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Advanced Data Types

We discuss some of the advanced data types of LEDA: dictionary arrays, hashing arrays,
maps, priority queues, partitions, and sorted sequences. For each type we give its function-
ality, discuss its performance and implementation, and describe applications.

5.1 Sparse Arrays: Dictionary Arrays, Hashing Arrays, and Maps

Sparse arrays are arrays with an infinite or at least very large index set of which only a
“sparse” subset is in actual use. We discuss the sparse arraytypes of LEDA and the many
implementations available for them. We start with the functionality and then discuss the
performance guarantees given by the different types and implementations. We also give an
experimental comparison. We advise on how to choose an implementation satisfying the
needs of a particular application and discuss the implementation ofmapsin detail.

5.1.1 Functionality
Dictionary arrays (typed array<I , E>), hashing arrays (typeh array<I , E>), and maps
(type map<I , E>) realize arrays with large or even unbounded index setI and arbitrary
entry typeE. Examples are arrays indexed by points, strings, or arbitrary integers. We refer
to d arrays, harrays, and maps assparse array types; another common name isassociative
arrays. The sparse array types have different requirements for theindex type: dictionary
arrays work only for linearly ordered types (see Section 2.10), hashing arrays work only for
hashed types (see Section 2.8), and maps work only for pointer and item types and the type
int. They also differ in their performance guarantees and functionality. Figure 5.1 shows
the manual page of maps and Table 5.1 summarizes the properties of our sparse array types.
Before we discuss them we illustrate the sparse array types by small examples.
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5.1 Sparse Arrays: Dictionary Arrays, Hashing Arrays, and Maps 3

d arrays harrays Maps

index type linearly ordered hashed int or pointer or item type

access time O(logn) O(1) O(1)

worst case expected expected

forall defined loop sorted unsorted unsorted

persistence of variables yes no no

undefineoperation available available not available

Table 5.1 Properties of darrays, harrays, and maps. The meaning of the various rows is
explained in the text.

In the first example we use a darray to build a small English–German dictionary and to
print all word pairs in the dictionary.

d array<string,string> di;

di["hello"℄ = "hallo";

di["world"℄ = "Welt";

di["book"℄ = "Buh";

string s;

forall defined(s,di) out << s << " " << di[s℄ << "\n";

The forall definedloop iterates over all indices of the array that were used as asubscript
prior to the loop. The iteration is according to the order defined by thecomparefunction
of the index type; recall that dictionary arrays work only for linearly ordered types. In the
case of strings the defaultcomparefunction defines the lexicographic ordering and hence
the program outputs:

book Buh

hello hallo

world Welt

In the second example we use a harray to read a sequence of strings from standard input,
to count the multiplicity of each string in the input, and to output the strings together with
their multiplicities. Harrays work only for hashed types and hence we need to define a hash
function for strings. We define a very primitive hash function that maps the empty string
to zero and any non-empty string to its leading character (for a stringx, x[0] returns the
leading character ofx).

int Hash(onst string& x) { return (x.length() > 0) ? x[0℄ : 0; }

h array<string,int> N(0); // default value 0

while (in >> s) N[s℄++;

forall defined(s,N) out << s << " " << N[s℄ << "\n";



4 Advanced Data Types

1. Definition

An instanceM of the parameterized data typemap<I , E> is an injective mapping from
the data typeI , called the index type ofM, to the set of variables of data typeE, called
the element type ofM. I must be a pointer, item, or handle type or the type int. We use
M(i ) to denote the variable indexed byi . All variables are initialized toxdef, an element
of E that is specified in the definition ofM . A subset ofI is designated as the domain of
M . Elements are added todom(M) by the subscript operator.

Related data types ared arrays, h arrays, anddictionaries.

2. Creation

map<I , E> M; creates an injective functionm from I to the set of unused vari-
ables of typeE, setsxdef to the default value of typeE (if E has
no default value thenxdef is set to an unspecified element ofE),
and initializesM with m.

map<I , E> M(E x); creates an injective functionm from I to the set of unused vari-
ables of typeE, setsxdef to x, and initializesM with m.

3. Operations

E& M[ I i ] returns the variableM(i ) and addsi to
dom(M). If M is a const-object thenM(i )
is read-only andi is not added todom(M).

bool M.defined(I i ) returns true ifi ∈ dom(M).

void M.clear( ) makesM empty.

void M.clear(E x) makesM empty and setsxdef to x.

Iteration

forall defined(i , M) { “the indicesi with i ∈ dom(M) are successively assigned toi ” }

forall (x, M) { “the entriesM[i ] with i ∈ dom(M) are successively assigned tox” }

4. Implementation

Maps are implemented by hashing with chaining and table doubling. Access operations
M[i ] take expected timeO(1).

Figure 5.1 The manual page of data typemap.

There are two further remarks required about this code fragment. First, in the definition
of N we defined a default value for all entries ofN: all entries ofN are initialized to this
default value. Second, hashed types have no particular order defined on their elements and
hence theforall definedloop for h arrays steps through the defined indices of the array in
no particular order.

In the third example we assume that we are given a list of segments inseglistand that we
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want to associate a random bit with each segment. Amap<segment, bool> serves well for
this purpose.

map<segment,bool> olor;

segment seg;

forall(seg,seglist) olor[seg℄ = rand int(0,1);

After these introductory examples we turn to the detailed discussion of our sparse array
types. An objectA of a sparse array type is characterized by three quantities:

• An injective mapping from the index type into the variables of type E. For an indexi
we useA(i ) to denote the variable selected byi .

• An elementxdef of type E, the default value of all variables in the array. It is
determined in one of three ways. If the definition of the arrayhas an argument, as, for
example, in

h array<int,int> N(0);

then this argument isxdef. If the definition of the array has no argument but the entry
type of the array has a default value1, as, for example, in

d array<string,string> D;

then this default value isxdef. If the definition of the array has no argument and the
entry type of the array has no default value, as, for example,in

map<point,int> olor;

thenxdef is some arbitrary value ofE. This value may depend on the execution
history.

• A subsetdom(A) of the index set, the so-calleddomainof A. All variables outside the
domain have valuexdef. Indices are added to the domain by the subscript operation
and are deleted from the domain by theundefineoperation. Maps have noundefine
operation and put some indices in the domain even if they werenot accessed2.
D arrays and harrays start with an empty domain and indices are added to thedomain
only by the subscript operation.

We come to the operations defined on sparse arrays. We assume that A belongs to one of
our sparse array types and thatI is a legal index type for this sparse array type as defined in
the first row of Table 5.1. The subscript operatoroperator[] comes in two kinds:

onst E& operator[℄(onst I& i) onst

E& operator[℄(onst I& i)

1 This is the case for all but the built-in types of C++.
2 These indices are used as sentinels in the implementation and allow us to make maps faster than the other sparse

array types. We refer the reader to Section 5.2 for details.
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The first version applies to const-objects and the second version applies to non-const-
objects. Both versions return the variableA(i ). The first version allows only read access to
the variable and the second version also allows us to modify the value of the variable. The
second version addsi to the domain ofA and the first version does not. How is the selection
between the two versions made? Recall that in C++ every member function of a classX has
an implicit argument referring to an instance of the object.This implicit argument has type
onst X<I,E>* for the first version of the subscript operator and has typeX<I,E>* for
the second version of the access operator; hereX stands for one of the sparse array types.
Thus depending on whether the subscript operator is appliedto a constant sparse array or
a modifiable sparse array either the first or the second version of the subscript operator is
selected. Consider the following examples.

onst map<int,int> M1;

map<int,int> M2;

int x;

x = M1[5℄; // first version

x = M2[5℄; // seond version

x = ((onst map<int,int>) M2)[7℄; // first version

Observe that the first version of the subscript operator is used in the first and the last call
sinceM1 is a constant map and sinceM2 is cast to a constant map in the last line. The
second version of the subscript operator is used in the second access. It is tempting but
wrong to say (Kurt has made this error many times) that the useof the variableA(i ) dictates
the selection: an access on the left-hand side of an assignment uses the second version
(since the typeE& is needed) and an access on the right-hand side of an assignment uses
the second version (since the typeonst E& suffices). We emphasize,the rule just stated
is wrong. In C++ the return type of a function plays no role in the selection ofa version of
an overloaded function; the selection is made solely on the basis of the argument types. We
continue the example above.

x = M2[5℄; // seond version

M2[5℄ = x; // seond version

x = M1[5℄; // first version

M1[5℄ = x; // first version, illegal

The last assignment is illegal, since the first version of theaccess operator is selected for
the constant mapM1. It returns a constant reference to the variableM1(5), to which no
assignment is possible.

bool A.defined(I i)

returns true ifi ∈ dom(A) and returns false otherwise. Finally, the operation

void A.undefine(I i)

removesi from dom(A) and setsA(i ) to xdef. This operation is not available for maps.
Sparse arrays offer an iteration statement
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forall defined(i,A)

{ the elements of dom(A) are suessively assigned to i }

which iterates over the indices indom(A). In the case of darrays the indices are scanned
in increasing order (recall that the index type of a darray must be linearly ordered), in the
case of harrays and maps the order is unspecified. The iteration statement

forall(x,A)

{ A[i℄ for i in dom(A) is suessively assigned to x }

iterates over the values of the entries indom(A).

5.1.2 Performance Guarantees and Implementation Parameters
Sparse arrays are one of the most widely studied data type andmany different realizations
with different performance guarantees have been proposed for them. We have included
several into the LEDA system and give the user the possibility to choose an implementation
through the implementation parameter mechanism.

d array<string,int,rs tree> D1(0);

d array<string,int,rb tree> D2(0);

d array<int, int,dp hashing> H;

defines three sparse arrays realized by randomized search trees, red-black trees, and dy-
namic perfect hashing, respectively. We now survey the available implementations; see also
Tables 5.2 and 5.3. The implementations fall into two classes, those requiring a linearly
ordered index type and those requiring a hashed index type. We usen to denote the size of
the domain of the sparse array.

Implementations requiring a Linearly Ordered Index Type: This class of implemen-
tations contains deterministic and randomized implementations. The deterministic im-
plementations are(a, b)-trees [Meh84a],AVL-trees [AVL62],BB[α]-trees [NR73, BM80,
Meh84a], red-black-trees [GS78, Meh84a], and unbalanced trees. The corresponding im-
plementation parameters areabtree, avl tree, bbtree, rb tree, andbin tree, respectively. Ex-
cept for unbalanced trees, all deterministic implementations guaranteeO(logn) insertion,
lookup, and deletion time. The actual running times of all deterministic implementations
(except for unbalanced trees) are within a factor of two to three of one another. The un-
balanced tree implementation can deteriorate to linear search and guarantees only linear
insertion, lookup, and deletion time, as is clearly visiblefrom the right part of Table 5.2. It
should not be used.

The randomized implementations are skiplists [Pug90b] (skiplist) and randomized search
trees [AS89] (rs tree). Both implementations guarantee an expected insertion, deletion, and
lookup time ofO(logn). The expectations are taken with respect to the internal coin flips
of the data structures.

Among the implementations requiring a linearly ordered index type ab-trees and skiplists
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Random integers Sorted integers

insert lookup delete total insert lookup delete total

ch hash 0.23 0.09 0.18 0.5 0.2 0.05 0.12 0.37

dp hash 1.48 0.21 1.08 2.77 1.37 0.21 1.02 2.6

map 0.15 0.04 — 0.19 0.15 0.05 — 0.2

skiplist 0.78 0.54 0.54 1.86 0.43 0.16 0.14 0.73

rs tree 1.04 0.71 0.76 2.51 0.42 0.19 0.2 0.81

bin tree 0.83 0.59 0.62 2.04 2704 1354 0.1501 4058

rb tree 0.9199 0.54 0.74 2.2 0.6499 0.1802 0.3 1.13

avl tree 0.8599 0.55 0.7 2.11 0.45 0.2 0.2402 0.8901

bb tree 1.23 0.52 1 2.75 0.6399 0.2 0.3301 1.17

ab tree 0.5898 0.25 0.4502 1.29 0.22 0.1399 0.2 0.5598

array 0.01001 0.01001 — 0.02002

Table 5.2 The performance of various implementations of sparse arrays. Hashing with chaining
(chhash) and dynamic perfect hashing (dphash) are implementations of harrays,mapis the
implementation of map, and skiplists (skiplist), randomized search trees (rs tree), unbalanced
binary trees (bin tree), red-black-trees (rb tree), AVL-trees (avl tree), BB[α]-trees (bb tree), and
2-4-trees (abtrees) are implementations of darrays. Running times are in seconds. We
performed 105 insertions followed by 105 lookups followed by 105 deletions. We used random
keys of typeint in [0 .. 107] for the left half of the table and we used the keys 0, 1, 2, . . . for the
right half of the table. Maps are the fastest implementationfollowed by hashing with chaining.
Among the implementations ofd arraysab-trees and skiplists are currently the most efficient.
Observe the miserable performance of thebin tree implementation for the sorted insertion order.
For comparison we also included arrays for the second test.

are currently the most efficient. We give the details of the skiplist implementation in Sec-
tion 5.7.

All implementations use linear space, e.g., the skiplist implementation requires 76n/3 +

O(1) = 25.333n + O(1) bytes.

Implementations requiring a Hashed Index Type: There are two implementations: Hash-
ing with chaining and dynamic perfect hashing.

Hashing with chaining is a deterministic data structure. Figure 5.2 illustrates it. It consists
of a table and a singly linked list for each table entry. The table sizeT is a power of two
such thatT = 1024 if n < 1024 andT/2 ≤ n ≤ 2T if n ≥ 1024. Thei -th list contains all
x in the domain of the sparse array such thati = Hash(x) modT . Let l i be the number of
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Random doubles

insert lookup delete total

skiplist 3.09 2.36 1.95 7.4

rs tree 3.81 2.69 2.48 8.98

bin tree 2.85 1.94 2.15 6.94

rb tree 2.75 1.82 2.28 6.85

avl tree 2.82 1.89 2.24 6.95

bb tree 4.06 1.88 3.81 9.75

ab tree 2.09 1.51 1.61 5.21

Table 5.3 The performance of various implementations of sparse arrays. Running times are in
seconds. We performed 105 insertions followed by 105 lookups followed by 105 deletions. We
used random keys of typedoublein [0 .. 231].

elements in thei -th list and letk be the number of empty lists. The space requirement for
hashing with chaining is 12(n + k) bytes.

We justify this formula. An item in a singly linked list requires twelve bytes; four bytes
for the pointer to the successor and four bytes each for the key and the information (if a key
or information does not fit into four bytes the space for the key or information needs to be
added, see Section 13.4). There areT list items in the table andl i − 1 extra items in thei -th
list, if l i ≥ 1. Next observe that

∑

i ;l i ≥1

(l i − 1) =
∑

i

(l i − 1) + k = n − T + k.

The space required is therefore 12(T + n − T + k) = 12(n + k) bytes.
If the hash function behaves like a random function, i.e., its value is a random number in

[0 .. T − 1], the probability that thei -th list is empty is equal to(1 − 1/T)n and hence the
expected value ofk is equal toT(1−1/T )n = T(1−1/T)T (n/T) ≈ T e−n/T ; here, we used
the approximation(1 − 1/T)T ≈ e−1. The expected space requirement of hashing with
chaining is therefore equal to 12(n+T e−n/T ) bytes. The time to search for an elementx, to
insert it, or to delete it isO(1) plus the time to search in the linear list to whichx is hashed.
The latter time is linear in the worst case. For random indices the expected length of each
list is n/T and hence all operations take constant expected time for random indices.

After an insertion or deletion it is possible that the invariant relatingT andn is violated.
In this situation a so-calledrehashis performed, i.e., the table size is doubled or halved and
all elements are moved to the new table.

Dynamic perfect hashing [FKS84, DKM+94] uses randomization. It is the implemen-
tation with the theoretically best performance. The operation definedtakes constant worst



10 Advanced Data Types
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Figure 5.2 Hashing with chaining: The table size is 8 and the domain of the sparse array is
{2, 12, 13, 16, 18, 24, 26, 27, 55}. The hash functionH(x) is the identity functionH(x) = x and
hence any numberx is stored in the list with indexx mod 8.

case time and the operationA[i ] takes constant expected amortized time or constant worst
case time depending on whether it is the first access with index i or not. This requires some
explanation. Dynamic perfect hashing uses a two-level hashing scheme. A first-level hash
function hashes the domain to some numberT of buckets.T is chosen as in the case of
hashing with chaining. As above, letl i be the number of elements in the domain that are
hashed to thei -th bucket. In the second level a separate table of sizel 2

i is allocated to the
i -th bucket and a perfect hash function is used to map the elements in thei -th bucket to their
private table, see Figure 5.3. In [FKS84, DKM+94] it is shown that suitable hash functions
exist and can be found by random selection from a suitable class of hash functions. It is
also shown in these papers that the space requirement of the scheme is linear, although with
a considerably larger constant factor than for hashing withchaining. An access operation
requires the evaluation of two hash functions and hence takes constant time in the worst
case. An insertion (= first access toA[i ] for some indexi ) may require a rehash on either
the second level or the first level of the data structure. Rehashes are costly but rare and
hence the expected amortized time for an insert or delete is constant.

Experiments show that hashing with chaining is usually superior to dynamic perfect
hashing and hence we have chosen hashing with chaining as thedefault implementation
of h array<I , E>.

Maps: Maps are implemented by hashing with chaining. Since the index type of a map
must be an item or pointer type or the type int and since maps donot support theundefine
operation, three optimizations are possible with respect to hashing with chaining as de-
scribed above. First, items and pointers are interpreted asintegers and the identity function
is used as the hash function, i.e., an integerx is hashed tox modT whereT is the table size.
SinceT is chosen as a power of two, evaluation of this hash function is very fast. Second,
the list elements are not allocated in free store but are all stored in an array. This allows
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Figure 5.3 Dynamic perfect hashing: The first-level tableP has size 8. For each entry of this
table the number of elements hashed to this entry are indicated. If l , l > 1, elements are hashed
to an entry then a second-level table of sizel 2 is used to resolve the collisions. The sizes of the
two second-level tables that are required in our example arealso indicated.

for a faster realization of the rehash operation. Third, since the keys are integers a particu-
larly efficient implementation of the access operation is possible. Section 5.2 contains the
complete implementation of maps.

An Experimental Comparison: We give an experimental comparison of all sparse array
types. We perform three kinds of experiments. In the first one, we use random integer keys
in the range [0.. 107], in the second one, we use the keys 0, 1, . . . , and in the third one, we
use random double keys. In each case we perform 105 insertions, followed by 105 lookups,
followed by 105 deletions. Tables 5.2 and 5.3 summarize the results.

The following program performs the first two experiments andgenerates Table 5.2. In
the main program we first define sparse arrays, one for each implementation, and two arrays
A andB of size 105. We fill A with random integers and we fillB with the integers 0, 1, . . .
. Then we call the functiondic test for each sparse array;dic testfirst insertsA[0], A[1],
. . . , then looks upA[0], A[1], . . . , and finally deletesA[0], A[1], . . . . It then performs the
same sequence of operations withB instead ofA. For each sparse array type it produces a
row of Table 5.2. The chunks〈map test〉 and〈array test〉 perform the same tests for maps3

and arrays, respectively. We leave their details to the reader.

〈dic performance.c〉�

#inlude <LEDA/_d_array.h>

#inlude <LEDA/map.h>

#inlude <LEDA/array.h>

3 Since maps do not support delete operations, we need two mapsM1 andM2, one for the experiment withA and
one for the exeriment withB.
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#inlude <LEDA/IO_interfae.h>

#inlude <LEDA/impl/h_hash.h>

#inlude <LEDA/impl/dp_hash.h>

#inlude <LEDA/impl/avl_tree.h>

#inlude <LEDA/impl/bin_tree.h>

#inlude <LEDA/impl/rs_tree.h>

#inlude <LEDA/impl/rb_tree.h>

#inlude <LEDA/impl/skiplist.h>

#inlude <LEDA/impl/ab_tree.h>

#inlude <LEDA/impl/bb_tree.h>

int N;

int* A; int* B;

IO_interfae I;

void di_test(d_array<int,int>& D, string name)

{

I.write_table("\n " + name);

float T; float T0 = T = used_time();

int i;

for(i = 0; i < N; i++) D[A[i℄℄ = 0;

I.write_table(" & ",used_time(T));

for(i = 0; i < N; i++) int* ptr = &D[A[i℄℄;

I.write_table(" & ",used_time(T));

for(i = 0; i < N; i++) D.undefine(A[i℄);

I.write_table(" & ",used_time(T));

I.write_table(" & ",used_time(T0));

〈same for B〉
}

〈map test〉

int main()

{

_d_array<int,int,h_hash> CHH_DIC;

_d_array<int,int,dp_hash> DPH_DIC;

map<int,int> M1, M2;

_d_array<int,int,avl_tree> AVL_DIC;

_d_array<int,int,bin_tree> BIN_DIC;

_d_array<int,int,rb_tree> RB_DIC;

_d_array<int,int,rs_tree> RS_DIC;

_d_array<int,int,skiplist> SK_DIC;

_d_array<int,int,bb_tree> BB_DIC;

_d_array<int,int,ab_tree> AB_DIC;

N = 100000;

A = new int[N℄; B = new int[N℄;

int i;

for(i = 0; i < N; i++) { A[i℄ = rand_int(0,10000000); B[i℄ = i; }

di_test(CHH_DIC,"h\\_hash");

di_test(DPH_DIC,"dp\\_hash"); I.write_table(" \\hline");

map_test(M1,M2, "map"); I.write_table(" \\hline");

di_test(SK_DIC, "skiplist");
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di_test(RS_DIC ,"rs\\_tree");

di_test(BIN_DIC,"bin\\_tree");

di_test(RB_DIC ,"rb\\_tree");

di_test(AVL_DIC,"avl\\_tree");

di_test(BB_DIC ,"bb\\_tree");

di_test(AB_DIC ,"ab\\_tree"); I.write_table(" \\hline");

〈array test〉
}

5.1.3 Persistence of Variables
We stated above that an access operation

E& A[I i℄

returns the variableA(i ). Thus, one can write

E& x = A[5℄;

<some statements not touhing A[5℄>;

A[5℄ = y;

if ( x == y ) { .... }

and expect that the testx == y returns true. This is not necessarily the case for harrays and
maps as these types do not guarantee that different accessesto A[5] return the same vari-
able andwe therefore recommend never to establish a pointer or a reference to a variable
contained in a map or harray. Given the efficiency of harrays and maps there is really
no need to do so. The fact that the identity of variables is notpreserved is best explained
by recalling the implementation of harrays and maps. They use an array of linked lists
where the size of the array is about the size of the domain of the sparse array. Whenever
the invariant linking the size of the table and the size of thedomain is violated the content
of the sparse array is rehashed. In the process of rehashing new variables are allocated for
some of the entries of the sparse array. Of course, the valuesof the entries are moved to the
new variables. Thus, the content ofA(i ) is preserved but not the variableA(i ).

D arrays behave differently. Variables in darrays are persistent, i.e, the equality test in
the code sequence above is guaranteed to return true.

5.1.4 Choosing an Implementation
LEDA gives you the choice between many implementations of sparse arrays. Which is best
in a particular situation?

Tables 5.2 and 5.3 show that in certain situations maps are faster than harrays which in
turn are faster than darrays. On the other hand the slower data types offer an increased
functionality. This suggests using the type whose functionality just suffices in a particular
application.

There are, however, other considerations to be taken into account. Maps and harrays
perform well only for random inputs, they can perform miserably for non-random inputs.
For maps a bad example is easily constructed. Use the indices1024i for i = 0, 1, . . . .
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Since maps use the hash functionx −→ x modT whereT is the table size, andT is always
a power of two these keys will not be distributed evenly by thehash function and hence the
performance of maps will be much worse than for random inputs. In the case of harrays
the situation is not quite as bad since you may overwrite the default hash function. For
example, you may want to use

int Hash(int x){ return x/1024; }

if you know that the indices are multiples of 1024.
Which implementations are we using ourselves? We usually use maps to associate infor-

mation with item types such as points and segments, we use darrays or dictionaries when
the order on the indices is important for the application, and we use harrays when we know
a hash function suitable for the application.

If you are not happy with any of the implementations providedin LEDA you may provide
your own. Section 13.6 explains how this is done.

5.2 The Implementation of the Data Type Map

We give the complete implementation of the data typemap. This section is for readers who
want to understand the internals of LEDA. Readers that “only” want to use LEDA may skip
this section without any harm.

We follow the usual trichotomy in the definition of LEDA’s parameterized data types
as explained in Section 13.4. Familiarity with this sectionis required for some of the
fine points of this section. We define two classes, namely the abstract data type class
map<I , E> and the implementation classchmap, in three files, namely map.h, chmap.h,
and ch map.c. The abstract data type class has template parametersI andE and the im-
plementation class storesGenPtrs(= void∗). In map.h we define the abstract data type class
and implement it in terms of the implementation class. This implementation is fairly direct;
its main purpose is to translate between the untyped view of the implementation class and
the typed view of the abstract data type class. In chmap.h andch map.c, respectively, we
define and implement the implementation class.

We first give the global structure of LEDAROOT/incl/LEDA/map.h.

〈map.h〉+�

template<lass I, lass E>

lass map : private h_map {

E xdef;

void opy_inf(GenPtr& x) onst { LEDA_COPY(E,x); }

void lear_inf(GenPtr& x) onst { LEDA_CLEAR(E,x); }

void init_inf(GenPtr& x) onst { x = leda_opy((E&)xdef); }

publi:
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typedef h_map::item item;

〈member functions of map〉

};

We give some explanations. We derive the abstract data type classmapfrom the implemen-
tation classchmapand give it an additional data memberxdef, which stores the default
value of the variables of the map. Therefore, an instance ofmapconsists of an instance of
chmapand a variablexdef of type E. The private function memberscopyinf , clear inf ,
andinit inf correspond to virtual functions of the implementation class and redefine them.
The first two are required by the LEDA method for the implementation of parameterized
data types and are discussed in Section 13.4. The third function is used to initialize an entry
to a copy ofxdef.

The public member functions will be discussed below. They define the user interface of
maps as given in Table 5.1.

We come to our implementation classchmap. It is based on the data structure hashing
with chaining. Hashing with chaining uses an array of singlylinked lists and therefore we
introduce a container for list elements, which we callchmapelem. A chmapelemstores
an unsigned longk, a generic pointeri , and a pointer to the successor container. We refer
to k as the key-field and toi as the inf-field of the container. This nomenclature is inspired
by dictionaries. Keys correspond to indices (typeI ) in the abstract data type class and infs
correspond to elements (typeE) in the abstract data type class.

A pointer to achmapelemis called achmapitem.
The flag__exportC is used during a precompilation step. On UNIX-systems it is simply

deleted and on Windows-systems it is replaced by appropriate key words that are needed
for the generation of dynamic libraries.

〈ch mapelem〉�

lass __exportC h_map_elem

{

friend lass __exportC h_map;

unsigned long k;

GenPtr i;

h_map_elem* su;

};

typedef h_map_elem* h_map_item;

Next we discuss the data members of the implementation class.

〈data members of chmap〉�

h_map_elem STOP;

h_map_elem* table;

h_map_elem* table_end;

h_map_elem* free;

int table_size;

int table_size_1;
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Figure 5.4 A hash table of size 12. The last four locations are used as an overflow area and the
first eight locations correspond to eight linear lists. The set stored is
{2, 12, 13, 16, 18, 24, 26, 27, 55} and any numberx is stored in the list with indexx mod 8. If
the i -th list contains more than one element then the first elementis stored in thei -th table
position and all other elements are stored in the overflow area. In the example, three elements are
hashed to the second list and hence two of them are stored in the overflow area. The variablefree
points to the first free position in the overflow area.

We use atableof map elements of sizef · T whereT is a power of two andf is a number
larger than one, see Figure 5.4. We usef = 1.5 in our implementation. The firstT elements
of the table correspond to the headers ofT linear lists and the remaining( f −1)T elements
of the table are used as an overflow area to store further list elements. The variablefree
always points to the first unused map element in the overflow area. When the overflow area
is full we move to a table twice the size. We usetablesizeto storeT and tablesize1 to
storeT − 1.

The main use of maps is to associate information with objects. Thus the most important
operation for maps is the access operation with keys that arealready in the table (the data
structure literature calls such accessessuccessful searches) and we designed maps so that
successful searches are particularly fast. An access for a key x involves the evaluation of
a hash function plus the search through a linear list. Our hash function simply extracts the
last logtablesizebits from the binary representation ofx.

