
Contents

12 GraphWin page2
12.1 Overview 3
12.2 Attributes and Parameters 6
12.3 The Programming Interface 11
12.4 Edit and Run: A Simple Recipe for Interactive Demos 20
12.5 Customizing the Interactive Interface 24
12.6 Visualizing Geometric Structures 35
12.7 A Recipe for On-line Demos of Network Algorithms 37
12.8 A Binary Tree Animation 42

Bibliography 49

Index 50

1

12

GraphWin

TheGraphWindata type combines thegraphand thewindowdata type. An object of type
GraphWin(short: a GraphWin) is a window, a graph, and a drawing of the graph, all at
once. The graph and its drawing can be modified either by mouseoperations or by running
a graph algorithm on the graph. The GraphWin data type can be used to:

• construct and display graphs,

• visualize graphs and the results of graph algorithms,

• write interactive demos for graph algorithms,

• animate graph algorithms.

All demos and animations of graph algorithms in LEDA are based on GraphWin, many of
the drawings in this book have been made with GraphWin, and many of the geometry demos
in LEDA have a GraphWin button that allows us to view the graphstructure underlying a
geometric object.

In this chapter we discuss GraphWins and teach the reader theuse of GraphWin. We give
an overview and discuss the interactive interface of GraphWins. Next we discuss the node
and edge attributes and the global parameters that control how graphs are displayed. In
the remaining section we discuss the programming interfaceof GraphWins and show how
to write demos using GraphWins. You will see that it is surprisingly simple to write nice
demos of graph algorithms.

2

12.1 Overview 3

Figure 12.1 A GraphWin. The display part of the window shows a graphG and the panel part
of the window features the default menu of a GraphWin. We discuss the default menu in
Section 12.1.G can be edited interactively, e.g., nodes and edges can be added, deleted, and
moved around. It is also possible to run graph algorithms onG and to display their result or to
animate their execution.

12.1 Overview

Figure 12.1 shows a GraphWin. We advise that you open a GraphWin before reading on,
e.g., by starting the program gwin in xlman. A window as shownin Figure 12.1 will pop
up, but with an empty display region. Press the Help button tolearn about the interactive
use of GraphWin and then construct a graph.

Most of the interaction is with theleft mouse button. A single click on the background

4 GraphWin

Figure 12.2 GraphWin: File, Edit, and Graph menus.

creates a new node. Asingle click on a nodeselects the node as the source of a new edge.
The next click defines the target of the edge which is either anexisting node or a new
node (if clicked on the window background). Before defining the target node, bends may
be introduced using the middle button. The creation of the new edge can be canceled by
clicking the right button.

Nodes can be moved by dragging.Select the node with the left mouse button, hold the
button down, and drag the object by moving the cursor. Simultaneously pressing a SHIFT
key will move the connected component containing the node. The entire graph can be
moved by selecting the background. Of course, when a node is moved all edges incident to
it will move with it.

A node isresizedby clicking on its boundary and dragging the border line of the node.
A double clickon a node or edge opens a dialog box for setting or changing itsattributes.

We will discuss the geometric and visual attributes of nodesand edges in Section 12.2.
For the functionality of the middle and the right mouse button we refer the reader to the

help menu of GraphWin. Please construct and edit a graph before reading on.

Let us next have a look at the default menu of a GraphWin . We have menu buttons “File”,
“Edit”, “Graph”, “Layout”,“Window”, “Options”, “Help”, “ undo (≪)”, “redo (≫)”, and
“done”. The first six buttons give access to sub-menus as shown in Figures 12.2 and 12.3.
We next briefly discuss all buttons and the associated menus.

File: A menu that offers file I/O operations for graphs in either oftwo formats, allows one
to export drawings of graphs, and contains theexit button (see Section 12.3 for the effect of
theexit button).

Edit: A menu with panels for setting the (default) attributes of nodes and edges.

