
any ancestorw of v different fromv’s parent the size ofw’s subtree decreases by one but
w’s rank is unchanged. Thus, if we want to maintain the property that the maximal rank of
any node is logarithmic in the size of the subtree rooted at the node, we need to do more
than just cuttingv’s link to its parent.

An old solution suggested by Vuillemin [Vui78] is to keep all trees in the heap binomial.
This can be done as follows: for any proper ancestorz of v delete the edge intoz on the
path fromv to z, call it e, and all edges intoz that were created later thane. In Figure 13.6 a
node and a set of edges is high-lighted in the treeB4. If all high-lighted edges are removed
then B4 decomposes into two copies ofB0 and one copy each ofB1, B2, andB3. It is not
too hard to see that at mostk edges are removed when aBk is disassembled (since aBk
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Figure 13.7 A decrease key onx is performed andy andz are marked butu is not;x , y, andz
become roots, roots are unmarked, andu becomes marked. Marked nodes are shown shaded. A
dashed edge stands for a path of edges.

decomposes into twoB j ’s and one each ofB j+1, . . . , Bk−1 for somej , with 0 ≤ j ≤ k −1)
and hence this strategy gives a logarithmic time bound for thedecreasekeyoperation.

In some graph algorithms thedecreasekeyoperation is executed far more often than the
other priority queue operations, e.g., Dijkstra’s shortest-path algorithm (cf. Section 6.6)
executesm decreasekeys and onlyn inserts anddelmins, wherem andn are the number of
edges and nodes of the graph, respectively. Sincem might be as large asn2 it is desirable
to make thedecreasekeyoperation cheaper than the other operations. Fredman and Tarjan
showed how to decrease its cost toO(1) without increasing the cost of the other operations.
Their solution is surprisingly simple and we describe it next.

When a nodex loses a child becausedecreasekey is applied to the child the nodex is
marked; this assumes thatx has not already been marked. When a marked nodex loses a
child, we turnx into a root, remove the mark fromx and attempt to markx ’s parent. If
x ’s parent is marked already then. . . . In other words, suppose that we applydecreasekey
to a nodev and that thek-nearest ancestors ofv are marked, then turnv and thek-nearest
ancestors ofv into roots and mark thek + 1st-nearest ancestor ofv (if it is not a root).
Also unmark all the nodes that were turned into roots, cf. Figure 13.7. Why is this a good
strategy?

First, adecreasekeymarks at most one node and unmarks some numberk of nodes. No
other operation marks a node and hence in an amortized sensek can be at most one (we
cannot unmark more nodes than we mark). However, we also increase the number of roots
by k which in turn increases the potential81 by k and therefore we have to argue more
carefully. Let

82 = 2 · number of marked nodes

and let8 = 81 + 82. A decreasekeyoperation where the nodev hask marked ancestors



13.10 Priority Queues by Fibonacci Heaps (A Complete Example) 955

has actual costO(k + 1) and decreases the potential by at least 2(k − 1) − (k + 1) = k − 3.
Note that the number of marked nodes is decreased by at leastk − 1 (at leastk nodes are
unmarked and at most one node is marked) and that the number of roots is increased by
k + 1. The amortized cost of adecreasekey is thereforeO(1). inserts do not change82

anddelmins do not increase82 (it may decrease it because the marked children of the
removed node become unmarked roots) and hence their amortized cost does not increase by
the introduction of82.

How does the strategy affect the maximal rank. We show that it stays logarithmic. In
order to do so we need some notation. LetF0 = 0, F1 = 1, andFi = Fi−1 + Fi−2 for i ≥ 2
be the sequence of Fibonacci numbers. It is well-known thatFi+1 ≥ (1+ √

5/2)i ≥ 1.618i

for all i ≥ 0.

Lemma 78 Let v be any node in a Fibonacci heap and leti be the rank ofv. Then the
subtree rooted atv contains at leastFi+2 nodes. In a Fibonacci heap withn nodes all ranks
are bounded by1.4404 logn.

Proof Consider an arbitrary nodev of ranki . Order the children ofv by the time at which
they were made children ofv. Let w j be the j -th child, 1 ≤ j ≤ i . Whenw j was made
child of v both nodes had the same rank. Also, since at least the nodesw1, . . . , w j−1 were
nodes ofv at that time, the rank ofv was at leastj −1 at the time whenw j was made a child
of v. The rank ofw j has decreased by at most 1 since then because otherwisew j would be
a root. Thus the current rank ofw j is at leastj − 2.

We can now set up a recurrence for the minimal numberSi of nodes in a tree whose root
has ranki . ClearlyS0 = 1, S1 = 2, andSi ≥ 2 + S0 + S1 + . . . + Si−2. The last inequality
follows from the fact that forj ≥ 2, the number of nodes in the subtree with rootw j is
at leastSj−2, and that we can also count the nodesv andw1. The recurrence above (with
= instead of≥) generates the sequence 1, 2, 3, 5, 8,. . . which is identical to the Fibonacci
sequence (minus its first two elements).

Let’s verify this by induction. LetT0 = 1, T1 = 2, andTi = 2 + T0 + . . . + Ti−2 for
i ≥ 2. Then, fori ≥ 2, Ti+1 − Ti = 2+ T0 + . . . + Ti−1 − 2− T0 − . . . − Ti−2 = Ti−1, i.e.,
Ti+1 = Ti + Ti−1. This provesTi = Fi+2.

For the second claim, we only have to observe thatFi+2 ≤ n impliesi · log(1+√
5/2) ≤

logn which in turn impliesi ≤ 1.4404 logn.

This concludes our theoretical treatment of Fibonacci heaps. We have shown the follow-
ing time bounds: aninsert and adecreasekeytake constant amortized time and adelmin
takes logarithmic amortized time. The operationssize, empty, andfindmin take constant
time.

We now return to the implementation.

Insertions: An insertoperation takes a keyk and an informationi and creates a new heap-
ordered tree consisting of a single node〈k, i〉. In order to maintain the representation invari-
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ant it must also add the new node to the circular list of roots, incrementnumberof nodes,
and may bepowerand logp, and changeminptr if k is smaller than the current minimum
key in the queue.

〈 f heap.c〉+�
f_heap_item f_heap::insert(GenPtr k, GenPtr i)

{

k = copy_key(k);

i = copy_inf(i);

f_heap_item new_item = new f_heap_node(k,i,node_list);

if ( number_of_nodes == 0 )

{ // insertion into empty queue

minptr = new_item;

// build trivial circular list

new_item->right = new_item;

new_item->left = new_item;

// power and logp have already the correct value

}

else

{ // insertion into non-empty queue;

// we first add to the list of roots

new_item->left = minptr;

new_item->right = minptr->right;

minptr->right->left = new_item;

minptr->right = new_item;

if ( cmp(k,minptr->key) < 0 ) minptr = new_item; // new minimum

if ( number_of_nodes >= power) // log number_of_nodes grows by one

{ power = power * 2;

logp = logp + 1;

}

}

number_of_nodes++;

return new_item;

}

Deletemin: A delmin operation removes the item pointed to byminptr, i.e., an item of
minimumkey. This turns all children of the removed node into roots. We then scan the set
of roots (old and new) to find the new minimum.

〈 f heap.c〉+�
void f_heap::del_min()

{ // removes the item pointed to by minptr

if ( minptr == nil )

error_handler(1,"f_heap: deletion from empty heap");

number_of_nodes--;

if ( number_of_nodes==0 )

{ // removal of the only node

// power and logp do not have to be changed.
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clear_key(minptr->key);

clear_inf(minptr->inf);

delete minptr;

minptr = nil;

node_list = nil;

return;

}

/* removal from a queue with more than one item. */

〈turn children of minptr into roots〉;
〈combine trees of equal rank and compute new minimum〉;
〈remove old minimum〉;

}

We now discuss the removal of a node of minimumkeyfrom anf heapwith more than
one item. Recall thatnumberof nodesalready has its new value. We first updatepowerand
logp (if necessary) and then turn all children ofminptr into roots (by setting their parent
pointer to nil and their mark bit to false and combining the list of children ofminptr with
the list of roots). We do not deleteminptr yet. It is convenient to keep it as a sentinel.

The cost of turning the children of theminptr into roots isO(maxrank);
Note that the body of the loop is executed for each child of the nodeminptr and that, in

addition, to the children ofminptr we accessminptr and its right sibling.

〈turn children of minptr into roots〉�
if ( 2 * number_of_nodes <= power )

{ power = power / 2;

logp = logp - 1;

}

f_heap_item r1 = minptr->right;

f_heap_item r2 = minptr->child;

if ( r2 )

{ // minptr has children

while ( r2->parent )

{ // visit them all and make them roots

r2->parent = nil;

r2->marked = false;

r2 = r2->right;

}

// combine the lists, i.e. cut r2's list between r2 and its left

// neighbor and splice r2 to minptr and its left neighbor to r1

r2->left->right = r1;

r1->left = r2->left;

minptr->right = r2;

r2->left = minptr;

}

The task of the combining phase is to combine roots of equal rank into larger trees. The
combining phase uses a procedurelink which combines two trees of equal rank and returns
the resulting tree.
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〈 f heap.c〉+�
f_heap_item f_heap::link(f_heap_item r1, f_heap_item r2)

{

// r1 and r2 are roots of equal rank, both different from minptr;

// the two trees are combined and the resulting tree is returned.

f_heap_item h1;

f_heap_item h2;

if (cmp(r1->inf,r2->inf) <= 0)

{ // r2 becomes a child of r1

h1 = r1;

h2 = r2;

}

else

{ // r1 becomes a child of r2

h1 = r2;

h2 = r1;

}

// we now make h2 a child of h1. We first remove h2 from

// the list of roots.

h2->left->right = h2->right;

h2->right->left = h2->left;

/* we next add h2 into the circular list of children of h1 */

if ( h1->child == nil )

{ // h1 has no children yet; so we make h2 its only child

h1->child = h2;

h2->left = h2;

h2->right = h2;

}

else

{ // add h2 to the list of children of h1

h2->left = h1->child;

h2->right = h1->child->right;

h1->child->right->left = h2;

h1->child->right = h2;

}

h2->parent = h1;

h1->rank++;

return h1;

}

Let’s not forget to add the declaration of link to the set of auxiliary functions ofclass fheap.

〈auxiliary functions〉�
f_heap_item link(f_heap_item, f_heap_item);

Next comes the code to combine trees of equal rank. The task is to step through the list of
old and new roots, to combine roots of equal rank, and to determine the node of minimum
key. We solve this task iteratively. We maintain an arrayrankarray of lengthmaxrank
of pointers to roots:rankarray[i ] points to a root of ranki , if any and tonil otherwise.
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Initially all entries point tonil. When a root of rankr is inspected andrankarray[r ] is
nil, storer there. If it is non-empty, combiner with the array entry and replacer by the
combined tree. The combined tree has rank one higher. We declarerankarray as an array
of length 12∗ sizeof(int). This is a save choice since the number of nodes in a heap is
certainly bounded byMAXINT = 28∗sizeof (int). Hencemaxrank≤ 1.5 ∗ log(MAXINT) =
12∗ sizeof(int).

There is a small subtlety in the following piece of code. We are running over the list of
roots and simultaneously modifying it. This is potentially dangerous, but our strategy is
safe. Imagine the list of roots drawn with theminptr at the far right. Thencurrentpoints
to the leftmost element initially. At a general step of the iterationcurrent points at some
arbitrary list element. All modifications of the list by calls oflink take place strictly to the
left of current. For this reason it is important to advancecurrent at the beginning of the
loop.

〈combine trees of equal rank and compute new minimum〉�
f_heap_item rank_array[12*sizeof(int)];

for (int i = (int)1.5*logp; i >= 0; i--) rank_array[i] = nil;

f_heap_item new_min = minptr->right;

f_heap_item current = new_min;

while (current != minptr)

{ // old min is used as a sentinel

r1 = current;

int rank = r1->rank;

// it's important to advance current already here

current = current->right;

while (r2 = rank_array[rank])

{ rank_array[rank] = nil;

// link combines trees r1 and r2 into a tree of rank one higher

r1 = link(r1,r2);

rank++;

}

rank_array[rank] = r1;

if ( cmp(r1->inf,new_min->inf) <= 0 ) new_min = r1;

}

We complete the operation by actually deleting the old minimum and settingminptr to its
new value.

〈remove old minimum〉�
minptr->left->right = minptr->right;

minptr->right->left = minptr->left;

clear_key(minptr->key);

clear_inf(minptr->inf);

r1 = minptr->pred;

r2 = minptr->next;

if (r2) r2->pred = r1;
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if (r1) r1->next = r2; else node_list = r2;

delete minptr;

minptr = new_min;

Decreasekey, Clear, and Del item: decreasekeymakes use of an auxiliary functioncut(x)

that turns a non-root nodex into a root and returns its old parent.

〈auxiliary functions〉+�
f_heap_item cut(f_heap_item);

〈 f heap.c〉+�
f_heap_item f_heap::cut(f_heap_item x)

{

f_heap_item y = x->parent;

if ( y->rank == 1 ) y->child = nil; // only child

else

{ /* y has more than one child. We first make sure that its childptr

does not point to x and then delete x from the list of children */

if ( y->child == x ) y->child = x->right;

x->left->right = x->right;

x->right->left = x->left;

}

y->rank--;

x->parent = nil;

x->marked = false;

// add to circular list of roots

x->left = minptr;

x->right = minptr->right;

minptr->right->left = x;

minptr->right = x;

return y;

}

Now we can give the implementation ofdecreasekey.

〈 f heap.c〉+�
void f_heap::decrease_key(f_heap_item v, GenPtr newkey)

{

/* changes the key of f_heap_item v to newkey;

newkey must be no larger than the old key;

if newkey is no larger than the minimum key

then v becomes the target of the minptr */

if (cmp(newkey,v->key) > 0)

error_handler(1,"f_heap: key too large in decrease_key.");

// change v's key

clear_key(v->key);

v->key = copy_key(newkey);
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if ( v->parent )

{ f_heap_item x = cut(v); // make v a root

while (x->marked) x = cut(x); // a marked f_heap_node

// is a non-root

if (x->parent) x->marked = true; // mark x if it not a root

}

// update minptr (if necessary)

if (cmp(newkey,minptr->key) <= 0) minptr = v;

}

To clear a heap simply remove the minimum until the heap is empty. The cost ofclear
is bounded byn times the cost ofdelmin. We can also useclear as the destructor of class
f heap.

