
To

Ena and Ulli,

Uli, Steffi, Tim, and Tim



LEDA

A Platform for

Combinatorial and Geometric

Computing

KURT MEHLHORN

STEFAN NÄHER





Contents

Preface pagexi

1 Introduction 1
1.1 Some Programs 1
1.2 The LEDA System 8
1.3 The LEDA Web-Site 10
1.4 Systems that Go Well with LEDA 11
1.5 Design Goals and Approach 11
1.6 History 13

2 Foundations 16
2.1 Data Types 16
2.2 Item Types 26
2.3 Copy, Assignment, and Value Parameters 32
2.4 More on Argument Passing and Function Value Return 36
2.5 Iteration 39
2.6 STL Style Iterators 41
2.7 Data Types and C++ 41
2.8 Type Parameters 45
2.9 Memory Management 47
2.10 Linearly Ordered Types, Equality and Hashed Types 47
2.11 Implementation Parameters 51
2.12 Helpful Small Functions 52
2.13 Error Handling 54
2.14 Program Checking 54

v



vi Contents

2.15 Header Files, Implementation Files, and Libraries 56
2.16 Compilation Flags 57

3 Basic Data Types 58
3.1 Stacks and Queues 58
3.2 Lists 61
3.3 Arrays 73
3.4 Compressed Boolean Arrays (Type intset) 77
3.5 Random Sources 79
3.6 Pairs, Triples, and such 94
3.7 Strings 95
3.8 Making Simple Demos and Tables 96

4 Numbers and Matrices 99
4.1 Integers 99
4.2 Rational Numbers 103
4.3 Floating Point Numbers 104
4.4 Algebraic Numbers 108
4.5 Vectors and Matrices 117

5 Advanced Data Types 121
5.1 Sparse Arrays: Dictionary Arrays, Hashing Arrays, and Maps 121
5.2 The Implementation of the Data Type Map 133
5.3 Dictionaries and Sets 146
5.4 Priority Queues 147
5.5 Partition 158
5.6 Sorted Sequences 180
5.7 The Implementation of Sorted Sequences by Skiplists 196
5.8 An Application of Sorted Sequences: Jordan Sorting 228

6 Graphs and their Data Structures 240
6.1 Getting Started 240
6.2 A First Example of a Graph Algorithm: Topological Ordering 244
6.3 Node and Edge Arrays and Matrices 245
6.4 Node and Edge Maps 249
6.5 Node Lists 251
6.6 Node Priority Queues and Shortest Paths 253
6.7 Undirected Graphs 257
6.8 Node Partitions and Minimum Spanning Trees 259
6.9 Graph Generators 263
6.10 Input and Output 269
6.11 Iteration Statements 271



Contents vii

6.12 Basic Graph Properties and their Algorithms 274
6.13 Parameterized Graphs 280
6.14 Space and Time Complexity 281

7 Graph Algorithms 283
7.1 Templates for Network Algorithms 283
7.2 Algorithms on Weighted Graphs and Arithmetic Demand 286
7.3 Depth-First Search and Breadth-First Search 293
7.4 Reachability and Components 296
7.5 Shortest Paths 316
7.6 Bipartite Cardinality Matching 360
7.7 Maximum Cardinality Matchings in General Graphs 393
7.8 Maximum Weight Bipartite Matching and the Assignment Problem 413
7.9 Weighted Matchings in General Graphs 443
7.10 Maximum Flow 443
7.11 Minimum Cost Flows 489
7.12 Minimum Cuts in Undirected Graphs 491

8 Embedded Graphs 498
8.1 Drawings 499
8.2 Bidirected Graphs and Maps 501
8.3 Embeddings 506
8.4 Order-Preserving Embeddings of Maps and Plane Maps 511
8.5 The Face Cycles and the Genus of a Map 512
8.6 Faces, Face Cycles, and the Genus of Plane Maps 515
8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 519
8.8 Manipulating Maps and Constructing Triangulated Maps 564
8.9 Generating Plane Maps and Graphs 569
8.10 Faces as Objects 571
8.11 Embedded Graphs as Undirected Graphs 574
8.12 Order from Geometry 575
8.13 Miscellaneous Functions on Planar Graphs 577