Graph: A menu that offers graph generators, modifiers, and checkers. The generators
allow us to construct random, planar, complete, bipartite,grid graphs, The modi-
fiers change the current graph (e.g., by removing or adding edges) to make it connected,
biconnected, bidirected, The checkers can be used to check graph properties, like con-

12.1 Overview 5

Figure 12.3 GraphWin: Layout, Window and Option menus.

nectedness, biconnectedness, and planarity. Figure 12.4 shows the output of the planarity
test for a graph that is non-planar. Many of the checkers can be asked for a proof by clicking
theproof button. In the case of the planarity test this will either generate a planar drawing
or highlight a Kuratowski subgraph as shown in Figure 12.5.

Layout: A menu that gives access to tools for simple layout manipulations (e.g., removing
all edge bends or fitting the graph into a box or window) and a collection of graph drawing
algorithms. If the graph drawing systems AGD [JMN] or GraVis[LK] are installed, their
layout algorithms are included into the menu as shown in Figure 12.3.

Window: A menu with (zoom) operations for changing the user space ofthe drawing
window, e.g., thezoom graphbutton adjusts the window coordinates to the bounding box
of the current graph.

Options:A menu with various sub-panels for editing the various window and editor pa-
rameters.

undo (≪):A button to undo the last update operation.

redo (≫): A button to undo the undo.

done: The done button, see Section 12.3.

The drawing of a graph in a GraphWin is controlled by node and edge attributes and by
global parameters. We discuss attributes and parameters inthe next section.

Exercises for 12.1
1 Call a GraphWin, construct a graph, and test whether it is biconnected.
2 Construct a graph and then change all node shapes from circular to rectangular.
3 Construct the dependency graph for the chapters of this book as shown in the preface.

Apply some of the layout algorithms to the graph.

6 GraphWin

Figure 12.4 An outcome of a planarity test.

12.2 Attributes and Parameters

In this section we discuss global parameters and node and edge attributes. The node and
edge attributes control how nodes and edges are drawn and theglobal parameters control the
general behavior of a GraphWin. Attributes and parameters can be changed either by setup
panels (as shown in Figures 12.6 and 12.7) or by operations ofthe programming interface
as discussed in Section 12.3.

Node Attributes: The node attributes are:

position:An attribute of typepoint (default value: (0, 0)) defining the position of the
center of the node in the user coordinate system of the window.

shape:An attribute of typegwnodeshape(default value:circle node) defining the shape
of the node. Possible values arecircle node, ellipsenode, squarenode, andrectanglenode.
The size of a node is determined by its width and its height. Width and height are measured

12.2 Attributes and Parameters 7

Figure 12.5 The effect of clicking the proof button in Figure 12.4.

in pixels. The horizontal and vertical dimension can also bemeasured in user space; we use
radius1andradius2for the dimensions in user space.

width:An attribute of typeint (default value: 20) defining the width of the node in pixels.
The horizontal dimension of a node is also available as an attribute with nameradius1that
gives the horizontal dimension of the node in user space. Anychange of one of these two at-
tributes also changes the other, maintaining the relationradius1 = W.pix to real(width)/2.

height:An attribute of typeint (default value: 20) defining the height of the node in pixels.
As for the width attribute the vertical dimension of a node can be accessed orchanged
through aradius2attribute giving the vertical dimension of the node in user space.

color:An attribute of typecolor (default value:ivory) defining the color used to fill the
interior of the node.

pixmap:An attribute of typechar∗ (default value:NULL) defining a pixrect used to fill
the interior of the node.

8 GraphWin

Figure 12.6 The node setup panel.

border color:An attribute of typecolor (default value: black) defining the color used to
draw the boundary line of the node.

border width: An attribute of typeint (default value: 1) defining the line width in pixels
used to draw the border line of the node. We also have a user space variant of this attribute
calledborder thickness: borderwidthandborderthicknessare related through the equation
borderthickness= W.pix to real(borderwidth).

label type:An attribute of typegwlabel type(default value:indexlabel) specifying which
label of a node is displayed. Possible values arenolabel, userlabel, datalabel, andindexlabel.
Every node of a GraphWin has three labels associated with it:an index label generated au-
tomatically from the internal numbering of the nodes, a userlabel (of typestring), and a
data label that is used to represent the node data of parameterized graphs.