〈 f heap.c〉+�
void f_heap::clear() { while (number_of_nodes > 0) del_min(); }

f_heap::~f_heap() { clear(); }

To remove an arbitrary item from a heap, we first decrease itskeyto the minimum key
(this makes the item the target of theminptr) and then remove the minimum. The cost of
removing an item is therefore bounded byO(1) plus the cost ofdecreasekeyplus the cost
of delmin.

〈 f heap.c〉+�
void f_heap::del_item(f_heap_item x)

{ decrease_key(x,minptr->key); // the minptr now points to x

del_min();

}

Assignment, Iteration, and Copy Constructor: Next comes the assignment operator. In
order to executeS = H we simply step through all the items ofH and insert their key and
information intoS. We must guard against the trivial assignmentH = H .

〈 f heap.c〉+�
f_heap& f_heap::operator=(const f_heap& H)

{ if (this != &H)

{ clear();

for (f_heap_item p = H.first_item(); p; p = H.next_item(p))

insert(p->key,p->inf);

}

return *this;

}

The assignment operator makes use of the two functionsfirst itemandnextitem. They allow
us to iterate over all items of a heap. We use these functions in the assignment operator,
the copy constructor, and theforall items-iteration. The last use forces us to make both
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functions public members of the class. However, we do not list them in the manual and so
they are only semi-public. For this reasonnextitemdoes not check whether its argument is
distinct fromnil.

〈 f heap.c〉+�
f_heap_item f_heap::first_item() const { return node_list; }

f_heap_node* f_heap::next_item(f_heap_node* p) const

{ return p ? p->next : 0; }

The last operation to implement is the copy constructor. It makes a copy of its argument
H . The strategy is simple. For each item ofH we create a single node tree with the same
key and information.

There is a subtle point in the implementation. When a virtual function is applied to an
object under construction then the default implementation of the function is used and not
the overriding definition in the derived class. It is therefore important in the code below to
call the virtual functionscopykey, copyinf andcmpthrough the already existing objectH ;
leaving out the prefixH. would select the default definitions (which do not do anything).

〈 f heap.c〉+�
f_heap::f_heap(const f_heap& H)

{ number_of_nodes = H.size();

minptr = nil;

node_list = nil;

f_heap_item first_node = nil;

for(f_heap_item p = H.first_item(); p; p = H.next_item(p))

{ GenPtr k = H.copy_key(p->key);

GenPtr i = H.copy_inf(p->inf);

f_heap_item q = new f_heap_node(k,i,node_list);

q->right = node_list->next;

if (node_list->next) node_list->next->left = q;

if (minptr == nil) { minptr = q; first_node = q; }

else if ( H.cmp(k,minptr->key) < 0 ) minptr = q;

}

first_node->right = node_list;

node_list->left = first_node;

}
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Manual Pages and Documentation

This chapter is authored jointly with Evelyn Haak, Michael Seel, and Christian Uhrig.

Software requires documentation. In this chapter we explain:

• how to make LEDA-style manual pages,

• how to make a LEDA-style manual,

• and how to write documentations in the style of this book.

14.1 Lman and Fman

Lman and Fman are the LEDA tools for manual production and quick reference to manual
pages. We will discuss Fman at the end of the section. The command

Lman T[.lw|.nw|.h] options

searches for a file with name T.lw, T.nw, T.h, or T (in this order) first in the current directory
and then in the directory LEDAROOT/incl/LEDA and produces a LEDA-style manual page
from it. Thus

Lman sortseq

Lman myproject.lw

produce the manual page of sorted sequences and of myproject, respectively.
The extraction of the manual page is guided by the so-called manual comments contained

in the file-argument of Lman. A manual comment is any comment of the form

/*{\Mcommand ... arbitrary text ... }*/

963
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/*{\Manpage {stack} {E} {Stacks} {S}}*/

template<class E> class _CLASSTYPE stack : private SLIST

{

/*{\Mdefinition

An instance |S| of the parameterized data type |\Mname| is a sequence of

elements of data type |E|, called the element type of |S|. Insertions or

deletions of elements take place only at one end of the sequence, called

the top of |S|. The size of |S| is the length of the sequence, a stack

of size zero is called the empty stack.}*/

void copy_el(GenPtr& x) const { x=Copy(ACCESS(E,x)); }

void clear_el(GenPtr& x) const { Clear(ACCESS(E,x)); }

public:

/*{\Mcreation}*/

stack() {}

/*{\Mcreate creates an instance |\Mvar| of type |\Mname| and initializes

it to the empty stack.}*/

stack(const stack<E>& S) : SLIST(S) {}

~stack() { clear(); }

stack<E>& operator=(const stack<E>& S)

{ return (stack<E>&)SLIST::operator=(S); }

/*{\Moperations 2.5 4}*/

E top() const { return ACCESS(E,SLIST::head());}

/*{\Mop returns the top element of |\Mvar|.\\

\precond $S$ is not empty.}*/

void push(E x) { SLIST::push(Copy(x)); }

/*{\Mop adds $x$ as new top element to |\Mvar|.}*/

E pop() { E x=top(); SLIST::pop(); return x; }

/*{\Mop deletes and returns the top element of |\Mvar|.\\

\precond $S$ is not empty.}*/

int empty() { return SLIST::empty(); }

/*{\Mop returns true if |\Mvar| is empty, false otherwise.}*/

}

\*{\Mimplementation

Stacks are implemented by singly linked linear lists.

All operations take time $O(1)$. }*/

Figure 14.1 A file decorated by manual comments. The file is part of the header file of the data
type stack. Figure 14.2 shows the manual page produced by Lman.

where Mcommand is one of so-called manual commands. We discuss manual commands
in Section 14.2.2. Every manual comment causes Lman to extract part of the manual.
Figures 14.1 and 14.2 show a file augmented by manual comments and the manual page
produced from it.

The layout of the manual page is fine-tuned by the options-argument of Lman. We will
discuss the available options in Section 14.2.8. Options may also be put in a configuration
file Lman.cfgin either the home directory or the working directory. Command line options
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Stacks (stack)

1. Definition

An instanceS of the parameterized data typestack<E> is a sequence of ele-

ments of data typeE , called the element type ofS. Insertions or deletions of

elements take place only at one end of the sequence, called the top ofS. The

size ofS is the length of the sequence, a stack of size zero is called the empty

stack.

2. Creation

stack<E> S; creates an instanceSof typestack<E> and initializes it

to the empty stack.

3. Operations

E S.top() returns the top element ofS.

Precondition: S is not empty.

void S.push(E x) addsx as new top element toS.

E S.pop() deletes and returns the top element ofS.

Precondition: S is not empty.

int S.empty() returns true ifS is empty, false otherwise.

Figure 14.2 The manual page produced from the file in Figure 14.1.

take precedence over options in the working directory which in turn take precedence over
options in the home directory.

Fman is our tool for quick reference to manual pages. The command

Fman T[.lw|.nw|.h] filter

searches for a file with name T.lw, T.nw, T.h, or T (in this order) first in the current directory
and then in the directory LEDAROOT/incl/LEDA and extracts manual information from it.
The information is displayed in ASCII-format. For example,

Fman sortseq insert

Fman sortseq creation

give information about operation insert of type sortseq and about the different ways of
creating a sorted sequence, respectively.

Fman

gives information about Fman and the available filters.

Fman uses Perl [WS90] and Lman uses Perl, LATEX [Lam86], and xdvi.
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Please try out Lman and Fman before proceeding. If they do not work, the error is very
likely to be one of the following (if not, you should refer to the LEDA installation guide):

• One of the required systems Perl, LATEX, and xdvi is not installed.

• The environment variable LEDAROOT is not set to the root directory of the LEDA
system.

• LEDAROOT/Manual/cmd is not part of your PATH.

• LEDAROOT/Manual/tex is not part of your TEXINPUTS.

14.2 Manual Pages

Figure 14.2 shows a typical LEDA manual page. It is produced from the file in Fig-
ure 14.1 by a call of the Lman utility. Observe that the file contains comments starting
with /*{\M... and ending with}*/. They are calledmanual comments. They start with
a so-called manual command, e.g.,Mdefinition or Mop and control the extraction of the
manual page from the header file. There are about twenty different manual commands.
We will discuss them in turn in this section. Before doing so, we justify our decision to
incorporate all manual information into the header files of the LEDA system.

In the early years of the LEDA project we kept the manual page of a data type separate
from its implementation. The manual was contained in a tex-file and the implementation
was contained in an h-file and a c-file. Updates of a data type usually required changes to
all three files and this led to a consistency problem between the three files. The consistency
between h-file and c-file is a minor issue since every compiler run checks it. However, we
found it almost impossible to keep the manual pages consistent with the implementation.
The inconsistencies between manual and implementation had two causes:

• Clerical errors: Frequently, things that were supposed to be identical were different,
e.g., a type was spelledsort_seq in the manual andsortseq in the implementation,
or the parameters of a function were permuted.

• Lack of discipline: We frequently forgot to make changes due to lack of time or other
reasons. We were quite creative in this respect.

In 1994 we decided to end the separation between implementation and manual. We incor-
porated the manual into the h-files in the form of so-called manual comments and wrote
a tool calledLman that extracts the tex-file for the manual page automatically from the
h-file. Every manual comment produces part of the manual page, e.g., the manual com-
ment starting with\Mdefinition produces the definition section of the manual page, and
a comment starting with\Mop produces an entry for an operation of the data type. Such
an entry consists of the return type, an invocation of the operation, and a definition of the
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semantics in the form of a text. Only the latter piece of information is explicitly contained
in the Mop-comment, the other two pieces are generated automatically from the C++-text in
the header file. Experience shows that our decision to incorporate manual pages into header
files greatly alleviates the consistency problem:

• Clerical errors are reduced because things that should be identical are usually only
typed once. For example, the fact that the C++-text in the manual is automatically
generated from the C++-text in the header file guarantees the consistency between the
two.

• Lack of discipline became a lesser issue since the fact that the header file of the
implementation and the tex-file for the manual page are indeed the same file makes it a
lot easier to be disciplined.

Lman produces manual pages in a two-step process. It first extracts a TEX-file from the
header file and then applies LATEX. The first step is directed by the manual commands in the
header file and the second step uses a specially developed set of TEX macros. We discuss
the manual commands in Section 14.2.2 and the TEX macros in Section 14.2.5.

The first phase is realized by a Perl-programlextractthat reads the file-argument and the
options and produces a (temporary) TEX-file of the form:

\documentclass[a4paper,size pt]{article}

\usepackage{Lweb}

\begin{document}

output of lextract

\end{document}

The program lextract is defined in the fileext.nwin LEDAROOT/Manual/noweb.

14.2.1 The Structure of Manual Pages
All manual pages of the LEDA system are organized in one of two ways depending on
whether the page defines a data type or a collection of functions. Since manual pages are
extracted from header files, the corresponding header files are organized accordingly. Ex-
amples of header files for data types are stack.h, sortseq.h, and list.h, and examples of header
files for collections of functions are planealg.h, planegraphalg.h, and mcmatching.h.

All header files for classesfollow the format shown in Figure 14.3. Theheader files for
collections of functionshave no particular structure.

14.2.2 The Manual Commands
We discuss the manual commands in the order in which they are typically used in the header
file of a class.

The Manpage Command: A manual comment of the form

/*{\Manpage {type} {parlist} {title} {varname}}*/

produces the header line of the manual page fortype. The argumentparlist is the list of



968 Manual Pages and Documentation

/*{\Manpage Comment }*/

class DT {

/*{\Mdefinition comment }*/

/*{\Mtypes comment }*/

// type definitions

private:

// private data and functions

public:

/*{\Mcreation comment }*/

// constructors and destructors and their manual entries

/*{\Moperations comment }*/

// operations and their manual entries

};

// friends and their manual entries

/*{\Mimplementation comment }*/

/*{\Mexample comment }*/

Figure 14.3 The generic structure of a header file for a class. Any of the parts may be omitted.

type parameters of the type,title is the title of the manual page, and the optional argu-
mentvarname is used in the manual page as the name of a canonical object of the type. The
argumentparlist is empty if the type has no type parameters. The following comments
produce the header lines for character strings, linear lists, and sorted sequences, respec-
tively.

/*{\Manpage {string} {} {Character Strings} {s}}*/

/*{\Manpage {list} {E} {Linear Lists} {L} }*/

/*{\Manpage {sortseq} {K,I} {Sorted Sequences} {S} }*/

The Manpage command produces the header line for the manual page and defines place-
holders\Mtype, \Mname, and\Mvar. The first placeholder stands fortype, the second
placeholder stands for eithertype or type<parlist> depending on whetherparlist
is empty or not, and the third placeholder stands forvarname. In the last example the
placeholders\Mtype, \Mname, and\Mvar have valuessortseq, sortseq<K,I>, andS,
respectively.

The placeholders can be used instead of their values in later manual comments. This helps
to maintain consistency. The placeholders are also used in the generation of the manual
entries for the constructors and member functions, e.g., in Figure 14.2 all operations are
applied to the canonical stack variableS.

What does lextract do when it encounters a Manpage-command? It records the values of
all placeholders and outputs

\section*{title (type')}

wheretype' is obtained fromtype by quoting all occurrences of the underscore character
(i.e., replacing_ by \_). When LATEX executes this line it will produce the header line of
the manual page. If a manual page is to be included into a larger document, it is convenient
to number the manual pages. The optionnumbered=yes causes the preprocessor to output
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\section{title (type')} \label{title}\label{type}

The labels can be used to refer to the data type in other parts of an enclosing document.

The manual page of a class consists of sectionsDefinition, Types Creation, Opera-
tions, Implementation, andExample; any of the sections may be omitted. Accordingly,
we have the manual commands\Mdefinition, \Mypes, \Mcreation, \Moperations,
\Mimplementation, and\Mexample.

The Mdefinition Command: A manual command of the form

/*{\Mdefinition body }*/

produces the definition part of a manual page. For example,

template <class E>

class list {

/*{\Mdefinition

An instance [[\Mvar]] of class |\Mname| is a ...

}*/

produces

1. Definition

An instanceL of classlist<E> is a ...

The body of a definition comment (and of any of the other comments to come) is an
arbitrary LATEX text. As suggested by the literate programming tools CWEB [KL93] and
noweb [Ram94] we added the possibility of quoting code.Quoted codeis given special
typographic treatment. There are two ways of quoting code:

• By enclosing it between verticals bars (| . . . |), or

• By enclosing it between double square brackets ([[. . .]]).

