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5
Advanced Data Types

We discuss some of the advanced data types of LEDA: dictyoaanys, hashing arrays,
maps, priority queues, partitions, and sorted sequence®deh type we give its function-
ality, discuss its performance and implementation, andril@s applications.

5.1 Sparse Arrays: Dictionary Arrays, Hashing Arrays, and Maps

Sparse arrays are arrays with an infinite or at least veryelardex set of which only a
“sparse” subset is in actual use. We discuss the sparsetgpay of LEDA and the many
implementations available for them. We start with the fiowality and then discuss the
performance guarantees given by the different types antkimgntations. We also give an
experimental comparison. We advise on how to choose an imguitation satisfying the
needs of a particular application and discuss the impleatientof mapsin detail.

5.1.1 Functionality

Dictionary arrays (typelarray<|, E>), hashing arrays (typaarray<l, E>), and maps
(type mapxl, E>) realize arrays with large or even unbounded indexIsahd arbitrary
entry typeE. Examples are arrays indexed by points, strings, or arpitnéegers. We refer
to darrays, harrays, and maps aparse array typesanother common name éssociative
arrays The sparse array types have different requirements fointtex type: dictionary
arrays work only for linearly ordered types (see Sectio®R Aashing arrays work only for
hashed types (see Section 2.8), and maps work only for p@ntkitem types and the type
int. They also differ in their performance guarantees amttionality. Figure 5.1 shows
the manual page of maps and Table 5.1 summarizes the pespeftur sparse array types.
Before we discuss them we illustrate the sparse array typemhbll examples.
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d.arrays harrays Maps
index type linearly ordered  hashed int or pointer or itenetyp
access time O(logn) o) o)
worst case expected expected
forall_defined loop sorted unsorted unsorted
persistence of variables yes no no
undefineoperation available available not available

Table 5.1 Properties of darrays, harrays, and maps. The meaning of the various rows is
explained in the text.

In the first example we use aatray to build a small English—German dictionary and to
print all word pairs in the dictionary.

d_array<string,string> dic;
dic["hello"] = "hallo";

dic["world"] = "Welt";

dic["book"] = "Buch";

string s;

forall_defined(s,dic) cout << s << " " << dic[s] << "\n";

Theforall_definedloop iterates over all indices of the array that were used sisbacript
prior to the loop. The iteration is according to the ordermkdi by thecomparefunction

of the index type; recall that dictionary arrays work only fioearly ordered types. In the
case of strings the defaudbmparefunction defines the lexicographic ordering and hence
the program outputs:

book Buch
hello hallo
world Welt

In the second example we use_atray to read a sequence of strings from standard input,
to count the multiplicity of each string in the input, and tatjput the strings together with
their multiplicities. Harrays work only for hashed types and hence we need to defirgha h
function for strings. We define a very primitive hash funatibat maps the empty string
to zero and any non-empty string to its leading charactergfstringx, x[0] returns the
leading character of).

int Hash(const string& x) { return (x.length() > 0) ? x[0] : O; }
h_array<string,int> N(0); // default value O

while (cin >> s) N[s]++;

forall_defined(s,N) cout << s << " " << N[s] << "\n";
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1. Definition

An instanceM of the parameterized data typgap<|, E> is an injective mapping from
the data typd, called the index type o, to the set of variables of data tyjie called

the element type ofl. | must be a pointer, item, or handle type or the type int. We use
M (i) to denote the variable indexed byAll variables are initialized txdef, an element

of E that is specified in the definition &fl. A subset ofl is designated as the domain of
M. Elements are added ttmm(M) by the subscript operator.

Related data types atearrays harrays, anddictionaries

2. Creation

map<l, E> M; creates an injective functiam from | to the set of unused vari-
ables of typeE, setsxdefto the default value of typ& (if E has
no default value therdefis set to an unspecified elementf,
and initializesM with m.

mapkl, E> M(E x); creates an injective functiam from | to the set of unused vari-
ables of typeE, setsxdefto x, and initializesM with m.

3. Operations

E& MI[Ii] returns the variableM (i) and addsi to
dom(M). If M is a const-object theM (i)
is read-only and is not added t@lomM).

bool M.defined( i) returns true if € domM).

void M.clear() makedvl empty.

void M.clearE x) makesM empty and setgdefto x.
Iteration

forall _definedi, M) { “the indices withi € domM) are successively assigned to}
forall (x, M) { “the entriesM[i] with i € dom(M) are successively assignedxd}

4. Implementation

Maps are implemented by hashing with chaining and table litmybAccess operations
M[i] take expected tim©(1).

Figure 5.1 The manual page of data typeap

There are two further remarks required about this code feagmpFirst, in the definition
of N we defined a default value for all entries Mf all entries ofN are initialized to this
default value. Second, hashed types have no particular dedimed on their elements and
hence thdorall_definedloop for h.arrays steps through the defined indices of the array in
no particular order.

In the third example we assume that we are given a list of segmireseglistand that we
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want to associate a random bit with each segmenmmajxsegmentboob serves well for
this purpose.

map<segment ,bool> color;

segment seg;

forall(seg,seglist) color[seg] = rand_int(0,1);
After these introductory examples we turn to the detailetwlsion of our sparse array
types. An objectA of a sparse array type is characterized by three quantities:

e An injective mapping from the index type into the variablésype E. For an index
we useA(i) to denote the variable selectediby

e An elemenixdef of type E, the default value of all variables in the array. Itis
determined in one of three ways. If the definition of the altag an argument, as, for
example, in

h_array<int,int> N(0);

then this argument isdef. If the definition of the array has no argument but the entry
type of the array has a default valyas, for example, in

d_array<string,string> D;

then this default value isdef. If the definition of the array has no argument and the
entry type of the array has no default value, as, for exanmple,

map<point,int> color;

thenxdefis some arbitrary value dE. This value may depend on the execution
history.

e A subsedom(A) of the index set, the so-callebmainof A. All variables outside the
domain have valugdef. Indices are added to the domain by the subscript operation
and are deleted from the domain by thedefineoperation. Maps have nmdefine
operation and put some indices in the domain even if they wetraccessed
D_arrays and harrays start with an empty domain and indices are added thamain
only by the subscript operation.

We come to the operations defined on sparse arrays. We adsatidielongs to one of
our sparse array types and thds a legal index type for this sparse array type as defined in
the first row of Table 5.1. The subscript operatperatof] comes in two kinds:

const E& operator[](const I& i) const
E& operator[] (const I& i)

1 This is the case for all but the built-in types of€

2 These indices are used as sentinels in the implementatibalkmv us to make maps faster than the other sparse
array types. We refer the reader to Section 5.2 for details.
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The first version applies to const-objects and the seconsioreapplies to non-const-
objects. Both versions return the variatg). The first version allows only read access to
the variable and the second version also allows us to mdaéfywalue of the variable. The
second version addd4o the domain ofA and the first version does not. How is the selection
between the two versions made? Recall that+r €very member function of a cla¥shas

an implicit argument referring to an instance of the objé&ttis implicit argument has type
const X<I,E>* for the first version of the subscript operator and has %#e, E>* for

the second version of the access operator; Xestands for one of the sparse array types.
Thus depending on whether the subscript operator is apfiadconstant sparse array or
a modifiable sparse array either the first or the second vedfithe subscript operator is
selected. Consider the following examples.

const map<int,int> M1;
map<int,int> M2;

int x;
x = M1[5]; // first version
x = M2[5]; // second version

x ((const map<int,int>) M2)[7]; // first version

Observe that the first version of the subscript operatoresl uis the first and the last call
sinceM1 is a constant map and sind42 is cast to a constant map in the last line. The
second version of the subscript operator is used in the gegoress. It is tempting but
wrong to say (Kurt has made this error many times) that thefidee variableA(i) dictates
the selection: an access on the left-hand side of an assigruses the second version
(since the typeE& is needed) and an access on the right-hand side of an assigoses
the second version (since the typenst E& suffices). We emphasizthe rule just stated

is wrong In C++ the return type of a function plays no role in the selectioa wérsion of
an overloaded function; the selection is made solely on #séstof the argument types. We
continue the example above.

x = M2[5]; // second version
M2[5] = x; // second version
x = M1[5]; // first version
M1[5] = x; // first version, illegal

The last assignment is illegal, since the first version ofabeess operator is selected for
the constant map1. It returns a constant reference to the varididfa5), to which no
assignment is possible.

bool A.defined(I i)
returns true if € dom(A) and returns false otherwise. Finally, the operation
void A.undefine(I i)

removes fromdom(A) and setsA(i) to xdef. This operation is not available for maps.
Sparse arrays offer an iteration statement



5.1 Sparse Arrays: Dictionary Arrays, Hashing Arrays, araps 7

forall_ defined(i,A)
{ the elements of dom(A) are successively assigned to i }

which iterates over the indices @om(A). In the case of darrays the indices are scanned
in increasing order (recall that the index type of_amday must be linearly ordered), in the
case of harrays and maps the order is unspecified. The iteratiomsegite

forall(x,A)
{ A[i] for i in dom(A) is successively assigned to x }

iterates over the values of the entriegion( A).

5.1.2 Performance Guarantees and Implementation Parameters
Sparse arrays are one of the most widely studied data typenangl different realizations
with different performance guarantees have been propamethém. We have included
several into the LEDA system and give the user the possibdithoose an implementation
through the implementation parameter mechanism.

_d_array<string,int,rs_tree> D1(0);

_d_array<string,int,rb_tree> D2(0);

_d_array<int, int,dp_-hashing> H;
defines three sparse arrays realized by randomized seaed) ted-black trees, and dy-
namic perfect hashing, respectively. We now survey thdavaiimplementations; see also
Tables 5.2 and 5.3. The implementations fall into two clasfi®ose requiring a linearly
ordered index type and those requiring a hashed index typeudsh to denote the size of
the domain of the sparse array.

Implementations requiring a Linearly Ordered Index Type: This class of implemen-
tations contains deterministic and randomized implentemts. The deterministic im-
plementations aréa, b)-trees [Meh84a]AVL-trees [AVL62], BB[«]-trees [NR73, BM80,
Meh84a], red-black-trees [GS78, Meh84a], and unbalanesst The corresponding im-
plementation parameters aktree avltree bhtreg rb.tree andbintreg respectively. Ex-
cept for unbalanced trees, all deterministic implemeoitastiguarante® (logn) insertion,
lookup, and deletion time. The actual running times of atedainistic implementations
(except for unbalanced trees) are within a factor of two tedhof one another. The un-
balanced tree implementation can deteriorate to linearckeand guarantees only linear
insertion, lookup, and deletion time, as is clearly visitoten the right part of Table 5.2. It
should not be used.

The randomized implementations are skiplists [Pug9ékip(isf) and randomized search
trees [AS89] (s tre€). Both implementations guarantee an expected insertiatidn, and
lookup time ofO(logn). The expectations are taken with respect to the internal ftipis
of the data structures.

Among the implementations requiring a linearly orderectype ab-trees and skiplists



8 Advanced Data Types

Random integers Sorted integers

insert lookup delete total insert  lookup  delete total
ch_hash 0.23 0.09 0.18 0.5 0.2 0.05 0.12 0.37
dp_hash 1.48 0.21 1.08 2.77 1.37 0.21 1.02 2.6
map 0.15 0.04 — 0.9 0.15 0.05 — 0.2
skiplist 0.78 0.54 0.54 1.86 0.43 0.16 0.14 0.73
rs_tree 1.04 0.71 0.76 2.51 0.42 0.19 0.2 0.81
bin_tree 0.83 0.59 0.62 2.04 2704 1354 0.1501 4058
rbtree  0.9199 0.54 074 22 0.6499  0.1802 0.3 1.13
avl tree  0.8599 0.55 07 211 0.45 0.2 0.2402 0.8901
bb_tree 1.23 0.52 1 275 0.6399 0.2 0.3301 1.17
abtree  0.5898 0.25 0.4502 1.29 0.22  0.1399 0.2  0.5598
array 0.01001 0.01001 — 0.02002

Table 5.2 The performance of various implementations of sparse srtdgishing with chaining
(chthash) and dynamic perfect hashingghash are implementations of_arrays,mapis the
implementation of map, and skiplistskplist), randomized search trees.{ree), unbalanced
binary treesljintree), red-black-treesrf.treg), AVL-trees @vltree), BB[«]-trees bhtree), and
2-4-trees ghtreeg are implementations of_drrays. Running times are in seconds. We
performed 1B insertions followed by 1®lookups followed by 18 deletions. We used random
keys of typeint in [0 .. 107] for the left half of the table and we used the keys 0, 1, 2 ar.tffe
right half of the table. Maps are the fastest implementafiddiowed by hashing with chaining.
Among the implementations afarraysab-trees and skiplists are currently the most efficient.
Observe the miserable performance of liretreeimplementation for the sorted insertion order.
For comparison we also included arrays for the second test.

are currently the most efficient. We give the details of thiplst implementation in Sec-
tion 5.7.

All implementations use linear space, e.g., the skipligtlé@mentation requires 183 +
0O(1) = 253330 + O(2) bytes.

Implementations requiring a Hashed Index Type: There are two implementations: Hash-
ing with chaining and dynamic perfect hashing.

Hashing with chaining is a deterministic data structurguFé 5.2 illustrates it. It consists
of a table and a singly linked list for each table entry. THadaizeT is a power of two
such thafl = 1024 ifn < 1024 andT /2 < n < 2T if n > 1024. Thd -th list contains all
X in the domain of the sparse array such that Hash’x) modT. Letl; be the number of
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Random doubles

insert lookup delete total

skiplist 3.09 2.36 1.95 7.4

rs_tree 3.81 2.69 2.48 8.98

bin_tree 2.85 1.94 2.15 6.94

rb_tree 2.75 1.82 2.28 6.85

avl_tree 2.82 1.89 2.24 6.95

bb_tree 4.06 1.88 3.81 9.75

ab.tree 2.09 1.51 1.61 5.21

Table 5.3 The performance of various implementations of sparse sr@ynning times are in
seconds. We performed 2thsertions followed by 19lookups followed by 1B deletions. We
used random keys of tymoublein [0 .. 231].

elements in thé-th list and letk be the number of empty lists. The space requirement for
hashing with chaining is 1@ + k) bytes.

We justify this formula. An item in a singly linked list reqes twelve bytes; four bytes
for the pointer to the successor and four bytes each for thatke the information (if a key
or information does not fit into four bytes the space for thg deeinformation needs to be
added, see Section 13.4). There @rést items in the table ankl — 1 extra items in thé-th
list, if I; > 1. Next observe that

Sti-n=Yi-D+k=n-T+k
isli>1 i
The space required is therefore(T2+ n — T + k) = 12(n + k) bytes.

If the hash function behaves like a random function, i.e.yélue is a random number in
[0..T — 1], the probability that thé-th list is empty is equal t¢1 — 1/T)" and hence the
expected value dfis equaltoT (1 -1/ T)"=T(1—-1/T)T™D ~ Te"T; here, we used
the approximationl — 1/T)"T ~ e~1. The expected space requirement of hashing with
chaining is therefore equal to (i2+ T e "/ T) bytes. The time to search for an elemento
insert it, or to delete it i©O (1) plus the time to search in the linear list to whiclis hashed.
The latter time is linear in the worst case. For random irslibe expected length of each
listisn/T and hence all operations take constant expected time fdoratindices.

After an insertion or deletion it is possible that the inaatirelatingT andn is violated.

In this situation a so-callegthashis performed, i.e., the table size is doubled or halved and
all elements are moved to the new table.

Dynamic perfect hashing [FKS84, DKM4] uses randomization. It is the implemen-
tation with the theoretically best performance. The openadefinedtakes constant worst
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27

13

12

55

Figure 5.2 Hashing with chaining: The table size is 8 and the domain @&tarse array is
{2,12, 13,16, 18, 24, 26, 27, 55}. The hash functiom (x) is the identity functiorH (x) = x and
hence any numbex is stored in the list with index mod 8.

case time and the operatidi] takes constant expected amortized time or constant worst
case time depending on whether it is the first access wittxindenot. This requires some
explanation. Dynamic perfect hashing uses a two-levelihgstheme. A first-level hash
function hashes the domain to some numbeof buckets. T is chosen as in the case of
hashing with chaining. As above, lgtbe the number of elements in the domain that are
hashed to thé-th bucket. In the second level a separate table oflgizeallocated to the
i -th bucket and a perfect hash function is used to map the elisirethe -th bucket to their
private table, see Figure 5.3. In [FKS84, DKI9H4] it is shown that suitable hash functions
exist and can be found by random selection from a suitabks @& hash functions. It is
also shown in these papers that the space requirement afitees is linear, although with
a considerably larger constant factor than for hashing eligining. An access operation
requires the evaluation of two hash functions and hencestaeastant time in the worst
case. An insertion (= first access Ai] for some index ) may require a rehash on either
the second level or the first level of the data structure. Bedsare costly but rare and
hence the expected amortized time for an insert or deletenistant.

Experiments show that hashing with chaining is usually sopéo dynamic perfect
hashing and hence we have chosen hashing with chaining atefaelt implementation
of harray<l, E>.

Maps: Maps are implemented by hashing with chaining. Since thexrgpe of a map
must be an item or pointer type or the type int and since mapsteupport thaindefine
operation, three optimizations are possible with resped¢tashing with chaining as de-
scribed above. First, items and pointers are interpretéat@gers and the identity function
is used as the hash function, i.e., an integierhashed tax modT whereT is the table size.
SinceT is chosen as a power of two, evaluation of this hash functorery fast. Second,
the list elements are not allocated in free store but aret@led in an array. This allows
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P lw o | ||k o

Figure 5.3 Dynamic perfect hashing: The first-level talifehas size 8. For each entry of this
table the number of elements hashed to this entry are irdic#fl, | > 1, elements are hashed
to an entry then a second-level table of §izés used to resolve the collisions. The sizes of the
two second-level tables that are required in our examplelaeindicated.

for a faster realization of the rehash operation. Third;sithe keys are integers a particu-
larly efficient implementation of the access operation isgilde. Section 5.2 contains the
complete implementation of maps.

An Experimental Comparison: We give an experimental comparison of all sparse array
types. We perform three kinds of experiments. In the first @reeuse random integer keys
in the range [0. 107], in the second one, we use the keys 0, 1, ..., and in the thiegwe
use random double keys. In each case we perforhirs@rtions, followed by 10lookups,
followed by 1@ deletions. Tables 5.2 and 5.3 summarize the results.

The following program performs the first two experiments gederates Table 5.2. In
the main program we first define sparse arrays, one for eadbringmtation, and two arrays
AandB of size 19. We fill Awith random integers and we fi8 with the integers 0, 1, ...

. Then we call the functiodictestfor each sparse arragictestfirst insertsA[0], A[1],

..., then looks upA[0], A[1], ..., and finally delete#\[0], A[1], ... . It then performs the
same sequence of operations wghinstead ofA. For each sparse array type it produces a
row of Table 5.2. The chunksnap test and(array tes} perform the same tests for maps
and arrays, respectively. We leave their details to thearead

(dic_performance.r=

#include <LEDA/_d_array.h>
#include <LEDA/map.h>
#include <LEDA/array.h>

3 Since maps do not support delete operations, we need twoMbpadM2, one for the experiment witi and
one for the exeriment witiB.
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#include <LEDA/IO_interface.h>

#include <LEDA/impl/ch_hash.h>
#include <LEDA/impl/dp_hash.h>
#include <LEDA/impl/avl_tree.h>
#include <LEDA/impl/bin_tree.h>
#include <LEDA/impl/rs_tree.h>
#include <LEDA/impl/rb_tree.h>
#include <LEDA/impl/skiplist.h>
#include <LEDA/impl/ab_tree.h>
#include <LEDA/impl/bb_tree.h>
int N;

int* A; int* B;

I0_interface I;

void dic_test(d_array<int,int>& D, string name)
{

I.write_table("\n " + name);

float T; float TO = T = used_time();

int 1i;

for(i = 0; i < N; i++) DI[A[il] = 0;
I.write_table(" & ",used_time(T));

for(i = 0; i < N; i++) int* ptr = &D[A[i]];
I.write_table(" & ",used_time(T));

for(i = 0; i < N; i++) D.undefine(A[il);
I.write_table(" & ",used_time(T));

I.write_table(" & ",used_time(TO0));

(same for B

}

(map test

int main()

{
_d_array<int,int,ch_hash> CHH_DIC;
_d_array<int,int,dp_hash> DPH_DIC;

map<int,int> M1, M2;

_d_array<int,int,avl_tree> AVL_DIC;
_d_array<int,int,bin_tree> BIN_DIC;
_d_array<int,int,rb_tree> RB_DIC;
_d_array<int,int,rs_tree> RS_DIC;
_d_array<int,int,skiplist> SK_DIC;
_d_array<int,int,bb_tree> BB_DIC;
d_array<int,int,ab_tree> AB_DIC;

N = 100000;

A = new int[N]; B = new int[N];

int i;

for(i = 0; i < N; i++) { A[i] = rand_int(0,10000000); B[i] = i; }
dic_test(CHH_DIC, "ch\\_hash");

dic_test (DPH_DIC,"dp\\_hash"); I.write_table(" \\hline");
map_test(M1,M2, '"map"); I.write_table(" \\hline");
dic_test(SK_DIC, "skiplist");
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dic_test(RS_DIC ,"rs\\_tree");
dic_test(BIN_DIC, "bin\\_tree");
dic_test(RB_DIC ,"rb\\_tree");
dic_test(AVL_DIC,"avl\\_tree");
dic_test(BB_DIC ,"bb\\_tree");
dic_test(AB_DIC ,"ab\\_tree"); I.write_table(" \\hline");

(array tes}

5.1.3 Persistence of Variables
We stated above that an access operation

E& A[T il

returns the variablé(i). Thus, one can write

E& x = A[5];

<some statements not touching A[5]>;
Al5] = y;

if (x==y){ ....}

and expect that the test== y returns true. This is not necessarily the case farfays and
maps as these types do not guarantee that different acdessgy return the same vari-
able andwe therefore recommend never to establish a pointer or agete to a variable
contained in a map or larray. Given the efficiency of harrays and maps there is really
no need to do so. The fact that the identity of variables ispneserved is best explained
by recalling the implementation of_&rrays and maps. They use an array of linked lists
where the size of the array is about the size of the domaineo§plarse array. Whenever
the invariant linking the size of the table and the size ofdbmain is violated the content
of the sparse array is rehashed. In the process of rehastimgariables are allocated for
some of the entries of the sparse array. Of course, the vafubks entries are moved to the
new variables. Thus, the contentAfi) is preserved but not the variabfdi).

D_arrays behave differently. Variables inagdrays are persistent, i.e, the equality test in
the code sequence above is guaranteed to return true.

5.1.4 Choosing an Implementation
LEDA gives you the choice between many implementations afsgparrays. Which is best
in a particular situation?

Tables 5.2 and 5.3 show that in certain situations maps aterfthan barrays which in
turn are faster than_drrays. On the other hand the slower data types offer andeete
functionality. This suggests using the type whose fundtiibyn just suffices in a particular
application.

There are, however, other considerations to be taken irtoust. Maps and farrays
perform well only for random inputs, they can perform misdygor non-random inputs.
For maps a bad example is easily constructed. Use the intl@®% fori = 0, 1, ... .
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Since maps use the hash functior— x modT whereT is the table size, and is always

a power of two these keys will not be distributed evenly bytiash function and hence the
performance of maps will be much worse than for random inpuitshe case of larrays
the situation is not quite as bad since you may overwrite #fawudt hash function. For
example, you may want to use

int Hash(int x){ return x/1024; }

if you know that the indices are multiples of 1024.

Which implementations are we using ourselves? We usuadiynaps to associate infor-
mation with item types such as points and segments, we 1ageags or dictionaries when
the order on the indices is important for the applicatiom, ae use barrays when we know
a hash function suitable for the application.

If you are not happy with any of the implementations provigdedEDA you may provide
your own. Section 13.6 explains how this is done.

5.2 The Implementation of the Data Type Map

We give the complete implementation of the data tyyaa This section is for readers who
want to understand the internals of LEDA. Readers that “ombnt to use LEDA may skip
this section without any harm.

We follow the usual trichotomy in the definition of LEDA's fmaneterized data types
as explained in Section 13.4. Familiarity with this sectisrrequired for some of the
fine points of this section. We define two classes, namely bstract data type class
magpx|, E> and the implementation clasimap in three files, namely map.h, ahap.h,
and_ch.map.c. The abstract data type class has template pararhetetsE and the im-
plementation class stor&enPtrs(= voidx). In map.h we define the abstract data type class
and implement it in terms of the implementation class. Timiglementation is fairly direct;
its main purpose is to translate between the untyped vieWweofriplementation class and
the typed view of the abstract data type class. Im@dp.h andch.map.c, respectively, we
define and implement the implementation class.

We first give the global structure of LEDAROOT/incl/LEDA/ipé.

(map.h+=
template<class I, class E>

class map : private ch_map {

E xdef;

void copy_inf (GenPtr& x) const { LEDA_COPY(E,x); 1}
void clear_inf(GenPtr& x) const { LEDA_CLEAR(E,x); }
void init_inf (GenPtr& x) const { x = leda_copy((E&)xdef); }

public:
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typedef ch_map::item item;
(member functions of map
};

We give some explanations. We derive the abstract data tgpsnsapfrom the implemen-
tation classchmapand give it an additional data membeef, which stores the default
value of the variables of the map. Therefore, an instaneeagfconsists of an instance of
chmapand a variabledef of type E. The private function memberpyinf, clearinf,
andinitinf correspond to virtual functions of the implementation slasd redefine them.
The first two are required by the LEDA method for the implenaéioth of parameterized
data types and are discussed in Section 13.4. The thirdifuristused to initialize an entry
to a copy ofxdef.

The public member functions will be discussed below. Thefindehe user interface of
maps as given in Table 5.1.

We come to our implementation claskmap It is based on the data structure hashing
with chaining. Hashing with chaining uses an array of sirigliged lists and therefore we
introduce a container for list elements, which we cilmapelem A chmapelemstores
an unsigned longf, a generic pointeir, and a pointer to the successor container. We refer
to k as the key-field and tbas the inf-field of the container. This nomenclature is iregpi
by dictionaries. Keys correspond to indices (typen the abstract data type class and infs
correspond to elements (tyjad in the abstract data type class.

A pointer to achmapelemis called achmapitem

The flag__exportCis used during a precompilation step. On UNIX-systems iingsy
deleted and on Windows-systems it is replaced by apprepkiey words that are needed
for the generation of dynamic libraries.

(ch.mapelem=

class __exportC ch_map_elem

{
friend class __exportC ch_map;
unsigned long k;
GenPtr i;
ch_map_elem* succ;

s

typedef ch_map_elem* ch_map_item;

Next we discuss the data members of the implementation.class

(data members of cmap=
ch_map_elem STOP;

ch_map_elem* table;
ch_map_elem* table_end;
ch_map_elem* free;

int table_size;
int table_size_1;
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24

27
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12

55

16
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18 [~

free

Figure 5.4 A hash table of size 12. The last four locations are used asefiawv area and the
first eight locations correspond to eight linear lists. Teestored is

{2,12 13, 16, 18, 24, 26, 27, 55} and any numbex is stored in the list with index mod 8. If
thei-th list contains more than one element then the first eleisestored in the-th table

position and all other elements are stored in the overfloa.drethe example, three elements are
hashed to the second list and hence two of them are stored ovérflow area. The variabfeee
points to the first free position in the overflow area.

We use d@ableof map elements of sizé - T whereT is a power of two and is a number
larger than one, see Figure 5.4. We dse 1.5 in our implementation. The firdt elements
of the table correspond to the header3 dinear lists and the remaining — 1) T elements
of the table are used as an overflow area to store furtherléistents. The variabléee
always points to the first unused map element in the overflea.aivhen the overflow area
is full we move to a table twice the size. We usblesizeto storeT andtablesizel to
storeT — 1.