〈HASH function〉�

h_map_elem* HASH(unsigned long x) onst

{ return table + (x & table_size_1); }

Why do we dare to take such a simple hash function?Let U be the set of unsigned longs.
We assume, as is customary in the analysis of hashing, that a random subsetS ⊆ U of size
n is stored in the hash table. Letm = tablesizedenote the size of the hash table and for all
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i , 0 ≤ i < m, let si be the number of elements inS that are hashed to positioni . Then

s0 + s1 + . . . + sm−1 = n

and hence

E[s0] + E[s1] + . . . + E[sm−1] = n

by linearity of expectations. A hash function is calledfair if the same number of elements
of U are hashed to every table position. Our hash function is fair. For a fair hash function
symmetry implies that the expectations of all thesi ’s are the same. Hence

E[si ] = n/m

for all i . No hash function can do better since
∑

i E[si ] = n. We conclude that any fair hash
function yields the optimal expectations for the E[si ]. For the sake of speed the simplest
fair hash function should be used. This is exactly what we do.

We mentioned already that our main goal was to make access operations as fast as possi-
ble. We will argue in the next three paragraphs that most successful accesses are accesses to
elements which are stored in the first position of the list containing them. Letk denote the
number of empty lists. ThenT − k lists are non-empty and hence there areT − k elements
which are first in their list. Ifn denotes the number of elements stored in the table the frac-
tion of elements that are first in their list is(T − k)/n. We want to estimate this fraction for
random keys and immediately before and after a rehash. We move to a new table when the
overflow area is full. At this time, there are( f − 1)T elements stored in the overflow area
andT − k elements in the firstT positions of the table. Thusn = f T − k at the time of a
rehash.

For random keys the expected number of empty lists isk = T · (1 − 1/T)n ≈ T e−n/T .
For random keys we will therefore move to a new table whenn ≈ T · ( f − e−n/T ) or
n/T + e−n/T ≈ f . For f = 1.5 we getn ≈ 1.2T , i.e., when about 1.2T elements are
stored in the table we expect to move to a new table.

Whenn ≈ 1.2T about 0.7T elements are stored in the firstT slots of the table and about
0.5T elements are stored in the overflow area of the table. Thus about 0.7/1.2 ≈ 58% of
the successful searches go to the first element in a list. Immediately after a rehash we have
n ≈ 0.6T (sincen ≈ 1.2T before the rehash and a rehash doubles the table size) and the
expected number of empty lists isT e−0.6 ≈ 0.55T . Thus 0.45/0.6 ≈ 75% of the successful
searches go to the first element in a list. In either case a significant fraction of the successful
searches goes to the first element in a list.

How can we make accesses to first elements fast? A key problem is the encoding of
empty lists. We explored two possibilities. In both solutions we use a special list element
STOPas a sentinel. In the first solution we maintain the invariantthat thei -th list is empty
if the successor field oftable[i ] is nil and that the last entry of a non-empty list points to
STOP. This leads to the following code for an access operation:
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inline GenPtr& h map::aess(unsigned long x)

{ h map item p = HASH(x);

if ( p->su == nil)

{ p->k = x;

init inf(p->i); // initializes p->i to xdef

p->su = &STOP;

return p->i;

}

else

{ if ( p->k == x ) return p->i;

}

return aess(p,x);

}

In this code,access(p, x) handles the case that the list forx is non-empty and that the first
element does not containx. This code has two weaknesses. First, it tests each list for
emptiness although successful searches always go to non-empty lists and, second, it needs
to change the successor pointer oftable[i ] to &STOPafter the first insert into thei -th list.

In the second solution we encode the fact that thei -th list is empty in the key field of
table[i ]. Let NULLKEY andNONNULLKEY be keys that are hashed to zero and some non-zero
value, respectively. In our implementation we use 0 forNULLKEY and 1 forNONNULLKEY.
We use the special keysNULLKEY andNONNULLKEY to encode empty lists. More specifi-
cally, we maintain:

• table[0].k = NONNULLKEY, i.e., the first entry of the zero-th list is unused. The
information field of this entry is arbitrary.

• table[i ].k = NULLKEY iff the i -th list is empty for alli , i > 0, and

• the last entry of a non-empty list points toSTOPand if thei -th list is empty then
table[i ] points toSTOP.

Observe that the zero-th list is treated somewhat unfairly.We leave its first position unused
and thus make it artificially non-empty. Figure 5.5 illustrates the items above.

Consider a search forx and letp be the hash-value ofx. If x is stored in the first element
of the p-th list we have a successful search, and thep-th list is empty iff the key of the first
element of thep-th list is equal toNULLKEY. Observe that this is true even forp equal to
zero, because the first item guarantees thatNULLKEY is not stored in the first element of list
0. We obtain the following code for the access operation:

〈inline functions〉�

inline GenPtr& h_map::aess(unsigned long x)

{ h_map_item p = HASH(x);

if ( p->k == x ) return p->i;

else

{ if ( p->k == NULLKEY )

{ p->k = x;

init_inf(p->i); // initializes p->i to xdef
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Figure 5.5 The realization of the hash table of Figure 5.4 inchmap. The first entry of the
zero-th list containtsNONNULLKEY (whether the zero-th list is empty or not), empty lists other
than the zero-th list containNULLKEY in their first element, and each list points toSTOP.

return p->i;

}

else

return aess(p,x);

}

}

Note that a successful search for a keyx that is stored in the first position of its list is very
fast. It evaluates the hash function, makes one equality test between keys, and returns the
information associated with the key. Ifx is not stored in the first position of its table, we
need to distinguish cases: if the list is empty we store(x, xdef) in the first element of the
list (note that the callinit inf (p → i ) sets the inf-field ofp to xdef), and if the list is non-
empty we callaccess(p, x) to search forx in the remainder of the list. We will discuss this
function below.

Our experiments show that the second design is about 10% faster than the first and we
therefore adopted it for maps. In the implementation of harrays by hashing with chaining
we use the first solution. Since harrays use non-trivial hash functions that may require
substantial time for their evaluation, the second solutionlooses its edge over the first in the
case of harrays.

We can now give an overview over LEDAROOT/incl/LEDA/impl/ch map.h.

〈ch map.h〉�

#ifndef LEDA_CH_MAP_H

#define LEDA_CH_MAP_H

#inlude <LEDA/basi.h>

〈ch mapelem〉
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lass __exportC h_map

{

onst unsigned long NULLKEY;

onst unsigned long NONNULLKEY;

〈data members of chmap〉

virtual void lear_inf(GenPtr&) onst { }

virtual void opy_inf(GenPtr&) onst { }

virtual void init_inf(GenPtr&) onst { }

〈HASH function〉

〈private member functions of chmap〉

proteted:

typedef h_map_item item;

〈protected member functions of chmap〉
};

〈inline functions〉

#endif

We have already explained the data members. The virtual function membersclear inf ,
copyinf , andinit inf are required by the LEDA method for the implementation of parame-
terized data types. We saw already how they are redefined in the definition ofmap.

The protected and private member functions will be discussed below. The protected
member functions are basically in one-to-one correspondence to the public member func-
tions of the abstract data type class and the private member functions define some basic
functionality that is needed for the protected member functions, e.g., rehashing to move to
a larger table.

We come to the file LEDAROOT/src/dic/ch map.c. There is little to say about it at this
point except that is contains the implementation of classchmap.

〈 ch map.c〉�

#inlude <LEDA/impl/h_map.h>

〈implementation of chmap〉

Having defined all data members and the global structure of all files we can start to
implement functions. We start with the private members ofchmap.

〈private member functions of chmap〉�

void init_table(int T);

initializes a table of sizeT (T is assumed to be a power of two) and makes all lists (including
list zero) empty. This is trivial to achieve. We allocate a new table of sizef T and set all data
members accordingly. We also initializetable[0].k to NONNULLKEY, table[i ].k to NULLKEY

for all i , 1 ≤ i < tablesize, and lettable[i ].succpoint toSTOP for all i , 0 ≤ i < tablesize.
This initializes all lists to empty lists.
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〈implementation of chmap〉�

void h_map::init_table(int T)

{

table_size = T;

table_size_1 = T-1;

table = new h_map_elem[T + T/2℄;

free = table + T;

table_end = table + T + T/2;

for (h_map_item p = table; p < free; p++)

{ p->su = &STOP;

p->k = NULLKEY;

}

table->k = NONNULLKEY;

}

〈private member functions of chmap〉+�

void rehash();

moves to a table twice the current size. We do so by first movingall elements stored in
the firstT elements of the table and then all elements in the overflow area. Note that this
strategy has two advantages over moving the elements list after list: First, we do not have
to care about collisions when moving the elements in the firstT table positions (because
the element in positioni is moved to either positioni or T + i in the new table depending
on the additional bit that the new hash function takes into account), and second, locality of
reference is better (since we move all elements by scanning the old table once).

When moving the elements from the overflow area we make use of the member function
insert. We define it inline. It takes a pair(x, y) and moves it to the list for keyx. If the first
element of the list is empty, we move(x, y) there, and if the first element is non-empty, we
move(x, y) to positionfree, insert it after the first element of the list, and incrementfree.

〈private member functions of chmap〉+�

inline void insert(unsigned long x, GenPtr y);

〈implementation of chmap〉+�

inline void h_map::insert(unsigned long x, GenPtr y)

{ h_map_item q = HASH(x);

if ( q->k == NULLKEY )

{ q->k = x;

q->i = y;

}

else

{ free->k = x;

free->i = y;

free->su = q->su;

q->su = free++;

}

}
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In rehashwe first initialize the new table (this putsNONNULLKEY into the first entry of the
zero-th list) and then move elements. We first move the elements in the main part of the
table (table[0] is unused and hence the loop for moving elements starts attable+ 1) and
then the elements in the overflow area.

〈implementation of chmap〉+�

void h_map::rehash()

{

h_map_item old_table = table;

h_map_item old_table_mid = table + table_size;

h_map_item old_table_end = table_end;

init_table(2*table_size);

h_map_item p;

for(p = old_table + 1; p < old_table_mid; p++)

{ unsigned long x = p->k;

if ( x != NULLKEY ) // list p is non-empty

{ h_map_item q = HASH(x);

q->k = x;

q->i = p->i;

}

}

while (p < old_table_end)

{ unsigned long x = p->k;

insert(x,p->i);

p++;

}

delete[℄ old_table;

}

〈private member functions of chmap〉+�

GenPtr& aess(h_map_item p, unsigned long x);

searches forx in the list starting atp. The function operates under the precondition that
the list is non-empty andx is not stored inp. The function is called by the inline function
access(x).

We search down the list starting atp. If the search reachesSTOP, we have to insertx.
If the table is non-full, we insertx at positionfree, and if the table is full, we rehash and
recompute the hash value ofx. If x now hashes to an empty list, we put it into the first entry
of the list, and otherwise, we put it atfree.

〈implementation of chmap〉+�

GenPtr& h_map::aess(h_map_item p, unsigned long x)

{

STOP.k = x;

h_map_item q = p->su;

while (q->k != x) q = q->su;

if (q != &STOP) return q->i;

// index x not present, insert it
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if (free == table_end) // table full: rehash

{ rehash();

p = HASH(x);

}

if (p->k == NULLKEY)

{ p->k = x;

init_inf(p->i); // initializes p->i to xdef

return p->i;

}

q = free++;

q->k = x;

init_inf(q->i); // initializes q->i to xdef

q->su = p->su;

p->su = q;

return q->i;

}

We come to the protected member functions ofchmap. We start with some trivial stuff.

〈protected member functions of chmap〉�

unsigned long key(h_map_item it) onst { return it->k; }

GenPtr& inf(h_map_item it) onst { return it->i; }

Constructors and Assignment: We start with the implementation class.

〈protected member functions of chmap〉+�

h_map(int n = 1);

h_map(onst h_map& D);

h_map& operator=(onst h_map& D);

The default constructor initializes a data structure of size min(512, 2⌈logn⌉). The copy con-
structor initializes a table of the same size asD and then copies all elements fromD to the
new table. Elements from the first part of the table are moved if their key is different from
NULLKEY and elements from the second part of the table are always moved. The assignment
operator works in the same way but clears and destroys the oldtable first.

〈implementation of chmap〉+�

h_map::h_map(int n) : NULLKEY(0), NONNULLKEY(1)

{

if (n < 512)

init_table(512);

else

{ int ts = 1;

while (ts < n) ts <<= 1;

init_table(ts);

}

}

h_map::h_map(onst h_map& D) : NULLKEY(0), NONNULLKEY(1)
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{

init_table(D.table_size);

for(h_map_item p = D.table + 1; p < D.free; p++)

{ if (p->k != NULLKEY || p >= D.table + D.table_size)

{ insert(p->k,p->i);

D.opy_inf(p->i); // see hapter Implementation

}

}

}

h_map& h_map::operator=(onst h_map& D)

{

lear_entries();

delete[℄ table;

init_table(D.table_size);

for(h_map_item p = D.table + 1; p < D.free; p++)

{ if (p->k != NULLKEY || p >= D.table + D.table_size)

{ insert(p->k,p->i);

opy_inf(p->i); // see hapter Implementation

}

}

return *this;

}

The constructors of the abstract data type class simply callthe appropriate constructor of
the implementation class.

〈member functions of map〉�

map() { }

map(E x,int table_sz) : h_map(table_sz), xdef(x) { }

map(E x) : xdef(x) { }

map<I,E>& operator=(onst map<I,E>& M)

{ h_map::operator=((h_map&)M);

xdef = M.xdef;

return *this;

}

map(onst map<I,E>& M): h_map((h_map&)M), xdef(M.xdef) { }

Destruction: We follow our canonical design for constructors, see Section 13.4.3. On
the level of the implementation class, we define a functionclearentries that clears the
information field of all used entries, a functionclear that first clears the entries of the table
and destroys the table and then reinitializes the table to its default size (clear is not used but
we define it for the sake of uniformity), and the destructor that simply deletestable. Note
that our canonical design ensures thatclearentriesis called before any call of the destructor
and hence onlytablemust be destroyed by the destructor. Following standard practice (see
[ES90, page278]) we declare the destructor virtual.
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〈protected member functions of chmap〉+�

void lear_entries();

void lear();

virtual ~h_map() { delete[℄ table; }

〈implementation of chmap〉+�

void h_map::lear_entries()

{ for(h_map_item p = table + 1; p < free; p++)

if (p->k != NULLKEY || p >= table + table_size)

lear_inf(p->i); // see hapter Implementation

}

void h_map::lear()

{ lear_entries();

delete[℄ table;

init_table(512);

}

The destructor of the abstract data type class first callsclearentriesand then the destructor
of the implementation class.

〈member functions of map〉+�

~map() { lear_entries(); }

Access Operations:We have already defined the operationaccess(x) that searches forx
and, if unsuccessful, insertsx into the table. Lookuponly searches; it returns the item
corresponding to a keyx, if there is one, andnil otherwise.

〈protected member functions of chmap〉+�

GenPtr& aess(unsigned long x);

h_map_item lookup(unsigned long x) onst;

〈implementation of chmap〉+�

h_map_item h_map::lookup(unsigned long x) onst

{ h_map_item p = HASH(x);

((unsigned long &)STOP.k) = x; // ast away onst

while (p->k != x) p = p->su;

return (p == &STOP) ? nil : p;

}

The abstract data type class uses these functions in the obvious way.

〈member functions of map〉+�

onst E& operator[℄(onst I& i) onst

{ h_map_item p = lookup(ID_Number(i));

return (p) ? LEDA_CONST_ACCESS(E,h_map::inf(p)) : xdef;

}
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E& operator[℄(onst I& i)

{ return LEDA_ACCESS(E,aess(ID_Number(i))); }

bool defined(onst I& i) onst { return lookup(ID_Number(i)) != nil; }

In the above,LEDAACCESS(E, i ) returns the value ofi converted to typeE, see Sec-
tion 13.4.5, andID number(i ) returns the ID-number ofi .

〈member functions of map〉+�

void lear() { h_map::lear(); }

void lear(E x) { h_map::lear(); xdef = x; }

Iteration: The implementation of the iteration statements follows thegeneral strategy de-
scribed in Section 13.9. The implementation class providestwo functions that return the first
used item and the used item following a used item, respectively. Both functions are simple.
The first item in the hash table is always unused and hencefirst itemreturnsnextitem(table).
We come tonextitem(it). Let it be any item. Ifit is nil, we returnnil. So assume otherwise.
To find the next used item we advanceit one or more times until we are either in the over-
flow area or have reached an item whose key is not equal toNULLKEY. If the resulting value
of it is less thanfreewe return it and otherwise we returnnil.

〈protected member functions of chmap〉+�

h_map_item first_item() onst;

h_map_item next_item(h_map_item it) onst;

〈implementation of chmap〉+�

h_map_item h_map::first_item() onst

{ return next_item(table); }

h_map_item h_map::next_item(h_map_item it) onst

{ if ( it == nil ) return nil;

do { it++; }

while ( it < table + table_size && it->k == NULLKEY);

return ( it < free ? it : nil);

}

The abstract data type class must provide the functionsfirst item, nextitem, inf , key. All
four functions reduce to the corresponding function in the implementation class.

〈member functions of map〉+�

item first_item() onst { return h_map::first_item(); }

item next_item(item it) onst { return h_map::next_item(it); }

E inf(item it) onst

{ return LEDA_CONST_ACCESS(E,h_map::inf(it)); }

I key(item it) onst

{ return LEDA_CONST_ACCESS(I,(GenPtr)h_map::key(it)); }
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Exercises for 5.2
1 The unbalanced tree implementation of sparse arrays deteriorates to linear lists in the

case of a sorted insertion order. In particular, if the keys 1, 2, . . . ,n are inserted in this
order then each insertion appends the key to be inserted at the end of the list. Try to
explain the row forbin treesin the lower half of Table 5.2 in view of this sentence.

2 Use maps and the indices 1024i for i = 0, 1, . . . .
3 Use harrays and the indices 1024i for i = 0, 1, . . . . Define your own hash function.
4 Design a hash function for strings. The function should depend on all characters of a

string.
5 Extend the implementation of harrays such that variables become persistent. (Hint: do

not store the array variables directly in the hash table but access them indirectly through
a pointer). What price do you pay in terms of access and inserttime?

6 Provide a new implementation of darrays or harrays and perform the experiments of
Table 5.2.

5.3 Dictionaries and Sets

Dictionaries and sets are essentially another interface tod arrays and therefore we can keep
this section short.

A dictionary is a collection of items (typedic item) each holding a key of some linearly
ordered typeK and an information from some typeI . Note that we now useI for the
information type and no longer for the index type. We illustrate dictionaries by a program
that reads a sequence of strings from standard input, countsthe number of occurrences of
each string, and prints all strings together with their multiplicities.

ditionary<string,int> D;

string s;

di item it;

while (in >> s)

{ it = D.lookup(s);

if (it == nil) D.insert(s,1);

else D.hange inf(it, D.inf(it) + 1);

}

forall di items(it, D)

out << D.key(it) << " " << D.inf(it) << "\n";

In the while-loop we first search fors in the dictionary. The lookup returnsnil if s is not
part of the dictionary and returns the unique item with keys otherwise. In the first case we
insert the item〈s, 1〉 into the dictionary. In the second case we increment the information
associated withs.

Dictionaries are frequently used to realize sets. In this situation the information associ-
ated with an element in the dictionary is irrelevant, the only thing that counts is whether a
key belongs to the dictionary or not. The data typesetis appropriate in this situation. A set
Sof integers is declared byset<int> S. The number 5 is added byS.insert(5), the number 8
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is tested for membership byS.member(8), and the number 3 is deleted byS.delete(3). The
operationS.choose( ) returns some element of the set. Of course,chooserequires the set to
be non-empty.

We will discuss an extension of dictionaries in a later section: Sorted sequences. Sorted
sequences extend dictionaries by more fully exploiting thelinear order defined on the key
type. They offer queries to find the next larger element in a sequence and also operations to
merge and split sequences.

LEDA also contains extensions of dictionaries to geometricobjects such as points and
parallel line segments. We discuss a dictionary type for points in Section 10.6. For more
dictionary types for geometric objects we refer the reader to the manual.

Exercises for 5.3
1 Implement dictionaries in terms of darrays. Are you encountering any difficulties?
2 Implement darrays in terms of dictionaries. Are you encountering any difficulties?

5.4 Priority Queues

Priority queues are an indispensable ingredient for many network and geometric algorithms.
Examples are Dijkstra’s algorithm for the single-source shortest-path problem (cf. Sec-
tion 6.6), and the plane sweep algorithm for line segment intersection (cf. Section 10.7.2).
We start with the basic properties of priority queues, and then discuss the many implemen-
tations of priority queues in LEDA. We give recommendationsabout which priority queue
to choose in a particular situation.

5.4.1 Functionality
A priority queueQ over a priority typeP and an information typeI is a collection of items
(typepqitem), each containing a priority from typeP and an information from typeI . The
typeP must be linearly ordered. A priority queue organizes its items such that an item with
minimum priority can be accessed efficiently.

p queue<P,I> Q;

defines a priority queueQ with priority type P and information typeI and initializesQ to
the empty queue. A new item〈p, i 〉 is added by

Q.insert(p,i);

and

pq item it = Q.find min();

returns an item of minimal priority and assigns it toit (find min returnsnil if Q is empty).
Frequently, we do not only want to access an item with minimalinformation but also want
to delete it.
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P p = Q.del min();

deletes an item with minimum priority fromQ and assigns its priority top (Q must be
non-empty, of course). An arbitrary itemit can be deleted by

Q.del item(it);

The fields of an item are accessed byQ.prio(it) andQ.inf (it), respectively. The operation
Q.insert(p, i ) adds a new item〈p, i 〉 and returns the item; so we may store it for later use:

pq item it = Q.insert(p,i);

There are two ways to change the content of an item. The information can be changed
arbitrarily:

Q.hange inf(it,i1);

makesi1 the new information of itemit. The priority of an item can only be decreased:

Q.derease p(it,p1);

makesp1 the new priority of itemit. The operation raises an error ifp1 is larger than the
current priority ofit. There is no way to increase the priority of an item4. Finally, there are
the operations

Q.empty();

Q.size();

Q.lear();

that test for emptiness, return the number of items, and clear a queue, respectively.
Let us see priority queues at work. We read a sequence of doubles from standard input

and store them in a priority queue. We then repeatedly extract the minimum element from
the queue until the queue is empty. The net effect is to sort the input sequence into increasing
order.

p queue<double,int> Q; //the information type is irrelevant

double x;

while (in >> x) Q.insert(x,0);

while (! Q.empty()) out << Q.del min << "\n";

A more sophisticated use of priority queues isdiscrete event simulation. We have a set
of events associated with points in time. An event associated with time t is to be executed
at timet . The execution of an event may create new events that are to beexecuted at later
moments of time. Priority queues support discrete event simulation in a very natural way;
one only has to store all still to be executed events togetherwith their scheduled time in a
priority queue (with time playing the role of the priority) and to always extract and execute
the event with the minimal scheduled time.
4 The fact that priorities can be decreased but not increased is dictated by the implementations. There are

implementations that support very efficient decrease of priorities but there are no implementations that support
efficient decrease and increase.
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Running times
Name Prio Args insert deletemin decreasep create, destruct

f heap general — O(logn) O(logn) O(1) O(1)

p heap general — O(logn) O(logn) O(1) O(1)

k heap general N, k = 2 O(logk n) O(k logk n) O(logk n) O(N)

bin heap general — O(logn) O(logn) O(logn) O(1)

list pq general — O(1) O(n) O(1)

b heap int, [l .. h] l , h O(1) O(h − l ) O(h − l ) O(h − l )

r heap int C O(logC) O(logC) O(1) O(logC)

mheap int C O(1) O(min− p min) O(1) O(C)

Table 5.4 Properties of different priority queue implementations: the second column indicates
whether the priorities can come from an arbitrary linearly ordered type (general) or must be
integers, the third column indicates the arguments of the constructor, and the remaining columns
indicate the running times of the various priority queue operations.B heapscan only handle
integer priorities from a fixed range [l .. h] andr heapsandmheapamaintain a variablep min
and priorities must be integers in the range [p min.. p min+ C − 1]. B heapsalso support a
deletemaxoperation. More detailed explanations are given in the text.

5.4.2 Performance Guarantees and Implementation Parameters
LEDA provides many implementations of priority queues. Theimplementations include
Fibonacci heaps [FT87], pairing heaps [SV87],k-ary heaps and binary heaps [Meh84a,
III.5.3.1], lists5, buckets6, redistributive heaps [AMOT90], and monotone heaps [Meh84b,
IV.7.2]. Fibonacci heaps are the default implementation and other implementations can be
selected using the implementation parameter mechanism. The implementation parameters
are f heap, p heap, k heap, bin heap, list pq, b heap, r heap, and mheap, respectively.
Fibonacci heaps supportinsert, del itemanddelmin in time O(logn), find min, decreasep,
changeinf , inf , size, andemptyin time O(1), andclear in time O(n), wheren denotes
the current size of the queue. The time bounds are amortized.The space requirement
of Fibonacci heaps is linear in the size of the queue. We give their implementation in
Section 13.10.

Table 5.4 surveys the properties of the other implementations. Some implementations
allow any linearly ordered type for the priority type (this is indicated by the word general)
and some work only for a prespecified range of integer priorities. The constructors take
zero or more arguments. For all priority queues that work only for a subset of the integers
the set of admissible priorities is defined by constructor arguments.k-ary heaps require that

5 In the list implementation the items of the queue are stored as an unordered list. This makesdeletemin and
find min linear time processes (linear search through the entire list) and trivializes all other operations.

6 In the bucket implementation we have an array of linear lists; the list with indexi contains all items whose
priority is equal toi . This scheme requires the priorities to be integers from a prespecified range.
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an upper boundN for the maximal size of the queue and the parameterk is specified in the
constructor; the default value ofk is 2.

Redistributive heaps and monotone heaps do only support monotone use of the priority
queue. The use of a priority queue ismonotoneif the priority argument in anyinsert or
decreasep operation is at least as large as the priority returned by thelast deletemin or
findminoperation. Dijkstra’s shortest-path algorithm uses its priority queue in a monotone
way. Rheapsandmheapsmaintain a variablep min that is initialized to the priority of
the first insertion and that is updated to the priority returned by anydeletemin or find min
operation. Only priorities in the range [p min.. p min + C − 1] can be inserted into the
queue, whereC is specified in the constructor. Inmheapsthe cost of adeletemin is the
difference between the result of thisdeleteminoperation and the preceding one7.

Theb heapimplementation allows one to ask for the maximum priority and not only for
the minimum priority. This is sometimes called adouble-sidedpriority queue. For integer
priorities there are realizations known that have an even better performance thanr heaps.
The papers [AMOT90] and [CGS97] describe realizations where insertanddeletemin take
time O(

√

logC) andO((logC)1/3+ε) for arbitraryε > 0, respectively.

In order to select an implementation different from the default implementation, a decla-
ration

p queue<K,int,prio impl> Q(parameters);

has to be used, whereparametersdenotes the list of parameters required by the implemen-
tation, e.g.,

p queue<int,int,r heap> Q(100000);

selects ther heapimplementation and setsC to 100000.
A priority queue with a particular implementation is, of course, still a priority queue and

can hence be used wherever a priority queue can be used. We give an example. We write a
proceduredijkstra that takes a graphG, a nodes, anedgearray<int> costof edge weights,
and ap queue<int, node> PQ, and solves the single-source shortest-path problem for the
specified source node. The distances are returned in anodearray<int> dist. The edge costs
must be non-negative.

〈dijkstra〉�

void dijkstra(graph& G, node s, onst edge_array<int>& ost,

node_array<int>& dist, p_queue<int,node>& PQ)

{ node_array<pq_item> I(G);

node v;

forall_nodes(v,G)

dist[v℄ = MAXINT;

dist[s℄ = 0;

7 Themheapimplementation uses an array of sizeC of linear lists and a variablep min which is initialized to the
priority of the first insertion. An item with priorityi is stored in the list with indexi modC. Since priorities are
allowed only from the range [p min.. p min+ C − 1] this implies that each list contains only items with the same
priority. A deletemin or find min operation advancesp min cyclically until a non-empty list is found.
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I[s℄ = PQ.insert(0,s);

while (! PQ.empty())

{ pq_item it = PQ.find_min();

node u = PQ.inf(it);

int du = dist[u℄;

edge e;

forall_adj_edges(e,u)

{ v = G.target(e);

int  = du + ost[e℄;

if ( < dist[v℄)

{ if (dist[v℄ == MAXINT)

I[v℄ = PQ.insert(,v);

else

PQ.derease_p(I[v℄,);

dist[v℄ = ;

}

}

PQ.del_item(it);

}

}

We give some explanations; the correctness of the algorithmis shown in Section 6.6. Di-
jkstra’s algorithm keeps a tentative distance value for each node and a set of active nodes.
For a nodev its tentative distance value is stored indist[v] and the set of pairs(dist[v], v),
wherev is an active node, is stored in the priority queuePQ. Each active nodev knows the
pqitemcontaining the pair(dist[v], v); it is stored in entryI [v] of thenodearray<pqitem>
I . Initially, only the source nodes is active and its distance froms is zero. In each iteration
of the loop the pair with minimum distance value is deleted from PQ, say the pair(du, u)

and all edgese leavingu are scanned. An edgee = (u, v) allows us to reach nodev through
a path of costc = du+ cost[e]. If c is smaller than the cost of the best path known tov so
far, this change is recorded indist[v] and the priority queue is informed about the change.
More precisely, if no path tov was known so far, i.e.,dist[v] is still equal toMAXINT, a
new pair(c, v) is inserted into the priority queue and the item returned is stored inI [v] and
if some path was already known then the priority of nodev in the queue is updated. Note
that in the latter caseI [v] contains the item forv in PQ.