Quoted code is typeset according to the following rules: first all occurrences of the place-
holders\Mtype, \Mname, and\Mvar are replaced by their values. We call this stepplace-
holder substitution. In the example above this step yields1:

template <class E>

class list {

/*{\Mdefinition

An instance [[L]] of class |list<E>| is a ...

}*/

In a second step we apply what we callC++ to LATEX conversionto quoted code. For code
quoted by double square brackets this means using typewriter font for the quoted code and
for code quoted by vertical bars this produces a math-like appearance, e.g., all identifiers

1 We assume that the Mdefinition command is executed in the context of the Manpage comment for lists given
above, i.e.,L is the name of the canonical list andlist〈E〉 is the type of the list. We make the analogous
assumption for all examples to follow.
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are put into math-italics and<= is typeset as≤. All code in this book is typeset using one
of the two quoting mechanisms.

We give some examples of the quoting mechanisms. Be aware that putting an identifier
between vertical bars is different from putting it between dollar signs except for identifiers
consisting of a single character.

|diff| produces diff
$diff$ produces di f f

|x1| produces x1
$x1$ produces x1
$x$ produces x
|x| produces x

[[diff]] produces diff

Sometimes, one wants to produce vertical bars and/or double square brackets in the out-
put. We provide TeX-macros to this effect. The macros\Lvert, \DLK and\DRK expand to
|, [[, and]], respectively. The TeX-macro\Labs{...} puts its argument between vertical
bars, Lvert and Labs can only be used in math-mode.

We close this paragraph with awarning. The quoting mechanism by vertical bars is not
perfect. In principle one can put any piece of text between vertical bars. The preprocessor
attempts to understand the C++ structure of the text and generates output accordingly. Since
the preprocessor has only limited knowledge of the syntax of C++, it succeeds only in simple
cases:

|diff| produces diff
|diff + x1| produces diff + x1

|diff+x1| produces diff + x1
|list_item| produces list item

|GRAPH<POINT,int>| produces GRAPH<POINT, int>
|mark[v] <= cur_mark| produces mark[v] ≤ cur mark

$|source|(e_0)$ produces source(e0)

The Mtypes and Mtypemember Commands:A manual command of the form

/*{\Mtypes w}*/

produces the header line of the type part of the manual. The argumentw is optional. The
argumentw governs the layout of the entries for the local types of the data type. We will
discuss it below. The manual entries for the local types are produced by Mtypemember
commands. We give an example which is taken from the header file for the LEDA extension
package for higher-dimensional geometry.

/*{\Mtypes 4}*/

typedef ch_Simplex<CHTRAITS,POINT,PLANE>* ch_simplex;

/*{\Mtypemember the item type for simplices of the complex.}*/

typedef ch_Simplex<CHTRAITS,POINT,PLANE>* ch_facet;

/*{\Mtypemember the item type for facets of the complex.}*/
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typedef rc_Vertex<CHTRAITS,POINT>* ch_vertex;

/*{\Mtypemember the item type for vertices of the complex.}*/

produces

2. Types

chsimplex the item type for simplices of the complex.

chfacet the item type for facets of the complex.

chvertex the item type for vertices of the complex.

Each Mtypemember command produces a manual entry for a local type. Each manual entry
is typeset on a line of its own and a two-column layout is followed. There is a column of
width w containing the name of the local type and a column containing the text explaining
the local type. The name of the type is extracted automatically from the type definition
preceding the manual comment.

The Mcreation and Mcreate Commands: A manual command of the form

/*{\Mcreation name w}*/

produces the header line of the creation part of the manual. The argumentsname andw are
optional. If name is present, it is used as the value of the placeholder\Mvar. We recommend
that you define\Mvar already in the Manpage command and keep the possibility to define it
in the Mcreation command for reasons of backward compatibility. The argumentw governs
the layout of the entries for the constructors of the data type. We will discuss it below.
The manual entries for the constructors are produced by Mcreate commands. We give an
example.

/*{\Mcreation}*/

vector();

/*{\Mcreate creates an instance |\Mvar| of type |\Mname|;

|\Mvar| is initialized to the zero-dimensional vector.}*/

vector(int d);

/*{\Mcreate creates an instance |\Mvar| of type |\Mname|;

|\Mvar| is initialized to the zero vector of dimension $d$.}*/

produces (assuming that Mvar stands for v and Mname stands for vector)

3. Creation

vector v; creates an instancev of type vector; v is initialized to the zero-
dimensional vector.

vector v(int d); creates an instancev of typevector; v is initialized to the zero vector
of dimensiond.
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Each Mcreate command produces a manual entry for a constructor. The manual entries are
typeset in the form of a variable declaration for a variable Mvar of type Mname, i.e., for the
default constructor the entry has the form

Mname Mvar;

and for a constructor taking arguments the entry has the form

Mname Mvar(parameter list);

In the second case the parameter list is extracted automatically from the code unit preceding
the manual comment. What is a code unit?

A code unitis a maximal sequence of consecutive non-blank lines not containing a com-
ment. In other words, the line preceding a code unit is either empty or the end of a comment,
the line following a code unit is either empty or the beginning of a comment, and all lines
in a code unit are non-empty and do not belong to a comment. A code unit from which the
preprocessor is supposed to extract a function declaration should contain exactly one such
declaration. The general form for generating an entry for a constructor is therefore:

<empty line or end of a comment>

<code unit>

<zero or more empty lines>

/*{\Mcreate body }*/

The body of the Mcreate command contains the text that explains the constructor. Place-
holder substitution and C++ to LATEX conversion are applied to it. We give some more
examples.

vector(double d, double e)

{ ... inline implementation of constructor ...}

/*{\Mcreate This is okay.}*/

vector(double d, double e, double f)

/*{\Mcreate This is also okay.}*/

{ ... inline implementation of constructor ...}

vector();

vector(int d);

/*{\Mcreate illegal, since code unit contains more

than one constructor.}*/

vector(double d)

{ ... inline implementation of constructor ...}

/*{\Mcreate illegal, since code unit preceding

the manual comment contains no constructor.}*/

vector(long d); /*{\Mcreate illegal, since manual comment

must start on a new line}*/

We still need to discuss the role of the optional argumentw. The layout for the manual
entry of a constructor follows either the two-column format shown in Figure 14.4 or the
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declaration description
〈 declwidth 〉〈 createtextwidth 〉

Figure 14.4 The two-column layout for constructors.

declaration
〈 textwidth 〉

description
〈 createtextwidth 〉

Figure 14.5 The two-row layout for constructors.

two-row format shown in Figure 14.5. The argumentw defines the value ofdeclwidth. The
default value of declwidth is 40% of the textwidth. The value ofcreatetextwidthis defined
by

createtextwidth= textwidth− declwidth.

We use two-column layout if the declaration is short enough to fit into a box of width
declwidth and use two-row layout otherwise. The argumentw is either a pure number or a
number followed by one of the TEX units of length (mm, cm, in, pt, or em). A missing unit
is taken to be cm, i.e., 3.2 is equivalent to 3.2cm.

The Mdestruct Command: Mdestruct applies to the destructor of a class.

~vector();

/*{\Mdestruct The destructor ...}*/

produces

∼vector() The destructor ...

It is customary in LEDA to produceno manual entry for the assignment operator, the
copy constructor, and the destructor of a class because the semantics of these operations is
defined in a uniform way for all LEDA types (see Section 2.3) and hence there is no need
to define them again for each data type. In fact, it would be confusing. Think twice before
you break this rule.

We now come to the section for the operations of a data type. It is started by a Mopera-
tions comment.

The Moperations Command: A comment of the form

/*{\Moperations a b }*/

generates the header line of the operations part. The length argumentsa andb are optional.
An entry in the operations part is displayed in either a three-column layout as shown in
Figure 14.6 or a two-row layout as shown in Figure 14.7. The values oftypewidthand
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return type function call description
〈 typewidth 〉〈 callwidth 〉〈 descriptwidth 〉

Figure 14.6 The three-column layout for the operations of a data type.

return type function call
〈 typewidth 〉〈 longcallwidth 〉

description
〈 descriptwidth 〉

Figure 14.7 The two-row layout for the operations of a data type.

callwidth are set toa andb, respectively, and the value ofdescriptwidthis defined by the
equation

descriptwidth= textwidth− typewidth− callwidth.

We choose the three-column layout if the function call fits into a box of width callwidth and
the two-row layout otherwise2. If the return type does not fit into a box of width typewidth,
we combine the return type and the function call into a single unit and attempt to put it
into a box of width typewidth+ callwidth. If the combined unit fits, we use a modified
three-column layout, if it does not fit, we use a modified two-row layout.

An operation of a data type is either a member or a friend. In either case it can be a
function or an operator. Operators may be binary or unary. We have a manual command for
each case. The existence of distinct manual commands for the distinct cases is a historical
relict. The current version of the extractor knows the syntax of C++ sufficiently well to
be able to distinguish the cases without guidance by the manual command; this was not the
case for an earlier version of the extractor. We find that the use of distinct manual commands
increases readability.

The Mop Command: The Mop command applies to member functions of a data type. For
example,

list_item append(E x);

/*{\Mop appends a new item \Litem{x} to list |\Mvar| and

returns it

(equivalent to |\Mvar.insert(x,\Mvar.last(),after)|).}*/

generates (assuming that Mvar has value L)

list item L.append(E x) appends a new item〈x〉 to list L and returns it
(equivalent toL.insert(x, L.last(), after)).

2 In earlier versions of the preprocessor the choice between the two layout styles had to be done manually. We
therefore had two versions of each manual command. The standard version selected three-column layout and the
version with an appended character “l” selected two-row layout. You can still find manual commands Mopl and
Mfuncl in many LEDA header files.
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Note how the content of the first two columns is extracted from the code unit preceding
the manual comment. Also note that we use member-function-call-syntax for the second
column and that the function is applied to the canonical object of the type (which is the
value of placeholder Mvar). We give some more examples.

list_item append(const E& x);

/*{\Mop appends a new item \Litem{x} to

list |\Mvar| and returns it\\

(equivalent to |\Mvar.insert(x\,Mvar.last(),after)|).}*/

also produces the manual entry above. This reflects our view that a const-reference-parameter
is equivalent to a value-parameter. The optionconstref=yes does not suppress const-ref
pairs. The next function is long and hence is typeset in two-row layout.

list_item insert(E x, list_item it, int direction = after);

/*{\Mop inserts a new item \Litem{x} after or

before item |it|. }*/

produces (assuming that Mvar has value L)

list item L.insert(E x, list item it, int direction = after)

inserts a new item〈x〉 after or before itemit.

In either layout style it may happen that the return type does not fit into a box of width
typewidth. In this case we combine return type and function call into a single unit for which
we allot a box of width typewidth + callwidth. For example,

two_tuple<int,int> strange();

/*{\Mop a strange function. }*/

produces (assuming that Mvar has value L)

two tuple<int, int> L.strange() a strange function.

The Mbinop Command: Mbinop applies tobinary operatorsdefined as member func-
tions.

integer operator+(const integer& y);

/*{\Mbinop returns |\Mvar + y|. }*/

produces (assuming that Mvar has value x)

integer x + y returnsx + y.

There are two facts worth noting about this output. First, we use operator-call-syntax for
the second column. Second, we suppress the type of the argumenty. The rule is as follows.
For an operator of classT the type of any value argument of typeT is not shown. The
optionpartypes=yes turns off this behavior.
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The Munop Command: Munop applies tounary operatorsdefined as member functions.

integer operator++(){....}

/*{\Munop returns the value of |\Mvar| and increments it.}*/

produces (assuming that Mvar has value x)

integer ++x returns the value ofx and increments it.

We put the operator applied to the canonical variable into the second column. Of course,
unary operators are typeset as either prefix or postfix operators as prescribed by the syntax
of C++.

The Marrop Command: Marrop applies to thearray access operator.

E& operator[](list_item it) { ... return ... }

/*{\Marrop returns a reference to the

entry |it| of |\Mvar|.}*/

produces (assuming that Mvar has value L)

E& L[list item it] returns a reference to the entryit of L.

The Mfunop Command: Mfunop applies to thefunction call operator.

string operator()(int i, int j) const { return sub(i,j); }

/*{\Mfunop returns the substring of |\Mvar| ... }*/

produces (assuming that Mvar has value s)

string s(int i, int j) returns the substring ofs ...

The Mstatic Command: Mstatic applies tostatic member functions. For example, the
type bigfloat has a static memberround modethat determines the current rounding mode.
A static member functionset round modeis used to set the rounding mode.

static void set_round_mode(rounding_modes m =TO_NEAREST);

{round_mode = m;}

/*{\Mstatic sets |round_mode| to |m|.}*/

produces (assuming that Mname has value bigfloat)

void bigfloat::set roundmode(roundingmodes m= TO NEAREST)

setsround modeto m.
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The Mfunc Command: Mfunc applies tonon-member functionsof a data type.

friend integer abs(const integer& x);

/*{\Mfunc returns the absolute value of |x|.}*/

produces

integer abs(integer x) returns the absolute value ofx.

Note that thefriend qualifier does not appear in the manual. After all, it has nothing to do
with the semantics of the operation but is only an information for the compiler.

The Mbinopfunc Command: Mbinopfunc applies tobinary operatorsthat are non-member
functions. You have probably got the rule by now. Commands ending with op apply to
members and commands ending with func apply to non-members.

friend string operator+(const string& x, const string& y);

/*{\Mbinopfunc returns the concatenation of |x| and |y|.}*/

friend ostream& operator<<(ostream& O, const string& s);

/*{\Mbinopfunc writes string |s| to output stream |O|. }*/

produces

string x + y returns the concatenation ofx andy.

ostream& ostream& O � s writes strings to the output streamO.

The Munopfunc Command: Munopfunc applies tounary operatorsthat are nonmember
functions.

friend integer operator-(const integer& x)

/*{\Munopfunc unary minus ... }*/

produces

integer −x unary minus ...

