
Contents

3 Basic Data Types page2
3.1 Stacks and Queues 2
3.2 Lists 5
3.3 Arrays 17
3.4 Compressed Boolean Arrays (Type intset) 21
3.5 Random Sources 23
3.6 Pairs, Triples, and such 38
3.7 Strings 39
3.8 Making Simple Demos and Tables 40

Bibliography 43

Index 44

1

3

Basic Data Types

The basic data typesstack, queue, list, array, random number, tuple, andstringare ubiqui-
tous in computing. Most readers are probably thoroughly familiar with them already. All
sections of this chapter can be read independently.

3.1 Stacks and Queues

A stackis a last-in-first-out store for the elements of some typeE and a queue is a first-in-
first-out store. Both data types store sequences of elementsof type E; they differ in the set
of operations that can be performed on the sequence. In a stack one end of the sequence is
designated as thetop of the stack and all queries and updates on a stack operate on the top
end of the sequence. In aqueueall insertions occur at one end, therear of the queue, and
all deletions occur at the other end, thefront of the queue. The definitions

stak<E> S;

queue<E> Q;

define a stackS and a queueQ for the element typeE, respectively. Both structures are
initially empty. The following operations are available onstacks. Ifx is an object of type
E then the insertionS.push(x) addsx as the new top element. We can inspect the contents
of a stack:S.top() returns the top element andS.pop() deletes and returns the top element.
Of course, both operations are illegal ifS is empty. The callS.empty() returnstrue if the
stack is empty andfalseotherwise andS.size() returns the number of elements in the stack.
So S.empty() is equivalent toS.size() == 0. All elements of a stack can be removed by
S.clear().

We illustrate stacks by a program to evaluate a simple class of expressions. The character
1 is an expression and ifE1 and E2 are expressions then(E1 + E2) and (E1 ∗ E2) are

2

3.1 Stacks and Queues 3

expressions. Thus,(1 + 1) and((1 + 1) ∗ (1 + (1 + 1))) are expressions, but 1+ 1 and
(1+ 2) are not. The former is not an expression since it is not completely bracketed and the
latter is not an expression since we only allow the constant 1as an operand. We will ask
you in the exercises to evaluate more complex expressions. There is a simple algorithm to
evaluate expressions. It uses two stacks, astack<int> S to hold intermediate results and a
stack<char> Op to hold operator symbols. Initially, both stacks are empty.The expression
is scanned from left to right. Letc be the current character scanned. Ifc is an open bracket,
we do nothing, ifc is a 1, we push it ontoS, if c is a + or ∗, we push it ontoOp, and
if c is a closing bracket, we remove the two top elements fromS, sayx and y, and the
top element fromOp, sayop, and push the valuex op y onto S. When an expression is
completely scanned, its value is the top element ofS, in fact, it is the only element inS.
The following program assumes that a well-formed expression followed by a dot is given
on standard input. It prints the value of the expression ontostandard output.

〈stackdemo.c〉�

#inlude<LEDA/stak.h>

main()

{ har ;

stak<int> S; stak<har> Op;

while ((= read_har("next symbol = ")) != '.')

{ swith()

{ ase '(' : break;

ase '1' : { S.push(1); break; }

ase '+' : { Op.push(); break; }

ase '*' : { Op.push(); break; }

ase ')' : { int x = S.pop(); int y = S.pop();

har op = Op.pop();

if (op = '+') S.push(x+y); else S.push(x*y);

break;

}

}

}

out << "\n\nvalue = " << S.pop() << "\n\n";

}

On input((1+1)∗ (1+ (1+1))) this program prints 6, on input(1+ (1+1)) it prints 3, and
on input() it crashes because it attempts to pop from an empty stack. This is bad software
engineering practice and we will ask you in the exercises to remedy this shortcoming.

We turn to queues. The two ends of a queue are called thefront and therear of the queue,
respectively. An insertionQ.append(x) appendsx at the rear,Q.top() returns the front
element, andQ.pop() deletes and returns the front element. Of course, the lattertwo calls
requireQ to be non-empty. The functionQ.empty() checks for emptiness andQ.size()

returns the number of elements in the queue.Q.clear() removes all elements from the
queue.

4 Basic Data Types

Queues and stacks are implemented as singly linked lists. All operations take constant
time exceptclear, which takes linear time. The space requirement is linear. LEDA also
offers bounded queues and stacks, for example,

b stak<E> S(n);

defines a stackS that can hold up ton elements. Bounded stacks and queues are imple-
mented by arrays and hence always use the same amount of spaceindependently of the
actual number of elements stored in them. They are preferable to unbounded queues and
stacks when the maximal size is known beforehand and the number of elements stored in
the data structure is always close to the maximal size.

In the remainder of this section we show how to implement a queue by two stacks. This
is to demonstrate the versatility of stacks, to illustrate that the same abstract data type can be
implemented in many ways, to give an example of an amortized analysis of a data structure,
and to amuse the user; it is not the implementation of queues used in LEDA. We use two
stacksSfront and Srear and split the queue into two parts: Ifa1, . . . , am is the current
content ofSfrontandb1, . . . , bn is the current contents ofSrearwith am andbn being the
top elements, respectively, thenam, . . . , a1, b1, . . . , bn is the current contents of the queue.
Appending an element to the queue is realized by pushing it onto Srear. Popping an element
from the queue is realized by popping an element fromSfront. If Sfront is empty, we first
move all elements fromSrearto Sfront(by popping fromSrearand pushing ontoSfront).
Note that this will reverse the sequence as it should be.

〈strangequeue.h〉�

#inlude <LEDA/stak.h>

template<lass E>

lass queue {

stak<E> Sfront, Srear;

publi:

queue<E>(){ } // initialization to empty queue

void append(onst E& x){ Srear.push(x); }

E pop()

{ if (Sfront.empty())

{ while (!Srear.empty()) Sfront.push(Srear.pop()); }

if (Sfront.empty()) error_handler(1,"queue: pop from empty queue");

return Sfront.pop();

}

bool empty() { return Sfront.empty() && Srear.empty(); }

int size() { return Sfront.size() + Srear.size(); }

};

It is interesting to analyze the time complexity of this queue implementation. We claim
that a sequence ofn queue operations takes total timeO(n). To see this we note first that
the constructor and the operationsappend, empty, andsizerun in constant time. Apop
operation may take an arbitrary amount of time. More precisely, it takes constant time

3.2 Lists 5

5 3 1 5 2

first last

Figure 3.1 A list of five integers.

plus time proportional to the number of elements moved fromSrearto Sfront. Since each
element is moved at most once fromSrearto Sfront, we incur a constant cost per element for
moving elements fromSrearto Sfront. We conclude that the time spent in allpopoperations
is linear.

Exercises for 3.1
1 Implement the typestack.
2 Implement the typequeue.
3 Extend the expression evaluator such that it complains about illegal inputs.
4 Extend the expression evaluator such that it can handle arbitrary integers as operands.
5 Extend the expression evaluator such that it can handle expressions that are not com-

pletely bracketed. The usual precedence rules should be applied, i.e.,a + b ∗ c is in-
terpreted as(a + (b ∗ c)). More specifically, the evaluator should be able to handle all
expressions that are generated by the following four rules:

A factor is either an integer or a bracketed expression.
A term is either a factor or a factor times a term.
An expression is either a term or a term plus an expression.
That’s all.

3.2 Lists

Lists are a simple, yet powerful, data type. It is difficult toimplement a combinatorial or
geometric algorithm without using lists. Moreover, the implementation of several LEDA
data types, e.g., stacks, queues, and graphs, is based on lists. In this section we discuss lists
for unordered and ordered element types, we sketch the implementation of lists, and in the
final subsection we treat singly linked lists.

3.2.1 Basics
list<E> L;

declares a listL for elements of typeE and initializes it to the empty list. Generally, a list
L over element typeE (type list<E>) is a sequence of items (of predefined typelist item),

6 Basic Data Types

each holding an element of typeE. Figure 3.1 shows a list of integers. It consists of five
items shown as rectangular boxes. The contents of the first item is 5, the contents of the
second item is 3, and so on. We call the number of items in a listthe length of the list
and use〈x〉 to denote an item with contentsx. Lists offer an extremely rich repertoire of
operations.

L.empty();

checksL for emptiness. Let’s assume thatL is non-empty. Then

E x = L.head();

list item it = L.first();

assign the contents of the first item ofL to x and the first item toit. Please pause for a
moment to grasp the difference.L.first() returns the first item andL.head() returns the
contents of the first item. Thus, ifL is the list of Figure 3.1, the value ofx is now 5 and the
value ofit is the first box. The content of the item (box)it can be accessed byL.contents(it)
or L[it]. So

x == L.ontents(it)

evaluates totrueand so do

3 == L.ontents(L.su(L.first());

L.last() != L.first();

nil == L.pred(L.first());

L.tail() == L[L.yli pred(L.first())℄;

L.last() == L.yli pred(L.first()).

We need to explain these expressions a bit further. For a listL, L.head() and L.tail()

return the contents of the first and last item ofL, respectively (5 and 2 in our example) and
L.first() andL.last() return the first and last item ofL, respectively (the first and the fifth
box in our example). The items in a list can be viewed as eitherarranged linearly or arranged
cyclically. The operationssuccandpredsupport the linear view of a list and the operations
cyclicsuccandcyclicpredsupport the cyclic view. Thus, ifit is an item of a listL different
from the last item thenL.succ(it) returns the successor item ofit and L.succ(L.last())

returnsnil and if it is different from the first item thenL.pred(it) returns the predecessor
item of it andL.pred(L.first()) returnsnil. L.cyclicpred(it) andL.cyclicsucc(it) return the
cyclic predecessor and successor, respectively, where thecyclic predecessor of the first item
is the last item. So in the next to last expression above both sides evaluate to the contents of
the last item ofL and in the last expression both sides evaluate to the last item of L.

We further illustrate the use of items by the member functionprint. It takes two argu-
ments, an output streamO and a characterspaceand prints the elements of a list separated
by spaceonto O. The default value ofspaceis the space character. It requires that the type
E offers a functionPrint(x, O) that prints an objectx of typeE ontoO, see Section 2.8 for
a discussion of thePrint-function for type parameters.

template<lass E>

void list<E>::print(ostream& O, har spae = " ")

{ list item it = first();

3.2 Lists 7

while (it != nil)

{ Print(ontents(it),O);

if (it != last item()) O << spae;

it = su(it);

}

}

Note howit steps through the items of the list. It starts at the first item. In the general step,
we first print the contents ofit and then advanceit to its successor item. We do so untilit
falls off the list.