12.2 Attributes and Parameters 9

Figure 12.7 The edge setup panel.

user label: An attribute of typestring defining the user label of the node. The default
value is the empty string.

label position: An attribute of typegwposition(default value:centralpos) defining the
position of the label. Possible values arecentralpos, northwestpos, northpos, northeastpos,
eastpos, southeastpos, southpos, southwestpos, andwestpos. Each value defines one of
the eight neighboring cells in a rectangular grid of appropriate dimension or the node posi-
tion itself as the position of the label.

label color: An attribute of typecolor (default value:black) defining the color used to
draw the label of the node.

Edge Attributes: Edges have the following attributes:

shape:An attribute of typegwedgeshape(default value:polyedge) defining the shape
of the edge. Possible values arepolyedge(polygonal edges),circle edge(circular arcs),
bezieredge(Bezier curves),splineedge(spline curves).

bends:An attribute of typelist<point> (default value: empty list) defining the sequence
of bends of the edge. The interpretation of the bends dependson the shape of the edge.
For polyedgethis list defines the sequence of bends of the poly-line. Forcircle edgeonly

10 GraphWin

the first pointp of the sequence is used. Together with the two terminal node positions it
defines a circular arc starting at the source position, passing throughp and ending in the
target position of the edge. Forbezieredgeandsplineedgeedges the list gives the sequence
of control points that define the corresponding Bezier or spline curve.

direction:An attribute of typegwedgedir defining whether the edge is drawn as a di-
rected or an undirected edge. Possible values areundirectededge(the edge is drawn undi-
rected),directededge(the edge is drawn directed from source to target),redirectededge
(the edge is drawn directed from target to source), andbidirectededge(the edge is drawn
bidirected).

width:An attribute of typeint (default value: 1) defining the width of the edge in pix-
els. The width of an edge can also be specified by an attribute called thicknessthat gives
the line width of the edge in user coordinates;thicknessand width are related through
thickness= W.pix to real(width).

color:An attribute of typecolor (default value:black) defining the color of the edge.

style:An attribute of typegwedgestyle(default value:solid) defining the line style of the
edge. Possible values aresolid, dashed, dotted, anddasheddotted.

label type:An attribute of typegwlabel type(default value:no label) defining the type
of the label of the edge. Possible values arenolabel, userlabel, datalabel, andindexlabel
(see the corresponding attribute for nodes for an explanation).

user label: An attribute of typestring defining the user label of the edge. The default
value is the empty string.

label position: An attribute of typegwposition (default value:westpos) defining the
position of the label. Possible values arecentralpos (the label is placed centered on the
edge),eastpos(the label is placed to the right of the edge), andwestpos(the edge is placed
to the left of the edge).

label color: An attribute of typecolor (default value:black) defining the color of the
edge label.

slider positions:Every edge has threeslidersassociated with it. They are only visible if
the corresponding handler (see Section 12.5.1) is defined. For each slider theslider position
is an attribute of typedouble(default value: 0) defining the relative position of the slider
on the (directed) edge. The value of slider position lies between zero and one. Edge sliders
can be used to adjust the value of an edge label interactively.

Global Parameters: A GraphWinhas thewindow parameters background color, back-
ground pixmap, grid style, and grid distance, and the following additional parameters.

flush: A parameter of typebool (default value:true) that controls whether changes of
node and edge attributes are shown directly or not. Ifflushis false, changes are invisible up
to the next call of theredrawoperation. In this way, it is possible to hide all intermediate
steps of a sequence of operations and to show only the end result.

animation steps: A parameter of typeint (default value: 16) that defines the number

12.3 The Programming Interface 11

of intermediate drawings used in the animation of layout changes and zoom operations.
Setting animation steps to 0 disables all animations.

zoom objects: A parameter of typebool (default value: true). If this flag is true, the size
of nodes and edges is adjusted automatically during zoom operations. If the flag is false,
the pixel width and height of all objects is preserved duringzoom operations.

show status:A parameter of typebool (default value: true). If this flag is true, some
selected parameters, e.g., the number of nodes and edges andthe current position of the
mouse cursor in user coordinates, is shown in a status line atthe bottom of the display
region.