9 The Geometry Kernels 581
9.1 Basics 583
9.2 Geometric Primitives 593
9.3 Affine Transformations 601
9.4 Generators for Geometric Objects 604
9.5 Writing Kernel Independent Code 606
9.6 The Dangers of Floating Point Arithmetic 609
9.7 Floating Point Filters 613
9.8 Safe Use of the Floating Point Kernel 632



viii Contents

9.9 A Glimpse at the Higher-Dimensional Kernel 634
9.10 History 634
9.11 LEDA and CGAL 635

10 Geometry Algorithms 637
10.1 Convex Hulls 637
10.2 Triangulations 656
10.3 Verification of Geometric Structures, Basics 664
10.4 Delaunay Triangulations and Diagrams 672
10.5 Voronoi Diagrams 686
10.6 Point Sets and Dynamic Delaunay Triangulations 708
10.7 Line Segment Intersection 731
10.8 Polygons 758
10.9 A Glimpse at Higher-Dimensional Geometric Algorithms 790
10.10 A Complete Program: The Voronoi Demo 795

11 Windows and Panels 813
11.1 Pixel and User Coordinates 814
11.2 Creation, Opening, and Closing of a Window 815
11.3 Colors 817
11.4 Window Parameters 818
11.5 Window Coordinates and Scaling 821
11.6 The Input and Output Operators≪ and≫ 821
11.7 Drawing Operations 822
11.8 Pixrects and Bitmaps 823
11.9 Clip Regions 828
11.10 Buffering 829
11.11 Mouse Input 831
11.12 Events 834
11.13 Timers 842
11.14 The Panel Section of a Window 844
11.15 Displaying Three-Dimensional Objects: d3window 855

12 GraphWin 857
12.1 Overview 858
12.2 Attributes and Parameters 861
12.3 The Programming Interface 866
12.4 Edit and Run: A Simple Recipe for Interactive Demos 875
12.5 Customizing the Interactive Interface 879
12.6 Visualizing Geometric Structures 890
12.7 A Recipe for On-line Demos of Network Algorithms 892
12.8 A Binary Tree Animation 897



Contents ix

13 On the Implementation of LEDA 904
13.1 Parameterized Data Types 904
13.2 A Simple List Data Type 904
13.3 The Template Approach 906
13.4 The LEDA Solution 909
13.5 Optimizations 929
13.6 Implementation Parameters 934
13.7 Independent Item Types (Handle Types) 937
13.8 Memory Management 941
13.9 Iteration 943
13.10 Priority Queues by Fibonacci Heaps (A Complete Example) 946

14 Manual Pages and Documentation 963
14.1 Lman and Fman 963
14.2 Manual Pages 966
14.3 Making a Manual: The Mkman Command 984
14.4 The Manual Directory in the LEDA System 985
14.5 Literate Programming and Documentation 986

Bibliography 992

Index 1002





Preface

LEDA (Library of Efficient Data Types and Algorithms) is a C++ library of combinatorial
and geometric data types and algorithms. It offers

Data Types, such as random sources, stacks, queues, maps, lists, sets, partitions, dictionar-
ies, sorted sequences, point sets, interval sets, . . . ,

Number Types, such as integers, rationals, bigfloats, algebraic numbers,and linear alge-
bra.

Graphs and Supporting Data Structures, such as node- and edge-arrays, node- and edge-
maps, node priority queues and node partitions, iteration statements for nodes and edges,
. . . ,

Graph Algorithms, such as shortest paths, spanning trees, flows, matchings, components,
planarity, planar embedding, . . . ,

Geometric Objects, such as points, lines, segments, rays, planes, circles, polygons, . . . ,
Geometric Algorithms, such as convex hulls, triangulations, Delaunay diagrams, Voronoi

diagrams, segment intersection, . . . , and
Graphical Input and Output.

The modules just mentioned cover a considerable part of combinatorial and geometric com-
puting as treated in courses and textbooks on data structures and algorithms [AHU83,
dBKOS97, BY98, CLR90, Kin90, Kle97, NH93, Meh84, O’R94, OW96, PS85, Sed91,
Tar83, van88, Woo93].

From a user’s point of view, LEDA is a platform for combinatorial and geometric com-
puting. It providesalgorithmic intelligencefor a wide range of applications. It eases a
programmer’s life by providing powerful and easy-to-use data types and algorithms which
can be used as building blocks in larger programs. It has beenused in such diverse ar-
eas as code optimization, VLSI design, robot motion planning, traffic scheduling, machine
learning and computational biology. The LEDA system is installed at more than 1500 sites.

xi



xii Preface

We started the LEDA project in the fall of 1988. The project grew out of several consid-
erations.