Iterating over the items or elements of a list is a very frequently occurring task and there-
fore LEDA offers corresponding iteration macros. The iteration statements

forall(x,L) << body >>

and

forall items(it,L) << body >>

step through the elements and items ofL, respectively, and executebody for each one of
them. Thus,

list item it;

forall items(it,L) Print(L[it℄,out);

E x;

forall(x,L) Print(x,out);

prints the elements ofL twice. Theforall itemsloop is a macro that expands into

for (list item loop it = L.first();

it = loop it, loop it = L.next item(loop it), it;)

{ << body >> }

and theforall loop is a macro that essentially expands into

for (list item it = L.first(); it; it = L.su(it))

{ x = L[it℄;

<< body >>;

}

As one can see from the expansions both iteration statementswork in time proportional to
the length of the list. However, since the assignmentx = L[it] may be a costly operation
(if E is a complicated type) it is usually more efficient to use theforall itemsloop. The fact
that the iteration statements for lists (and any other LEDA data type, for that matter) are
realized as macros is a possible source for programming errors; we adviseto never write
forall items(it, f ()), where f is a function that produces a list, see Sections 2.5 and 13.9
for details.

Next, we turn to update operations on lists.

L[it℄ = x;

changes the contents of the itemit and

8 Basic Data Types

L.append(x);

adds a new item〈x〉 after the last item ofL and returns the item. We may store the item for
later use:

list item it = L.append(x);

The operations

L.del item(it);

L.pop();

L.Pop();

remove the itemit, the first item, and the last item ofL, respectively. Each operation returns
the contents of the item removed. So we may writex = L.pop(). The program fragment

list<int> L;

L.append(5);

L.append(3);

list item it = L.append(1);

L.append(5);

L.append(2);

builds the list of Figure 3.1 and assigns the third item ofL to it. SoL[it] evaluates to 1 and
L.del item(it) removes the third item fromL, i.e., L consists of four items with contents 5,
3, 5, and 2, respectively, after the call.

Two listsL andL1 of the same type can be combined by

L.on(L1,dir);

wheredir determines whetherL1 is appended to the rear end (dir = LEDA::after) or front
end (dir = LEDA::before) of L; beforeandafter are predefined constants. As a side effect,
concclears the listL1. The listsL andL1 must be distinct list objects. A listL can be split
into two parts. Ifit is an item ofL then

L.split(it,L1,L2,dir);

splitsL before (dir = LEDA::before) or after (dir = LEDA::after) item it into listsL1 and
L2. The listsL1 andL2 must be distinct list objects. It is allowed, however, that one of them
is equal toL. If L is distinct fromL1 andL2 thenL is empty after the split.Split andconc
take constant time. Givensplit andconc, it is easy to write a functionsplice1 that inserts a
list L1 after itemit into a listL. If it = nil, L1 is added to the front ofL.

if (it == nil)

L.on(L1,LEDA::before);

else

{ list<E> L2;

L.split(it,L,L2,LEDA::after);

L.on(L1,LEDA::after);

L.on(L2,LEDA::after);

}

1 spliceis a member function oflists and so there is no need to define it at the user level. We give its
implementation in order to illustratesplit andconc.

3.2 Lists 9

Theapplyoperator applies a function to all elements of a list, i.e., if f is a function defined
for objects of typeE then

L.apply(f);

performs the callf (x) for all items〈x〉 of L. The elementx is passed by reference. For
example, ifL is a list of integers then

void inr(int& i) { i++; }

L.apply(inr);

increases all elements ofL by one. apply takes linear time plus the time for the function
calls.

LEDA provides many ways to reorder the elements of a list.

L.reverse items();

reverses the items inL and

L.permute();

randomly permutes the items ofL. Both functions take linear time and both functions
are good examples to illustrate the difference between items and their contents. The call
L.reverseitems() does not change the set of items comprising the listL and it does not
change the contents of any item, it changes the order in whichthe items are arranged in the
list. The last item becomes the first, the next to last item becomes the second, and so on.
Thus,

list item it = L.first();

L.reverse items();

bool b = (it == L.last());

assignstrue to b.
For contrast, we give a piece of code that reverses the contents of the items but leaves the

order of the items unchanged. It makes use of a functionledaswapthat swaps the contents
of two variables of the same type. We use two itemsit0 andit1 which we position initially
at the first and last item ofL. We interchange their contents and advance both of them. We
do so as long as the items are distinct andit0 is not the successor ofit1. The former test
guarantees termination for a list of odd length and the latter test guarantees termination for
a list of even length. If the list is empty the first and the lastitem arenil and the former test
guarantees that the loop body is not entered.

/* this is not the implementation of reverse items */

list item it0 = L.first();

list item it1 = L.last();

while (it0 != it1 && it0 != L.su(it1))

{ leda swap(L[it0℄,L[it1℄);

it0 = L.su(it0);

it1 = L.pred(it1);

}

10 Basic Data Types

The above code implements

L.reverse().

We turn to sorting. We will discuss general sorting methods in the next section and
discuss bucket sorting now. Iff is an integer-valued function onE then

L.buket sort(f);

sortsL into increasing order as prescribed byf . More precisely,bucketsort rearranges the
items ofL such that thef -values are non-decreasing after the sort and such that the relative
order of two items with the samef -value is unchanged by the sort. Such a sort is called
stable. For an example, assume that we applybucketsort to the listL of Figure 3.1 with f
the identity function. This will make the third item the firstitem, the fifth item the second
item, the second item the third item, the first item the fourthitem, and the fourth item the
fifth item. bucketsort takes timeO(n + r − l), wheren is the length of the list andl andr
are the minimum and maximum value off (e) ase ranges over the elements of the list.

We give an application of bucket sort. Assume thatL is a list of edges of a graphG
(typelist<edge>) and thatdfsnumis a numbering of the nodes ofG (typenodearray<int>).
Our goal is to reorderL such that the edges are ordered according to the number of the
source of the edge, i.e., all edges out of the node with smallest number come first, then all
edges out of the node with second smallest number, and so on. For an edgee of a graph
G, G.source(e) returns the source node of the edge and hencedfsnum[G.source(e)] is the
number of the source of the edge. We define a functionord that, given an edgee, returns
dfsnum[G.source(e)] and then callbucketsort with this function.

int ord(edge e){ return dfs num[G.soure(e)℄; };

L.buket sort(ord);

3.2.2 Lists for Ordered Sets
Recall that a typeE is linearly ordered if the functionint compare(const E& , const E&) is
defined and establishes a linear order onE, cf. Section 2.10. For lists over linearly ordered
element types additional operations are available.

list item L.searh(E x);

searches for an occurrence ofx in L. It usescompareto comparex with the elements
of L. If x occurs inL, the leftmost occurrence is returned and ifx does not occur inL,
nil is returned. The running time ofsearchis proportional to the distance of the leftmost
occurrence ofx from the front of the list. We next show how to usesearchin a primitive
but highly effective implementation of thesetdata type, the so-calledself-organizing list
implementation. We realize a set over typeE (type soset<E>) as a list overE and use
searchto realize thememberoperation; the prefix “so” stands for self-organizing. We will
make the member operation more effective by rearranging thelist after each successful
access. We use the operationmoveto front(it) that takes an itemit of a list, removes it

3.2 Lists 11

from its current position, and makes it the first element of the list. The effect of moving
each accessed item to the front of the list is to collect the frequently accessed items near
the front of the list. Since the access time in a list is linearin the distance from the front,
this strategy keeps the expected access time small. We referthe reader to [Meh84, III.6.1.1]
for the theory of self-organizing lists and turn to the implementation. We derivesoset<E>
from list<E> and accordingly define asosetitemas a new name for alist item. We realize
the membership test bysearchfollowed bymoveto front (if the search was successful), we
realizeinsert by a membership test followed by append (if the membership test returned
false). The other member functions are self-explanatory.

〈so set.h〉�

#inlude <LEDA/list.h>

typedef list_item so_set_item;

template <lass E>

lass so_set: private list<E>{

publi:

bool member(onst E& e)

{ list_item it = searh(e);

if (it) { move_to_front(it); }

return (it != nil);

}

void insert(onst E& e) { if (!member(e)) append(e); }

so_set_item first() onst { return list<E>::first(); }

so_set_item su(so_set_item it) onst { return list<E>::su(it); }

E ontents(so_set_item it) onst { return list<E>::ontents(it); }

};

We give an application of our new data type. We read the file containing the source of this
chapter, insert all its words into asoset, and finally print the first thirty words in the set.

〈so setdemo〉�

main(){

so_set<string> S;

file_istream I("datatype.lw");

string s;

float T = used_time();

while (I >> s) S.insert(s);

out << "time required = " << used_time(T);

so_set_item it = S.first();

for (int i = 0; i < 30; i++)

{ out << (i % 5 == 0 ? "\n" : " ") << S.ontents(it);

it = S.su(it);

}

}

12 Basic Data Types

The output of this program is:

time required = 13.58

} \end{exerises} respetively. and s

of length the are m

n where $O(n+m)$ time in

runs program that Show substring

a is p if only

suess this � else p.length())

As expected, we see frequent English words, because the move-to-front-heuristic tends to
keep them near the front of the list, and words that occurred near the end of the text, because
they were accessed last.

We turn to merging and sorting. Ifcmpdefines a linear order on the element type ofL
then

L.sort(mp); L1.sort(mp);

L.merge(L1,mp)

sortsL andL1 according to the linear order and then merges the two sorted lists. If we call
the functions without thecmp-argument

L.sort(); L1.sort();

L.merge(L1);

the default order on the element type is used. Merging two lists of lengthn andm, respec-
tively, takes timeO(n + m) and sorting a list ofn elements takes expected timeO(n logn).
Let us verify this fact experimentally. We start withn equal to 128000 and repeatedly dou-
ble n. For each value ofn we generate a list of lengthn, make two copies of the list and
merge them, and we permute the items of the list and then sort the list. For each value of
n we outputn, the measured running time for the merge and the sort, respectively, and the
running time divided byn andn logn, respectively.