The main use of maps is to associate information with objédtsis the most important
operation for maps is the access operation with keys thalezady in the table (the data
structure literature calls such accessescessful searcheand we designed maps so that
successful searches are particularly fast. An access fey & knvolves the evaluation of
a hash function plus the search through a linear list. Oun hagction simply extracts the
last logtablesizebits from the binary representationxf

(HASH function=

ch_map_elem* HASH(unsigned long x) const
{ return table + (x & table_size_1); }

Why do we dare to take such a simple hash functibe?U be the set of unsigned longs.
We assume, as is customary in the analysis of hashing, thadem subse® C U of size
nis stored in the hash table. Let= tablesizedenote the size of the hash table and for all
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i,0<i <m,lets be the number of elements Sthat are hashed to positionThen

SS+S +...+Sn-1=n
and hence

by linearity of expectations. A hash function is calfadt if the same number of elements
of U are hashed to every table position. Our hash function is fair a fair hash function
symmetry implies that the expectations of all /s are the same. Hence

E[s]=n/m

for alli. No hash function can do better singg E[s] = n. We conclude that any fair hash
function yields the optimal expectations for thesf[ For the sake of speed the simplest
fair hash function should be used. This is exactly what we do.

We mentioned already that our main goal was to make accesatmpes as fast as possi-
ble. We will argue in the next three paragraphs that mostessfal accesses are accesses to
elements which are stored in the first position of the listtaming them. Lek denote the
number of empty lists. Theh — k lists are non-empty and hence there &re k elements
which are first in their list. Ifh denotes the number of elements stored in the table the frac-
tion of elements that are first in their list($ — k)/n. We want to estimate this fraction for
random keys and immediately before and after a rehash. We toavnew table when the
overflow area is full. At this time, there até — 1) T elements stored in the overflow area
andT — k elements in the first positions of the table. Thus= fT — k at the time of a
rehash.

For random keys the expected number of empty lists4s T - (1 —1/T)" ~ Te™™T,

For random keys we will therefore move to a new table wher T - (f —e™™T) or
n/T+e™T ~ f. Forf = 1.5 we getn ~ 1.2T, i.e., when about 2T elements are
stored in the table we expect to move to a new table.

Whenn ~ 1.2T about 07T elements are stored in the fifBtslots of the table and about
0.5T elements are stored in the overflow area of the table. Thust&bty1.2 ~ 58% of
the successful searches go to the first element in a list. tiatedy after a rehash we have
n ~ 0.6T (sincen ~ 1.2T before the rehash and a rehash doubles the table size) and the
expected number of empty listsTee %6 ~ 0.55T. Thus 045/0.6 ~ 75% of the successful
searches go to the first elementin a list. In either case dis@nt fraction of the successful
searches goes to the first element in a list.

How can we make accesses to first elements fast? A key problehe iencoding of
empty lists. We explored two possibilities. In both soln8ave use a special list element
STOPas a sentinel. In the first solution we maintain the invarihat thei -th list is empty
if the successor field dabldi] is nil and that the last entry of a non-empty list points to
STOR This leads to the following code for an access operation:



18 Advanced Data Types

inline GenPtr& ch map::access(unsigned long x)
{ chmap_item p = HASH(x);

if ( p—->succ == nil)
{ p>k = x;
init_inf (p->i); // initializes p->i to xdef

p—>succ = &STOP;
return p->i;
}
else
{ if ( p->k == x ) return p->i;
}
return access(p,x);

}

In this codeaccessp, x) handles the case that the list fois non-empty and that the first
element does not contai This code has two weaknesses. First, it tests each list for
emptiness although successful searches always go to npty-ésts and, second, it needs
to change the successor pointetablgi] to & STOPafter the first insert into thieth list.

In the second solution we encode the fact thatittie list is empty in the key field of
tablgi]. Let NULLKEY andNONNULLKEY be keys that are hashed to zero and some non-zero
value, respectively. In our implementation we use ONGLLKEY and 1 forNONNULLKEY.

We use the special key®/LLKEY and NONNULLKEY to encode empty lists. More specifi-
cally, we maintain:

e tablg0].k = NONNULLKEY, i.e., the first entry of the zero-th list is unused. The
information field of this entry is arbitrary.

e tabldi].k = NULLKEY iff the i-th list is empty for alii, i > 0, and

e the last entry of a non-empty list points$3 OPand if thei -th list is empty then
tablgi] points toSTOR

Observe that the zero-th list is treated somewhat unfalvlyleave its first position unused
and thus make it artificially non-empty. Figure 5.5 illusésthe items above.

Consider a search forand letp be the hash-value of. If x is stored in the first element
of the p-th list we have a successful search, andpkté list is empty iff the key of the first
element of thep-th list is equal taNULLKEY. Observe that this is true even fprequal to
zero, because the first item guaranteesNHALKEY is not stored in the first element of list
0. We obtain the following code for the access operation:

(inline functions=

inline GenPtr& ch_map::access(unsigned long x)
{ ch_map_item p = HASH(x);

if ( p->k == x ) return p->i;
else
{ if ( p->k == NULLKEY )

{ p—>k = x;

init_inf(p->i); // initializes p->i to xdef
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NONNULLKEY

NULLKEY

2

27

NULLKEY

STOP
13

12

55

24

26

16

18

Figure 5.5 The realization of the hash table of Figure 5.4hmap The first entry of the
zero-th list containt¥ONNULLKEY (whether the zero-th list is empty or not), empty lists other
than the zero-th list contalfULLKEY in their first element, and each list points3ToP.

return p->i;
}
else
return access(p,x);

Note that a successful search for a kethat is stored in the first position of its list is very
fast. It evaluates the hash function, makes one equalityotaween keys, and returns the
information associated with the key. Afis not stored in the first position of its table, we
need to distinguish cases: if the list is empty we storexdef) in the first element of the
list (note that the calinit.inf (p — i) sets the inf-field ofp to xdef), and if the list is non-
empty we callaccessp, x) to search fox in the remainder of the list. We will discuss this
function below.

Our experiments show that the second design is about 10%r fhstn the first and we
therefore adopted it for maps. In the implementation @frkays by hashing with chaining
we use the first solution. Sincedrrays use non-trivial hash functions that may require
substantial time for their evaluation, the second solutb@ses its edge over the first in the
case of harrays.

We can now give an overview over LEDAROOT/incl/LEDA/imgilmap.h.

(chomap.h=
#ifndef LEDA_CH_MAP_H
#define LEDA_CH_MAP_H

#include <LEDA/basic.h>
(ch.mapelem
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class __exportC ch_map

{
const unsigned long NULLKEY;
const unsigned long NONNULLKEY;
(data members of cmap

virtual void clear_inf (GenPtr&) const { }
virtual void copy_inf (GenPtr&) «const { }
virtual void init_inf (GenPtr&) const { }

(HASH function
(private member functions of ahap
protected:
typedef ch_map_item item;
(protected member functions of_chap
1
(inline function$
#endif

We have already explained the data members. The virtuatitmmembersclearinf,
copyinf, andinit.inf are required by the LEDA method for the implementation ofpae-
terized data types. We saw already how they are redefinee idetfinition ofmap

The protected and private member functions will be disalidgsdow. The protected
member functions are basically in one-to-one correspacelémthe public member func-
tions of the abstract data type class and the private menuipetibns define some basic
functionality that is needed for the protected member fionst e.g., rehashing to move to
a larger table.

We come to the file LEDAROOT/src/dimh.map.c. There is little to say about it at this
point except that is contains the implementation of ctdm®iap

(.ch.map.¢=
#include <LEDA/impl/ch_map.h>
(implementation of cimap

Having defined all data members and the global structureldfled we can start to
implement functions. We start with the private membershohap

(private member functions of anap=
void init_table(int T);

initializes a table of siz& (T is assumed to be a power of two) and makes all lists (including
list zero) empty. This is trivial to achieve. We allocate avrtiable of sizef T and set all data
members accordingly. We also initializzblg0].k to NONNULLKEY, tabldi].k to NULLKEY
foralli, 1 <i < tablesize and lettabldi].succpoint toSTOP for alli, 0 < i < tablesize
This initializes all lists to empty lists.
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(implementation of cimap =

void ch_map::init_table(int T)
{
table_size = T;
table_size_1 = T-1;
table = new ch_map_elem[T + T/2];
free = table + T;
table_end = table + T + T/2;

for (ch_map_item p = table; p < free; p++)
{ p->succ = &STOP;
p—>k = NULLKEY;
}
table->k = NONNULLKEY;

}

(private member functions of ahap+=

void rehash();

moves to a table twice the current size. We do so by first moalhglements stored in
the firstT elements of the table and then all elements in the overflow. ddote that this
strategy has two advantages over moving the elements téstlet: First, we do not have
to care about collisions when moving the elements in the Tirtble positions (because
the element in positionis moved to either positionor T + i in the new table depending
on the additional bit that the new hash function takes intmant), and second, locality of
reference is better (since we move all elements by scanhengltl table once).

When moving the elements from the overflow area we make useahember function
insert We define itinline. It takes a pafk, y) and moves it to the list for key. If the first
element of the list is empty, we moyr, y) there, and if the first element is non-empty, we
move(X, Yy) to positionfreg insert it after the first element of the list, and increniesg

(private member functions of ahap+=

inline void insert(unsigned long x, GenPtr y);

(implementation of cimap+=

inline void ch_map::insert(unsigned long x, GenPtr y)
{ ch_map_item q = HASH(x);
if ( q->k == NULLKEY )

{ 9>k = x;
9=>1 = y;
}
else
{ free->k = x;
free->i = y;
free->succ = gq->succ;
g->succ = free++;

}
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In rehashwe first initialize the new table (this puBNNULLKEY into the first entry of the
zero-th list) and then move elements. We first move the elériarthe main part of the
table fablg0] is unused and hence the loop for moving elements stattshée + 1) and
then the elements in the overflow area.

(implementation of cimap +=

void ch_map::rehash()
{
ch_map_item old_table = table;
ch_map_item old_table_mid = table + table_size;
ch_map_item old_table_end = table_end;
init_table(2*table_size);
ch_map_item p;
for(p = old_table + 1; p < old_table_mid; p++)
{ unsigned long x = p->k;
if ( x != NULLKEY ) // list p is non-empty
{ ch_map_item q = HASH(x);
q->k = x;
q->i = p->i;
}
}
while (p < old_table_end)
{ unsigned long x = p->k;
insert(x,p->i);
pt+;
}
delete[] old_table;
}

(private member functions of ahap+=

GenPtr& access(ch_map_item p, unsigned long x);

searches foxk in the list starting afp. The function operates under the precondition that
the list is non-empty and is not stored inp. The function is called by the inline function
accessx).

We search down the list starting pt If the search reache¥T0P, we have to inserx.
If the table is non-full, we insert at positionfreg, and if the table is full, we rehash and
recompute the hash valuexfIf x now hashes to an empty list, we put it into the first entry
of the list, and otherwise, we put it ite

(implementation of cimap +=

GenPtr& ch_map::access(ch_map_item p, unsigned long x)
{

STOP .k = x;

ch_map_item q = p->succ;

while (gq->k != x) q = gq->succ;

if (q != &STOP) return q->i;

// index x not present, insert it
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if (free == table_end) // table full: rehash
{ rehash();
p = HASH(x);
}
if (p->k == NULLKEY)
{ p>k = x;
init_inf(p->i); // initializes p->i to xdef
return p->i;
}
q = free++;
q—>k = x;
init_inf(q->i); // initializes q->i to xdef
q->succ = p->succ;
p—>succ = q;
return gq->i;

We come to the protected member functionsleinap We start with some trivial stuff.

(protected member functions of_ohap =

unsigned long key(ch_map_item it) const { return it->k; }
GenPtr& inf(ch_map_item it) const { return it->i; }

Constructors and Assignment; We start with the implementation class.

(protected member functions of amap+=
ch_map(int n = 1);
ch_map(const ch_map& D) ;
ch_map& operator=(const ch_map& D);

The default constructor initializes a data structure of siin(512 2/'°9"1), The copy con-
structor initializes a table of the same sizelaand then copies all elements frainto the
new table. Elements from the first part of the table are mok/gtkir key is different from
NULLKEY and elements from the second part of the table are alwaysdndbve assignment
operator works in the same way but clears and destroys thatoliel first.

(implementation of cimap +=

ch_map::ch_map(int n) : NULLKEY(O), NONNULLKEY(1)
{
if (n < 512)
init_table(512);
else
{ int ts = 1;
while (ts < n) ts <<= 1;
init_table(ts);
}
}

ch_map::ch_map(const ch_map& D) : NULLKEY(O), NONNULLKEY (1)
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{
init_table(D.table_size);

for(ch_map_item p = D.table + 1; p < D.free; p++)
{ if (p—>k !'= NULLKEY || p >= D.table + D.table_size)
{ insert(p—>k,p->1i);
D.copy_inf(p->i); // see chapter Implementation
}
}
}

ch_map& ch_map: :operator=(const ch_map& D)
{

clear_entries();
delete[] table;
init_table(D.table_size);

for(ch_map_item p = D.table + 1; p < D.free; p++)
{ if (p->k != NULLKEY || p >= D.table + D.table_size)
{ insert(p—>k,p->1i);
copy_inf (p->1i); // see chapter Implementation
}
}

return *this;

The constructors of the abstract data type class simplytloalappropriate constructor of
the implementation class.

(member functions of méE

map() { }
map(E x,int table_sz) : ch_map(table_sz), xdef(x) { }
map(E x) : xdef(x) { }

map<I,E>& operator=(const map<I,E>& M)
{ ch_map: :operator=((ch_map&)M) ;

xdef = M.xdef;

return *this;

}
map (const map<I,E>& M): ch_map((ch_map&)M), xdef (M.xdef) { }

Destruction: We follow our canonical design for constructors, see Sacli8.4.3. On
the level of the implementation class, we define a functitarentriesthat clears the
information field of all used entries, a functictear that first clears the entries of the table
and destroys the table and then reinitializes the table @efault sizedlearis not used but
we define it for the sake of uniformity), and the destructat fimply deletesable Note
that our canonical design ensures ttleair entriesis called before any call of the destructor
and hence onlyable must be destroyed by the destructor. Following standarctipea(see
[ES90, page278]) we declare the destructor virtual.
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(protected member functions of amap +=

void clear_entries();
void clear();
virtual “ch_map() { delete[] table; }

(implementation of cimap+=

void ch_map::clear_entries()

{ for(ch_map_item p = table + 1; p < free; p++)
if (p->k != NULLKEY || p >= table + table_size)
clear_inf(p->i); // see chapter Implementation

}

void ch_map::clear()

{ clear_entries();
delete[] table;
init_table(512);

}

The destructor of the abstract data type class first cldlr entriesand then the destructor
of the implementation class.

(member functions of mah=

“map() { clear_entries(); }

Access Operations:We have already defined the operatamtessx) that searches fax
and, if unsuccessful, insertsinto the table. Lookuponly searches; it returns the item
corresponding to a key, if there is one, andil otherwise.

(protected member functions of amap+=

GenPtr& access(unsigned long x);
ch_map_item lookup(unsigned long x) const;

(implementation of cimap+=

ch_map_item ch_map::lookup(unsigned long x) const

{ ch_map_item p = HASH(x);
((unsigned long &)STOP.k) = x; // cast away const
while (p->k != x) p = p->succ;
return (p == &STOP) ? nil : p;

The abstract data type class uses these functions in theusbwiay.

(member functions of mah=

const E& operator[](const I& i) const
{ ch_map_item p = lookup(ID_Number(i));

return (p) ? LEDA_CONST_ACCESS(E,ch_map::inf(p)) : xdef;
}
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E& operator[] (const I& i)
{ return LEDA_ACCESS(E,access(ID_Number(i))); }

bool defined(const I& i) const { return lookup(ID_Number(i)) != nil; }

In the above LEDAACCESSE, i) returns the value of converted to typeE, see Sec-
tion 13.4.5, andD_numbefi) returns the ID-number of

(member functions of mafp=
void clear() { ch_map::clear(); }

void clear(E x) { ch_map::clear(); xdef = x; }

Iteration: The implementation of the iteration statements followsgheeral strategy de-
scribed in Section 13.9. The implementation class providegunctions that return the first
used item and the used item following a used item, respéygtiBeth functions are simple.
The firstitem in the hash table is always unused and hirst@emreturnsnextitem(table).
We come tanextitem(it). Letit be any item. Ift is nil, we returmil. So assume otherwise.
To find the next used item we advarit®ne or more times until we are either in the over-
flow area or have reached an item whose key is not equRILDKEY. If the resulting value
of it is less tharfreewe return it and otherwise we retunil.

(protected member functions of amap+=

ch_map_item first_item() const;
ch_map_item next_item(ch_map_item it) const;

(implementation of cimap+=

ch_map_item ch_map::first_item() const
{ return next_item(table); }

ch_map_item ch_map::next_item(ch_map_item it) const

{ if ( it == nil ) return nil;
do { it++; }
while ( it < table + table_size && it->k == NULLKEY);
return ( it < free ? it : nil);

}

The abstract data type class must provide the funcfioststem nextitem inf, key All
four functions reduce to the corresponding function in thplementation class.

(member functions of map=
item first_item() const { return ch_map::first_item(); }
item next_item(item it) const { return ch_map::next_item(it); }
E inf(item it) const
{ return LEDA_CONST_ACCESS(E,ch_map::inf(it)); }
I key(item it) const
{ return LEDA_CONST_ACCESS(I, (GenPtr)ch_map::key(it)); }
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Exercises for 5.2

1  The unbalanced tree implementation of sparse arraysiol@ties to linear lists in the
case of a sorted insertion order. In particular, if the key3,1..,n are inserted in this
order then each insertion appends the key to be insertec anith of the list. Try to
explain the row fobin.treesin the lower half of Table 5.2 in view of this sentence.

2 Use maps and the indices 102dri =0, 1, ... .
3 Use harrays and the indices 102fbri = 0, 1, ... . Define your own hash function.
4 Design a hash function for strings. The function shouldetheipon all characters of a

string.

5 Extend the implementation of&rrays such that variables become persistent. (Hint: do
not store the array variables directly in the hash table bcgss them indirectly through
a pointer). What price do you pay in terms of access and itigee®

6 Provide a new implementation ofafrays or harrays and perform the experiments of
Table 5.2.

53 Dictionaries and Sets

Dictionaries and sets are essentially another interfadeatways and therefore we can keep
this section short.

A dictionaryis a collection of items (typdic.item) each holding a key of some linearly
ordered typeK and an information from some type Note that we now usé for the
information type and no longer for the index type. We illas¢rdictionaries by a program
that reads a sequence of strings from standard input, cthmtsumber of occurrences of
each string, and prints all strings together with their iplitities.

dictionary<string,int> D;

string s;

dic_item it;

while (cin >> s)

{ it = D.lookup(s);

if (it == nil) D.insert(s,1);

else D.change inf(it, D.inf(it) + 1);
}

forall dic_items(it, D)
cout << D.key(it) << " " << D.inf(it) << "\n";

In the while-loop we first search farin the dictionary. The lookup returmsl if s is not
part of the dictionary and returns the unique item with ke@therwise. In the first case we
insert the item(s, 1) into the dictionary. In the second case we increment thetimition
associated witls.

Dictionaries are frequently used to realize sets. In thisasion the information associ-
ated with an element in the dictionary is irrelevant, theyghing that counts is whether a
key belongs to the dictionary or not. The data tgeéis appropriate in this situation. A set
Sof integers is declared sekint> S. The number 5 is added [8insert(5), the number 8
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is tested for membership ymembe¢8), and the number 3 is deleted Rdeletg3). The
operationSchoosé ) returns some element of the set. Of coucdmoseaequires the set to
be non-empty.

We will discuss an extension of dictionaries in a later sectSorted sequenceSorted
sequences extend dictionaries by more fully exploitinglithear order defined on the key
type. They offer queries to find the next larger element incqueace and also operations to
merge and split sequences.

LEDA also contains extensions of dictionaries to geomaethjects such as points and
parallel line segments. We discuss a dictionary type fontsain Section 10.6. For more
dictionary types for geometric objects we refer the readéiné manual.

Exercises for 5.3
1 Implement dictionaries in terms ofatrays. Are you encountering any difficulties?
2 Implement darrays in terms of dictionaries. Are you encountering affijcdities?

5.4 Priority Queues

Priority queues are an indispensable ingredient for matwark and geometric algorithms.
Examples are Dijkstra’s algorithm for the single-sourcertst-path problem (cf. Sec-
tion 6.6), and the plane sweep algorithm for line segmeetseiction (cf. Section 10.7.2).
We start with the basic properties of priority queues, amahttiscuss the many implemen-
tations of priority queues in LEDA. We give recommendatiabsut which priority queue
to choose in a particular situation.

5.4.1 Functionality

A priority queueQ over a priority typeP and an information type is a collection of items
(typepqitem), each containing a priority from type and an information from typé. The
type P must be linearly ordered. A priority queue organizes it\gesuch that an item with
minimum priority can be accessed efficiently.

p-queue<P,I> Q;

defines a priority queu® with priority type P and information typd and initializesQ to
the empty queue. A new itep, i) is added by

Q.insert(p,i);
and
pg-item it = Q.find min();

returns an item of minimal priority and assigns ititgfindmin returnsnil if Q is empty).
Frequently, we do not only want to access an item with miniimfairmation but also want
to delete it.
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P p = Q.delmin();

deletes an item with minimum priority fror® and assigns its priority t@ (Q must be
non-empty, of course). An arbitrary iteincan be deleted by

Q.del_item(it);

The fields of an item are accessed®yprio(it) and Q.inf (it), respectively. The operation
Q.insert(p, i) adds a new itengp, i) and returns the item; so we may store it for later use:

pg-item it = Q.insert(p,i);

There are two ways to change the content of an item. The irdthom can be changed
arbitrarily:

Q.change_inf (it,i1);
makesd1 the new information of itenit. The priority of an item can only be decreased:
Q.decrease p(it,pl);

makesplthe new priority of itemt. The operation raises an erromit is larger than the
current priority ofit. There is no way to increase the priority of an iterfinally, there are
the operations

Q.empty(Q);

Q.size();

Q.clear();
that test for emptiness, return the number of items, and elgaeue, respectively.

Let us see priority queues at work. We read a sequence of é®éioim standard input
and store them in a priority queue. We then repeatedly exinaaninimum element from
the queue until the queue is empty. The net effect is to seftiiut sequence into increasing
order.

p-queue<double,int> Q; //the information type is irrelevant

double x;

while (cin >> x) Q.insert(x,0);

while (! Q.empty()) cout << Q.delmin << "\n";

A more sophisticated use of priority queuesliscrete event simulationNVe have a set
of events associated with points in time. An event assatiaith timet is to be executed
at timet. The execution of an event may create new events that aredrdweited at later
moments of time. Priority queues support discrete eventlsition in a very natural way;
one only has to store all still to be executed events togetitartheir scheduled time in a
priority queue (with time playing the role of the priorityhid to always extract and execute
the event with the minimal scheduled time.

4 The fact that priorities can be decreased but not increasgidtated by the implementations. There are

implementations that support very efficient decrease ofitigs but there are no implementations that support
efficient decrease and increase.
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Running times

Name Prio Args insert deletemin decreasp create destruct
f_heap general — O(logn) O(logn) o) o)
pheap general — O(logn) O(logn) o) o)
kheap general N,k=2 O(logyn) O(klog, n) O(log, n) O(N)
binheap general — O(logn) O(logn) O(logn) o)

list pq general — o) o(n) o)

hheap int, [I ..h] I, h 0(1) Ot -1 Ot -1 Oth—1)
r_heap int C O(logC) O(logC) o) O(logC)
mheap int C o) O(min— p.min) (O] (0](®)]

Table 5.4 Properties of different priority queue implementatiorie second column indicates
whether the priorities can come from an arbitrary linearyesed type (general) or must be
integers, the third column indicates the arguments of timstcoctor, and the remaining columns
indicate the running times of the various priority queuerafiens.B heapscan only handle
integer priorities from a fixed rangé.[ h] andr_heapsandmheapamaintain a variablg.min

and priorities must be integers in the rangerin.. pmin+ C — 1]. B heapsalso support a
deletemaxoperation. More detailed explanations are given in the text

5.4.2 Performance Guarantees and Implementation Parameters

LEDA provides many implementations of priority queues. Tim@lementations include
Fibonacci heaps [FT87], pairing heaps [SV8itJary heaps and binary heaps [Meh84a,
111.5.3.1], lists’, bucket§, redistributive heaps [AMOT90], and monotone heaps [M&h84
IV.7.2]. Fibonacci heaps are the default implementatiosh @ther implementations can be
selected using the implementation parameter mechanisminpiementation parameters
are f_heap pheap kheap binheap listpg, hhheap r_heap andmheap respectively.
Fibonacci heaps suppoansert, delitemanddelminin time O(logn), findmin, decreassp,
changeanf, inf, size andemptyin time O(1), andclear in time O(n), wheren denotes
the current size of the queue. The time bounds are amortiZéd. space requirement
of Fibonacci heaps is linear in the size of the queue. We die#r implementation in
Section 13.10.

Table 5.4 surveys the properties of the other implememati®ome implementations
allow any linearly ordered type for the priority type (thgsindicated by the word general)
and some work only for a prespecified range of integer présit The constructors take
zero or more arguments. For all priority queues that worly 6o a subset of the integers
the set of admissible priorities is defined by constructguarentsk-ary heaps require that

5 In the list implementation the items of the queue are stoseshaunordered list. This makdsletemin and
findmin linear time processes (linear search through the entbealisl trivializes all other operations.

6 In the bucket implementation we have an array of linear;litsis list with indexi contains all items whose
priority is equal tai. This scheme requires the priorities to be integers fromeapecified range.
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an upper boundN for the maximal size of the queue and the paramietsispecified in the
constructor; the default value &fis 2.

Redistributive heaps and monotone heaps do only supporbtmoa use of the priority
queue. The use of a priority queuenmnotondf the priority argument in anynsert or
decreasg operation is at least as large as the priority returned byakideletemin or
findmin operation. Dijkstra’s shortest-path algorithm uses itsriy queue in a monotone
way. Rheapsand mheapsmaintain a variablgomin that is initialized to the priority of
the first insertion and that is updated to the priority re¢arby anydeletemin or findmin
operation. Only priorities in the rang@min.. pmin+ C — 1] can be inserted into the
queue, wher€ is specified in the constructor. Imheapsthe cost of adeleteminis the
difference between the result of thdsletemin operation and the preceding dne

Thehheapimplementation allows one to ask for the maximum prioritd awot only for
the minimum priority. This is sometimes calleadlauble-sidegriority queue. For integer
priorities there are realizations known that have an evdteibperformance thanheaps
The papers [AMOT90] and [CGS97] describe realizations wirertanddeletemin take
time O(,/log C) andO((log C)¥/3*#) for arbitrarye > 0, respectively.

In order to select an implementation different from the défamplementation, a decla-
ration

_p-queue<K,int,prio_impl> Q(parameters);

has to be used, whemarametersienotes the list of parameters required by the implemen-
tation, e.g.,

_p-queue<int,int,r heap> Q(100000) ;

selects the_heapimplementation and se to 100000.

A priority queue with a particular implementation is, of cse, still a priority queue and
can hence be used wherever a priority queue can be used. @argeaxample. We write a
procedurdlijkstrathat takes a grap8, a nodes, anedgearray<int> costof edge weights,
and apqueugint, node PQ, and solves the single-source shortest-path problem éor th
specified source node. The distances are returnedadeaarray<int> dist The edge costs
must be non-negative.

