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Preface

LEDA (Library of Efficient Data Types and Algorithms) is a C++ library of combinatorial
and geometric data types and algorithms. It offers

Data Types, such as random sources, stacks, queues, maps, lists, sets, partitions, dictionar-
ies, sorted sequences, point sets, interval sets, . . . ,

Number Types, such as integers, rationals, bigfloats, algebraic numbers,and linear alge-
bra.

Graphs and Supporting Data Structures, such as node- and edge-arrays, node- and edge-
maps, node priority queues and node partitions, iteration statements for nodes and edges,
. . . ,

Graph Algorithms, such as shortest paths, spanning trees, flows, matchings, components,
planarity, planar embedding, . . . ,

Geometric Objects, such as points, lines, segments, rays, planes, circles, polygons, . . . ,
Geometric Algorithms, such as convex hulls, triangulations, Delaunay diagrams, Voronoi

diagrams, segment intersection, . . . , and
Graphical Input and Output.

The modules just mentioned cover a considerable part of combinatorial and geometric com-
puting as treated in courses and textbooks on data structures and algorithms [AHU83,
dBKOS97, BY98, CLR90, Kin90, Kle97, NH93, Meh84, O’R94, OW96, PS85, Sed91,
Tar83, van88, Woo93].

From a user’s point of view, LEDA is a platform for combinatorial and geometric com-
puting. It providesalgorithmic intelligencefor a wide range of applications. It eases a
programmer’s life by providing powerful and easy-to-use data types and algorithms which
can be used as building blocks in larger programs. It has beenused in such diverse ar-
eas as code optimization, VLSI design, robot motion planning, traffic scheduling, machine
learning and computational biology. The LEDA system is installed at more than 1500 sites.

xi
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We started the LEDA project in the fall of 1988. The project grew out of several consid-
erations.

• We had always felt that a significant fraction of the researchdone in the algorithms
area was eminently practical. However, only a small part of it was actually used. We
frequently heard from our former students that the intellectual and programming effort
needed to implement an advanced data structure or algorithmis too large to be
cost-effective. We concluded thatalgorithms research must include implementation if
the field wants to have maximum impact.

• We surveyed the amount of code reuse in our own small and tightly connected research
group. We found several implementations of the same balanced tree data structure.
Thus there was constant reinvention of the wheel even withinour own small group.

• Many of our students had implemented algorithms for their master’s thesis. Work
invested by these students was usually lost after the students graduated. We had no
depository for implementations.

• The specifications of advanced data types which we gave in class and which we found
in text books, including the one written by one of the authors, were incomplete and not
sufficiently abstract to allow to combine implementations easily. They contained
phrases of the form: “Given a pointer to a node in the heap its priority can be
decreased in constant amortized time”. Phrases of this kindimply that a user of a data
structure has to know its implementation. As a consequence combining
implementations is a non-trivial task. We performed the following experiment. We
asked two groups of students to read the chapters on priorityqueues and shortest path
algorithms in a standard text book, respectively, and to implement the part they had
read. The two parts would not fit, because the specifications were incomplete and not
sufficiently abstract.

We started the LEDA project to overcome these shortcomings by creating a platform for
combinatorial and geometric computing.LEDA should contain the major findings of the
algorithms community in a form that makes them directly accessible to non-experts having
only limited knowledge of the area. In this way we hoped to reduce the gap between research
and application.

The LEDA system is available from the LEDA web-site.

http://www.mpi-sb.mpg.de/LEDA/leda.html

A commercial version of LEDA is available from Algorithmic Solutions Software GmbH.

http://www.algorithmi-solutions.de

LEDA can be used with almost any C++ compiler and is available for UNIX and WIN-
DOWS systems. The LEDA mailing list (see the LEDA web page) facilitates the exchange
of information between LEDA users.
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This book provides a comprehensive treatment of the LEDA system and its use. We treat
the architecture of the system, we discuss the functionality of the data types and algorithms
available in the system, we discuss the implementation of many modules of the system, and
we give many examples for the use of LEDA. We believe that the book is useful to five
types of readers: readers with a general interest in combinatorial and geometric computing,
casual users of LEDA, intensive users of LEDA, library designers and software engineers,
and students taking an algorithms course.

The book is structured into fourteen chapters.

Chapter 1, Introduction, introduces the reader to the use ofLEDA and gives an overview
of the system and our design goals.