〈sort mergetimes〉�

main()

{ int min, max;

〈sort merge times: read max〉

for (int n = min; n <= max; n = 2*n)

{ list<int> L;

for (int j = 0; j < n; j++) L.append(j);

list<int> L1 = L;

list<int> L2 = L;

float T1 = used_time();

L1.merge(L2);

T1 = used_time(T1);

L.permute();

float T2 = used_time();

L.sort();

3.2 Lists 13

Merging Sorting

n time normalized time normalized

128000 0.07 0.547 0.64 0.425

256000 0.15 0.586 1.35 0.423

512000 0.3 0.586 3.15 0.468

1024000 0.58 0.566 6.31 0.445

Table 3.1 The table produced by the experiment. All running times are in seconds. The
normalized time is the 106T/n in the case of merging and 106T/(n logn) in the case of sorting.
The normalized time of sorting grows slowly. This is due to the increased memory access time
for larger inputs. You can produce your own table by running sort mergetimes.

Figure 3.2 The list L before and after the call ofpermute.

T2 = used_time(T2);

〈sort merge times: produce table〉

}

}

Table 3.1 shows the outcome of the experiment. Does it confirmour statement that the
running time of merge is2(n) and that the running time of sort is2(n logn)? In the case of
merging one may say yes, since the numbers in the third columnof our table are essentially
constant, however, in the case of sorting the answer is a definite no, since the numbers in
the last column of our table certainly grow. Why is this so? The explanation lies in the
influence of cache memory on the running time of algorithms.

The internal memory of modern computers is organized hierarchically. There are at least
two levels of internal memory, a small and very fast first-level memory (usually called
cache) and a larger and slower second-level memory (usuallycalled main memory). On
many machines the hierarchy consists of more than two levels, see [HP90] for an excellent
account of computer architecture. In the example above we first allocate a list ofn items:
this puts the items consecutively into storage. Then we change the order of the items in the
list randomly. This leaves the items where they are and changes the links, i.e., afterpermute
the links jump around widely in memory, see Figure 3.2. The job of sort is to untangle this

14 Basic Data Types

Build Traverse Permute Traverse

0.59 0.16 2.77 0.44

Table 3.2 Illustration of cache effects on running time: We built a list of 1000000 items,
traversed it, permuted it, and traversed it again. You may perform your own experiments with the
cacheeffects demo.

mess. In doing so, it frequently has to access items that are not in the fastest memory. This
explains the last column of our table, at least qualitatively.

Next, we attempt a quantitative explanation. Consider the following program:

list<int> L;

for (int i = 0; i < 1000000; i++) L.append(i);

// L.permute();

float T = used time();

list item it = L.first();

while (it != nil) it = L.su(it);

out << used time(T);

We make the following assumptions (see [HP90] for a justification): It takes ten machine
instructions to execute one iteration of the while-loop. Memory is organized in two levels
and the first level can hold 10000 items. An access to an item that is in first level is serviced
immediately and an access to an item that is not in the first level costs an additional twenty
machine cycles. An access to an item in second level moves this item and the seven items
following it in second-level memory from second-level memory to first-level memory. An
access to an item that is not in first-level memory in called acache miss.

What behavior will we see? First assume that the list is permuted. Since the first level
memory can hold only 10000 items it is unlikely that the successor of the current item is also
in memory. We should therefore expect that each iteration ofthe loop takes thirty machine
cycles, ten for the instructions executed in the loop and twenty for the transport of an item
into fast memory. Next assume that the list is not permuted. Now we will incur the access
time for slow memory only once in eight iterations and hence eight iterations will take a
total of 100 machine cycles. In contrast, the eight iterations will take a total of 240 machine
cycles on the permuted list. Thus, permuting the list will make the program about 2.4 times
slower for largen. Forn = 10000 we will see no slowdown yet, as the entire list fits in fast
memory. For very largen we will see a slowdown of 2.4 and for intermediaten we will see
a slowdown less than 2.4.

Table 3.2 shows actual measurements.

3.2.3 The Implementation of Lists
Lists are implemented as doubly linked lists. Each item corresponds to a structure (type
dlink) with three fields, one for the contents of the item and one each for the predecessor

3.2 Lists 15

and the successor item, and the list itself is realized by a structure (typedlist) containing
pointers to the first and last item of the list and additional bookkeeping information. The
space requirement of a list ofn items is 16+ 12n bytes plus the space needed for the
elements of the list. The contents of an item is either storeddirectly in the item (if it fits
into four bytes) or is stored through a pointer, i.e., thee-field of adlink either contains the
contents of the item or a pointer to the contents of the item. In the former case there is no
extra space needed for the elements of the list and in the latter case additional space forn
objects of typeE is needed (hereE denotes the type of the objects stored in the list). All of
this is discussed in detail in the chapter on implementation.

〈storage layout for lists〉�

typedef dlink* list_item;

lass dlink {

dlink* su;

dlink* pred;

GenPtr e; // for the ontents of the item

// spae: 3 words = 12 bytes

};

lass dlist {

dlink* h; // head

dlink* t; // tail

link* iterator // iterator, historial

int ount; // length of list

// spae: four words = 16 bytes

〈member functions of class dlist〉

};

There is no space to show the implementations of all member functions. We show only the
implementation of bucket sort. The implementation is very low-level and therefore hard to
understand.Bucketsort assumes that a functionord and integersi and j are given such
thatord maps the elements of the list into the range [i .. j]. It uses an arraybucketof linear
lists; bucket[i] points to the end of thei -th bucket list as shown in Figure 3.3. Initially,
all bucket lists are empty. The algorithm runs through the items of the list to be sorted,
computes for each itemx the indexk = ord(x → e) of the bucket into which the item
(recall thatx → econtains the object stored in itemx) belongs, and appends the item to the
appropriate bucket. Afterwards, it joins all bucket lists into a single list. This is done from
right to left.

〈list: bucket sort〉�

void dlist::buket_sort(int i, int j)

{

if (h == nil) return; // empty list

int n = j-i+1;

register list_item* buket = new list_item[n+1℄;

register list_item* stop = buket + n;

16 Basic Data Types

Figure 3.3 Illustration of bucket sort. We have two non-empty buckets.The list items are shown
as rectangular boxes, successor pointers go from left to right, and predecessor pointers go from
right to left. The pointers from the bucket array to the rearsof the bucket lists are shown
vertically.

register list_item* p;

register list_item q;

register list_item x;

for(p = buket; p <= stop; p++) *p = 0;

while (h)

{ x = h;

h = h->su;

int k = ord(x->e);

if (k >= i && k <= j)

{ // add x at end of k-th buket

p = buket + k - i;

x->pred = *p;

if (*p) (*p)->su = x;

*p = x;

}

else

error_handler(1,"buket_sort: value out of range") ;

}

for(p = stop; *p == 0; p--);

// now p points to the end of the rightmost non-empty buket

// make it the new tail of the list.

t = *p;

t->su = nil;

for(q = *p; q->pred; q = q->pred);

// now q points to the start of this buket

// link bukets together from right to left:

// q points to the start of the last buket

// p points to end of the next buket

while(--p >= buket)

if (*p)

{ (*p)->su = q;

q->pred = *p;

for(q = *p; q->pred; q = q->pred);

}

3.3 Arrays 17

h = q; // head = start of leftmost non-empty buket

delete[℄ buket;

}

Aren’t you glad that one of us wrote this program?

3.2.4 Singly Linked Lists
LEDA also offers singly linked lists (typeslist) in which each item only knows its successor.
They require space 16+ 8n bytes but offer a smaller repertoire of operations. Singly linked
lists are used to implement stacks and queues.

Exercises for 3.2
1 Implement queues by singly linked lists.
2 Implement more operations on lists, e.g.,concor merge.
3 Write a procedure that reverses the order of the items in a list.
4 Extend the data typesosetto a dictionary. Realize a dictionary fromK to I as a list of

pointer to pairs (list<two tuple<K , I > ∗ >). Then proceed in analogy to the text.
5 (Topological sorting) LetL be a list of pairs of integers in the range from 1 ton. Compute

an ordering of the integers 1 ton such that if(x, y) is any pair in the list thenx precedes
y in the ordering, or decide that there is no such ordering. So if n is 4 andL is (2, 1),
(1, 4), (3, 4) then 2, 3, 1, 4 is a possible ordering. Hint: 2 can go first because it does not
appear as the second component of any pair.

6 Redo the calculation for the slowdown due to cache misses for the case that an iteration
of the loop takes 100 clock cycles instead of ten.

7 Find out what a cache miss costs on the machine that you are using.

3.3 Arrays

Arrays are what they are supposed to be: collections of variables of a certain typeE that
are indexed by either an interval or a two-dimensional box ofintegers. The declarations

array<string> A(3,5);

array<string> B(10);

array2<int> C(1,2,4,6);

define two one-dimensional arrays and one two-dimensional arrays: A is a one-dimensional
array of strings with index set [3.. 5], B is a one-dimensional array of strings with index
set [0.. 9], andC is a two-dimensional array of integers with index set [1.. 2] × [4 .. 6],
respectively. Each entry is initialized with the appropriate default value. So each entry ofA
andB is initialized to the empty string and each entry ofC is initialized to some integer.

We use the standard C++ subscript operator for the selection of variables in one-dimensional
arrays. SoA[4] evaluates to the variable with index 4 inA. For two-dimensional arrays we

18 Basic Data Types

need to use round brackets since C++ does not allow the use of angular brackets with two ar-
guments. SoC(1, 5) evaluates to the variable with index(1, 5) in C. Arrays check whether
their indices are legal (this can be turned off by the compiler flag-DLEDA_CHECKING_OFF)
and hence we get an error in the following assignment:

A[6℄ = "Kurt" // "ERROR array:: index out of range"

An array knows its index set. The callsA.low() and A.high() return the lower and upper
index bound ofA, respectively. For two-dimensional arrays we have the corresponding
functionslow1, high1, low2, andhigh2.

We illustrate arrays by two sorting functions: straight insertion sort and merge sort. Both
operate on anarray<E> A and assume that the element typeE is linearly ordered by the
functioncompare, see Section 2.10. We use [l .. h] to denote the index range ofA. Straight
insertion sort follows a very simple strategy; it sorts increasingly larger initial segments of
A. Assume that we have already sorted an initial segmentA[l], . . . , A[i − 1] of A for some
i . Initially, i = l + 1. In the incremental step we addA[i] to the sorted initial segment by
inserting it at the proper position. We determinej with A[j] ≤ A[i] < A[j + 1], move
A[j + 1], . . . , A[i − 1] one position to the right, and putA[i] into A[j + 1], see Figure 3.4.
Straight insertion sort is a stable sorting method. Its running time is quadratic.