The Mconversion Command: Mconversion applies touser-defined conversion operators.
The following definition within class integer

operator rational()

/*{\Mconversion converts an |\Mtype| to a rational.}*/

produces (assuming that Mvar has value x)

rational x converts anintegerto a rational.
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Invisible Functions: Sometimes there is the need to generate a manual entry for a function
or operator that does not exist. A typical situation is as follows. A typeA is derived from
a type B and inherits a function fromB. We want the function to appear in the manual
page of typeA but we do not want the function to appear in the header file (because typeA
inherits it and including it in the header file would obscure the situation). The solution is to
put the function inside a comment, e.g.,

/* inherited

void sort_edges() { graph::sort_edges(); }

*/

/*{\Mop the edges of $G$ are sorted increasingly according

to their contents. }*/

The begin and the end of the comment must be on separate lines. The starting line may
contain a text that explains the situation.

Code Units with More than One Function Definition: The restriction that a code unit
contains only one function definition is sometimes unnatural. An example is two closely
related functions for which one wants to produce only one manual entry.

friend bool operator==(const string& x, const char* y);

friend bool operator==(const string& x, const string& y);

/*{\Mbinopfunc true iff $x$ and $y$ are equal.}*/

produces

bool string x == string y true iff x andy are equal.

Another example is conditional definitions, e.g., the access function in the array data type
which depends on the compiler flag LEDACHECKING OFF.

#if defined(LEDA_CHECKING_OFF)

E& operator[](int x) { return LEDA_ACCESS(E,v[x-Low]); }

#else

E& operator[](int x) { return LEDA_ACCESS(E,entry(x)); }

#endif

/*{\Marrop returns $A(x)$.\\

\precond $a\le x\le b$. }*/

produces (assuming that Mvar has value A)

E& A[int x] returnsA(x).
Precondition: a ≤ x ≤ b.

If a code unit contains more than one function definition our preprocessor attempts to extract
thelastdefinition. It outputs the extracted definition on standard output (except with option
warnings=no) and asks for an acknowledgment (except with optionack=no).
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The Mimplementation Command: A command of the form

/*{\Mimplementation body}*/

produces the header line of the implementation part and typesets body. For example,

/*{\Mimplementation The data type |\Mtype| is realized

by doubly linked linear lists. All operations take

constant time except

for the following operations: |search| and |rank|

take linear time $O(n)$, ...

}*/

produces (we assume here that the implementation part is preceded by four other manual
parts, usually, definition, types, creation, and operations)

5. Implementation

The data typelist is realized by doubly linked linear lists. All operations take constant time
except for the following operations:searchandrank take linear timeO(n), ...

The Mexample Command: The Mexample command is used to produce the header line
of the example part and to include program code into the manual. The simplest way to
include program code is to use the verbatim environment of LATEX.

/*{\Mexample The following little example illustrates

the list data type.

\begin{verbatim}

#include <LEDA/list.h>

main()

{

list<string> L;

L.append("hello world");

}

\end{verbatim} }*/

produces

6. Example

The following little example illustrates the list data type.

#include <LEDA/list.h>

main()

{

list<string> L;

L.append("hello world");

}
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The Mtext Command: The Mtext command can be used to add arbitrary text to the man-
ual. For example,

/*{\Mtext

\headerline{Additional Operations for two-dimensional Points}

The following operations are only available for points

in two-dimensional space.

We will not mention this precondition in the sequel.

}*/

produces

Additional Operations for two-dimensional Points

The following operations are only available for points in two-dimensional space. We will
not mention this precondition in the sequel.

Generally,

/*{\Mtext body }*/

adds body to the document. The body is subject to placeholder substitution and C++ to
LATEX conversion. The Mtext command can be used to include arbitrary LATEX commands
into the output of the preprocessor. We did this already for the header line command in the
example above. Another frequent use of the Mtext command is to change the values of the
parameters governing the layout. For example

/*{\Mtext

\settowidth{\typewidth}{|void|}

\addtolength{\typewidth}{\colsep}

\computewidths

}*/

sets the width of the first column to the width ofvoid plus the value of colsep, where colsep
is predefined as 1.5em. The command\computewidths causes the recomputation of the
dependent variable descriptwidth.

The Moptions Command: The Moptions command allows us to include preprocessor op-
tions directly into the header file. For example, the header file for LEDA’s window type
contains

/*{\Moptions

usesubscripts=yes

}*/

and hence this section of the LEDA-manual is typeset with subscripts, see also Section 14.2.4.

The Msubst Command: The Msubst command allows us to define additional placehold-
ers. For example,
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/*{\Msubst

int_type integer

quot_type rational

}*/

introduces the placeholdersint_type andquot_typewith valuesinteger andrational,
respectively.

14.2.3 Warnings and Acknowledgments
The preprocessor issues warnings and error messages and asks the user to acknowledge
them. With the optionack=no no acknowledgments are necessary and the optionwarnings=no

suppresses the warnings. One can also suppress warnings for a single manual comment,
e.g.,

/*{\Moptions nextwarning=no }*/

point head();

point start();

/*{\Mop returns the start point of |\Mvar|}*/

suppresses the warning that there is more than one function definition in the current code
section. We recommend running Lman withwarnings=yes andack=yes and using the
mechanism above to turn off warnings individually.

14.2.4 Subscripts
Sometimes program variables are numbered and it would be nice to typeset the numbers as
subscripts. The optionusesubscripts=yes does exactly this. Within the context of this
option|x0| is typeset asx0 and|x11| is typeset asx11. Note that the subscript rule is
applied only to identifiers consisting of a single character. Thus|diff1| is still typeset as
diff1.

14.2.5 TEX macros
We defined a collection of TEX-commands that facilitate the production of manual pages;
they are contained inMANUAL.mac in LEDAROOT/Manual/tex.

Many data types in LEDA are defined in terms of items. We have adopted the convention
that items are enclosed in angular braces. The command\Litem produces items. It takes
a single argument and encloses it in angular braces. The argument is typeset in math-
mode, i.e.,\Litem{x} produces〈x〉, \Litem{x,y} produces〈x, y〉, and\Litem{diff}
produces〈di f f 〉. The last example shows that identifiers of length more than one should
be enclosed in vertical bars, e.g.,\Litem{|diff|} produces〈diff 〉.

The wordPreconditionappears frequently in manual pages;\precond produces it. The
macro\CC produces C++. The command\headerline{arg} produces a header line,
i.e., it prints its argument in boldface and disallows pagebreaks after the header line. The
commands\DLK and\DRK produce[[ and]], respectively.

Vertical bars require some care. Recall that vertical bars have a special meaning (they
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bracket C++ text) and therefore we need to make special provisions to produce vertical bars
in LATEX-text produced by our preprocessor. The command\Lvert expands to a vertical
bar, i.e., the preprocessor leaves it alone and its TEX-definition is \def\Lvert{|}. A
frequent use of vertical bars in mathematical text is to denote absolute values. The command
\Labs produces absolute values, e.g.,$x + \Labs{|diff|} + z$ producesx+|diff |+z.
The commands\Lvert and\Labs can only be used in math-mode, i.e., in order to produce
a | within text you need to write$\Lvert$.

MANUAL.mac also defines the LATEX environmentmanual. This environment sets parindent
to zero, parskip to 14pt and increases baselineskip slightly above its standard value. The
manual is typeset in this environment.

The file MANUAL.pagesize in LEDAROOT/Manual/tex defines textwidth, textheight,
topmargin, evensidemargin, and oddsidemargin. Values which work well with European
a4-size paper and US legal-size paper are predefined in this file.

14.2.6 Applying Lman to Web-Files
Followers of literate programming do not split their implementations into h-files and c-files
but combine them into a single file. This causes no problem for Lman as it ignores all but
the manual commands and the code units preceding them.

A problem may arise if the web-system in use allows the user to put formatting instruc-
tions into the code chunks as, for example, CWEB does. In this case the manual extractor
must purge the code of formatting instructions. The standard version of ext knows how to
remove CWEB’s formatting instructions. In order to adapt the manual extractor to another
web-system which allows formatting instructions in code chunks you need to edit the code
chunk<purge code unit. . .> in ext.nw. We have used Lman successfully on CWEB, noweb,
and Lweb-files.

14.2.7 Redirecting Output
Lman and Ldoc write the extracted manual page to the fileoutfile. In the case of Ldoc
the default value ofoutfile is equal tobasename.man wherebasename.lw is the input
file to Ldoc. In the case of Lman the outfile is some internal file. You may redirect the
output to a different file by assigning tooutfile in an Moptions command, e.g., after

/*{\Moptions outfile=type.man }*/

the output will be written to filetype.man. This feature is useful for at least two purposes.
The first use is to generate several manual pages from the same source. This can be

achieved by always directing the output to the appropriate man-file. There is a small incon-
venience: LATEX expects manual pages to be enclosed in the manual environment. However,
the required\begin{manual} and\end{manual} commands are generated automatically
only for the default outfile. So one needs to write:

/*{\Moptions outfile=type.man }*/

/*{\Mtext \begin{manual} }*/

now come the commands than generate the manual

/*{\Mtext \end{manual} }*/
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The second use of redirecting output is to rearrange the material within a single manual
page. It is conceivable that one wants to use a different order of presentation in the manual
page and in the implementation. Assume that the manual consists of two parts and that
we want to arrange the two parts in reverse order in the manual and in the documentation.
Write:

\section{The Manual Page}

\begin{manual}

\input{part1.man}

\input{part2.man}

\end{manual}

\section{Code}

/*{Moptions outfile=part2.man }*/

the stuff that goes into part 2

/*{Moptions outfile=part1.man }*/

the stuff that goes into part 1

14.2.8 The Lman Options
The behavior of Lman can be fine-tuned by options. A callLman without arguments
gives a short survey of all available options. Options are specified in assignment syntax
variable=value. There must be no blank on either side of the equality sign. In the list of
options to follow we list the default value of each option first.

size=f12, 11, 10g: Determines the font size.

constref=fno, yesg: Determines how const-ref parameters are displayed. With the no-
option a const-ref parameterconst T& x is displayed as a value parameterT x and with
the yes-option it is displayed in full.

partypes=fno, yesg: Determines how parameters of unary and binary operators are dis-
played. Consider, for example, an operator+ of a class number. With the no-option the op-
eratoroperator+(number x, number y) is displayed asx + y and with the yes-option
it is displayed asnumber x + number y.

numbered=fno, yesg: Determines whether the header line of the manual page is num-
bered. You probably want it numbered when the manual page becomes part of a larger
document.

title=fyes, nog: If title is set to no, the manpage comment produces no output.

warnings=fno, yesg: Determines whether Lman gives warnings. You probably want to use
the no-option when you inspect LEDA manual pages and the yes-option when you design
manual pages yourself.

ack=fno, yesg: Determines whether Lman asks for acknowledgments of warnings.

usesubscripts=fno, yesg: Determines whether variables consisting of a single character
followed by a number are displayed as subscripted variables.
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filter=fall, signatures, definition, creation, operations, implementation, example, op-
nameg: Determines which part of the manual page is shown. The all-option shows the
complete manual page, the signature-option shows the signatures of all operations of the
data type, the next five options show only the corresponding section of the manual page,
and the opname-option shows only the operation with the same name.
outfile=fstringg: Determines whether the TEX-file generated is only written on a tempo-
rary file (the default option) or on the file with name string.

latexruns=f1, 0, 2g: Determines the number of LATEX runs used to produce the manual
page. LATEX needs to be run twice if the manual page contains cross references.

xdvi=fyes, nog: Determines whether the manual page is displayed by xdvi. If latexruns is
at least one and xdvi is no then the resulting dvi-file is copied into file T.dvi in the working
directory.

Lman can be customized by putting options in a file Lman.cfg in either the home direc-
tory or the working directory. Command line options take precedence over options in the
working directory which in turn take precedence over options in the home directory.

14.3 Making a Manual: The Mkman Command

Many manual pages combined into a single document make a manual. We explain a simple
mechanism to produce LEDA-style manuals. Assume that we want to produce a document
consisting of a title page, an introduction, and the manual pages of types A and B. Assume
also that the manual information about types A and B is contained in files with extension
ext3 in a common directorydir and that the working directory contains a master TeX-file
as shown in Figure 14.8 and also a fileIntroduction.tex. The command

Mkman dir ext

cycles through all filesf.ext in dir and calls

lextract f.ext /extract/f.tex

for each one of them. This creates filesextract/A.tex andextract/B.tex after which
the master file may be processed with LATEX.

All header files of LEDA are contained in the directory LEDAROOT/incl/LEDA and the
master file for manual production is called MANUAL.tex and is contained in the directory
LEDAROOT/Manual/MANUAL. Thus an execution of

Mkman $LEDAROOT/incl/LEDA h

latex MANUAL.tex

in the latter directory produces the dvi-file of the LEDA manual. As LEDAROOT/incl/LEDA
and h are the default values of the first and second argument of Mkman, respectively, the

3 Typical extensions are h, nw, and lw.
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\documentclass[12pt,a4paper]{book}

\usepackage{Lweb}

\begin{document}

\title {A Simple Manual}

\maketitle

\input{Introduction.tex}

\input{extract/A.tex}

\input{extract/B.tex}

\end{document}

Figure 14.8 A master tex-file for a simple manual.

#!/bin/csh -f

if ($1 == "") then

set source = $LEDAROOT/incl/LEDA

set ext = h

else

set source = $1

if ($2 == "") then

set ext = h

else

set ext = $2

endif

endif

\rm -r -f extract

mkdir extract

echo Extracting manual pages ...

echo " "

foreach f ($source/*.$ext)

echo "extracting manual from $f"

lextract $f extract/`basename $f .$ext`.tex

end

Figure 14.9 The shell script Mkman for manual production.

first line may actually be abbreviated to Mkman. Figure 14.9 shows the shell script that
realizes Mkman.

14.4 The Manual Directory in the LEDA System

The subdirectory Manual of the LEDA directory contains all files that are relevant for man-
ual production, see Figure 14.10.
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LEDAROOT

|

Manual

________________|__________________

| | | | | |

DVI MANUAL cmd contrib noweb tex

Figure 14.10 The subdirectory Manual of the LEDA directory.

• MANUAL contains the tex-sources for the LEDA-Manual.

• DVI contains the dvi-files obtained by applying Lman to all header files of the LEDA
system. The dvi-files in DVI are accessed by the online manual viewer xlman.

• cmd contains the commands Lman, Mkman, . . . .

• contrib contains sources of contributions made by persons outside the LEDA group.

• noweb contains the noweb-sources for all programs used for manual production. In
particular, the noweb-fileext.nw contains the Perl programs and shell scripts for
lextract, Lman, Mkman, . . . .