Chapter 2, Foundations, discusses the basic concepts of theLEDA system. It defines key
concepts, such as type, object, variable, value, item, copy, linear order, and running time,
and it relates these concepts to C++. We recommend that you read this chapter quickly
and come back to it as needed. The detailed knowledge of this chapter is a prerequisite for
the intensive use of LEDA. The casual user should be able to satisfy his needs by simply
modifying example programs given in the book. The chapter draws upon several sources:
object-oriented programming, abstract data types, and efficient algorithms. It lays out many
of our major design decisions which we call LEDA axioms.

Chapters 3 to 12 form the bulk of the book. They constitute a guided tour of LEDA.
We discuss numbers, basic data types, advanced data types, graphs, graph algorithms, em-
bedded graphs, geometry kernels, geometry algorithms, windows, and graphwins. In each
chapter we introduce the functionality of the available data types and algorithms, illustrate
their use, and give the implementation of some of them.

Chapter 13, Implementation, discusses the core part of LEDA, e.g., the implementa-
tion of parameterized data types, implementation parameters, memory management, and
iteration.

Chapter 14, Documentation, discusses the principles underlying the documentation of
LEDA and the tools supporting it.

The book can be read without having the LEDA system installed. However, access to
the LEDA system will greatly increase thejoy of reading. The demo directory of the
LEDA system contains numerous programs that allow the reader to exercise the algorithms
discussed in the book. The demos give a feeling for the functionality and the efficiency of
the algorithms, and in a few cases even animate them.

The book can be read from cover to cover, but we expect few readers to do it. We wrote
the book such that, although the chapters depend on each other as shown in Figure A, most
chapters can be read independently of each other. We sometimes even repeat material in
order to allow for independent reading.

All readersshould start with the chapters Introduction and Foundations. In these chapters
we give an overview of LEDA and introduce the basic concepts of LEDA. We suggest that
you read the chapter on foundations quickly and come back to it as needed.
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Numbers

Geometry Kernels

Geometry Algorithms

Foundations

Graphs

Embedded Graphs Graph Algorithms

Basic Data Types

Advanced Data Types

Windows

Implementation Documentation

GraphWin

Introduction

Figure A The dependency graph between the chapters. A dashed arrow means that partial
knowledge is required and a solid arrow means that extensiveknowledge is required.
Introduction and Foundations should be read before all other chapters and Implementation and
Documententation can be read independently from the other chapters.

The chapter on basic data types (list, stacks, queues, array, random number generators,
and strings) should also be read by every reader. The basic data types are ubiquitous in the
book.

Having read the chapters Introduction, Foundations and Basic Data Types, the reader
may take different paths depending on interest.

Casual users of LEDAshould read the chapters treating their domain of interest,and
intensive users of LEDAshould also read the chapter on implementation.

Readers interested in Data Structuresshould read the chapters on advanced data types,
on implementation, and some of the sections of the chapter ongeometric algorithms. The
chapter on advanced data types treats dictionaries, searchtrees and hashing, priority queues,
partitions, and sorted sequences, and the chapter on implementation discusses, among other
things, the realization of parameterized data types. The different sections in the chapter on
advanced data types can be read independently. In the chapter on geometric algorithms we
recommend the section on dynamic Delaunay triangulations;some knowledge of graphs
and computational geometry is required to read it.

Readers interested in Graphs and Graph Algorithmsshould continue with the chapter
on graphs. From there one can proceed to either the chapter ongraph algorithms or the
chapter on embedded graphs. Within the chapter on graph algorithms the sections can be
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read independently. However, the chapter on embedded graphs must be read from front to
rear. Some knowledge of priority queues and partitions is required for some of the sections
on graph algorithms.

Readers interested in Computational Geometrycan continue with either the chapter on
graphs or the chapter on geometry kernels. Both chapter are aprerequisite for the chapter on
geometric algorithms. The chapter on geometry kernels requires partial knowledge of the
chapter on numbers. The chapter on geometric algorithms splits into two parts that can be
read independently. The first part is on convex hulls, Delaunay triangulations, and Voronoi
diagrams, and the second part is on line segment intersection and polygons.

Geometric algorithms are dull without graphical input and output. The required knowl-
edge is provided by the chapter on windows. The section on theVoronoi demo in the
chapter on geometric algorithms gives a comprehensive example for the interplay between
geometric data types and algorithms and the window class.