〈straight insertionsort〉�

template<lass E>

void straight_insertion_sort(array<E>& A)

{ int l = A.low();

int h = A.high();

for (int i = l + 1; i <= h; i++)

{ E x = A[i℄;

int j = i - 1;

while (j >= l && ompare(x,A[j℄) < 0)

{ A[j+1℄ = A[j℄;

j--;

}

A[j+1℄ = x;

}

}

We turn to merge sort. It is much more efficient than straight insertion sort and runs in
time O(n logn) on an array of sizen. The underlying strategy is also simple. Merge sort
operates in phases. At the beginning of thek-th phase,k ≥ 0, the array is partitioned into
sorted blocks of size 2k. These blocks are paired and any pair is merged into a single sorted
block. In the program below we useK to denote 2k and we use an auxiliary arrayB with
the same index set asA. In even phases the merge step reads fromA and writes intoB, and
in odd phases the roles ofA andB are interchanged. In this way the data moves back and
forth betweenA andB. If it ends up inB at the end ofmergesort, we need to copy it back
to A. We use a boolean variableevenphasethat is true iff the next phase is even. The actual
merging is done by the functionmerge. A call merge(X, Y, i , K , h) takes the blocks ofX

3.3 Arrays 19

1 2 2 4 7 8 3 9 1 2

1 2 2 3 4 7 8 9 1 2

j i

Figure 3.4 We insertA[i] into the already sorted initial segment by inserting it into the proper
position, say positionj + 1, and moving elementsA[j + 1], . . . , A[i − 1] one element to the
right.

starting at positionsi andi + K , respectively, and merges them into the block ofY starting
at positioni and having the combined size of the two blocks to be merged. The last element
of the two blocks to be merged is to be found at positionh; this information is important if
the size ofA is not a power of two.

〈mergesort〉�

〈merge routine〉

template<lass E>

void merge_sort(array<E>& A)

{ int l = A.low(); int h = A.high(); int n = h - l + 1;

array<E> B(l,h);

bool even_phase = true;

for (int K = 1; K < n; K = 2*K)

{ for (int i = l; i <= h; i = i + 2*K)

{ if (even_phase) merge(A,B,i,K,h);

else merge(B,A,i,K,h);

}

even_phase = !even_phase;

}

if (!even_phase)

{ for (int i = l; i <= h; i++) A[i℄ = B[i℄; }

}

It remains to definemerge(X, Y, i , K , h). Our goal is to fill the block ofY starting at
position i and extending to positionm wherem = min(i + 2K − 1, h) from the two
blocks ofX starting at positionsi andi + K , respectively. The two blocks inX extend to
ml = min(i + K − 1, h) andm, respectively. We maintain one index in each of the three
blocks to control the merging process: The indexj indicates the position inY that is to
be filled next and the indicesil andih point to the smallest remaining elements in the two
blocks ofX. We always move the smaller ofX[il] andX[ih] to Y[j]. We break ties in favor
of X[il]. This makes merge sort a stable sorting method.

20 Basic Data Types

n 2 4 8 16 32 64 128 256

insertion sort 0.83 3.27 13.5

merge sort 0.03 0.06 0.14 0.29 0.66 1.28 2.85 5.99

insertion sort 0.47 1.74 7.07

merge sort 0.02 0.03 0.09 0.17 0.38 0.78 1.66 3.49

member function 0.01 0.01 0.03 0.07 0.15 0.3 0.6 1.33

Table 3.3 Running times of our sorting routines and the member function sort. All running
times are in seconds and for an array of 1000n integers. Insertion sort and merge sort have been
compiled without and with the flag-DLEDA CHECKING OFF. You may produce you own table by
calling arraysort times.

〈merge routine〉�

#inlude <LEDA/mis.h> // to inlude Min

template<lass E>

void merge(array<E>& X, array<E>& Y, int i, int K, int h)

{ int il = i; int ih = i + K;

int ml = Min(i + K - 1,h); int m = Min(i + 2*K - 1,h);

for (int j = i; j <= m ; j++)

{ if (ih <= m && (il > ml || ompare(X[ih℄,X[il℄) < 0))

{ Y[j℄ = X[ih℄; ih++; }

else

{ Y[j℄ = X[il℄; il++; }

}

}

Table 3.3 shows the running times of our two sorting procedures in comparison to the mem-
ber functionsort for the task of sorting an array ofn ints. Observe how the running time
of insertion sort explodes. Since its running time grows proportional ton2, it quadruples
whenevern is doubled. In contrast, the running time of the two other methods isO(n logn)

and hence basically doubles whenevern is doubled. The member functionsort beats our
implementation of merge sort because it exploits the fact that the objects to be sorted are
ints, see Section 13.5.

Arrays are implemented by C++ arrays. There are important differences, however:

• The index sets may be arbitrary intervals of integers and arrays check whether their
indices are legal. The index check can be turned off by the compiler flag
-DLEDA_CHECKING_OFF.

• The entries of an array are initialized to the default value of the entry type.

• An assignmentA = B assigns a copy ofB to A, i.e., A is made to have the same

3.4 Compressed Boolean Arrays (Type intset) 21

number of variables asB and these variables are initialized with copies of the values
of the corresponding variables inA. Thus, it is perfectly legal to assign an array of size
100 to an array of size 5.

• One-dimensional arrays offer some additional higher levelfunctions which we discuss
next.

We can reorder the elements of a one-dimensional array according to a linear order on
the typeE. The linear order may either be the default order of the type or be given by a
compare function. Thus,

A.sort();

sorts the entries of our arrayA according to the lexicographic ordering on strings. On a
sorted array we may use binary search.

A.binary searh("Stefan");

returns the indexi ∈ [3 .. 5] containing"Stefan" if there is such an index and returns
A.low() − 1 if there is no such index. We can permute the entries of an array by

A.permute();

The space required for an array ofn elements isn times the space required for an object of
type E. All access operations on arrays take constant time,sort takes timeO(n logn) and
binarysearchtakes timeO(logn).

In many applications one needs arrays with large but sparsely used index sets, e.g., we
may have 104 indices in the range from 0 to 109. In this situation it would be a complete
waste of space and time to allocate an array of 109 elements and therefore a different data
structure is called for. The data typesmapandh array are appropriate. They will be dis-
cussed in Section 5.1.

Exercises for 3.3
1 Implement other sorting routines for arrays. Candidates are bubble sort, shell sort, heap

sort, quick sort, and others.
2 Implement the typearray by C++ arrays.
3 (Sparse arrays) Use lists to realize arrays whose index ranges are the integers from 0

to 220. Call the typesparsearray<E>. The constructor for the class should have an
argument of typeE. All elements of the array are initialized with this value. The time
efficiency of your method is not important. However, the space requirement should be
proportional to the number of indices for which the subscript operator was executed.

3.4 Compressed Boolean Arrays (Type int set)

Boolean arrays are often used to represent sets. In this situation one also wants to perform
the set operationsunion, intersection, andcomplementbesides the usual operations on ar-

22 Basic Data Types

rays (read the value of an entry or set the value of an entry). The data typeint setprovides
these operations in a space- and time-efficient way. It stores boolean arrays as bit-vectors,
i.e., λ entries are stored in a single word on a machine with word sizeλ, and it uses the
parallelism available at the word level to perform the set operations forλ entries in a single
machine instruction. A speed-up of aboutλ is thus obtained for the set operations. On the
other hand, reading or setting a single entry takes slightlylonger than for an array.

int set S(n),T(n),R(n);

definesS, T , and R as subsets of [0.. n − 1] and initializes them to the empty set; the
alternative definitionint set S(a, b) definesS as a subset of [a .. b]. If x is an integer with
0 ≤ x ≤ n − 1 then

S.insert(x);

S.del(x);

S.member(x);

insertsx into S, deletesx from S, and tests for membership ofx, respectively.S.clear()

makesS the empty set. The set operations union, intersection, and complement are denoted
by the corresponding logical operator. So

S = T | R;

S = T & R;

S = ~T;

assigns the union ofT and R, the intersection ofT and R, and the complement ofT to
S, respectively. We also have the shorthandsS |= R for S = S | R and S &= R for
S= S & R. Note that the shorthands are more efficient than the verboseversions since the
verbose versions first construct a temporary object and thencopy that object into the left-
hand side (except if your compiler is clever). The space requirement of intsets isO(n/λ);
insert, del, andmembertake timeO(1), and the other operations take timeO(n/λ).

As an application of compressed boolean arrays we give an algorithm for the multiplica-
tion of boolean matrices that runs in timeO(n3/λ). Let A andB be boolean matrices with
index sets [0.. n − 1] × [0 .. n − 1], and letC be their product, i.e.,

C(i , k) =

n−1∨

j =0

A(i , j) ∧ B(j , k)

for all i andk. The obvious method to obtainC from A andB takes timeO(n3). We can
obtain a faster algorithm by observing that for eachi , 0 ≤ i < n, the i -th row of C is the
bit-wise or of certain rows ofB, namely those that are selected by thei -th row of A. If
we represent the rows ofB andC as compressed arrays we obtain each row ofC in time
O(n2/λ) and hence can multiply two matrices in timeO(n3/λ).

We give the details. First we compute a compressed version ofB.

array<int set*> B ompressed(0,n-1);

int i;

for (i = 0; i < n; i++)

3.5 Random Sources 23

{ B ompressed[i℄ = new int set(0,n-1);

for (int j = 0; j < n; j++)

if (B(i,j)) B ompressed[i℄->insert(j);

}

Next we perform the multiplication. We compute each row firstin compressed form and
then expand it intoC.

int set ompressed row(0,n-1);

for (i = 0; i < n; i++)

{ for (int j = 0; j < n; j++)

if (A(i,j)) ompressed row |= *B ompressed[j℄;

for (j = 0; j < n; j++)

C(i,j) = ompressed row.member[j℄;

ompressed row.lear();

}

Exercise for 3.4
1 Compare the method described above with the following variant of the traditional method.

for (int i = 0; i < n; i++)

for (int k = 0; k < n; k++)

{ C(i,k) = false;

for (int j = 0; j < n; j++)

if (A(i,j) && B(j,k))

{ C(i,k) = true;

break;

}

}

How do the two algorithms perform whenA andB contain only zeros and ones, respec-
tively? Is there a way to combine the advantages of both methods?