• We had always felt that a significant fraction of the researchdone in the algorithms
area was eminently practical. However, only a small part of it was actually used. We
frequently heard from our former students that the intellectual and programming effort
needed to implement an advanced data structure or algorithmis too large to be
cost-effective. We concluded thatalgorithms research must include implementation if
the field wants to have maximum impact.

• We surveyed the amount of code reuse in our own small and tightly connected research
group. We found several implementations of the same balanced tree data structure.
Thus there was constant reinvention of the wheel even withinour own small group.

• Many of our students had implemented algorithms for their master’s thesis. Work
invested by these students was usually lost after the students graduated. We had no
depository for implementations.

• The specifications of advanced data types which we gave in class and which we found
in text books, including the one written by one of the authors, were incomplete and not
sufficiently abstract to allow to combine implementations easily. They contained
phrases of the form: “Given a pointer to a node in the heap its priority can be
decreased in constant amortized time”. Phrases of this kindimply that a user of a data
structure has to know its implementation. As a consequence combining
implementations is a non-trivial task. We performed the following experiment. We
asked two groups of students to read the chapters on priorityqueues and shortest path
algorithms in a standard text book, respectively, and to implement the part they had
read. The two parts would not fit, because the specifications were incomplete and not
sufficiently abstract.

We started the LEDA project to overcome these shortcomings by creating a platform for
combinatorial and geometric computing.LEDA should contain the major findings of the
algorithms community in a form that makes them directly accessible to non-experts having
only limited knowledge of the area. In this way we hoped to reduce the gap between research
and application.

The LEDA system is available from the LEDA web-site.

http://www.mpi-sb.mpg.de/LEDA/leda.html

A commercial version of LEDA is available from Algorithmic Solutions Software GmbH.

http://www.algorithmi-solutions.de

LEDA can be used with almost any C++ compiler and is available for UNIX and WIN-
DOWS systems. The LEDA mailing list (see the LEDA web page) facilitates the exchange
of information between LEDA users.



Preface xiii

This book provides a comprehensive treatment of the LEDA system and its use. We treat
the architecture of the system, we discuss the functionality of the data types and algorithms
available in the system, we discuss the implementation of many modules of the system, and
we give many examples for the use of LEDA. We believe that the book is useful to five
types of readers: readers with a general interest in combinatorial and geometric computing,
casual users of LEDA, intensive users of LEDA, library designers and software engineers,
and students taking an algorithms course.

The book is structured into fourteen chapters.

Chapter 1, Introduction, introduces the reader to the use ofLEDA and gives an overview
of the system and our design goals.

Chapter 2, Foundations, discusses the basic concepts of theLEDA system. It defines key
concepts, such as type, object, variable, value, item, copy, linear order, and running time,
and it relates these concepts to C++. We recommend that you read this chapter quickly
and come back to it as needed. The detailed knowledge of this chapter is a prerequisite for
the intensive use of LEDA. The casual user should be able to satisfy his needs by simply
modifying example programs given in the book. The chapter draws upon several sources:
object-oriented programming, abstract data types, and efficient algorithms. It lays out many
of our major design decisions which we call LEDA axioms.

Chapters 3 to 12 form the bulk of the book. They constitute a guided tour of LEDA.
We discuss numbers, basic data types, advanced data types, graphs, graph algorithms, em-
bedded graphs, geometry kernels, geometry algorithms, windows, and graphwins. In each
chapter we introduce the functionality of the available data types and algorithms, illustrate
their use, and give the implementation of some of them.

Chapter 13, Implementation, discusses the core part of LEDA, e.g., the implementa-
tion of parameterized data types, implementation parameters, memory management, and
iteration.

Chapter 14, Documentation, discusses the principles underlying the documentation of
LEDA and the tools supporting it.

The book can be read without having the LEDA system installed. However, access to
the LEDA system will greatly increase thejoy of reading. The demo directory of the
LEDA system contains numerous programs that allow the reader to exercise the algorithms
discussed in the book. The demos give a feeling for the functionality and the efficiency of
the algorithms, and in a few cases even animate them.

The book can be read from cover to cover, but we expect few readers to do it. We wrote
the book such that, although the chapters depend on each other as shown in Figure A, most
chapters can be read independently of each other. We sometimes even repeat material in
order to allow for independent reading.

All readersshould start with the chapters Introduction and Foundations. In these chapters
we give an overview of LEDA and introduce the basic concepts of LEDA. We suggest that
you read the chapter on foundations quickly and come back to it as needed.



xiv Preface

Numbers

Geometry Kernels

Geometry Algorithms

Foundations

Graphs

Embedded Graphs Graph Algorithms

Basic Data Types

Advanced Data Types

Windows

Implementation Documentation

GraphWin

Introduction

Figure A The dependency graph between the chapters. A dashed arrow means that partial
knowledge is required and a solid arrow means that extensiveknowledge is required.
Introduction and Foundations should be read before all other chapters and Implementation and
Documententation can be read independently from the other chapters.