We turn to the analysis of the running time. It can be shown (see Section 7.5.3) that each
node is inserted and deleted from the priority queue at most once; of course, nodes that can-
not be reached froms are never inserted into the queue. The algorithm therefore performs
at mostn insert, empty, find min, anddeleteminoperations and at mostm decreasep oper-
ations. Heren andm denote the number of nodes and edges ofG, respectively. The time
spent outside the calls to the priority queue isO(n + m) since array accesses take constant
time and since the time to scan through all edges leaving a nodeu is proportional to the out-
degree of the node. It is fair also to include the time for the construction and the destruction
of the queue (although this happens outside proceduredijkstra). The total running time is
therefore bounded byO(n+m+n·(Tinsert+Tempty+Tf ind min+Tdelete min)+m·Tdecreasep+
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Worst case running time Expected running time

f heap O(m + n logn) O(m + n logn)

p heap O(m + n logn) O(m + n logn)

k heap O(m logk n + nk logk n) O(m + n(log(2m/n) + k) logk n)

bin heap O(m logn + n logn) O(m + n log(m/n) logn)

list pq O(m + n2) O(m + n2)

b heap O((m + n)nM) O((m + n)nM)

r heap O(m + n log M) O(m + n log M)

mheap O(m + maxdist+ M) O(m + maxdist+ M)

Table 5.5 Asymptotic running times of Dijkstra’s algorithm with different priority queue
implementations. In order to keep the formulae simple we assumedn ≤ m. For the last three
rows the edge weights must be integral and from the range [0.. M − 1]. The rows forb heaps
andmheapsrequire some explanation. Note that the maximal priority ever removed from the
queue is bounded by(n − 1)M since a shortest path consists of at mostn − 1 edges. Thus one
can useb heapswith l = 0 andh = nM. For r heapsandmheapswe observe that the fact that
edge costs are bounded byM guarantees that all priorities in the queue come from the range
[p min.. p min+ M − 1] and hence we can use these implementations withC = M . In mheaps
the cost of adeletemin is O(min− p min), whereminandp minare the results of the current and
the previousdeletemin operations. The sum of the differencesmin− p min over alldeletemin
operations is bounded by the maximal distance of any node from the source.

Tcreate+ Tdestruct) whereTX is the time bound for operationX. Note that the expression
above is an upper bound on the running time. The actual numberof decreasep opera-
tions may be smaller thanm. In fact, it can be shown that for random graphs and random
edge weights the expected number ofdecreasep operations isO(min(m, n log(2m/n))),
see [Nos85]. We can now use Table 5.4 to estimate the asymptotic running time ofdijkstra
with different implementations of the priority queue.

The result is shown in Table 5.5. The first five lines contain the implementations that work
for arbitrary non-negative real edge weights. The best worst case and average case time is
O(m + n logn); they are achieved byf heapsandp heaps. For dense graphs withm =

n1+ε for some positiveε, k heapswith k = n1/ε achieve a worst case time8 of O((1/ε)m)

which is competitive with the above forε bounded away from zero. The expected running
time9 of bin heapsis competitive form = �(n log(m/n) logn). The last three lines of
the table contain implementations that work only for integral edge weights. In these lines
we useM to denote 1 plus the maximal weight of any edge. The best worstcase and

8 The worst case running time ofk heapsis O(nk logk n + m logk n). Fork = n1/ε we have
logk n = logn/ logk = 1/ε andnk = n1+1/ε = m.

9 In bin heapsthe cost of adecreasekeyis O(logn). The expected number ofdecreasekeyoperations is
n log(2m/n). Thus, ifm ≥ n log(2m/n) logn the running time isO(m).
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c c

j

i − 1 i

i + 1

n − 1

0 1

Figure 5.6 A worst case graph for Dijkstra’s algorithm. All edges(i , i + 1) have costc and an
edge(i , j ) with i + 1 < j has costci, j . Theci, j are chosen such that the shortest path tree with
root 0 is the path 0, 1, . . . , n − 1 and such that the shortest path tree that is known after removing
nodei − 1 from the queue is as shown. Among the edges out of nodei − 1 the edge(i − 1, i ) is
the shortest, the edge(i − 1, n − 1) is the second shortest, and the edge(i − 1, i + 1) is the
longest.

average case time isO(m + n log M) achieved byr heaps. For M = O(1) the mheap
implementation is competitive. The heap implementations described in [AMOT90] and
[CGS97] yield a running time ofO(m+n

√

log M) andO(m+n(log M)1/3+ε) for arbitrary
ε > 0, respectively.

How do the different implementations compare experimentally? We will perform exper-
iments with random graphs and with worst case graphs. Beforereporting running times we
construct a graph withn nodes andm edges that forces Dijkstra’s algorithm intom− n + 1
decreasep operations; observe that this number is the maximal possible since the distance
of s is never decreased and since for any nodev different froms the first edge intov that is
scanned leads to aninsertbut not to adecreasep operation. The construction works for all
m andn with m ≤ n(n − 1)/2. Letc be any non-negative integer. The graph consists of:

• the nodes 0, 1, . . . ,n − 1,

• then − 1 edges(i , i + 1), 0 ≤ i < n − 1, each having costc, and

• the firstm′ = m − (n − 1) edges in the sequence(0, 2), (0, 3), . . . , (0, n − 1), (1, 3),
(1, 4), . . . , (1, n − 1), (2, 4), . . . . The edge(i , j ) in this sequence is given costci, j to
be defined below.

We will define theci, j such that the shortest path tree with respect to node 0 is the path
[0, 1, . . . , n − 1], such that the nodes are removed from the queue in the orderof their node
number, and such that the shortest path tree that is known after removing nodei from the
queue is as shown in Figure 5.6. The shortest path from 0 toi has costic and the path
[0, 1, . . . , i − 1, i , j ] has costic + ci, j , see Figure 5.6.

When node 0 is removed from the queue all other nodes are put into the queue. The
priority of node 1 is equal toc and the priority of nodej , j > 1, is equal toc0, j . Generally,
just prior to the removal of nodei the queue contains nodesi to n − 1: Nodei has priority
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Figure 5.7 The effect of scanning the edges out of nodei . When the scanning starts the nodes
i + 1 to n − 1 are in the queue and we havedist[n − 1] < . . . < dist[i + 1]. Just prior to the
scanning of edge(i , j ) we have the situation shown; in this figure distance values are indicated
asx-coordinates. Scanning(i , j ) will make dist[ j ] the smallest priority in the queue. The edges
out of i are scanned in the order(i , i + 2), . . . , (i , n − 1), (i , i + 1).

ic and nodej , j > i , has priority(i − 1)c + ci−1, j . We now remove nodei from the queue
and scan through the edges out ofi . We postulate that we look at the edges in the order
(i , i + 2), (i , i + 3) , (i , n − 1), (i , i + 1).

Under what conditions will each edge(i , j ) cause adecreasep operation and, moreover,
will the new priority given to nodej by this edge be the smallest priority in the queue? This
will be the case if theci, j are chosen such that

ic + ci,i+2 < (i − 1)c + ci−1,n−1,

ci, j < ci, j −1 for all j , i + 2 < j ≤ n − 1,

and c = ci,i+1 < ci,n−1.

Note that the first inequality implies that the edge(i , i + 2) causes adecreasep operation,
that the second inequality implies that the edge(i , j ) causes adecreasep operation for all
j , i + 2 < j ≤ n − 1, and that the third inequality implies that the edge(i , i + 1) causes
adecreasep operation. Also note that this choice of edge costs implies that before the scan
of the edges out ofi we havedist[n − 1] < . . . < dist[i + 1] and that consideration of edge
(i , j ) will make dist[ j ] the smallest value in the queue, i.e., before(i , j ) is considered we
havedist[ j − 1] < . . . < dist[i + 2] < dist[n − 1] < . . . < dist[ j ] < dist[i + 1] and after
(i , j ) is considered we havedist[ j ] < dist[ j −1] < . . . < dist[i +2] < dist[n−1] < . . . <

dist[ j + 1] < dist[i + 1], see Figure 5.7. In this way each edge scan causes a major change
in the priority queue.

How can we chooseci, j ’s satisfying these inequalities? We suggest the followingstrat-
egy. We first determine them′ additional edges to be used and then assign the edge costs to



36 Advanced Data Types

the additional edges in reverse order. Note that the last edge can be given costc+1, and that
ci, j can be put toci, j +1 + 1 if j < n− 1 and can be put toci+1,i+3 + c+ 1 if j = n− 1. The
following program realizes this strategy and returns the largest cost assigned to any edge.

〈worst case generator〉�

int DIJKSTRA_GEN(GRAPH<int,int>& G, int n, int m, int  = 0)

{ G.lear();

array<node> V(n);

int i;

for (i = 0; i < n; i++) V[i℄ = G.new_node(i);

stak<edge> S;

int m1 = m - (n - 1);

i = 0;

int j = i + 2;

while (m1 > 0)

{ if (j < n )

{ S.push(G.new_edge(V[i℄,V[j℄)); m1--; j++; }

else

{ i++; j = i + 2;

if (j == n)

error_handler(1,"DIJKSTRA_GEN: m an be at most n*(n-1)/2");

}

}

edge e = S.pop();

int last_ = G[e℄ =  + 1;

while (!S.empty())

{ e = S.pop();

int j = G[G.target(e)℄;

if (j == n-1)

last_ = G[e℄ = last_ +  + 1;

else

last_ = G[e℄ = last_ + 1;

}

for (i = 0; i < n-1; i++) G.new_edge(V[i℄, V[i+1℄, );

return last_;

}

A further remark about this program is required. Thenewedgeoperation appends the new
edge to the adjacency list of the source node and hence the adjacency list of any nodei will
be ordered(i , i + 2), . . . , (i , n − 1), (i , i + 1), as desired.

We come to the experimental comparison of our different priority queue implementations.
We refer the reader to [CGS97] for more experimental results. It is easy to timedijkstrawith
a particular implementation, e.g.,

〈generate a section of table: Dijkstra timings〉�

{ p_queue<int,node> fheap; K = "fheap";

dijkstra(G,s,ost,dist,fheap);

}

〈report time for heap of kind K〉
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{ _p_queue<int,node,p_heap> pheap; K = "pheap";

dijkstra(G,s,ost,dist,pheap);

}

〈report time for heap of kind K〉

{ int d = m/n; // degree for k_heap

if ( d < 2 ) d = 2;

_p_queue<int,node,k_heap> kheap(n,d); K = "kpeap";

dijkstra(G,s,ost,dist,kheap);

}

〈report time for heap of kind K〉

{ _p_queue<int,node,bin_heap> binheap(n); K = "binheap";

dijkstra(G,s,ost,dist,binheap);

}

〈report time for heap of kind K〉

if (i != 2) // listheaps are too slow for setion 2 of table

{

{ _p_queue<int,node,list_pq> listheap; K = "listheap";

dijkstra(G,s,ost,dist,listheap);

}

〈report time for heap of kind K〉
}

else out << "& - " ; out.flush();

{ _p_queue<int,node,r_heap> rheap(C); K = "rheap";

dijkstra(G,s,ost,dist,rheap);

}

〈report time for heap of kind K〉

{ _p_queue<int,node,m_heap> mheap(C); K = "mheap";

dijkstra(G,s,ost,dist,mheap);

}

〈report time for heap of kind K〉

generates one section of Table 5.6. We have enclosed the experiment in a block such that
the time for the destruction of the queue is also measured. Table 5.6 shows the results of
our experiments. You can perform your own experiments with the priority queue demo.

We see thatp heapsare consistently better thanf heapsand thatr heapsare in many
situations even better. The exception is when the ratiom/n is very small, the maximal
edge weight is large, and we use the worst case graph. In the latter situation, then log M
term in the running time dominates. For random graphsbin heapsare competitive.K heaps
are worse thanbin heapson random graphs (because our choice ofk is bad for random
graphs) and are competitive for worst case graphs.List pqcannot be run for large values of
n because of then2-term in the running time.M heapsdo surprisingly well even for large
edge weights. This is due to the fact that theM-term in the running time does not really
harmmheapsin our experiments because of the large value ofm.

5.4.3 Choosing an Implementation
LEDA gives you the choice between many implementations of priority queues. Which is
best in a particular situation?
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Instance f heap pheap kheap binheap listpq r heap mheap

s,r,S 0.36 0.34 0.35 0.34 0.51 0.33 0.35

s,r,L 0.38 0.36 0.37 0.34 0.54 0.35 0.54

s,w,S 1.86 1.09 3.77 1.38 1 0.76 2.68

s,w,L 1.87 1.1 3.68 1.34 1 0.77 8.49

m,r,S 1.24 0.94 1.14 0.94 31.6 0.83 0.94

m,r,L 1.39 1.13 1.28 1.02 23 0.93 1.22

m,w,S 2.36 1.44 4.94 1.77 22.7 0.99 2.78

m,w,L 2.36 1.45 4.84 1.74 21.7 1.03 3.29

l,r,S 4.96 3.19 5.2 3.36 - 2.52 2.52

l,r,L 6.61 4.81 6.4 4.49 - 3.76 3.38

l,w,S 3.32 2.56 9.17 3.79 - 1.63 3.11

l,w,L 2.91 1.92 7.65 3.22 - 2.57 2.55

Table 5.6 Running times of Dijkstra’s algorithm with different priority queue implementations.
We used graphs withm = 500000 edges and eithern = 2000,n = 20000, orn = 200000 nodes.
The three cases are distinguished by the labels s, m, and l, respectively. For each combination of
n andm we generated four graphs. Two random graphs (r) with random edge weights in
[0 .. M − 1], whereM = 100 orM = 100000, and two worst case graphs (w) withc = 0 or
c = 10000. The two cases forM andc are distinguished by the labels S and L, respectively. So
s,r,L indicates that we used 2000 nodes, a random graph, andM equal to 100000. In thek heap
implementation we setk = max(2, m/n), as this minimizes the worst case running time.

Tables 5.4 and 5.6 suggest to use eitherp heaps, bin heaps, or r heaps. Rheapsare the
data structure of choice if the use of the queue is monotone and the parameterC is such that
logC is not much larger that logn. If the keys are not integers or logC is much larger than
logn, one should use eitherbin heapsor p heaps. The former are to be preferred when the
number ofdecreasep operations is not too large and the latter is to be preferred otherwise.

If you are not happy with any of the implementations providedin LEDA, you may provide
your own. Section 13.6 explains how this is done.

Exercises for 5.4
1 Consider a graph with two nodesv andw and one edge(v, w) of costM . What is the

running time of the different versions ofdijkstraon this graph as a function ofM . Verify
your result experimentally.

2 Implement hot queues as described in [CGS97].
3 Time Dijkstra’s algorithm withk heapsfor different values ofk. Do so for random

graphs and also for worst case graphs. Which value ofk works best?



5.5 Partition 39

4 Use priority queues to sort a set ofn random integers or random doubles. Compare
the different queue implementations. In the case ofk heapstry different values ofk.
Compare your findings fork heapswith the experiments in [LL97].

5.5 Partition

We discuss the data type partition: its functionality, its implementation, and a non-trivial
application in the realm of program checking.

5.5.1 Functionality
A partition P consists of a finite set of items of typepartition itemand a decomposition of
this set into disjoint sets called blocks. Figure 5.8 visualizes a partition. The declaration

partition P;

declares a partitionP and initializes it to the empty partition, i.e., there are noitems in P
yet.

P.make blok();

adds a new item toP, makes this item a block by itself, and returns the item; see Figure 5.9.
We may store the returned item for later use.
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Figure 5.8 A partition P of eight items into three blocks. Partition items are indicated as solid
squares and blocks are indicated as ellipses enclosing the items constituting the block.
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Figure 5.9 The partition of Figure 5.8 after amakeblockoperation.
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partition item it = P.make blok();

There are several ways to query a partition and to modify it.

P.same blok(it1,it2);

returnstrue if the partition itemsit1 andit2 belong to the same block ofP andfalseother-
wise.

P.union bloks(it1,it2);

combines the blocks containing itemsit1 andit2, respectively.
For each block one of its elements is designated as the “canonical” item of the block.

P.find(it);

returns the “canonical” element of the block containingit. Note thatit andP.find(it) belong
to the same block ofP and that ifit1 andit2 belong to the same block thenP.find(it1) and
P.find(it2) return the same item. Thus

P.same blok(it1,it2) == (P.find(it1) == P.find(it2))

is a fancy way to write the constanttrue.
If L is a list of partition items then

P.split(L);

splits all blocks consisting of items inL into singelton blocks.L must be a union of blocks
of P.

We give a small example program to see partitions at work. We maintain a partitionP of
n items. We start with the partition into singleton blocks andthen repeat the following step
until the largest block has reached size 9n/10. We choose two items at random and merge
the blocks containing them (this has no effect if the two items belong already to the same
block). During the experiment we keep track of the block sizes. Whenever the size of the
maximal block reachesin/100 for somei , i ≥ 1, we report the number of steps and the
size of the two largest components.

In order to facilitate the selection of two random items we store all items of the partition
in anarray<partition item> Item. This reduces the selection of a random partition item to
the selection of a random integer.

We keep track of the block sizes in asortseq<int, int> freq; see Section 5.6. We store for
each block sizes the numberk of blocks having sizes in freq. Initially, all blocks have size
1 and there aren blocks of size 1.

〈giant componentdemo〉�

main(){

〈giant component demo: read n〉

partition P;

array<partition_item> Item(n);

sortseq<int,int> freq;
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for (int i = 0; i < n; i++) Item[i℄ = P.make_blok();

int iteration = 0; int step = 1; int max_size = 1;

freq.insert(1,n);

while ( max_size < n/2 )

{ int v = rand_int(0,n-1);

int w = rand_int(0,n-1);

iteration++;

if ( P.same_blok(Item[v℄,Item[w℄) ) ontinue;

seq_item it = freq.lookup(P.size(Item[v℄));

freq[it℄--;

if ( freq[it℄ == 0 ) freq.del_item(it);

it = freq.lookup(P.size(Item[w℄));

freq[it℄--;

if ( freq[it℄ == 0 ) freq.del_item(it);

P.union_bloks(Item[v℄,Item[w℄);

int size = P.size(Item[v℄);

it = freq.lookup(size);

if (it) freq[it℄++; else freq.insert(size,1);

it = freq.max();

max_size = freq.key(it);

int seond_size = freq.key(freq.pred(it));

while (max_size >= step*n/100 )

{ 〈giant component demo: report step〉

step++;

}

}

}

Part of the output of a sample run of the program above withn = 106 is as follows:

The maximal block size jumped above 0.16n after 542386 iterations. The maximal size
of a block is 160055 and the second largest size of a block is 715.

The maximal block size jumped above 0.17n after 545700 iterations. The maximal size
of a block is 170030 and the second largest size of a block is 722.

The maximal block size jumped above 0.18n after 548573 iterations. The maximal size
of a block is 180081 and the second largest size of a block is 330.

The maximal block size jumped above 0.19n after 552784 iterations. The maximal size
of a block is 190008 and the second largest size of a block is 336.

The maximal block size jumped above 0.20n after 556436 iterations. The maximal size
of a block is 200003 and the second largest size of a block is 380.

Observe that it took more than 500 000 iterations until the largest block reached size
0.16n, and only 4 000 additional iterations until the largest block reached size 0.17n, . . . .
Moreover, the size of the largest block is much larger than the size of the second largest
block. In fact, the second largest block is tiny compared to the largest block. This phe-
nomenon is calledthe evolution of the giant componentin the literature on random graphs,
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see [ASE92] for an analytical treatment of the phenomenon. You may perform your own
experiments with the giant component demo. Qualitatively,the phenomenon of the giant
component is easy to explain. At any time during the execution of the algorithm the proba-
bility to merge two blocks of sizek1 andk2, respectively, is proportional tok1k2 sincek1k2

is the number of pairs that can be formed by choosing one item in each block. Thus the
two blocks most likely to be merged are the largest and the second largest block. Merging
them makes the largest block larger and the second largest block smaller (as the third largest
block becomes the second largest). Although we knew about the phenomenon before we
wrote the demo we were surprised to see how dominating the largest block is.

There are two variants of the partition data type:Partition andnodepartition. A node
partition is a partition of the nodes of a particular graph. It is very useful for graph algo-
rithms and we will discuss it in Section 6.6. APartition<I > is a partition where one can
associate an information of typeI with every item of the partition. The operation

partition item it = P.make blok(i);

creates an item with associated informationi and makes the item a new block ofP, the
operation

P.inf(it);

returns the information of itemit and

P.hange inf(it, i1);

changes the information ofit to i1. The typePartition is appropriate whenever one wants to
associate information with either the items or the blocks ofa partition. In the latter case one
simply associates the information with the canonical item of the block. We give one such
application in Section 5.5.3.

5.5.2 The Implementation
Partitions are implemented by the so-calledunion-find data structure with weighted union
and path compression. This data structure is a collection ofpartition nodeswhich are ar-
ranged into a set of trees, see Figure 5.10 for an example. Each block of the partition
corresponds to a tree. Apartition item is a pointer to apartition node. Each partition node
contains a pointer to its parent and each root node knows the size of the tree rooted at it.
This is called thesizeof the root. A partition node also contains a fieldnextthat is used to
link all nodes of a partition into a singly linked list. The definition of classpartition nodeis
as follows:

〈partition node〉�

lass partition_node {

friend lass partition;

partition_node* parent;

partition_node* next;

int size;
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6 3

Figure 5.10 The representation of a partition with two blocks of six and three items,
respectively. All edges are directed upwards. The size of root nodes is indicated inside the node.
All nodes are also linked into a singly linked list. This listis not shown.

publi:

partition_node(partition_node* n) { parent = 0; size = 1; next = n; }

LEDA_MEMORY(partition_node)

};

typedef partition_node* partition_item;

The constructor constructs a node with no parent and size one. We will see its use below,
where the use of the fieldnextand the argumentn will also become clear.

We come to class partition. It has only one data memberuseditemsthat points to the first
item in the linear list of all items comprising the partition.

〈partition.h〉�

#inlude <LEDA/basi.h>

〈partition node〉

lass partition {

partition_item used_items; // list of used partition items

publi:

〈member functions of partition〉

};

In order to create an empty partition we setuseditemsto nil and in order to destroy a
partition we go through the list of items comprising the partition and delete all of them.

〈member functions of partition〉�

partition() { used_items = nil; }

~partition()

{ while (used_items)

{ partition_item p = used_items;

used_items = used_items->next;
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Figure 5.11 Path compression: All edges are directed upwards and the path compression was
initiated by an operationfind(p). After the path compression all ancestors ofp including p point
directly to the root of the tree containingp.

delete p;

}

}

In order to make a new block we allocate a newpartition node, append it to the front of
the list of items comprising the partition, and return a pointer to the new node. Observe that
we defined the constructor of classpartition nodesuch that this works nicely.

〈member functions of partition〉+�

partition_item make_blok()

{ used_items = new partition_node(used_items);

return used_items;

}

We come to functionfind(partition item p). It returns the root of the tree representing
the block containingp. This root is easy to find, we only have to follow the chain of parent
pointers starting atp. We do slightly more. Once we have determined theroot of the
tree containingp we traverse the path starting atp a second time and change the parent
pointer of all nodes on the path toroot, see Figure 5.11. This is called path compression;
it makes the current find operation a bit more expensive but saves all later find operations
from traversing the path fromp to root.
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〈member functions of partition〉+�

partition_item find(partition_item p)

{ // find with path ompression

partition_item x = p->parent;

if (x == 0) return p;

partition_item root = p;

while (root->parent) root = root->parent;

while (x != root) // x is equal to p->parent

{ p->parent = root;

p = x;

x = p->parent;

}

return root;

}

The functionsameblock(p, q) returnsfind(p) == find(q).

〈member functions of partition〉+�

bool same_blok(partition_item p, partition_item q)

{ return find(p) == find(q); }

In order to unite the blocks containing itemsp andq we first determine the roots of the
trees containing these items. If the roots are the same then there is nothing to do. If the roots
are different, we make one of them the child of the other. We follow the so-called weighted
union rule and make the lighter root the child of the heavier root. This rule tends to keep
trees shallow10.

〈member functions of partition〉+�

void union_bloks(partition_item p, partition_item q)

{ // weighted union

p = find(p);

q = find(q);

if ( p == q ) return;

if (p->size > q->size)

{ q->parent = p;

p->size += q->size; }

else { p->parent = q;

q->size += p->size; }

}

Despite its simplicity the implementation ofpartition given above is highly effective.
A sequence ofn makeblock andm other operations takes timeO((m + n)α(m + n, n))

10 We show that the depth of all trees is logarithmically bounded in their size. For any non-negative integerd let sd
be the minimal size of a root whose tree has depthd. Thens0 = 1. A tree of depthd arises by making the root of
a tree of depthd − 1 the child of another root. The former root has size at leastsd−1 and the latter root has at
least this size by the weighted union rule. Thussd ≥ 2sd−1 and hencesd ≥ 2d.



46 Advanced Data Types

9

Figure 5.12 The weighted union rule: When the trees of Figure 5.10 are united the root of size 3
is made a child of the root of size 6.

[Tar75]. Hereα is the so-called inverse Ackermann function; this functionis extremely
slowly growing and has value less than 5 even forn = m = 10100, see [CLR90, Chapter
22] or [Meh84a, III.8.3].

5.5.3 An Application of Partitions: Checking Priority Queues
This section is joint work with Uli Finkler.

We will describe a checker for priority queues; this sectionassumes knowledge of the data
typep queue, see Section 5.4. We define a classcheckedp queue<P, I > that can be wrapped
around any priority queuePQ to check its behavior, see Figure 5.13. The resulting object
behaves likePQ, albeit a bit slower, ifPQ operates correctly. However, ifPQ works incor-
rectly then this fact will be revealed ultimately. In other words the layer of software that we
are going to design behaves like a watch-dog. It monitors thebehavior ofPQ and is silent
if PQworks correctly. However, ifPQbehaves incorrectly, the watch-dog barks.

PQ

checkedp queue

Figure 5.13 The classcheckedp queuewraps around a priority queuePQand monitors its
behavior. It offers the functionality of a priority queue.

How can the classcheckedp queuebe used? Suppose we have designed a classnewimpl
which is a new implementation of priority queues. Using the implementation parameter
mechanism we can write
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p queue<P,I,new impl> PQ;

to declare ap queue<P, I > which is implemented bynewimpl. We may usePQ in any
application using ap queue<P, I >.

Assume now thatnewimpl is faulty. Then an application usingPQ may go astray and
we will have to locate the bug. Is it inPQ or is it in the application program? The use of
checkedp queuesfacilitates the debugging process greatly. We write

p queue<P,I,list item,new impl> PQ;

heked p queue<P,I> CPQ(PQ);

and useCPQ in the application program. IfPQ works incorrectly,CPQwill tell us. There
is no change required in the application program sincecheckedp queueis publicly derived
from p queueand hence can be used wherever ap queuecan be used, for example,

void f(p queue<P,I>&) { ...}

p queue<P,I> PQ; f(PQ);

p queue<P,I,new impl> PQI; f(PQI);

p queue<P,list item,new impl>PQI1;

heked p queue<P,I> CPQ(PQI1); f(CPQ);

Observe that the information type ofPQI1 is list item instead ofI , i.e., we are checking a
p queue<P, list item> instead of ap queue<P, I >. This is a slight weakness of our solution.
We believe that it is only a slight weakness because the information typeI plays a minor role
in the implementation of priority queues. Moreover, it can be overcome, see the exercises.

In the remainder of this section we give the implementation of the classcheckedp queue.
The implementation is involved and reading this section certainly requires some stamina.
We decided to put this section into the book because we strongly believe that the work
on checkers is highly important for software libraries. Section 2.14 contains a general
discussion on program checking.

The Idea: How can one monitor the behavior of a priority queue? Withoutconcern for
efficiency a solution is easy to come up with. Whenever adeletemin or find min operation
is performed all items ofPQ are inspected and it is confirmed that the reported priority is
indeed the minimum of all priorities in the queue. This solution does the job but defeats the
purpose as it makesdeletemin andfind min linear time operations. Our goal is a solution
that adds only a small overhead to each priority queue operation. Our solution performs
the checking of the items in the queue in a lazy way, i.e., whena deletemin or find min
operation is performed it is only recorded that all items currently in the queue must have
a priority at least as large as the priority reported. The actual checking is done later. Note
that this design implies that an error will not be detected immediately anymore but only
ultimately.