3.5 Random Sources

We frequently need random values in our programs. Arandom sourceprovides an un-
bounded stream of integers in some range [low .. high], wherehigh and low are ints with
low ≤ high andhigh− low < 231. The size restriction comes from the fact that the imple-
mentation of random sources useslongs. The definition

random soure S(7,319);

defines a random sourceS and sets its range to [7.. 319]. Ranges of the form [0.. 2p] are
particularly useful. Therefore we have also the definition

random soure S(p);

24 Basic Data Types

that sets the range to [0.. 2p−1] (1 ≤ p ≤ 31 is required) and the definitionrandomsource S
that sets the range to [0.. 231 − 1]. The random sourcerand int is already defined in the
header filerandom.h; it has range [0.. 231− 1]. A random value is extracted from a source
by the operator≫. So

S >> x >> y;

extracts two integers in the range [low .. high] and assigns them tox and y; this assumes
that x and y are defined as ints. Note that we are using the C++ input stream syntax for
random sources, i.e.,S ≫ x assigns tox and returns a reference toS.

We may also extract characters, unsigned integers, bools, and doubles from a random
source. For the first three types this works as follows: first an integer from the range
[low .. high] is extracted and then this integer is converted to the appropriate type. Thus,
if b is a boolean variable thenS ≫ b extracts a truth value. Note that the value ofb is not
uniformly distributed ifhigh− low + 1 is an odd number. In particular, iflow = 0 and
high = 2 then we should expect the valuefalseabout twice as often as the valuetrue (as 0
and 2 are converted tofalseand only 1 is converted totrue). Werecommendto extract char-
acters and boolean values only from sources whose range spans a power of two. If a source
S is asked for a doubled by S ≫ d then a random integeru ∈ [0 .. 231 − 1] is extracted
andu/(231 − 1) is assigned tod, i.e., the value assigned tod lies in the unit interval.

The range of a random source can be changed either permanently or for a single oper-
ation: The operationsS.setrange(low, high) and S.setrange(p) change the range ofS to
[low .. high] and [0.. 2p − 1], respectively, andS(low, high) andS(p) change the range for
a single operation and return an integer in [low .. high] and [0.. 2p − 1], respectively.

Of course, the stream of integers generated by a random source is only pseudo-random.
It is generated from aseedthat can either be supplied by the user (byS.setseed(s)) or
is generated automatically from the internal clock. If a seed is supplied then the source
behaves deterministically; this is particularly useful during debugging. If no seed is supplied
the sequence produced depends on the time of the day.

In the remainder of this section we describe several uses andthe implementation of ran-
dom sources.

A Chance Experiment: We use random sources for a chance experiment that is relevant to
the analysis of merge sort for secondary memory; see [Moo61]and [Knu81, section 5.4.1].
Assume that we have to sort a setS that is too large to fit into main memory. Merge sort
for external memory approaches this problem in two phases. In the first phase it partitions
Sand sorts each subset and in the second phase it merges the sorted subsets (usually called
runs). Of course, it is desirable that the number of runs producedin the first phase is kept
small, or in other words, that the runs produced in the first phase are long. Assume thatM
elements ofS can be kept in main memory. Then runs of lengthM can be produced by
readingM elements into main memory and sorting them. Longer runs can be produced by
a method calledreplacement selection. This method partitions its internal memory into a

3.5 Random Sources 25

priority queueQ and a reservoirR that can together storeM elements. The production of
runs starts by readingM elements into the priority queue. A run is generated by repeated
selection of the minimum elementQ min from Q. This element is added to the current run
(and written to secondary memory) and the spot freed in main memory is filled by the next
elementx from S. If x is smaller thanQ min thenx is added toR and it is added toQ
otherwise. We continue untilQ becomes empty. When this is the case, the elements inR
are moved toQ and the production of the next run starts. Each run produced by replacement
selection has length at leastM. The two extreme situations arise whenS is sorted: ifS is
sorted in descending order then each run has exactly lengthM and if S is sorted in ascending
order then a single run will be produced.

The program below simulates the behavior of replacement selection for a setSof random
doubles. We maintain a priority queueQ and a stackS. We initialize Q with M random
doubles andR to the empty stack. Then we start the production of runs. In each iteration
we remove the smallest elementQ min from Q and then produce a new random doublex.
If x < Q min we addx to Q, and we add it toR otherwise. WhenQ is empty we move all
elements fromR to Q and start the production of the next run. For each run we record the
quotient of the length of the run andM.

〈runlength〉�

main(){

int M, n;

〈read M and n〉

p_queue<double,int> Q; // seond type parameter is not used

stak<double> R;

random_soure S;

double x;

int i;

for (i = 0; i < M; i++) { S >> x; Q.insert(x,0); }

array<double> RL(1,n); // RL[i℄ = length of i-th run

for (i = 1; i <= n; i++)

{ // prodution of i-th run

int runlength = 0;

while (!Q.empty())

{ double Q_min = Q.del_min(); runlength++ ;

S >> x;

if (x < Q_min) R.push(x);

else Q.insert(x,0);

}

RL[i℄ = (double)runlength / M;

while (!R.empty()) Q.insert(R.pop(),0);

}

〈produce table runlength〉

}

Table 3.4 shows the output of a sample run; we usedM = 105. The length of thei -th run

26 Basic Data Types

Round Length Round Length Round Length Round Length

1 1.717 6 1.998 11 2 16 2.001

2 1.95 7 1.998 12 2 17 2.002

3 1.998 8 2.002 13 1.999 18 1.992

4 2.002 9 1.997 14 2.002 19 2

5 1.996 10 2 15 2 20 2.003

Table 3.4 Run formation by replacement selection, we usedM = 105 andn = 20. You may
perform your own experiments by calling program runlength.

seems to converge to 2M asn grows. We refer the reader to [Moo61] and [Knu81, section
5.4.1] for a proof of this fact.

We give a second interpretation of the chance experiment above. Consider a circular
track on which a snow plow is operating. When the snow plow starts to operate there are M
snow flakes on the track (at random locations). In every time unit the snow plow removes
one snow flake and one new flake falls (at a random location). Wecompute how many snow
flakes the snow plow removes in its i-th circulation of the track.

Random Permutations and Graphs: We show how to generate more complex random
objects, namely random permutations and random graphs.

Let A be an array. We want to permute the elements ofA randomly. Leta0, . . . , an−1 be
the elements ofA. We can generate a random permutation of these elements by selecting a
random element and putting it into the last position of the permutation, selecting a random
element from the remaining elements and putting it into the next to last position of the
permutation, and so on. In the program below we realize this process in-place. We keep an
index j into A, initially j = n−1. We maintain the invariant that the elements in position 0
to j have not been selected for the permutation yet and that positions j + 1 ton − 1 contain
the part of the permutation that has been produced so far. In order to fill the next position
of the permutation we choose a random integeri in [0 .. j] and interchangeA[i] and A[j].
We obtain

random soure S;

for (int j = n - 1; j >= 1; j--) leda swap(A[j℄,A[S(0,j)℄);

whereledaswapinterchanges its arguments. The method just described is used in operation
permute() of typesarray andlist.

Our next task is to generate a random graph withn nodes andm edges. This is very
easy. We start with an empty graphG, then addn nodes toG, and finally choosem pairs
of random nodes and create an edge for each one of them. A node can be added to a graph
G by G.newnode(). This call also returns the newly added node. We store the nodes in an

3.5 Random Sources 27

array<node> V. In order to add a random edge we choose two random integers, say l and
k, in [0 .. n − 1] and then add the edge fromV [l] to V [k] to G.

random soure S;

graph G; //empty graph

array<node> V(0,n-1);

for (int i = 0; i < n; i++) V[i℄ = G.new node();

for (int i = 0; i < m; i++)

G.new edge(V[S(0,n-1)℄ , V[S(0,n-1)℄);

The program above realizes the functionrandomgraph(G, n, m). LEDA also offers func-
tions to generate other types of random graphs, e.g., randomplanar graphs. We discuss
these generators in later chapters.

Non-Uniform Distributions: We show how to generate integers according to an arbitrary
discrete probability distribution. The method that we are going to describe is called the
alias-methodand has been invented by Walker [Wal77]. Letw[0 .. n − 1] be an array of
positive integers. For alli , 0 ≤ i < n, we interpretw[i] as the weight ofi . Our goal is to
generatei with probabilityw[i]/W, whereW = w[0] + . . . + w[n − 1]. We start with the
simplifying assumption thatn dividesW and letK = W/n. We will remove this restriction
later. We viewW as ann by K arrangement of squares,n columns ofK squares each and
labelw[i] squares byi for all i , 0 ≤ i ≤ n, see Figure 3.5. In order to generate an integer we
select a random square and return its label. This makes the generation of a random integer a
constant time process. The drawback of this method is that itrequires spaceW. The space
requirement can be improved toO(n) by observing that there is always a labeling of the
squares such that at most two different labels are used in anycolumn. This can be seen
as follows. Call a weightsmall if it is less than or equal toK and call it large otherwise.
Clearly, there is at least one small weight. Letw[i] be an arbitrary small weight. Ifw[i]
is equal toK then we assign an entire column toi and if w[i] is less thanK then we take
an arbitrary large weight (there must be one!), sayw[j], and assignw[i] squares toi and
K − w[i] squares toj . We also reducew[j] by K − w[i]. In either case, we have reduced
the number of weights by one and are left withn − 1 weights whose sum isK (n − 1).
Proceeding in this way we label each column by at most two numbers.

We still need to remove the assumption thatn dividesW. We redefineK asK = ⌈W/n⌉

and add an additional weightw[n] = K (n + 1) − W. This yieldsn + 1 weights whose
sum is equal toK (n + 1). We can now construct a labeling as described above. We also
need to modify the generation process slightly, because it is now possible that the number
n is generated. When this happens we declare the generation attempt a failure and repeat.
The probability of success isW/(K (n + 1)) and hence the expected number of iterations
required isK (n + 1)/W. We need to bound this quantity. We haveW ≥ n since each
weightw[i] it at least one and we haveKn < W + n and henceW > (K − 1)n by the
definition of K . Thus if K = 1 thenK (n + 1)/W ≤ (n + 1)/n ≤ 2 and if K ≥ 2 then
K (n + 1)/W ≤ K (n + 1)/((K − 1)n) ≤ 4. In either case we conclude that the expected
number of iterations required is bounded by 4.

28 Basic Data Types

0 1 2 3 4

0

0

1

1

1

3

3

2

2 2 2

2

2

2

2

2 2

2

2

2

Figure 3.5 Illustration of alias-method. We haven = 5, w = (3, 4, 14, 3, 1), andK = 5. The
labeling shown is succinctly encoded by the vectorsT = (3, 4, 5, 3, 1), L = (0, 1, 2, 3, 4), and
U = (2, 2, , 2, 2): for each columnj the lowestTj squares are labeledL j and the highest
K − Tj squares are labeledU j .