(dijkstray=

void dijkstra(graph& G, node s, const edge_array<int>& cost,
node_array<int>& dist, p_queue<int,node>& PQ)
{ node_array<pq_item> I(G);
node v;

forall_nodes(v,G)
dist[v] = MAXINT;

dist[s] = 0;

7 Themheapimplementation uses an array of sizeof linear lists and a variablemin which is initialized to the
priority of the first insertion. An item with priority is stored in the list with indekmodC. Since priorities are
allowed only from the rangea]min.. pmin+ C — 1] this implies that each list contains only items with thensa
priority. A deletemin or findmin operation advancegsmin cyclically until a non-empty list is found.
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I[s] = PQ.insert(0,s);

while (! PQ.empty())
{ pg_item it = PQ.find min();

node u = PR.inf(it);
int du = dist[ul;
edge e;

forall_adj_edges(e,u)
{ v = G.target(e);
int ¢ = du + costl[e];
if (c < dist[v])
{ if (dist[v] == MAXINT)
I[v] = PQ.insert(c,v);
else
PQ.decrease_p(I[v],c);
dist[v] = c;
}
}
PQ.del_item(it);

We give some explanations; the correctness of the algoiighshown in Section 6.6. Di-
jkstra’s algorithm keeps a tentative distance value foheame and a set of active nodes.
For a nodey its tentative distance value is storeddistv] and the set of pair&istv], v),
wherev is an active node, is stored in the priority quét@. Each active node knows the
pgitemcontaining the pai¢distv], v); it is stored in entryl [v] of the nodearray<pqiten>

I. Initially, only the source nodgis active and its distance fromis zero. In each iteration
of the loop the pair with minimum distance value is deletenhfPQ, say the pairdu, u)
and all edgeeleavingu are scanned. An edge= (u, v) allows us to reach nodethrough

a path of cost = du+ cosf{e]. If cis smaller than the cost of the best path known &
far, this change is recorded disf{v] and the priority queue is informed about the change.
More precisely, if no path to was known so far, i.edisv] is still equal toMAXINT, a
new pair(c, v) is inserted into the priority queue and the item returnedtdeesl inl [v] and

if some path was already known then the priority of neda the queue is updated. Note
that in the latter casE[v] contains the item fop in PQ.

We turn to the analysis of the running time. It can be showa &ection 7.5.3) that each
node is inserted and deleted from the priority queue at muos;@mf course, nodes that can-
not be reached frora are never inserted into the queue. The algorithm thereferi®pns
at mostn insert empty findmin, anddeletemin operations and at most decreasg oper-
ations. Heren andm denote the number of nodes and edge&pfespectively. The time
spent outside the calls to the priority queu®ig + m) since array accesses take constant
time and since the time to scan through all edges leaving auncdproportional to the out-
degree of the node. It is fair also to include the time for thiestruction and the destruction
of the queue (although this happens outside procedijkstra). The total running time is
therefore bounded b® (N+m+-n-(Tinsert+ Tempty+ Trind_min+ Tdeletemin) +M- Tdecreasep+
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Worst case running time Expected running time
f_heap Qm + nlogn) O(m + nlogn)
pheap AQm+ nlogn) O(m+ nlogn)

kheap Qmlog n + nklog,n)  O(m+ n(log(2m/n) + k) log, n)

binheap Qmlogn + nlogn) O(m + nlog(m/n) log n)
listpg O(m + n?) O(m+n?)
b.heap A(m -+ n)nM) O((Mm+n)nM)
r-heap AQm + nlog M) O(m+ nlog M)
mheap AQm + maxdist+ M) O(m + maxdist+ M)

Table 5.5 Asymptotic running times of Dijkstra’s algorithm with diffent priority queue
implementations. In order to keep the formulae simple werassin < m. For the last three
rows the edge weights must be integral and from the rangeM0- 1]. The rows forhheaps
andmheapsrequire some explanation. Note that the maximal priorigreemoved from the
gueue is bounded bin — 1) M since a shortest path consists of at most 1 edges. Thus one
can uséaheapswith | = 0 andh = nM. Forr_heapsandmheapswe observe that the fact that
edge costs are bounded Myguarantees that all priorities in the queue come from thgean
[pmin.. pmin+ M — 1] and hence we can use these implementations@iith M. In mheaps
the cost of aeleteminis O(min — p.min), wheremin andp.min are the results of the current and
the previousleletemin operations. The sum of the differenaeg — pmin over alldeletemin
operations is bounded by the maximal distance of any node fin@ source.

Tereate + Tdestruc) WhereTy is the time bound for operatioK. Note that the expression
above is an upper bound on the running time. The actual nuaibdecreasg opera-
tions may be smaller tham. In fact, it can be shown that for random graphs and random
edge weights the expected numberdeicreasg operations iSO(min(m, nlog(2m/n))),
see [Nos85]. We can now use Table 5.4 to estimate the asyimptohing time ofdijkstra
with different implementations of the priority queue.

The resultis shown in Table 5.5. The first five lines contagmithplementations that work
for arbitrary non-negative real edge weights. The best i@se and average case time is
O(m + nlogn); they are achieved bfzheapsandp.heaps For dense graphs witm =
n'*¢ for some positives, kheapswith k = n'/¢ achieve a worst case tifhef O((1/s)m)
which is competitive with the above ferbounded away from zero. The expected running
time® of binheapsis competitive form = Q(nlog(m/n)logn). The last three lines of
the table contain implementations that work only for intdgrdge weights. In these lines
we useM to denote 1 plus the maximal weight of any edge. The best vaarst and

8 The worst case running time itheapsis O(nklogy n + mlogy n). Fork = n%/¢ we have
logy n = logn/ logk = 1/¢ andnk = n*1/¢ = m,

9 In binheapsthe cost of alecreasdeyis O(logn). The expected number décreas&eyoperations is
nlog(2m/n). Thus, ifm > nlog(2m/n) logn the running time iO(mM).
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i+1

Figure 5.6 A worst case graph for Dijkstra’s algorithm. All edgési + 1) have cost and an
edge(, j) withi 4+ 1 < j has cost; j. Thec j are chosen such that the shortest path tree with
root Oisthe path 01, ..., n — 1 and such that the shortest path tree that is known aftensiego
nodei — 1 from the queue is as shown. Among the edges out of hedé the edgdi — 1,i) is
the shortest, the edge — 1, n — 1) is the second shortest, and the edge 1,i + 1) is the
longest.

average case time ®(m + nlog M) achieved by_heaps For M = O(1) the mheap
implementation is competitive. The heap implementatioescdbed in [AMOT90] and
[CGS97] yield a running time o®(m+n,/log M) andO(m+n(log M)Y/3+¢) for arbitrary
¢ > 0, respectively.

How do the different implementations compare experiméralVe will perform exper-
iments with random graphs and with worst case graphs. Beép@rting running times we
construct a graph with nodes anan edges that forces Dijkstra’s algorithm into— n + 1
decreas operations; observe that this number is the maximal passibke the distance
of sis never decreased and since for any nodifferent froms the first edge inta that is
scanned leads to ansertbut not to adecrease operation. The construction works for all
m andn with m < n(n — 1)/2. Letc be any non-negative integer. The graph consists of:

e thenodesO,1,..n-1,
e then—1edgedi,i +1),0<i <n-1, each having cogt and

e thefirstm/ = m — (n — 1) edges in the sequen¢@ 2), (0, 3), ...,(0,n—1), (1, 3),
1,4,....,(4,n=1),(2,4),... . The edgéi, j) in this sequence is given cas}; to
be defined below.

We will define thec; ; such that the shortest path tree with respect to node 0 isatie p
[0,1,...,n—1],such that the nodes are removed from the queue in the oftlegir node
number, and such that the shortest path tree that is knownrafinoving nodé from the
queue is as shown in Figure 5.6. The shortest path fromiOhts cosic and the path
[0,1,...,i —1,i, j] has cosic + ¢ j, see Figure 5.6.

When node 0 is removed from the queue all other nodes are fuuthie queue. The
priority of node 1 is equal to and the priority of nodg, j > 1, is equal tacg ;. Generally,
just prior to the removal of nodethe queue contains nodieso n — 1: Nodei has priority
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© ()

Figure 5.7 The effect of scanning the edges out of nodé&/hen the scanning starts the nodes

i +1ton—1areinthe queue and we hadisin — 1] < ... < dis{i + 1]. Just prior to the
scanning of edgé, j) we have the situation shown; in this figure distance valuesralicated
asx-coordinates. Scannin@, j) will make disf j] the smallest priority in the queue. The edges
out ofi are scanned inthe ordéri +2),...,(,n—=1), (i,i +1).

ic and nodej, j > i, has priority(i — 1)c + ¢i_1 ;. We now remove nodefrom the queue
and scan through the edges outi ofWe postulate that we look at the edges in the order
(i,i+2),G,i+3,>(n=1),G,i+1).

Under what conditions will each edgke j) cause alecreass operation and, moreover,
will the new priority given to node by this edge be the smallest priority in the queue? This
will be the case if the; ; are chosen such that

iC+Ciy2 < (i—DCH+C_1n-1,
G,j < Gij-1 forall j,i+2<j<n-1,
and C=Cij+1 < Cin-1.

Note that the first inequality implies that the ed@d + 2) causes aecreasg operation,
that the second inequality implies that the edigg ) causes aecreasg operation for all
j,1 +2 < j <n-1, and that the third inequality implies that the edge + 1) causes
adecreas® operation. Also note that this choice of edge costs impliasthefore the scan
of the edges out dfwe havedisfin — 1] < ... < disfi + 1] and that consideration of edge
(i, ) will make disf] j] the smallest value in the queue, i.e., bef@reg) is considered we
havedisj — 1] < ... < disfli + 2] < disfn — 1] < ... < disfj] < disfi + 1] and after
(i, j)isconsidered we hawdisf j] < disfj —1] < ... < disffi +2] < disfn—1] < ... <
disfj + 1] < distfi + 1], see Figure 5.7. In this way each edge scan causes a majogeh
in the priority queue.

How can we choose, ;s satisfying these inequalities? We suggest the follovsingt-
egy. We first determine th®' additional edges to be used and then assign the edge costs to
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the additional edges in reverse order. Note that the |agt ealg be given cost+-1, and that
C,j canbeputt@; ;41 +1if ] <n—1andcanbeputtg,i;z3+c+1if j =n—1.The
following program realizes this strategy and returns tihgdst cost assigned to any edge.

(worst case generatpe

int DIJKSTRA_GEN(GRAPH<int,int>& G, int n, int m, int c¢ = 0)
{ G.clear();

array<node> V(n);
int i;
for (i = 0; i < n; i++) V[i] = G.new_node(i);
stack<edge> S;
int ml =m- (n - 1);
i=0;
int j =1 + 2;
while (m1 > 0)
{if (j <n)
{ S.push(G.new_edge(V[i],V[j1)); mi--; j++; }

else
{i++; j =1+ 2;

if (j == n)

error_handler (1,"DIJKSTRA_GEN: m can be at most n*(n-1)/2");
}

}
edge e = S.pop();
int last_c = G[e] = ¢ + 1;
while (!S.empty())
{ e=S.pop0);
int j = G[G.target(e)];
if (j == n-1)
last_c = G[e] = last_c + ¢ + 1;
else
last_c

Gle] = last_c + 1;
}
for (i = 0; i < n-1; i++) G.new_edge(V[i], V[i+1], c);

return last_c;

3

A further remark about this program is required. Tesvedgeoperation appends the new
edge to the adjacency list of the source node and hence thesadyy list of any nodewiill
be orderedi,i +2),...,(,n—1),(i,i + 1), as desired.

We come to the experimental comparison of our differentfiyigueue implementations.
We refer the reader to [CGS97] for more experimental reslilits easy to timalijkstrawith
a particular implementation, e.qg.,

(generate a section of table: Dijkstra timings
{ p_queue<int,node> fheap; K = "fheap";
dijkstra(G,s,cost,dist,fheap);
}
(report time for heap of kind K
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{ _p_queue<int,node,p_heap> pheap; K = '"pheap";
dijkstra(G,s,cost,dist,pheap);

}

(report time for heap of kind K

{ int 4 = m/n; // degree for k_heap
if (d<2)4d-=2;
_p_queue<int,node,k_heap> kheap(n,d) ; K = "kpeap";
dijkstra(G,s,cost,dist,kheap);

}

(report time for heap of kind K

{ _p_queue<int,node,bin_heap> binheap(n); K
dijkstra(G,s,cost,dist,binheap);

}

(report time for heap of kind K

if (i '= 2) // listheaps are too slow for section 2 of table
{
{ _p_queue<int,node,list_pqg> listheap; K
dijkstra(G,s,cost,dist,listheap);
}
(report time for heap of kind K

"binheap";

"listheap";

else cout << "& - " ; cout.flush();

{ _p_queue<int,node,r_heap> rheap(C);
dijkstra(G,s,cost,dist,rheap);

}

(report time for heap of kind K

{ _p_queue<int,node,m_heap> mheap(C); K
dijkstra(G,s,cost,dist,mheap);

}

(report time for heap of kind K

=~
1]

"rheap";

llmheapll ;

generates one section of Table 5.6. We have enclosed theregpéin a block such that
the time for the destruction of the queue is also measureble Ta6 shows the results of
our experiments. You can perform your own experiments viighgriority queue demo.

We see thapheapsare consistently better thdoheapsand thatr_heapsare in many
situations even better. The exception is when the natio is very small, the maximal
edge weight is large, and we use the worst case graph. Inttke $#tuation, thenlog M
term in the running time dominates. For random graghseapsare competitiveK_heaps
are worse thaminheapson random graphs (because our choic&k @ bad for random
graphs) and are competitive for worst case grapfsipqcannot be run for large values of
n because of the?-term in the running timeM_heapsdo surprisingly well even for large
edge weights. This is due to the fact that tleterm in the running time does not really
harmmheapsn our experiments because of the large valumof

5.4.3 Choosing an Implementation
LEDA gives you the choice between many implementations wfripy queues. Which is
best in a particular situation?
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Instance f_heap pheap kheap bioheap Ilistpq rheap mheap

s,I,S 036 034 035 034 051  0.33 0.35
srL 038 036 037 034 054 035 0.54
S.W,S 1.86 109  3.77 1.38 1 076 2.68
s,w,L 1.87 1.1 3.68 1.34 1 077 8.49
m,r,S 124 094 114 094 316 083 0.94
m,r,L 1.39 113 1.28 1.02 23 093 1.22
mw,S 236 144 494 1.77 227 0.99 2.78
m,w,L 236 145 484 1.74 217  1.03 3.29
LS 496  3.19 5.2 3.36 - 252 2.52
Ir,L 6.61 481 6.4 4.49 - 376 3.38
Lw,S 332 256 917 3.79 - 163 3.11
Lw,L 291 192 765 3.22 - 257 2.55

Table 5.6 Running times of Dijkstra’s algorithm with different prior queue implementations.
We used graphs witth = 500000 edges and either= 2000,n = 20000, om = 200000 nodes.
The three cases are distinguished by the labels s, m, argpkatively. For each combination of
n andm we generated four graphs. Two random graphs (r) with randige @eights in

[0..M — 1], whereM = 100 orM = 100000, and two worst case graphs (w) witk O or

¢ = 10000. The two cases fofl andc are distinguished by the labels S and L, respectively. So
s,r,L indicates that we used 2000 nodes, a random graphyiaegual to 100000. In thikheap
implementation we s&¢ = max(2, m/n), as this minimizes the worst case running time.

Tables 5.4 and 5.6 suggest to use eifhhbeaps binheaps or r-heaps Rheapsare the

data structure of choice if the use of the queue is monotodé¢remparametel is such that
logC is not much larger that log. If the keys are not integers or I&jis much larger than
logn, one should use eithdinheapsor pheaps The former are to be preferred when the
number ofdecreasg operations is not too large and the latter is to be prefertieeraise.

If you are not happy with any of the implementations provigeldEDA, you may provide

your own. Section 13.6 explains how this is done.

Exercises for 5.4

1

N

Consider a graph with two nodesandw and one edgév, w) of costM. What is the
running time of the different versions dijkstraon this graph as a function ®. Verify
your result experimentally.

Implement hot queues as described in [CGS97].

Time Dijkstra’s algorithm withk heapsfor different values ok. Do so for random
graphs and also for worst case graphs. Which valdevedrks best?
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4  Use priority queues to sort a set mfrandom integers or random doubles. Compare
the different queue implementations. In the casd&béapstry different values ok.
Compare your findings fdcheapswith the experiments in [LL97].

55 Partition

We discuss the data type partition: its functionality, itgplementation, and a non-trivial
application in the realm of program checking.

5.5.1 Functionality
A partition P consists of a finite set of items of tyjpartitionitemand a decomposition of
this set into disjoint sets called blocks. Figure 5.8 vigagd a partition. The declaration

partition P;

declares a partitiof? and initializes it to the empty patrtition, i.e., there areiteons in P
yet.

P.make_block();

adds a new item t®, makes this item a block by itself, and returns the item; sgerE 5.9.
We may store the returned item for later use.

¢

Figure 5.8 A partition P of eight items into three blocks. Partition items are intidaas solid
squares and blocks are indicated as ellipses enclosinteths constituting the block.

o

Figure 5.9 The partition of Figure 5.8 aftermakeblock operation.
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partition_item it = P.make block();
There are several ways to query a partition and to modify it.
P.same_block(it1l,it2);

returnstrue if the partition itemsgtl andit2 belong to the same block &f andfalseother-
wise.

P.union blocks(itl,it2);

combines the blocks containing iterihs andit2, respectively.
For each block one of its elements is designated as the “azalbitem of the block.

P.find(it);

returns the “canonical” element of the block containindNote thatt andP.find(it) belong
to the same block oP and that ifitl andit2 belong to the same block théhfind(itl) and
P.find(it2) return the same item. Thus

P.same block(itl,it2) == (P.find(itl) == P.find(it2))

is a fancy way to write the constatntie.
If L is a list of partition items then

P.split(L);

splits all blocks consisting of items in into singelton blocksL must be a union of blocks
of P.

We give a small example program to see partitions at work. \&fatain a partitiorP of
n items. We start with the partition into singleton blocks dimein repeat the following step
until the largest block has reached siz&’ 80. We choose two items at random and merge
the blocks containing them (this has no effect if the two gdmelong already to the same
block). During the experiment we keep track of the block siz&/henever the size of the
maximal block reacheis1/100 for somd, i > 1, we report the number of steps and the
size of the two largest components.

In order to facilitate the selection of two random items weraiall items of the partition
in anarray<partitioniten> Item This reduces the selection of a random partition item to
the selection of a random integer.

We keep track of the block sizes irsartsegint, int> freq, see Section 5.6. We store for
each block size the numbek of blocks having size in freq. Initially, all blocks have size
1 and there ara blocks of size 1.

(giantcomponentemo=
main(){
(giant component demo: read n

partition P;
array<partition_item> Item(n);
sortseq<int,int> freq;
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for (int 1 = 0; i < n; i++) Item[i] = P.make_block();

int iteration = 0; int step = 1; int max_size = 1;
freq.insert(1,n);

while ( max_size < n/2 )
{ int v = rand_int(0,n-1);
int w = rand_int(0,n-1);
iteration++;
if ( P.same_block(Item[v],Item[w]) ) continue;

seq_item it = freq.lookup(P.size(Item[v]));
freq[it]--;
if ( freqlit] == 0 ) freq.del_item(it);

it = freq.lookup(P.size(Item[w]));
freqlit]--;
if ( freqlit] == 0 ) freq.del_item(it);

P.union_blocks(Item[v],Item[w]);
int size = P.size(Item[v]);

it = freq.lookup(size);
if (it) freq[it]++; else freq.insert(size,1);

it = freq.max();
max_size = freq.key(it);
int second_size = freq.key(freq.pred(it));

while (max_size >= step*n/100 )
{ (giant component demo: report step
step++;
}
}
}

Part of the output of a sample run of the program above with 1P is as follows:

The maximal block size jumped above 0.16n after 542386titera. The maximal size
of a block is 160055 and the second largest size of a blockis 71

The maximal block size jumped above 0.17n after 545700titers. The maximal size
of a block is 170030 and the second largest size of a blockds 72

The maximal block size jumped above 0.18n after 548573titers. The maximal size
of a block is 180081 and the second largest size of a blockls 33

The maximal block size jumped above 0.19n after 552784titera. The maximal size
of a block is 190008 and the second largest size of a blockds 33

The maximal block size jumped above 0.20n after 556436titers. The maximal size
of a block is 200003 and the second largest size of a blockls 38

Observe that it took more than 500000 iterations until thigdst block reached size
0.16n, and only 4 000 additional iterations until the largest Blogached size.Q7n, ... .
Moreover, the size of the largest block is much larger thansiae of the second largest
block. In fact, the second largest block is tiny comparecht largest block. This phe-
nomenon is callethe evolution of the giant componentthe literature on random graphs,
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see [ASE92] for an analytical treatment of the phenomenau ay perform your own

experiments with the giant component demo. Qualitativbly, phenomenon of the giant
component is easy to explain. At any time during the exeaudfcdhe algorithm the proba-
bility to merge two blocks of sizk; andks, respectively, is proportional ok, sinceki ks

is the number of pairs that can be formed by choosing one iteeach block. Thus the
two blocks most likely to be merged are the largest and thergktargest block. Merging

them makes the largest block larger and the second largedt inaller (as the third largest
block becomes the second largest). Although we knew abeuphtienomenon before we
wrote the demo we were surprised to see how dominating thedablock is.

There are two variants of the partition data tyRartition andnodepartition. A node
partition is a partition of the nodes of a particular graphis lvery useful for graph algo-
rithms and we will discuss it in Section 6.6. Partition<| > is a partition where one can
associate an information of typewith every item of the partition. The operation

partition_item it = P.make block(i);

creates an item with associated informatioand makes the item a new block Bf the
operation

P.inf(it);
returns the information of itert and
P.change_inf (it, il);

changes the information @ftoil. The typePartition is appropriate whenever one wants to
associate information with either the items or the blocka pértition. In the latter case one
simply associates the information with the canonical itdrthe block. We give one such
application in Section 5.5.3.

5.5.2 The Implementation

Partitions are implemented by the so-calledon-find data structure with weighted union
and path compressionThis data structure is a collection pértition.nodeswhich are ar-
ranged into a set of trees, see Figure 5.10 for an exampleh Back of the partition
corresponds to a tree. partitionitemis a pointer to gartition.node Each partition node
contains a pointer to its parent and each root node knowsizkeo§the tree rooted at it.
This is called thesizeof the root. A partition node also contains a figleixtthat is used to
link all nodes of a patrtition into a singly linked list. Thefagtion of classpartition.nodeis
as follows:

(partition_node=
class partition_node {
friend class partition;

partition_node* parent;
partition_node* next;
int size;
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Figure 5.10 The representation of a partition with two blocks of six aneke items,
respectively. All edges are directed upwards. The sizeafmodes is indicated inside the node.
All nodes are also linked into a singly linked list. This listhot shown.

public:
partition_node(partition_node* n) { parent = O; size = 1; next = n; }
LEDA_MEMORY (partition_node)

};

typedef partition_node* partition_item;

The constructor constructs a node with no parent and size\&eewill see its use below,
where the use of the fieldextand the argumemnt will also become clear.

We come to class partition. It has only one data membeditemsthat points to the first
item in the linear list of all items comprising the partition

(partition.h)=
#include <LEDA/basic.h>
(partition_node
class partition {
partition_item used_items; // list of used partition items
public:
(member functions of partition
};

In order to create an empty partition we sseditemsto nil and in order to destroy a
partition we go through the list of items comprising the it and delete all of them.

{(member functions of partitiore
partition() { used_items = nil; }
“partition()

{ while (used_items)
{ partition_item p = used_items;
used_items = used_items->next;
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Figure 5.11 Path compression: All edges are directed upwards and thecpatpression was
initiated by an operatiofind(p). After the path compression all ancestorgpdhcluding p point
directly to the root of the tree containing

delete p;
}
X

In order to make a new block we allocate a ngavtition.node append it to the front of
the list of items comprising the partition, and return a piro the new node. Observe that
we defined the constructor of clgsartitionnodesuch that this works nicely.

(member functions of partitiop-=

partition_item make_block()
{ used_items = new partition_node(used_items);
return used_items;

}

We come to functioffind(partitionitem p. It returns the root of the tree representing
the block containingp. This root is easy to find, we only have to follow the chain ofge
pointers starting ap. We do slightly more. Once we have determined thet of the
tree containingp we traverse the path starting pta second time and change the parent
pointer of all nodes on the path toot, see Figure 5.11. This is called path compression;
it makes the current find operation a bit more expensive lugssall later find operations
from traversing the path from to root.
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(member functions of partitiop-=

partition_item find(partition_item p)
{ // find with path compression

partition_item x = p->parent;

if (x == 0) return p;

partition_item root = p;

while (root->parent) root = root->parent;

while (x !'= root) // x is equal to p->parent
{ p->parent = root;

p=x;

X = p->parent;
}

return root;

The functionsameblock(p, q) returnsfind(p) == find(q).

(member functions of partitiop-=

bool same_block(partition_item p, partition_item q)
{ return find(p) == find(q); }

In order to unite the blocks containing itempsandq we first determine the roots of the
trees containing these items. If the roots are the sameltleea iis nothing to do. If the roots
are different, we make one of them the child of the other. Vleviothe so-called weighted
union rule and make the lighter root the child of the heawstr This rule tends to keep
trees shallow.

(member functions of partitiof-=

void union_blocks(partition_item p, partition_item q)
{ // weighted union

p = find(p);
q = find(q);
if ( p == q ) return;
if (p->size > gq->size)
{ g->parent = p;
p->size += gq->size; }
else { p->parent = q;
q->size += p->size; }

Despite its simplicity the implementation pfrtition given above is highly effective.
A sequence oh makeblock andm other operations takes tim@((m + n)a(m + n, n))

10 we show that the depth of all trees is logarithmically bouhitetheir size. For any non-negative integelet sq
be the minimal size of a root whose tree has deptfihensy = 1. A tree of depthd arises by making the root of
a tree of depttd — 1 the child of another root. The former root has size at Igast and the latter root has at

least this size by the weighted union rule. Tlsys> 2s3_1 and hencey > 2d,
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Figure 5.12 The weighted union rule: When the trees of Figure 5.10 aredrhe root of size 3
is made a child of the root of size 6.

[Tar75]. Here« is the so-called inverse Ackermann function; this functioextremely
slowly growing and has value less than 5 evenrfoe m = 10'%°, see [CLR90, Chapter
22] or [Meh84a, 111.8.3].

5.5.3 An Application of Partitions: Checking Priority Queues
This section is joint work with Uli Finkler.

We will describe a checker for priority queues; this secdsaumes knowledge of the data
typep.queuesee Section 5.4. We define a claheckech queug P, | > that can be wrapped
around any priority queuBQ to check its behavior, see Figure 5.13. The resulting object
behaves likd?Q, albeit a bit slower, iPQ operates correctly. However,Q works incor-
rectly then this fact will be revealed ultimately. In otheonds the layer of software that we
are going to design behaves like a watch-dog. It monitorb#tavior ofPQ and is silent

if PQworks correctly. However, iPQ behaves incorrectly, the watch-dog barks.

checkedp_queue

PQ

Figure 5.13 The classheckedh.queuewraps around a priority quelQ and monitors its
behavior. It offers the functionality of a priority queue.

How can the classheckegh queuebe used? Suppose we have designed a olassnpl
which is a new implementation of priority queues. Using thplementation parameter
mechanism we can write
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_p-queue<P,I,new impl> PQ;

to declare gpqueugP, | > which is implemented byewimpl. We may usePQ in any
application using @aqueugP, |>.

Assume now thahewimpl is faulty. Then an application usifgQ may go astray and
we will have to locate the bug. Is it iRQ or is it in the application program? The use of
checkedh queuedacilitates the debugging process greatly. We write

_p-queue<P,I,list item,new_impl> PQ;

checked p_queue<P,I> CPQ(PQ);
and useCPQin the application program. PQ works incorrectlyCPQwill tell us. There
is no change required in the application program siaseckedh queueis publicly derived
from p.queueand hence can be used whereverqeuecan be used, for example,

void f(p_queue<P,I>&) { ...}

p-queue<P,I> PQ; £(PQ);

_p-queue<P,I,new_impl> PQI; £(PQI);
_p-queue<P,list_item,new_impl>PQI1;

checked p_queue<P,I> CPQ(PQI1); £(CPQ) ;

Observe that the information type BRI1is listiteminstead ofl, i.e., we are checking a
pqueugP, listitem> instead of gaqueu& P, | >. This is a slight weakness of our solution.
We believe that it is only a slight weakness because therirdtion typel plays a minor role
in the implementation of priority queues. Moreover, it c&ndvercome, see the exercises.