• tex contains the TEX files required for manual production.

14.5 Literate Programming and Documentation

Many data types and algorithms of the LEDA system are documented in the literate pro-
gramming system noweb [Ram94] and its LEDA-dialect Lweb. Ldoc and lweave are our
tools to turn noweb- and Lweb-files into nice looking documents.

Literate programming advises to integrate specification, implementation, and documen-
tation into a single file and to use tools (usually calledtangleandweave) to extract program
and to typeset documentation. Among the many literate programming systems we have
used CWEB[KL93] and noweb4: our current favorite is noweb and its LEDA-dialect Lweb.
We used Lweb to produce this book.

14.5.1 Noweb and Lweb
We start with a brief review of noweb, see also Section 2.7. Noweb provides commands
notangleandnoweavethat can be applied to so-called noweb-files. A noweb-file foo.nw
contains program source code interleaved with documentation. When notangle is given a
noweb-file, it extracts the program and writes it to standard output, and when noweave is
given a noweb-file it produces a LATEX source on standard output.

4 noweb can be obtained by anonymous ftp from CTAN, the Comprehensive TeX Archive Network, in directory
web/noweb.
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______ noweave________ LaTeX source

|

|

foo.nw

|

|______ notangle_______ program

A noweb-file is a sequence ofchunks. A chunk is either adocumentation chunkor acode
chunk. Documentation chunks begin with a line that starts with an at-sign (@) followed by
a space or newline. Code chunks begin with

<<code chunk name>>=

on a line by itself. Chunks are terminated by the beginning of another chunk or by the end
of the file. Several code chunks may have the same name. Notangle concatenates their
definitions to produce a single chunk. Code chunks contain source code and references to
other code chunks.

Notangle extracts code by expanding one code chunk. In the expansion process code
chunk definitions behave like macro definitions, i.e., if the definition of chunk XXX contains
references to other code chunks then these chunks are also expanded, and so on.

Noweave produces a LATEX source from a noweb-file. To this end it copies the docu-
mentation chunks verbatim to standard output (except for quoted code, see below) and it
typesets code chunks in typewriter font. Note that this implies that documentation chunks
starting with an @-sign followed by a newline-character start a new paragraph in the sense
of LATEX and that documentation chunks containing non-white stuff on the same line as the
@-sign do not. Code may bequotedwithin documentation chunks by placing double square
brackets ([[. . .]]) around it. Noweave typesets quoted code in typewriter font.

This completes our review of noweb.Lweb is our local dialect of noweb which we de-
veloped for the production of this book and for the documentation of the LEDA system.
Lweb-files have extension.lw. Figure 14.11 shows an Lweb-file and Figure 14.12 shows
the result of applying lweave to it. The differences between Lweb and noweb are the fol-
lowing:

• Code can be quoted by either double square brackets ([[. . .]]) or vertical bars
(| . . . |). Code quoted in double square brackets is set in typewriter font and code
quoted in vertical bars is typeset in mathitalics font. This was already discussed in
Section 14.2.2.

• Program examples can be included in documentation chunks by lines that start with
@c. The text after the program example must start with an @-sign followed by a
space-character or a newline-character.

• Empty lines in program chunks generate somewhat less vertical space than an empty
line in a verbatim-like environment. This makes code chunks look better.

• Page breaks are forbidden between the first few and the last few lines of a code chunk.
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_______lweave_____________ LaTeX source

|

|

foo.lw

|

|______ notangle___________ program

Lweb-files have extension .lw. Notangle applies also to Lweb-files and noweave is re-
placed by lweave; lweave is realized as a pair of pre- and postprocessor to noweave. The
preprocessor handles the code quoted by vertical bars and the program examples and the
postprocessor takes care of empty lines in code chunks. The implementation of lweave is
part of ext.nw in LEDAROOT/Manual/noweb.

14.5.2 Documentation
Many classes and programs of the LEDA-system are documented using Lweb and this book
is also an Lweb document. We recommend having at least the following major sections in
a documentation:

• A preamble consisting of the title page, the table of contents, and maybe an abstract
and an introduction.

• A manual page as discussed in the previous section.

• A section containing the header file augmented by manual comments so as to allow
manual extraction.

• A section containing the c-file.

• A section containing test, example, or demo programs.

Figure 14.13 shows a simple Lweb-file stack.lw having the recommended structure. More
substantial examples can be found in the subdirectory Lweb of the LEDAROOT directory.

14.5.3 Ldoc
Ldoccombines the functionality of Lman and lweave. A call

Ldoc XXX[.lw] options

produces a file XXX.man in the working directory and a temporary file temp.lw. The for-
mer file contains the manual and is essentially the file produced by Lman (except for the
preamble and postamble required by LATEX). The Lman-options constref, partypes, warn-
ings, ack, and usesubscripts apply. The file temp.lw is obtained by the deletion of all manual
comments (except for Mpreamble comments) from the input file. The optiondelman=no

suppresses the deletion. The temporary file temp.lw is then sent through lweave and the
result is moved to XXX.tex in the working directory.

We introduced an additional manual comment for the use with Ldoc, the Mpreamble
comment. As far as Lman is concerned it is equivalent to the Mtext command, i.e., its
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\documentclass[a4paper]{article}

\usepackage{Lweb}

\begin{document}

\subsubsection{Jordan Sorting}

We proceed to describe an implementation. Its global

structure is given by:

@c

<<include statements>>;

<<typedefs and global variables>>;

<<class point>>;

<<class bracket>>;

<<procedure Jordan sort>>;

@ As outlined above, we construct three data structures

simultaneously: the sorted list of the numbers processed so

far, call it |L|, and the

upper and lower tree of brackets. Each item of the

list |L| contains its abscissa (a |float|) and pointers

to the brackets in the two trees containing it.

<<class point>>=

class point{

private:

float abscissa;

bracket* bracket_in_upper_tree;

bracket* bracket_in_lower_tree;

public:

<<member functions of class point>>

}

@ A node of either tree corresponds to a bracket.

A bracket needs to know its two endpoints

(as items in the list |L|), its sorted sequence

of sub-brackets (a |sortseq<bracket*,>| which we

abbreviate as |children_list|),

and its position among its siblings (a |seq_item|).

\end{document}

Figure 14.11 An Lweb file: It is part of the section on sorted sequences of this book.

body is included into the produced tex-file after placeholder substitution and C++ to LATEX
conversion. Ldoc produces two output files, namely XXX.man and temp.lw. The output of
Mpreamble commands is put into the latter file instead of the former. A typical use of the
Mpreamble command is the definition of a LATEX-command whose body should be subjected
to C++ to LATEX-conversion. The following example is taken from LEDA’s georep class.
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We proceed to describe an implementation. Its global structure is given by:

〈include statements〉;
〈typedefs and global variables〉;
〈class point〉;
〈class bracket〉;
〈procedure Jordan sort〉;

As outlined above, we construct three data structures simultaneously: the sorted list of
the numbers processed so far, call itL, and the upper and lower tree of brackets. Each
item of the listL contains its abscissa (afloat) and pointers to the brackets in the two trees
containing it.

〈class point〉�
class point{

private:

float abscissa;

bracket* bracket_in_upper_tree;

bracket* bracket_in_lower_tree;

public:

〈member functions of class point〉
}

A node of either tree corresponds to a bracket. A bracket needs to know its two endpoints
(as items in the listL), its sorted sequence of sub-brackets (asortseq<bracket∗, > which
we abbreviate aschildrenlist), and its position among its siblings (aseqitem).

Figure 14.12 The result of applying lweave + latex to the file of Figure 14.11.

/*{\Mpreamble

\newcommand{\grsummary}

{The class |geo_rep| is used to represent points, hyperplanes,

directions, and vectors. The latter ...}

}*/

14.5.4 The Implementation of Ldoc
Ldoc is based on the commandslextract, ldel, andweave, where weave is noweave for
noweb and lweave for Lweb.

foo.[lw|nw|w] - ldel - foo-del.[lw|nw|w] - weave - foo.tex

| |

lextract \input{foo.man}

| |

foo.man ----------------------------------------------

Ldoc first uses lextract to extract the manual and ldel to remove the manual comments, it
then applies the appropriate weave command to the output of ldel, and it finally applies
LATEXand xdvi to the resulting file. All Lman options apply. In order to try out Ldoc copy
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\documentclass[a4paper]{article}

\usepackage{Lweb}

\begin{document}

\title{Stack\\ |stack| }

\author{Kurt Mehlhorn}

\maketitle

\tableofcontents

\section{The Manual Page of Type Stack}

\input{stack.man}

@ \section{The Header File}

<<stack.h>>= the file of Figure 1.2

@ \section{The Implementation}

<<stack.c>>= ...

@ \section{A Test Program}

<<stack-test.c>>= ...

@
\end{document}

Figure 14.13 The generic structure of a documentation.

sortseq.lw from LEDAROOT/Lweb to a directory where you have write-permission and
then call Ldoc sortseq.
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.lw, 987
exportC, 198
<< for class window, 821
>> for class window, 821

(a, b)-tree, 126,seesparse array
ABACUS, 11
abstract data type, 16
access to attributes, LEDA rule, 30
acyclic graph, 244
ACYCLICSHORTESTPATH, 322, 333
adjacency list, 272, 511
affine transformations, 601–604
AGD, 11
algebraic numbers,seenumber types
Algorithmic Solutions Software GmbH, 8
algorithms,seegeometry algorithms,seegraph

algorithms,seesorting
alias method, 83
ALL PAIRSSHORTESTPATHS, 323
alternating path, 363
amortized time bound, 24
angle, 600, 666
animation,see window, see GraphWin
animation of strongly connected components, 306
annulus, 703
anonymous object, 16,seeobject, 21
area

of a simplex, 597
of a triangle, 593
of polygon, 764

arithmetic,seenumber types
arithmetic demand of geometric computations, 632
arithmetic demand of network algorithms

assignment algorithm, 438
general discussion, 286–292
maximum flow algorithm, 487
weighted matching algorithms, 419, 431

array, 73–77

binary search, 77
boolean, 77
edge array, 245
implementation, 924
index out of range, 74
node array, 245
permute, 77
set operations, 78
sorting, 77

articulation point, 277, 300
assert, 54
assignment

basics, 32–36
for handle types, 939
for vectors, 118
implementation, 920
LEDA rule, 33

assignment problem,seematchings in graphs
associative array,seesparse array
augmenting path, 363
AVL-tree, 126,seesparse array

BALABANSEGMENTS, 734
balls and bins experiment, 94
barycentric coordinates, 658
BB[α]-tree, 126,seesparse array
Bellman–Ford shortest path algorithm, 338, 345
BELLMANFORD, 322, 349
BELLMANFORD B, 339
BF GEN, 344
BFS, 295
biconnected component, 299
biconnected graph, 277, 299
BICONNECTEDCOMPONENTS, 301
bidirected graph, 275, 501–506

vs undirected graph, 574
bidirectedness, test for, 279
bigfloat, seenumber types

1002



Index 1003

bigints,see integer
bin tree, 917
binary heap, 149,see pqueue
binary tree, 126,seesparse array, 917
binomial tree, 953
bipartite cardinality matching, 360,seematchings in

graphs
bipartite graph, 277
bitmap, 826,see window
BL PLANAR, 507, 529, 537, 561
blossom, 398
boolean arrays, 77
boolean operations on polygons, 762
Booth–Lueker planarity test, 526
boundary cycle, 516
bounded queue, 60
bounded region wrt. geometric object, 598
bounded stack, 60
braided lines, 110, 610
breadth-first search, 252, 295
bucket heap, 149,see pqueue
bucket sort for lists, 66, 71
buffering drawing operations,see window
built-in types, 931
bush form, 521
button, 831,seepanel

cache effects, 69, 268
cache miss, 70
callwidth, 974
cardinality matching,seematchings in graphs
Cartesian coordinates, 583
C++ class and data type, 41–44
CGAL, 11, 635
CHECK MAX CARDMATCHING, 396
CHECK MAX FLOW, 448
CHECK MCB, 362
CHECK MWBM, 416
checkreversalinf, 503
checkweights, 287
checked priority queue, 165
Chiba et al. embedding algorithm, 529
circle, 585

side of, 598
clipping regions,see window
cmpkey, 917
col, seecolor
collinear, 593
color, 817,see also window
compare

and linear order, 48
and linearly ordered type, 45
implementation, 916, 917

compare function, 50
instantiation of, 94

compare object
definition, 50
example of use, 665, 742

compareby angle, 600, 666
compilation flag, 57
complete graph, 263
COMPONENTS, 299
components in graphs, 296
compressed boolean array, 77

computeS, 289
computes, 289
concrete class, 909
connected graph, 277, 299
constructor

as member function, 43
implementation, 920, 924
of type parameter, 45

container type, 26
convex hulls, 637–656

3d-hull, 855
arbitrary dimension, 790
demo, 638
display of 3d-hull, 855
divide-and-conquer algorithm, 656
extreme point, 639
incremental algorithm, 643
randomized incremental algorithm, 648
running time, 652, 653
sweep algorithm, 640

CONVEXHULL, 640, 651
IC, 643
RIC, 651
S, 640

copy, 32–36
deep copy, 35
LEDA concept, 35
LEDA rule, 33, 34, 49
shallow copy, 35

copy constructor
as member function, 43
implementation, 920
of type parameter, 45

CopyGraph, 243, 274
copying a graph, 243
correctness,seeprogram checking, number types,

rational geometry kernel, errors,seeprogram
checking

design goal, 12
exact geometric computations, 582
preconditions, 22
rational geometry kernel, 582
safe use of floating point kernel, 632

cost of a path, 317
creation,seeobject
CRUST, 5, 705
curve reconstruction, 5, 705
CUT VALUE, 492
cycle

minimum cost to profit ratio, 354
negative, 317

cyclic adjacency list, 511

d3 window, 855
d array, seesparse array
danger of floating point arithmetic,seeerrors
dart, 658
data member, 41
data structure,seedata type
data type

basics, 16–26
built-in type, 20
C++ class, 41
collection of items, 28
default linear order, 48
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handle type, 937
hashed type, 45, 49
implementation,seeimplementation of . . .
implementation parameter, 51
instantiation, 17, 46
item type, 26
large type, 929
linearly ordered type, 45, 48
non-primitive type, 32, 34
parameterized type, 17, 909
pointer type, 32
primitive type, 32
small type, 929
specification, 17

deep copy, 35
default constructor

as member function, 43
implementation, 924
of type parameter, 45

default linear order, 48
default value of data type, 19
definition,seevariable
degeneracy, 638
DELAUNAY