We turn to an implementation. We define a classrandomvariate. Its constructor takes an
array<int> w of non-negative integers and index range [l .. h] and sets up the vectorsT , L,
andU and the integerK defined above. Its member functiongenerategenerates any integer
i ∈ [l .. h] with probabilityw[i]/W whereW =

∑
i w[i].

〈definition of class randomvariate〉�

lass random_variate{

array<int> T, L, U;

int l, h, n, K;

publi:

random_variate(onst array<int>& w) { 〈random variate: constructor〉 }

int generate() { 〈random variate: generate〉 }

};

The constructor operates in two phases. In the first phase we compute the total weightW,
the numbern of non-zero weights, the integerK , and an arrayarray<int> u(l , h + 1) with
the additional weightu[h + 1] = K (n + 1) − W.

〈random variate: constructor〉�

l = w.low(); h = w.high();

int W = 0;

array<int> u(l,h+1);

n = 0; // number of non-zero weights

int i;

for (i = l; i <= h; i++)

{ W += u[i℄ = w[i℄;

if (u[i℄ < 0)

error_handler(1,"random variate: negative weight");

if (u[i℄ > 0) n++;

}

3.5 Random Sources 29

if (n == 0) error_handler(1,"random_variate: no non-zero weight");

K = W/n + (W % n == 0? 0 : 1);

u[h + 1℄ = K*(n+1) - W; n++;

In the second phase we set up the arraysT , L, andU . We use two stacksSmallandLarge:
In Smallwe store all alli such thatu[i] is small and inLargewe store alli such thatu[i]
is large. We store the labeling in three arraysT , L, andU such that for every columnc,
0 ≤ c ≤ n − 1, squares 1 toT [c] are labeledL[c] and squaresT [c] + 1 to K are labeled
U [c].

〈random variate: constructor〉+�

stak<int> Small,Large;

for (i = l; i <= h + 1; i++)

{ if (u[i℄ == 0) ontinue;

if (u[i℄ <= K) Small.push(i);

else Large.push(i);

}

U = T = L = array<int>(n);

for (int = 0; < n; ++)

{ int i = Small.pop();

T[℄ = u[i℄;

L[℄ = i;

if (u[i℄ < K)

{ int j = Large.pop();

U[℄ = j;

u[j℄ -= (K-u[i℄);

if (u[j℄ <= K) Small.push(j); else Large.push(j);

}

}

The generator chooses a randomrow and a randomcolumnand looks up the table entry
defined by this row and column. If the table entry is differentfrom h + 1, it is returned.
Otherwise the process is repeated.

〈random variate: generate〉�

int r;

do { int row = rand_int(1,K);

int olumn = rand_int(0,n-1);

r = (row <= T[olumn℄ ? L[olumn℄ : U[olumn℄);

}

while (r == h + 1);

return r;

Random Walks in Graphs (Simulating Markov Chains): We give an application of class
randomvariate. We perform a random walk on a graph. LetG = (V, E) be a directed graph
and for each edgee let w[e] be a non-negative weight. We start our walk in an arbitrary

30 Basic Data Types

node ofG and move according to the following rule: Suppose that we arecurrently in node
v and lete0, . . . ,ed−1 be the edges out ofv. We follow edgeei with probability proportional
to w[ei] for all i , 0 ≤ i < d. If there is no edge out ofv the walk terminates. We define a
classmarkovchainthat allows us to simulate such a process.

〈definition of class markovchain〉�

lass markov_hain {

graph& G;

int N;

node_array<int> visits;

node vur;

node_array<array<node> > neighbors;

node_array<random_variate*> variate;

publi:

markov_hain(onst graph& g, onst edge_array<int>& w,

node s = nil): G(g)

{ 〈markov chain: constructor〉 }

void step(int T = 1) { 〈markov chain: step〉 }

int number_of_visits(node v) { return visits[v℄; }

〈markov chain: further member functions〉

};

The constructor takes a graphG, an edge array of weights, and a start vertex. If no start
vertex is specified the first node ofG is taken as the start vertex. The functionstep(T) per-
formsT steps of the random walk and the functionnumberof visits(v) returns the number
of visits to nodev. We give the details below.

The constructor sets up the required data structures. We build two data structures for each
nodev: anarray<node> neighbors[v] that stores for eachi , 0 ≤ i < outdeg(v), the target
of the i -th edge out ofv and a random variatevariate[v] that producesi with probability
proportional to the weight of thei -th edge out ofv. We set up both data structures by scan-
ning through the edges out ofv, collecting the target of the edges out ofv in neighbors[v]
and their weights in a temporary arrayweights. Then we use the latter array to construct the
random variate forv.

〈markov chain: constructor〉�

N = 0;

visits = node_array<int>(G,0);

vur = s; if (s == nil) vur = G.first_node();

neighbors = node_array<array<node> >(G);

variate = node_array<random_variate*>(G);

node v; edge e;

forall_nodes(v,G)

{ if (G.outdeg(v) == 0) ontinue;

neighbors[v℄ = array<node>(G.outdeg(v));

array<int> weights(G.outdeg(v));

int i = 0;

3.5 Random Sources 31

0 1

1/3

1/2
1/22/3

Figure 3.6 A graph with two nodes. The edge probabilities are shown nextto each edge.

forall_adj_edges(e,v)

{ neighbors[v℄[i℄ = G.target(e);

weights[i℄ = w[e℄;

i++;

}

variate[v℄ = new random_variate(weights);

}

Given these data structures it is easy to performT steps of the walk. If the outdegree of the
current node is zero we stay put. Otherwise, we generate a neighbor at random and move
to the neighbor.

〈markov chain: step〉�

if (T <= 0) return;

for (int i = 0; i < T; i++)

{ if (G.outdeg(vur) == 0) return;

vur = neighbors[vur℄[variate[vur℄ -> generate()℄;

visits[vur℄++;

N++;

}

Let us perform a random walk on the graph shown in Figure 3.6.

〈randomwalk example〉�

main(){

graph G;

node v0 = G.new_node();

node v1 = G.new_node();

edge e00 = G.new_edge(v0,v0); edge e01 = G.new_edge(v0,v1);

edge e10 = G.new_edge(v1,v0); edge e11 = G.new_edge(v1,v1);

edge_array<int> weight(G);

weight[e00℄ = 2; weight[e01℄ = 1;

weight[e10℄ = 1; weight[e11℄ = 1;

while(true)

{ int N = read_int("number of steps = ");

markov_hain M(G,weight);

M.step(N);

out << "# of visits of v0 = " << M.number_of_visits(v0) <<"\n";

out << "# of visits of v1 = " << M.number_of_visits(v1) <<"\n";

}

}

32 Basic Data Types

n 1 10 100 1000 10000 100000 1000000 10000000

v0 0 3 63 570 6058 60180 600704 6003568

v1 1 7 37 430 3942 39820 399296 3996432

Table 3.5 The statistics of a random walk on the graph of Figure 3.6. Each column gives the
number of visits to both nodes in the firstn steps of the walk. You may perform your own
experiments by calling randomwalk.

Table 3.5 shows a sample output of this program. There is a simple analytical explanation
for the output based on the theory of Markov chains, see [KSK76] for an introduction to
Markov chains. Letpi,n be the relative frequency of nodei during the firstn steps of the
random walk. It is known that thepi,n converge to so-called stationary probabilitiesπi and
that the stationary probabilities satisfy a system of linear equations directly related to the
transition graph. For each nodej there is an equation expressingπ j as a sum over all edges
directed into j . The contribution to this sum of an edge(i , j) is qi j · πi , whereqi j is the
transition probability of the edge. In our example we obtain:

π0 = 2/3 · π0 + 1/2 · π1

π1 = 1/3 · π0 + 1/2 · π1.

This system has solutionπ0 = 6/10 andπ1 = 4/10. In Table 3.5 we see the convergence
of the visit frequencies to the stationary probabilities.

Dynamic Random Variates: We generalize the classrandomvariate to a class called
dynamicrandomvariatewhich offers an additional operationsetweightthat allows the user
to change weights dynamically. More precisely, ifR is a dynamic random variate with
weight vectorw andi is in the index range ofw thensetweight(i , g) changesw[i] to g; g
is an arbitrary non-negative integer. The generation process of dynamic random variates is
less efficient than the one for (static) random variates; it takes timeO(logn), wheren is the
size of the index range ofw.

The implementation is fairly simple. We put the weights intothe leaves of a balanced
binary tree withn leaves andn − 1 internal nodes. In each node we store the sum of the
weights of the leaves in its subtree. In particular,W =

∑
i w[i] is stored in the root of

the tree. A weight change amounts to updating the weights along one leaf to root path. In
order to generate a random variate we choose a random integers in [0 .. W − 1]. If s is
less than the total weight of the left subtree, we proceed recursively to the left subtree and
if s is larger or equal to the total weight of the left subtree, we subtract the weight of the
left subtree and proceed recursively to the right subtree. In this way, changing a weight and
generating a random variate takes time proportional to the height of the tree. If a balanced
tree is used the height isO(logn).

A particularly simple implementation results when the nodes of the tree are numbered

3.5 Random Sources 33

0

1 2

3 4 5 6

7 8

Figure 3.7 A tree with five leaves and a total of nine nodes. The number of each node is shown.
The children of nodei have numbers 2i and 2i + 1.

with the integers 1 to 2n − 1 in preorder, i.e., the root is given the number 1, the children
of the node with numberi , 1 ≤ i < n have numbers 2i and 2i + 1, and the leaves are
numberedn to 2n−1. See Figure 3.7 for an example. The parent of nodei , 2 ≤ i ≤ 2n−1
has number⌊i /2⌋.

In the implementation we use anarray<int> u with index range [1.. 2n − 1] to store the
tree.

〈definition of class dynamicrandomvariate〉�

lass dynami_random_variate{

private:

array<int> u;

int n, h, l;

publi:

dynami_random_variate(onst array<int>& w)

{ 〈dynamic random variate: constructor〉 }

int generate() { 〈dynamic random variate: generate〉 }

int set_weight(int i, int g) { 〈dynamic random variate: set weight〉 }

};

The constructor stores the weight vectorw in the entriesn to 2n − 1 of u and then fills
each entryui , n − 1 ≥ i ≥ 1 as the sum of the entries of its children.