In the remainder of this section we give the implementaticthe classheckedgyqueue
The implementation is involved and reading this sectiotiaielly requires some stamina.
We decided to put this section into the book because we dirdradieve that the work
on checkers is highly important for software libraries. t8et2.14 contains a general
discussion on program checking.

The ldea: How can one monitor the behavior of a priority queue? Withmuricern for
efficiency a solution is easy to come up with. Whenevdeketemin or findmin operation
is performed all items oPQ are inspected and it is confirmed that the reported priosity i
indeed the minimum of all priorities in the queue. This solntdoes the job but defeats the
purpose as it makasdeletemin andfindmin linear time operations. Our goal is a solution
that adds only a small overhead to each priority queue dparaOur solution performs
the checking of the items in the queue in a lazy way, i.e., wlndeletemin or findmin
operation is performed it is only recorded that all itemsrently in the queue must have
a priority at least as large as the priority reported. Thealathecking is done later. Note
that this design implies that an error will not be detectechadiately anymore but only
ultimately.

Consider Figure 5.14. The top part of this figure shows thast& a priority queue
from left to right in the order of their time. Thiéme of a pqitem itis the time of the last
decreasg operation ornit or, if there was none, the time of the additionibfo PQ. The
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(0]
(0] (0]

PQ

T

Figure 5.14 In the top part of the figure the items in a priority queue a@shas circles in the
xy-plane. Thex-coordinate corresponds to the time of an item andytlteordinate corresponds
to the priority of an item. The lower bounds for the priostiare indicated as heavy horizontal
lines. The lower bound for the last two items-igo. The lower part of the figure illustrates our
design of classheckedh queue The listL has one item for each item PQ, the listS has one
item for each step df except for the step with lower bounebo and the partitiorPart has one
item for each item irL. and one block for each step. The blockdPaft are indicated as ellipses.
The information of the canonical item of a blockdrt is the Sitemassociated with the block
(nil for the block with lower bound-0o0). EachSitemknows the last itemin its step.

vertical coordinate indicates the priority. With each itefrthe priority queue we have an
associated lower bound. Thawver boundfor an itemit is the maximal priority reported by
anydeleteminor findmin operation that took place after the timeitofWe observe tha®Q
operates correctly if the priority of afigitemsis at least as large as their lower bound. We
can therefore chedRQ by comparing the priority of an item with its lower bound wieger
an item is deleted frorRQ or the time of an item is changed througtiecreasg operation.

How can we efficiently maintain the lower bounds of the itemthie queue? We observe
that lower bounds are monotonically decreasing from lefidbt, i.e., if the time ofit is
smaller than the time af’ then the lower bound fat is at least as large as the lower bound
for it’. This observation follows immediately from the definitiohtbe lower bounds and
leads to the staircaselike form of the lower bounds showrignre 5.14. We call a maximal
segment of items with the same lower bounstep

How does the system of lower bounds evolve over time? Whematea is added to
the queue its associated lower bound-iso and when gindmin or deletemin operation
reports a priority of valug all lower bounds smaller thamare increased tp, i.e., all steps
of value at mosp are removed and replaced by a single step of valusince the staircase
of lower bounds is falling from left to right this amounts tpitacing a certain number of
steps at the end of the staircase by a single step, see Fidie 5

How can we represent a staircase of lower bounds such theat e updated efficiently
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Figure 5.15 Updating the staircase of lower bounds after reporting eripyiof p. All steps
whose associated lower bound is at mpsire replaced by a single step whose associated lower
bound isp.

and such that lower bounds can be looked up efficiently? W &distL of checkobjects
and a listS of stepobjects We have oneheckobjectin L for each item inPQ and order
L according to the times of the corresponding iterP{@ We have onstepobjectin Sfor
each step of our staircase of lower bounds except for therdtepe associated lower bound
is —o0, see Figure 5.14.

A checkobijectis a quadruple consisting of a priorify, an information, a pgitemand
a partitionitem We explain the use of the partition item below. We mentioakdady
that check objects are in one-to-one correspondence taehes iinPQ (if PQ operates
correctly). The check objectcorresponding to pgitem pit with associated priority and
associated information containsp, i, andpit as its first three components. We stqre
andi in the check object to guarantdata integrity i.e., the checking layer stores its own
copies of the pairs stored in the priority queue and hencechank whethePQ tampers
with this data. In fact, we will not store the informatiom PQat all. We will rather use the
information field of the itenp.it of PQto store the item of. containingo. In other words
the queue to be checked will be of typgueu& P, Litem> whereL itemis a synonym for
listitemthat we reserve for the items In We uselit as the canonical name of aritem

A stepobjectis a pair consisting of a priority and dnitem The priority is the lower
bound associated with the step and thiemis the last item inL that belongs to the step.
The list Swill play a crucial role when we update our set of lower bouafisr adeLmin or
findmin operation. When a priority is reported by aleLlmin or findmin all steps whose
stepobjecthas a priority of at mosp are merged into a single step. These steps constitute a
final segment ofs. We useSitemas the name of the items Biand usesit as the canonical
name of arSitem

For the efficient lookup of lower bounds we us@artition<Siten> Part with one item
for each item inL and one block for each step &f The information associated with
the canonical element of a stepns, if the step’s lower bound is-oo, and is theSitem
corresponding to the step otherwise. The fourth componeatich check object is the
partition item corresponding to the check object.

Let us summarize. A checked priority queue consists of aipyiqueue, the listd and
S, a partitionPart, and two integer countegghasdengthandopcount(their use will be
explained below). The items df are in one-to-one correspondance to the itemPQf
(if PQ operates correctly). All operations & go through the checking layer, e.g., an
operationinsert(p, i) causes the checking layer to update its internal data stestin
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particular, to add an item tb, and to forward the insert requestRQ. The newl_itemwill
be returned by the insert operation.

The Class checkedb_queue: We fix the definitions of the data structures of the checking
layer in the following layout for the classheckedahqueugP, | >.

(checkedp_queue.h=
#ifndef LEDA_CHECKED_P_QUEUE_H
#define LEDA_CHECKED_P_QUEUE_H

#include <LEDA/p_queue.h>
#include <LEDA/list.h>
#include <LEDA/partition.h>
#include <assert.h>
#include <LEDA/tuple.h>

template <class P, class I>
class checked_p_queue : public p_queue<P,I>

{
typedef four_tuple<P,I,pq_item,partition_item> check_object;

list<check_object> L;
typedef list_item L_item;

typedef two_tuple<P,L_item> step_object;

list<step_object> S;
typedef list_item S_item;

Partition<S_item> Part;

int phase_length, op_count;
p_queue<P,L_item>* PQ;

(private member functions of class checkedueue

/* the default copy constructor and assignment operator work
incorrectly, we make them unaccessible by
declaring them private x/
checked_p_queue(const checked_p_queue<P,I>& Q);
checked_p_queue<P,I>& operator=(const checked_p_queue<P,I>& Q);

public:
checked_p_queue(p_queue<P,L_item>& PQ_ext) // constructor
{ PQ = &PQ_ext;
assert (PQ->empty());
phase_length = 4; op_count = O;
}
(member functions of class checkedjueué
3
#endif

Observe thatheckedrqueugP, | > is publicly derived frompqueu&P, | > and hence
will offer the same functions agqueues The private data members are a pointer to the
pqueugP, Liten> to be checked, the lists and S, the partitionPart, and two integers
phasdengthandopcount we will explain the latter two data members below.
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The constructor ofheckedh queuggets a reference to the queue to be checked and stores
it in PQ. It also initializesphasdengthto four andopcountto zero. The queue to be
checked must be empty (but, of course, there is no guarami¢éiie emptiness test does
not lie). All other data members are initialized by theiraldf constructor.

The member functions @heckedh queuesplit into private and public member functions.
The public member functions are exactly the public membactions of the base class
p.queueexcept for the copy constructor and the assignment opef@mere too lazy to
implement them. Since+3 provides default implementations of both functions andsin
the default implementations are incorrect we declared hotbtions private to make them
unaccessible.

The private member functions are used in the implementafitime public member func-
tions. In order to motivate their definitions we give an ovewwof the implementations of
the public member functionimsert and deletemin. In this overview we concentrate on
the interplay between the checking layer @@ and do not give any details on how the
staircase of lower bounds is manipulated.

Aninsert(p, i) is realized as follows. The checking layer creates a chejgcbb con-
taining the pair(p, i) and appends to L. LetLit be newL.item It then inserts the pair
(p, Lit) into PQ. PQreturns an itenp.it which the checking layer records@ The check-
ing layer also creates a new patrtition item correspondira Tthe new item either forms a
block of its own (if the step with lower boundoo is empty) or is joined into the step with
lower bound—oo. The checking layer then returhi as the result of thansert

A delmin is realized as follows. The checking layer forwards the estjio PQ and
PQreturns a paicp, Lit). Leto = (p/, i, pit, partit) be the checking object stored|liit.
The checker verifies that = p’ and thatp satisfies the lower bound associated vatlit
updates the staircase of lower bounds, and it finally retprns

We want to stress that the checking layer is responsiblenfocommunication with the
environment and that the checking layer stores all the ggirg) that are in the priority
queue. It forwards all requests from the environmer®@ In adelmin operation it uses
PQ as anoracle The checking layer has no own means to answer minimum cuelie
therefore ask®Q to point out the correct item. It maintains the system of loleunds
in order to find out whethePQ ever lied to it. The checker discovers lies by checking the
lower bounds of items whenever an item is deleted or theipriof an item is changed.

We want to bound the delay between a lie and its discoverytHf®purpose the checker
has a private member functigreriodiccheck This operation goes through all elements
of L and checks the lower bound of every elemeP¢riodiccheckis called after the '2
th operation performed on the priority queue forlalk 2. It is also called after the last
operation performed on the priority queue. The inteplidsdengthandop.countare used
to control the periodic checks. We divide the execution phases. We ugghasdength
for the length of the current phase and ageountto count the number of operations in
the current phase. Wham countreachephasdengthwe check all lower bounds, double
phasdength and resebpcountto zero.
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The discussion above implies that we need to make two asgmsbout the behavior
of PQ:

e All calls to member functions d?Q must terminate. They may give wrong answers
but they must terminate. It is beyond our current implem@mmao guarantee
termination. A solution would require non-trivial but stiaxd modification of the
implementation oPQ. One can guard against run-time errors (e.g., invalid abds
by compilingPQ with the debugging option and one can guard against infindps
by specifying an upper bound on the execution time of eachimeefunction ofPQ.
The latter requires a worst case analysis of the running dih€)’'s member functions.

e Allcalls of PQ — inf must return valid_items One may guard against invalid
L itemsby compilingcheckedh queueswith the debugging option. An alternative
solution is described at the end of this section.

Private Member Functions: We are now ready for the definition of the private member
functions. The first group provides natural access to thepoomnts oftheckobjectsand
stepobjects

(private member functions of class checledueue=

P& prio(L_item 1_it)

const P& prio(L_item 1_it) const

I& inf(L_item 1_it)

const I& inf(L_item 1_it) const

pg_item& pg_it(L_item 1_it)

pg_item pq_it(L_item 1_it) const
partition_item& part_it(L_item 1_it)
partition_item part_it(L_item 1_it) const

return L[1_it].first(); }
return L[1_it].first(); }
return L[1_it].second(); }
return L[1_it].second(); }
return L[1_it].third(); }
return L[1_it].third(); }
return L[1_it].fourth(); }
return L[1_it].fourth(); }

return S[s_it].first(); }
return S[s_it].first(); }
return S[s_it].second(); }
return S[s_it].second(); }

P& prio_of_S_item(S_item s_it)

P prio_of_S_item(S_item s_it) const
L_item& L_it(S_item s_it)

L_item L_it(S_item s_it) const

e e

The second group supports the navigation in the data stesctd the checker.

The canonical partition item corresponding to laitem Lit is obtained by performing
Partfind on the associated partition item.

The information associated with the canonical item is olgdiby applyingPartinf to
the canonical item.

The itemlit belongs to the step with lower bounrebo if the canonical information is
equal tonil and belongs to a step with a defined lower bound otherwise.

The last item in the step containihg is either the last item off (if Lit is unrestricted)
or is theL itemstored in theSitemgiven bycanonicalinf (Lit).

An item is the only item in its step if it is the last item in iteep and is either the first
item of L or its predecessor item in is also the last item in its step.

All functions above areonstfunctions. They use operatiofisd andinf of classPartition
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which are notonstfunctions. We therefore writgPartition<Siten>*) & Part) — instead
of Part to cast awayonstwhen calling one of these functiors

(private member functions of class checledueué+=
partition_item canonical_part_it(L_item 1_it) const
{ return ((Partition<S_item>*) &Part)->find(part_it(1_it)); }
S_item canonical_inf(L_item 1_it) const
{ return ((Partition<S_item>*) &Part)->inf (canonical_part_it(1_it)); }
bool is_unrestricted(L_item 1_it) const
{ return canonical_inf(1_it) == nil; }
bool is_restricted(L_item 1_it) const
{ return ! is_unrestricted(1_it); }

L_item last_item_in_step(L_item 1_it) const
{ if ( is_restricted(1_it) )
return L_it(canonical_inf(1_it));
return L.last();

}
bool is_last_item_in_step(L_item 1_it) const
{ return ( last_item_in_step(l_it) == 1_it) ; }

bool is_only_item_in_step(L_item 1_it) const
{ return (is_last_item_in_step(l_it) &&

( L.pred(1_it) == nil || is_last_item_in_step(L.pred(1_it))));
}

We put the functions above to their first use by writing a fimtthat tests the validity of
the data structures of the checking layer. This functiomigiebugging purposes only. The
data structures must satisfy the following conditions:

e The sizes ol andPQ must be equal.
e Eachitenlit in L points to an item ifPQ which points back td.it.

e TheitemsinL can be partitioned into segments such that in each segreenathe of
canonicalinf is constant. Except for maybe the last segmentc#monicalinf is
equal to an item ir§ and this item points back to the ldsitemin the segment. In the
last segment theanonicalinf is nil. The last segment may be empty and all other
segments are non-empty.

(private member functions of class checledueué+=

void validate_data_structure() const

{

#ifdef VALIDATE_DATA_STRUCTURE
assert( PQ->size() == L.size() );
L_item 1_it;
forall_items(1_it,L)

{ assert( pq_it(1_it) != nil ) ;

11 1t is tempting to write the cast asPartition<Sitem>) Part). but this would amount to a call of the copy
constructor ofPartition and hence be a disaster.
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assert( PQ->inf(pq_it(1_it)) == 1_it );
}
1_it = L.first();
S_item s_it = S.first();
while (s_it)
{ assert(canonical_inf(1_it) == s_it);
while (1_it '= L_it(s_it) )
{ 1_it = L.succ(l_it);
assert(1l_it != nil);
assert(canonical_inf(1_it) == s_it);
}
s_it = S.succ(s_it);
1_it = L.succ(1l_it);
}
while (1_it)
{ assert(canonical_inf(1_it) == nil);
1_it = L.succ(1l_it);
}
#endif

}

The final group of private member functions checks lower lolstand update the staircase
of lower bounds.

An Litem Lit satisfies its lower bound if eithéit is unrestricted or the priority of the step
containingl.it is no larger than the priority gd.it.

(private member functions of class checkedueue+=

void check_lower_bound(L_item 1_it) const
{ assert(is_unrestricted(1_it) ||
compare(prio_of _S_item(canonical_inf (1_it)), prio(1_it)) <= 0 );

}

The functionperiodiccheckis called at the end of every public member function. It
increase®pcountand whenopcounthas reacheghasdengthchecks all lower bounds,
doublesphasdength and resetspcountto zero.

(private member functions of class checkedueue+=

void periodic_check()
{ if ( ++op_count == phase_length )
{ L_item 1_it;
forall_items(1l_it,L) check_lower_bound(l_it);
phase_length = 2%phase_length;
op_count = 0;

Finally, we show how to update lower bounds, see Figure .&8p be a priority. We
move all lower bounds that are smaller thanp to p. This amounts to removing all items
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in Swhose associated lower bound is less than or equpldad adding a new item with
priority p to S. We give more details.

If L is empty or the last step in our staircase of lower boundsestéo the end of the
list and has a priority at least as large@then there is nothing to do.

So assume otherwise. We sc8rorm its right end (= rear end) and remove items as
long as their priority is at mosp. Whenever we remove an itegit from S we join the
step corresponding tait with the step after it (it it exists). Finally, we add an item$
representing a step with priorify and ending at..last( ) and make the item the canonical
information of all items in the last step.

(private member functions of class checkedueue+=
void update_lower_bounds(P p)
{ if ( L.empty() ||
( !'S.empty() && compare(prio_of_S_item(S.last()),p) >= 0
&% L_it(S.last()) == L.last())) return;
S_item s_it;
while ( !S.empty() &&
compare (prio_of_S_item(s_it = S.last()),p) <= 0 )
{ L_item 1_it = L_it(s_it);
if ( L.succ(1l_it) )
Part.union_blocks(part_it(l_it),part_it(L.succ(1l_it)));
S.pop_back();

Part.change_inf (canonical_part_it(L.last()),
S.append(step_object(p,L.last())));

After all this preparatory work we come to the public memheardtions.

The Insert Operation: To insert a new itemp, i) we append td- a new check object
(p, i, pit, partit); pit is a new item inPQ created by the insertion @jp, —) andpartit
is a new item inPart. The lower bound of the new item isco and hence the information
associated witlpartit is nil. LetLit be the new item irL.. We storel_it as the information
of pit.
If there was already a step with lower boundo, we add the new item to this block.
Finally, we callperiodiccheckand returrlit (after casting it tgogitem)*2.

(member functions of class checkedueué=

pq_item insert(const P& p, const I& i)
{ pq_item p_it = PQ->insert(p,(L_item) 0);
L_item last_1_it = L.last(); // last item in old list

partition_item pa_it = Part.make_block((S_item) 0);
list_item 1_it = L.append(check_object(p,i,p_it,pa_it));
PQ->change_inf (p_it,1_it);

if (last_1_it && is_unrestricted(last_1l_it) )

12 The cast fronlitemto pgitemis necessary since early in the design of LEDA we made thesidecihat the
global typepgitemis the return type oihsert It would be more elegant to hapeitemas a type local tp.queue
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Part.union_blocks(part_it(1l_it),part_it(last_1_it));

periodic_check();
validate_data_structure();

return (pq_item) 1_it;
}

The Find_min Operation: In order to perform dindmin operation we perform indmin
operation orPQ and extract an iterhit in L from the answer. Having received this advice
from PQwe check the lower bound fdit and update the system of lower bounds using the
priority of Lit.

Since checkedh queueis derived fromp.queue sincefindmin is a constfunction of
pqueue and sinceupdatelowerboundsand perodiccheckare not, we need to cast away
theconst

(member functions of class checkedjueué+=

pg_item find min() const
{ L_item 1_it = PQ->inf (PQ->find_min());

check_lower_bound(1l_it);
((checked_p_queue<P,I>*)this)->update_lower_bounds(prio(l_it));

((checked_p_queue<P,I>*)this)->periodic_check();
validate_data_structure();

return (pq_item) 1_it;

The Delete Operation: To delete an itenp.it we check its lower bound, we delete it from
PQ, and we delete the correspondindgtem Lit from L. If Lit is restricted and is the only
item in its step, we delete the item Birepresenting the step andliit is the last item in
its step but not the only item in its step, we changelthiefield of canonicalinf (Lit) to
the predecessor &ft in L. We should also delete the item correspondingitofrom Part.
Unfortunatelypartition does not offer a delete operation. We comment on this poitieat
end of the section.

{(member functions of class checkedjueué+=

void del_item(pq_item p_it)
{ L_item 1_it = (L_item) p_it;

check_lower_bound(1_it);

if ( is_restricted(1_it) )
{ if ( is_only_item_in_step(l_it) )
S.del_item(canonical_inf(1_it));
else if (is_last_item_in_step(1_it) )
L_it(canonical _inf(1_it)) = L.pred(1l_it);
}
PQ->del_item(pq_it(1_it));
L.del_item(1_it);
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periodic_check();
validate_data_structure();

}

To perform adelmin operation we perform indmin on PQ and then alelmin on the
item returned. Finally, we update the lower bound accordinthe priority of the item
returned.

(member functions of class checkediueué+=

P del_min()

{ L_item 1_it = PQ->inf (PQ->find_min());
P p = prio(1l_it);
del_item((pq_item)1l_it);
update_lower_bounds(p);
periodic_check();
validate_data_structure();

return p;

Miscellaneous Functions: The functionsprio, inf, changenf, sizeandemptyreduce to
appropriate functions of the checking layer.

(member functions of class checkedjueué+=

const P& prio(pq_item it) const

{ ((checked_p_queue<P,I>*)this) -> periodic_check();
return prio((L_item) it);

}

const I& inf(pg_item it) const

{ ((checked_p_queue<P,I>*)this) -> periodic_check();
return inf ((L_item) it);

}

void change_inf(pq_item it, const I& i)

{ periodic_check();
inf((L_item) it) = 1i ;

}

int size() const

{ ((checked_p_queue<P,I>*)this) -> periodic_check();
return L.size();

}

bool empty() const
{ ((checked_p_queue<P,I>*)this) -> periodic_check();
return L.empty();

}

The Decreasep Operation: In order to perform @ecrease on iteml.it we check whether
the current priority satisfies its lower bound and we checktiver thedecrease operation
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actually decreases the priority bit. If so, we change the priority dfit and forward the
change td”Q.

The new lower bound for the itefit is —oo. If the old lower bound was alsecc then
no action is required. Otherwise we must mavtefrom its current position irk. to the last
position inL. This affects the step that containkit. If Lit was the only item in the step,
we remove the step altogether andliif was the last, but not the only, item in its step, we
record thal.it's predecessor is the new last element in the step.

In order to movad.it to the last position oE we splitL into three pieces (the items before
Lit, Lit, and the items aftdrit) and then reassemble the pieces. We allocate a new partition
item for Lit and set its information tail (since the new lower bound fait is —o0). If the
step with lower bound-oco was non-empty, we addt to this step.

(member functions of class checkedjueué+=

void decrease_p(pq_item p_it, const P& p)
{ L_item 1_it = (L_item) p_it;
check_lower_bound(1_it);
assert( compare(p,prio(1_it)) <= 0 );
prio(l_it) = p;
PQ->decrease_p(pq_it(1_it),p);
if ( is_restricted(1_it) )
{ if ( is_only_item_in_step(l_it) ) S.del_item(canonical_inf(1_it));
else if (is_last_item_in_step(1l_it) )
L_it(canonical _inf(1_it)) = L.pred(1l_it);
list<check_object> L1, L_it;
L.split(1_it,L,L1,LEDA: :before);
L1.split(1_it,L_it,L1,LEDA: :after);
L.conc(L1);
list_item last_it = L.last();
L.conc(L_it);

part_it(1_it) = Part.make_block((S_item) 0);

if (last_it && is_unrestricted(last_it) )
Part.union_blocks(part_it(1_it),part_it(last_it));
}
periodic_check();
validate_data_structure();

}

The Clear Operation and the Destructor: Finally, to clear our data structure we check
the lower bounds of all items and then clear R, L, S, andPart. The destructor calls
clear.

(member functions of class checkedjueué+=
void clear()
{ L_item 1_it;
forall_items(1l_it,L) check_lower_bound(1l_it);
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PQ->clear(); L.clear(); S.clear(); Part.clear();
}

“checked_p_queue() { clear(); }

Efficiency: We have now completed the definition of our checker for ptyajueues. How
much overhead does it add? The body of any function of aasskedh queueconsists of
a call of the same function #&Q plus a constant number of calls to functionsofS, and

Part, a call toperiodiccheckplus (maybe) a call ofipdatelowerbounds

Updatelowerboundsadds at most one element (and no other function does) and
removes zero or more entries frddnWe conclude that the total number of elements added
to Sand hence removed frois bounded by the number of operationskR@. A call of
updatelowerboundsthat removesk elements frons has costO(1 + k) plus the cost for
O(1 + k) operations on a partition. We conclude that all callsipdatelowerboundscon-
tribute a linear number of operations Bart. Therefore each call tapdatelowerbounds
contributes a constant number of operation$art in the amortized sense.

The cost of a call tperiodiccheckis also amortized constant. This follows from the fact
that the number of elements in the queue is at most tpfEsdength that the cost of a
call is eitherO(1) or O(phasdength), and that the latter alternative occurs only in every
phasdengthth call toperodiccheck

We conclude that thamortized overhead for each operation on PQ is a constantreum
of operations on lists and partition®perations on lists require constant time and opera-
tions on partitions requiras(n) time.

An Experiment: The following program compares unchecked and checkedfyrareues
experimentally. We generate an arraynofandom doubles and then use a binary heap to
sortthem. We first use the binary heap directly and then wiafoiacheckedr.queue The
running time of the checked version is about two times thainmtime of the unchecked
version, e.g., it takes about 6.1 seconds to sort 100000le®ulith the unchecked version
and slightly more than 12 seconds with the checked version.

(checkedo_queuedemo.¢=

(checkedp_queue demo: includgs

main(){

(checkedp_queue demo: read)n

array<double> A(n);

random_source S;

for (int i = 0; i < n; i++) S >> A[il;

float T = used_time();

{ _p_queue<double,int,bin_heap> PQ(n);
for (int 1 = 0; i < n; i++) PQ.insert(A[i],0);
while ( !'PQ.empty() ) PQ.del_min();

}
float T1 = used_time(T);



60 Advanced Data Types

{ _p_queue<double,list_item,bin_heap> PQ(n);
checked_p_queue<double,int> CPQ(PQ);
for (int 1 = 0; i < n; i++) CPQ.insert(A[i],0);
while ( !CPQ.empty() ) CPQ.del_min();

}

float T2 = used_time(T);

(checkedp_queue demo: report timgs

}

We made a similar test with the priority queue in Dijkstralgaithm and observed a
slowdown by a factor of about2.

Final Remarks: We close this section with a discussion of some alternatimesmprove-
ments to our design.

The overhead introduced by our design is a constant numb&pearations on lists and
partitions for each priority queue operation. Since openaton partitions take slightly
super-linear time this invalidates ti&(1) upper bound for thelecrease operation in the
f_heapand p.heapimplementation of priority queues. This can be remediedodeviis.
The clascheckedaqueueuses the typ@artition in a very special way. The blocks af
partitionL into contiguous segments and all unions are between adjsegments. For this
special situation there is a realization of partitions thatports all operations in constant
time, see [GT85].

Partitions do not offer an operation that deletes items arté thedelitem operation
of checkedh.queuecan only delete the items iRQ, L, and S, but cannot delete the item
in Part. This shortcoming can be remedied by giving partitiordelitem operation. We
briefly sketch the implementation. We perform deletions iazy way. When an item is
to be deleted it is marked for deletion. We also keep trackeftbtal number of items in
the partition and the number of items that are marked fortibgleWhen more than three-
quarters of the items are marked for deletion the partitiata @gtructure is cleaned. We go
through all items (recall that they are linked into a sindhkéd list) and perform a find
operation for each item. This makes all trees depth one. Weedelete all marked items
except those that are the root of a non-trivial tree.

In our realization the checker puts some trust i@ namely thaPQ — inf always re-
turns a valid_item This shortcoming can be overcome by introducing a levaidifrection
into the data structure. We add array<L.iten> A. When the queue has singorecisely
the firstn entries of this array are used. When an itpith of PQ stores a list iteniit in
the current design it stores some integer[0.. n — 1] in the new design and(i] contains
Lit. In this way the index-out-of-bounds check for arrays a#iavg to check for an invalid
pointer. When an item is deleted from the queue and this iemesponds to positionof
A, this position is first swapped with position— 1 and then the last entry is removed. We
leave the details to the reader. This solution is inspirefAbyU74, exercise 2.12].