The chapter on basic data types (list, stacks, queues, array, random number generators,
and strings) should also be read by every reader. The basic data types are ubiquitous in the
book.

Having read the chapters Introduction, Foundations and Basic Data Types, the reader
may take different paths depending on interest.

Casual users of LEDAshould read the chapters treating their domain of interest,and
intensive users of LEDAshould also read the chapter on implementation.

Readers interested in Data Structuresshould read the chapters on advanced data types,
on implementation, and some of the sections of the chapter ongeometric algorithms. The
chapter on advanced data types treats dictionaries, searchtrees and hashing, priority queues,
partitions, and sorted sequences, and the chapter on implementation discusses, among other
things, the realization of parameterized data types. The different sections in the chapter on
advanced data types can be read independently. In the chapter on geometric algorithms we
recommend the section on dynamic Delaunay triangulations;some knowledge of graphs
and computational geometry is required to read it.

Readers interested in Graphs and Graph Algorithmsshould continue with the chapter
on graphs. From there one can proceed to either the chapter ongraph algorithms or the
chapter on embedded graphs. Within the chapter on graph algorithms the sections can be



Preface xv

read independently. However, the chapter on embedded graphs must be read from front to
rear. Some knowledge of priority queues and partitions is required for some of the sections
on graph algorithms.

Readers interested in Computational Geometrycan continue with either the chapter on
graphs or the chapter on geometry kernels. Both chapter are aprerequisite for the chapter on
geometric algorithms. The chapter on geometry kernels requires partial knowledge of the
chapter on numbers. The chapter on geometric algorithms splits into two parts that can be
read independently. The first part is on convex hulls, Delaunay triangulations, and Voronoi
diagrams, and the second part is on line segment intersection and polygons.

Geometric algorithms are dull without graphical input and output. The required knowl-
edge is provided by the chapter on windows. The section on theVoronoi demo in the
chapter on geometric algorithms gives a comprehensive example for the interplay between
geometric data types and algorithms and the window class.

Readers interested in Algorithm Animationshould read the chapter on windows and
graphwin, the section on animating strongly connected components in the chapter on graph
algorithms, the section on the Voronoi demo in the geometricalgorithms chapter, and study
the many programs in the xlman subdirectory of the demo directory.

Readers interested in Software Librariesshould read the chapters on foundations, on
implementation, and on documentation. They should also study some other chapters at
their own choice.

Readers interested in developing a LEDA Extension Packageshould read the chapters on
implementation and documentation in addition to the chapters related to their domain of
algorithmic interest.

For all the algorithms discussed in the book, we also derive the required theory and give
the proof of correctness. However, sometimes our theoretical treatment is quite compact
and tailored to our specific needs. We refer the reader to the textbooks [AHU83, Meh84,
Tar83, CLR90, O’R94, Woo93, Sed91, Kin90, van88, NH93, PS85, BY98, dBKOS97] for
a more comprehensive view.

LEDA is implemented in C++ and we expect our readers to have some knowledge of it.
We are quite conservative in our use of C++ and hence a basic knowledge of the language
suffices for most parts of the book. The required concepts include classes, objects, tem-
plates, member functions, and non-member functions and aretypically introduced in the
first fifty pages of a C++ book [LL98, Mur93, Str91]. Only the chapter on implementation
requires the reader to know more advanced concepts like inheritance and virtual functions.

The book contains many tables showingrunning times. All running times were deter-
mined on an ULTRA-SPARC with 300 MHz CPU and 256 MByte main memory. LEDA
and all programs were compiled with CC (optimization flags -DLEDA CHECKING OFF
and -O).

We welcomefeedbackfrom our readers. A book of this length is certain to contain errors.
If you find any errors or have other constructive suggestions, we would appreciate hearing
from you. Please send any comments concerning the book to



xvi Preface

ledabook�mpi-sb.mpg.de

For comments concerning the system use

ledares�mpi-sb.mpg.de

or sign up for the LEDA discussion group. We will maintain a list of corrections on the
web.