12.3 The Programming Interface

So far we have concentrated on the interactive interface of GraphWins, as most LEDA users
will become acquainted with GraphWins through their interactive use. We now turn to the
programming interface. You must read this section if you want to write programs that use a
GraphWin.

TheGraphWindata type offers a large variety of operations. We discuss the most impor-
tant one in the remainder of this chapter and refer the readerto the manual for the complete
list of operations.

12.3.1 Creating and Opening a Graph Window
A GraphWin has an associated graph and an associated window.Either one of them may or
may not be specified in the constructor.

GraphWin gw;

creates a graph windowgw that uses its own (private) graphG and windowW. G is initial-
ized with the empty graph. Three optional arguments may be passed to initializeW: a label
of typestring, the initialwidth, and the initialheightboth of typeint.

GraphWin gw(graph& G);

creates a graph windowgw and associates the graphG with it. G may also be a param-
eterized graph of some typeGRAPH<vtype, etype>. In this case, every nodev has an ad-
ditional data labelattribute that contains a string representation of thevtypevalue G[v]
associated withv. This representation is constructed using the stream output operator
(operator≪ (ostream& , const vtype&)). In the same way, every edgee has a data label
representingG[e]. In Section 12.6 we give a program that usesGraphWinto display a
graph of typeGRAPH<point, int> representing a Delaunay triangulation.

GraphWin gw(window& W);

GraphWin gw(graph& G, window& W);

12 GraphWin

Figure 12.8 A GraphWin panel for editing a graph in a different window.

do not create their own window but use the supplied windowW for displaying the graph.
In this case, the display operation opens a small panel window (see Figure 12.8) containing
only the standard menu.

References to the graph and window of aGraphWin gwcan be retrieved by

window& W = gw.get window();

and

graph& G = gw.get graph();

respectively.

A graph window is opened and displayed by calling one of the two following display
operations:

gw.display()

opensgwand displays it at the default position of data typewindowand

gw.display(x,y)

opensgw and displays it with its left upper corner at the position with pixel coordinates
(x, y). As for windows the special coordinatewindow::centercan be used to center the
graph window in either coordinate on the screen.

The interactive interface is started by theedit operation.

bool gw.edit();

putsgw into edit mode(also calledinteractive mode). The buttons ofgware now enabled; in
particular the graph associated withgwmay now be changed interactively. The edit session
is terminated when either thedonebutton is pressed orexit is selected from the file menu.
The edit operation returnstrue in the first case andfalsein the second case.

We are now ready for the first example program. We declare and display a graph window
gw, and then start an edit loop (while (gw.edit())) that lets the user construct or modify the
graphG associated withgw. If edit is terminated by pressing thedonebutton, the graph is
tested for planarity, the outcome of the planarity test is written to standard output, andgw

12.3 The Programming Interface 13

is again put into edit mode. If the editor is left by pressing theexit button in thefile menu,
the loop and the program terminate.

〈gw.c〉�

#in
lude <LEDA/graphwin.h>

#in
lude <LEDA/graph_alg.h>

main()

{

GraphWin gw("Leda Graph Editor");

graph& G = gw.get_graph();

gw.display(window::
enter,window::
enter);

while (gw.edit())

{ if (PLANAR(G))

out << "This graph is planar." << endl;

else

out << "This graph is non-planar." << endl;

}

return 0;

}

The structure of the program above is generic for many simpleinteractive demos of graph
algorithms. The program runs in a loop. In each iteration thegraph is edited and the graph
algorithm is run. We call this scheme theedit-and-run paradigmfor interactive demos. We
will see a more elaborate use of the paradigm in Section 12.4.

12.3.2 Graph Operations
A GraphWin has an associated graph. There are two methods to update this graph through
the programming interface.