Consider Figure 5.14. The top part of this figure shows the items in a priority queue
from left to right in the order of their time. Thetimeof a pq item it is the time of the last
decreasep operation onit or, if there was none, the time of the addition ofit to PQ. The
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L

Part

S

PQ

nil

Figure 5.14 In the top part of the figure the items in a priority queue are shown as circles in the
xy-plane. Thex-coordinate corresponds to the time of an item and they-coordinate corresponds
to the priority of an item. The lower bounds for the priorities are indicated as heavy horizontal
lines. The lower bound for the last two items is−∞. The lower part of the figure illustrates our
design of classcheckedp queue. The listL has one item for each item inPQ, the listShas one
item for each step ofL except for the step with lower bound−∞ and the partitionPart has one
item for each item inL and one block for each step. The blocks ofPart are indicated as ellipses.
The information of the canonical item of a block ofPart is theSitemassociated with the block
(nil for the block with lower bound−∞). EachSitemknows the lastL item in its step.

vertical coordinate indicates the priority. With each itemof the priority queue we have an
associated lower bound. Thelower boundfor an itemit is the maximal priority reported by
anydeleteminor findminoperation that took place after the time ofit. We observe thatPQ
operates correctly if the priority of allpqitemsis at least as large as their lower bound. We
can therefore checkPQby comparing the priority of an item with its lower bound whenever
an item is deleted fromPQor the time of an item is changed through adecreasep operation.

How can we efficiently maintain the lower bounds of the items in the queue? We observe
that lower bounds are monotonically decreasing from left toright, i.e., if the time ofit is
smaller than the time ofit ′ then the lower bound forit is at least as large as the lower bound
for it ′. This observation follows immediately from the definition of the lower bounds and
leads to the staircaselike form of the lower bounds shown in Figure 5.14. We call a maximal
segment of items with the same lower bound astep.

How does the system of lower bounds evolve over time? When a new item is added to
the queue its associated lower bound is−∞ and when afindmin or deletemin operation
reports a priority of valuep all lower bounds smaller thanp are increased top, i.e., all steps
of value at mostp are removed and replaced by a single step of valuep. Since the staircase
of lower bounds is falling from left to right this amounts to replacing a certain number of
steps at the end of the staircase by a single step, see Figure 5.15.

How can we represent a staircase of lower bounds such that it can be updated efficiently
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p

Figure 5.15 Updating the staircase of lower bounds after reporting a priority of p. All steps
whose associated lower bound is at mostp are replaced by a single step whose associated lower
bound isp.

and such that lower bounds can be looked up efficiently? We keep a list L of checkobjects
and a listS of stepobjects. We have onecheckobject in L for each item inPQ and order
L according to the times of the corresponding item inPQ. We have onestepobjectin S for
each step of our staircase of lower bounds except for the stepwhose associated lower bound
is −∞, see Figure 5.14.

A checkobjectis a quadruple consisting of a priorityp, an informationi , a pqitemand
a partition item. We explain the use of the partition item below. We mentionedalready
that check objects are in one-to-one correspondence to the items inPQ (if PQ operates
correctly). The check objecto corresponding to apq item pit with associated priorityp and
associated informationi containsp, i , andp it as its first three components. We storep
andi in the check object to guaranteedata integrity, i.e., the checking layer stores its own
copies of the pairs stored in the priority queue and hence cancheck whetherPQ tampers
with this data. In fact, we will not store the informationi in PQat all. We will rather use the
information field of the itemp it of PQ to store the item ofL containingo. In other words
the queue to be checked will be of typep queue<P, L item> whereL item is a synonym for
list itemthat we reserve for the items inL. We usel it as the canonical name of anL item.

A stepobject is a pair consisting of a priority and anL item. The priority is the lower
bound associated with the step and theL item is the last item inL that belongs to the step.
The listSwill play a crucial role when we update our set of lower boundsafter adelminor
findmin operation. When a priorityp is reported by adelmin or find min all steps whose
stepobjecthas a priority of at mostp are merged into a single step. These steps constitute a
final segment ofS. We useSitemas the name of the items inSand uses it as the canonical
name of anSitem.

For the efficient lookup of lower bounds we use aPartition<Sitem> Part with one item
for each item inL and one block for each step ofL. The information associated with
the canonical element of a step isnil, if the step’s lower bound is−∞, and is theSitem
corresponding to the step otherwise. The fourth component of each check object is the
partition item corresponding to the check object.

Let us summarize. A checked priority queue consists of a priority queue, the listsL and
S, a partitionPart, and two integer countersphaselengthandopcount (their use will be
explained below). The items ofL are in one-to-one correspondance to the items ofPQ
(if PQ operates correctly). All operations onPQ go through the checking layer, e.g., an
operationinsert(p, i ) causes the checking layer to update its internal data structures, in



50 Advanced Data Types

particular, to add an item toL, and to forward the insert request toPQ. The newL itemwill
be returned by the insert operation.

The Class checkedp queue: We fix the definitions of the data structures of the checking
layer in the following layout for the classcheckedp queue<P, I >.

〈checkedp queue.h〉�

#ifndef LEDA_CHECKED_P_QUEUE_H

#define LEDA_CHECKED_P_QUEUE_H

#inlude <LEDA/p_queue.h>

#inlude <LEDA/list.h>

#inlude <LEDA/partition.h>

#inlude <assert.h>

#inlude <LEDA/tuple.h>

template <lass P, lass I>

lass heked_p_queue : publi p_queue<P,I>

{

typedef four_tuple<P,I,pq_item,partition_item> hek_objet;

list<hek_objet> L;

typedef list_item L_item;

typedef two_tuple<P,L_item> step_objet;

list<step_objet> S;

typedef list_item S_item;

Partition<S_item> Part;

int phase_length, op_ount;

p_queue<P,L_item>* PQ;

〈private member functions of class checkedp queue〉

/* the default opy onstrutor and assignment operator work

inorretly, we make them unaessible by

delaring them private */

heked_p_queue(onst heked_p_queue<P,I>& Q);

heked_p_queue<P,I>& operator=(onst heked_p_queue<P,I>& Q);

publi:

heked_p_queue(p_queue<P,L_item>& PQ_ext) // onstrutor

{ PQ = &PQ_ext;

assert(PQ->empty());

phase_length = 4; op_ount = 0;

}

〈member functions of class checkedp queue〉

};

#endif

Observe thatcheckedp queue<P, I > is publicly derived fromp queue<P, I > and hence
will offer the same functions asp queues. The private data members are a pointer to the
p queue<P, L item> to be checked, the listsL and S, the partitionPart, and two integers
phaselengthandopcount; we will explain the latter two data members below.
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The constructor ofcheckedp queuegets a reference to the queue to be checked and stores
it in PQ. It also initializesphaselength to four andopcount to zero. The queue to be
checked must be empty (but, of course, there is no guarantee that the emptiness test does
not lie). All other data members are initialized by their default constructor.

The member functions ofcheckedp queuesplit into private and public member functions.
The public member functions are exactly the public member functions of the base class
p queueexcept for the copy constructor and the assignment operator. We were too lazy to
implement them. Since C++ provides default implementations of both functions and since
the default implementations are incorrect we declared bothfunctions private to make them
unaccessible.

The private member functions are used in the implementationof the public member func-
tions. In order to motivate their definitions we give an overview of the implementations of
the public member functionsinsert and deletemin. In this overview we concentrate on
the interplay between the checking layer andPQ and do not give any details on how the
staircase of lower bounds is manipulated.

An insert(p, i ) is realized as follows. The checking layer creates a check object o con-
taining the pair(p, i ) and appendso to L. Let l it be newL item. It then inserts the pair
(p, l it) into PQ. PQ returns an itemp it which the checking layer records ino. The check-
ing layer also creates a new partition item corresponding too. The new item either forms a
block of its own (if the step with lower bound−∞ is empty) or is joined into the step with
lower bound−∞. The checking layer then returnsl it as the result of theinsert.

A delmin is realized as follows. The checking layer forwards the request toPQ and
PQ returns a pair(p, l it). Let o = (p′, i , p it, part it) be the checking object stored inl it.
The checker verifies thatp = p′ and thatp satisfies the lower bound associated witho, it
updates the staircase of lower bounds, and it finally returnsp.

We want to stress that the checking layer is responsible for the communication with the
environment and that the checking layer stores all the pairs(p, i ) that are in the priority
queue. It forwards all requests from the environment toPQ. In a delmin operation it uses
PQ as anoracle. The checking layer has no own means to answer minimum queries. It
therefore asksPQ to point out the correct item. It maintains the system of lower bounds
in order to find out whetherPQ ever lied to it. The checker discovers lies by checking the
lower bounds of items whenever an item is deleted or the priority of an item is changed.

We want to bound the delay between a lie and its discovery. Forthis purpose the checker
has a private member functionperiodiccheck. This operation goes through all elements
of L and checks the lower bound of every element.Periodiccheckis called after the 2l -
th operation performed on the priority queue for alll ≥ 2. It is also called after the last
operation performed on the priority queue. The integersphaselengthandopcountare used
to control the periodic checks. We divide the execution intophases. We usephaselength
for the length of the current phase and useopcount to count the number of operations in
the current phase. Whenopcountreachesphaselengthwe check all lower bounds, double
phaselength, and resetopcountto zero.
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The discussion above implies that we need to make two assumptions about the behavior
of PQ:

• All calls to member functions ofPQmust terminate. They may give wrong answers
but they must terminate. It is beyond our current implementation to guarantee
termination. A solution would require non-trivial but standard modification of the
implementation ofPQ. One can guard against run-time errors (e.g., invalid addresses)
by compilingPQwith the debugging option and one can guard against infinite loops
by specifying an upper bound on the execution time of each member function ofPQ.
The latter requires a worst case analysis of the running timeof PQ’s member functions.

• All calls of PQ → inf must return validL items. One may guard against invalid
L itemsby compilingcheckedp queueswith the debugging option. An alternative
solution is described at the end of this section.

Private Member Functions: We are now ready for the definition of the private member
functions. The first group provides natural access to the components ofcheckobjectsand
stepobjects.

〈private member functions of class checkedp queue〉�

P& prio(L_item l_it) { return L[l_it℄.first(); }

onst P& prio(L_item l_it) onst { return L[l_it℄.first(); }

I& inf(L_item l_it) { return L[l_it℄.seond(); }

onst I& inf(L_item l_it) onst { return L[l_it℄.seond(); }

pq_item& pq_it(L_item l_it) { return L[l_it℄.third(); }

pq_item pq_it(L_item l_it) onst { return L[l_it℄.third(); }

partition_item& part_it(L_item l_it) { return L[l_it℄.fourth(); }

partition_item part_it(L_item l_it) onst { return L[l_it℄.fourth(); }

P& prio_of_S_item(S_item s_it) { return S[s_it℄.first(); }

P prio_of_S_item(S_item s_it) onst { return S[s_it℄.first(); }

L_item& L_it(S_item s_it) { return S[s_it℄.seond(); }

L_item L_it(S_item s_it) onst { return S[s_it℄.seond(); }

The second group supports the navigation in the data structures of the checker.
The canonical partition item corresponding to anL item l it is obtained by performing

Part.find on the associated partition item.
The information associated with the canonical item is obtained by applyingPart.inf to

the canonical item.
The iteml it belongs to the step with lower bound−∞ if the canonical information is

equal tonil and belongs to a step with a defined lower bound otherwise.
The last item in the step containingl it is either the last item ofL (if l it is unrestricted)

or is theL itemstored in theSitemgiven bycanonicalinf (l it).
An item is the only item in its step if it is the last item in its step and is either the first

item of L or its predecessor item inL is also the last item in its step.
All functions above areconst-functions. They use operationsfindandinf of classPartition
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which are notconst-functions. We therefore write((Partition<Sitem>∗) &Part) → instead
of Part. to cast awayconstwhen calling one of these functions11.

〈private member functions of class checkedp queue〉+�

partition_item anonial_part_it(L_item l_it) onst

{ return ((Partition<S_item>*) &Part)->find(part_it(l_it)); }

S_item anonial_inf(L_item l_it) onst

{ return ((Partition<S_item>*) &Part)->inf(anonial_part_it(l_it)); }

bool is_unrestrited(L_item l_it) onst

{ return anonial_inf(l_it) == nil; }

bool is_restrited(L_item l_it) onst

{ return ! is_unrestrited(l_it); }

L_item last_item_in_step(L_item l_it) onst

{ if ( is_restrited(l_it) )

return L_it(anonial_inf(l_it));

return L.last();

}

bool is_last_item_in_step(L_item l_it) onst

{ return ( last_item_in_step(l_it) == l_it) ; }

bool is_only_item_in_step(L_item l_it) onst

{ return (is_last_item_in_step(l_it) &&

( L.pred(l_it) == nil || is_last_item_in_step(L.pred(l_it))));

}

We put the functions above to their first use by writing a function that tests the validity of
the data structures of the checking layer. This function is for debugging purposes only. The
data structures must satisfy the following conditions:

• The sizes ofL andPQmust be equal.

• Each iteml it in L points to an item inPQwhich points back tol it.

• The items inL can be partitioned into segments such that in each segment the value of
canonicalinf is constant. Except for maybe the last segment, thecanonicalinf is
equal to an item inSand this item points back to the lastL item in the segment. In the
last segment thecanonicalinf is nil. The last segment may be empty and all other
segments are non-empty.

〈private member functions of class checkedp queue〉+�

void validate_data_struture() onst

{

#ifdef VALIDATE_DATA_STRUCTURE

assert( PQ->size() == L.size() );

L_item l_it;

forall_items(l_it,L)

{ assert( pq_it(l_it) != nil ) ;

11 It is tempting to write the cast as((Partition<Sitem>) Part). but this would amount to a call of the copy
constructor ofPartition and hence be a disaster.
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assert( PQ->inf(pq_it(l_it)) == l_it );

}

l_it = L.first();

S_item s_it = S.first();

while (s_it)

{ assert(anonial_inf(l_it) == s_it);

while (l_it != L_it(s_it) )

{ l_it = L.su(l_it);

assert(l_it != nil);

assert(anonial_inf(l_it) == s_it);

}

s_it = S.su(s_it);

l_it = L.su(l_it);

}

while (l_it)

{ assert(anonial_inf(l_it) == nil);

l_it = L.su(l_it);

}

#endif

}

The final group of private member functions checks lower bounds and update the staircase
of lower bounds.

An Litem l it satisfies its lower bound if eitherl it is unrestricted or the priority of the step
containingl it is no larger than the priority ofp it.

〈private member functions of class checkedp queue〉+�

void hek_lower_bound(L_item l_it) onst

{ assert(is_unrestrited(l_it) ||

ompare(prio_of_S_item(anonial_inf(l_it)), prio(l_it)) <= 0 );

}

The functionperiodiccheckis called at the end of every public member function. It
increasesopcountand whenopcounthas reachedphaselengthchecks all lower bounds,
doublesphaselength, and resetsopcountto zero.

〈private member functions of class checkedp queue〉+�

void periodi_hek()

{ if ( ++op_ount == phase_length )

{ L_item l_it;

forall_items(l_it,L) hek_lower_bound(l_it);

phase_length = 2*phase_length;

op_ount = 0;

}

}

Finally, we show how to update lower bounds, see Figure 5.14.Let p be a priority. We
move all lower bounds that are smaller thanp up to p. This amounts to removing all items
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in S whose associated lower bound is less than or equal top and adding a new item with
priority p to S. We give more details.

If L is empty or the last step in our staircase of lower bounds extends to the end of the
list and has a priority at least as large asp then there is nothing to do.

So assume otherwise. We scanS form its right end (= rear end) and remove items as
long as their priority is at mostp. Whenever we remove an items it from S we join the
step corresponding tos it with the step after it (it it exists). Finally, we add an item to S
representing a step with priorityp and ending atL.last( ) and make the item the canonical
information of all items in the last step.

〈private member functions of class checkedp queue〉+�

void update_lower_bounds(P p)

{ if ( L.empty() ||

( !S.empty() && ompare(prio_of_S_item(S.last()),p) >= 0

&& L_it(S.last()) == L.last())) return;

S_item s_it;

while ( !S.empty() &&

ompare(prio_of_S_item(s_it = S.last()),p) <= 0 )

{ L_item l_it = L_it(s_it);

if ( L.su(l_it) )

Part.union_bloks(part_it(l_it),part_it(L.su(l_it)));

S.pop_bak();

}

Part.hange_inf(anonial_part_it(L.last()),

S.append(step_objet(p,L.last())));

}

After all this preparatory work we come to the public member functions.

The Insert Operation: To insert a new item〈p, i 〉 we append toL a new check object
(p, i , p it, part it); p it is a new item inPQ created by the insertion of(p, −) andpart it
is a new item inPart. The lower bound of the new item is−∞ and hence the information
associated withpart it is nil. Let l it be the new item inL. We storel it as the information
of p it.

If there was already a step with lower bound−∞, we add the new item to this block.
Finally, we callperiodiccheckand returnl it (after casting it topqitem)12.

〈member functions of class checkedp queue〉�

pq_item insert(onst P& p, onst I& i)

{ pq_item p_it = PQ->insert(p,(L_item) 0);

L_item last_l_it = L.last(); // last item in old list

partition_item pa_it = Part.make_blok((S_item) 0);

list_item l_it = L.append(hek_objet(p,i,p_it,pa_it));

PQ->hange_inf(p_it,l_it);

if (last_l_it && is_unrestrited(last_l_it) )

12 The cast fromL item to pq item is necessary since early in the design of LEDA we made the decision that the
global typepqitem is the return type ofinsert. It would be more elegant to havepq itemas a type local top queue.
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Part.union_bloks(part_it(l_it),part_it(last_l_it));

periodi_hek();

validate_data_struture();

return (pq_item) l_it;

}

The Find min Operation: In order to perform afindminoperation we perform afind min
operation onPQ and extract an iteml it in L from the answer. Having received this advice
from PQwe check the lower bound forl it and update the system of lower bounds using the
priority of l it.

Sincecheckedp queueis derived fromp queue, sincefind min is a const-function of
p queue, and sinceupdatelowerboundsandperodiccheckare not, we need to cast away
theconst.

〈member functions of class checkedp queue〉+�

pq_item find_min() onst

{ L_item l_it = PQ->inf(PQ->find_min());

hek_lower_bound(l_it);

((heked_p_queue<P,I>*)this)->update_lower_bounds(prio(l_it));

((heked_p_queue<P,I>*)this)->periodi_hek();

validate_data_struture();

return (pq_item) l_it;

}

The Delete Operation: To delete an itemp it we check its lower bound, we delete it from
PQ, and we delete the correspondingL item l it from L. If l it is restricted and is the only
item in its step, we delete the item inS representing the step and ifl it is the last item in
its step but not the only item in its step, we change theL it-field of canonicalinf (l it) to
the predecessor ofl it in L. We should also delete the item corresponding top it from Part.
Unfortunately,partition does not offer a delete operation. We comment on this point atthe
end of the section.

〈member functions of class checkedp queue〉+�

void del_item(pq_item p_it)

{ L_item l_it = (L_item) p_it;

hek_lower_bound(l_it);

if ( is_restrited(l_it) )

{ if ( is_only_item_in_step(l_it) )

S.del_item(anonial_inf(l_it));

else if (is_last_item_in_step(l_it) )

L_it(anonial_inf(l_it)) = L.pred(l_it);

}

PQ->del_item(pq_it(l_it));

L.del_item(l_it);



5.5 Partition 57

periodi_hek();

validate_data_struture();

}

To perform adelmin operation we perform afind min on PQ and then adelmin on the
item returned. Finally, we update the lower bound accordingto the priority of the item
returned.

〈member functions of class checkedp queue〉+�

P del_min()

{ L_item l_it = PQ->inf(PQ->find_min());

P p = prio(l_it);

del_item((pq_item)l_it);

update_lower_bounds(p);

periodi_hek();

validate_data_struture();

return p;

}

Miscellaneous Functions:The functionsprio, inf , changeinf , sizeandemptyreduce to
appropriate functions of the checking layer.

〈member functions of class checkedp queue〉+�

onst P& prio(pq_item it) onst

{ ((heked_p_queue<P,I>*)this) -> periodi_hek();

return prio((L_item) it);

}

onst I& inf(pq_item it) onst

{ ((heked_p_queue<P,I>*)this) -> periodi_hek();

return inf((L_item) it);

}

void hange_inf(pq_item it, onst I& i)

{ periodi_hek();

inf((L_item) it) = i ;

}

int size() onst

{ ((heked_p_queue<P,I>*)this) -> periodi_hek();

return L.size();

}

bool empty() onst

{ ((heked_p_queue<P,I>*)this) -> periodi_hek();

return L.empty();

}

The Decreasep Operation: In order to perform adecreasep on iteml it we check whether
the current priority satisfies its lower bound and we check whether thedecreasep operation
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actually decreases the priority ofl it. If so, we change the priority ofl it and forward the
change toPQ.

The new lower bound for the iteml it is −∞. If the old lower bound was also−∞ then
no action is required. Otherwise we must movel it from its current position inL to the last
position inL. This affects the step that containedl it. If l it was the only item in the step,
we remove the step altogether and ifl it was the last, but not the only, item in its step, we
record thatl it ’s predecessor is the new last element in the step.

In order to movel it to the last position ofL we splitL into three pieces (the items before
l it, l it, and the items afterl it) and then reassemble the pieces. We allocate a new partition
item for l it and set its information tonil (since the new lower bound forl it is −∞). If the
step with lower bound−∞ was non-empty, we addl it to this step.

〈member functions of class checkedp queue〉+�

void derease_p(pq_item p_it, onst P& p)

{ L_item l_it = (L_item) p_it;

hek_lower_bound(l_it);

assert( ompare(p,prio(l_it)) <= 0 );

prio(l_it) = p;

PQ->derease_p(pq_it(l_it),p);

if ( is_restrited(l_it) )

{ if ( is_only_item_in_step(l_it) ) S.del_item(anonial_inf(l_it));

else if (is_last_item_in_step(l_it) )

L_it(anonial_inf(l_it)) = L.pred(l_it);

list<hek_objet> L1, L_it;

L.split(l_it,L,L1,LEDA::before);

L1.split(l_it,L_it,L1,LEDA::after);

L.on(L1);

list_item last_it = L.last();

L.on(L_it);

part_it(l_it) = Part.make_blok((S_item) 0);

if (last_it && is_unrestrited(last_it) )

Part.union_bloks(part_it(l_it),part_it(last_it));

}

periodi_hek();

validate_data_struture();

}

The Clear Operation and the Destructor: Finally, to clear our data structure we check
the lower bounds of all items and then clear forPQ, L, S, andPart. The destructor calls
clear.

〈member functions of class checkedp queue〉+�

void lear()

{ L_item l_it;

forall_items(l_it,L) hek_lower_bound(l_it);
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PQ->lear(); L.lear(); S.lear(); Part.lear();

}

~heked_p_queue() { lear(); }

Efficiency: We have now completed the definition of our checker for priority queues. How
much overhead does it add? The body of any function of classcheckedp queueconsists of
a call of the same function ofPQ plus a constant number of calls to functions ofL, S, and
Part, a call toperiodiccheckplus (maybe) a call ofupdatelowerbounds.

Updatelowerboundsadds at most one element toS (and no other function does) and
removes zero or more entries fromS. We conclude that the total number of elements added
to S and hence removed fromS is bounded by the number of operations onPQ. A call of
updatelowerboundsthat removesk elements fromS has costO(1 + k) plus the cost for
O(1 + k) operations on a partition. We conclude that all calls ofupdatelowerboundscon-
tribute a linear number of operations onPart. Therefore each call toupdatelowerbounds
contributes a constant number of operations onPart in the amortized sense.

The cost of a call toperiodiccheckis also amortized constant. This follows from the fact
that the number of elements in the queue is at most twicephaselength, that the cost of a
call is eitherO(1) or O(phaselength), and that the latter alternative occurs only in every
phaselength-th call toperodiccheck.

We conclude that theamortized overhead for each operation on PQ is a constant number
of operations on lists and partitions. Operations on lists require constant time and opera-
tions on partitions requiresα(n) time.

An Experiment: The following program compares unchecked and checked priority queues
experimentally. We generate an array ofn random doubles and then use a binary heap to
sort them. We first use the binary heap directly and then wrap it into acheckedp queue. The
running time of the checked version is about two times the running time of the unchecked
version, e.g., it takes about 6.1 seconds to sort 100000 doubles with the unchecked version
and slightly more than 12 seconds with the checked version.

〈checkedp queuedemo.c〉�

〈checkedp queue demo: includes〉

main(){

〈checkedp queue demo: read n〉

array<double> A(n);

random_soure S;

for (int i = 0; i < n; i++) S >> A[i℄;

float T = used_time();

{ _p_queue<double,int,bin_heap> PQ(n);

for (int i = 0; i < n; i++) PQ.insert(A[i℄,0);

while ( !PQ.empty() ) PQ.del_min();

}

float T1 = used_time(T);
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{ _p_queue<double,list_item,bin_heap> PQ(n);

heked_p_queue<double,int> CPQ(PQ);

for (int i = 0; i < n; i++) CPQ.insert(A[i℄,0);

while ( !CPQ.empty() ) CPQ.del_min();

}

float T2 = used_time(T);

〈checkedp queue demo: report times〉

}

We made a similar test with the priority queue in Dijkstra’s algorithm and observed a
slowdown by a factor of about 2.5.

Final Remarks: We close this section with a discussion of some alternativesand improve-
ments to our design.

The overhead introduced by our design is a constant number ofoperations on lists and
partitions for each priority queue operation. Since operations on partitions take slightly
super-linear time this invalidates theO(1) upper bound for thedecreasep operation in the
f heapandp heap implementation of priority queues. This can be remedied as follows.
The classcheckedp queueuses the typePartition in a very special way. The blocks ofL
partitionL into contiguous segments and all unions are between adjacent segments. For this
special situation there is a realization of partitions thatsupports all operations in constant
time, see [GT85].

Partitions do not offer an operation that deletes items and hence thedel item operation
of checkedp queuecan only delete the items inPQ, L, andS, but cannot delete the item
in Part. This shortcoming can be remedied by giving partitions adel item operation. We
briefly sketch the implementation. We perform deletions in alazy way. When an item is
to be deleted it is marked for deletion. We also keep track of the total number of items in
the partition and the number of items that are marked for deletion. When more than three-
quarters of the items are marked for deletion the partition data structure is cleaned. We go
through all items (recall that they are linked into a singly linked list) and perform a find
operation for each item. This makes all trees depth one. Thenwe delete all marked items
except those that are the root of a non-trivial tree.

In our realization the checker puts some trust intoPQ, namely thatPQ → inf always re-
turns a validL item. This shortcoming can be overcome by introducing a level of indirection
into the data structure. We add anarray<L item> A. When the queue has sizen precisely
the firstn entries of this array are used. When an itemp it of PQ stores a list iteml it in
the current design it stores some integeri ∈ [0 .. n − 1] in the new design andA[i ] contains
l it. In this way the index-out-of-bounds check for arrays allows us to check for an invalid
pointer. When an item is deleted from the queue and this item corresponds to positioni of
A, this position is first swapped with positionn − 1 and then the last entry is removed. We
leave the details to the reader. This solution is inspired by[AHU74, exercise 2.12].

The classcheckedp queuecatches errors of the underlying priority queue eventually(at
the latest at the next call ofperiodiccheck) but not immediately. Is there a solution which



5.6 Sorted Sequences 61

guarantees immediate error detection? Yes and No.Yes, because we could simply put a
correct priority queue implementation into the checker, and no, because it can be shown
that no data structure whose running time has a smaller orderof magnitude than the running
time of priority queues can guarantee immediate error detection.

Exercises for 5.5
1 Modify the program checkedp queuedemo so that you can experiment with different

implementations of priority queues and not only with the binary heap implementation.
2 Implement the copy constructor and the assignment operator of our classcheckedp queue.
3 Modify the implementation of classcheckedp queue, so as to remove the assumption

thatPQ → inf always returns a validL item.
4 Modify the implementation of classcheckedp queueso that the queue to be checked has

typep queue<P, I >. Hint: Use a map to make the correspondence betweenpqitemsand
the items ofL.

5 Use checked priority queues instead of priority queues in Dijkstra’s algorithm as dis-
cussed in Section 5.4.

6 Add an operationdel item to the typespartition andPartition<E>. Follow the sketch at
the end of Section 5.5.3.

7 In the extract minimum problem we are given a permutation ofthe integers 1 ton in-
terspersed with the letter E, e.g., 6,E,1,4,3,E,E,5,2,E,E,E is a possible input sequence.
The E’s are processed from left to right. Each E extracts the smallest number to its left
which has not been extracted by a previous E. The output in ourexample would there-
fore be 6,1,3,2,4,5. Solve the problem using a priority queue. In the off-line version of
this problem the input sequence is completely known before the first output needs to be
produced. Solve the problem with the partition data type (Hint: Determine first which E
outputs the number 1, then which E outputs 2, . . . ).