34 Basic Data Types

〈dynamic random variate: constructor〉�

l = w.low(); h = w.high(); n = h - l + 1;

u = array<int>(1,2*n - 1);

int i;

for (i = 0; i < n ; i++)

{ u[n + i℄ = w[l + i℄;

if (u[n + i℄ < 0) error_handler(1,"dynami variate: negative weight");

}

for (i = n - 1; i > 0; i--)

u[i℄ = u[2*i℄ + u[2*i + 1℄;

if (u[1℄ == 0) error_handler(1,"dynami variate: no non-zero weight");

The generator chooses a random integers in [0 .. W − 1] and then walks down a path
in the tree. When the walk reaches nodei , s is a random integer in [0.. u[i] − 1]. If i is
a leaf we returnl + (i − n) since the leaf numberedi corresponds to entryl + (i − n) of
weight vectorw. If i is not a leaf ands < u[2i], we proceed to child 2i and ifs ≥ u[2i], we
subtractu[2i] from s and proceed to child 2i + 1.

〈dynamic random variate: generate〉�

int s = rand_int(0,u[1℄ - 1);

int i = 1;

while (i < n)

{ int j = 2*i;

if (s < u[j℄)

i = j;

else

{ i = j + 1;

s -= u[j℄;

}

}

return l + i - n;

In order to change weighti to g we walk the path from leafn + (i − l) to the root and
change all entries ofu along the path bydelta= g− u[i]. The old value ofu[i] is returned.

〈dynamic random variate: set weight〉�

int ui = u[i℄;

i = n + (i - l);

int delta = g - u[i℄;

if (g < 0) error_handler(1,"dynami variate: negative weight");

while (i > 1)

{ u[i℄ += delta;

i = i/2;

}

u[1℄ += delta;

if (u[1℄ == 0) error_handler(1,"dynami variate: no positive weight");

return ui;

3.5 Random Sources 35

n Static Dynamic

100 32.02 52.7

10000 41.07 90.34

Table 3.6 Running time of random variate generation: We set up a weightvector withn entries
and then generated 107 random variates according to it. We used classesrandomvariateand
dynamicrandomvariate.
You can make your own experiments using the randomvariatedemo.

Table 3.6 illustrates the speed of our two methods for generating random variates. Surpris-
ingly, theO(logn) method is faster than the constant time method.

Dynamic Markov Chains: The use of dynamic random variates instead of static random
variates in Markov chain data type yields a dynamic Markov chain data type which also
supports the change of edge weights.

Simulating a Supermarket Check-Out: We use dynamic random variates to simulate a
supermarket check-out. We consider a supermarket withn check-out stations. We assume
that there is a queue (maybe empty) in front of every check-out station and useq[i] to
denote the queue length in front of thei -th check-out station. Servicing a customer at a
check-out station takes either 1 (probability 2/3) or 2 (probability 1/3) time units. Thus the
average servicing time is 4/3 time units.

We assume that 3n/4 customers arrive at every time unit. Customers tend to choose
check-out stations with short queues. We assume that a customer chooses queuei with
probability proportional to 1/(1 + q[i]).

In the program we define random variatesR and S; S is a static random variate which
models the distribution of service times andR is a dynamic random variate which yields
check-out stations. InR we use⌊M/(1 + q[i])⌋ as the weight ofi , whereM is a large
constant. In each time step we first generate 3n/4 customers. For each customer we choose
the service length by callingS.generate() and the service station by callingR.generate().
We update the queue lengths after each generation of a customer.

We collect all customers requiring short service in a listshortserviceand all customers
requiring long service in a listlongservice. After having generated the new customers we
service all customers inshortservice, update queue lengths appropriately, and move all
customers inlongserviceto shortservice.

〈supermarket check-out〉�

array<int> q(n);

array<int> w(n);

int M = 10000;

for (int i = 0; i < n; i++) { q[i℄ = 0; w[i℄ = M; }

36 Basic Data Types

dynami_random_variate R(w);

array<int> w1(1,2); w1[1℄ = 2; w1[2℄ = 1;

random_variate S(w1);

list<int> short_servie, long_servie;

for (int t = 0; t < T; t++)

{ for (int k = 0; k < 3*n/4; k++)

{ int i = R.generate(); q[i℄++; R.set_weight(i,M/(1 + q[i℄));

if (S.generate() == 1)

short_servie.append(i);

else

long_servie.append(i);

}

int i;

forall(i,short_servie)

{ q[i℄--; R.set_weight(i,M/(1 + q[i℄)); }

short_servie.lear();

short_servie.on(long_servie);

〈report queue lengths〉
}

Implementation of random source: Our implementation of random sources follows the
description in [Knu81, Vol2, section 3.2.2]. We first give the mathematics and then the
program. Internally, we always generate a sequence of integers in the range [0.. 231 − 1].
We define 32 unsigned longsX0, X1, . . . , X31 by

X0 = seed

and

Xi = (1103515245· Xi−1 + 12345) modm

for 1 ≤ i ≤ 31. Herem = 232. We extend this sequence by

Xi = (Xi−3 + Xi−32) modm

for i ≥ 32. In this way an infinite sequenceX0, X1, . . . of unsigned longs is obtained.
Following [Knu81, Vol2, section 3.2.2], we discard the first320 elements of this sequence
(they are considered as a warm-up phase of the generator) andwe also drop the right-most
bit of each number (since it is the least random). Thus, thei -th number output by the
internal generator is

(X[i + 320℄ >> 1) & 0x7fffffff.

We next show how to generate a number uniformly at random in [low .. high]. Let X be a
number produced by the internal generator. Thenlow+X mod(high−low+1) is a number in
the range [low .. high]. However, this number is not uniformly distributed (consider the case
wherelow = 0 andhigh = 231 − 2 and observe that in this case the number 0 is generated
with probability twice as large as any other number). We therefore proceed differently. Our

3.5 Random Sources 37

approach is based on the observation that ifX is a random number in [0.. 231−1] andp is an
integer less than 32 thenX mod 2p is a random number in [0.. 2p−1]. Letdiff = high− low
and letp be such that 2p−1 ≤ diff < 2p. We generate random numbersX using the internal
source untilX mod 2p ≤ diff and then outputlow + X mod 2p. Since 2p−1 ≤ diff at most
two X’s have to be tried on average. The complete program follows.

〈generation of a random number in [low..high]〉�

int diff = high - low;

/* ompute pat = 2^p - 1 with 2^{p-1} <= diff < 2^p */

unsigned long pat = 1;

while (pat <= diff) pat <<= 1;

pat--;

/* pat = 0...01...1 with exatly p ones.

Now, generate random x in [0 .. pat℄

until x <= diff and return low + x */

unsigned long x = internal_soure() & pat;

while (x > diff) x = internal_soure() & pat;

return (int)(low + x);

Exercises for 3.5
1 Add an operator≫ to the typerandomsourcethat allows you to extract a random point

in the two-dimensional unit square.
2 Consider the following program.

int i,j,x;

array<int> A(0,n-1);

for (i = 0; i < n; i++)

{ while (true)

{ x = rand int(0,n-1);

for (j = 0; j < i && x != A[j℄; j++) ; // empty body

if (j == i) break;

}

A[i℄ = x;

}

a) Does it generate a random permutation of the integers 0 ton − 1?
b) What is the expected running time of the program?

3 Change the random graph generator such that it generates graphs without self-loops, i.e.,
no edges(v, v), and without parallel edges, i.e., no two edges with the samesource and
target.

4 Let d0, . . . ,dn−1 be non-negative integers whose sum is even. Generate a random undi-
rected graph where nodei has degreedi for all i , 0 ≤ i < n. Hint: Create an arrayA of
length 2m =

∑
i di , write the integeri into di entries ofA for all i , permuteA, and then

generate the edge(A[2 j], A[2 j + 1]) for all j , 0 ≤ j < m.
5 Balls and bins: Thrown balls randomly intom bins, i.e, choosen random integers in the

range [0.. m−1] and tabulate how often each number is chosen. Perform the experiment

38 Basic Data Types

with n = 106 andm = 100,m = 1000, . . . ,m = 106. If you want to understand the
outcome of the experiment analytically consult [MR95].

6 Use classesrandomvariate andsoset to perform the following experiment. Letw be
any vector ofn non-negative integers withw0 ≥ w1 ≥ . . . ≥ wn−1. Store the integers
0 to n − 1 in asosetand performN access operations. For eachi , 0 ≤ i < n access
i with probability proportional towi . Determine the total cost of all accesses where the
cost of an access is the distance of the accessed item from thefront of the list (you need
to modify soset::memberslightly in order to get this information) and compare it to
C = N

∑
i wi (i + 1)/W whereW =

∑
i wi . Note thatC is the expected cost of the

accesses if the list were arranged in order of decreasing weight.

3.6 Pairs, Triples, and such

A tuple is an aggregation of variables of arbitrary types. LEDA offers two-tuples, three-
tuples, and four-tuples. We use two-tuples as our running example in this section. For any
typesA andB and objectsa andb belonging to these types the declarations

two tuple<A,B> p;

two tuple<A,B> q(a,b);

define a two-tuplep and a two-tupleq, respectively. The components ofp are initialized
to the default values ofA andB, respectively, and the components ofq are initialized with
copies ofa andb, respectively. The operationsfirst andsecondreturn the two variables
contained in a two-tuple. So we may write

a = p.first();

p.seond() = b;

The operators==, ≪, ≫ and the functionscompareandHashare defined for two-tuples.
They assume that the corresponding functions are defined forthe component types. The
operators≪ and ≫ read and write a two-tuple, respectively, the operator== realizes
component-wise equality,compareamounts to the lexicographic ordering of two-tuples and
Hashreturns the bitwise exclusive or of the hash values of the components. All of these
functions and operators are defined as template functions. For example,

template <lass A, lass B>

int ompare(onst two tuple<A,B>& p, onst two tuple<A,B>& q)

{ int s = ompare(p.first(),q.first());

if (s != 0) return s;

return ompare(p.seond(),q.seond());

}

If one uses two-tuples in a situation that requires the compare function for two-tuples, e.g.,
if one defines alist<twotuple<int, int> > L and then callsL.sort(), it is wise to give the
compiler a hint that it should make the compare function fortwotuple<int, int>. In the

3.7 Strings 39

following program this is done by defining a variablep of type twotuple<int, int> and
callingcompare(p, p).