The first method uses the update operations offered by GraphWin. For example,

node gw.new node(
onst point& p);

creates a new nodev with default attributes. The position ofv is set top.

void gw.del node(node v);

removesv from the graph,

edge gw.new edge(node v, node w);

creates a new edgee = (v, w) with default attributes,

void gw.del edge(edge e);

removese from the graph, and

void gw.
lear graph();

makes the graph empty.

The second method reuses the update operations for graphs. We obtain a reference to the
graph associated withgwby callinggw.getgraph() and then apply graph update operations
to it.

14 GraphWin

graph& G = gw.get graph();

// some update operations on G

G.new node();

G.del edge(e);

gw.update graph(); // CRUCIAL

Observe thegw.updategraph() statement at the end of the sequence. This statement in-
formsgw about the fact that its graph was modified and allows it to update its internal data
structures. Without the statement the graphG and the internal data structures ofgwwill go
out of sync and disasters may occur.

We illustrate the use ofupdategraph operation by giving an implementation of the
newnodeoperation of GraphWin; the actual implementation is different and more efficient.

node gw new node(GraphWin& gw,
onst point& p)

{ graph& G = gw.get graph();

node v = G.new node();

gw.update graph();

gw.set position(v,p);

return v;

}

12.3.3 Attribute and Parameter Operations
Attributes of nodes and edges and global parameters are manipulated byget andsetoper-
ations. In the case of attributes we distinguish between theindividual attributes of existing
nodes and edges and thedefault attributeswhich are used to initialize the attributes of new
nodes and edges.

Individual Attributes of Nodes and Edges: The attributes of existing nodes and edges
can be retrieved or changed by the following operations. We useobjectfor eithernodeor
edgeandattrib (of typeattrib type) for an arbitrary attribute.

attrib type gw.get attrib(obje
t x);

returns the current value of attributeattrib of objectx.

attrib type gw.set attrib(obje
t x, attrib type a);

sets the attributeattrib of objectx to a and returns the previous value of the attribute.

void gw.set attrib(list<obje
t>& L, attrib type a);

sets attributeattrib for all objects inL to a.

void gw.reset attributes();

resets the attributes of all objects to their default values.

The current attributes of all nodes and edges may be saved andrestored later to the saved
values by the following functions.

12.3 The Programming Interface 15

void gw.save node attributes();

void gw.save edge attributes();

void gw.restore node attributes();

void gw.restore edge attributes();

These functions are very useful if the appearance of the graph has to be changed temporarily,
e.g., to highlight a substructure of the graph.

We give an example. We replace all nodes of elliptic shape by yellow rectangular nodes
and all blue edges by black dashed edges, wait five seconds, and then restore all attributes
to their original values.

graph& G = gw.get graph();

void gw.save node attributes();

void gw.save edge attributes();

node v;

forall nodes(v,G) {

if (gw.get shape(v) == ellipse node)

{ gw.set shape(v,re
tangle node);

gw.set
olor(v,yellow);

}

}

edge e

forall edge(e,G) {

if (gw.get
olor(e) == blue)

{ gw.set style(e,dashed);

gw.set
olor(e,bla
k);

}

}

gw.redraw();

leda wait(5);

void gw.restore node attributes();

void gw.restore edge attributes();

Default Attribute Values: Every attribute has a default value which is used to initialize
the attributes of new objects. The default attribute valuescan be changed by the following
operations. Note that changing a default attribute also affects all existing objects, unless the
optional boolean flagapply in the correspondingsetnodeattrib operation is set tofalse.

attrib type get node attrib();

attrib type set node attrib(attrib type x, bool apply=true);

reads or sets the default value of node attributeattrib. If apply is true, theattrib attribute of
all existing nodes is changed in the same way.

attrib type get edge attrib();

attrib type set edge attrib(attrib type x, bool apply=true);

16 GraphWin

reads or sets the default value of edge attributeattrib. If apply is true, theattrib attribute of
all existing edges is changed in the same way.