Readers interested in Algorithm Animationshould read the chapter on windows and
graphwin, the section on animating strongly connected components in the chapter on graph
algorithms, the section on the Voronoi demo in the geometricalgorithms chapter, and study
the many programs in the xlman subdirectory of the demo directory.

Readers interested in Software Librariesshould read the chapters on foundations, on
implementation, and on documentation. They should also study some other chapters at
their own choice.

Readers interested in developing a LEDA Extension Packageshould read the chapters on
implementation and documentation in addition to the chapters related to their domain of
algorithmic interest.

For all the algorithms discussed in the book, we also derive the required theory and give
the proof of correctness. However, sometimes our theoretical treatment is quite compact
and tailored to our specific needs. We refer the reader to the textbooks [AHU83, Meh84,
Tar83, CLR90, O’R94, Woo93, Sed91, Kin90, van88, NH93, PS85, BY98, dBKOS97] for
a more comprehensive view.

LEDA is implemented in C++ and we expect our readers to have some knowledge of it.
We are quite conservative in our use of C++ and hence a basic knowledge of the language
suffices for most parts of the book. The required concepts include classes, objects, tem-
plates, member functions, and non-member functions and aretypically introduced in the
first fifty pages of a C++ book [LL98, Mur93, Str91]. Only the chapter on implementation
requires the reader to know more advanced concepts like inheritance and virtual functions.

The book contains many tables showingrunning times. All running times were deter-
mined on an ULTRA-SPARC with 300 MHz CPU and 256 MByte main memory. LEDA
and all programs were compiled with CC (optimization flags -DLEDA CHECKING OFF
and -O).

We welcomefeedbackfrom our readers. A book of this length is certain to contain errors.
If you find any errors or have other constructive suggestions, we would appreciate hearing
from you. Please send any comments concerning the book to
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ledabook�mpi-sb.mpg.de

For comments concerning the system use

ledares�mpi-sb.mpg.de

or sign up for the LEDA discussion group. We will maintain a list of corrections on the
web.

We received financial support from a number of sources. Of course, our home institu-
tions deserve to be mentioned first. We started LEDA at the Universität des Saarlandes in
Saarbrücken, in the winter 1990/1991 we both moved to the Max-Planck-Institut für Infor-
matik, also in Saarbrücken, and in the fall of 1994 Stefan N¨aher moved to the Martin-Luther
Universität in Halle. Our work was also supported by the Deutsche Forschungsgemein-
schaft (Sonderforschungsbereich SFB 124 VLSI-Entwurf undParallelität und Schwerpunk-
tprogramm Effiziente Algorithmen und ihre Anwendungen), bythe Bundesministerium für
Forschung und Technologie (project SOFTI), and by the European Community (projects
ALCOM, ALCOM II, ALCOM-IT, and CGAL).

Discussions with many colleagues, bug reports, experiencereports (positive and nega-
tive), suggestions for changes and extensions, and code contributions helped to shape the
project. Of course, we could not have built LEDA without the help of many other persons.
We want to thank David Alberts, Ulrike Bartuschka, Christoph Burnikel, Ulrich Finkler,
Stefan Funke, Evelyn Haak, Jochen Könemann, Ulrich Lauther, Andreas Luleich, Math-
ias Metzler, Michael Müller, Michael Muth, Markus Neukirch, Markus Paul, Thomas Pa-
panikolaou, Stefan Schirra, Christian Schwarz, Michael Seel, Jack Snoeyink, Ken Thornton,
Christian Uhrig, Michael Wenzel, Joachim Ziegler, Thomas Ziegler, and many others for
their contributions.

Special thanks go to Christian Uhrig, the chief officer of Algorithmic Solutions GmbH,
to Michael Seel, who is head of the LEDA-group at the MPI, and to Ulrich Lauther from
Siemens AG, our first industrial user.

Evelyn Haak typeset the book. Actually, she did a lot more. She made numerous sug-
gestions concerning the layout, she commented on the content, and she suggested changes.
Holger Blaar, Stefan Funke, Gunnar Klau, Volker Priebe, Michael Seel, René Weißkircher,
Mark Ziegelmann, and Joachim Ziegler proof-read parts of the book. We want to thank
them for their many constructive comments. Of course, all the remaining errors are ours.

Finally, we want to thank David Tranah from Cambridge Univerisity Press for his support
and patience.

We hope that you enjoy reading this book and that LEDA eases your life as a programmer.

Stefan Näher
Halle, Germany
April, 1999

Kurt Mehlhorn
Saarbrücken, Germany

April, 1999
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