DWYER, 680
FLIPPING, 676

Delaunay triangulations,seetriangulations, 672–686,
seeVoronoi diagrams

arbitrary dimension, 790
checking, 679, 683
definition, 672
Delaunay diagram, 680
demo, 673
diagonal-flip, 674
divide-and-conquer algorithm, 680
Dwyer’s algorithm, 680
dynamic,seedynamic Delaunay triangulations
empty circle property, 672
essential edge, 681
Euclidean minimum spanning tree, 684
flipping algorithm, 673
functionality, 675
furthest site, 675
Guibas–Stolfi algorithm, 680
implementation of flipping algorithm, 676
largest angle property, 684
running time, 680
visualization, 890

DELAUNAYDIAGRAM, 683
delaunayedgeinfo, 659
DELAUNAYTO VORONOI, 693
DELAUNAYTRIANG, 675
delaunayvoronoi kind, 675
delete-operator, 47, 941
demo

detailed examples
animation of SCCS, 306
comparison of sparse arrays, 130–132
tables for LATEX, 96–98
Voronoi demo, 795–812
with GraphWin, see GraphWin
with window, see window

directory, 9
programs

3d hull and 2d Delaunay, 793
animation of a graph algorithm, 306
annuli, 703
basic graph algorithms, 278
bipartite cardinality matching, 361
braided lines, 108
convex hulls, 638
curve reconstruction, 7, 705
Delaunay triangulation, 673
dynamic Delaunay triangulations, 709
Euler’s number, 107
exact arithmetic, 114
general weighted matchings, 444
giant component experiment, 159
greedy heuristic, 377
integer multiplication, 101, 102
largest empty circle, 702
line segment intersections, 732
markov chain, 86
matchings in general graphs, 394
maximum flow, 15
minimum cost flows, 490
minimum cut in graphs, 491
minimum spanning tree, 685
minimum spanning trees, 261
minumum cost to profit ratio, 355
planarity, 508, 509
point sets, 709
polygons, 759, 787
random walk, 87
real numbers, 114, 115
run lengths, 81
shortest paths, 321
shortest paths and assignment, 439
smallest enclosing circle, 701
sorted sequences, 183
stacks and expressions, 59
strongly connected components, 306
Voronoi diagrams, 687
weighted bipartite matching, 433
word count, 2

running times,seerunning time experiments
xlman, 9

dependent item type,seeitem type
depth-first search, 293–316
descriptwidth, 974
design goals, 11

correctness, 12
ease of use, 11
efficiency, 13
extensibility, 12

destruction of object, 36
destructor

as member function, 44
explicit call, 929
implementation, 920
of type parameter, 45

determinant, 120
determinant, fast evaluation, 622
DFS NUM, 293
dictionaries for geometric objects, 588
dictionary

geometric,seedynamic Delaunay triangulations
dictionary, 146–147
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implementation, 917–924
dictionary array,seesparse array, 126–127

animation, 897
DIJKSTRA, 3, 100, 150, 255, 283, 322, 323, 336
DIJKSTRAGEN, 155
directed graph, 240
directory tree of LEDA, 8
discrete event simulation, 148
distance, 599
divide-and-conquer paradigm

Delaunay triangulation, 680
documentation, 963–991

code unit, 972, 978
example of a header file, 964
example of a manual page, 965
Fman, 965
Ldoc, 988
leave, 988
literate programming, 982, 986–991
Lman, 963–966

options, 983
redirecting output, 982

lweave, 987
Lweb, 987
making a manual, 984–985
manual commands, 967–981

Manpage, 967
Marrop, 976
Mbinop, 975
Mbinopfunc, 977
Mconversion, 977
Mcreate, 971
Mcreation, 971
Mdefinition, 969
Mdestruct, 973
Mexample, 979
Mfunc, 977
Mfunop, 976
Mimplementation, 979
Mname, 971
Mop, 974
Moperations, 973
Moptions, 980
Mpreamble, 989
Mstatic, 976
Msubst, 980
Mtext, 980
Mtypemember, 970
Mtypes, 970
Munop, 976
Munopfunc, 977
Mvar, 971

manual comment, 963
manual directory, 985–986
manual pages, 966–984

invisible functions, 978
structure, 967
TEX macros, 981
warnings, 981

Mkman command, 984
notangle, 986
noweave, 986
noweb, 986

double, seenumber types

double click event, 837
drawing of a graph, 499–501

without crossings,seeembedded graphs
dual of a map, 573
duality between Voronoi and Delaunay diagrams, 690
dynamic binding, 916
dynamic Delaunay triangulations, 708–731

checking, 713
class definition, 711
constructors, 708, 714
del, 709, 722
demo, 709
dim, 708
functionality, 708
implementation, 711–730
insert, 709, 719
locate, 709, 714
lookup, 708, 717
nearestneighbor, 710, 726
point location, 709
range search, 710, 729
running time, 729, 731
walk through a triangulation, 715

dynamic memory,seeheap
dynamic perfect hashing, 127,seesparse array
dynamic random variate,see randomvariate

ease of use, 3, 11
edge, 240

array, 245
map, 249
matrix, 245

edge contraction, 399, 404, 493
edgevector, 664, 696
Edmonds’matching algorithm, 397
efficiency

design goal, 13
of geometric computing, 613

element of a data type, 17
embedded graph (map), 498–580

forall, 571
basics, 506–511
bidirected, 501–506
boundary cycle, 516
construction

by drawing, 575–577
by embedding algorithm, 507
from graph, 505

definition of embedded graph, 506
definition of map, 502
drawing, 499–501
dual of a map, 573
face (geometric concept), 516
face (programming concept), 571–574
face cycle (combinatorial concept), 512
generation of plane maps and graphs, 569–571
genus, 514
genus of plane map, 515–519
order-preserving embedding, 511–512
planar embedding, 506–511
planar map, 574
planarity, 506–511
planarity test, 520–529
plane map, 512, 515–519

number of edges, 518
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undirected graph vs bidirected graph, 574
updates, 564–569

equality
for item types, 28
LEDA rule, 28, 49
of geometric objects, 586

equivalence relation, 48
error analysis, 106
error handler, 54
errors

boolean operations on polygons, 788
braided lines, 108, 610
convex hull with floating point arithmetic, 609, 642
floating point arithmetic and geometry, 609–612, 629
network flow and floating point arithmetic, 487
overflow, 286
overflow and Dijkstra’s algorithm, 100
sweep segments, 756

Euclidean minimum spanning tree, 684
event,see also window, 834–842

buttonpressevent, 835
button releaseevent, 835
configureevent, 835
double click, 837
key pressevent, 835
key releaseevent, 835
motion event, 835
non-blocking event input, 841
position, 835
put back, 839
queue, 835
read, 835, 841
time, 835
type, 835
value, 835
window, 835

exact geometric computations, 582
expected running time, 25
explicit destruction, 929
expression compiler, 622
expression evaluation, 59
extensibility of LEDA, 12
extension packages, 9
extreme point, 639

F DELAUNAYTRIANG, 675
F VORONOI, 689
face (geometric concept), 516
face (programming concept), 571
face cycle (combinatorial concept), 512
Fibonacci heap,see pqueue

implementation, 946–962
assignment, 961
clear, 961
construction, 951
decreasekey, 953
del item, 961
del min, 952, 956
heap-ordered forest, 948
insertion, 955
item, 948
iteration, 961
simple operations, 951
storage, 948

virtual functions, 952
properties, 149

filter, seefloating point filter
FIVE COLOR, 577
float, seenumber types
floating point filter, 613–631

definition and correctness, 613–619
determinant, 622
dynamic version, 621
efficacy and efficiency, 623–631
expression compiler, 622
in reals, 112
orientation predicate, 614
original version, 619
specialized arithmetics, 622
static version, 620

floating point integers, 616
floating point kernel,seegeometry kernels
floating point numbers,seenumber types
floor, 290
Fman,seedocumentation
forall-loop,seeiteration
forall items-loop,seeiteration
Ford and Fulkerson matching algorithm, 368
frexp, 289
function

as argument, 38
member, 41
optional argument, 23
overloading, 23
parameter passing, 33, 36–38
value return, 33

Gaussian elimination, 104, 120
GDToolkit, 11
genpolygon, seepolygons
general position assumption, 638
generalized polygons,seepolygons
generation of random graphs, 265
generators

geometry,seegeometric objects
graph,seegraph generators
random source,see randomsource

generic directory, 8
generic pointer,see GenPtr
generic programming, 635
genericness, 916
GenPtr, 918
Genus, 515
genus of a map, 514
genus of plane maps, 515
geometric computation

arithmetic demand, 632
efficiency, 613
exact, 582

geometric dictionary,seedynamic Delaunay
triangulations

geometric graph, 664
geometric objects,see alsogeometry kernels

angle, 600
arithmetic demand, 632
associating information, 588
basics, 583–592
bounded region, 598
Cartesian coordinates, 583
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comparing distances, 600
conversion between kernels, 588
distance, 599
drawing them in a window, 821
equality, 586
generators, 604–606
generic names, 606
handle types, 586
homogeneous coordinates, 583
identity, 586
immutability, 589
input and output, 589
intersections, 601
kernel independance, 606
length, 599
mouse input, 590
negative side of geometric object, 597
on-region, 598
polygons,seepolygons
positive side, 597
precision of geometric representation, 633
reading them in a window, 821
representation, 587
side of, 597
truncation of precision, 633
unbounded region, 598
window, 589, 821

geometric primitives, 593–601
comparing distances, 600
intersections, 601
length and distance, 599–600
orientation, 593–597
sidedness, 597–599

geometric transformations, 601–604
geometry algorithms

angle order, 600
convex hull with floating point arithmetic, 609
convex hulls,seeconvex hulls
degeneracy, 638
Delaunay diagram, 625
Delaunay triangulations,seeDelaunay triangulations
dynamic Delaunay triangulations,seedynamic

Delaunay triangulations
general position assumption, 638
higher-dimensional algorithms,see

higher-dimensional geometry
line segment intersection,seeline segment

intersections
triangulations,seetriangulations
verification of geometric structures,seeverification of

geometric structures
Voronoi demo: the complete program, 795–812
Voronoi diagrams,seeVoronoi diagrams
width of a point set, 651

geometry kernels,see alsogeometric objects, 581–636
basic geometric objects, 583–592
conversion between kernels, 588
danger of floating point kernel, 609–612
floating point filter,seefloating point filter, 613
floating point kernel, 581
geometric primitives, 593–601
higher-dimensional, 634
kernel independance, 606–609
rational kernel, 581

efficiency,seefloating point filter
safe use of floating point kernel, 632–634

giant component in a graph, 159
GML-format, 269, 872
graph, 240–282

forall, 571
acyclic, 244
adjacency list, 272, 511
articulation point, 277, 300
associating information with nodes and edges,

245–251
basics, 240–245
biconnected, 277, 299
bidirected, 275, 501–506
bipartite, 277
breadth-first search, 252
connected, 277, 299
construction by drawing, 575
cyclic adjacency list, 511
degree, 242
directed, 240
drawing, 499–501
edge, 240

data, 245
map, 249

embedded graph, 506,seeembedded graph
face (programming concept), 571
face cycle (combinatorial concept), 512
five coloring, 577
forall, 241, 271
generation of planar graphs, 569
hiding edges, 273
I/O, 269–271
independent sets, 578
index of a node or edge, 504
is bidirected, 501
is map, 502
isomorphic copy, 243
iterating over uedges, 502
iteration, 241, 271–274, 571
list

of edges, 272
of nodes, 271

loopfree, 275
makebidirected, 501
makedirected, 258
makemap, 502, 505
makeplanar map, 574
makeundirected, 258
map, 502,seeembedded graph
moving an edge, 565
node, 240

array, 245
data, 245
list, 251–253
map, 249
matrix, 245, 249
partition, 259–263
priority queue, 253–257

opposite node, 257
order-preserving embedding, 511
parameterized, 280
path, 276
planar, 507
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planar embedding, 507
planar graph, 277
plane map, 511, 512
priority queue, 253
random graph generators, 263
random walk, 87
read, 270
rearranging nodes and edges, 273
representation, 268, 272
restoring edges, 273
reversal information, 502
running time, 250
simple, 275
sorting, 273
source node, 240
space requirement, 281
split pair, 277
st-numbering, 301, 520
straight line embedding, 507
strongly connected, 297
subgraph, 273
target node, 240
time complexity, 281
topological sorting, 244
triangulate map, 566
triangulate planar map, 574
triconnected, 277
uedge, 502
undirected edge, 502
undirected graph, 257–258
visualization, 271
write, 269

graph algorithms
arithmetic demand of network algorithms, 286
assignment problem,seematchings in graphs
biconnected components, 301
bipartite matching,seematchings in graphs
breadth-first search, 252, 295
cardinality matching,seematchings in graphs
checking,seeprogram checking
checking reversal information, 503
connected components, 299
copying a graph, 243
depth-first search,seedepth-first search

leftmost, 535
dual map, 573
five coloring, 577
generation of planar graphs and maps, 569
generation of random graphs, 265
genus of a graph, 515
graph drawing, 500
independent sets, 578
instantiation for different number types, 287
Kuratowski subgraph, 538–564
making a map, 505
matchings,seematchings in graphs
maximum flow,seemaximum flow
minimum cost flow,seeminimum cost flow
minimum cost to profit ratio cycle, 354
minimum spanning tree, 260
minumum cuts in graphs,seeminimum cuts in graphs
order from geometry, 575
planar embedding, 529–538
planarity test, 520–529

shortest paths,seeshortest paths
spring embedder, 500
st-numbering, 301
straight line embedding, 508
strongly connected components, 298
templates for network algorithms, 283
test for bidirectedness, 279
topological sorting, 244
transitive closure, 297
transitive reduction, 297
triangulating a map, 566
triangulation of planar map, 574
turning a graph into a map, 505
weighted matchings,seematchings in graphs

graph drawing, 499
graph generators, 263–269

complete graph, 263
difficult example for bipartite matching, 390
difficult graph for shortest paths, 343
maximum flow problems, 462
planar graphs and maps, 569
random graphs, 263
worst case for Dijkstra’s algorithm, 155