The current default values of all attributes can be saved to afile and later reloaded by the
following operations.

void gw.save defaults(string fname);

void gw.read defaults(string fname);

We close with an example. We declare a GraphWingw, change the default values of
some attributes, open the window associated withgw, and putgw into edit mode.

〈gw attributes.c〉�

#in
lude <LEDA/graphwin.h>

main()

{

GraphWin gw;

// default attributes of nodes

gw.set_node_shape(re
tangle_node);

gw.set_node_
olor(yellow);

// default attributes of edges

gw.set_edge_width(2);

gw.set_edge_
olor(blue);

gw.set_edge_dire
tion(undire
ted_edge);

gw.display();

gw.edit();

}

Almost every program using a GraphWin starts with a small preamble that changes default
attributes to settings that are appropriate for the application.

Global Parameters: Global parameters can be retrieved or changed by a collection of
get- andset-operations. We useparamtype for the type andparam for the value of the
corresponding parameter.

There is agetandsetoperation for each global parameterparam.

param type gw.get param();

param type gw.set param(param type x);

The set operation returns the previous value of the corresponding parameter.

In the following example we set theflushparameter tofalsebefore changing the individ-
ual attributes of some nodes. Then we redraw the graph to display the changes and reset the
flushparameter to its previous value;

gw.set animation steps(12);

bool fl = gw.set flush(false);

forall(v,L) {

gw.set
olor(v,blue);

12.3 The Programming Interface 17

gw.set shape(v,rhombus node);

}

gw.redraw();

gw.set flush(fl);

12.3.4 I/O Operations
GraphWinsupports two file formats for the permanant storage of graphsand their attributes,
the (native) gw-format and the GML-format [Him97] of Himsolt. It also allows to generate
a Postscript representation of the current drawing that caneasily be included into LaTeX
documents. Many of the figures of this book have been producedin this way. The operations
in this section are available in the file-menu.

The read operations

int gw.read gw(istream& istr);

int gw.read gw(string fname);

int gw.read gml(istream& istr);

int gw.read gml(string fname);

clear the current graph and read a new graph and its attributes from the input streamistr
or file fname, respectively. The operations return 0 on success and a special error code if
something goes wrong (see the manual for details). The writeoperations

int gw.save gw(ostream& ostr);

int gw.save gw(string fname);

int gw.save gml(ostream& ostr);

int gw.save gml(string fname);

write the current graph and its layout to output streamostr or to file fname, respectively.
The operations return 0 on success and a non-zero error code if something goes wrong.

Postscript representations of drawings are generated by

bool gw.save ps(ostream& ostr);

bool gw.save ps(string fname);

which write the current drawing as a Postscript file to outputstreamostr or to file fname,
respectively.

12.3.5 Layout Operations
We discuss operations for manipulating thelayoutof the graph associated with a GraphWin,
i.e., the positions of the nodes and the sequence of bends of the edges. The operations are,
for example, used to realize the functions in the layout-menu.

The arguments of the layout operations specify new node positions and/or new sequences
of bends. The layout operation moves the nodes and changes the drawings of edges ac-
cordingly. The animation of the layout operations (and alsoof the zooming operations) is
controlled by theanimationstepsparameter.GraphWinanimates changes in the layout by
linear interpolation. It shows a sequence ofanimationstepsintermediate layouts, where

18 GraphWin

each node and edge moves a fraction of 1/animationstepsof its total movement in each
step. Ifanimationstepsis set to zero, the layout change is performed instantaneously.

In most layout operations the new node position can be specified either aspointsor as
pairs ofdoubles. We list both versions for the first layout function and only one for the
others. The operations

void gw.set position(
onst node array<double>& xpos,

onst node array<double>& ypos);

void gw.set position(
onst node array<point>& pos);

move every nodev of gw from its old position to position(xpos[v], ypos[v]) or pos[v],
respectively, and leave the bends of all edges unchanged,

void gw.set layout(
onst node array<point>& pos,

onst edge array<list<point> >& bends);

moves every nodev to positionpos[v] and sets the bend sequence of every edgee to
bends[e],

void gw.set layout(
onst node array<point>& pos);

moves every nodev of the graph to positionpos[v] and removes all edge bends from the
layout,

void gw.remove bends();

removes all bends from the layout and leaves the node positions unchanged,

void gw.pla
e into box(double x0, double y0, double x1, double y1);

moves the graph into the rectangular box(x0, y0, x1, y1) by scaling and translating the
layout, and

void gw.pla
e into win();

moves the graph into the drawing window by scaling and translating.