The classheckedrqueuecatches errors of the underlying priority queue eventualty
the latest at the next call gleriodicchecR but not immediately. Is there a solution which
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guarantees immediate error detection? Yes and Y&s because we could simply put a
correct priority queue implementation into the checked aa, because it can be shown
that no data structure whose running time has a smaller ofaeagnitude than the running
time of priority queues can guarantee immediate error tietec

Exercises for 5.5

1 Modify the program checkeg queuedemo so that you can experiment with different
implementations of priority queues and not only with thedbjnheap implementation.

2 Implement the copy constructor and the assignment opeftar classheckegh queue

3 Modify the implementation of classheckedhqueue so as to remove the assumption
thatPQ — inf always returns a valitLitem

4 Modify the implementation of clasheckedh queueso that the queue to be checked has
typepqueugP, I >. Hint: Use a map to make the correspondence betwgéemsand
the items ofL.

5 Use checked priority queues instead of priority queuesijksBa’s algorithm as dis-
cussed in Section 5.4.

6  Add an operationlelitemto the typegartition andPartition<E>. Follow the sketch at
the end of Section 5.5.3.

7 In the extract minimum problem we are given a permutatiothefintegers 1 tm in-
terspersed with the letter E, e.g., 6,E,1,4,3,E,E,5,2FEi&a possible input sequence.
The E’s are processed from left to right. Each E extracts tialest number to its left
which has not been extracted by a previous E. The output ixample would there-
fore be 6,1,3,2,4,5. Solve the problem using a priority gudun the off-line version of
this problem the input sequence is completely known befweditst output needs to be
produced. Solve the problem with the partition data type(Hdetermine first which E
outputs the number 1, then which E outputs 2, ...).

8 Implement the data structure of [GT85]. Make it availaldl@ & EDA extension package.

5.6 Sorted Sequences

Sorted sequences are a versatile data type. We discusduhetionality in this section,
give theirimplementation by means of skiplists in the nexti®n, and apply them to Jordan
sorting in the last section of this chapter.

A sorted sequends a sequence of items in which each item has an associatdtbkey
a linearly ordered typ& and an associated information from an arbitrary typ&Ve call
K the key type and the information type of the sorted sequence and(lsg to denote
an item with associated kéyand informatiori. The keys of the items of a sorted sequence
must be in strictly increasing order, i.e.{K, i) is before(k’, i’} in the sequence thdais be-
forek’ in the linear order oK. Here comes a sorted sequence of typasegstring, int>:

(Ena, 7) (Kurt, 4) (Stefan?2) (Ulli, 8)



62 Advanced Data Types

Sorted sequences offer a wide range of operations. They @aintbst everything lists,
dictionaries, and priority queues can do and they can do rotmer things. They even do
all these things with the same asymptotic efficiency. Of seuthere is a price to pay:
Sorted sequences require more space (aba@B8R2dytes for a sequence afitems) and
the constant factors in the time bounds are larger. So plesssorted sequences only if
you need their power.

We discuss the functionality of sorted sequences in segéepk. In each step we in-
troduce some operations and then give a small program uséesg toperations. We start
with the operations that we know already from dictionaried ariority queues, then turn
to so-called finger searches, and finally discuss operafowrsplitting and merging sorted
sequences.

Basic Functionality: Sorted sequences come in two kinds. The definitions

sortseq<k,I> S;
_sortseq<K,I,ab_tree> T;

defineSandT as sorted sequences with key tyideand information typd . For T the
ahtree implementation of sorted sequences is chosen anfl floe default implementa-
tions of typessortseds chosen. The typsortsegK, |, IMPL> offers only a subset of the
operations oBortsegK, 1>; in particular it does not offer any of the finger search opera
tions. The items in a sorted sequence have sgmtem The following implementations
of sortseqsare currently available: skiplists [Pug90b], randomizedrsh trees [AS89],
BB(«x)-trees [NR73]ab-trees [AHU74, HM82], and red-black-trees [GS78]. They see
lected by the implementation parameters skiplistreg, bhtree, ahtree, and rktree, re-
spectively. Skiplists are the default implementation. \&edhmentioned already that sorted
sequences extend dictionaries, lists, and priority queéngarticular we have the following
operations:

K Skey(segitem it) returns the key of itent.
Precondition it is an item inS.

| Sinf(seqitem i) returns the information of iteri.
Precondition it is an item inS.

seqgitem Slookup(K k) returns the item with kel (nil if no such item exists in
S).

seqitem SlocateK k) returns the itemk/, i) in Ssuch thak’ is minimal with

k' > k (nil if no such item exists).

segitem SlocatesuccK K) equivalent toSlocatgk).

segitem SsuccK k) equivalent toSlocatgk).
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seqgitem SlocatepredK K) returns the itengk’, i) in Ssuch thak’ is maximal with
k' < k (nil if no such item exists).

seqitem SpredK k) equivalent toSlocatepred(k).

seqgitem Sminitem() returns the item with minimal keyil if Sis empty).
segitem Smaxitem() returns the item with maximal kewi( if Sis empty).
segitem Ssuccéeqitem it) returns the successor itemibfn the sequence contain-

ing it (nil if there is no such item).

seqitem SpredEeqitem X) returns the predecessor itemibfn the sequence con-
tainingit (nil if there is no such item).

seqgitem SinsertK k, i) associates informationwith key k: If there is an item
(k, j) in Sthenj is replaced by, otherwise a new item
(k, i) is added tdS. In both cases the item is returned.

int Ssize() returns the size @&

bool Sempty() returns true iBis empty, false otherwise.

void Sclear() makesS the empty sorted sequence.

void Sdel(K k) removes the item with kelg from S (null operation if

no such item exists).

void Sdelitem(seqitem ity removes the itent from the sequence containiiitg

void Schangenf(seqgitem it | i)
makes the information of itenit.

The operation&ey, inf, sucg pred, max min, delitem changenf, size andemptytake
constant timeJookup locate locatepred, anddel take logarithmic time, andlear takes
linear time.

We come to our first program. We read a sequence of stringsi(tated by “stop”) and
build a sorted sequence of typertsegstring, int> for them'3. Then we read a pais1, s2
of strings and output all input strings larger than or eqaallitand smaller than or equal to
s2 This is done as follows. §2is smaller thars1then there are no such strings. Assume
otherwise and let itenfast contain the largest string less than or equas2and letfirst
contain the smallest string larger or equasio If eitherfirst or lastdoes not exist olastis

13 Observe that a sorted sequence needs an information typg wet need informations in this application and
have chosen the information typ#; any other type would work equally well.
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the predecessor (ifst then the answer is empty. Otherwise it consists of all s¢rihgt are
stored in the items starting fitst and ending akast

(sortseqdemol.t=

#include <LEDA/sortseq.h>
main()
{ sortseq<string,int> S;
string s1,s2;
cout << "Input a sequence of strings terminated by stop.\n";
while (cin >> sl && sl != "stop") S.insert(sl, 0);
while ( true )
{ cout << "\nInput a pair of strings.\n\n";
cin >> s1 >> s82;
cout << "All strings s with " <<
sl <<" <=5 <= " << 82 <<":\n";
if ( s2 < s1 ) continue;
seq_item last = S.locate_pred(s2);
seq_item first = S.locate(sl);
if ( !'first || !last || first == S.succ(last) ) continue;
seq_item it = first;
while ( true )
{ cout << "\n" << S.key(it);
if ( it == last ) break;
it = S.succ(it);
}
}
}

The running time of this program ®(nlogn+ mlogn+ L), wheren denotes the number
of strings put into the sorted sequengedenotes the number of queries, dnds the total
number of strings in all answers. In this time bound we hageimed for simplicity that a
comparison between strings takes constant time and thahg sain be printed in constant
time. Both assumptions require that the strings have balitehgth.

Finger Search: All search operations discussed so far take logarithmie tFimger search
opens the possibility for sub-logarithmic search timeetjuires that the position of the key
k to be searched for is approximately known. ltdie an item of the sorted sequerfggn
the context of finger search we cillfingerinto S. The operations

S.finger locate(k) ;

S.finger locate_from front (k) ;

S.finger locate from rear (k) ;

S.finger locate(it, k);
have exactly the same functionality as the operatamate i.e., all of them return the
leftmost itemit’ in S having a key at least at large &s They differ in their running
time. If it’ is thed-th item in a list of n items then the first three operations run in
time O(log min(d, n — d)), O(logd), andO(log(n — d)), respectively’*. In other words,

14 For the remainder of this section we assumexdg mean mat0, log x).
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fingetlocatefromfront is particularly efficient for searches near the beginninghef se-
quencefingerlocatefromendis particularly efficient for searches near the end of the se-
guence, anfingerlocateis particularly efficient for searches near either end obtguence
(however, with a larger constant of proportionality); ineithe two former functions in par-
allel and stops as soon as one of them stops. The opeftiogerlocatgit, k) runs in time
O(log min(d, n — d)) whered is the number of items i% betweerit andit’. For example,
if it is the 5th item ofSandit’ is the 17th item thed = 17— 5 = 12.

After a fast search we also want to insert fast. That’s thepqse of the operation
insertat. Assume thait is an item ofSandk is a key and thait is either the rightmost item
in Swith keyit) < k or the leftmost item wittkeyit) > k. Then

S.insert_at (it, k, i)

adds(k, i) to Sintime O(). If k's relation to the key oit is known then it is more efficient
to use

S.insert_at(it, k, i, dir)

with dir equal toLEDA::beforeor LEDA:: after.

We give an application of finger searching to sorting. Morecfgely, we give a sorting
algorithm which runs fast on inputs that are nearly sortedt nLand f be integers with
0 < f « nand consider the sequence

n-1,n-2,....n—1f,0,1,2,...,n— f — 1.

We store this sequence in a llstiand sort it in five different ways: four versions of insertion
sort and, for comparison, the built-in sorting routine fistd. The easiest way to build a
sorted sequencegfrom L is to call Sinsertfor each element df . As before, we must give
our sorted sequence an information type; we use theity@nd hence insert the pdk, 0)

for each elemerk of L.

(repeated insertion sor=
forall(k,L) S.insert(k, 0);

The running time of repeated insertion sorCgnlogn).

Let us take a closer look where the insertions are takingediacour input sequence. In
the first f insertions the new element is always inserted at the beginoii the sequence
and in the remaining — f insertions the new element is always inserted beforef tiie
element from the end of the sequence. Sifices n it should be more efficient to search
for the place of insertion from the rear end of the sequence.

(finger search from rear ene=

forall(k, L)
{ if (S.empty()) it = S.insert(k, 0);
else
{ seq_item it = S.finger_locate_from_rear (k) ;
if (it) S.insert_at(it,k,0,LEDA::before);
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else S.insert_at(S.max_item(),k,0,LEDA::after);
}
}

With finger search from the rear end each search takes@ieg f) and hence the total
running time become®(nlog f). The same running time results if we use the version of
finger search that does not need to be told from which end afégaence it should search.

(finger search from both engs
forall(k, L)
{ if (S.empty()) it = S.insert(k, 0);
else
{ seq_item it = S.finger_locate(k);
if (it) S.insert_at(it,k,0,LEDA::before);
else S.insert_at(S.max_item(),k,0,LEDA: :after);
}
}

We can do even better by observing that each insertion tdles mext to the previous
insertion. Hence it is wise to remember the position of the lasertion and to start the
finger search from there.

(finger search from last insertioes

forall(k, L)
{ if (S.empty()) it = S.insert(k, 0);

else
{ it = S.finger_locate(it,k);
it = ( it ? S.insert_at(it,k,0,LEDA: :before) :
S.insert_at(S.max_item(),k,0,LEDA: :after) );
}

With this version of finger search each search takes corntita@tind hence a total running
time of O(n) results.

Table 5.7 shows the running times of our four versions ofrii sort in comparison
to the built-in sorting routine for listsL(sort( )) for n = 500000 andf = 50. We made
the comparison for the key typ&#, double andfour_tupleint, int, int, int> to study the
influence of the cost of comparing two keys. The table showsittsertion sort with fin-
ger search is superior to repeated insertion sort for nsargd input sequences and that
the advantage becomes larger (as is to be expected fromythmptdic analysis) as com-
parisons become more expensive. The table also shows ttia Tase of very expensive
comparisons insertion sort with finger search can even ctemyith quicksort (which is the
algorithm used in the sorting routine for lists).

It is worthwhile to take a more abstract view of the prograeve. The less mathe-
matically inclined reader may skip the next two paragraplet.ky, ..., k, be a sequence
of distinct keys from a linearly ordered typg€. An inversionis a pair of keys that is not
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Repeated Finger search List
insertion fromrear from both ends from lastinsertion  sort

int 5.45 4,78 4.7 298 222
double 6.28 5.1 7.12 3.28 2.53
quads 22.1 13.9 16.8 6.3 14.8

Table 5.7 Running times of the four versions of insertion sort and efgbrting routind_.sort( )

for lists forn = 500000 andf = 50. The sorting routine for lists uses quicksort with the aiéd
element of the list as the splitting element. It runs in tide logn). Three different key types
were usedint, double and the typdour tuple<int, int, int, int> where an integer was

represented as the quadrugle0, 0, i). This ensures that comparisons between quadruples are
expensive. You may perform your own experiments with théssgrsort demo.

in ascending order, i.e., a pdir, j) of indices with 1< i < j < nandk; > k;. We use
F to denote the total number of inversions and @is¢o denote the number of inversions
involving j as their second component, i.e.,

fi =1|{i:i < jandk > k;j}|

If F is zerothen the sequence is already sorted. The maxima wakiisn(n — 1)/2. We
show that insertion sort with finger search from the rear rmrnsne O(n(1 + log(F/n)))
on a sequence with inversions. So the worst case@gn logn), the best case ®(n), and
the running time degrades smoothlyfasncreases. A sequence with a “small” valueFof
is sometimes calledhearly sorted Thus, insertion sort with finger search is fast on nearly
sorted sequences.

Assume that we have already sorted. . ., kj_; and next want to inseK;. As in our
programs above we usgto denote the resulting sorted sequence. Each kky in ., kj_1
which is larger thark; causes an inversion and hence the number of keys,in ., kj_1
larger thark; is equal tof;. Thus k; needs to be inserted at ttig-th position from the rear
end ofS. A finger search from the rear end $tletermines this position in tim@(log f;).
We conclude that the total running time of insertion sortwiihger search from the rear
end is

O( )  1+logfj)=0Mm+log [T fp-
1<j=n 1<j=n
Subject to the constrairk_,_; _, fj = F, the producf [,_;_, fj is maximized if all f;’s
are equal and hence are equakton. The claimed time bound dD(n - (1 + log(F/n)))
follows.

Split: There are several operations to combine and split sequelh@&is a sorted sequence
andit is an item ofSthen

S.split(it, T, U, dir)
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Figure 5.16 A sequences of eight items that has been split into a sequence of lengéetla
sequence of length one, and two sequences of length two.rtheAdi] of the arrayA contains
a pointer to the-th container ofS. The sequenceS;, S3, andS; need to be split further. In the
sortsegsplit program there will be a task in the task stack for eadhafrthem. The task foss
has the form(pointer t0Ss, 4, 5).

splits S after (if dir = LEDA::after) or before (ifdir = LEDA::beforg it and returns the
two fragments inf andU. More precisely, ifSis equal to

X1y« o5 Xk—1, It? Xk+l’ .. Xn

anddir is LEDA::afterthenT = Xy, ..., Xk_1, itandU = Xx41, ..., X, after the split. Ifdir
is before therJ starts withit after the split. The two sequencésaandU must name distinct
objects, butSmay be one off orU. If Sis distinct fromT andU thenSis empty after the
split. The running time oéplitis O(log n) for _sortseqand isO(1+ log min(k, n —k)) for
sortseqs

We sketch an application of splitting in order to show thded#nce between the two
time bounds. Assume th&is a sorted sequence of lengttand consider the following
process to spli§into n sequences of length 1 each. We start v8thind as long as we have
a sequence of length larger than 2 we split this sequenceaabirary item.

In the following program we construct a sorted seque®oén items and store its items
in an arrayA. We also maintain a stack of “tasks”. A task is a triple comsigof a pointer
to a subsequence &plus the indices of the first and the last item in the subsecpiesee
Figure 5.16. Initially there is only one task, namely, thplé& (S, 1, n). In each iteration of
the loop we take the topmost task from the stack. If the sexpibas less than two elements
and hence requires no further split, we simply delete it.eBtlise, we split it at a random
element and create tasks for the two parts. We continuethetié are no tasks left.

(sortsegsplity=
main(){
(sortseq split: read h
typedef sortseq<int,int> int_seq;

array<seq_item> A(n);
int_seq* S = new int_seq();;
for (int 1 = 0; i < n; i++) A[i] = S->insert(i,0);

typedef three_tuple<int_seq*,int,int> task;
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stack<task> TS;
TS.push(task(S,0,n-1));

float UT = used_time();

while ( !TS.empty() )

{ task t = TS.pop();
int_seq* S = t.first();
int 1 = t.second();
int r = t.third();
if (r -1+ 1< 2) { delete S; continue; }
int_seq* T = new int_seq();
int_seq* U = new int_seq();
int m = rand_int(1,r-1);
S->split (A[m],*T,*U,LEDA: :after);
delete S;
TS.push(task(T,1,m));
TS.push(task(U,m+1,r));

}

(sortseq split: report time

}

We show that the running time of this program is lineaninMe do so for arbitrary choice
of the splitting indexm and not only for random choice of. The less mathematically
inclined reader may skip the analysis. We dg@) to denote the maximal running time of
the program on a sequenceroitems. Thenl (1) = c and

T(n) < 1max T(m) + T(n—m)+ c(d+ logmin(m, n — m))

for n > 1 and a suitable constaat The recurrence relation reflects the fact that it takes
time c(1+log min(m, n—m)) to split a sequence of lengthinto sequences of lengthand
n—mand additional timd (m) andT (n—m) to split these sequences further into sequences
of length 1. We need to take the maximum with respechtgince we are interested in the
worst case time. We shoWv(n) < c(5n — 2 — 2log(n + 1)) for all n by induction onn.

This is certainly true fon equal to 1. So assumme> 1 and letm maximize the right-hand
side in the recurrence relation above. Because of the symmiethe right-hand side im
andn — mwe may assumm < n/2. Then

Tn) < T@m)+ T —-m)+c(d+ logmin(m, n —m))
< cdBbm-2-2logm+1)+5Nn—-m)—2—2logln —m+ 1) + 1+ logm)
< cbn—-2—-logim+1) —2logn—m+1) — 1)
< c¢(bn—-2-2logh+ 1)),

where the first inequality is our recurrence relation, theosd inequality follows from
the induction hypothesis, the third inequality is simpl@hametic, and the last inequality
follows from the fact that & log(m + 1) + 2log(n — m+ 1) > 2log(n + 1) for all m with

1 < m < n/2. To see this, observe first that the second derivativie(of) = 1 + log(m +
1) + 2log(n — m + 1) is negative and hence Mifn<n2 f(M) = min(f (1), f(n/2)).
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Observe next that (1) > 2log(n + 1) and f(n/2) > 2log(n + 1). This completes the
induction.

Concatenation and Merging: We turn to concatenation and merging of sequences.
S.conc(T,dir)

appendsT to the rear (ifdir = LEDA::after) or front (if dir = LEDA::beforg of S and
makesT empty. Of course, we may apptpncwith dir = LEDA::after only if the key of
the last item inSis smaller than the key of the first itemThand withdir = LEDA::before
only if the key of the last itemifT is smaller than the key of the first item $ The running
time of concis O(log(n + m)) for _sortsegsand isO(1 + log min(n, m)) for sortseqavhere
n andm are the lengths of the sequences to be concaterndeegeneralizegonc

S.merge (T)

merges the lisT into the listS and makes empty. For example, iE= (5,.) (7,.) (8,.)
andT = (6,.) (9,.) are sequences with key typd thenS= (5,.) (6,.) (7,.) (8,.) (9.,) after
the merge. Of cours& andT can only be merged if the keys of all items are distinct. The
time to merge two sequences of lengthandm, respectively, isO(log ("1™)); mergeis
only supported bgortseqs

We sketch howmergeis implemented, we comparaergewith two less sophisticated
approaches to merging, and we show how to meegein a robust version of merge sort.
We start with a sketch of the implementation. Assume thasétgienceSandT are to be
merged and that the number of elementJiis at most the number of elements We
insert the elements af one by one intd, starting with the first element af. In order to
locate the position of an element®fin Swe use a finger search starting from the position
of the last insertion (starting from the first elementSihstead of the first element af).

sortseq-item finger = S.min item();

sortseq-item it = T.min_item();

while ( it )

{ finger = S.finger_locate(finger,T.key(it));
S.insert_at_item(finger,T.key(it),T.inf(it));
it = T.succ(it);

}
The running time of this program is easy to analyze. Wernde denote the number of
elements inT andn to denote the number of elementsSn Assume that the-th element
of T is to be inserted after th§-th element ofSfor all i with1 <i <m. Setfy =0. The
finger search that determines the position ofitie element ofT in Stakes timeO(logd;)
whered, = f; — fj_; is the number of elements @ that are between the position of
insertion for thei-th and the(i — 1)-th element. Clearly) ; di < n. The total time for
mergingT into Sis

> O +logd) = O(m+log[ Jdi).
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Subject to the constraint; d; < n, the produc{ [; d; is maximal if alld; are equal ta/m.
The running time is therefor®(m+ mlog(n/m)) = O(log ("*™)). To see the last equality
observe first that

1+ log(n/m) =1+ log(n+m)/m < 2log((n + m)/m)

sincen + m > 2m and observe next thamlog((n + m)/m) = log((n + m)/m)™ and
(n+m)/mm < ("),

We next comparenergeto two less sophisticated merge routines. TeindU be sorted
sequences of length and m, respectively. There are two ways to metdeinto T that
come to mind immediately. The first method inserts the elésnehU one by one into
T. This takes timeO(mlog(n 4+ m)). The second method scans both files simultaneously
from front to rear and inserts the elementd.bfas they are encountered during the scan.
This takes timeD(n + m). In the following programs we assume tiflaBndU are of type
sortsegK, int>.

(three merging routingss

template < class K >
void merging_by_repeated_insertion(sortseq<K,int>& T, sortseq<K,int>& U)
{ seq_item it = U.min_item();

while ( it )

{ T.insert(U.key(it),U.inf(it));

it = U.succ(it);

}

}

template < class K >
void merging_by_scanning(sortseq<K,int>& T, sortseq<K,int>& U)
{ seq_item itl = T.min_item();

seq_item it2 = U.min_item();

while ( it2 && compare(U.key(it2),T.key(itl)) < 0 )
{ T.insert_at(it1,U.key(it2),U.inf (it2),LEDA: :before);
it2 = U.succ(it2);
}
seq_item succl = T.succ(itl);
while ( it2 )
{ K k2 = U.key(it2);
while ( succl && compare(T.key(succl),k2) < 0 )
{ it1l = succil;
succl = T.succ(succl);

}
itl = T.insert_at(it1,k2,U.inf(it2),LEDA: :after);
it2 = U.succ(it2);

}
}

template < class K >
void merging by_finger_search(sortseq<K,int>& T, sortseq<K,int>& U)
{ T.merge(U); }
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Figure 5.17 Two patterns for merging six sequences of length one. Thgergattern on the left
is unbalanced: it first merges two sequences of length oea,iterges the resulting sequence of
length two with a sequence of length one, then merges thétiressequence of length three

with a sequence of length one, ... . The second merge pastbailanced: it first forms three
sequences of length two, then merges two of them to a seqoéterggth four, and finally

merges the sequence of length four with the remaining seguaiiength two.

How do the three routines compare theoretically and expaially? Let us consider three
cases:m = 1, m = n, andm = n/logn. Merging by repeated insertion takes time
O(logn), O(nlogn), andO(n), respectively, merging by scanning takesn) in all three
cases, and merging based on finger search take<itogn), O(n), andO(mlog(n/m)) =
O(nloglogn/logn), respectively. We see that merging based on finger searcéver n
worse than the two other methods (it has a larger constanigioptionality, though) and
that it is superior to both methods in two of the cases. TatBeshows an experimental
comparison of the three methods.

Robust Merge Sort: We use our three merging routines in a version of merge sort. |
order to sort a set af elements, merge sort starts wittsequences of length 1 (which are
trivially sorted) and then uses merging to combine them a&ingle sorted sequence of
lengthn. Themerge patterni.e., the way in which th@ sequences are combined into a
single sequence can be visualized by a binary tree widaves anch — 1 internal nodes.
Then leaves correspond to theinitial sequences and each internal node corresponds to a
merging operation. In this way we associate with every itdenode the sorted sequence
that results from merging the two sequences associatedtsiithildren. Figure 5.17 shows
two merging patterns.

How do our three merging routines behave? In the balancedingepattern we per-
form aboutn/2X merges between sequences having lenfj#s2h and hence obtain a total
running time of

O Y n/29M(2, 2,

O<k<logn

where M (X, y) is the time to merge two sequences of lengtandy. For merging by
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Merging by
repeated insertion scanning finger search

int m=1 0 0.75 0
m =10 0 0.767 0
m = 100 0 0.7 0

m = 1000 0.0333 0.767 0.05

m = 10000 0.4 0.883 0.267

m = 100000 3.65 1.78 1.75
double m=1 0 0.817 0
m =10 0 0.8 0

m = 100 0.0167 0.817 0.0167

m = 1000 0.05 0.833 0.0333

m = 10000 0.433 0.95 0.317

m = 100000 4.2 2.02 2.02
quadruplem=1 0 2.58 0
m =10 0 2.6 0

m = 100 0.0167 2.67 0.0333

m = 1000 0.183 2.63 0.15

m = 10000 1.65 2.82 1.03

m = 100000 15.8 4.38 6.6

Table 5.8 Running times of the three versions of mergingrice 500000 and different values
of m. The sequence& consisted of the firgt even integers and the sequetteonsisted of the
integers 2n/m)i + 1 fori = 1,..., m. Three different key types were usedt, double and the
typefour_tupleint, int, int, int> where an integeir was represented as the quadrui@e0, 0, i).
This ensures that comparisons between quadruples aresix@eyiou may perform your own
experiments with the sortseq merge demo.

repeated insertion we haw(x, x) = O(x logx) and hence obtain a total running time of

O( Z (n/2%2k) = O(n Z k) = O(nlog?n).

O<k<logn O<k<logn

For merging by scanning and merging by finger search we kb x) = O(x) and hence
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Unbalanced merge tree  Balanced merge tree

merging by repeated insertion 5.07 11.5
merging by scanning 3.44e+03 9.82
merging by finger search 5.9 8.73

Table 5.9 This table was generated by program sortsegrgesort. You can perform your own
experiments with the sortseq merge demo. Merging by fingchkecomes in shortly after the
winner for both merge patterns.

obtain a total running time of

O( Y (n/292% = O(nlogn).
O<k<logn

We conclude that the latter two merging methods perfornmugity in the case of a balanced
merging pattern but that merging by repeated insertion does

Let us turn to the unbalanced merging pattern. It builds asece of length by merging
a sequence of length— 1 and a sequence of length 1 foriglk < i < n. We obtain a total
running time of

() M, 1.
2<i<n

For merging by repeated insertion and merging by finger femechaveM (x, 1) = O(log x)
and hence obtain a total running time of

O( Z logi) = O(nlogn).
2<i<n
For merging by scanning we haw(x, 1) = O(x) and hence obtain a total running time
of
O( ) i)=0m).
2<i<n

We conclude that the two former merging methods performnugity in the case of an
unbalanced merging pattern but that merging by scanning boeOnly merging by finger
searching performs optimally for both merge patterns

Table 5.9 shows an experimental comparison. You may perjaun own experiments
by calling the sortseq merge demo. This program genenateged sequences of length one
and puts pointers to them into an arrAyintseqis an abbreviation fosortsegint, int>.).
It permutesA to make sorting non-trivial.
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{fillAy=
for (i = 0; i < n; i++)
{ A[i] = new int_seq;
A[i]l->insert(i,0);
}
A.permute();

It then uses either the unbalanced merge pattern or thedemlanerge pattern to merge the
n sequences into a single sequenoeigeis any one of our three merging routines).