graphics,see window
GraphWin, see also window, 857–903

animation of data structures, 897–903
animation of strongly connected components, 307
associating a graph, 866
attributes,seeparameters inGraphWin
default menu, 859

done-button, 860
edit operations, 859
file operations, 859
graph drawing operations, 860
graph generators and modifiers, 859
options, 860
undo-button, 860
zoom operations, 860

example programs
gw.c, 868
gw action.c, 889
gw attributes.c, 871
gw bintree.c, 898
gw delaunay.c, 890
gw handler.c, 881
gw mcmflow.c, 892
gw menu.c, 887
gw plandemo.c, 876
animation of data structures, 897
edit and run, 868
extending the menu, 886
min-cost-flow, 892
on-line demos, 881–882, 892–897
planarity demo, 876
simple demos, 875–878

interface, 866–875, 879–890
accessing and changing parameters, 869
animation speed, 865, 873
call-back functions, 879
creation of agraphwin, 866
edit actions, 887
entering edit mode, 867
event handling, 879
graph operations, 868
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handler functions, 879
input and output, 872
layout operations, 872
leaving edit mode, 867
menus, 882
miscellaneous functions, 875
slider, 880, 896
zooming, 866, 874

mouse interaction
creating a node, 858
double click, 859
dragging a node, 859
moving a node, 859
resizing a node, 859

overview, 858–860
panel, 875,seepanel
parameters, 861–866

change of, 869
default values, 870
edge attributes, 864
global parameters, 865
node attributes, 861
reading them, 869

postscript output, 872
visualizing geometric structures, 890–892

greedy heuristic for matchings, 374

h array, seesparse array
handle type, 937–941

use in geometry, 586
handlebase, 939
handlerep, 939
Hash, 45
hashed type

definition, 45
LEDA rule, 49

hashing array,seesparse array, 127–129
hashing with chaining, 127,seesparse array
header file, 56

decoration for manual production, 967
heap (data structure), 149,see pqueue
heap (dynamic memory), 910, 912
hiding edges of a graph, 273
higher-dimensional geometry, 634, 790–795

convex hulls, 790
Delaunay triangulations, 790
demo, 793
higher-dimensional kernel, 790
lifting map, 791
paraboloid of revolution, 791
simplicial complex, 790

higher-dimensional kernel, 790
history of LEDA, 13
homogeneous coordinates, 583
Hopcroft and Karp matching algorithm, 380
HT PLANAR, 507
HTML, 9

I/O
for graphs, 269–271
for type parameters

implementation, 917
Print, 45
Read, 45

required functions, 45
graphical output,seewindow
menus,seepanel
mouse input,seewindow
panels,seepanel
tables for LATEX, 96–98

identity
for handle types, 939
for item types, 28
LEDA rule, 28
of geometric objects, 586

IEEE standard, 104
immutability of attributes, 31
immutability of geometric objects, 589
impl directory, 8
implementation class, 909
implementation of data types, 904–937

abstract class, 909
arrays, 924–926
assignment, 920–924
concrete class, 909
copy constructor, 920–924
default constructor, 924–926
destructor, 920–924
detailed examples

dictionary, 917–924
Fibonacci heap, 946–962
list, 904–917
map, 133–146
sortseq, 196–228
stack, 41–44

efficiency, 915
genericness, 916
implementation parameters, 934–937
large type, 929
LEDA approach, 909–928
leda access, 926, 931
leda cast, 927, 931
leda clear, 926, 930
leda copy, 926, 930
leda create, 926, 930
leda type id, 931
optimizations, 929–934
pure virtual functions, 917
small type, 929
summary of LEDA approach, 930
template approach, 906–909
type safety, 915
virtual functions and dynamic binding, 916–919

implementation parameter
basics, 51
implementation, 934–937

in-placenew-operator, 929
include directory, 8
incremental construction paradigm

analysis, 648
convex hull, 643

independent item type,seeitem type
INDEPENDENTSET, 578, 579
index out of bounds check, 118
infinity and MAXINT, 100
inheritance

and compare objects, 50
and parameterized data types, 935
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initialization, 924
input,seeI/O
installation of LEDA, 8
instance of a data type, 17
instantiations of network algorithms, 283
int, 99,seenumber types
int set, 77–79
INT TYPE, 583
integer, 101,seenumber types
integer matrix, 117–120
integer vector, 117–120
interpolation, 656
intersections of geometric objects, 601
inverse of a matrix, 120
IO interface, 96–98
Is Acyclic, 276
Is Biconnected, 277
Is Bidirected, 248, 275
Is Bipartite, 277
Is C Increasing, 665
Is C Nondecreasing, 665
Is CCWConvexFaceCycle, 668
Is CCWOrdered, 666
Is CCWOrderedPlaneMap, 666
Is Connected, 277
Is ConvexSubdivision, 669
Is DelaunayDiagram, 683
Is DelaunayTriangulation, 679
Is Planar, 277, 507
Is PlaneMap, 512
Is Simple, 275
Is Triangulation, 669
Is Triconnected, 277
Is Voronoi Diagram, 697
item,seeitem type
item type, 26–32

assignment, 27
collections of items, 28
dependent item type, 28–30

implementation, 918, 936
equality, 27
forall items-loop, 39
identity, 28
independent item type, 31–32

implementation, 937
LEDA rule, 31, 32

nil, 30
iteration

addition of objects, 273
basics, 39–41
deletion from data structure, 40, 944
deletion of object under iterator, 272
for graphs, 241, 271–274, 571
for lists, 63
for sparse arrays, 125
implementation, 40, 945–946
insertion into data structure, 944
LEDA rule, 39, 40
macro expansion, 40, 943
over the uedges of a graph, 502
pitfall, 40
STL style, 41
summary offorall-statements, 943–945

iterator,seeiteration

Jordan sorting, 228

k-ary heap, 149,see pqueue
Karatsuba integer multiplication, 103
kernel independance, 606
K5, 507
Kruskal’s algorithm, 260
K3,3, 507
KURATOWSKI, 508
Kuratowski subgraph

algorithm, 538–564
definition, 507
running time, 563

KURATOWSKISIMPLE, 538

labels of geometric objects, 588
large type, 929
LARGESTEMPTYCIRCLE, 702
layered network, 381
ldexp, 290
Ldoc,seedocumentation
LEDA CHECKING OFF, 57
LEDA extension packages, 9
LEDA rules

access to attributes, 30
assignment, 33
copy, 33, 34, 49
definition with initialization by copying, 20
destruction, 36
equality, 49
equality of items, 28
hashed type, 49
identity of items, 28
independent item types, 31, 32
iteration, 39, 40
linear orders, 48
type parameters, 45

leda access, 926, 931
leda assert, 54
leda cast, 927, 931
leda clear, 926, 930
leda cmp base, 50
leda copy, 926, 930
leda create, 926, 930
leda max, 53
LEDA MEMORY, 47, 942
leda min, 53
leda swap, 53
leda type id, 931
LEDAROOT, 8
leftmost depth-first search, 535
leftturn, 593
Lempel–Even–Cederbaum planarity test, 520
length, 586, 599
LEP, 9
lifetime of object, 21, 36
lifting map, 791
line, seegeometry objects, 585
line segment intersections, 731–758

asymptotic running times, 734
demo, 732
functionality, 733
running time, 735, 756, 757
sweep line algorithm,seesweep line paradigm
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linear algebra, 118, 119
linear order,see compare

default order, 48
definition, 47
for points, 587
implementation, 916
LEDA rule, 48

linear system of equations, 104, 118
linearly ordered type, 45, 48
linker, 909
list, 61–73

basics, 61–64
bucket sort, 71
concatenation and split, 64
for ordered sets, 66–70
forall, 63
implementation, 70–73, 904–917
iteration, 63
list item, 62
merging, 68
permute, 65
reverse, 65
singly linked, 73
sorting, 66, 68

list heap, 149,see pqueue
literate programming, 42, 982, 986–991
Lman,seedocumentation
LMDFS, 536
long, 99,seenumber types
LU decomposition, 120
lweave, 42,seedocumentation
Lweb, 42,seedocumentation

machine precision, 105, 616
MakeBiconnected, 277
MakeBidirected, 276
MakeConnected, 277
manual

directory, 9
how to make one,seedocumentation
on-line access, 9

manual comment, 963
map(data type),seesparse array

basics, 129–130
edge map, 249
for geometric objects, 588
implementation, 133–146

access operation, 144
assignment, 142
constructors, 142
destructor, 143
fast access, 136
hash function, 135
header file, 133
implementation class, 134
iteration, 145

manual page, 123
node map, 249

map (embedded graph),seeembedded graph
Markov chain, 86
matchings in graphs

alternating path, 363
alternating tree, 397
assignment problem

algorithm, 437
and shortest paths, 438
arithmetic demand, 438
functionality, 413

augmenting path, 363
bipartite graphs, 360–393

Alt et al. algorithm, 384
basic algorithm, 366
best case, 372
bfs vs dfs, 377
checker, 362
comparison of algorithms, 390
demo, 361
difficult example, 390
directed and undirected view, 367
Ford and Fulkerson algorithm, 368
functionality, 361
greedy heuristic, 374
Hopcroft and Karp algorithm, 380
node cover, 362, 370
running time, 375, 380, 392

bipartite matching
greedy heuristic, 377

bipartite weighted graphs, 413–443
algorithm, 419
arithmetic demand, 419, 431
checker, 416
demo, 433
functionality, 413
implementation, 425
linear program, 417
maximum cardinality, 441
potential function, 415
reduced cost, 415
running time, 433

general graphs, 393–413
algorithm, 397
checking, 396
cover, 394
demo, 394
functionality, 393
implementation, 402
odd-set cover, 400
running time, 395

general weighted graphs, 443
demo, 444
functionality, 443

mate, 361
perfect matching, 361
shortest paths via assignment, 438

matrix, 73,seearray
matrix, 117–120
MAX CARDBIPARTITEMATCHING, 361, 367

ABMP, 386
FFB, 369
FF DFS, 373
HK, 381

MAX CARDMATCHING, 393, 403
MAX FLOW, 445

BASIC, 456
GAP, 482
GRH, 479
LH, 469
LRH, 472
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SCALECAPS, 446
MAX WEIGHTASSIGNMENT, 415, 437
MAX WEIGHTBIPARTITEMATCHING, 287, 290,

415, 425
MAX WEIGHTMATCHING, 443
MAXDOUBLE, 105
maximalplanar graph, 570
maximalplanar map, 569
maximum,see ledamax
maximum flow, 443–489

arbitrary-rule, 453
arithmetic demand, 487
checker, 449
current edge, 462
cut, 447
definition of flow, 443
eligible edge, 451
FIFO-rule, 453, 458
flow augmentation, 448
flows with lower bounds, 489
gap heuristic, 479
global relabeling heuristic, 472
highest-level-rule, 453, 458
local relabeling heuristic, 469
low-high distinction, 467
max-flow-min-cut theorem, 446
mincost flow,seeminimum cost flow
non-saturating push, 450
optimizations, 465
preflow, 450
preflow-push algorithm, 451
preflow-push implementation, 456
problem generators, 462
residual network, 447
running time, 462, 466, 470, 473, 480, 483, 486
saturating push, 450
summary of experiments, 485
two-phase approach, 475
use of floating point arithmetic, 487

MAXINT, 99
MAXINT and infinity, 100
MCB EFFECTOF HEURISTIC, 376
member function, 41
memory hierarchy, 69
memory leak, 913, 919, 928
memory management, 47, 941–943
memory usage, statistics of, 53
menu, 849,seepanel
merge sort

basic algorithm, 68
run generation, 81
with finger search, 191

MIN AREAANNULUS, 704
MIN COSTFLOW, 489
MIN COSTMAX FLOW, 490
MIN CUT, 491, 493
MIN SPANNINGTREE, 261, 684
MIN WEIGHT ASSIGNMENT, 415
MIN WIDTH ANNULUS, 704
MINDOUBLE, 105
minimum,see ledamin
minimum cost flow, 489–491

demo, 490
functionality, 489

minimum cost to profit ratio cycle, 354
minimum cuts in graphs, 491–497

algorithm, 492
demo, 491
functionality, 491
heuristic, 496
implementation, 492
running time, 492

minimum spanning tree, 260
MINIMUM RATIOCYCLE, 354
MININT, 99
mouse input,see window
MULMULEY SEGMENTS, 734
multiple inheritance and implementation parameters,

935
multiplication of boolean matrices, 78
multiplication of large integers, 101, 103
MWA SCALEWEIGHTS, 419
MWBM SCALEWEIGHTS, 291, 419
MWMCB MATCHING, 415, 441

n gon, 606
NaN (not a number), 105
nearest neighbor queries, 710
negative cycle, 317
negative orientation, 593
negative side, 597
new-operator, 21, 47, 912, 941

in-place version, 929
new edge operation, 564
nil, 30
node, 240

array, 245
list, 251
map, 249
matrix, 245
partition, 259
priority queue, 253

node cover, 362
non-primitive data type, 32, 34
non-uniform distribution, 83
normalization, 103
notangle, 42,seedocumentation
noweave,seedocumentation
noweb, 42,seedocumentation
number types, 99–117

algebraic numbers, 108–117
demo, 114
efficiency, 114
example for use, 111
implementation, 116
real, 108
separation bound, 112

concept, 45
floating point numbers, 104–108

danger of use,seeerrors
definition, 104
error analysis, 106
Euler’s number, 106
exponent, 104
IEEE standard, 104
mantissa, 104, 105
NaN (not a number), 105
precision, 105
rounding error, 105
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rounding mode, 105
truncation, 53

integers, 99–103
int, 99
integer, 101
multiplication, 101
overflow, 100
two-complement representation, 99
underflow, 100

rational numbers, 103–104
vectors and matrices, 117–120

object,seevariable
anonymous object, 21
concept, 16
construction, 19
copy constructor, 43, 45
creation, 33
default constructor, 43, 45
destruction, 36
destructor, 45
lifetime, 21
named object, 18

object code, 909, 915
optional argument of function, 23
order-preserving embedding, 511
ordered sets, 66
orientation

determinant, 594
in higher dimensions, 595
in space, 596
in the plane, 593

orientation, 593
output,seeI/O
overloading, 23

p queue
implementation,seeFibonacci heap

pair, 94
pairing heap, 149,see pqueue
panel,see also window, 844–854

action function, 846, 849
adding buttons, 850
adding items, 849
bitmap buttons, 851
bool item, 845
button, 848
call back, 846
choice item, 844
item, 844
menu bar, 853
menu button, 849
multiple choice item, 844
open, 849
pixrect buttons, 852
simple item, 844
slider, 845, 850
text item, 844

paraboloid of revolution, 791
parameter passing by value, 37
parameterized data type,seedata type
parameterized graph, 280
parametric search, 358
partition, 158–180

basics, 158–161
checking priority queues, 165–180
giant component experiment, 159
implementation, 161–165
node partition, 259
union-find data structure, 161

path, 276
persistence of variables, 132
perturbation, 718, 769
pixel, see window
pixel coordinate system, 814, 821,see window
pixmap, see window
pixrect, see window
PLAN EMBED, 529, 533
PLANAR, 507
planar embedding

algorithm, 507, 529–538
definition, 507
running time, 563

planar graph, 277, 507
planarity and number of edges, 518
planarity test, 507, 520–529

running time, 563
plane map, 511, 512, 515–519
PLANTEST, 528
point,seegeometry objects