Layout coordinate computations: Consider the following situation. We have a graph
windowgwand its associated graphG. We have computed a new layout forG, but the new
layout does not conform to the coordinate space ofgw. We want to adjust the layout data
before applying it. Section 12.4 gives an application.

The operations in this section are very helpful in this situation. They apply the transfor-
mationsplaceinto boxandplaceinto win to the layout data supplied separately in node and
edge arrays.

void gw.adjust
oords to box(node array<double>& xpos,

node array<double>& ypos,

edge array<list<double> >& xbends,

edge array<list<double> >& ybends,

double x0, double y0, double x1, double y1);

12.3 The Programming Interface 19

transforms the layout given byxpos, ypos, xbends, andybendsin the same way as a call
placeinto box(x0, y0, x1, y1) would do. However, the actual layout of the current graph is
not changed by this operation.

void gw.adjust
oords to box(node array<double>& xpos,

node array<double>& ypos,

double x0, double y0, double x1, double y1);

transforms the layout given byxpos, yposasgw.placeinto box(x0, y0, x1, y1) would do.
It ignores any edge bends. The actual layout of the current graph is not changed by this
operation.

void gw.adjust
oords to win(node array<double>& xpos,

node array<double>& ypos,

edge array<list<double> >& xbends,

edge array<list<double> >& ybends);

callsadjustcoordsto box(xpos, ypos, xbends, ybends, wx0, wy0, wx1, wy1) with the current
window rectangle(wx0, wy0, wx1, wy1). Finally,

void gw.adjust
oords to win(node array<double>& xpos,

node array<double>& ypos);

callsadjustcoordsto box(xpos, ypos, wx0, wy0, wx1, wy1), where as in the preceding oper-
ation(wx0, wy0, wx1, wy1) is the current window rectangle .

12.3.6 Zoom Operations
Zoom operations change the coordinate system of the window but do not change the layout
of the graph. A zoom operation is a combination of a stretch orshrink transformation
(changing the scaling factor of the window) with a translation of the window in user space.
The animation stepparameter specifies the number of intermediate window positions to
be shown in the animation of the zoom operation; if the parameter is zero the zoom is
performed instantaneously.

void gw.zoom(double f)

zooms the window by the factorf ; this multiplies the scaling factor byf and leaves the
coordinates of the center of the window unchanged.

void gw.zoom area(double x0, double y0, double x1, double y1)

zooms the window to rectangle(x0, y0, x1, y1). More precisely, if the aspect ratio of the
zoom rectangler = (y1− y0)/(x1− x0) is equal to the aspect ratiowr of the current
window, the window coordinates are set to(x0, y0, x1, y1). Otherwise, ifr is smaller than
wr the new window coordinates are(x0, y0, x1, y′) with y′ = y0+ wr ∗ (x1− x0) and if r
is greater thanwr the new coordinates are(x0, x′, y0, y1) with x′ = x0+ (y1− y0)/wr.

void gw.
enter graph()

performs a zoom operation that does not change the scaling ofthe window and moves the
center of the bounding box of the current graph layout to the center of the window.

20 GraphWin

void gw.zoom graph();

calls gw.zoomarea(x0, y0, x1, y1) such thatx0, x1, andy0 are the left, right and lower
coordinates of the bounding box of the current layout of the graph.