(unbalanced merge pattey=
for (i = 1; i < nj; i++)
{ merge(*xA[0],*A[i]);
delete A[il;
}

(balanced merge patteye

while (n > 1)
{ int k = n/2;
for (i = 0; i < k; i++)
{ merge(xA[i],*A[k + i]);
delete A[k+i];
}
if (2*k<n) // nis odd
{A[k] =Aln-1]; n=k + 1; }
else

{n=x%k;}

We close our discussion of merging by showing that mergeveitintmerging by finger
search has running tim@&(nlogn) for every merge pattern. Recall that a merge pattern
is a binary treel with n leaves and that every internal nodeTotorresponds to a merge
operation. For an internal node &) be the length of the sorted sequence that is the result
of the merge operation at nodeand for a leay let s(v) be equal to one. With this notation
the cost of the merge at a nodevith childrenx andy is

o[

and the total running time of merge sort is obtained by surgrttiis expression over all
nodesv of T. In this sum every node except for the root and the leaves contributes twice:
it contributes log(2)! whenzis considered as a parent and it contributdegs(z)! when

zis considered as a child. The two contributions cancel. &floee everything that remains
is the contribution of the root (which is lad) and the contribution of the leaves (which is
—nlog1). We conclude that the total running timeQGgnlogn) independent of the merge
patternT.

)) = O(log(s()!/(s()!s(y)1)) = Odogs(v)! —logs(x)! —logs(y)!)
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Operations on SubsequencesiWe want to mention two further operations. laeandb be
two items in a sorted sequen8avith a being equal to or beforde. Then

S.reverse_items(a,b)
reverses the subsequence of itemS Btarting ata and ending ab, i.e., if
S=ity, ity ..., 01, ity, itipe, ..., 0tj_q, itj, itj4q, ..., ity
before the operation aral= it; andb = it; then
S=ity, ity ..., 0, itj, itj_q, ..., itipq, iti, itj4q, ..., ity

after the operation. We will see an applicatiorre¥ersetemsin a plane sweep algorithm

for segment intersection in Section 10.7Reversdétemsruns in time proportional to the

number of items that are reversd®eversdtemsis also available under the narftip_items
The operation

S.delete_subsequence(a,b,T)

removes the subsequence startinguand ending ab from S and assigns it ta. The
running time isO(log min(m, n — m)) wheren is the number of items iiT andm is the
number of items that are removed. We will see an applicatiodetetesubsequenci
Section 5.8 on Jordan sorting.

Sequences and ItemsMany of the operations osortsegdake items as arguments, e.g.,
S.finger locate(finger,x)

locatesx in Sby searching from the iterfinger. What happens ifingeris not an item inS
but in some othesortseq IT?

The complete specification fihgerlocateis as follows (and this is, of course, the spec-
ification that is given in the manual). LEE be the sorted sequence containiimger. Then

S.finger locate(finger,x)
is equivalent to
IT.finger locate(finger,x)

provided thalT has the same type & If IT andS have different types the semantics of
Sfingerlocatgfinger, x) is undefined.
A similar statement holds for all other operations haviegis as arguments. So

S.reverse_items(a,b)

is applied to the sequence containing the itenamdb (of coursea andb must belong to
the same sequence).

If the items determine the sequence to which the operati@pjdied, why does one
have to specify a sequence at all? We explored the alteenatimakeingetlocatea static
member function ofortsegK, 1> and to write

sortseq<K,I>::finger locate(finger,x);
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We decided against it because in most applications of seggdences there is no problem
in providing the sequence as an argument and in these eitgatiis clearer if the sequence
is provided as an argument. The price to pay is that in thesitiration where the sequence
is not known (the program in Section 5.8 is the only programhaee ever written where
this happens) one has to “inveng, i.e., to declare a dummy sequen8eand to apply
fingerlocateto it.

Exercise for 5.6

1  Aruninasequence of keysis a sorted subsequencd. ek, .. ., k, be any sequence
and letk be the number of runs ik, i.e., k is one larger than the number bfwith
ki > ki+1. Show that insertion sort with finger search from the positd the last
insertion sorts a sequence consisting ofins in timeO(n(1 + logk)).

5.7 The Implementation of Sorted Sequences by Skiplists

We first desribe the skiplist data structure. Skiplists wiavented by W. Pugh [Pug90a,
Pug90b] and our implementation is based on his papers. Weegond his papers by
also providing implementations for finger searches, mergind deletion of subsequences.
We start with an overview of the data structure and then maithe content of the files
skiplist.h, _skiplist.c, and sortseq.h. In the bulk of the section we gieimplementations
of the different operations on skiplists.

5.7.1 The Skiplist Data Structure
A skiplist is a sequence afkiplistnodes see Figure 5.18. We also stywer instead of
skiplistnode In a skiplist for a sequence of elements we have + 2 towers,n towers
corresponding to the elements of the sequence and two toakesheaderandSTOPthat
serve as sentinels. We refer to the former towensraperand to the latter ainproper.

A tower contains the following information:

— akey,

— aninformation,

— an integeheight

— an arrayforward of height+ 1 pointers to towers,

— abackwardpointer, and

— apredecessor pointer.

The keys of the proper towers in a skiplist are strictly imsiag from front to rear of the
sequence. The sentindlsaderandSTOPhave no keys stored in them although, logically,
their keys are-oo andoo, respectively. It would make life somewhat easier if the fae
K provided the elementsoco andoo. Because not all key types do, we have decided to
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Figure 5.18 A skiplist: The sequence of keys stored in the sequence is4,, 7.3, 19, 21, 30.
The proper towers have height 0, 1, 0, 3, 0, 2, and 0, reséctiVheir keys are shown at the
bottom of the towers. The two improper towdrsaderandSTOPare the first and last tower,
respectively. They have no keys. The forward pointers guanizontally to the right. The
backward pointers are shown as curved arcs and the predepessters are not shown. All
forward pointers that have no proper tower to point to, pr8TOPR An object of type skiplist
contains pointers tbeaderandSTOPR The header points back to the skiplist object.

A search for 19 proceeds as follows. We start in the headecamsider the forward pointer at
height 3 (= maximal height of a proper tower) out of the heatll@nds in a tower with key 13.
Since 19> 13 we move forward to the tower with key 13 and consider itevéod pointer at
height 3. It ends irSTOP(which has keyx) and so we drop down to height two. The forward
pointer at height 2 out the tower with key 13 ends in the towih key 21. Since 1% 21 we
drop down to the height one, ... .

store no keys in the sentinels. When formulating invariaveswill however assume that
the keys oheaderandSTOPare—oo andoo, respectively.

Skiplists represent the sequence stored at differentdenfefjranularity. The tower of
height at least zero represent the entire sequence, thestoheeight at least one represent
a subsequence, the towers of height at least two represebsaguence of the subsequence,
... . The operations on Skiplists gain their efficiency byleiting the different levels of
granularity; Figure 5.18 sketches a search for key 19 in gample skip list. Observe that
the search first locates 19 with respect to the list represdny the towers of height at least
3, i.e., the list(—o0, 13, +00), then with respect to the list represented by the towers of
height at least 2, i.e., the ligt-00, 7, 13, 21, +00), ... .

The height of a proper tower is chosen probabilistically witee tower is created. We
will explain this in more detail below. The height of a propewer is always non-negative.
The height ofSTOPis —1 and the height dieadelis equal taViaxHeight We seMaxHeight
to 32 in our implementation. When we choose the heights gbgrtowers we will make
sure that their height is smaller thastaxHeight The sentineldheaderand STOPcan
therefore be recognized by their heiglieadersare the only items with height equal to
MaxHeightandSTOPnodes are the only items with negative height.

A headerstores information in addition to the ones listed above: dag&a member
trueheightis one plus the maximal height of any proper tower (it is zérinére are no
proper towers) and the membmysegstores a pointer to the skiplist to whitkeaderbe-
longs. Theheaderhas typeheademode where sheademodeis anskiplistnodewith the
two additional fields just mentioned.
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A pointer to askiplistnodeis called arsLitemand a pointer to deademodeis called a
largeitem

In the definitions below the flaGMEM (= simple memory management) allows us to
choose between two schemes for memory allocationSMEM is defined, the obvious
memory allocation scheme is used dodward is realized as an array @litemsand if
SMEMis not defined, a refined and more efficient memory allocatibvese is used. This
is explained in more detail in Section 5.7.4.

The flag__exportC is used for preprocessing purposes. On UNIX-systems itnis si
ply deleted and on Windows-systems it is replaced by flagshvare needed to generate
dynamic libraries.

(definition of classes skiplistode and headenode=

class __exportC header_node;

class __exportC skiplist_node;

typedef skiplist_node* sl_item;
typedef header_nodex* large_item;

const int MaxHeight = 32;

{ friend class __exportC skiplist;

class __exportC skiplist_node

static leda_mutex mutex_id_count;
static unsigned long id_count;

GenPtr key;
GenPtr inf;
int height;
unsigned long id; // id number
sl_item pred;
sl_item backward;
#ifdef SMEM
sl_item* forward; // array of forward pointers
#else
sl_item forward[1];
#endif

friend unsigned long ID_Number (skiplist_node* p){return p->id;}
3
class __exportC header_node : public skiplist_node
{ friend class __exportC skiplist;
#ifndef SMEM

sl_item more_forward_pointers[MaxHeight];
#endif

int true_height;

skiplist* myseq;

};

A header node can be viewed askiplistnodeand as deademode If v is ansLitemwhich
is known to be dargeitem(because — height= MaxHeigh} then we can castto alarge
item by (largeitem)v and access the skiplist containindpy ((largeitemyv) — myseq

We can now complete the definition of the skiplist data streeby defining the values
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;v , Z

only towers of only towers of
height< 4 height< 2

Figure 5.19 Forward and backward pointers:— forward[2] points to the closest successor
tower of height at least 2 and— backwardpoints to the closest predecessor tower of height at
least 4.

of the various pointers stored in a tower, see Figure 5.19 vl any tower and Igt be
the height ofv (view headeras a tower of heightrue heightfor this paragraph). Then:

e foralli,0<i < h, thei-th forward pointer ofv points to closest successor tower of
height at least (to STOPIf there is no such tower),

e the backward pointer points to the nodewith the highest forward pointer intg, i.e.,
theh-th forward pointer ofw points tov,

e and the predecessor pointenopoints to the tower immediately preceding
The procedur@alidatedatastructurechecks the invariants in tim@ (true height-. n).

(miscellaneous=

void skiplist::validate_data_structure()
{ assert(header == header->myseq->header) ;

assert (header->height == MaxHeight);

assert (STOP->height == -1);

int max_proper_height = -1;

sl_item p = (sl_item) header;

while (p !'= STOP)

{ assert(p->height >= 0);
if (p !'= header && p->height > max_proper_height)

max_proper_height = p->height;

p = p—>forward[0];

}

assert (header->true_height == max_proper_height + 1);

p = (sl_item) header;

while (p != STOP)

{ sl_item q = p->forward[0];
assert(p == gq->pred); //condition three
if (p !'= header && q != STOP) //check order

assert (cmp (p->key,q->key) < 0);

for(int h=0; h<=Min(p->height,header->true_height) ;h++)
{ sl_item r = p->forward[0];
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while (r->height < h &% r != STOP) r = r->forward[0];
assert ( r == p->forward[h]); //condition one

if ( h == r->height ) assert(r->backward == p);
} //condition two
P =4q;
}

assert (STOP->backward == (sl_item) header);
}

As a preview for later sections we describe briefly how one sarch for a ke in
a skiplist. We keep a node and a heighth such thatv — key < x andx < v —
forwardh] — key Initially, v = headerandh = trueheight In the basic search step
we find a nodev with the same property artdone less. This is easy to achieve. We only
have to start a walk at nodetaking forward pointers at height— 1.

h--;

w = v->forward[h];

while (key > w->key)

{v=uw

w = v->forward[h];

}

The while-loop re-establishes the invariant> key < x < v — forward h] — key Con-
tinuing in this way down td = 0 locatesx among the items in the skiplist. The complete
program for a search in a skiplist is therefore as follows:

sl_item v = header;
int h = header->true_height;
while ( h > 0 )
{ h-;
w = v—>forward[h];
while (w != STOP && key > w->key)
{v=uw;
w = v->forward[h];
}
}

The search in skiplists is efficient because skiplists igmethe underylying sequence at
different levels of granularity. The forward pointers atde0 represent the entire sequence,
the forward pointers at level 1 represent the subsequemngetbby the towers of height at
least 1, the forward pointers at level 2 represent the sulese formed by the towers of
height at least 2, ... . In a search we locateith respect to the subsequence of towers of
height at leash for decreasing values &f. This is trivial at the highest level and requires
only little additional work for each smaller value bf

The height of a proper tower is chosen probabilistically whee tower is created. It is
set toh with probability p"(1 — p) wherep with 0 < p < 1 is a parameter that is fixed
when the skiplist is created. In our implementation we ugkds the default value fap.
We draw three easy consequences from this probabilistinitefi of height.
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The probability that a proper tower has heighor more isy . pk(1 — p) = p" and
therefore the expected valuelwdightcan be computed &

Elheighi = p"=p)_ p"=p/d-p).
h>1 h>0

Since the space requirement for a tower of helgig (6 + h) - 4 bytes plus the space for
the key and the information we conclude that the expectedesgguirement for a skiplist
of nitems is about6 + p/(1 — p))4n bytes plus the space for the keys and informations.
For p = 1/4 we have Bfi] = 1/3 and hence the expected space requirement for a skiplist
of nitems is about 78n = 25.333 bytes. The refined memory allocation scheme needs
a bit more, see Section 5.7.4.

The fact thatp” is the probability that a proper tower has heightr more implies that
the probability that some tower in a collectionmproper towers has heightor more is
at most miri1, np"). This is one foih < log;,,n and is at mosp' for h = flog, ,, N +1.
Sincetrueheightis one plus the maximal height of any proper tower, we can eaenfhe
expected value dfue heightas:

E[trueheighf = ) probtrueheight> h) = " probmaximal height= h — 1)

h>1 h>1
< Ymin@ph = Y 1+ Y
h>0 0<h<flog,p N1 h>Tlogy,p N
< 1+logyn+> p = 1+logy,n+1/(1— p).
1>0

Finally, if v is any tower then the probability that— backwardhas height larger than
v is p. Observe that — backwardhas at least the height ofand that the conditional
probability that a tower has height+ 1 or more given that it has height or more is
ph*+1/ph = p. Thus, the probability that — backwardhas height larger thanis p.

We use this observation to bound the cost of a search. Carsidearch for a kex
and letvg, vy, ..., vk be the path traced by the variahlein the program above. Then
vo = headerandv; = vj 1—backward By the above, the probability that the height of
vj is larger than the height af; is p and hence the expected number of nodes traversed
at any particular height is/J. We start at height zero and end at heighteheight The
expected length of the path is therefore bounded by

1/p- (1 +logypn+1/(1— p)).

This concludes our discussion of skiplist nodes.

We turn to the class representing skiplists. Ins&iplistwe store the itembeaderand
STOPand some quantities related to the random proqgasdr contains the parametgrin
use, andandomBitscontains an integer whose lasihdomsLefbits are random. We use

15 |f X is a random variable which assumes non-negative integeesandy, = prob(X > h) and
ph = pro(X = h) forallh > 0then EX] =3 oo Ph-h=>po1 Ph-h =3 "o 1(0h —Ght1) -h =3 121 O
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randomBitsas the random source in the construction of skiplist noddsegver all bits in
randomBitsare used up we refill it using the LEDA random number generator

(data members of class skiplist

large_item header;
sl_item STOP;

float prob;
int randomBits;
int randomsLeft;

(private member functions of class skiplist

void fill_random_source()

{ randomBits = rand_int (0,MAXINT-1);
randomsLeft = 31;

}

5.7.2 The Files sortseq.h, skiplist.h, andkiplist.c

The definition of typesortsegK, | > follows the strategy laid out in Section 13.4. We define
two classes: an abstract data type clEm$segK, | > and an implementation claskiplist
The classsortsegK, 1> is a parameterized class with type paramekeand| . The keys
and infs in the implementation class are generic pointers.

The implementation class is defined in incl/LEDA/impl/disph and src/dictskiplist.c.
We have already seen the churldsfinition of classes skiplistode and headenode and
(data members of class skiplistn the other chunks of skiplist.h we define a set of virtual
functions that are later redefined in the abstract data thgss @and we define the functions
that realize all operations on sorted sequences. The Mttoetions are discussed in Sec-
tion 5.7.3 and the other functions are discussed startiiggations 5.7.5. Inskiplist.c we
assemble the implementations of all member functions (exoe the trivial ones which
are given directly in the header file).

The compile-time constant SMEM is explained in Sectionsb.7.

(skiplist.h=
#ifndef SKIPLIST_H
#define SKIPLIST_H

// #define SMEM remove comment for use of simple memory scheme

#include <LEDA/basic.h>
#include <assert.h>

(definition of classes skiplistode and headenodé
class __exportC skiplist

{ (data members of class skiplist

(virtual functions of class skiplist

(private member functions of class skiplist
public:

(public member functions of class skiplist

3
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(implementation of inline functiohs
#endif

(_skiplist.o=
#include <LEDA/impl/skiplist.h>

memory management
constructors and related functions
search functions

insert and delete functiohs
concatenate and related functigns
miscellaneous

o~~~ o~~~

The abstract data type class is derived from the implemientatass (which we rename as
IMPL to save ink) and aseqitemis nothing but arsLitem The definition ofsortsegK, | >
has two large sections: ifiedefinition of virtual functionsall virtual functions of the im-
plementation class are redefined (see Section 5.7.3) afuulslic member functions of
sortseq all operations on sorted sequences are defined by callingotinesponding func-
tion of the implementation class (see Section 5.7.10).

(sortseq.h=
#ifndef SORTSEQ_H
#define SORTSEQ_H

#if 'defined (LEDA_ROOT_INCL_ID)
#tdefine LEDA_ROOT_INCL_ID 360010
#include <LEDA/REDEFINE_NAMES.h>
#endif

#include <LEDA/basic.h>

#include <LEDA/impl/skiplist.h>
#define IMPL skiplist

typedef sl_item seq_item;
template<class K, class I>

class sortseq : public virtual IMPL {

(redefinition of virtual functions
public:

(public member functions of sortseq
1
#if LEDA_ROOT_INCL_ID == 360010
#undef LEDA_ROOT_INCL_ID
#include <LEDA/UNDEFINE_NAMES.h>
#endif

#tendif

5.7.3 Virtual Functions and their Redefinition
The classkiplisthas virtual functionsmp clearkey, clearinf, copykey, copyinf, printkey,
printinf andkeytypeid. All of them are redefined inortsegK, |>.
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(virtual functions of class skiplis=

virtual int cmp(GenPtr x, GenPtr y) const
{ error_handler(1,"cmp should never be called"); return 0; }

virtual void copy_key(GenPtr&) const { }
virtual void copy_inf(GenPtr&) const { }

virtual void clear_key(GenPtr&) const
{ error_handler(1,"clear_key should never be called"); }

virtual void clear_inf (GenPtr&) const
{ error_handler(1,"clear_inf should never be called"); }

virtual void print_key(GenPtr) const
{ error_handler(1,"print_key should never be called"); }

virtual void print_inf (GenPtr) const
{ error_handler(1,"print_inf should never be called"); }

virtual int key_type_id() const
{ error_handler(1,"key_type_id should never be called");
return O;

}

(redefinition of virtual functions=

leda_cmp_base<K> cmp_def;
const leda_cmp_base<K> *xcmp_ptr;

int cmp (GenPtr x, GenPtr y) const

{ return (*cmp_ptr) (LEDA_CONST_ACCESS(K,x), LEDA_CONST_ACCESS(X,y)); }
int ktype_id;

int key_type_id () const { return ktype_id; }

LEDA_CLEAR(K,x); }

LEDA_CLEAR(I,x); }

LEDA_COPY(K,x); 1}

LEDA_COPY(I,x); 1}
LEDA_PRINT(K,x,cout); }
LEDA_PRINT(I,x,cout); }

void clear_key(GenPtr& x) const
void clear_inf (GenPtr& x) const
void copy_key(GenPtr& x) const
void copy_inf (GenPtr& x) const
void print_key(GenPtr x) const
void print_inf (GenPtr x) const

T

What are these virtual functions good for? The implemenitatiass uses them to ma-
nipulate keys and information fields. It catsnpto compare two keys, it callsopykey,
clearkey; or print keyto copy, destroy or print a key (and analogously an inf), eetipely,
and it callskeytypeid to determine the kind of the key type (integer, double, oentlise).
The latter function allows us to optimize the treatment téger and double keys. Keys and
informations are stored as generic pointers in the impleatiem class and only the abstract
class knowK andl. All virtual functions are redefined in the abstract class. €xample,
cmpx, y) is redefined abEDACOMPAREK, X, y) which in turn amounts to converting
x andy to typeK and then calling the compare function of tylde Similar statements hold
for the other virtual functions, see Section 13.4.

Except forcopykeyandcopyinf the virtual functions are only called in their redefined
form. In order to double-check we have included appropaaterts into the bodies of the
virtual functions.Copykeyandclearkeyare also called by the copy-constructoiséfplist
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key key
inf inf
height height
pred pred
backwarg backward
forward forward[0]
forward[1]
forward[2]
forward[3]

Figure 5.20 A skiplist node with four forward pointers. The left part sf®the simple memory
management scheme and the right part shows the refined memaoggement scheme.

and their original versions are used there. For this reaseofiginal versions ofopykey
andcopyinf are defined as functions with no effect.

5.7.4 Memory Management
We implemented two schemes for memory management: a sirop@a® and a refined
scheme. The refined scheme increases the speed of our inmpégtime by almost a factor
of two (if insertions and deletions have about the same f&rqgy as lookups). The sim-
ple scheme can be selected by defining the constiM in skiplist.h. Both schemes are
illustrated by Figure 5.20.

In the simple scheme we construct an arrap ef 1 forward pointers by

forward = new sl_item[h+1];

This calls the built-in new function and does not use LEDAsmMory manager. An access
to a forward pointer goes through a level of indirection assghin Figure 5.20. The refined
scheme avoids this level of indirection.

In the refined scheme we observe that the space required ¢ovea bf heighth is the
size of anskiplistnodeplus h times the size of a pointer. Recall that a node has already
room for one forward pointer and that a tower of heigglitash + 1 forward pointers. This
suggests using the LEDA memory manager to allocate

int(sizeof(skiplistnode) + (h) * int(sizeofskiplistnodex))

bytes for a node of heightt. Since C++ does not check array bounds forvard is the
last field inskiplistnodethis is equivalent to allocating space for the data membeamof
skiplistnodeand an arrajorward of h 4+ 1 pointers.

The scheme just described has the disadvantage that itttetxde heightdifferent node
sizes. The life of the LEDA memory manager becomes simplgrefnumber of different
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node sizes is small. We therefore modify the scheme sligimtyrounch to the next power
of two if h > 2. We show that this modification uses very little additiosphce. The
modified scheme never allocates more than twice the numtdernwérd pointers that are
actually needed and it allocates no additional forward feoiif h < 2. Sincep" is the
probability that a tower has heightor more, the additional number of forward pointers per
tower required by the modified scheme is therefore boundel py, p" = p3/(1 — p).
For p = 1/4 this is equal to 148, i.e., an expected additional12 bytes per tower. We
conclude that the expected space requirement for a skiglisin items is about 282 - n
bytes plus the space for the keys and informations.

The macroNEWNODE(v, h) allocates space for a node of heightand the macro
FREENODE(v) frees that space again. Both macros use the LEDA memory reare&g
scheme. The macrdSEWHEADERv) and FREEHEADER©v) do the same for header
nodes. Recall that a header always contdagHeight+ 1 forward pointers.

(memory management
inline int NODE_SIZE(int 1)

{ int 11 = 0;
if (1 >0 ) // compute smallest power of two >= 1
{11 =1;
while (11 < 1) 11 <<= 1;
}

return int(sizeof (skiplist_node))+
(11) *int (sizeof (skiplist_nodex*));
}

#define NEW_NODE(v,1)

v = (sl_item)std_memory.allocate_bytes(NODE_SIZE(1));
v->height = 1;

#define FREE_NODE(v) \
std_memory.deallocate_bytes(v,NODE_SIZE(v->height))

~ -~

inline int HEADER_SIZE()
{ int 11 = 1;
while (11 < MaxHeight) 11 <<= 1;
return int(sizeof (header_node))+
(11) *int (sizeof (skiplist_nodex*)) ;
}

#define NEW_HEADER(v) \
v = (large_item)std_memory.allocate_bytes(HEADER_SIZE());\
v—->height = MaxHeight;

#define FREE_HEADER(v) \
std_memory.deallocate_bytes(v,HEADER_SIZE())

5.7.5 Construction, Assignment and Destruction
The classskiplisthas two constructors. The first constructor constructs gotyeskiplist
and the second constructor copies its argument.
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Let us look more closely at the first constructor. We alloeati@ver of heighMaxHeight
for headerand a tower of height-1 for STOR Thetrue heightof theheaderis 0 and hence
only the level O forward pointer dieaderis initialized.

The copy constructor first constructs an empty skiplist domhtcopies its argumeiht
element by element. Since the constructor of ckddplist uses the trivial versions of the
virtual functionscopykeyandcopyinf, the calls ofcopykeyandcopyinf in insertatitem
have no effect, and we therefore have to u&eversion of these functions to do the copy-
ing. This is a problem which arises in the implementation lbtapy constructors; see
Section 13.1 for a general discussiamsertatitemis defined in Section 5.7.8.

The default constructor takes constant time and the copstrartor takes linear expected
time plus the time to copg keys and informations.

(constructors and related functioys

skiplist::skiplist(float p)

{ prob = p;
randomsLeft = 0;

#ifdef SMEM
header = new header_node;
header->forward = new sl_item[MaxHeight+1];
header->height = MaxHeight;
STOP = new skiplist_node;
STOP->height = -1;

#else
NEW_HEADER (header) ;
NEW_NODE (STOP,-1) ;

#endif
header->true_height = 0;
header->myseq = this;
STOP->backward= (sl_item) header;
STOP->pred= (sl_item) header;
header->forward[0] = STOP;

}

skiplist::skiplist(const skiplist& L)
{ prob = L.prob;
randomsLeft = O;
#ifdef SMEM
header = new header_node;
header->forward = new sl_item[MaxHeight+1];
header->height = MaxHeight;
STOP = new skiplist_node;
STOP->height = -1;
#else
NEW_HEADER (header) ;
NEW_NODE (STOP,-1) ;
#endif
header->true_height = 0;
header->myseq = this;
STOP->backward= (sl_item) header;
STOP->pred= (sl_item) header;
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header->forward[0] = STOP;

sl_item p = L.STOP->pred;

while (p!= L.header)

{ insert_at_item(header,p->key,p->inf);
L.copy_key(p->key);
L.copy_inf (p->inf);
P = p->pred;

We come to the assignment operator, the functiar, and the destructor. The as-
signment operator first clears the skiplist and then copseargument. Thelear function
deletes all nodes of a skiplist and the destructor first cddlar and then deletes the two
non-proper towers.

It would not do to copy the body daflear into the destructor since skiplist uses the
trivial versions of the virtual functionslearkey andclearinf and hence does not know
how to destroy a key or inf. This is a problem which arises i ithplementation of all
destructors; see Section 13.4.3 for a general discussion.

All three functions take linear expected time plus the timeapy or clean keys and
informations.