8 Implement the data structure of [GT85]. Make it available as a LEDA extension package.

5.6 Sorted Sequences

Sorted sequences are a versatile data type. We discuss theirfunctionality in this section,
give their implementation by means of skiplists in the next section, and apply them to Jordan
sorting in the last section of this chapter.

A sorted sequenceis a sequence of items in which each item has an associated keyfrom
a linearly ordered typeK and an associated information from an arbitrary typeI . We call
K the key type andI the information type of the sorted sequence and use〈k, i 〉 to denote
an item with associated keyk and informationi . The keys of the items of a sorted sequence
must be in strictly increasing order, i.e., if〈k, i 〉 is before〈k′, i′〉 in the sequence thenk is be-
forek′ in the linear order onK . Here comes a sorted sequence of typesortseq<string, int>:

〈Ena, 7〉 〈Kurt, 4〉 〈Stefan, 2〉 〈Ulli , 8〉
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Sorted sequences offer a wide range of operations. They can do almost everything lists,
dictionaries, and priority queues can do and they can do manyother things. They even do
all these things with the same asymptotic efficiency. Of course, there is a price to pay:
Sorted sequences require more space (about 23.33n bytes for a sequence ofn items) and
the constant factors in the time bounds are larger. So pleaseuse sorted sequences only if
you need their power.

We discuss the functionality of sorted sequences in severalsteps. In each step we in-
troduce some operations and then give a small program using these operations. We start
with the operations that we know already from dictionaries and priority queues, then turn
to so-called finger searches, and finally discuss operationsfor splitting and merging sorted
sequences.

Basic Functionality: Sorted sequences come in two kinds. The definitions

sortseq<K,I> S;

sortseq<K,I,ab tree> T;

defineS andT as sorted sequences with key typeK and information typeI . For T the
ab tree implementation of sorted sequences is chosen and forS the default implementa-
tions of typessortseqis chosen. The typesortseq<K , I , IMPL> offers only a subset of the
operations ofsortseq<K , I >; in particular it does not offer any of the finger search opera-
tions. The items in a sorted sequence have typeseqitem. The following implementations
of sortseqsare currently available: skiplists [Pug90b], randomized search trees [AS89],
BB(α)-trees [NR73],ab-trees [AHU74, HM82], and red-black-trees [GS78]. They arese-
lected by the implementation parameters skiplist, rstree, bbtree, abtree, and rbtree, re-
spectively. Skiplists are the default implementation. We have mentioned already that sorted
sequences extend dictionaries, lists, and priority queues, in particular we have the following
operations:

K S.key(seqitem it) returns the key of itemit.
Precondition: it is an item inS.

I S.inf(seqitem it) returns the information of itemit.
Precondition: it is an item inS.

seqitem S.lookup(K k) returns the item with keyk (nil if no such item exists in
S).

seqitem S.locate(K k) returns the item〈k′, i 〉 in Ssuch thatk′ is minimal with
k′ ≥ k (nil if no such item exists).

seqitem S.locatesucc(K k) equivalent toS.locate(k).

seqitem S.succ(K k) equivalent toS.locate(k).
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seqitem S.locatepred(K k) returns the item〈k′, i 〉 in Ssuch thatk′ is maximal with
k′ ≤ k ( nil if no such item exists).

seqitem S.pred(K k) equivalent toS.locatepred(k).

seqitem S.min item( ) returns the item with minimal key (nil if S is empty).

seqitem S.maxitem( ) returns the item with maximal key (nil if S is empty).

seqitem S.succ(seqitem it) returns the successor item ofit in the sequence contain-
ing it (nil if there is no such item).

seqitem S.pred(seqitem x) returns the predecessor item ofit in the sequence con-
taining it (nil if there is no such item).

seqitem S.insert(K k, I i ) associates informationi with key k: If there is an item
〈k, j 〉 in S then j is replaced byi , otherwise a new item
〈k, i 〉 is added toS. In both cases the item is returned.

int S.size( ) returns the size ofS.

bool S.empty( ) returns true ifS is empty, false otherwise.

void S.clear( ) makesS the empty sorted sequence.

void S.del(K k) removes the item with keyk from S (null operation if
no such item exists).

void S.del item(seqitem it) removes the itemit from the sequence containingit.

void S.changeinf(seqitem it, I i )

makesi the information of itemit.

The operationskey, inf , succ, pred, max, min, del item, changeinf , size, andemptytake
constant time,lookup, locate, locatepred, anddel take logarithmic time, andclear takes
linear time.

We come to our first program. We read a sequence of strings (terminated by “stop”) and
build a sorted sequence of typesortseq<string, int> for them13. Then we read a pair(s1, s2)
of strings and output all input strings larger than or equal to s1and smaller than or equal to
s2. This is done as follows. Ifs2 is smaller thans1 then there are no such strings. Assume
otherwise and let itemlast contain the largest string less than or equal tos2 and letfirst
contain the smallest string larger or equal tos1. If eitherfirst or lastdoes not exist orlast is

13 Observe that a sorted sequence needs an information type; wedo not need informations in this application and
have chosen the information typeint; any other type would work equally well.
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the predecessor offirst then the answer is empty. Otherwise it consists of all strings that are
stored in the items starting atfirst and ending atlast.

〈sortseqdemo1.c〉�

#inlude <LEDA/sortseq.h>

main()

{ sortseq<string,int> S;

string s1,s2;

out << "Input a sequene of strings terminated by stop.\n";

while (in >> s1 && s1 != "stop") S.insert(s1, 0);

while ( true )

{ out << "\nInput a pair of strings.\n\n";

in >> s1 >> s2;

out << "All strings s with " <<

s1 <<" <= s <= " << s2 <<":\n";

if ( s2 < s1 ) ontinue;

seq_item last = S.loate_pred(s2);

seq_item first = S.loate(s1);

if ( !first || !last || first == S.su(last) ) ontinue;

seq_item it = first;

while ( true )

{ out << "\n" << S.key(it);

if ( it == last ) break;

it = S.su(it);

}

}

}

The running time of this program isO(n logn + m logn + L), wheren denotes the number
of strings put into the sorted sequence,m denotes the number of queries, andL is the total
number of strings in all answers. In this time bound we have assumed for simplicity that a
comparison between strings takes constant time and that a string can be printed in constant
time. Both assumptions require that the strings have bounded length.

Finger Search: All search operations discussed so far take logarithmic time. Finger search
opens the possibility for sub-logarithmic search time. It requires that the position of the key
k to be searched for is approximately known. Letit be an item of the sorted sequenceS; in
the context of finger search we callit a finger into S. The operations

S.finger loate(k);

S.finger loate from front(k);

S.finger loate from rear(k);

S.finger loate(it, k);

have exactly the same functionality as the operationlocate, i.e., all of them return the
leftmost item it ′ in S having a key at least at large ask. They differ in their running
time. If it ′ is the d-th item in a list of n items then the first three operations run in
time O(log min(d, n − d)), O(logd), andO(log(n − d)), respectively14. In other words,

14 For the remainder of this section we assume logx to mean max(0, log x).
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fingerlocatefromfront is particularly efficient for searches near the beginning ofthe se-
quence,fingerlocatefromend is particularly efficient for searches near the end of the se-
quence, andfingerlocateis particularly efficient for searches near either end of thesequence
(however, with a larger constant of proportionality); it runs the two former functions in par-
allel and stops as soon as one of them stops. The operationS.fingerlocate(it, k) runs in time
O(log min(d, n − d)) whered is the number of items inSbetweenit andit ′. For example,
if it is the 5th item ofSandit ′ is the 17th item thend = 17− 5 = 12.

After a fast search we also want to insert fast. That’s the purpose of the operation
insertat. Assume thatit is an item ofSandk is a key and thatit is either the rightmost item
in Swith key(it) < k or the leftmost item withkey(it) > k. Then

S.insert at(it, k, i)

adds〈k, i 〉 to S in time O(1). If k’s relation to the key ofit is known then it is more efficient
to use

S.insert at(it, k, i, dir)

with dir equal toLEDA::beforeor LEDA::after.

We give an application of finger searching to sorting. More precisely, we give a sorting
algorithm which runs fast on inputs that are nearly sorted. Let n and f be integers with
0 ≤ f ≪ n and consider the sequence

n − 1, n − 2, . . . , n − f, 0, 1, 2, . . . , n − f − 1.

We store this sequence in a listL and sort it in five different ways: four versions of insertion
sort and, for comparison, the built-in sorting routine for lists. The easiest way to build a
sorted sequenceS from L is to callS.insertfor each element ofL. As before, we must give
our sorted sequence an information type; we use the typeint and hence insert the pair(k, 0)

for each elementk of L.

〈repeated insertion sort〉�

forall(k,L) S.insert(k, 0);

The running time of repeated insertion sort isO(n logn).
Let us take a closer look where the insertions are taking place for our input sequence. In

the first f insertions the new element is always inserted at the beginning of the sequence
and in the remainingn − f insertions the new element is always inserted before thef -th
element from the end of the sequence. Sincef ≪ n it should be more efficient to search
for the place of insertion from the rear end of the sequence.

〈finger search from rear end〉�

forall(k, L)

{ if (S.empty()) it = S.insert(k, 0);

else

{ seq_item it = S.finger_loate_from_rear(k);

if (it) S.insert_at(it,k,0,LEDA::before);
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else S.insert_at(S.max_item(),k,0,LEDA::after);

}

}

With finger search from the rear end each search takes timeO(log f ) and hence the total
running time becomesO(n log f ). The same running time results if we use the version of
finger search that does not need to be told from which end of thesequence it should search.

〈finger search from both ends〉�

forall(k, L)

{ if (S.empty()) it = S.insert(k, 0);

else

{ seq_item it = S.finger_loate(k);

if (it) S.insert_at(it,k,0,LEDA::before);

else S.insert_at(S.max_item(),k,0,LEDA::after);

}

}

We can do even better by observing that each insertion takes place next to the previous
insertion. Hence it is wise to remember the position of the last insertion and to start the
finger search from there.

〈finger search from last insertion〉�

forall(k, L)

{ if (S.empty()) it = S.insert(k, 0);

else

{ it = S.finger_loate(it,k);

it = ( it ? S.insert_at(it,k,0,LEDA::before) :

S.insert_at(S.max_item(),k,0,LEDA::after) );

}

}

With this version of finger search each search takes constanttime and hence a total running
time of O(n) results.

Table 5.7 shows the running times of our four versions of insertion sort in comparison
to the built-in sorting routine for lists (L.sort( )) for n = 500000 andf = 50. We made
the comparison for the key typesint, double, andfour tuple<int, int, int, int> to study the
influence of the cost of comparing two keys. The table shows that insertion sort with fin-
ger search is superior to repeated insertion sort for nearlysorted input sequences and that
the advantage becomes larger (as is to be expected from the asymptotic analysis) as com-
parisons become more expensive. The table also shows that inthe case of very expensive
comparisons insertion sort with finger search can even compete with quicksort (which is the
algorithm used in the sorting routine for lists).

It is worthwhile to take a more abstract view of the programs above. The less mathe-
matically inclined reader may skip the next two paragraphs.Let k1, . . . , kn be a sequence
of distinct keys from a linearly ordered typeK . An inversionis a pair of keys that is not
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Repeated Finger search List
insertion from rear from both ends from last insertion sort

int 5.45 4.78 4.7 2.98 2.22

double 6.28 5.1 7.12 3.28 2.53

quads 22.1 13.9 16.8 6.3 14.8

Table 5.7 Running times of the four versions of insertion sort and of the sorting routineL.sort( )

for lists for n = 500000 andf = 50. The sorting routine for lists uses quicksort with the middle
element of the list as the splitting element. It runs in timeO(n logn). Three different key types
were used:int, double, and the typefour tuple<int, int, int, int> where an integeri was
represented as the quadruple(0, 0, 0, i ). This ensures that comparisons between quadruples are
expensive. You may perform your own experiments with the sortseq sort demo.

in ascending order, i.e., a pair(i , j ) of indices with 1≤ i < j ≤ n andki > k j . We use
F to denote the total number of inversions and usef j to denote the number of inversions
involving j as their second component, i.e.,

f j = |{ i ; i < j andki > k j }|

If F is zero then the sequence is already sorted. The maximal value of F is n(n − 1)/2. We
show that insertion sort with finger search from the rear runsin time O(n(1 + log(F/n)))

on a sequence withF inversions. So the worst case isO(n logn), the best case isO(n), and
the running time degrades smoothly asF increases. A sequence with a “small” value ofF
is sometimes callednearly sorted. Thus, insertion sort with finger search is fast on nearly
sorted sequences.

Assume that we have already sortedk1, . . . , k j −1 and next want to insertk j . As in our
programs above we useS to denote the resulting sorted sequence. Each key ink1, . . . , k j −1

which is larger thank j causes an inversion and hence the number of keys ink1, . . . , k j −1

larger thank j is equal tof j . Thus,k j needs to be inserted at thef j -th position from the rear
end ofS. A finger search from the rear end ofSdetermines this position in timeO(log f j ).
We conclude that the total running time of insertion sort with finger search from the rear
end is

O(
∑

1≤ j ≤n

1 + log f j ) = O(n + log
∏

1≤ j ≤n

f j ).

Subject to the constraint
∑

1≤ j ≤n f j = F , the product
∏

1≤ j ≤n f j is maximized if all f j ’s
are equal and hence are equal toF/n. The claimed time bound ofO(n · (1 + log(F/n)))

follows.

Split: There are several operations to combine and split sequences. If S is a sorted sequence
andit is an item ofS then

S.split(it, T, U, dir)
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A

S1 S2 S3 S4

Figure 5.16 A sequenceSof eight items that has been split into a sequence of length three, a
sequence of length one, and two sequences of length two. The entry A[i ] of the arrayA contains
a pointer to thei -th container ofS. The sequencesS1, S3, andS4 need to be split further. In the
sortseqsplit program there will be a task in the task stack for each one of them. The task forS3

has the form(pointer toS3, 4, 5).

splits S after (if dir = LEDA::after) or before (ifdir = LEDA::before) it and returns the
two fragments inT andU . More precisely, ifS is equal to

x1, . . . , xk−1, it, xk+1, . . . , xn

anddir is LEDA::after thenT = x1, . . . , xk−1, it andU = xk+1, . . . , xn after the split. Ifdir
is before thenU starts withit after the split. The two sequencesT andU must name distinct
objects, butSmay be one ofT or U . If S is distinct fromT andU thenS is empty after the
split. The running time ofsplit is O(logn) for sortseqsand isO(1+ log min(k, n− k)) for
sortseqs.

We sketch an application of splitting in order to show the difference between the two
time bounds. Assume thatS is a sorted sequence of lengthn and consider the following
process to splitS into n sequences of length 1 each. We start withSand as long as we have
a sequence of length larger than 2 we split this sequence at anarbitrary item.

In the following program we construct a sorted sequenceSof n items and store its items
in an arrayA. We also maintain a stack of “tasks”. A task is a triple consisting of a pointer
to a subsequence ofSplus the indices of the first and the last item in the subsequence, see
Figure 5.16. Initially there is only one task, namely, the triple (S, 1, n). In each iteration of
the loop we take the topmost task from the stack. If the sequence has less than two elements
and hence requires no further split, we simply delete it. Otherwise, we split it at a random
element and create tasks for the two parts. We continue untilthere are no tasks left.

〈sortseqsplit〉�

main(){

〈sortseq split: read n〉

typedef sortseq<int,int> int_seq;

array<seq_item> A(n);

int_seq* S = new int_seq();;

for (int i = 0; i < n; i++) A[i℄ = S->insert(i,0);

typedef three_tuple<int_seq*,int,int> task;
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stak<task> TS;

TS.push(task(S,0,n-1));

float UT = used_time();

while ( !TS.empty() )

{ task t = TS.pop();

int_seq* S = t.first();

int l = t.seond();

int r = t.third();

if ( r - l + 1 < 2 ) { delete S; ontinue; }

int_seq* T = new int_seq();

int_seq* U = new int_seq();

int m = rand_int(l,r-1);

S->split(A[m℄,*T,*U,LEDA::after);

delete S;

TS.push(task(T,l,m));

TS.push(task(U,m+1,r));

}

〈sortseq split: report time〉
}

We show that the running time of this program is linear inn. We do so for arbitrary choice
of the splitting indexm and not only for random choice ofm. The less mathematically
inclined reader may skip the analysis. We useT(n) to denote the maximal running time of
the program on a sequence ofn items. ThenT(1) = c and

T(n) ≤ max
1≤m<n

T(m) + T(n − m) + c(1 + log min(m, n − m))

for n > 1 and a suitable constantc. The recurrence relation reflects the fact that it takes
timec(1+ log min(m, n−m)) to split a sequence of lengthn into sequences of lengthm and
n−mand additional timeT(m) andT(n−m) to split these sequences further into sequences
of length 1. We need to take the maximum with respect tom since we are interested in the
worst case time. We showT(n) ≤ c(5n − 2 − 2 log(n + 1)) for all n by induction onn.
This is certainly true forn equal to 1. So assumen > 1 and letm maximize the right-hand
side in the recurrence relation above. Because of the symmetry of the right-hand side inm
andn − m we may assumem ≤ n/2. Then

T(n) ≤ T(m) + T(n − m) + c(1 + log min(m, n − m))

≤ c(5m − 2 − 2 log(m + 1) + 5(n − m) − 2 − 2 log(n − m + 1) + 1 + logm)

< c(5n − 2 − log(m + 1) − 2 log(n − m + 1) − 1)

≤ c(5n − 2 − 2 log(n + 1)),

where the first inequality is our recurrence relation, the second inequality follows from
the induction hypothesis, the third inequality is simple arithmetic, and the last inequality
follows from the fact that 1+ log(m+ 1) + 2 log(n − m+ 1) ≥ 2 log(n + 1) for all m with
1 ≤ m ≤ n/2. To see this, observe first that the second derivative off (m) = 1 + log(m +

1) + 2 log(n − m + 1) is negative and hence min1≤m≤n/2 f (m) = min( f (1), f (n/2)).
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Observe next thatf (1) ≥ 2 log(n + 1) and f (n/2) ≥ 2 log(n + 1). This completes the
induction.

Concatenation and Merging: We turn to concatenation and merging of sequences.

S.on(T,dir)

appendsT to the rear (ifdir = LEDA::after) or front (if dir = LEDA::before) of S and
makesT empty. Of course, we may applyconcwith dir = LEDA::after only if the key of
the last item inS is smaller than the key of the first item inT and withdir = LEDA::before
only if the key of the last item inT is smaller than the key of the first item inS. The running
time ofconcis O(log(n+m)) for sortseqsand isO(1+ log min(n, m)) for sortseqswhere
n andm are the lengths of the sequences to be concatenated.Mergegeneralizesconc.

S.merge(T)

merges the listT into the listS and makesT empty. For example, ifS = 〈5,.〉 〈7,.〉 〈8,.〉

andT = 〈6,.〉 〈9,.〉 are sequences with key typeint thenS= 〈5,.〉 〈6,.〉 〈7,.〉 〈8,.〉 〈9.,〉 after
the merge. Of course,SandT can only be merged if the keys of all items are distinct. The
time to merge two sequences of lengthsn andm, respectively, isO(log

(n+m
n

)

); mergeis
only supported bysortseqs.

We sketch howmergeis implemented, we comparemergewith two less sophisticated
approaches to merging, and we show how to usemergein a robust version of merge sort.
We start with a sketch of the implementation. Assume that thesequencesSandT are to be
merged and that the number of elements inT is at most the number of elements inS. We
insert the elements ofT one by one intoS, starting with the first element ofT . In order to
locate the position of an element ofT in Swe use a finger search starting from the position
of the last insertion (starting from the first element ofS instead of the first element ofT).

sortseq item finger = S.min item();

sortseq item it = T.min item();

while ( it )

{ finger = S.finger loate(finger,T.key(it));

S.insert at item(finger,T.key(it),T.inf(it));

it = T.su(it);

}

The running time of this program is easy to analyze. We usem to denote the number of
elements inT andn to denote the number of elements inS. Assume that thei -th element
of T is to be inserted after thefi -th element ofS for all i with 1 ≤ i ≤ m. Set f0 = 0. The
finger search that determines the position of thei -th element ofT in S takes timeO(logdi )

wheredi = fi − fi−1 is the number of elements ofS that are between the position of
insertion for thei -th and the(i − 1)-th element. Clearly,

∑

i di ≤ n. The total time for
mergingT into S is

∑

i

O(1 + logdi ) = O(m + log
∏

i

di ).
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Subject to the constraint
∑

i di ≤ n, the product
∏

i di is maximal if alldi are equal ton/m.
The running time is thereforeO(m+mlog(n/m)) = O(log

(n+m
n

)

). To see the last equality
observe first that

1 + log(n/m) = 1 + log(n + m)/m ≤ 2 log((n + m)/m)

sincen + m ≥ 2m and observe next thatm log((n + m)/m) = log((n + m)/m)m and
((n + m)/m)m ≤

(n+m
m

)

.
We next comparemergeto two less sophisticated merge routines. LetT andU be sorted

sequences of lengthn andm, respectively. There are two ways to mergeU into T that
come to mind immediately. The first method inserts the elements of U one by one into
T . This takes timeO(m log(n + m)). The second method scans both files simultaneously
from front to rear and inserts the elements ofU as they are encountered during the scan.
This takes timeO(n + m). In the following programs we assume thatT andU are of type
sortseq<K , int>.

〈three merging routines〉�

template < lass K >

void merging_by_repeated_insertion(sortseq<K,int>& T, sortseq<K,int>& U)

{ seq_item it = U.min_item();

while ( it )

{ T.insert(U.key(it),U.inf(it));

it = U.su(it);

}

}

template < lass K >

void merging_by_sanning(sortseq<K,int>& T, sortseq<K,int>& U)

{ seq_item it1 = T.min_item();

seq_item it2 = U.min_item();

while ( it2 && ompare(U.key(it2),T.key(it1)) < 0 )

{ T.insert_at(it1,U.key(it2),U.inf(it2),LEDA::before);

it2 = U.su(it2);

}

seq_item su1 = T.su(it1);

while ( it2 )

{ K k2 = U.key(it2);

while ( su1 && ompare(T.key(su1),k2) < 0 )

{ it1 = su1;

su1 = T.su(su1);

}

it1 = T.insert_at(it1,k2,U.inf(it2),LEDA::after);

it2 = U.su(it2);

}

}

template < lass K >

void merging_by_finger_searh(sortseq<K,int>& T, sortseq<K,int>& U)

{ T.merge(U); }
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Figure 5.17 Two patterns for merging six sequences of length one. The merge pattern on the left
is unbalanced: it first merges two sequences of length one, then merges the resulting sequence of
length two with a sequence of length one, then merges the resulting sequence of length three
with a sequence of length one, . . . . The second merge pattern is balanced: it first forms three
sequences of length two, then merges two of them to a sequenceof length four, and finally
merges the sequence of length four with the remaining sequence of length two.

How do the three routines compare theoretically and experimentally? Let us consider three
cases:m = 1, m = n, and m = n/ logn. Merging by repeated insertion takes time
O(logn), O(n logn), andO(n), respectively, merging by scanning takesO(n) in all three
cases, and merging based on finger search takes timeO(logn), O(n), andO(m log(n/m)) =

O(n loglogn/ logn), respectively. We see that merging based on finger search is never
worse than the two other methods (it has a larger constant of proportionality, though) and
that it is superior to both methods in two of the cases. Table 5.8 shows an experimental
comparison of the three methods.

Robust Merge Sort: We use our three merging routines in a version of merge sort. In
order to sort a set ofn elements, merge sort starts withn sequences of length 1 (which are
trivially sorted) and then uses merging to combine them intoa single sorted sequence of
lengthn. Themerge pattern, i.e., the way in which then sequences are combined into a
single sequence can be visualized by a binary tree withn leaves andn − 1 internal nodes.
Then leaves correspond to then initial sequences and each internal node corresponds to a
merging operation. In this way we associate with every internal node the sorted sequence
that results from merging the two sequences associated withits children. Figure 5.17 shows
two merging patterns.

How do our three merging routines behave? In the balanced merging pattern we per-
form aboutn/2k merges between sequences having length 2k each and hence obtain a total
running time of

O(
∑

0≤k<logn

(n/2k)M(2k, 2k)),

where M(x, y) is the time to merge two sequences of lengthx and y. For merging by
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Merging by
repeated insertion scanning finger search

int m = 1 0 0.75 0

m = 10 0 0.767 0

m = 100 0 0.7 0

m = 1000 0.0333 0.767 0.05

m = 10000 0.4 0.883 0.267

m = 100000 3.65 1.78 1.75

double m = 1 0 0.817 0

m = 10 0 0.8 0

m = 100 0.0167 0.817 0.0167

m = 1000 0.05 0.833 0.0333

m = 10000 0.433 0.95 0.317

m = 100000 4.2 2.02 2.02

quadruplem = 1 0 2.58 0

m = 10 0 2.6 0

m = 100 0.0167 2.67 0.0333

m = 1000 0.183 2.63 0.15

m = 10000 1.65 2.82 1.03

m = 100000 15.8 4.38 6.6

Table 5.8 Running times of the three versions of merging forn = 500000 and different values
of m. The sequenceT consisted of the firstn even integers and the sequenceU consisted of the
integers 2(n/m)i + 1 for i = 1, . . . , m. Three different key types were used:int, double, and the
type four tuple<int, int, int, int> where an integeri was represented as the quadruple(0, 0, 0, i ).
This ensures that comparisons between quadruples are expensive. You may perform your own
experiments with the sortseq merge demo.

repeated insertion we haveM(x, x) = O(x logx) and hence obtain a total running time of

O(
∑

0≤k<logn

(n/2k)2kk) = O(n
∑

0≤k<logn

k) = O(n log2 n).

For merging by scanning and merging by finger search we haveM(x, x) = O(x) and hence
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Unbalanced merge tree Balanced merge tree

merging by repeated insertion 5.07 11.5

merging by scanning 3.44e+03 9.82

merging by finger search 5.9 8.73

Table 5.9 This table was generated by program sortseqmergesort. You can perform your own
experiments with the sortseq merge demo. Merging by finger search comes in shortly after the
winner for both merge patterns.

obtain a total running time of

O(
∑

0≤k<logn

(n/2k)2k) = O(n logn).

We conclude that the latter two merging methods perform optimally in the case of a balanced
merging pattern but that merging by repeated insertion doesnot.

Let us turn to the unbalanced merging pattern. It builds a sequence of lengthi by merging
a sequence of lengthi − 1 and a sequence of length 1 for alli , 2 ≤ i ≤ n. We obtain a total
running time of

O(
∑

2≤i≤n

M(i , 1)).

For merging by repeated insertion and merging by finger search we haveM(x, 1) = O(log x)

and hence obtain a total running time of

O(
∑

2≤i≤n

log i ) = O(n logn).

For merging by scanning we haveM(x, 1) = O(x) and hence obtain a total running time
of

O(
∑

2≤i≤n

i ) = O(n2).

We conclude that the two former merging methods perform optimally in the case of an
unbalanced merging pattern but that merging by scanning does not.Only merging by finger
searching performs optimally for both merge patterns.

Table 5.9 shows an experimental comparison. You may performyour own experiments
by calling the sortseq merge demo. This program generatesn sorted sequences of length one
and puts pointers to them into an arrayA (intseqis an abbreviation forsortseq<int, int>.).
It permutesA to make sorting non-trivial.
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〈fill A〉�

for (i = 0; i < n; i++)

{ A[i℄ = new int_seq;

A[i℄->insert(i,0);

}

A.permute();

It then uses either the unbalanced merge pattern or the balanced merge pattern to merge the
n sequences into a single sequence (mergeis any one of our three merging routines).