Cartesian coordinates, 583
construction, 584
conversion between kernels, 588
equality, 586
homogeneous coordinates, 583
identity, 586
immutability, 589
implementation, 938
input and output, 589
linear order, 587
orientation, 593
point rep, 587
point rep, 938
print statistics, 624
random points, 604
representation, 587
truncation of precision, 589
W, 583
X, 583
xcoord, 583
Y, 583
ycoord, 583

point on circle, 604
point set, seedynamic Delaunay triangulations
pointer type, 32
polygons, 758–789

area, 762, 767
boundary, 762
closure, 762
complement, 761, 762, 771
declaration, 760
demo, 759, 787
determining the orientation, 769
edges, 761
functionality, 758
generalized polygons

area, 764
boundary cycles, 766
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checking, 775
constructors, 764
difference, 764
implementation, 774–789
implementation of boolean operations, 777
intersection, 764
is empty, 764
is full, 764
polygons, 766
region of, 764
representation, 774
running time, 787
sideof, 764
symmetric difference, 764
theory, 771–774
union, 764

generators, 606
implementation, 766–771
inside, 761
interior, 762
intersection with line or segment, 761
is simple, 761
is weaklysimple, 761
on boundary, 761
outside, 761
point containment, 769
region of, 761, 769
regular, 762
regularized set operations, 762
running time, 788, 789
side of, 761
simple polygon, 758
vertices, 761

positive orientation, 593
positive side of geometric object, 597
potential function for weighted bipartite matchings, 415
PQ-trees, 526
p queue, 147–158

basics, 147–148
checking correctness, 165–180
discrete event simulation, 148
implementation parameters, 149–158
node priority queue, 253
performance, 149–158
running time, 157, 178

pre-compilation, 609
precision of geometric representation, 633
precompilation, 909
preconditions, 22
primitive data type, 32
Print, 45
print statistics, 52, 624, 942
priority queue,see pqueue
private base class, 911
private members, 918
program checking

bipartite cardinality matching, 362
bipartite weighted matching, 416
checking priority queues, 165
doubleinstantiations of network algorithms, 291
geometric structures,seeverification of geometric

structures
key experience, 509, 664
matchings in general graphs, 396

maximum flow, 449
monotonicity of sequences, 665
order of adjacency lists, 666
planarity test, 510
principles, 54–56
representation of polygons, 775
reversal information, 503
shortest paths, 324
testing, 510

program testing,seeprogram checking
program verification,seeprogram checking
protected members, 911, 918
pure virtual functions, 918
put backevent, 839

queue, 58–61
bounded, 60
implementation by stacks, 60

rand int, 80
random graph, 263, 390
random number, 80
random permutations, 82
random planar graphs and maps, 569
random walk in graph, 87
randombigraph, 268, 390
randomgraph, 263
randomplanar graph, 570
randomplanar map, 570, 571
randompoint in disc, 605
randompoint in square, 604
randompoint in unit square, 605
randompoint near circle, 605
randompoint on circle, 605
randomsource, 79–94

functionality, 79–92
implementation, 92–93

randomvariate, 83–85
randomized algorithm, 25
randomized search tree, 126,seesparse array
range search, 710
rank of a matrix, 119
rat circle,seecircle
rat genpolygon, seepolygons
rat line, seeline
rat point,seepoint
rat point set, seedynamic Delaunay triangulations
rat polygon, seepolygons
rat ray,seeray
rat segment,seesegment
RAT TYPE, 583
rat vector,seevector
rational, 103,seenumber types
rational geometry kernel,seegeometry kernels
ray,seegeometry objects, 585

drawing a ray, 591
reachability in graphs, 296
Read, 45
read event, 841
read int, 52
real, 108,seenumber types
red-black-tree, 126,seesparse array
reference counting, 938
reference parameter, 37
reflections, 602
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reg n gon, 606
region of, 598
regularized set operations, 762
replacement selection, 80
restoring the edges of a graph, 273
rgb-value of a color, 817
rightturn, 593
root operation, 101, 108,seenumber types
rotating caliber method, 651
rotations, 602
rounding error, 105
rounding mode, 105
run generation for merge sort, 81
running time, 23–26

amortized, 24
asymptotic bounds, 24
expected, 25
of randomized algorithm, 25
worst case, 24

running time experiments
arrays vs maps, 250
basic graph algorithms, 278
bipartite cardinality matching, 375, 380, 392
cache effects, 70
checked priority queue, 178
compact vs non-compact graph representation, 268
comparison of pqueue implementations, 157
convex hull, 652, 653
curve reconstruction, 6
Delaunay triangulations, 680
Dijkstra, 4
floating point filter, 628
integer multiplication, 102
LEDA versus STL, 14
line segment intersections, 735, 756, 757
matchings in general graphs, 395
maximum flow, 466, 470, 473, 480, 483–486
maximum flow, comparison, 15
memory manager, 943
merge sort, 193
merging, 192
minimum cuts in graphs, 492
minimum spanning trees, 263
nearest neighbor search, 729, 731
optimization for built-in types, 933
planarity, 563
polygons, 788, 789
random graph generation, 267
random variates, 91
real numbers, 115
shortest paths, 4, 338, 346
shortest paths and assignment, 439
sorting and merging, 69
sorting nearly sorted sequences, 186
sorting of arrays, 76
sparse arrays, 127, 128
STL, 14
sweep line algorithm, 756, 757
triangulations, 663
weighted bipartite matching, 433

safe use of floating point kernel, 632
scalar product, 586
scaleweight, 290

scaleweights, 290
scaling weights in network algorithms, 289
screen shot,see window
segment,seegeometry objects, 584
SEGMENTINTERSECTION, 733
soset, 67
self-organizing search, 67
separate compilation, 908, 914
separation bound, 112
set(data type), 146–147
sets and boolean arrays, 77
shallow copy, 35
short, 99,seenumber types
shortest paths, 316–360

acyclic graphs, 322, 332
all pairs, 323, 352
assignment problem, 438
Bellman–Ford algorithm, 338, 345
checker, 324
comparison of priority queues, 150
demo, 321
general edge costs, 322, 338, 345, 359, 438
generator of difficult graph, 343
generic algorithm, 328
non-negative edge costs, 255, 322
output convention, 320
problem definition, 317
running time, 338, 346, 439
single sink, 323, 333, 359
theory, 328
worst case for Dijkstra’s algorithm, 155

shortest-path tree, 320
SHORTESTPATH, 322
shrinking strongly connected components, 299
SHRUNKENGRAPH, 299
side of, 597
side of circle, 632
sidedness, 597–599
sign of an expression, 108, 613
signed area of a triangle, 593
signed int, 99
simplex, 597
simplicial complex, 790
singly linked list, 73
skiplist, seesparse array, 196–228

as implementation of dictionary arrays, 126
assignment, 208
concatenation, 220
constructors, 206
data members, 202
data structure, 196
deletion, 216
deletion of subsequences, 226
destructor, 208
finger search, 212
header, 197
header file of skiplists, 202
header file of sorted sequences, 203
implementation file, 203
insertion, 216
memory management, 198, 205
merge, 225
optimization of search, 210
probabilistic analysis, 201
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reversal of subsequence, 219
search operations, 209
skiplist node, 198
sl item, 198
split, 222
tower, 197
validation of data structure, 199
virtual functions, 203

small type, 929
SMALLESTENCLOSINGCIRCLE, 702
SORTEDGES, 575, 666
sorted sequence,see sortseq
sortseq, 180–228

basics, 181–183
concatenation, 189
deletion of subsequence, 195
finger search, 183–186
finger search and merging, 189
finger search and sorting, 184
implementation by skiplists, 196–228
item arguments, 195
Jordan Sorting, 228–239
merging, 189
reversal of subsequence, 195
running time, 186, 192, 193
split, 186

sorting
bucket sort, 66
for lists, 66
insertion sort with finger search, 184
Jordan sorting, 228
merge sort, 68
merge sort with finger search, 191
nearly sorted sequences, 186
stable sort, 66
straight insertion sort, 74
topological sorting, 244

source code directory, 9
source node, 240
space requirement, 23
sparse array, 121

basics, 121–126
default value, 124
defined, 125
dictionary array (d array), 126–127
dynamic perfect hashing, 127
experimental comparison, 130–132
first examples, 122
forall, 126
hashing array (h array), 127–129
hashing with chaining, 127
implementation parameters, 126–132
map, 129–130

implementation, 133–146
performance guarantees, 126–132
persistence of variables, 132
running time, 127, 128
subscript operator, 124
survey of properties, 122
undefine, 125

sparse arrays, 77
specification of data type, 17
SPRINGEMBEDDING, 500
square root operation, 108,seenumber types

st-numbering of a graph, 301, 520
ST NUMBERING, 301
stable sorting, 66
stack, 58–61

bounded, 60
implementation, 41

statistics, 52
STL, 14, 41
straight insertion sort, 74
straight line embedding, 507
STRAIGHTLINE EMBEDDING, 508
string, 95–96
STRONGCOMPONENTS, 298, 304
strongly connected component

algorithm, 301
animation, 306
definition, 297

strongly connected graph, 297
subdivision, 664

convex, 669
subgraph, 273
subscript operator

for arrays, 73
for lists, 62
for sparse arrays, 124, 132

supermarket checkout simulation, 91
swap,see ledaswap
sweep line paradigm

convex hull, 640
line segment intersections, 735–757

algorithm, 736
asymptotic running time, 736
experimental evaluation, 755
implementation, 738–755
running time, 756, 757
Y-structure, 736

triangulations, 660
SWEEPSEGMENTS, 735
sys directory, 9

target node, 240
template approach to data types, 906
template directory, 8
templates for network algorithms, 283–286
testing,seeprogram checking, 664
thread safety, 9
timer, 842,see window
topological sorting, 244
TOPSORT, 244
transformations (geometric), 601–604
transitive closure, 297
transitive reduction, 297
TRANSITIVECLOSURE, 297
translations, 602
TRIANGULATEPOINTS, 660
triangulation map, 570
triangulations,seeDelaunay triangulations, 656–664

barycentric coordinates, 658
checking, 669
dart, 658
definition, 656
interpolation, 656
largest angle property, 684
representation as planar graphs, 658
running time, 663
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triconnected graph, 277
triple, 94
TRIVIAL SEGMENTS, 734
truncate, 53, 633
tuple, 94
two-complement representation, 99
two-tuple, 94
type,seedata type
type parameter, 45–46
type safety, 915
typewidth, 974

ugraph, 258
unbounded region wrt. geometric object, 598
undirected edge, 502
undirected graph, 257–258
undirected graph vs bidirected graph, 574
union-find data structure, 161
unsigned int, 99
usedtime, 52
user coordinate system, 814, 821,see window

value parameter, 33, 35, 37
variable,seeobject

concept, 16
definition

examples, 18
with default initialization, 19
with initialization by copying, 20

vector, 585
vector, 117–120
verification of correctness,seeprogram checking
verification of geometric structures, 664–672

convex subdivisions, 669
convexity of faces, 667
Delaunay diagrams, 683
Delaunay triangulations, 679
monotonicity of sequences, 665
order of adjacency lists, 666
Voronoi diagrams, 695

verzopfte Geraden, 610
virtual functions,seeimplementation of data structures,

916, 917, 922
visual debugging, 664
visualization,see window, see GraphWin
visualizing a graph, 271
void*, see GenPtr
volume of a simplex, 597
VORONOI, 689
Voronoi diagrams,seeDelaunay triangulations, 686–707

annulus, 703
checking, 695
curve reconstruction, 705
definition, 686
demo, 687, 701–703, 705, 795–812
diagram of line segments, 111, 706
duality to Delaunay diagrams, 690
functionality, 689
furthest site, 689
largest empty circle, 702
representation, 686
smallest enclosing circle, 701
visualization, 890

walk through a triangulation, 715

web-site, 8, 10
weighted matchings,seematchings in graphs
WIDTH, 651
width of a point set, 651
window, 813–856
<<, 821
>>, 821
bitmap, 826
buffering drawing operations, 829
button, 831
clearing a window, 823
clipping region, 828
color, 817, 823
creation, 815
d3 window, 855
drawing a geometric object, 589
drawing a ray, 591
drawing operations, 821–831
drawing section, 813
event, 834,seeevent
example programs

3d hull, 855
blocking mouse read, 832
bouncing ball, 830
callback functions, 846
clipping, 828
constructing colors, 817
creating a menu bar, 853
creating a panel, 851, 852
event handling, 836
putting back an event, 840
recognizing a double click, 838
slider items, 847
two windows, 842
use ofredraw, 847
use of bitmap, 827
use of buffering, 831
use of buttons, 833
use of pixrect, 825
use of timers, 843
use of<< and>>, 822

�, 589
graphics system, 814
input, 821, 831–842
invisible color, 817
�, 589
menu, 849
mouse cursor, 820
mouse input, 821, 831–842
mouse input of geometric objects, 590
opening and closing a window, 815–816
output, 821
panel, 844,seepanel
panel section, 813
parameters, 818–820

change of, 820
pix to real, 821
pixel, 813
pixel coordinate system, 814, 821
pixmap, 824
pixrect, 824–827
real to pix, 821
rgb-value of a color, 817
scaling factor, 815
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screenshot, 822
src mode, 819
timer, 842
user coordinate system, 814, 821
xlman, 813

xor mode, 819
xpm data string, 824

word count program, 2, 52, 122, 146, 934

xlman, 9, 813