(constructors and related functions=

skiplist& skiplist::operator=(const skiplist& L)
{ clear();
sl_item p = L.STOP->pred;
while (p!= L.header)
{ insert_at_item(header,p->key,p->inf,after);
P = p->pred;

return *this;

}

void skiplist::clear()
{ register sl_item p,q;

p = header->forward[0];

while(p!=STOP)

{ q = p—>forward[0];
clear_key(p->key);
clear_inf (p->inf);

#ifdef SMEM
delete p->forward;
delete p;
#else
FREE_NODE (p) ;
#endif
P =4q;
}
header->true_height = 0;
header->forward[0] = STOP;
STOP->pred= (sl_item) header;
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}

skiplist::~skiplist()
{ clear();
#ifdef SMEM
delete header->forward;
delete header;
delete STOP;
#else
FREE_HEADER (header) ;
FREE_NODE (STOP) ;
#endif
}

5.7.6 Search Operations
Skiplists offer a wide variety of search operations. We fijise a fairly general search
function calledsearchand then derive the other search functions fromSearchtakes a
key, an itemv and an integeh and returns a nodgand an integel. The nodev has height
at least andkeyis known to lie between — key(exclusive) and — forwardh] — key
(inclusive). In the formulation of this precondition we dsaur simplifying assumption that
the keys oheaderandSTOPare —oo andoo, respectivelySearchinds the unique nodg
such thakeylies betweerg — pred — key(exclusive) andy — key(inclusive). Ifkeyis
equal tog — keythenl > 0; otherwise| < 0.

The principle underlyingearchis simple. It maintains itemg andqg and a heighk,
k > —1, such thatp’s height is at leask + 1, q is the levelk + 1 successor of and
p — key< key< g — key Initially k = h — 1. If kis —1 thenq is returned. Ik > 0 then
we search through lev&lstarting atp — forwardk] to determine the nevp andq.

q = p->forward[k];

while (key > q->key) { p = q; q = p->forward[k]; }
The basic strategy can be slightly optimized as follows.oBzimaking a comparison be-
tween keys we check whether the currgrnitas heighk (otherwise, it is already known
thatkey < q — key). This optimization is worthwhile when a comparison betwé&eys
is considerably more expensive than a comparison betweéegeirs. This is the case when
the comparison is made by calliomghpand it is not the case when the comparison is made
by the operatok for ints or doubles

The expected running time gkarchis O(1 + h) sinceh + 1 levels are visited and since
the expected time spent on each level is constant. The eagigdo see the latter fact is
to traverse the search path backwards and to recall thatfalffimving a constant expected
number of backward pointers a higher tower is reached.

We give three versions afearch one calledgensearchand working for arbitrary key
type K, one calleddoublesearchand working only for keys of typdouble and one called
intsearchand only working for keys of typant. Searchselects the appropriate version by



5.7 The Implementation of Sorted Sequences by Skiplists 91

switching on the value deytypeid. A general discussion of this optimization strategy can
be found in Section 13.5.

(search functions=

sl_item skiplist::search(sl_item v, int h, GenPtr key, int& 1) const
{ switch (key_type_id()) {

case INT_TYPE_ID: return int_search(v,h,key,1);
case DOUBLE_TYPE_ID: return double_search(v,h,key,1);
default: return gen_search(v,h,key,1);
}

}

sl_item skiplist::gen_search(sl_item v, int h, GenPtr key, int& 1) const
{ register sl_item p = v;
register sl_item q = p->forward[h];
1=0;
#ifdef CHECK_INVARIANTS
assert (p—>height == MaxHeight || cmp(key,p->key) > 0);
assert(q->height < 0 || cmp(key,q->key) <= 0);
#endif
if (gq->height >= 0 && cmp(key,q->key) == 0) return q;
int k = h - 1;
int ¢ = -1;
while (k >=0)
{ /* p—>key < key < p->forward[k+1]->key and c = -1 */
q = p->forward[k];
while (k == g->height && (c = cmp(key,q->key)) > 0)

{p=4q;
q = p—>forward[k];
}
if (c == 0) break;
k__’
}
1 = k;

#ifdef CHECK_INVARIANTS
P = q—>pred;
assert (p—>height == MaxHeight || cmp(key,p->key) > 0);
assert(q->height < 0 || cmp(key, gq->key) <= 0);
assert(l >= 0 && cmp(key,q->key) == 0 ||
(1< 0 && (g->height < 0 || cmp(key,q->key) < 0)));
#endif

return q;

}

In the versions o$earchfor integer and double keys we perform the following optiaiz
tions: we avoid the call oEmpand call the comparison operatots <, =, ... instead.
Moreover, we drop the comparisan== gq->height, as it does not pay for integer keys.
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(search functionst=

sl_item skiplist::int_search(sl_item v, int h, GenPtr key, int& 1) const
{ sl_item p = v;
sl_item q = p->forward[h];
1= 0;
int ki = LEDA_ACCESS(int,key) ;
int k = h - 1;
STOP->key = key;
while (k >= 0)
{ /* p—>key < key <= p->forward[k+1]->key */
q = p->forward[k];
while ( ki > LEDA_ACCESS(int,q->key) )

{p=q
q = p—>forward[k];
}
if ( ki == LEDA_ACCESS(int,q->key) && q != STOP ) break;
k--3
}
1 =k;

#ifdef CHECK_INVARIANTS
P = q->pred;
assert (p—>height==MaxHeight || ki>LEDA_ACCESS(int,p->key));
assert(q->height < 0 || ki <= LEDA_ACCESS(int,q->key));
assert(l >= 0 && ki == LEDA_ACCESS(int,q->key) |
(1<0 & (gq->height<0 || ki<LEDA_ACCESS(int,q->key))));
#endif
return q;

}

We refrain from showing the version for double keys. For #ilew search functions we will
only show the generic version.

It is easy to derive the other search functions from the bamitine search The call
locatesucgk) returns the itemkd, i) with k < k1 andkl1 minimal (nil if there is no such
item), locatepred is symmetric tolocatesucg locate is synonymous tdocatesuccand
lookupk) returns the itengk, i) (nil if there is no such item). All operations in this section
take logarithmic time.

(search functionst=

sl_item skiplist::locate_succ(GenPtr key) const
{ int 1;
sl_item q = search(header,header->true_height,key,1);
return (q == STOP) ? 0 : q;
}
sl_item skiplist::locate(GenPtr key) const { return locate_succ(key); }
sl_item skiplist::locate_pred(GenPtr key) const
{ int 1;
sl_item q = search(header,header->true_height,key,1);
if (1 < 0) q = g->pred;
return (q == header) ? 0 : q;
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}

sl_item skiplist::lookup(GenPtr key) const

{ int k;
sl_item q = search(header,header->true_height,key,k);
return (k < 0) 2 0 : q;

}

5.7.7 Finger Searches
We describe four versions of finger search.

The first three versions takekayand locate an itenq and an integef such thatg —
pred — key < key < q — keyandl > 0 iff key= q — keyand run in timeO(logd),
O(og(n — d)), andO(log min(d, n — d)), respectively, ifg is thed-th item in a list ofn
items. We first show how to obtain the time bour@dogd) and O(log(n — d)), respec-
tively.

To achieve the first bound we compamywith the key ofheader— forward[k] for k
equalto 0, 1, ...until a key at least as larg&keagis found. When this is the case we start a
standard search at levefrom the header.

k = 0;

while ( k < true_height )

{ if ( key <= header->forward[k]->key ) break;

k++;

}
search(header,k,key,1);

Since the expected maximal height among the @irsiwers isO(log d) the expected max-
imal value ofk is O(logd) and the time bound follows.

In order to achieve the second bound we compayavith the key of the rightmost tower
gk of height at leask for k equal to 0, 1, ...until a key smaller th&ryis found. When
this is the case we start a standard search at lefrelm gx. We can findgx from gx_; by
following an expected constant number of backward pointers

k 0;

q = STOP->pred;

while ( k < true height )

{ if ( key > g->key ) break;

k++;
while ( gq->height < k ) q = g->backward;

}
search(q,k,key,1);

Since the expected maximal height among theriast towers isO(log(n—d)) the expected
maximal value ok is O(log(n — d)) and the time bound follows.

In order to obtain the minimum of both time bounds we perfdnmtivo searches simul-
taneously (also called dove-tailed), i.e., we merge theldwp bodies into one, and stop as
soon as one of the two searches tells us to stop.
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As in the case of standard searches we provide optimizat@mnkeys of typeint or
double

(search functionst=

sl_item skiplist::finger_search_from_front(GenPtr key, int& 1) const
{ switch (key_type_id()) {

case INT_TYPE_ID: return int_finger_search_from_front(key,l);
case DOUBLE_TYPE_ID: return double_finger_search_from_front(key,l);
default: return gen_finger_search_from_front (key,1);

}

}
sl_item skiplist::gen_finger_search_from_front(GenPtr key, int& 1) const
{ sl_item q = STOP->pred;

int th = header->true_height;

if (th == -1) return STOP;

1= 0;

int k = 0;

int cli;

while ( k < th )

{ if ( cmp(key,header->forward[k]->key) <= 0 ) break;

k++;
}

return search(header,k,key,1);

and similarly

(search functionst=
sl_item skiplist::gen_finger_search_from_rear(GenPtr key, int& 1) const
{ sl_item q = STOP->pred;
int th = header->true_height;

if (th == -1) return STOP;
1=0;
int k = 0;

while ( k < th )
{ if ( cmp(key, g->key) > 0 ) break;
k++;
while (k > gq->height) q = gq->backward;
}
return search(q,k,key,1);

and

(search functionst=

sl_item skiplist::gen_finger_search(GenPtr key, int& 1) const
{ sl_item q = STOP->pred;

int th = header->true_height;

if (th == -1) return STOP;

1 =0;
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int k = 0;

int cl,c2;

while ( k < th )

{ c1 = cmp(key,header->forward[k]->key) ;
c2 = cmp(key, gq->key);
if (c1 <=0 || ¢2 > 0 ) break;

k++;

while (k > gq->height) q = gq->backward;
}
if (c1 <= 0)

return search(header,k,key,1);
else

return search(q,k,key,1);
}

The fourth version of finger search takes an iteand akeyand returns an integérand
an itemq such thatg — pred — key < key < q — keyandl > 0 iff key= q — key It
runs in timeO(log min(d, n — d)) whered is the number of items betweenandq. The
search is performed in the skiplist containingnd not in the skiplist which is given by
this; recall the discussion in the paragraph preceding Sectibrirhis implies that we must
not use the variabldseader STOR nortrueheightin the program below. However, once
we have determined the STOP node or the header node of tHistskgntainingv (recall
that STOP nodes are the only towers with negative height badhteader nodes are the
only towers with heighMaxHeigh) we can find the skiplist containingas follows: if p
is the header node of the skiplist containinthen((largeitem) p) — myseds the skiplist
containingv and if p is the STOP node of the skiplist containinghen p — backwardis
the corresponding header node and we are back to the sitweltiere we know the header
node.

The strategy used bjngersearchis simple. Ifv is either the header or the STOP node
of the skiplist containing then we simply call the first version of finger search. So agsum
otherwise.

Assume first thakeyis larger than the key aof. Fork > 0 let px be the rightmost tower
to the left of or equal ta that has height or more. We find the minima such that either
p« is a header node qix — forwardk] is a STOP node dkeylies between the key qgby
and px — forward[k]. In the first case we finish the search by calling the firsticersf
finger search and in the last two cases (note that the secerdsceeally a special case of
the third case under the convention that the key of STOR)sve start a standard search
from pg at levelk. If keyis smaller than the key af, we use the symmetric strategy.

The running time ofingersearchis readily determined. Assume for simplicity that
is to the right ofv (the other case being symmetric) and thas the n;-th item in the
sequence. Then andq split the list into three parts of lengtm, n, = d, andng =
n — n; — Ny, respectively. Usé; to denote the maximal height of a tower in théh part.
ThenE[hi] = logn; + O(1). The maximal value assumed by the variablis equal to
hg = min(hy, hy) = logmin(d, n — d) + O(1). If the backward walk reaches the header
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thenh; < h; and the second part of the search is the dove-tailed searttie gireceding
section that takes time mimax(hy, hy), h3)) = min(hz, h3) = log min(d, n—d)+O(1). If
the backward walk does not reach the header then the secdruf thee search is a standard
search that takes tim@(hg) as well.

As before we have three versionsfofgersearch one for general keys, one for keys of
typeint, and one for keys of typdouble

(search functionst=
sl_item skiplist::gen_finger_search(sl_item v, GenPtr key, int& 1) const
{1=0;
sl_item p = v;
if ( p—>height < 0 ) p = p->backward;
// if p was a STOP node then it is a header now
if ( p—>height == MaxHeight )
return ((large_item) p)->myseq->finger_search(key,1);

int dir = cmp(key, v->key);

if ( dir == 0 ) return v;
int k = 0;
int c ;

if (dir > 0)
{ while ( p->height < MaxHeight && p->forward[k]->height >= 0 &&
(c = cmp(key,p->forward[k]->key )) >= 0 )
{ if ( ¢ == 0 ) return p->forward[k];
k++;
while ( k > p->height ) p = p->backward;
}
if ( p->height == MaxHeight )
return ((large_item)p)->myseq->finger_search(key,1);
}
else
{ while ( p->height < MaxHeight && p->forward[k]->height >= 0 &&
(c = cmp(key, p—>key)) <=0 )
{if (¢ == 0 ) return p;
k = p->height;
p = p—>backward;
}
if (p->forward[k]->height < 0 )
{ p = p—>forward[k]->backward;
return ((large_item)p)->myseq->finger_search(key,1);
}
}

#ifdef CHECK_INVARIANTS
assert (p—>height == MaxHeight || cmp(key, p->key) > 0);
assert (p—>forward[k]->height < 0 ||
cmp (key, p->forward[k]->key) < 0);
#endif

return search(p,k,key,l);
}
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Figure 5.21 Insertion of a toweq after a towerp. All pointers that are “intersected” by the new
tower are redirected.

5.7.8 Insertions and Deletions
We discuss the various procedures to insert into and toalftmh a skiplist.

The procedur@nsertitematitem(q, p, dir) inserts the iteng after and before, respec-
tively, as prescribed bglir. This requires to redirect pointers as shown in Figure 5T2ie
true heightof the header is also adjusted to the maximum of the old heigtitl plus the
height of the new item.

The running time ofnsertitematitemis proportional to the height of the new item. The
expected height of the new item is constant.

(insert and delete functioh=

void skiplist::insert_item_at_item(sl_item q, sl_item p, int dir)
{ if (dir == before) p = p->pred;
/* insert item q immediately after item p */
sl_item x;
q->pred = p;
p—>forward[0]->pred = q;
for (int k = 0; k <= g->height; k++ )
{ while (k > p->height) p = p->backward;
x = p->forward[k];
if (p->height == MaxHeight && x->height < 0 )
{/* we have reached header and STOP and need to
increase true_height */
((large_item) p)->true_height = k + 1;
p->forward[k+1] = x;

}

q->forward[k] = x;

p—>forward[k] = q;

if ( x->height == k ) x->backward = q;
}
g->backward = p;

The functioninsertatitem(p, key, inf) modifies the skiplist in the vicinity of itenp. If
p's key is equal tdkeythen its information is changed fof. Otherwise a new item is
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created and inserted before or affeas dictated bykey The height of the new node is
chosen randomly by a catitndomLevel). The expected running time is constant.

(insert and delete functions=

sl_item skiplist::insert_at_item(sl_item p, GenPtr key, GenPtr inf)
{ sl_item q;
if (p->height < 0) p = p->pred;
else
{ if ( p->height < MaxHeight )
{ int ¢ = cmp(key,p->key);
if (c == 0)
{ clear_inf (p->inf);
copy_inf (inf);
p->inf = inf;
return p;

}
if ( ¢<0 ) p = p->pred;
}
}

int k = randomLevel();
if ( k >= MaxHeight ) k = MaxHeight - 1;
#ifdef SMEM
q = new skiplist_node;
q->forward = new sl_item[k+1];
q—>height = k;
#else
NEW_NODE (q,k) ;
#endif
copy_key (key) ;
copy_inf (inf) ;
q—>key = key;
g—>inf = inf;
insert_item_at_item(q,p,after);

return q;

}

int skiplist::randomLevel()
{ int height = 0;
int b = 0;
if ( prob == 0.25 )
{ while ( b == 0 )
{ b = randomBits&3; // read next two random bits
randomBits >>= 2;
randomsLeft -= 2;
if ( b == 0 ) height++;
// increase height with prob 0.25
if (randomsLeft < 2) fill_random_source();
}
}
else // user defined prob.
{ double p;
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rand_int >> p;
while ( p < prob )
{ height++;
rand_int >> p;
}
}
return height;

}

There is also a version afsertatitemwhich inserts before or aftgy as directed bylir.
The expected running time is again constant.

(insert and delete functioh$=

sl_item skiplist::insert_at_item(sl_item p,
GenPtr key, GenPtr inf, int dir)
{ sl_item q;
int k = randomLevel();
#ifdef SMEM
q = new skiplist_node;
g->forward = new sl_item[k+1];
gq->height = k;
#else
NEW_NODE (q,k) ;
#endif
copy_key (key) ;
copy_inf (inf) ;
q->key = key;
q—>inf = inf;
insert_item_at_item(q,p,dir);

return q;

This completes the discussion of the insertion proceduhéshwinsert at a given item.
Insert(k, i) inserts a new iterk, i) or changes the information of the item with Keyif
there is such an item) artel(k) removes the item with kel.

(insert and delete functioh$=

sl_item skiplist::insert(GenPtr key, GenPtr inf)
{ int k;
sl_item p = search(header,header->true_height,key,k);
if (k >=0)
{ clear_inf (p->inf);
copy_inf (inf);
p->inf = inf;
return p;
}
p = insert_at_item(p,key,inf,,before);
return p;
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Removéatem removes an item andelitem removes an item, frees its storage and also
adjusts the height of the skiplist if required. The first ftioe is used in the second and in
reversdtems A call reversdtemg p, q) with p equal or left ofg reverses the subsequence
with endpointsp andq.

Reversatemhas expected running time(d), whered is the length of the subsequence
to be reversed. The other functions run in constant expéicted

(insert and delete functioh$=

void skiplist::remove_item(sl_item q)
{
if (q->height == MaxHeight || g->height < 0)
error_handler(1,"cannot remove improper item");
sl_item p = g->backward;
sl_item x;
for(int k = gq->height; k >= 0; k--)
{ while ( p->forward[k] != q ) p = p->forward[k];
x = gq->forward[k];
p->forward[k] = x;
if ( x->height == k ) x->backward = p;

}
x->pred = p;
}
void skiplist::del_item(sl_item q)
{

if (gq->height == MaxHeight || g->height < 0)
error_handler(1,"cannot delete improper item");
remove_item(q) ;
clear_key(q->key);
clear_inf (q->inf);
sl_item p = gq->forward[g->height];
#ifdef SMEM
delete gq->forward;
delete q;
#else
FREE_NODE(q) ;
#endif
if ( p->height < 0 )
{ large_item r = (large_item) p->backward;
int& h = r->true_height;
while( h > 0 && r->forward[h - 1] == p) h-—;
}
}

void skiplist::del(GenPtr key)

{ int k;
sl_item q = search(header,header->true_height,key,k);
if ( k>=0 ) del_item(q);

}

void skiplist::reverse_items(sl_item p, sl_item q)
{ sl_item r;
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while ( p !=q )

{r=p;
p = p—>forward[0];
remove_item(r) ;
insert_item_at_item(r,q,after);

5.7.9 Concatenate, Split, Merge and Delefubsequence
We discuss concatenation, splitting, merging, and thetidelef subsequences.

Concatenation: We describe how to concatenate two skiplists of sizandn,, respec-
tively, in time

O(log min(ny, ny)).

Assume that the two lists to be concatenated are givehibandS1 We first make sure
thatthis s the higher list (by swappingeaderandSTOPof thisandS1, if necessary) and
then append1lto either the front or the rear diis. Assume that we need to appeaiito
the rear othis, the other case being symmetric.

There are two strategies for performing the concatenafldwe first strategy places the
skiplists next to each other and then removes the STOP naithe &éft list and the header
of the second list. The work required is proportional to teaht of the higher list.

The second strategy placB&between the last elementitfisand the STOP node dlis
and then the header node and the STOP nod&lofThe work required is proportional to
the smaller height.

We use the second strategy. The details are as follows. kdt Erss than the height of
Sithek-th forward pointer out of the rightmost towertinis of height at leask is redirected
to the first item inS1of height at leask and thek-th forward pointer out of the rightmost
tower inS1of height at leask is redirected to the STOP nodetbis, see Figure 5.22.

The running time otoncis proportional to the smaller of the two heights and is tferee
O(log min(ny, ny)).

(concatenate and related functiges
void skiplist::conc(skiplist& S1, int dir)
{ if (header->true_height < S1.header->true_height)
{ leda_swap(header->myseq,S1.header->myseq);
leda_swap(header,S1.header);
leda_swap(STOP,S1.STOP);
dir = ((dir == after) ? before : after);
}
if (S1.STOP->pred == S1.header) return;

/* S1 is non-empty and since height >= S1.height this is
also non-empty */

if (dir == after)
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Figure 5.22 Concatenation of two skiplistSand$;. S is assumed to have smaller height and
is appended at the rear 8f Only the header and STOP nodes of the lists are shown; their
true heightis indicated as the height of the corresponding rectangles left part illustrates the
first strategy and the right part illustrates the secondegya The shaded towers are removed.

{ sl_item p = STOP->pred;
sl_item q = S1.STOP->pred;

assert(cmp(p->key, Sl.header->forward[0]->key) < 0);

STOP->pred = q;
S1.header->forward[0]->pred = p;
for (int k = 0; k < Sl1.header->true_height; k++)
{ /* p and q are the rightmost items of height at
least k in this and S1, respectively */
sl_item r = S1.header->forward[k];
p->forward[k] = r;
if ( r->height == k ) r->backward = p;
q->forward[k] = STOP;
while (p->height == k) p = p->backward;
while (q->height == k) q = q->backward;
}
}

else
{ sl_item q = S1.STOP->pred;

assert(cmp(q->key, header->forward[0]->key) < 0);

S1.header->forward[0]->pred= (sl_item) header;
header->forward[0]->pred = q;

for (int k = 0; k < Sl.header->true_height; k++)

{ // q is the rightmost item of height at least k in S1
sl_item r = header->forward[k];
q->forward[k] = r;
if (r->height == k) r->backward = q;
r = S1.header->forward[k];
header->forward[k] = r;
if (r->height == k) r->backward= (sl_item) header;
while (q->height == k) q = gq->backward;

}

}

S1.header->true_height = 0;
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S1.STOP->pred = (sl_item) S1.header;
S1.header->forward[0] = S1.STOP;

#ifdef CHECK_INVARIANTS
this->check_data_structure("this in conc");
check_data_structure(S1,"S1 in conc");

#endif

}

We need to explain the last call ofieckdatastructure In deletesubsequencee callconc
with an argumen§1that is locally defined withimeletesubsequencerhis S1is a skiplist
but not asortsegand hence its virtual functions have never been redefinedth@fefore
usethis as the implicit argument of the last call dieckdatastructureand in this way give
it access to the redefined versions of the virtual functions.

Split: Ssplitatitem(p, S1 S2 dir) splits the skiplist containing before or after itenp
into lists S1andS2as directed bylir in time proportional to the logarithm of the shorter
result. We useP to denote the skiplist containing. Clearly,S1andS2must be distinct,
but one of them may be equal ®. If both of them are different fron® thenP is empty
after the split. The primary argume8tmay be any skiplist. It must have the same type as
P, S1 andS2

A method whose running time is proportional to the logaritbfithe size ofP is easy to
describe. We simply erect two new improper towers befordter @.

In order to obtain a running time that is proportional to tleéght of the smaller result
list, we have to reusbeaderand STOPof P for the larger output list. We proceed as
follows. We first determine the lower of the two outputs by sitmneously walking from
p and its successor (this assungis== after) to headerand STOPuntil one of the two
walks reaches its destination. Lmaxlev be the maximal level reached, i.e., both sublists
contain a tower of heighhaxlevand for one of the sublists this is the maximal height.

Assume firstnaxlevis the maximal height of a tower i81, i.e., in the left sublist. Then
1+ maxlev is the height ofS1andheightis the height ofS2after the split. We want to
reuseheaderandSTOPof P for S2 We interchangbdeaderandSTOPof S2and P (this
makesS2the input list and, ifP andS2are distinct, make® empty) and then remov@l
from S2

To removeS1from S2we do the following for eaclk, 0 < k < maxlev. Let pk be
the rightmost item irS1of height at leask. Thek-th forward pointer out o51headeris
redirected to the destination of theth forward pointer out o52header thek-th forward
pointer out ofS2headeris redirected to the destination of tketh forward pointer out of
pk and thek-th forward pointer out ofik is redirected t&s1STOR

Assume next thatnaxlevis the maximal height of a tower i82 Then the height 052
is 14+ maxlev after the split andheightis the height ofS1after the split. We interchange
headerand STOPof S1land P and then remov&2from Slin a way similar to the one
described above.

The running time isO(maxlev) and, if n; andn, denote the sizes of the two parts,
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respectively, then the expected valuertdxlevis
O(log min(ny, ny)).

{concatenate and related functigAs=
void skiplist::split_at_item(sl_item p,skiplist& S1,
skiplist& S2,int dir)
{ if (dir == before) p = p->pred;
sl_item pl = p;
sl_item p2 = p->forward[0];
int max_lev = -1;
while ( pl->height < MaxHeight && p2->height >= 0 )
{ /* pl and p2 are proper towers of height
larger than max_lev x/
max_lev++;
while (pl->height == max_lev) pl
while (p2->height == max_lev) p2

pl->backward;
p2->forward[max_lev];

}

/* we have seen proper towers of height max_lev on both
sides of the split and either pl or p2 is a sentinel */

large_item pheader;
if (pl->height == MaxHeight)
pheader = (large_item) p1l;
else
pheader = (large_item) p2->backward;
skiplist* Pp = pheader->myseq;
if (Pp !'= &S1) Si.clear();
if (Pp !'= &S2) S2.clear();
if (pl->height == MaxHeight)
{ /* we reuse pheader and pSTOP for S2 */
if (Pp != &S2)
{ leda_swap(Pp->header->myseq, S2.header->myseq) ;
leda_swap (Pp->header,S2.header) ;
leda_swap (Pp->STOP,S2.STOP) ;

}
S1.header->true_height = 1+max_lev;
Pl = p;

for (int k =0; k <= max_lev; k++)
{ // p1l is the rightmost item in S1 of height at least k

sl_item q = S2.header->forward[k];
S1.header->forward[k] = q;
if (q->height == k) gq->backward = (sl_item) S1.header;
S2.header->forward[k] = pl->forward[k];
if (pl->forward[k]->height == k)
pl->forward[k]->backward = (sl_item) S2.header;

pl->forward[k] = S1.STOP;
while (k == pl->height) pl = pl->backward;

}

S1.header->forward[max_lev + 1] = S1.STOP;
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/* the next line sets the predecessor of S1.STOP
correctly if S1 is non-empty; if it is empty
the last line corrects the mistake */

S1.STOP->pred = p;

S2.header->forward[0]->pred = (sl_item) S2.header;

S1.header->forward[0]->pred = (sl_item) S1.header;

}
else
{ /* we want to reuse pheader and pSTOP for S1 */
if (Pp != &S1)
{ leda_swap(Pp->header->myseq,S1.header->myseq);
leda_swap(Pp->header,S1.header);
leda_swap (Pp->STOP,S1.STOP) ;

}

S2.header->true_height = 1 + max_lev;
Pl = p;

p2 = S1.STOP->pred;

for (int k =0; k <= max_lev; k++)
{ /* pl and p2 are the rightmost items in S1 and S2
of height at least k, respectively */

sl_item q = pl->forward[k];

S2.header->forward[k] = q;

if (gq->height == k) g->backward = (sl_item) S2.header;
pl->forward[k] = S1.STOP;

p2->forward[k] = S2.STOP;

while (k == pl->height) pl = pl->backward;

while (k == p2->height) p2 = p2->backward;

}

S2.header->forward[max_lev + 1] = S2.STOP;

/* the next line sets the predecessor of S$2.STOP
correctly if S2 is non-empty; if it is empty then
the next line corrects the mistake */

S2.STOP->pred = S1.STOP->pred;

S2.header->forward[0]->pred = (sl_item) S2.header;

S1.STOP->pred = p;
S1.header->forward[0]->pred = (sl_item) S1.header;

}

if (Pp != &S1 && Pp != &S2)

{ /*x P is empty if distinct from S1 and S2 */
Pp->header->forward[0] = Pp->STOP;
Pp->STOP->pred = Pp->STOP->backward =

(sl_item) Pp->header;

Pp->header->true_height = 0;

}

#ifdef CHECK_INVARIANTS
this->check_data_structure("this in split");
Pp->check_data_structure("P in split");
check_data_structure(S1,"S1 in split");
check_data_structure(S2,"S2 in split");

#endif

}
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Merge: We describe how to merge two skiplists of lengthandn2, respectively, in time
O((n1+n2)).

nl
Assume that the lists to be merged as giverttig and byS1 We first determine the

shorter list (by stepping through both lists in lock-steghfian and stopping as soon as the
end of the shorter list is reached) and make suretttigis the larger list (by interchanging
headerand STOPof this andS1otherwise). We then erect a finger at the first itenthi$
and consider the items &lone by one. We locate the item by a finger search, insert the
item intothis and advance the finger to the point of insertion.