〈unbalanced merge pattern〉�

for (i = 1; i < n; i++)

{ merge(*A[0℄,*A[i℄);

delete A[i℄;

}

〈balanced merge pattern〉�

while (n > 1)

{ int k = n/2;

for (i = 0; i < k; i++)

{ merge(*A[i℄,*A[k + i℄);

delete A[k+i℄;

}

if ( 2 * k < n ) // n is odd

{ A[k℄ = A[n - 1℄; n = k + 1; }

else

{ n = k; }

}

We close our discussion of merging by showing that merge sortwith merging by finger
search has running timeO(n logn) for every merge pattern. Recall that a merge pattern
is a binary treeT with n leaves and that every internal node ofT corresponds to a merge
operation. For an internal node lets(v) be the length of the sorted sequence that is the result
of the merge operation at nodev and for a leafv let s(v) be equal to one. With this notation
the cost of the merge at a nodev with childrenx andy is

O(log

(

s(v)

s(x)

)

) = O(log(s(v)!/(s(x)!s(y)!))) = O(logs(v)! − logs(x)! − logs(y)!)

and the total running time of merge sort is obtained by summing this expression over all
nodesv of T . In this sum every nodez except for the root and the leaves contributes twice:
it contributes logs(z)! whenz is considered as a parent and it contributes− logs(z)! when
z is considered as a child. The two contributions cancel. Therefore everything that remains
is the contribution of the root (which is logn!) and the contribution of the leaves (which is
−n log 1). We conclude that the total running time isO(n logn) independent of the merge
patternT .
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Operations on Subsequences:We want to mention two further operations. Leta andb be
two items in a sorted sequenceSwith a being equal to or beforeb. Then

S.reverse items(a,b)

reverses the subsequence of items inSstarting ata and ending atb, i.e., if

S= it1, it2, . . . , it i−1, it i , it i+1, . . . , it j −1, it j , it j +1, . . . , itn

before the operation anda = it i andb = it j then

S= it1, it2, . . . , it i−1, it j , it j −1, . . . , it i+1, it i , it j +1, . . . , itn

after the operation. We will see an application ofreverseitemsin a plane sweep algorithm
for segment intersection in Section 10.7.2.Reverseitemsruns in time proportional to the
number of items that are reversed.Reverseitemsis also available under the nameflip items.

The operation

S.delete subsequene(a,b,T)

removes the subsequence starting ata and ending atb from S and assigns it toT . The
running time isO(log min(m, n − m)) wheren is the number of items inIT andm is the
number of items that are removed. We will see an application of deletesubsequencein
Section 5.8 on Jordan sorting.

Sequences and Items:Many of the operations onsortseqstake items as arguments, e.g.,

S.finger loate(finger,x)

locatesx in Sby searching from the itemfinger. What happens iffinger is not an item inS
but in some othersortseq IT?

The complete specification offingerlocateis as follows (and this is, of course, the spec-
ification that is given in the manual). LetIT be the sorted sequence containingfinger. Then

S.finger loate(finger,x)

is equivalent to

IT.finger loate(finger,x)

provided thatIT has the same type asS. If IT andS have different types the semantics of
S.fingerlocate(finger, x) is undefined.

A similar statement holds for all other operations having items as arguments. So

S.reverse items(a,b)

is applied to the sequence containing the itemsa andb (of course,a andb must belong to
the same sequence).

If the items determine the sequence to which the operation isapplied, why does one
have to specify a sequence at all? We explored the alternative to makefingerlocatea static
member function ofsortseq<K , I > and to write

sortseq<K,I>::finger loate(finger,x);
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We decided against it because in most applications of sortedsequences there is no problem
in providing the sequence as an argument and in these situations it is clearer if the sequence
is provided as an argument. The price to pay is that in the raresituation where the sequence
is not known (the program in Section 5.8 is the only program wehave ever written where
this happens) one has to “invent”S, i.e., to declare a dummy sequenceS and to apply
fingerlocateto it.

Exercise for 5.6
1 A run in a sequence of keys is a sorted subsequence. LetL = k1, . . . , kn be any sequence

and letk be the number of runs inL, i.e., k is one larger than the number ofi with
ki > ki+1. Show that insertion sort with finger search from the position of the last
insertion sorts a sequence consisting ofk runs in timeO(n(1 + logk)).

5.7 The Implementation of Sorted Sequences by Skiplists

We first desribe the skiplist data structure. Skiplists wereinvented by W. Pugh [Pug90a,
Pug90b] and our implementation is based on his papers. We go beyond his papers by
also providing implementations for finger searches, merging, and deletion of subsequences.
We start with an overview of the data structure and then outline the content of the files
skiplist.h, skiplist.c, and sortseq.h. In the bulk of the section we givethe implementations
of the different operations on skiplists.

5.7.1 The Skiplist Data Structure
A skiplist is a sequence ofskiplistnodes, see Figure 5.18. We also saytower instead of
skiplistnode. In a skiplist for a sequence ofn elements we haven + 2 towers,n towers
corresponding to the elements of the sequence and two towerscalledheaderandSTOPthat
serve as sentinels. We refer to the former towers asproperand to the latter asimproper.

A tower contains the following information:
— a key,
— an information,
— an integerheight,
— an arrayforward of height+ 1 pointers to towers,
— a backwardpointer, and
— a predecessor pointer.

The keys of the proper towers in a skiplist are strictly increasing from front to rear of the
sequence. The sentinelsheaderandSTOPhave no keys stored in them although, logically,
their keys are−∞ and∞, respectively. It would make life somewhat easier if the keytype
K provided the elements−∞ and∞. Because not all key types do, we have decided to
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5 7 11 13 19 21 30

Figure 5.18 A skiplist: The sequence of keys stored in the sequence is 5, 7, 11, 13, 19, 21, 30.
The proper towers have height 0, 1, 0, 3, 0, 2, and 0, respectively. Their keys are shown at the
bottom of the towers. The two improper towersheaderandSTOPare the first and last tower,
respectively. They have no keys. The forward pointers pointhorizontally to the right. The
backward pointers are shown as curved arcs and the predecessor pointers are not shown. All
forward pointers that have no proper tower to point to, pointto STOP. An object of type skiplist
contains pointers toheaderandSTOP. The header points back to the skiplist object.
A search for 19 proceeds as follows. We start in the header andconsider the forward pointer at
height 3 (= maximal height of a proper tower) out of the header. It ends in a tower with key 13.
Since 19> 13 we move forward to the tower with key 13 and consider its forward pointer at
height 3. It ends inSTOP(which has key∞) and so we drop down to height two. The forward
pointer at height 2 out the tower with key 13 ends in the tower with key 21. Since 19< 21 we
drop down to the height one, . . . .

store no keys in the sentinels. When formulating invariantswe will however assume that
the keys ofheaderandSTOPare−∞ and∞, respectively.

Skiplists represent the sequence stored at different levels of granularity. The tower of
height at least zero represent the entire sequence, the towers of height at least one represent
a subsequence, the towers of height at least two represent a subsequence of the subsequence,
. . . . The operations on Skiplists gain their efficiency by exploiting the different levels of
granularity; Figure 5.18 sketches a search for key 19 in our example skip list. Observe that
the search first locates 19 with respect to the list represented by the towers of height at least
3, i.e., the list(−∞, 13, +∞), then with respect to the list represented by the towers of
height at least 2, i.e., the list(−∞, 7, 13, 21, +∞), . . . .

The height of a proper tower is chosen probabilistically when the tower is created. We
will explain this in more detail below. The height of a propertower is always non-negative.
The height ofSTOPis−1 and the height ofheaderis equal toMaxHeight. We setMaxHeight
to 32 in our implementation. When we choose the heights of proper towers we will make
sure that their height is smaller thanMaxHeight. The sentinelsheaderand STOPcan
therefore be recognized by their height.Headersare the only items with height equal to
MaxHeightandSTOPnodes are the only items with negative height.

A headerstores information in addition to the ones listed above: thedata member
trueheight is one plus the maximal height of any proper tower (it is zero if there are no
proper towers) and the membermyseqstores a pointer to the skiplist to whichheaderbe-
longs. Theheaderhas typeheadernode, where aheadernodeis anskiplistnodewith the
two additional fields just mentioned.
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A pointer to askiplistnodeis called ansl itemand a pointer to aheadernodeis called a
largeitem.

In the definitions below the flagSMEM (= simple memory management) allows us to
choose between two schemes for memory allocation. IfSMEM is defined, the obvious
memory allocation scheme is used andforward is realized as an array ofsl itemsand if
SMEMis not defined, a refined and more efficient memory allocation scheme is used. This
is explained in more detail in Section 5.7.4.

The flag__exportC is used for preprocessing purposes. On UNIX-systems it is sim-
ply deleted and on Windows-systems it is replaced by flags which are needed to generate
dynamic libraries.

〈definition of classes skiplistnode and headernode〉�

lass __exportC header_node;

lass __exportC skiplist_node;

typedef skiplist_node* sl_item;

typedef header_node* large_item;

onst int MaxHeight = 32;

lass __exportC skiplist_node

{ friend lass __exportC skiplist;

stati leda_mutex mutex_id_ount;

stati unsigned long id_ount;

GenPtr key;

GenPtr inf;

int height;

unsigned long id; // id number

sl_item pred;

sl_item bakward;

#ifdef SMEM

sl_item* forward; // array of forward pointers

#else

sl_item forward[1℄;

#endif

friend unsigned long ID_Number(skiplist_node* p){return p->id;}

};

lass __exportC header_node : publi skiplist_node

{ friend lass __exportC skiplist;

#ifndef SMEM

sl_item more_forward_pointers[MaxHeight℄;

#endif

int true_height;

skiplist* myseq;

};

A header node can be viewed as askiplistnodeand as aheadernode. If v is ansl itemwhich
is known to be alarge item(becausev → height= MaxHeight) then we can castv to a large
item by(large item)v and access the skiplist containingv by ((large item)v) → myseq.

We can now complete the definition of the skiplist data structure by defining the values
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only towers of
height< 4 height< 2

w v z

only towers of

Figure 5.19 Forward and backward pointers:v → forward[2] points to the closest successor
tower of height at least 2 andv → backwardpoints to the closest predecessor tower of height at
least 4.

of the various pointers stored in a tower, see Figure 5.19. Let v be any tower and leth be
the height ofv (view headeras a tower of heighttrueheightfor this paragraph). Then:

• for all i , 0 ≤ i ≤ h, thei -th forward pointer ofv points to closest successor tower of
height at leasti (to STOPif there is no such tower),

• the backward pointer points to the nodew with the highest forward pointer intov, i.e.,
theh-th forward pointer ofw points tov,

• and the predecessor pointer ofv points to the tower immediately precedingv.

The procedurevalidatedatastructurechecks the invariants in timeO(trueheight· n).

〈miscellaneous〉�

void skiplist::validate_data_struture()

{ assert(header == header->myseq->header);

assert (header->height == MaxHeight);

assert(STOP->height == -1);

int max_proper_height = -1;

sl_item p = (sl_item) header;

while (p != STOP)

{ assert(p->height >= 0);

if (p != header && p->height > max_proper_height)

max_proper_height = p->height;

p = p->forward[0℄;

}

assert(header->true_height == max_proper_height + 1);

p = (sl_item) header;

while (p != STOP)

{ sl_item q = p->forward[0℄;

assert(p == q->pred); //ondition three

if (p != header && q != STOP) //hek order

assert(mp(p->key,q->key) < 0);

for(int h=0; h<=Min(p->height,header->true_height);h++)

{ sl_item r = p->forward[0℄;
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while (r->height < h && r != STOP) r = r->forward[0℄;

assert ( r == p->forward[h℄); //ondition one

if ( h == r->height ) assert(r->bakward == p);

} //ondition two

p = q;

}

assert(STOP->bakward == (sl_item) header);

}

As a preview for later sections we describe briefly how one cansearch for a keyx in
a skiplist. We keep a nodev and a heighth such thatv → key < x and x ≤ v →

forward[h] → key. Initially, v = headerandh = trueheight. In the basic search step
we find a nodev with the same property andh one less. This is easy to achieve. We only
have to start a walk at nodev taking forward pointers at heighth − 1.

h--;

w = v->forward[h℄;

while (key > w->key)

{ v = w;

w = v->forward[h℄;

}

The while-loop re-establishes the invariantv → key< x ≤ v → forward[h] → key. Con-
tinuing in this way down toh = 0 locatesx among the items in the skiplist. The complete
program for a search in a skiplist is therefore as follows:

sl item v = header;

int h = header->true height;

while ( h > 0 )

{ h--;

w = v->forward[h℄;

while (w != STOP && key > w->key)

{ v = w;

w = v->forward[h℄;

}

}

The search in skiplists is efficient because skiplists represent the underylying sequence at
different levels of granularity. The forward pointers at level 0 represent the entire sequence,
the forward pointers at level 1 represent the subsequence formed by the towers of height at
least 1, the forward pointers at level 2 represent the subsequence formed by the towers of
height at least 2, . . . . In a search we locatex with respect to the subsequence of towers of
height at leasth for decreasing values ofh. This is trivial at the highest level and requires
only little additional work for each smaller value ofh.

The height of a proper tower is chosen probabilistically when the tower is created. It is
set toh with probability ph(1 − p) wherep with 0 < p < 1 is a parameter that is fixed
when the skiplist is created. In our implementation we use 1/4 as the default value forp.
We draw three easy consequences from this probabilistic definition of height.
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The probability that a proper tower has heighth or more is
∑

k≥h pk(1 − p) = ph and
therefore the expected value ofheightcan be computed as15:

E[height] =
∑

h≥1

ph = p
∑

h≥0

ph = p/(1 − p).

Since the space requirement for a tower of heighth is (6 + h) · 4 bytes plus the space for
the key and the information we conclude that the expected space requirement for a skiplist
of n items is about(6 + p/(1 − p))4n bytes plus the space for the keys and informations.
For p = 1/4 we have E[h] = 1/3 and hence the expected space requirement for a skiplist
of n items is about 76/3n = 25.333n bytes. The refined memory allocation scheme needs
a bit more, see Section 5.7.4.

The fact thatph is the probability that a proper tower has heighth or more implies that
the probability that some tower in a collection ofn proper towers has heighth or more is
at most min(1, nph). This is one forh ≤ log1/p n and is at mostpl for h = ⌈log1/p n⌉ + l .
Sincetrueheightis one plus the maximal height of any proper tower, we can compute the
expected value oftrueheightas:

E[trueheight] =
∑

h≥1

prob(trueheight≥ h) =
∑

h≥1

prob(maximal height≥ h − 1)

≤
∑

h≥0

min(1, ph) ≤
∑

0≤h<⌈log1/p n⌉

1 +
∑

h≥⌈log1/p n⌉

ph

≤ 1 + log1/p n +
∑

l≥0

pl = 1 + log1/p n + 1/(1 − p).

Finally, if v is any tower then the probability thatv → backwardhas height larger than
v is p. Observe thatv → backwardhas at least the height ofv and that the conditional
probability that a tower has heighth + 1 or more given that it has heighth or more is
ph+1/ph = p. Thus, the probability thatv → backwardhas height larger thanv is p.

We use this observation to bound the cost of a search. Consider a search for a keyx
and letv0, v1, . . . , vk be the path traced by the variablev in the program above. Then
v0 = headerandvi = vi+1→backward. By the above, the probability that the height of
vi is larger than the height ofvi+1 is p and hence the expected number of nodes traversed
at any particular height is 1/p. We start at height zero and end at heighttrueheight. The
expected length of the path is therefore bounded by

1/p · (1 + log1/p n + 1/(1 − p)).

This concludes our discussion of skiplist nodes.
We turn to the class representing skiplists. In anskiplistwe store the itemsheaderand

STOPand some quantities related to the random process:prob contains the parameterp in
use, andrandomBitscontains an integer whose lastrandomsLeftbits are random. We use

15 If X is a random variable which assumes non-negative integer values andqh = prob(X ≥ h) and
ph = prob(X = h) for all h ≥ 0 then E[X] =

∑

h≥0 ph · h =
∑

h≥1 ph · h =
∑

h≥1(qh − qh+1) · h =
∑

h≥1 qh.
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randomBitsas the random source in the construction of skiplist nodes. Whenever all bits in
randomBitsare used up we refill it using the LEDA random number generator.

〈data members of class skiplist〉�

large_item header;

sl_item STOP;

float prob;

int randomBits;

int randomsLeft;

〈private member functions of class skiplist〉�

void fill_random_soure()

{ randomBits = rand_int(0,MAXINT-1);

randomsLeft = 31;

}

5.7.2 The Files sortseq.h, skiplist.h, andskiplist.c
The definition of typesortseq<K , I > follows the strategy laid out in Section 13.4. We define
two classes: an abstract data type classsortseq<K , I > and an implementation classskiplist.
The classsortseq<K , I > is a parameterized class with type parametersK and I . The keys
and infs in the implementation class are generic pointers.

The implementation class is defined in incl/LEDA/impl/skiplist.h and src/dict/skiplist.c.
We have already seen the chunks〈definition of classes skiplistnode and headernode〉 and
〈data members of class skiplist〉. In the other chunks of skiplist.h we define a set of virtual
functions that are later redefined in the abstract data type class and we define the functions
that realize all operations on sorted sequences. The virtual functions are discussed in Sec-
tion 5.7.3 and the other functions are discussed starting inSections 5.7.5. Inskiplist.c we
assemble the implementations of all member functions (except for the trivial ones which
are given directly in the header file).

The compile-time constant SMEM is explained in Section 5.7.4.

〈skiplist.h〉�

#ifndef SKIPLIST_H

#define SKIPLIST_H

// #define SMEM remove omment for use of simple memory sheme

#inlude <LEDA/basi.h>

#inlude <assert.h>

〈definition of classes skiplistnode and headernode〉

lass __exportC skiplist

{ 〈data members of class skiplist〉

〈virtual functions of class skiplist〉

〈private member functions of class skiplist〉

publi:

〈public member functions of class skiplist〉

};
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〈implementation of inline functions〉

#endif

〈 skiplist.c〉�

#inlude <LEDA/impl/skiplist.h>

〈memory management〉

〈constructors and related functions〉;

〈search functions〉;
〈insert and delete functions〉;

〈concatenate and related functions〉;

〈miscellaneous〉;

The abstract data type class is derived from the implementation class (which we rename as
IMPL to save ink) and anseqitemis nothing but ansl item. The definition ofsortseq<K , I >
has two large sections: in〈redefinition of virtual functions〉 all virtual functions of the im-
plementation class are redefined (see Section 5.7.3) and in〈public member functions of
sortseq〉 all operations on sorted sequences are defined by calling thecorresponding func-
tion of the implementation class (see Section 5.7.10).

〈sortseq.h〉�

#ifndef SORTSEQ_H

#define SORTSEQ_H

#if !defined(LEDA_ROOT_INCL_ID)

#define LEDA_ROOT_INCL_ID 360010

#inlude <LEDA/REDEFINE_NAMES.h>

#endif

#inlude <LEDA/basi.h>

#inlude <LEDA/impl/skiplist.h>

#define IMPL skiplist

typedef sl_item seq_item;

template<lass K, lass I>

lass sortseq : publi virtual IMPL {

〈redefinition of virtual functions〉
publi:

〈public member functions of sortseq〉

};

#if LEDA_ROOT_INCL_ID == 360010

#undef LEDA_ROOT_INCL_ID

#inlude <LEDA/UNDEFINE_NAMES.h>

#endif

#endif

5.7.3 Virtual Functions and their Redefinition
The classskiplisthas virtual functionscmp, clearkey, clear inf , copykey, copyinf , print key,
print inf andkeytypeid. All of them are redefined insortseq<K , I >.
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〈virtual functions of class skiplist〉�

virtual int mp(GenPtr x, GenPtr y) onst

{ error_handler(1,"mp should never be alled"); return 0; }

virtual void opy_key(GenPtr&) onst { }

virtual void opy_inf(GenPtr&) onst { }

virtual void lear_key(GenPtr&) onst

{ error_handler(1,"lear_key should never be alled"); }

virtual void lear_inf(GenPtr&) onst

{ error_handler(1,"lear_inf should never be alled"); }

virtual void print_key(GenPtr) onst

{ error_handler(1,"print_key should never be alled"); }

virtual void print_inf(GenPtr) onst

{ error_handler(1,"print_inf should never be alled"); }

virtual int key_type_id() onst

{ error_handler(1,"key_type_id should never be alled");

return 0;

}

〈redefinition of virtual functions〉�

leda_mp_base<K> mp_def;

onst leda_mp_base<K> *mp_ptr;

int mp (GenPtr x, GenPtr y) onst

{ return (*mp_ptr) (LEDA_CONST_ACCESS(K,x), LEDA_CONST_ACCESS(K,y)); }

int ktype_id;

int key_type_id () onst { return ktype_id; }

void lear_key(GenPtr& x) onst { LEDA_CLEAR(K,x); }

void lear_inf(GenPtr& x) onst { LEDA_CLEAR(I,x); }

void opy_key(GenPtr& x) onst { LEDA_COPY(K,x); }

void opy_inf(GenPtr& x) onst { LEDA_COPY(I,x); }

void print_key(GenPtr x) onst { LEDA_PRINT(K,x,out); }

void print_inf(GenPtr x) onst { LEDA_PRINT(I,x,out); }

What are these virtual functions good for? The implementation class uses them to ma-
nipulate keys and information fields. It callscmp to compare two keys, it callscopykey,
clearkey, or print keyto copy, destroy or print a key (and analogously an inf), respectively,
and it callskeytypeid to determine the kind of the key type (integer, double, or otherwise).
The latter function allows us to optimize the treatment of integer and double keys. Keys and
informations are stored as generic pointers in the implementation class and only the abstract
class knowsK and I . All virtual functions are redefined in the abstract class. For example,
cmp(x, y) is redefined asLEDACOMPARE(K , x, y) which in turn amounts to converting
x andy to typeK and then calling the compare function of typeK . Similar statements hold
for the other virtual functions, see Section 13.4.

Except forcopykeyandcopyinf the virtual functions are only called in their redefined
form. In order to double-check we have included appropriateasserts into the bodies of the
virtual functions.Copykeyandclearkeyare also called by the copy-constructor ofskiplist
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Figure 5.20 A skiplist node with four forward pointers. The left part shows the simple memory
management scheme and the right part shows the refined memorymanagement scheme.

and their original versions are used there. For this reason the original versions ofcopykey
andcopyinf are defined as functions with no effect.

5.7.4 Memory Management
We implemented two schemes for memory management: a simple scheme and a refined
scheme. The refined scheme increases the speed of our implementation by almost a factor
of two (if insertions and deletions have about the same frequency as lookups). The sim-
ple scheme can be selected by defining the constantSMEM in skiplist.h. Both schemes are
illustrated by Figure 5.20.

In the simple scheme we construct an array ofh + 1 forward pointers by

forward = new sl item[h+1℄;

This calls the built-in new function and does not use LEDA’s memory manager. An access
to a forward pointer goes through a level of indirection as shown in Figure 5.20. The refined
scheme avoids this level of indirection.

In the refined scheme we observe that the space required for a tower of heighth is the
size of anskiplistnodeplus h times the size of a pointer. Recall that a node has already
room for one forward pointer and that a tower of heighth hash + 1 forward pointers. This
suggests using the LEDA memory manager to allocate

int(sizeof(skiplistnode)) + (h) ∗ int(sizeof(skiplistnode∗))

bytes for a node of heighth. Since C++ does not check array bounds andforward is the
last field inskiplistnodethis is equivalent to allocating space for the data member ofan
skiplistnodeand an arrayforward of h + 1 pointers.

The scheme just described has the disadvantage that it leadsto trueheightdifferent node
sizes. The life of the LEDA memory manager becomes simpler ifthe number of different
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node sizes is small. We therefore modify the scheme slightlyand roundh to the next power
of two if h > 2. We show that this modification uses very little additionalspace. The
modified scheme never allocates more than twice the number offorward pointers that are
actually needed and it allocates no additional forward pointer if h ≤ 2. Sinceph is the
probability that a tower has heighth or more, the additional number of forward pointers per
tower required by the modified scheme is therefore bounded by

∑

h≥3 ph = p3/(1 − p).
For p = 1/4 this is equal to 1/48, i.e., an expected additional 1/12 bytes per tower. We
conclude that the expected space requirement for a skiplistwith n items is about 25.42 · n
bytes plus the space for the keys and informations.

The macroNEWNODE(v, h) allocates space for a node of heighth and the macro
FREENODE(v) frees that space again. Both macros use the LEDA memory management
scheme. The macrosNEWHEADER(v) andFREEHEADER(v) do the same for header
nodes. Recall that a header always containsMaxHeight+ 1 forward pointers.

〈memory management〉�

inline int NODE_SIZE(int l)

{ int l1 = 0;

if ( l > 0 ) // ompute smallest power of two >= l

{ l1 = 1;

while (l1 < l) l1 <<= 1;

}

return int(sizeof(skiplist_node))+

(l1)*int(sizeof(skiplist_node*));

}

#define NEW_NODE(v,l) \

v = (sl_item)std_memory.alloate_bytes(NODE_SIZE(l)); \

v->height = l;

#define FREE_NODE(v) \

std_memory.dealloate_bytes(v,NODE_SIZE(v->height))

inline int HEADER_SIZE()

{ int l1 = 1;

while (l1 < MaxHeight) l1 <<= 1;

return int(sizeof(header_node))+

(l1)*int(sizeof(skiplist_node*));

}

#define NEW_HEADER(v) \

v = (large_item)std_memory.alloate_bytes(HEADER_SIZE());\

v->height = MaxHeight;

#define FREE_HEADER(v) \

std_memory.dealloate_bytes(v,HEADER_SIZE())

5.7.5 Construction, Assignment and Destruction
The classskiplist has two constructors. The first constructor constructs an empty skiplist
and the second constructor copies its argument.
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Let us look more closely at the first constructor. We allocatea tower of heightMaxHeight
for headerand a tower of height−1 for STOP. Thetrueheightof theheaderis 0 and hence
only the level 0 forward pointer ofheaderis initialized.

The copy constructor first constructs an empty skiplist and then copies its argumentL
element by element. Since the constructor of classskiplist uses the trivial versions of the
virtual functionscopykeyandcopyinf , the calls ofcopykeyandcopyinf in insertat item
have no effect, and we therefore have to useL ’s version of these functions to do the copy-
ing. This is a problem which arises in the implementation of all copy constructors; see
Section 13.1 for a general discussion.insertat item is defined in Section 5.7.8.

The default constructor takes constant time and the copy constructor takes linear expected
time plus the time to copyn keys and informations.

〈constructors and related functions〉�

skiplist::skiplist(float p)

{ prob = p;

randomsLeft = 0;

#ifdef SMEM

header = new header_node;

header->forward = new sl_item[MaxHeight+1℄;

header->height = MaxHeight;

STOP = new skiplist_node;

STOP->height = -1;

#else

NEW_HEADER(header);

NEW_NODE(STOP,-1);

#endif

header->true_height = 0;

header->myseq = this;

STOP->bakward= (sl_item) header;

STOP->pred= (sl_item) header;

header->forward[0℄ = STOP;

}

skiplist::skiplist(onst skiplist& L)

{ prob = L.prob;

randomsLeft = 0;

#ifdef SMEM

header = new header_node;

header->forward = new sl_item[MaxHeight+1℄;

header->height = MaxHeight;

STOP = new skiplist_node;

STOP->height = -1;

#else

NEW_HEADER(header);

NEW_NODE(STOP,-1);

#endif

header->true_height = 0;

header->myseq = this;

STOP->bakward= (sl_item) header;

STOP->pred= (sl_item) header;
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header->forward[0℄ = STOP;

sl_item p = L.STOP->pred;

while (p!= L.header)

{ insert_at_item(header,p->key,p->inf);

L.opy_key(p->key);

L.opy_inf(p->inf);

p = p->pred;

}

}

We come to the assignment operator, the functionclear, and the destructor. The as-
signment operator first clears the skiplist and then copies its argument. Theclear function
deletes all nodes of a skiplist and the destructor first callsclear and then deletes the two
non-proper towers.

It would not do to copy the body ofclear into the destructor since∼skiplist uses the
trivial versions of the virtual functionsclearkeyandclear inf and hence does not know
how to destroy a key or inf. This is a problem which arises in the implementation of all
destructors; see Section 13.4.3 for a general discussion.

All three functions take linear expected time plus the time to copy or clearn keys and
informations.

〈constructors and related functions〉+�

skiplist& skiplist::operator=(onst skiplist& L)

{ lear();

sl_item p = L.STOP->pred;

while (p!= L.header)

{ insert_at_item(header,p->key,p->inf,after);

p = p->pred;

}

return *this;

}

void skiplist::lear()

{ register sl_item p,q;

p = header->forward[0℄;

while(p!=STOP)

{ q = p->forward[0℄;

lear_key(p->key);

lear_inf(p->inf);

#ifdef SMEM

delete p->forward;

delete p;

#else

FREE_NODE(p);

#endif

p = q;

}

header->true_height = 0;

header->forward[0℄ = STOP;

STOP->pred= (sl_item) header;
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}

skiplist::~skiplist()

{ lear();

#ifdef SMEM

delete header->forward;

delete header;

delete STOP;

#else

FREE_HEADER(header);

FREE_NODE(STOP);

#endif

}

5.7.6 Search Operations
Skiplists offer a wide variety of search operations. We firstgive a fairly general search
function calledsearchand then derive the other search functions from it.Searchtakes a
key, an itemv and an integerh and returns a nodeq and an integerl . The nodev has height
at leasth andkeyis known to lie betweenv → key(exclusive) andv → forward[h] → key
(inclusive). In the formulation of this precondition we used our simplifying assumption that
the keys ofheaderandSTOPare−∞ and∞, respectively.Searchfinds the unique nodeq
such thatkeylies betweenq → pred→ key(exclusive) andq → key(inclusive). Ifkey is
equal toq → keythenl ≥ 0; otherwise,l < 0.