〈two tuple test〉�

main()

{ list< two_tuple<int,int> > L;

two_tuple<int,int> p;

ompare(p,p); // dummy ompare

L.sort();

}

3.7 Strings

A string is a sequence of characters, where a character is an element of the C++ typechar.
The number of characters in a string is called the length of the string and the characters in
a string are numbered starting at zero. Sou is the character at position one inKurt. The
string of length zero is called the empty string; it is the default value of the type. Strings are
related to thechar∗ type of C++. There are, however, two significant differences:

• The value of a variable of type string is a sequence of characters, it is not a pointer. In
particular, assignment and parameter passing by value workproperly for strings.
Strings are a primitive type, see Section 2.3.

• Strings offer a large number of additional operations, e.g., pattern matching, substring
replacement, and comparison according to the lexicographic ordering. We have to
admit, however, that some programming languages, e.g., PERL and AWK, offer much
more elaborate string classes.

Let us see strings at work.

string s("Stefan");

defines a string variables and initializes it with the value"Stefan".

string t = s + s;

defines another string variablet and initializes it to"StefanStefan"; the operator+ is the
concatenation operation on strings. The expressiont (2, 5) returns the substring oft starting
at position 2 and ending at position 5. Since we start counting at 0 this is the string"efan".
We can also search for the occurrence of one string in anotherstring: If a andb are strings
thena.pos(b) searches for an occurrence ofb in a. If b does not occur ina thenposreturns
−1 and ifb does occur then it returns the first position ina at whichb occurs. Thus

t.pos("efa");

40 Basic Data Types

returns 2, i.e., the first position int at which an occurrence of"efa" starts, andt.pos(“Kurt”)
returns−1. Another useful operation on strings is substring replacement. It comes in sev-
eral forms:a.replace(i , j , b) returnsa(0, i − 1) + b + a(j + 1, a.length() − 1), i.e., b is
substituted for the substringa(i , j), anda.replace(b1, b2, n) replaces then-th occurrence
of b1 in a by b2, and finallya.replaceall(b1, b2) replaces all occurrences ofb1 in a by b2.
It is important to notice that all three versions do not change the stringa. Rather, they return
a new string. So after

string u = t.replae(2,5,"Kurt");

string v = t.replae(s,"Kurt",2);

we have a stringu with value"StKurtStefan", i.e., the substring oft starting at position
2 and ending at position 5 is replaced by"Kurt", and a stringv with value"StefanKurt",
i.e., the second call ofreplacereturns a string in which the second occurrence ofs in t is
replaced by"Kurt".

The operator< realizes the lexicographic ordering of strings. So

(t < (s + s + s));

evaluates to true since"StefanKurt" precedes"StefanStefanStefan" in the lexico-
graphic ordering of strings. Many other operations on strings can be found in the manual.

Strings are implemented by C++ character vectors. All operations on strings that do not
involve pattern matching take linear time. Pattern matching takes quadratic time. More
precisely, it takes timeO(nm) in the worst case to search for a string of lengthm in a string
of lengthn. There areO(n + m) pattern matching algorithms, see for example [CLR90].

3.8 Making Simple Demos and Tables

This book contains many tables. For many of these tables there is also a corresponding
demo which allows the reader to perform experiments on his orher own. We wanted to
have a single program that handles both cases. In this section we describe the IO-interface
used in these programs.

The program below serves as the randomvariatedemo and also produces Table 3.6.
It makes all its input and output throughIO interface I. The program can be executed
in two modes: in book-mode it produces a table2 and in demo-mode it realizes the ran-
dom variatedemo. The demo-mode is the default and the book-mode is selected at compile-
time by compiling with the flag-DBOOK3.

2 This book is typeset using LATEX and hence the program generates a sequence of LATEX-commands that produce a
table.

3 An alternative design would be to use an integer variable to distinguish between the cases and set the variable
through a command line argument.

3.8 Making Simple Demos and Tables 41

〈randomvariate demo.c〉�

#inlude <LEDA/random_variate.h>

#inlude <LEDA/IO_interfae.h>

main()

{ IO_interfae I("Random Variates");

I.write_demo("This demo illustrates the speed of lasses \

random variate and dynami random variate. \nYou will be asked \

to input integers n and N. We set up the weight vetor w with \

w[2℄ = 2, w[3℄ = 3, ..., w[n+1℄ = n + 1 and generate N random \

variates aording to this weight vetor.");

int n, N;

n = I.read_int("n = ",100);

N = I.read_int("N = ",100000);

if (n < 1) error_handler(1,"n must be at least one");

#ifdef BOOK

N = 10000000;

for (n = 100; n <= 10000; n = n*n)

{ I.write_table("\n ", n);

#endif

array<int> w(2, 1 + n);

array<double> Rfreq(2,n+1), Qfreq(2,n+1);

int W = 0; int i;

for (i = 2; i < n + 2; i++) { W += w[i℄ = i; Qfreq[i℄ = Rfreq[i℄ = 0; }

dynami_random_variate R(w);

random_variate Q(w);

float T = used_time(); float UT;

for (i = 0; i < N; i++) Qfreq[Q.generate()℄++;

UT = used_time(T);

I.write_demo("stati random variate, time = ",UT);

I.write_table(" & ",UT);

for (i = 0; i < N; i++) Rfreq[R.generate()℄++;

UT = used_time(T);

I.write_demo("dynami random variate, time = ",UT);

I.write_table(" & ",UT, " \\\\ \\hline");

I.write_demo("We report some frequenies.");

for (i = n + 1; i >= Max(2,n - 3); i--)

{ I.write_demo("relative frequeny, i = ",i);

I.write_demo(0,", w[i℄/W = ",((double)w[i℄)/W);

I.write_demo(1,"generated freq, stati variate = ", Qfreq[i℄/N);

I.write_demo(1,"generated freq, dynami variate = ", Rfreq[i℄/N);

}

#ifdef BOOK

}

#endif

}

The output statements come in two kinds:write tableandwrite demo. The output state-
mentwrite xxx produces output when executed inxxx-mode and produces no output oth-

42 Basic Data Types

erwise. Thus, the introductory text that explains the demo is output in demo-mode, but is
suppressed in book-mode. The output statements come in different forms:

I.write xxx(string mes);

I.write xxx(string mes, double T, string mes2 = "");

I.write xxx(string mes, int T, string mes2 = "");

I.write xxx(int k, string mes);

I.write xxx(int k, string mes, double T, string mes2 = "");

I.write xxx(int k, string mes, int T, string mes2 = "");

The first form outputs the stringmesand the second and the third form output the stringmes,
followed by the numberT , followed by the optional stringmes2. The output is preceded by
an empty line. The last three forms allow a finer control over the positioning of the output;
the output is preceded byk line feeds, i.e., withk = 0 the output is printed on the same line
as the previous output, withk = 1 the output is printed on a new line, and withk = 2 the
output is preceded by an empty line.

The input statement

int I.read int(string mes, int n = 0);

returnsn in book-mode and asks for an integer input with promptmesin demo-mode.
The precision of the output of double-values is controlled by a precision parameterp. It

is set to 4 by default and can be changed by

I.set preision(int pre);

We come to the implementation. It is quite simple. We define classesIO interfacebook
and IO interfacedemoin the obvious way (see LEDAROOT/incl/LEDA/IOinterface.h)
and defineIO interfaceas one of them depending on the compile-time flag.

〈IO interface〉�

#ifdef BOOK

#define IO_interfae IO_interfae_book

〈definition of IOinterfacebook〉
#else

#define IO_interfae IO_interfae_demo

〈definition of IOinterfacedemo〉
#endif

Bibliography

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L.
Rivest. Introduction to Algorithms. MIT
Press/McGraw-Hill Book Company, 1990.

[HP90] J.L. Hennessy and D.A. Patterson.
Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 1990.

[Knu81] D.E. Knuth.The Art of Computer
Programming (Volume II): Seminumerical
Algorithms. Addison-Wesley, 1981.

[KSK76] G. Kemeny, L. Snell, and A.W. Knapp.
Denumerable Markov Chains. Springer, 1976.

[Meh84] K. Mehlhorn.Data Structures and
Algorithms 1: Sorting and Searching. Springer,
1984.

[Moo61] E.F. Moore. U.S. Patent 2983904, 1961.
[MR95] R. Motwani and P. Raghavan.Randomized

Algorithms. Cambridge University Press, 1995.
[Wal77] A.J. Walker. An efficient method for

generating discrete random variables with
general distributions.ACM Transaction on
Mathematical Software, 3:253–256, 1977.

43

Index

alias method, 27
amortized analysis, 4
array, 17–21

binary search, 21
boolean, 22
index out of range, 18
permute, 21
set operations, 22
sorting, 21

balls and bins experiment, 38
boolean arrays, 22
bounded queue, 4
bounded stack, 4
bucket sort for lists, 10, 15

cache effects, 13
cache miss, 14
compare function

instantiation of, 39
compressed boolean array, 22

demo
detailed examples

tables for LATEX, 41–43
programs

markov chain, 30
random walk, 31
run lengths, 25
stacks and expressions, 3

dynamic random variate,see randomvariate

expression evaluation, 3

graph
random walk, 31

I/O
tables for LATEX, 41–43

int set, 22–23
IO interface, 41–43
iteration

in lists, 7

list, 5–17
basics, 5–8
bucket sort, 15
concatenation and split, 8
for ordered sets, 10–14
forall, 7
implementation, 14–17
iteration, 7
list item, 6
merging, 12
permute, 9
reverse, 9
singly linked, 17
sorting, 10, 12

Markov chain, 30
matrix, 17,seearray
memory hierarchy, 13
merge sort

basic algorithm, 12
run generation, 25

multiplication of boolean matrices, 22

non-uniform distribution, 27

ordered sets, 10

pair, 38

queue, 2–5
bounded, 4
implementation by stacks, 4

rand int, 24

44

Index 45

random number, 24
random permutations, 26
random walk in graph, 31
randomsource, 23–38

functionality, 23–36
implementation, 36–37

randomvariate, 27–30
replacement selection, 25
run generation for merge sort, 25
running time experiments

cache effects, 14
random variates, 35
sorting and merging, 13
sorting of arrays, 20

soset, 11
self-organizing search, 11
sets and boolean arrays, 22
singly linked list, 17

sorting
bucket sort, 10
for lists, 10
stable sort, 10
straight insertion sort, 18

sparse arrays, 21
stable sorting, 10
stack, 2–5

bounded, 4
straight insertion sort, 18
string, 39–40
subscript operator

for arrays, 17
for lists, 6

supermarket checkout simulation, 36

triple, 38
tuple, 38
two-tuple, 38