For the running time analysis we assume without loss of gdityethatn; < n,. For
i,1<i < ngletd; be the stride of the finger search when insertingitfie item of S1
into this. Thenn, = . d; and the total running time i©®(ny + ) ; logd;). This sum is
maximal if all thed;’s are equal tan,/n; and is hence bounded by

1 2
O(ny(1 + log(nz/ny))) = O<(” :1” )>.

{concatenate and related functigrs=

void skiplist::merge(skiplist& S1)
{ sl_item p= (sl_item) header;

sl_item q = Sl.header;

while ( p->height >= 0 && gq->height >= 0 )

{ p = p—>forward[0];

q = q->forward[0];

}

if (q->height >= 0)

{ /* swap if this is shorter than S1 */
leda_swap(header->myseq,S1.header->myseq) ;
leda_swap(header,S1.header);
leda_swap(STOP,S1.STOP);

}

/* now S1 is at most as long as this */
sl_item finger= (sl_item) header;
p = Sl.header->forward[0];

while (p->height >= 0)

{ sl_item q = p->forward[0];
int 1;
finger = finger_search(finger,p->key,1l);
if (1 >= 0) error_handler(1,"equal keys in merge");
insert_item_at_item(p,finger,before) ;
finger = p; // put finger at newly inserted item
P=4q;

}

S1.header->true_height = 0;

S1.STOP->pred = (sl_item) S1.header;

S1.header->forward[0] = S1.STOP;

#ifdef CHECK_INVARIANTS
check_data_structure("this in merge");
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S1.check_data_structure("S1 in merge");
#endif
}

Deletion of SubsequencesWe describe how to delete a subsequence from a skiplist.
More precisely, ifa andb are items in a listP with a left of or equal tob then the call
Sdeletesubsequenga, b, S1) deletes the subsequence starting and ending ab from

P and assigns it t&1 The running time i$D(log min(nz, N — n1)) wheren andn; are the
length of P andS1respectively.S only provides the type.

The itemsa andb split P into three parts. We first determine the lowest of the parts by
simultaneously walking frora — predand fromb to the left and fronb — forward[0] to
the right until we reaclmeader a tower left ofa, or STOR respectively.

If either the first or the last subsequence is lowest then piegation can be reduced to
two splits and one conc. If what is to becoi8#is lowest we directly inser$1s header
andSTOPbeforea and afteib, respectively.

Let h; be the height of thé-th part. Then

E[h2] = O(logny), E[h1] = O(log(n — ny)), and Ehs] = O(log(n — ny)).

The time to determine the lowest part is rfip, hy, hs). If hy is smallest then the running
time of actually deleting the subsequenc®igh,). If h, is not the smallest then the times
for the two splits and one conc are mimax(hy, hy), hs)), min(hz, hy), and mirthy, h3), re-
spectively. All three quantities are bounded by thin max(hz, h3)). The expected running
time is therefore

O(log min(ny, n — ny))
in both cases.

(concatenate and related functigps=

void skiplist::delete_subsequence(sl_item a,
sl_item b,skiplist& S1)
{ Si.clear();

sl_item pl = a->pred;
sl_item p2 = b;

sl_item p3 = b->forward[0];
int k = -1;

while ( pl->height < MaxHeight && p3->height >= 0 &&
p2->height < MaxHeight && cmp(p2->key,a->key) >= 0 )

{ k++;
while ( pl->height == k) pl = pl->backward;
while ( p2->height == k) p2 = p2->backward;
while ( p3->height == k) p3 = p3->forwardl[k];

}

if (pl->height == MaxHeight || p3->height < 0)

{ if (pl->height < MaxHeight) pl = p3->backward;
skiplist* Pp = ((large_item) pl)->myseq;
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skiplist S2,S3;
split_at_item(b,S2,S3,after);
split_at_item(a,*Pp,S1,before);
Pp->conc(S83,after);

return;

}

// the middle list is the lowest and we have to do some work

pl = a->pred;

p2 = b;

/* correct predecessor pointers */

a->pred = (sl_item) S1.header;

S1.STOP->pred = b;

b->forward[0]->pred = p1;

/* height of S1 %/

S1.header->true_height = 1 + k;

S1.header—->forward[1+k] = S1.STOP;

for (int i = 0; i <= k; i++)

{ /* pl and p2 are the rightmost items of height at least

i in the first and second part, respectively */

sl_item q = pl->forward[i];
S1.header->forward[i] = q;

if (q->height == i) gq->backward = S1.header;
q = p2->forward[il;

pl->forward[i] = q;

if (q->height == i) gq->backward = pi;

p2->forward[i] = S1.STOP;

while (i == pl->height) pl = pl->backward;
while (i == p2->height) p2 = p2->backward;

It takes a lot of trivial stuff to complete the implementattiof skiplist We do not include it
here to save space.

5.7.10 Member Functions of Classortseq

The purpose of the file LEDAROOT/incl/LEDA/sortseq.h is &fide the abstract data type
classsortsegand to implement the abstract functions in terms of the atrciunctions.
We follow the general technique discussed in Section 13vknEabstract function (e.g.
lookup calls the concrete function with the same name after coimgeany arguments of
type K or | to a generic pointer (by means of functitedacas) and after converting any
argument of typesortsegK, 1> to askiplist (by a cast). Similarly, any result of typé

or | is converted back from generic pointer (by means oftE®A ACCESSnacro). Two
examples should suffice to show the principle.

K key(seq.item it) const { return LEDA_ACCESS(K,IMPL::key(it)); }
seq-item lookup(K k) const { return IMPL::lookup(ledacast(k)); }
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5.7.11 A Final Word
We have given the implementation of the data tgpetiseq We glossed over some of the
trivial stuff. The complete source code can be found in th®AEBource code directory.

Exercises for 5.7

1 Implement operationsnion intersection setminus and setdifferencefor sorted se-
guences. Start from the implementatiomuérge

2  Add the implementation parameter mechanism to the sgptsegK, | >. Follow the
construction of the typssortsegK, |, IMPL>.

3 Addthe finger search operations to #tetree implementation or the randomized search
tree implementation of sorted sequences. Inspect [Mele@8#h]AS89] for the relevant
theory.

5.8 An Application of Sorted Sequences: Jordan Sorting

LetC be a Jordan curve in the pldi¢hat is nowhere tangent to theaxis. Letxy, X, . .., X,
be the abscissas of the intersection point§ efith the x-axis, listed in the order the points
occur onC (see Figure 5.23). Call a sequengexa, . .., X, of real numbers obtainable in
this way aJordan sequenceThe reader should convince himself at this point that the se
guence 1, 3, 4, 2 is not a Jordan sequence. We describe atlinealgorithm to recognize
and sort Jordan sequences due to Hoffmann et al. [HMRT8%.Johdan demo allows you
to exercise the algorithm.

As a sorting algorithmJordansort is not competitive with general purpose sorting al-
gorithms, like quicksort and mergesort, despite its linesming time. We include the
Jordansort program in the book as an example of how much LEDA simplifiesithple-
mentation of complex algorithms.

The Jordan sorting problem arises in the following conteQuppose we are given a
simple polygon (as a sequence of edges) and a line and ar taskempute the points of
intersection in the order they occur on the line. A traveofahe polygon produces the
intersections in the order they occur on the polygon. Sgttie sequence of intersections
produces the order on the line.

A Jordan sequence together with its intersections withxtheis gives rise to two nested
sets of parentheses, simply cut the plane akthgis into two half-planes (see Figure 5.24).
We call a matching pair of parentheselracket A nested set of brackets gives rise to an
ordered forest in a natural way. Each bracket correspondsnode of the tree and the
children of a node correspond to the brackets directly destthin a bracket. The ordering
of the children of a bracket corresponds to the left to righeoing of the subbrackets. We
can turn the ordered forest into a tree by adding a fictitiogasket(—oco, +00). Figure 5.25

16 A Jordan curve is a curve without self-intersections, aecontinuous injective mapping from the unit interval
into the plane.
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Figure 5.23 A Jordan curve and its intersections with thexis: The curve intersects theaxis
21 times. We assumed for the drawing that the abscissas woftéhieections are the integers 1 to
21. As the curve is traversed starting at 6 the sequence @, 13212, 7,5, 4, 3, 2, 20, 18, 17,
14,11, 10, 9, 8, 15, 16, 19 is obtained.

~ AN A AN M

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 5.24 The nested parentheses corresponding to the Jordan curiguoé 5.23; each pair
of parentheses is drawn as a half-circle: (a) The parentteseesponding to the upper
half-plane; (b) The parentheses corresponding to the lbaiplane.

shows the ordered trees corresponding to the brackets ofd=§24. We call these trees

thelower and theupper tree respectively.
To sort a Jordan sequenkg Xo, ..., Xn We process the numbexs in increasing order
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Figure 5.25 The upper and lower tree for the Jordan curve of Figure 5.88.Smaller and
larger element of each bracket is on either side of the qooreding tree node.

oni, constructing three objects simultaneously: the sorttdli the numbers so far pro-
cessed, and the upper and lower tree of the brackets congisgoto the numbers so far
processed. Figure 5.26 shows the state of the algorithmledténg processed number 8 in
our example.

Initially, the upper and the lower tree consist of the bragkeso, +00) and the initial
sorted list is—o0, X1, +00. We also assume for concreteness that the cGreeosses the
x-axis from bottom to top at;.

Assume now that we have processed. .., x; for somei > 1 and want to process, ;
next. Assume for concreteness that the crossing iatfrom top to bottom. So we have to
insert a bracket with endpoinks andx; 1 into the lower tree. In our running example this
is the bracket (8,15). Lét andr; with|; < X < r; be the two neighbors of in the sorted
list; if one of them is equal ta; and we insert into the lower tree then we take the neighbor
in distance two. In our example we hdye= 7 andr; = 9. Letl; be the bracket in the lower
tree containind; and letr; be the bracket containing. In our example we havg = (5, 7)
andr; = (9, 10). We now distinguish cases.

Assume first thal is equal tarj, i.e., (l;, ri) is a bracket. Ii;,; does not lie betweeln
andr; then we abort since the sequence is not Jordan.. {flies betweem;, andr; then we
make the brackamin(x;, Xi11), max(Xi, Xi+1)) the single child ofl;, r;) and inseri;_; at
the appropriate position into the sorted list.

Assume next thdt is not equal taj. Then one of the two brackets, calllit, does not
containx;. We locatex; 1 in the ordered sequence of siblingsTef Two cases can occur:
eitherx;, 1 is contained in one of the siblings af or it is not. If xj,; is contained in a
sibling of T; then we abort since the sequence is not Jordar;,if is not contained in a
sibling of T; then we change the lower tree as follows. We create a new ravdesponding
to bracket(min(x;, Xj+1), max(X;, Xj+1)), make all siblings ofT; that are enclosed in the
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Figure 5.26 (a) The Jordan curve after reaching point 8. (b) The sortqdesgce of points
processed so far. (¢c) The lower and upper tree.

new bracket children of the new bracket, and add the new btdokhe list of siblings of
Ti. We also inserk;; at the appropriate position into the sorted list of numbecegssed
so far.

In our example neitheli norr; containsx; and so either one of them can e The
ordered list of siblings off; is (3, 4), (5, 7), (9, 10), (11, 14), (17, 18) and number 15 lies
between bracketéll, 14) and (17, 18). So we makg9, 10) and (11, 14) children of the
new bracket8, 15) and let(8, 15) take their place in the list of children of brackgt 20).
We also insert 15 between 14 and 17 into the sorted list of musnrocessed so far. Fig-
ure 5.27 shows the lower tree after inserting the bra¢kets).

We proceed to describe the implementation of a procedure



5.8 An Application of Sorted Sequences: Jordan Sorting 113

Figure 5.27 The lower tree after inserting the bracket (8,15).

bool Jordan_sort(const list<double>& In, list<double>& Out,
window* Window = 0);

It takes a sequenda of doubles and tests whether the sequence is Jordan. Ifretyins
the sorted output sequence@ut. If the third argument is non-nil then the execution of
the algorithm is animated iwindow We define three files: the file Jordan.h contains the
declaration of procedurdordansort, the file Jordan.c contains its implementation, and the
file Jordandemo.c contains a demo. The latter file is not shown in the pbokcan be
found in LEDAROOT/demo. It includes Jordan.c as a subfile.

(Jordan.h=

#include <LEDA/list.h>
class window;
bool Jordan_sort(const list<double>&, list<double>&, window* Window = 0);

The global structure of Jordan.c is as follows:

(Jordan.o=

#include <LEDA/list.h>
#include <LEDA/window.h>
#include <LEDA/sortseq.h>

(Jordan.h

global variable$

data structurég

global function$
procedure Jordan sort

o~ o~~~

As outlined above, we construct three data structures samebusly: the sorted lidt of
the intersections processed so far and the upper and loaerofrbrackets. We define
appropriate classes. While reading these class definittmseader may want to inspect
Figure 5.28; it shows how the subtree of the upper tree roatetie bracke(7, 12) is
represented.
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upper tree

Lol L] sl L) Lol [ [ad [ ][ [ ][22 ]]

Figure 5.28 The representation of the subtree of the upper tree rootie dracke(7, 12).

This bracket contains subbrackeé® 9) and(10, 11). The items (dntersection} of the listL

are shown as rectangular boxes with three fields and braatethown as rectangular boxes
with five fields. Solid lines correspond to pointers. Eackrisg¢ction points to the bracket
containing it which in turn points back to the intersecti&@ach bracket containschildrenseq
Thechildrenseqcontained in the brack&?, 12) is shown as a dotted triangle. It has two items
corresponding to the two subbrackéds9) and(9, 10). The key of each item is a pointer to the
subbracket and each subbracket storgm®amongsibsthe item representing it in the
childrenseqof its parent. This allows, for example, the brack&t9) to find the bracket

(10, 11), namely ifb is a pointer to the former bracket thbn— posamongsibsis an item in the
childrenseqof bracket(7, 12), and the successor of this item is the item corresponding to
(10, 11).

(data structuré=

class intersection;
typedef intersection* Intersection;

class bracket;
typedef bracket* Bracket;

list<Intersection> L;

We defined the list. as a list of pointers to intersections rather than a list tdrgsections
as this will avoid frequent copying of intersections. Easteisection needs to know the
bracket containing it in either tree. Therefore, an intetisa contains its abscissadauble
and pointers to the brackets in the two trees containing lite @onstructor constructs an
intersection with a particulat-coordinate.

(data structureé+=

class intersection{

};

public:
double x;
Bracket containing_bracket_in[2];

intersection(double xcoord)
{ x = xcoord;

containing_bracket_in[upper]
containing_ bracket_in[lower]

nil;
nil;
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A node of either tree corresponds to a bracket. A bracketsweedchow its two endpoints
(asitems inL), its position among its siblings &egitem), and its sorted sequence of sub-
brackets (sortsegBracket int>). We also store the-coordinate of the left endpoint of the
bracket. In order to save ink we usigildrensegas an abbreviation f@ortsegBracket int>.
The information typént in childrensegis irrelevant.Childrensegseed to be able to com-
pare brackets. Brackets are compared by comparing{t@ordinates of their left end-
points. Because of the circularity (the cldsacketneeds to know abouthildrensegand
childrensegneeds a functiomomparefor Bracket$ we declarecompareat the beginning
of the next program chunk and define it at its end.

Brackethas two constructors. The first constructor takes two itarasidb in L and
the indicatorside and constructs a bracket with endpoiatendb. The left endpoint is
the endpoint with the smaller-coordinate. It-coordinate is stored ileftx. The list item
corresponding to the left endpoint is store@mdpfleft] and the appropriate reverse pointer
is stored in the list item. The same holds true for the riglpaint. Thechildrenand the
posamongsibsfields will be filled later.

The second constructor initializes ongftx. It is used to convert ar-coordinate into a
bracket so that we can seatéfor the x-coordinate in ahildrenseq

A bracket contains a numbe; if x lies between the abscissa of the endpoints of the
bracket.

(data structureé+=

int compare(const Bracket&,const Bracket&);
typedef sortseq<Bracket,int> children_seq;

class bracketq{
public:
double left_x;
list_item endpt[2];
children_seq children;
seq_item pos_among_sibs;

bracket(list_item a, list_item b, SIDE side)
{ if (L[a]l->x > L[b]->x) leda_swap(a,b);

left_x = L[al->x;
endpt[left] = a;

L[al->containing bracket_in[side] = this;
endpt [right] = b;
L[b]l->containing bracket_in[side] = this;

}
bracket (double x){ left_x = x; }

bool contains(double x)
{ return ( L[endpt[left]]->x < x && x < L[endpt[rightl]l->x ); }

17 The key type othildrenseqis Bracketand hence we can only search foBmcketin achildrenseq We will
have to search for doubleand can do so only by converting tHeubleinto abracket This slight inconvenience
would not arise if the search functions isartsegK, | > would use a comparison function
compargconst K&, const K& ) where the second argument type is allowed to be differem fre first and in
this way allowed to search for any object that can be compaitithe keys of the sorted sequence.
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3
int compare(const Bracket & bl,const Bracket & b2)
{ return compare(bi->left_x,b2->left_x); }

We complete the definition of the data structure with the d#imof some global variables.
We need a representationaf for the bracket—oo, o), we need a variablgidethat tells
us in which tree we are working in, and we need the first absgisand the corresponding
itemxLlitemin L. We also define enumeration typepper, lower} and{left, right} that are
used to distinguish the upper and lower tree and the left ighdl @ndpoint of a bracket.

(global variable$=
const double infty = MAXDOUBLE;

double x1;
list_item x1_item;

enum SIDE {upper,lower};
SIDE side;

enum {left,right};

We can now give the global structure of the Jordan sortinggatare. It takes a lidh of
doublesand decides whether it is Jordan. If so, it also producestagoersiorOut of In.

If the input list has length at most one then sorting is ttivifit has length at least two
then we first initializeL with —oo, X1, oo and build trivial upper and lower trees. Then we
insert the elements dh one by one alternatingly into the lower or upper tree; théalde
sidekeeps track of where we are. At the end we produce the sortpdtdist Out

(procedure Jordan soyt

bool Jordan_sort(const list<double>& In, list<double>& Out,
window* Window)
{ if ( In.length() <=1 ) { Out = In; return true; }

(initialize L with x1 and construct trivial lower and uppeegs;
/* we now process x_2 up to x_n */

list_item it = In.succ(In.first()); // the second item
side = upper;
while (it)
{ (process nextinpig

it = In.succ(it);

side = ((side == upper)? lower : upper); // change sides
}
(produce the output by copying L to Qut

return true;

We now discuss the three phaseslofdansort initialization, processing an input, and
producing the output list.
We initialize the listL with —oo, X1, 0o, and the upper and lower trees with the brackets



5.8 An Application of Sorted Sequences: Jordan Sorting 117

(—o00, 00). We also storeg; in x1and the corresponding item bfin xLitem We seiiitem
toxliterm generallyxiitemcorresponds to the last number inserted intd his was called
X in the discussion above.

(initialize L with x1 and construct trivial lower and uppeegs=
x1 = In.head();
L.clear();

list_item minus_infty_item = L.append(new intersection(-infty));
list_item xi_item = x1_item = L.append(new intersection(xl));
list_item plus_infty_item = L.append(new intersection(infty));

bracket upper_root(minus_infty_item,plus_infty_item,upper);
bracket lower_root(minus_infty_item,plus_infty_item,lower);

We turn to the insertion part. The number to be inserted is In[it]. This was called
Xi+1 in the discussion above. Recall thaftemis the item of listL holdingxi. So the new
bracket has endpoinisandxi. The new bracket needs to be inserted intodidetree.

We first determine the itemilsitem andr_item to the left and to the right of the cur-
rent item and their corresponding intersectibradr ; if one of them is equal tal and
side== lower, we skip it, since there is no bracket in the lower tree comagix1. We also
retrieve the bracket® andrB containingl andr. Then we distinguish cases according to
whether the brackei8 andrB are identical or not and branch to the two sub-cases. Both
sub-cases modify the lidt and thesidetree and setitemto the item ofL containing the
new intersection.

After returning from the two sub-cases we upddtitem

If Windowis non-nil we also draw an appropriate half-circular aroimt We divide the
plane in half aty = 50 and draw red arcs in the upper half and black arcs in therlowe
half. The operationlrawarc(xl, y1, x2, y2, r, c) of classwindowdraws a counterclockwise
oriented circular arc starting itx1, y1), ending in(x2, y2), and having radius and colorc.

(process next inple=

double x = In[it];
double xi = L[xi_item]->x;

if (x == xi || x == x1) return false;

list_item 1_item = L.pred(xi_item);

if (l_item == x1_item && side == lower) l_item = L.pred(l_item);
list_item r_item = L.succ(xi_item);

if (r_item == x1_item && side == lower) r_item = L.succ(r_item);

Intersection 1 = L[1_item];

Intersection r = L[r_item];
Bracket 1B = 1l->containing_bracket_in[side];
Bracket rB = r->containing_bracket_in[side];

list_item x_item;

if (Window != nil)

{ double r = (xi - x)/2; if (r < 0) r = -r;

if ( side == upper)

Window->draw_arc(point (xi,50) ,point ((xi+x)/2,50+r), point(x,50),red);
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IB=1rB

newbracket

Figure 5.29 The two neighboring bracketB andrB are indentical and hence the new bracket
becomes their child.

else
Window->draw_arc(point (xi,50) ,point ((xi+x)/2,50-r), point(x,50),black);
}

int dir = ( x > xi ? LEDA::after : LEDA::before);

if (1B == rB)
{ (IB and rB are identical }

else

{ (IB and rB are distinct }

xi_item = x_item;

If the bracketdB andrB are identical then we only need to check whether the bracket
contains the new abscisga If not, we abort because the input sequence is not Jordan.
Otherwise we insent next toxi into list L, create a new bracket, and make it the only child
of IB, see Figure 5.29.

(IB and rB are identicgl=
if (! (1B->contains(x))) return false;

x_item = L_insert(x,xi_item,dir);
Bracket new_bracket = new bracket(x_item,xi_item,side);
new_bracket->pos_among_sibs = 1B->children.insert (new_bracket,0);

The proceduré_insertis essentially identical th.insert A small difference arises from the
fact thatxLitemis not part of a bracket on the lower side and hence if the nésvsaction
is to be inserted next tol then its position with respect tdl is not yet known.

(global function$=
list_item L_insert(double x, list_item it, int dir)
{ if ( side == lower &&
(dir == LEDA::before && L.pred(it) == x1_item && x < x1) ||
(dir == LEDA::after &% L.succ(it) == x1_item && x > x1) )
it = x1_item;
return L.insert(new intersection(x),it,dir);

}

We come to the case in which the brack@&sandrB are not identical. We distinguish
two cases.
If x lies between andr then the new brackeki, x) does not enclose any brackets. We
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Xi r X next

Figure 5.30 The new bracket extends to the right ani$ larger tham; tB is the rightmost
sibling of rB whose left endpoint is less than x must not be contained B and it must be
contained in the parent brackett® The children of the new bracket startrBtand end atB.

therefore only have to insext either before or aftexi into L and make the new bracket
either the left sibling of B (if IB containsx) or the right sibling oiB (otherwise).
If x does not lie betweenandr, we have to work harder.

(IB and rB are distinct=
children_seq S; // just for the type

if (1->x < x && x < r->%x )
{ x_item = L_insert(x,xi_item,dir);
Bracket new_bracket = new bracket(xi_item,x_item,side);
new_bracket->pos_among_sibs =
( 1B->contains(x) ?
S.insert_at (rB->pos_among_sibs,new_bracket,0,LEDA: :before) :
S.insert_at (1B->pos_among_sibs,new_bracket,0,LEDA::after) );
}
else
if ( dir == LEDA::after )
{ (new bracket has subbrackets and extends to the)right
else

{ (new bracket has subbrackets and extends to the left

We come to the case that the new bracket extends to the righhatx is at least as large
asr. LettB be the rightmost sibling ofB whose left endpoint is less than or equalxto
cf. Figure 5.30. We determir® by a finger search starting é8. The right endpoint ofB
must be smaller thar andx must be contained in the parent bracketB®{which is also
the parent bracket aB); otherwise the sequence is not Jordan. The latter is gtesraifx

is smaller than th&-coordinate of the successor item of the right endpoitBdive skipxl

if side== lower, asx1is not an endpoint of a bracket in the lower tree). Assumehib#t
conditions hold. We ad#d after the right endpoint dB to L, insert the new brackéki, x)
beforerB, delete the subsequence startinggaaind ending atB, and make the subsequence
the children sequence of the new bracket.

(new bracket has subbrackets and extends to the)eght

Bracket query_bracket = new bracket(x);
seq_item x_pos = S.finger_locate_pred(rB->pos_among_sibs, query_bracket);

Bracket tB = S.key(x_pos);
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list_item next = L.succ(tB->endpt[right]);
if ( next == x1_item && side == lower ) next = L.succ(next);

if ( x <= L[tB->endpt[right]]->x || x >= L[next]->x ) return false;
x_item = L_insert(x,tB->endpt[right] ,LEDA::after);

Bracket new_bracket = new bracket(xi_item,x_item,side);
new_bracket->pos_among_sibs =
S.insert_at (rB->pos_among_sibs,new_bracket,0,LEDA: :before) ;

S.delete_subsequence(rB->pos_among_sibs, x_pos, new_bracket->children);

If the new bracket has subbrackets and extends to the leftegeed symmetrically to the
case above, i.e, we replapeed by succand vice-versa, less than by greater than, ... .

(new bracket has subbrackets and extends to thesteft

Bracket query_bracket = new bracket(x);
seq_item x_pos = S.finger_locate_succ(1B->pos_among_sibs, query_bracket);

Bracket tB = S.key(x_pos);

list_item next = L.pred(tB->endpt[left]);
if ( next == x1_item && side == lower ) next = L.pred(next);

if ( x >= L[tB->endpt[left]]->x || x <= L[next]->x ) return false;
x_item = L_insert(x,tB->endpt[left],LEDA::before);

Bracket new_bracket = new bracket(x_item,xi_item,side);
new_bracket->pos_among_sibs =
S.insert_at (tB->pos_among_sibs,new_bracket,0,LEDA: :before) ;

S.delete_subsequence(x_pos,1B->pos_among_sibs, new_bracket->children) ;

Preparing the output is easy. After deleting the sentinrets andoo the output is avail-
able inL. We copy it toOut.

(produce the output by copying L to Q&t

OQut.clear();
L.pop(); L.Pop(Q);
forall_items(it,L) Out.append(L[it]->x);

We described an algorithm to recognize and to sort Jordanesegs. The algorithm
runs in linear time, see [HMRT85] for a prd8f As a sorting algorithmjordansortis not
competitive with general purpose sorting algorithms, tikecksort and mergesort, despite
its linear running time. We included tll®rdansort program in the book as an example of
how much LEDA simplifies the implementation of complex aiguns.

18 The idea underlying the proof is as follows: in each iteratid Jordan sort a new bracket is constructed. This
takes timeO(log min(k, m — k)) wherek is the number of subbrackets amd- k is the number of siblings of the
new bracket. One then proceeds as in the analysis of repgalttsdon page 69.
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