The principle underlyingsearchis simple. It maintains itemsp andq and a heightk,
k ≥ −1, such thatp’s height is at leastk + 1, q is the levelk + 1 successor ofp and
p → key< key≤ q → key. Initially k = h − 1. If k is −1 thenq is returned. Ifk ≥ 0 then
we search through levelk starting atp → forward[k] to determine the newp andq.

q = p->forward[k℄;

while (key > q->key) { p = q; q = p->forward[k℄; }

The basic strategy can be slightly optimized as follows. Before making a comparison be-
tween keys we check whether the currentq has heightk (otherwise, it is already known
that key ≤ q → key). This optimization is worthwhile when a comparison between keys
is considerably more expensive than a comparison between integers. This is the case when
the comparison is made by callingcmpand it is not the case when the comparison is made
by the operator< for intsor doubles.

The expected running time ofsearchis O(1+ h) sinceh + 1 levels are visited and since
the expected time spent on each level is constant. The easiest way to see the latter fact is
to traverse the search path backwards and to recall that after following a constant expected
number of backward pointers a higher tower is reached.

We give three versions ofsearch, one calledgensearchand working for arbitrary key
typeK , one calleddoublesearchand working only for keys of typedouble, and one called
int searchand only working for keys of typeint. Searchselects the appropriate version by
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switching on the value ofkeytypeid. A general discussion of this optimization strategy can
be found in Section 13.5.

〈search functions〉�

sl_item skiplist::searh(sl_item v, int h, GenPtr key, int& l) onst

{ swith (key_type_id()) {

ase INT_TYPE_ID: return int_searh(v,h,key,l);

ase DOUBLE_TYPE_ID: return double_searh(v,h,key,l);

default: return gen_searh(v,h,key,l);

}

}

sl_item skiplist::gen_searh(sl_item v, int h, GenPtr key, int& l) onst

{ register sl_item p = v;

register sl_item q = p->forward[h℄;

l = 0;

#ifdef CHECK_INVARIANTS

assert(p->height == MaxHeight || mp(key,p->key) > 0);

assert(q->height < 0 || mp(key,q->key) <= 0);

#endif

if (q->height >= 0 && mp(key,q->key) == 0) return q;

int k = h - 1;

int  = -1;

while (k >=0)

{ /* p->key < key < p->forward[k+1℄->key and  = -1 */

q = p->forward[k℄;

while (k == q->height && ( = mp(key,q->key)) > 0)

{ p = q;

q = p->forward[k℄;

}

if ( == 0) break;

k--;

}

l = k;

#ifdef CHECK_INVARIANTS

p = q->pred;

assert(p->height == MaxHeight || mp(key,p->key) > 0);

assert(q->height < 0 || mp(key, q->key) <= 0);

assert(l >= 0 && mp(key,q->key) == 0 ||

( l < 0 && (q->height < 0 || mp(key,q->key) < 0)));

#endif

return q;

}

In the versions ofsearchfor integer and double keys we perform the following optimiza-
tions: we avoid the call ofcmpand call the comparison operators<, ≤, =, . . . instead.
Moreover, we drop the comparisonk == q->height, as it does not pay for integer keys.
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〈search functions〉+�

sl_item skiplist::int_searh(sl_item v, int h, GenPtr key, int& l) onst

{ sl_item p = v;

sl_item q = p->forward[h℄;

l = 0;

int ki = LEDA_ACCESS(int,key);

int k = h - 1;

STOP->key = key;

while (k >= 0)

{ /* p->key < key <= p->forward[k+1℄->key */

q = p->forward[k℄;

while ( ki > LEDA_ACCESS(int,q->key) )

{ p = q;

q = p->forward[k℄;

}

if ( ki == LEDA_ACCESS(int,q->key) && q != STOP ) break;

k--;

}

l = k;

#ifdef CHECK_INVARIANTS

p = q->pred;

assert(p->height==MaxHeight || ki>LEDA_ACCESS(int,p->key));

assert(q->height < 0 || ki <= LEDA_ACCESS(int,q->key));

assert(l >= 0 && ki == LEDA_ACCESS(int,q->key) ||

( l < 0 && (q->height<0 || ki<LEDA_ACCESS(int,q->key))));

#endif

return q;

}

We refrain from showing the version for double keys. For all other search functions we will
only show the generic version.

It is easy to derive the other search functions from the basicroutinesearch. The call
locatesucc(k) returns the item〈k1, i 〉 with k ≤ k1 andk1 minimal (nil if there is no such
item), locatepred is symmetric tolocatesucc, locate is synonymous tolocatesuccand
lookup(k) returns the item〈k, i 〉 (nil if there is no such item). All operations in this section
take logarithmic time.

〈search functions〉+�

sl_item skiplist::loate_su(GenPtr key) onst

{ int l;

sl_item q = searh(header,header->true_height,key,l);

return (q == STOP) ? 0 : q;

}

sl_item skiplist::loate(GenPtr key) onst { return loate_su(key); }

sl_item skiplist::loate_pred(GenPtr key) onst

{ int l;

sl_item q = searh(header,header->true_height,key,l);

if (l < 0) q = q->pred;

return (q == header) ? 0 : q;
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}

sl_item skiplist::lookup(GenPtr key) onst

{ int k;

sl_item q = searh(header,header->true_height,key,k);

return (k < 0) ? 0 : q;

}

5.7.7 Finger Searches
We describe four versions of finger search.

The first three versions take akeyand locate an itemq and an integerl such thatq →

pred → key < key ≤ q → keyandl ≥ 0 iff key = q → keyand run in timeO(logd),
O(log(n − d)), andO(log min(d, n − d)), respectively, ifq is thed-th item in a list ofn
items. We first show how to obtain the time boundsO(logd) andO(log(n − d)), respec-
tively.

To achieve the first bound we comparekeywith the key ofheader→ forward[k] for k
equal to 0, 1, . . . until a key at least as large askeyis found. When this is the case we start a
standard search at levelk from the header.

k = 0;

while ( k < true height )

{ if ( key <= header->forward[k℄->key ) break;

k++;

}

searh(header,k,key,l);

Since the expected maximal height among the firstd towers isO(logd) the expected max-
imal value ofk is O(logd) and the time bound follows.

In order to achieve the second bound we comparekeywith the key of the rightmost tower
qk of height at leastk for k equal to 0, 1, . . . until a key smaller thankey is found. When
this is the case we start a standard search at levelk from qk. We can findqk from qk−1 by
following an expected constant number of backward pointers.

k = 0;

q = STOP->pred;

while ( k < true height )

{ if ( key > q->key ) break;

k++;

while ( q->height < k ) q = q->bakward;

}

searh(q,k,key,l);

Since the expected maximal height among the lastn−d towers isO(log(n−d)) the expected
maximal value ofk is O(log(n − d)) and the time bound follows.

In order to obtain the minimum of both time bounds we perform the two searches simul-
taneously (also called dove-tailed), i.e., we merge the twoloop bodies into one, and stop as
soon as one of the two searches tells us to stop.
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As in the case of standard searches we provide optimizationsfor keys of typeint or
double.

〈search functions〉+�

sl_item skiplist::finger_searh_from_front(GenPtr key, int& l) onst

{ swith (key_type_id()) {

ase INT_TYPE_ID: return int_finger_searh_from_front(key,l);

ase DOUBLE_TYPE_ID: return double_finger_searh_from_front(key,l);

default: return gen_finger_searh_from_front(key,l);

}

}

sl_item skiplist::gen_finger_searh_from_front(GenPtr key, int& l) onst

{ sl_item q = STOP->pred;

int th = header->true_height;

if (th == -1) return STOP;

l = 0;

int k = 0;

int 1;

while ( k < th )

{ if ( mp(key,header->forward[k℄->key) <= 0 ) break;

k++;

}

return searh(header,k,key,l);

}

and similarly

〈search functions〉+�

sl_item skiplist::gen_finger_searh_from_rear(GenPtr key, int& l) onst

{ sl_item q = STOP->pred;

int th = header->true_height;

if (th == -1) return STOP;

l = 0;

int k = 0;

while ( k < th )

{ if ( mp(key, q->key) > 0 ) break;

k++;

while (k > q->height) q = q->bakward;

}

return searh(q,k,key,l);

}

and

〈search functions〉+�

sl_item skiplist::gen_finger_searh(GenPtr key, int& l) onst

{ sl_item q = STOP->pred;

int th = header->true_height;

if (th == -1) return STOP;

l = 0;
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int k = 0;

int 1,2;

while ( k < th )

{ 1 = mp(key,header->forward[k℄->key);

2 = mp(key, q->key);

if ( 1 <= 0 || 2 > 0 ) break;

k++;

while (k > q->height) q = q->bakward;

}

if (1 <= 0)

return searh(header,k,key,l);

else

return searh(q,k,key,l);

}

The fourth version of finger search takes an itemv and akeyand returns an integerl and
an itemq such thatq → pred→ key< key≤ q → keyandl ≥ 0 iff key= q → key. It
runs in timeO(log min(d, n − d)) whered is the number of items betweenv andq. The
search is performed in the skiplist containingv and not in the skiplist which is given by
this; recall the discussion in the paragraph preceding Section 5.7. This implies that we must
not use the variablesheader, STOP, nor trueheight in the program below. However, once
we have determined the STOP node or the header node of the skiplist containingv (recall
that STOP nodes are the only towers with negative height and that header nodes are the
only towers with heightMaxHeight) we can find the skiplist containingv as follows: if p
is the header node of the skiplist containingv then((large item) p) → myseqis the skiplist
containingv and if p is the STOP node of the skiplist containingv then p → backwardis
the corresponding header node and we are back to the situation where we know the header
node.

The strategy used byfingersearchis simple. Ifv is either the header or the STOP node
of the skiplist containingv then we simply call the first version of finger search. So assume
otherwise.

Assume first thatkeyis larger than the key ofv. Fork ≥ 0 let pk be the rightmost tower
to the left of or equal tov that has heightk or more. We find the minimalk such that either
pk is a header node orpk → forward[k] is a STOP node orkeylies between the key ofpk

and pk → forward[k]. In the first case we finish the search by calling the first version of
finger search and in the last two cases (note that the second case is really a special case of
the third case under the convention that the key of STOP is∞) we start a standard search
from pk at levelk. If keyis smaller than the key ofv, we use the symmetric strategy.

The running time offingersearchis readily determined. Assume for simplicity thatq
is to the right ofv (the other case being symmetric) and thatv is the n1-th item in the
sequence. Thenv and q split the list into three parts of lengthn1, n2 = d, andn3 =

n − n1 − n2, respectively. Usehi to denote the maximal height of a tower in thei -th part.
Then E[hi ] = logni + O(1). The maximal value assumed by the variablek is equal to
h0 = min(h1, h2) = log min(d, n − d) + O(1). If the backward walk reaches the header
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thenh1 ≤ h2 and the second part of the search is the dove-tailed search ofthe preceding
section that takes time min(max(h1, h2), h3)) = min(h2, h3) = log min(d, n−d)+O(1). If
the backward walk does not reach the header then the second part of the search is a standard
search that takes timeO(h0) as well.

As before we have three versions offingersearch, one for general keys, one for keys of
type int, and one for keys of typedouble.

〈search functions〉+�

sl_item skiplist::gen_finger_searh(sl_item v, GenPtr key, int& l) onst

{ l = 0;

sl_item p = v;

if ( p->height < 0 ) p = p->bakward;

// if p was a STOP node then it is a header now

if ( p->height == MaxHeight )

return ((large_item) p)->myseq->finger_searh(key,l);

int dir = mp(key, v->key);

if ( dir == 0 ) return v;

int k = 0;

int  ;

if (dir > 0)

{ while ( p->height < MaxHeight && p->forward[k℄->height >= 0 &&

( = mp(key,p->forward[k℄->key )) >= 0 )

{ if (  == 0 ) return p->forward[k℄;

k++;

while ( k > p->height ) p = p->bakward;

}

if ( p->height == MaxHeight )

return ((large_item)p)->myseq->finger_searh(key,l);

}

else

{ while ( p->height < MaxHeight && p->forward[k℄->height >= 0 &&

( = mp(key, p->key)) <= 0 )

{ if (  == 0 ) return p;

k = p->height;

p = p->bakward;

}

if (p->forward[k℄->height < 0 )

{ p = p->forward[k℄->bakward;

return ((large_item)p)->myseq->finger_searh(key,l);

}

}

#ifdef CHECK_INVARIANTS

assert(p->height == MaxHeight || mp(key, p->key) > 0);

assert(p->forward[k℄->height < 0 ||

mp(key, p->forward[k℄->key) < 0);

#endif

return searh(p,k,key,l);

}
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. . .. . . . . . . . .

p qp q

Figure 5.21 Insertion of a towerq after a towerp. All pointers that are “intersected” by the new
tower are redirected.

5.7.8 Insertions and Deletions
We discuss the various procedures to insert into and to delete from a skiplist.

The procedureinsertitemat item(q, p, dir) inserts the itemq after and beforep, respec-
tively, as prescribed bydir. This requires to redirect pointers as shown in Figure 5.21.The
trueheightof the header is also adjusted to the maximum of the old heightand 1 plus the
height of the new item.

The running time ofinsertitemat item is proportional to the height of the new item. The
expected height of the new item is constant.

〈insert and delete functions〉�

void skiplist::insert_item_at_item(sl_item q, sl_item p, int dir)

{ if (dir == before) p = p->pred;

/* insert item q immediately after item p */

sl_item x;

q->pred = p;

p->forward[0℄->pred = q;

for (int k = 0; k <= q->height; k++ )

{ while (k > p->height) p = p->bakward;

x = p->forward[k℄;

if (p->height == MaxHeight && x->height < 0 )

{/* we have reahed header and STOP and need to

inrease true_height */

((large_item) p)->true_height = k + 1;

p->forward[k+1℄ = x;

}

q->forward[k℄ = x;

p->forward[k℄ = q;

if ( x->height == k ) x->bakward = q;

}

q->bakward = p;

}

The functioninsertat item(p, key, inf ) modifies the skiplist in the vicinity of itemp. If
p’s key is equal tokey then its information is changed toinf . Otherwise a new item is
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created and inserted before or afterp as dictated bykey. The height of the new node is
chosen randomly by a callrandomLevel( ). The expected running time is constant.

〈insert and delete functions〉+�

sl_item skiplist::insert_at_item(sl_item p, GenPtr key, GenPtr inf)

{ sl_item q;

if (p->height < 0) p = p->pred;

else

{ if ( p->height < MaxHeight )

{ int  = mp(key,p->key);

if ( == 0)

{ lear_inf(p->inf);

opy_inf(inf);

p->inf = inf;

return p;

}

if ( <0 ) p = p->pred;

}

}

int k = randomLevel();

if ( k >= MaxHeight ) k = MaxHeight - 1;

#ifdef SMEM

q = new skiplist_node;

q->forward = new sl_item[k+1℄;

q->height = k;

#else

NEW_NODE(q,k);

#endif

opy_key(key);

opy_inf(inf);

q->key = key;

q->inf = inf;

insert_item_at_item(q,p,after);

return q;

}

int skiplist::randomLevel()

{ int height = 0;

int b = 0;

if ( prob == 0.25 )

{ while ( b == 0 )

{ b = randomBits&3; // read next two random bits

randomBits >>= 2;

randomsLeft -= 2;

if ( b == 0 ) height++;

// inrease height with prob 0.25

if (randomsLeft < 2) fill_random_soure();

}

}

else // user defined prob.

{ double p;
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rand_int >> p;

while ( p < prob )

{ height++;

rand_int >> p;

}

}

return height;

}

There is also a version ofinsertat itemwhich inserts before or afterp as directed bydir.
The expected running time is again constant.

〈insert and delete functions〉+�

sl_item skiplist::insert_at_item(sl_item p,

GenPtr key, GenPtr inf, int dir)

{ sl_item q;

int k = randomLevel();

#ifdef SMEM

q = new skiplist_node;

q->forward = new sl_item[k+1℄;

q->height = k;

#else

NEW_NODE(q,k);

#endif

opy_key(key);

opy_inf(inf);

q->key = key;

q->inf = inf;

insert_item_at_item(q,p,dir);

return q;

}

This completes the discussion of the insertion procedures which insert at a given item.
Insert(k, i ) inserts a new item〈k, i 〉 or changes the information of the item with keyk (if

there is such an item) anddel(k) removes the item with keyk.

〈insert and delete functions〉+�

sl_item skiplist::insert(GenPtr key, GenPtr inf)

{ int k;

sl_item p = searh(header,header->true_height,key,k);

if ( k >= 0 )

{ lear_inf(p->inf);

opy_inf(inf);

p->inf = inf;

return p;

}

p = insert_at_item(p,key,inf,before);

return p;

}
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Removeitem removes an item anddel item removes an item, frees its storage and also
adjusts the height of the skiplist if required. The first function is used in the second and in
reverseitems. A call reverseitems(p, q) with p equal or left ofq reverses the subsequence
with endpointsp andq.

Reverseitemhas expected running timeO(d), whered is the length of the subsequence
to be reversed. The other functions run in constant expectedtime.

〈insert and delete functions〉+�

void skiplist::remove_item(sl_item q)

{

if (q->height == MaxHeight || q->height < 0)

error_handler(1,"annot remove improper item");

sl_item p = q->bakward;

sl_item x;

for(int k = q->height; k >= 0; k--)

{ while ( p->forward[k℄ != q ) p = p->forward[k℄;

x = q->forward[k℄;

p->forward[k℄ = x;

if ( x->height == k ) x->bakward = p;

}

x->pred = p;

}

void skiplist::del_item(sl_item q)

{

if (q->height == MaxHeight || q->height < 0)

error_handler(1,"annot delete improper item");

remove_item(q);

lear_key(q->key);

lear_inf(q->inf);

sl_item p = q->forward[q->height℄;

#ifdef SMEM

delete q->forward;

delete q;

#else

FREE_NODE(q);

#endif

if ( p->height < 0 )

{ large_item r = (large_item) p->bakward;

int& h = r->true_height;

while( h > 0 && r->forward[h - 1℄ == p) h--;

}

}

void skiplist::del(GenPtr key)

{ int k;

sl_item q = searh(header,header->true_height,key,k);

if ( k>=0 ) del_item(q);

}

void skiplist::reverse_items(sl_item p, sl_item q)

{ sl_item r;
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while ( p != q )

{ r = p;

p = p->forward[0℄;

remove_item(r);

insert_item_at_item(r,q,after);

}

}

5.7.9 Concatenate, Split, Merge and DeleteSubsequence
We discuss concatenation, splitting, merging, and the deletion of subsequences.

Concatenation: We describe how to concatenate two skiplists of sizen1 andn2, respec-
tively, in time

O(log min(n1, n2)).

Assume that the two lists to be concatenated are given bythisandS1. We first make sure
that this is the higher list (by swappingheaderandSTOPof this andS1, if necessary) and
then appendS1to either the front or the rear ofthis. Assume that we need to appendS1to
the rear ofthis, the other case being symmetric.

There are two strategies for performing the concatenation.The first strategy places the
skiplists next to each other and then removes the STOP node ofthe left list and the header
of the second list. The work required is proportional to the height of the higher list.

The second strategy placesS1between the last element ofthisand the STOP node ofthis
and then the header node and the STOP node ofS1. The work required is proportional to
the smaller height.

We use the second strategy. The details are as follows. For any k less than the height of
S1thek-th forward pointer out of the rightmost tower inthisof height at leastk is redirected
to the first item inS1of height at leastk and thek-th forward pointer out of the rightmost
tower inS1of height at leastk is redirected to the STOP node ofthis, see Figure 5.22.

The running time ofconcis proportional to the smaller of the two heights and is therefore
O(log min(n1, n2)).

〈concatenate and related functions〉�

void skiplist::on(skiplist& S1, int dir)

{ if (header->true_height < S1.header->true_height)

{ leda_swap(header->myseq,S1.header->myseq);

leda_swap(header,S1.header);

leda_swap(STOP,S1.STOP);

dir = ((dir == after) ? before : after);

}

if (S1.STOP->pred == S1.header) return;

/* S1 is non-empty and sine height >= S1.height this is

also non-empty */

if (dir == after)
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S S1 S S1

rightmost
proper tower inS

or

Figure 5.22 Concatenation of two skiplistsSandS1. S1 is assumed to have smaller height and
is appended at the rear ofS. Only the header and STOP nodes of the lists are shown; their
trueheightis indicated as the height of the corresponding rectangles.The left part illustrates the
first strategy and the right part illustrates the second strategy. The shaded towers are removed.

{ sl_item p = STOP->pred;

sl_item q = S1.STOP->pred;

assert(mp(p->key, S1.header->forward[0℄->key) < 0);

STOP->pred = q;

S1.header->forward[0℄->pred = p;

for (int k = 0; k < S1.header->true_height; k++)

{ /* p and q are the rightmost items of height at

least k in this and S1, respetively */

sl_item r = S1.header->forward[k℄;

p->forward[k℄ = r;

if ( r->height == k ) r->bakward = p;

q->forward[k℄ = STOP;

while (p->height == k) p = p->bakward;

while (q->height == k) q = q->bakward;

}

}

else

{ sl_item q = S1.STOP->pred;

assert(mp(q->key, header->forward[0℄->key) < 0);

S1.header->forward[0℄->pred= (sl_item) header;

header->forward[0℄->pred = q;

for (int k = 0; k < S1.header->true_height; k++)

{ // q is the rightmost item of height at least k in S1

sl_item r = header->forward[k℄;

q->forward[k℄ = r;

if (r->height == k) r->bakward = q;

r = S1.header->forward[k℄;

header->forward[k℄ = r;

if (r->height == k) r->bakward= (sl_item) header;

while (q->height == k) q = q->bakward;

}

}

S1.header->true_height = 0;
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S1.STOP->pred = (sl_item) S1.header;

S1.header->forward[0℄ = S1.STOP;

#ifdef CHECK_INVARIANTS

this->hek_data_struture("this in on");

hek_data_struture(S1,"S1 in on");

#endif

}

We need to explain the last call ofcheckdatastructure. In deletesubsequencewe callconc
with an argumentS1that is locally defined withindeletesubsequence. ThisS1is a skiplist
but not asortseqand hence its virtual functions have never been redefined. Wetherefore
usethisas the implicit argument of the last call ofcheckdatastructureand in this way give
it access to the redefined versions of the virtual functions.

Split: S.split at item(p, S1, S2, dir) splits the skiplist containingp before or after itemp
into listsS1andS2as directed bydir in time proportional to the logarithm of the shorter
result. We useP to denote the skiplist containingp. Clearly,S1andS2must be distinct,
but one of them may be equal toP . If both of them are different fromP thenP is empty
after the split. The primary argumentS may be any skiplist. It must have the same type as
P, S1, andS2.

A method whose running time is proportional to the logarithmof the size ofP is easy to
describe. We simply erect two new improper towers before or after p.

In order to obtain a running time that is proportional to the height of the smaller result
list, we have to reuseheaderand STOPof P for the larger output list. We proceed as
follows. We first determine the lower of the two outputs by simultaneously walking from
p and its successor (this assumesdir == after) to headerandSTOPuntil one of the two
walks reaches its destination. Letmaxlev be the maximal level reached, i.e., both sublists
contain a tower of heightmaxlevand for one of the sublists this is the maximal height.

Assume firstmaxlev is the maximal height of a tower inS1, i.e., in the left sublist. Then
1 + maxlev is the height ofS1andheight is the height ofS2after the split. We want to
reuseheaderandSTOPof P for S2. We interchangeheaderandSTOPof S2and P (this
makesS2the input list and, ifP andS2are distinct, makesP empty) and then removeS1
from S2.

To removeS1 from S2 we do the following for eachk, 0 ≤ k ≤ maxlev. Let p k be
the rightmost item inS1of height at leastk. Thek-th forward pointer out ofS1.headeris
redirected to the destination of thek-th forward pointer out ofS2.header, thek-th forward
pointer out ofS2.headeris redirected to the destination of thek-th forward pointer out of
p k and thek-th forward pointer out ofp k is redirected toS1.STOP.

Assume next thatmaxlev is the maximal height of a tower inS2. Then the height ofS2
is 1+ maxlev after the split andheight is the height ofS1after the split. We interchange
headerandSTOPof S1and P and then removeS2 from S1 in a way similar to the one
described above.

The running time isO(maxlev) and, if n1 and n2 denote the sizes of the two parts,
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respectively, then the expected value ofmaxlev is

O(log min(n1, n2)).

〈concatenate and related functions〉+�

void skiplist::split_at_item(sl_item p,skiplist& S1,

skiplist& S2,int dir)

{ if (dir == before) p = p->pred;

sl_item p1 = p;

sl_item p2 = p->forward[0℄;

int max_lev = -1;

while ( p1->height < MaxHeight && p2->height >= 0 )

{ /* p1 and p2 are proper towers of height

larger than max_lev */

max_lev++;

while (p1->height == max_lev) p1 = p1->bakward;

while (p2->height == max_lev) p2 = p2->forward[max_lev℄;

}

/* we have seen proper towers of height max_lev on both

sides of the split and either p1 or p2 is a sentinel */

large_item pheader;

if (p1->height == MaxHeight)

pheader = (large_item) p1;

else

pheader = (large_item) p2->bakward;

skiplist* Pp = pheader->myseq;

if (Pp != &S1) S1.lear();

if (Pp != &S2) S2.lear();

if (p1->height == MaxHeight)

{ /* we reuse pheader and pSTOP for S2 */

if (Pp != &S2)

{ leda_swap(Pp->header->myseq, S2.header->myseq);

leda_swap(Pp->header,S2.header);

leda_swap(Pp->STOP,S2.STOP);

}

S1.header->true_height = 1+max_lev;

p1 = p;

for (int k =0; k <= max_lev; k++)

{ // p1 is the rightmost item in S1 of height at least k

sl_item q = S2.header->forward[k℄;

S1.header->forward[k℄ = q;

if (q->height == k) q->bakward = (sl_item) S1.header;

S2.header->forward[k℄ = p1->forward[k℄;

if (p1->forward[k℄->height == k)

p1->forward[k℄->bakward = (sl_item) S2.header;

p1->forward[k℄ = S1.STOP;

while (k == p1->height) p1 = p1->bakward;

}

S1.header->forward[max_lev + 1℄ = S1.STOP;
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/* the next line sets the predeessor of S1.STOP

orretly if S1 is non-empty; if it is empty

the last line orrets the mistake */

S1.STOP->pred = p;

S2.header->forward[0℄->pred = (sl_item) S2.header;

S1.header->forward[0℄->pred = (sl_item) S1.header;

}

else

{ /* we want to reuse pheader and pSTOP for S1 */

if (Pp != &S1)

{ leda_swap(Pp->header->myseq,S1.header->myseq);

leda_swap(Pp->header,S1.header);

leda_swap(Pp->STOP,S1.STOP);

}

S2.header->true_height = 1 + max_lev;

p1 = p;

p2 = S1.STOP->pred;

for (int k =0; k <= max_lev; k++)

{ /* p1 and p2 are the rightmost items in S1 and S2

of height at least k, respetively */

sl_item q = p1->forward[k℄;

S2.header->forward[k℄ = q;

if (q->height == k) q->bakward = (sl_item) S2.header;

p1->forward[k℄ = S1.STOP;

p2->forward[k℄ = S2.STOP;

while (k == p1->height) p1 = p1->bakward;

while (k == p2->height) p2 = p2->bakward;

}

S2.header->forward[max_lev + 1℄ = S2.STOP;

/* the next line sets the predeessor of S2.STOP

orretly if S2 is non-empty; if it is empty then

the next line orrets the mistake */

S2.STOP->pred = S1.STOP->pred;

S2.header->forward[0℄->pred = (sl_item) S2.header;

S1.STOP->pred = p;

S1.header->forward[0℄->pred = (sl_item) S1.header;

}

if (Pp != &S1 && Pp != &S2)

{ /* P is empty if distint from S1 and S2 */

Pp->header->forward[0℄ = Pp->STOP;

Pp->STOP->pred = Pp->STOP->bakward =

(sl_item) Pp->header;

Pp->header->true_height = 0;

}

#ifdef CHECK_INVARIANTS

this->hek_data_struture("this in split");

Pp->hek_data_struture("P in split");

hek_data_struture(S1,"S1 in split");

hek_data_struture(S2,"S2 in split");

#endif

}
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Merge: We describe how to merge two skiplists of lengthn1 andn2, respectively, in time
O(

(n1+n2
n1

)

).
Assume that the lists to be merged as given bythis and byS1. We first determine the

shorter list (by stepping through both lists in lock-step fashion and stopping as soon as the
end of the shorter list is reached) and make sure thatthis is the larger list (by interchanging
headerandSTOPof this andS1otherwise). We then erect a finger at the first item ofthis
and consider the items ofS1one by one. We locate the item by a finger search, insert the
item intothisand advance the finger to the point of insertion.