We received financial support from a number of sources. Of course, our home institu-
tions deserve to be mentioned first. We started LEDA at the Universität des Saarlandes in
Saarbrücken, in the winter 1990/1991 we both moved to the Max-Planck-Institut für Infor-
matik, also in Saarbrücken, and in the fall of 1994 Stefan N¨aher moved to the Martin-Luther
Universität in Halle. Our work was also supported by the Deutsche Forschungsgemein-
schaft (Sonderforschungsbereich SFB 124 VLSI-Entwurf undParallelität und Schwerpunk-
tprogramm Effiziente Algorithmen und ihre Anwendungen), bythe Bundesministerium für
Forschung und Technologie (project SOFTI), and by the European Community (projects
ALCOM, ALCOM II, ALCOM-IT, and CGAL).

Discussions with many colleagues, bug reports, experiencereports (positive and nega-
tive), suggestions for changes and extensions, and code contributions helped to shape the
project. Of course, we could not have built LEDA without the help of many other persons.
We want to thank David Alberts, Ulrike Bartuschka, Christoph Burnikel, Ulrich Finkler,
Stefan Funke, Evelyn Haak, Jochen Könemann, Ulrich Lauther, Andreas Luleich, Math-
ias Metzler, Michael Müller, Michael Muth, Markus Neukirch, Markus Paul, Thomas Pa-
panikolaou, Stefan Schirra, Christian Schwarz, Michael Seel, Jack Snoeyink, Ken Thornton,
Christian Uhrig, Michael Wenzel, Joachim Ziegler, Thomas Ziegler, and many others for
their contributions.

Special thanks go to Christian Uhrig, the chief officer of Algorithmic Solutions GmbH,
to Michael Seel, who is head of the LEDA-group at the MPI, and to Ulrich Lauther from
Siemens AG, our first industrial user.

Evelyn Haak typeset the book. Actually, she did a lot more. She made numerous sug-
gestions concerning the layout, she commented on the content, and she suggested changes.
Holger Blaar, Stefan Funke, Gunnar Klau, Volker Priebe, Michael Seel, René Weißkircher,
Mark Ziegelmann, and Joachim Ziegler proof-read parts of the book. We want to thank
them for their many constructive comments. Of course, all the remaining errors are ours.

Finally, we want to thank David Tranah from Cambridge Univerisity Press for his support
and patience.

We hope that you enjoy reading this book and that LEDA eases your life as a programmer.

Stefan Näher
Halle, Germany
April, 1999

Kurt Mehlhorn
Saarbrücken, Germany

April, 1999



Bibliography

[AHU83] A.V. Aho, J.E. Hopcroft, and J.D.
Ullman. Data Structures and Algorithms.
Addison-Wesley, 1983.

[BY98] J.-D. Boissonnat and M. Yvinec.
Algorithmic Geometry. Cambridge University
Press, Cambridge, 1998.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L.
Rivest. Introduction to Algorithms. MIT
Press/McGraw-Hill Book Company, 1990.

[dBKOS97] M. de Berg, M. van Kreveld,
M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and
Applications. Springer, 1997.

[Kin90] J.H. Kingston.Algorithms and Data
Structures. Addison-Wesley, 1990.

[Kle97] R. Klein. Algorithmische Geometrie.
Addison-Wesley, 1997.

[LL98] S.B. Lippmann and J. Lajoie.C++ Primer.
Addison-Wesley, 1998.

[Meh84] K. Mehlhorn.Data Structures and
Algorithms 1,2, and 3. Springer, 1984.

[Mur93] R.B. Murray.C++ Strategies and Tatics.
Addison-Wesley, 1993.

[NH93] J. Nievergelt and K.H. Hinrichs.Algorithms
and Data Structures. Prentice Hall, 1993.

[O’R94] J. O’Rourke.Computational Geometry in
C. Cambridge University Press, 1994.

[OW96] T. Ottmann and P. Widmayer.Algorithmen
und Datenstrukturen. Spektrum Akademischer
Verlag, 1996.

[PS85] F.P. Preparata and M.I. Shamos.
Computational Geometry: An Introduction.
Springer, 1985.

[Sed91] R. Sedgewick.Algorithms.
Addison-Wesley, 1991.

[Str91] B. Stroustrup.The C++ Programming
Language. Addison-Wesley, 1991.

[Tar83] R.E. Tarjan. Data structures and network
algorithms. InCBMS-NSF Regional Conference
Series in Applied Mathematics, volume 44,
1983.

[van88] C.J. van Wyk.Data Structures and C
Programs. Addison-Wesley, 1988.

[Woo93] D. Wood.Data Structures, Algorithms,
and Performance. Addison-Wesley, 1993.

xvii