For the running time analysis we assume without loss of generality that n1 ≤ n2. For
i , 1 ≤ i ≤ n1, let di be the stride of the finger search when inserting thei -th item of S1
into this. Thenn2 =

∑

i di and the total running time isO(n1 +
∑

i logdi ). This sum is
maximal if all thedi ’s are equal ton2/n1 and is hence bounded by

O(n1(1 + log(n2/n1))) = O(

(

n1 + n2

n1

)

).

〈concatenate and related functions〉+�

void skiplist::merge(skiplist& S1)

{ sl_item p= (sl_item) header;

sl_item q = S1.header;

while ( p->height >= 0 && q->height >= 0 )

{ p = p->forward[0℄;

q = q->forward[0℄;

}

if (q->height >= 0)

{ /* swap if this is shorter than S1 */

leda_swap(header->myseq,S1.header->myseq);

leda_swap(header,S1.header);

leda_swap(STOP,S1.STOP);

}

/* now S1 is at most as long as this */

sl_item finger= (sl_item) header;

p = S1.header->forward[0℄;

while (p->height >= 0)

{ sl_item q = p->forward[0℄;

int l;

finger = finger_searh(finger,p->key,l);

if (l >= 0) error_handler(1,"equal keys in merge");

insert_item_at_item(p,finger,before);

finger = p; // put finger at newly inserted item

p = q;

}

S1.header->true_height = 0;

S1.STOP->pred = (sl_item) S1.header;

S1.header->forward[0℄ = S1.STOP;

#ifdef CHECK_INVARIANTS

hek_data_struture("this in merge");



5.7 The Implementation of Sorted Sequences by Skiplists 107

S1.hek_data_struture("S1 in merge");

#endif

}

Deletion of Subsequences:We describe how to delete a subsequence from a skiplist.
More precisely, ifa andb are items in a listP with a left of or equal tob then the call
S.deletesubsequence(a, b, S1) deletes the subsequence starting ata and ending atb from
P and assigns it toS1. The running time isO(log min(n1, n − n1)) wheren andn1 are the
length ofP andS1respectively.Sonly provides the type.

The itemsa andb split P into three parts. We first determine the lowest of the parts by
simultaneously walking froma → predand fromb to the left and fromb → forward[0] to
the right until we reachheader, a tower left ofa, or STOP, respectively.

If either the first or the last subsequence is lowest then the operation can be reduced to
two splits and one conc. If what is to becomeS1 is lowest we directly insertS1’s header
andSTOPbeforea and afterb, respectively.

Let hi be the height of thei -th part. Then

E[h2] = O(logn1), E[h1] = O(log(n − n1)), and E[h3] = O(log(n − n1)).

The time to determine the lowest part is min(h1, h2, h3). If h2 is smallest then the running
time of actually deleting the subsequence isO(h2). If h2 is not the smallest then the times
for the two splits and one conc are min(max(h1, h2), h3)), min(h1, h2), and min(h1, h3), re-
spectively. All three quantities are bounded by min(h2, max(h1, h3)). The expected running
time is therefore

O(log min(n1, n − n1))

in both cases.

〈concatenate and related functions〉+�

void skiplist::delete_subsequene(sl_item a,

sl_item b,skiplist& S1)

{ S1.lear();

sl_item p1 = a->pred;

sl_item p2 = b;

sl_item p3 = b->forward[0℄;

int k = -1;

while ( p1->height < MaxHeight && p3->height >= 0 &&

p2->height < MaxHeight && mp(p2->key,a->key) >= 0 )

{ k++;

while ( p1->height == k) p1 = p1->bakward;

while ( p2->height == k) p2 = p2->bakward;

while ( p3->height == k) p3 = p3->forward[k℄;

}

if (p1->height == MaxHeight || p3->height < 0)

{ if (p1->height < MaxHeight) p1 = p3->bakward;

skiplist* Pp = ((large_item) p1)->myseq;
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skiplist S2,S3;

split_at_item(b,S2,S3,after);

split_at_item(a,*Pp,S1,before);

Pp->on(S3,after);

return;

}

// the middle list is the lowest and we have to do some work

p1 = a->pred;

p2 = b;

/* orret predeessor pointers */

a->pred = (sl_item) S1.header;

S1.STOP->pred = b;

b->forward[0℄->pred = p1;

/* height of S1 */

S1.header->true_height = 1 + k;

S1.header->forward[1+k℄ = S1.STOP;

for (int i = 0; i <= k; i++)

{ /* p1 and p2 are the rightmost items of height at least

i in the first and seond part, respetively */

sl_item q = p1->forward[i℄;

S1.header->forward[i℄ = q;

if (q->height == i) q->bakward = S1.header;

q = p2->forward[i℄;

p1->forward[i℄ = q;

if (q->height == i) q->bakward = p1;

p2->forward[i℄ = S1.STOP;

while (i == p1->height) p1 = p1->bakward;

while (i == p2->height) p2 = p2->bakward;

}

}

It takes a lot of trivial stuff to complete the implementation of skiplist. We do not include it
here to save space.

5.7.10 Member Functions of Classsortseq
The purpose of the file LEDAROOT/incl/LEDA/sortseq.h is to define the abstract data type
classsortseqand to implement the abstract functions in terms of the concrete functions.
We follow the general technique discussed in Section 13.4. Every abstract function (e.g.
lookup) calls the concrete function with the same name after converting any arguments of
type K or I to a generic pointer (by means of functionledacast) and after converting any
argument of typesortseq<K , I > to a skiplist (by a cast). Similarly, any result of typeK
or I is converted back from generic pointer (by means of theLEDAACCESSmacro). Two
examples should suffice to show the principle.

K key(seq item it) onst { return LEDA ACCESS(K,IMPL::key(it)); }

seq item lookup(K k) onst { return IMPL::lookup(leda ast(k)); }
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5.7.11 A Final Word
We have given the implementation of the data typesortseq. We glossed over some of the
trivial stuff. The complete source code can be found in the LEDA source code directory.

Exercises for 5.7
1 Implement operationsunion, intersection, setminus, and setdifferencefor sorted se-

quences. Start from the implementation ofmerge.
2 Add the implementation parameter mechanism to the typesortseq<K , I >. Follow the

construction of the typesortseq<K , I , IMPL>.
3 Add the finger search operations to theab-tree implementation or the randomized search

tree implementation of sorted sequences. Inspect [Meh84a]and [AS89] for the relevant
theory.

5.8 An Application of Sorted Sequences: Jordan Sorting

LetC be a Jordan curve in the plane16 that is nowhere tangent to thex-axis. Letx1, x2, . . . , xn

be the abscissas of the intersection points ofC with thex-axis, listed in the order the points
occur onC (see Figure 5.23). Call a sequencex1, x2, . . . , xn of real numbers obtainable in
this way aJordan sequence. The reader should convince himself at this point that the se-
quence 1, 3, 4, 2 is not a Jordan sequence. We describe a lineartime algorithm to recognize
and sort Jordan sequences due to Hoffmann et al. [HMRT85]. The Jordan demo allows you
to exercise the algorithm.

As a sorting algorithm,Jordansort is not competitive with general purpose sorting al-
gorithms, like quicksort and mergesort, despite its linearrunning time. We include the
Jordansort program in the book as an example of how much LEDA simplifies the imple-
mentation of complex algorithms.

The Jordan sorting problem arises in the following context.Suppose we are given a
simple polygon (as a sequence of edges) and a line and are asked to compute the points of
intersection in the order they occur on the line. A traversalof the polygon produces the
intersections in the order they occur on the polygon. Sorting the sequence of intersections
produces the order on the line.

A Jordan sequence together with its intersections with thex-axis gives rise to two nested
sets of parentheses, simply cut the plane at thex-axis into two half-planes (see Figure 5.24).
We call a matching pair of parentheses abracket. A nested set of brackets gives rise to an
ordered forest in a natural way. Each bracket corresponds toa node of the tree and the
children of a node correspond to the brackets directly nested within a bracket. The ordering
of the children of a bracket corresponds to the left to right ordering of the subbrackets. We
can turn the ordered forest into a tree by adding a fictitious bracket(−∞, +∞). Figure 5.25

16 A Jordan curve is a curve without self-intersections, i.e.,a continuous injective mapping from the unit interval
into the plane.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 5.23 A Jordan curve and its intersections with thex-axis: The curve intersects thex-axis
21 times. We assumed for the drawing that the abscissas of theintersections are the integers 1 to
21. As the curve is traversed starting at 6 the sequence 6, 1, 21, 13, 12, 7, 5, 4, 3, 2, 20, 18, 17,
14, 11, 10, 9, 8, 15, 16, 19 is obtained.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

(a)

(b)

Figure 5.24 The nested parentheses corresponding to the Jordan curve ofFigure 5.23; each pair
of parentheses is drawn as a half-circle: (a) The parentheses corresponding to the upper
half-plane; (b) The parentheses corresponding to the lowerhalf-plane.

shows the ordered trees corresponding to the brackets of Figure 5.24. We call these trees
the lowerand theupper tree, respectively.

To sort a Jordan sequencex1, x2, . . . , xn we process the numbersxi in increasing order
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∞−∞

211

202

158

1411 1916

43 75 109 1312 1817

32 54 98 1110 1615 2018

1714

61 127 2113

∞−∞

Figure 5.25 The upper and lower tree for the Jordan curve of Figure 5.23. The smaller and
larger element of each bracket is on either side of the corresponding tree node.

on i , constructing three objects simultaneously: the sorted list of the numbers so far pro-
cessed, and the upper and lower tree of the brackets corresponding to the numbers so far
processed. Figure 5.26 shows the state of the algorithm after having processed number 8 in
our example.

Initially, the upper and the lower tree consist of the bracket (−∞, +∞) and the initial
sorted list is−∞, x1, +∞. We also assume for concreteness that the curveC crosses the
x-axis from bottom to top atx1.

Assume now that we have processedx1, . . . , xi for somei ≥ 1 and want to processxi+1

next. Assume for concreteness that the crossing atxi is from top to bottom. So we have to
insert a bracket with endpointsxi andxi+1 into the lower tree. In our running example this
is the bracket (8,15). Letl i andr i with l i < xi < r i be the two neighbors ofxi in the sorted
list; if one of them is equal tox1 and we insert into the lower tree then we take the neighbor
in distance two. In our example we havel i = 7 andr i = 9. Letl i be the bracket in the lower
tree containingl i and letr i be the bracket containingr i . In our example we havel i = (5, 7)

andr i = (9, 10). We now distinguish cases.
Assume first thatl i is equal tor i , i.e., (l i , r i ) is a bracket. Ifxi+1 does not lie betweenl i

andr i then we abort since the sequence is not Jordan. Ifxi+1 lies betweenl i andr i then we
make the bracket(min(xi , xi+1), max(xi , xi+1)) the single child of(l i , r i ) and insertxi+1 at
the appropriate position into the sorted list.

Assume next thatl i is not equal tor i . Then one of the two brackets, call itTi , does not
containxi . We locatexi+1 in the ordered sequence of siblings ofTi . Two cases can occur:
eitherxi+1 is contained in one of the siblings ofTi or it is not. If xi+1 is contained in a
sibling of Ti then we abort since the sequence is not Jordan. Ifxi+1 is not contained in a
sibling of Ti then we change the lower tree as follows. We create a new node corresponding
to bracket(min(xi , xi+1), max(xi , xi+1)), make all siblings ofTi that are enclosed in the
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

∞−∞
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(c)

(a)

(b) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 17 18 20 21

Figure 5.26 (a) The Jordan curve after reaching point 8. (b) The sorted sequence of points
processed so far. (c) The lower and upper tree.

new bracket children of the new bracket, and add the new bracket to the list of siblings of
Ti . We also insertxi+1 at the appropriate position into the sorted list of numbers processed
so far.

In our example neitherl i nor r i containsxi and so either one of them can beTi . The
ordered list of siblings ofTi is (3, 4), (5, 7), (9, 10), (11, 14), (17, 18) and number 15 lies
between brackets(11, 14) and(17, 18). So we make(9, 10) and(11, 14) children of the
new bracket(8, 15) and let(8, 15) take their place in the list of children of bracket(2, 20).
We also insert 15 between 14 and 17 into the sorted list of numbers processed so far. Fig-
ure 5.27 shows the lower tree after inserting the bracket(8, 15).

We proceed to describe the implementation of a procedure
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Figure 5.27 The lower tree after inserting the bracket (8,15).

bool Jordan sort(onst list<double>& In, list<double>& Out,

window* Window = 0);

It takes a sequenceIn of doubles and tests whether the sequence is Jordan. If so, itreturns
the sorted output sequence inOut. If the third argument is non-nil then the execution of
the algorithm is animated inWindow. We define three files: the file Jordan.h contains the
declaration of procedureJordansort, the file Jordan.c contains its implementation, and the
file Jordandemo.c contains a demo. The latter file is not shown in the book, but can be
found in LEDAROOT/demo. It includes Jordan.c as a subfile.

〈Jordan.h〉�

#inlude <LEDA/list.h>

lass window;

bool Jordan_sort(onst list<double>&, list<double>&, window* Window = 0);

The global structure of Jordan.c is as follows:

〈Jordan.c〉�

#inlude <LEDA/list.h>

#inlude <LEDA/window.h>

#inlude <LEDA/sortseq.h>

〈Jordan.h〉

〈global variables〉

〈data structure〉

〈global functions〉

〈procedure Jordan sort〉

As outlined above, we construct three data structures simultaneously: the sorted listL of
the intersections processed so far and the upper and lower tree of brackets. We define
appropriate classes. While reading these class definitionsthe reader may want to inspect
Figure 5.28; it shows how the subtree of the upper tree rootedat the bracket(7, 12) is
represented.



114 Advanced Data Types

7 8 9 10 11 12

8 10

7

L

upper tree

Figure 5.28 The representation of the subtree of the upper tree rooted atthe bracket(7, 12).
This bracket contains subbrackets(8, 9) and(10, 11). The items (=Intersections) of the listL
are shown as rectangular boxes with three fields and bracketsare shown as rectangular boxes
with five fields. Solid lines correspond to pointers. Each intersection points to the bracket
containing it which in turn points back to the intersection.Each bracket contains achildrenseq.
Thechildrenseqcontained in the bracket(7, 12) is shown as a dotted triangle. It has two items
corresponding to the two subbrackets(8, 9) and(9, 10). The key of each item is a pointer to the
subbracket and each subbracket stores inposamongsibsthe item representing it in the
childrenseqof its parent. This allows, for example, the bracket(8, 9) to find the bracket
(10, 11), namely ifb is a pointer to the former bracket thenb → posamongsibsis an item in the
childrenseqof bracket(7, 12), and the successor of this item is the item corresponding to
(10, 11).

〈data structure〉�

lass intersetion;

typedef intersetion* Intersetion;

lass braket;

typedef braket* Braket;

list<Intersetion> L;

We defined the listL as a list of pointers to intersections rather than a list of intersections
as this will avoid frequent copying of intersections. Each intersection needs to know the
bracket containing it in either tree. Therefore, an intersection contains its abscissa (adouble)
and pointers to the brackets in the two trees containing it. The constructor constructs an
intersection with a particularx-coordinate.

〈data structure〉+�

lass intersetion{

publi:

double x;

Braket ontaining_braket_in[2℄;

intersetion(double xoord)

{ x = xoord;

ontaining_braket_in[upper℄ = nil;

ontaining_braket_in[lower℄ = nil;

}

};
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A node of either tree corresponds to a bracket. A bracket needs to know its two endpoints
(as items inL), its position among its siblings (aseqitem), and its sorted sequence of sub-
brackets (asortseq<Bracket, int>). We also store thex-coordinate of the left endpoint of the
bracket. In order to save ink we usechildrenseqas an abbreviation forsortseq<Bracket, int>.
The information typeint in childrenseqis irrelevant.Childrenseqsneed to be able to com-
pare brackets. Brackets are compared by comparing thex-coordinates of their left end-
points. Because of the circularity (the classbracketneeds to know aboutchildrenseqand
childrenseqneeds a functioncomparefor Brackets) we declarecompareat the beginning
of the next program chunk and define it at its end.

Brackethas two constructors. The first constructor takes two itemsa andb in L and
the indicatorsideand constructs a bracket with endpointsa andb. The left endpoint is
the endpoint with the smallerx-coordinate. Itsx-coordinate is stored inleft x. The list item
corresponding to the left endpoint is stored inendpt[left] and the appropriate reverse pointer
is stored in the list item. The same holds true for the right endpoint. Thechildrenand the
posamongsibsfields will be filled later.

The second constructor initializes onlyleft x. It is used to convert anx-coordinate into a
bracket so that we can search17 for thex-coordinate in achildrenseq.

A bracket contains a numberx, if x lies between the abscissa of the endpoints of the
bracket.

〈data structure〉+�

int ompare(onst Braket&,onst Braket&);

typedef sortseq<Braket,int> hildren_seq;

lass braket{

publi:

double left_x;

list_item endpt[2℄;

hildren_seq hildren;

seq_item pos_among_sibs;

braket(list_item a, list_item b, SIDE side)

{ if (L[a℄->x > L[b℄->x) leda_swap(a,b);

left_x = L[a℄->x;

endpt[left℄ = a;

L[a℄->ontaining_braket_in[side℄ = this;

endpt[right℄ = b;

L[b℄->ontaining_braket_in[side℄ = this;

}

braket(double x){ left_x = x; }

bool ontains(double x)

{ return ( L[endpt[left℄℄->x < x && x < L[endpt[right℄℄->x ); }

17 The key type ofchildrenseqis Bracketand hence we can only search for aBracketin achildrenseq. We will
have to search for adoubleand can do so only by converting thedoubleinto abracket. This slight inconvenience
would not arise if the search functions in asortseq<K , I > would use a comparison function
compare(const K& , const K1&) where the second argument type is allowed to be different from the first and in
this way allowed to search for any object that can be comparedwith the keys of the sorted sequence.
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};

int ompare(onst Braket & b1,onst Braket & b2)

{ return ompare(b1->left_x,b2->left_x); }

We complete the definition of the data structure with the definition of some global variables.
We need a representation of∞ for the bracket(−∞, ∞), we need a variablesidethat tells
us in which tree we are working in, and we need the first abscissax1and the corresponding
itemx1 itemin L. We also define enumeration types{upper, lower} and{left, right} that are
used to distinguish the upper and lower tree and the left and right endpoint of a bracket.

〈global variables〉�

onst double infty = MAXDOUBLE;

double x1;

list_item x1_item;

enum SIDE {upper,lower};

SIDE side;

enum {left,right};

We can now give the global structure of the Jordan sorting procedure. It takes a listIn of
doublesand decides whether it is Jordan. If so, it also produces a sorted versionOut of In.

If the input list has length at most one then sorting is trivial. If it has length at least two
then we first initializeL with −∞, x1, ∞ and build trivial upper and lower trees. Then we
insert the elements ofIn one by one alternatingly into the lower or upper tree; the variable
sidekeeps track of where we are. At the end we produce the sorted output listOut.

〈procedure Jordan sort〉�

bool Jordan_sort(onst list<double>& In, list<double>& Out,

window* Window)

{ if ( In.length() <= 1 ) { Out = In; return true; }

〈initialize L with x1 and construct trivial lower and upper trees〉;

/* we now proess x_2 up to x_n */

list_item it = In.su(In.first()); // the seond item

side = upper;

while (it)

{ 〈process next input〉;

it = In.su(it);

side = ((side == upper)? lower : upper); // hange sides

}

〈produce the output by copying L to Out〉;

return true;

}

We now discuss the three phases ofJordansort: initialization, processing an input, and
producing the output list.

We initialize the listL with −∞, x1, ∞, and the upper and lower trees with the brackets
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(−∞, ∞). We also storex1 in x1and the corresponding item ofL in x1 item. We setxi item
to x1 item; generally,xi itemcorresponds to the last number inserted intoL. This was called
xi in the discussion above.

〈initialize L with x1 and construct trivial lower and upper trees〉�

x1 = In.head();

L.lear();

list_item minus_infty_item = L.append(new intersetion(-infty));

list_item xi_item = x1_item = L.append(new intersetion(x1));

list_item plus_infty_item = L.append(new intersetion(infty));

braket upper_root(minus_infty_item,plus_infty_item,upper);

braket lower_root(minus_infty_item,plus_infty_item,lower);

We turn to the insertion part. The number to be inserted isx = In[it]. This was called
xi+1 in the discussion above. Recall thatxi item is the item of listL holdingxi. So the new
bracket has endpointsx andxi. The new bracket needs to be inserted into thesidetree.

We first determine the itemsl item and r item to the left and to the right of the cur-
rent item and their corresponding intersectionsl andr ; if one of them is equal tox1 and
side== lower, we skip it, since there is no bracket in the lower tree containingx1. We also
retrieve the bracketslB andrB containingl andr . Then we distinguish cases according to
whether the bracketslB andrB are identical or not and branch to the two sub-cases. Both
sub-cases modify the listL and thesidetree and setx item to the item ofL containing the
new intersection.

After returning from the two sub-cases we updatexi item.
If Windowis non-nil we also draw an appropriate half-circular arc into it. We divide the

plane in half aty = 50 and draw red arcs in the upper half and black arcs in the lower
half. The operationdrawarc(x1, y1, x2, y2, r, c) of classwindowdraws a counterclockwise
oriented circular arc starting in(x1, y1), ending in(x2, y2), and having radiusr and colorc.

〈process next input〉�

double x = In[it℄;

double xi = L[xi_item℄->x;

if (x == xi || x == x1) return false;

list_item l_item = L.pred(xi_item);

if (l_item == x1_item && side == lower) l_item = L.pred(l_item);

list_item r_item = L.su(xi_item);

if (r_item == x1_item && side == lower) r_item = L.su(r_item);

Intersetion l = L[l_item℄;

Intersetion r = L[r_item℄;

Braket lB = l->ontaining_braket_in[side℄;

Braket rB = r->ontaining_braket_in[side℄;

list_item x_item;

if (Window != nil)

{ double r = (xi - x)/2; if (r < 0) r = -r;

if ( side == upper)

Window->draw_ar(point(xi,50),point((xi+x)/2,50+r), point(x,50),red);
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Figure 5.29 The two neighboring bracketslB andrB are indentical and hence the new bracket
becomes their child.

else

Window->draw_ar(point(xi,50),point((xi+x)/2,50-r), point(x,50),blak);

}

int dir = ( x > xi ? LEDA::after : LEDA::before);

if (lB == rB)

{ 〈lB and rB are identical〉 }

else

{ 〈lB and rB are distinct〉 }

xi_item = x_item;

If the bracketslB and rB are identical then we only need to check whether the bracket
contains the new abscissax. If not, we abort because the input sequence is not Jordan.
Otherwise we insertx next toxi into list L, create a new bracket, and make it the only child
of lB, see Figure 5.29.

〈lB and rB are identical〉�

if (!(lB->ontains(x))) return false;

x_item = L_insert(x,xi_item,dir);

Braket new_braket = new braket(x_item,xi_item,side);

new_braket->pos_among_sibs = lB->hildren.insert(new_braket,0);

The procedureL insertis essentially identical toL.insert. A small difference arises from the
fact thatx1 item is not part of a bracket on the lower side and hence if the new intersection
is to be inserted next tox1 then its position with respect tox1 is not yet known.

〈global functions〉�

list_item L_insert(double x, list_item it, int dir)

{ if ( side == lower &&

(dir == LEDA::before && L.pred(it) == x1_item && x < x1) ||

(dir == LEDA::after && L.su(it) == x1_item && x > x1) )

it = x1_item;

return L.insert(new intersetion(x),it,dir);

}

We come to the case in which the bracketslB andrB are not identical. We distinguish
two cases.

If x lies betweenl andr then the new bracket(xi, x) does not enclose any brackets. We
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Figure 5.30 The new bracket extends to the right andx is larger thanr ; tB is the rightmost
sibling of rB whose left endpoint is less thanx. x must not be contained intB and it must be
contained in the parent bracket oftB. The children of the new bracket start atrB and end attB.

therefore only have to insertx either before or afterxi into L and make the new bracket
either the left sibling ofrB (if lB containsx) or the right sibling oflB (otherwise).

If x does not lie betweenl andr , we have to work harder.

〈lB and rB are distinct〉�

hildren_seq S; // just for the type

if ( l->x < x && x < r->x )

{ x_item = L_insert(x,xi_item,dir);

Braket new_braket = new braket(xi_item,x_item,side);

new_braket->pos_among_sibs =

( lB->ontains(x) ?

S.insert_at(rB->pos_among_sibs,new_braket,0,LEDA::before) :

S.insert_at(lB->pos_among_sibs,new_braket,0,LEDA::after) );

}

else

if ( dir == LEDA::after )

{ 〈new bracket has subbrackets and extends to the right〉 }

else

{ 〈new bracket has subbrackets and extends to the left〉 }

We come to the case that the new bracket extends to the right and thatx is at least as large
asr . Let tB be the rightmost sibling ofrB whose left endpoint is less than or equal tox,
cf. Figure 5.30. We determinetB by a finger search starting atrB. The right endpoint oftB
must be smaller thanx andx must be contained in the parent bracket oftB (which is also
the parent bracket ofrB); otherwise the sequence is not Jordan. The latter is guaranteed ifx
is smaller than thex-coordinate of the successor item of the right endpoint oftB (we skipx1
if side== lower, asx1 is not an endpoint of a bracket in the lower tree). Assume thatboth
conditions hold. We addx after the right endpoint oftB to L, insert the new bracket(xi, x)

beforerB, delete the subsequence starting atrB and ending attB, and make the subsequence
the children sequence of the new bracket.

〈new bracket has subbrackets and extends to the right〉�

Braket query_braket = new braket(x);

seq_item x_pos = S.finger_loate_pred(rB->pos_among_sibs, query_braket);

Braket tB = S.key(x_pos);
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list_item next = L.su(tB->endpt[right℄);

if ( next == x1_item && side == lower ) next = L.su(next);

if ( x <= L[tB->endpt[right℄℄->x || x >= L[next℄->x ) return false;

x_item = L_insert(x,tB->endpt[right℄,LEDA::after);

Braket new_braket = new braket(xi_item,x_item,side);

new_braket->pos_among_sibs =

S.insert_at(rB->pos_among_sibs,new_braket,0,LEDA::before);

S.delete_subsequene(rB->pos_among_sibs, x_pos, new_braket->hildren);

If the new bracket has subbrackets and extends to the left we proceed symmetrically to the
case above, i.e, we replacepredby succand vice-versa, less than by greater than, . . . .

〈new bracket has subbrackets and extends to the left〉�

Braket query_braket = new braket(x);

seq_item x_pos = S.finger_loate_su(lB->pos_among_sibs, query_braket);

Braket tB = S.key(x_pos);

list_item next = L.pred(tB->endpt[left℄);

if ( next == x1_item && side == lower ) next = L.pred(next);

if ( x >= L[tB->endpt[left℄℄->x || x <= L[next℄->x ) return false;

x_item = L_insert(x,tB->endpt[left℄,LEDA::before);

Braket new_braket = new braket(x_item,xi_item,side);

new_braket->pos_among_sibs =

S.insert_at(tB->pos_among_sibs,new_braket,0,LEDA::before);

S.delete_subsequene(x_pos,lB->pos_among_sibs, new_braket->hildren);

Preparing the output is easy. After deleting the sentinels−∞ and∞ the output is avail-
able inL. We copy it toOut.

〈produce the output by copying L to Out〉�

Out.lear();

L.pop(); L.Pop();

forall_items(it,L) Out.append(L[it℄->x);

We described an algorithm to recognize and to sort Jordan sequences. The algorithm
runs in linear time, see [HMRT85] for a proof18. As a sorting algorithm,Jordansort is not
competitive with general purpose sorting algorithms, likequicksort and mergesort, despite
its linear running time. We included theJordansort program in the book as an example of
how much LEDA simplifies the implementation of complex algorithms.

18 The idea underlying the proof is as follows: in each iteration of Jordan sort a new bracket is constructed. This
takes timeO(log min(k, m − k)) wherek is the number of subbrackets andm − k is the number of siblings of the
new bracket. One then proceeds as in the analysis of repeatedsplits on page 69.
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merge sort with finger search, 72
nearly sorted sequences, 67

sparse array, 2
basics, 2–7
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defined, 6
dictionary array (d array), 7–8
dynamic perfect hashing, 8
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first examples, 3
forall, 7
hashing array (h array), 8–10
hashing with chaining, 8
implementation parameters, 7–13
map, 10–11

implementation, 14–27
performance guarantees, 7–13
persistence of variables, 13
running time, 8, 9
subscript operator, 5
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undefine, 6

subscript operator
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word count program, 3, 27