12.3.7 Miscellaneous Operations
We close our discussion of the programming interface with a list of small, but useful func-
tions.

void gw.message(string msg);

displaysmsgat the top of the window. Ifmsgis the empty string, the previous message
is deleted.

bool gw.wait(
onst msg);

displaysmsgand waits until the done-button is pressed or exit is selected from the file
menu. The result of the operation istrue in the first case andfalsein the second case.

int gw.open panel(panel& P)

displays panelP centered ongw and returns the result ofP.open(). During the execution
of P.open() all menus ofgw are disabled.

node gw.ask node();

asks the user to select a node by clicking with the left mouse button on it. The selected node
is returned;nil is returned if the click does not hit a node.

edge gw.ask edge();

asks the user to select an edge by clicking with the left mousebutton on it. The selected
edge is returned;nil is returned if the click does not hit an edge.

void gw.get bounding box(double& x0, double& y0, double& x1, double& y1);

computes the coordinates(x0, y0, x1, y1) of a minimal area rectangular bounding box con-
taining the current layout of the graph.

12.4 Edit and Run: A Simple Recipe for Interactive Demos

We implement a simple demo that illustrates planarity testing based on the edit-and-run
paradigm for interactive demos of graph algorithms. The demo illustrates many of the
functions discussed in the preceding sections.

We define a GraphWingwwith frame label “Planarity Test Demo” and open it. We then

12.4 Edit and Run: A Simple Recipe for Interactive Demos 21

enter the edit-loop. After each edit operation, we run the graph algorithm on the graphG
associated withgwand display the result.

〈gw plandemo.c〉�

#in
lude <LEDA/graphwin.h>

#in
lude <LEDA/graph_alg.h>

〈plandemo: highlight〉

int main()

{

GraphWin gw("Planarity Test Demo");

gw.display(window::
enter,window::
enter);

while (gw.edit())

{

graph& G = gw.get_graph();

〈run graph algorithm and display result〉

}

return 0;

}

So far the program is generic (except for the frame label). Wenow come to the part specific
to the planarity demo.

We testG for planarity. IfG is planar and has at least three nodes (otherwise the current
drawing is already without crossings), we compute a straight line embedding and display
it. The computation of the straight line embedding returns the coordinates of a straight line
embedding in some coordinate system. We adjust the coordinates to the coordinate space
of gw by calling adjustcoordsto win. Finally, we display the straight line embedding by
callinggw.setlayout(. . .).

If the graph is non-planar, we compute a Kuratowski subdivision K = (Vk, Ek) and
display it by calling thehigh light function. We wait until the user clicks done and then
restore the old drawing. The function KURATOWSKI computes the set of nodes and edges
of the subdivision and for each node ofG the degree of the node in the subdivision. For all
v ∈ V the degreedeg[v] is equal to 2 for subdivision points, 4 for all other nodes ifK is a
K5, and−3 (+3) for the nodes of the left (right) side ifK is aK3,3.

〈run graph algorithm and display result〉�

if (PLANAR(G))

{ if (G.number_of_nodes() < 3)
ontinue;

node_array<double> x
oord(G);

node_array<double> y
oord(G);

STRAIGHT_LINE_EMBEDDING(G,x
oord,y
oord);

gw.adjust_
oords_to_win(x
oord,y
oord); // !!!

gw.set_layout(x
oord,y
oord);

}

else

{ list<node> V_k;

list<edge> E_k;

22 GraphWin

node_array<int> kind(G);

KURATOWSKI(G,V_k,E_k,kind);

gw.save_all_attributes();

highlight(gw,V_k,E_k,kind);

gw.wait("This Graph is not planar. I show you a\

Kuratowski Subdivision (
li
k done).");

gw.restore_all_attributes();

}

We still have to define the functionhighlight that highlights the Kuratowski subgraph.
We setflushto false at the beginning ofhighlight and callredrawand restore the old value
of flushat the end. This ensures that all changes made byhighlightwill become effective at
the same time.

We highlight the Kuratowski subgraph by drawing its edges with width two and black
(all other edges are drawn grey and with width one) and by using color and shape codes to
highlight its nodes. Figure 12.9 shows an example.

〈plandemo: highlight〉�

void highlight(GraphWin& gw, list<node> V, list<edge> E,

node_array<int>& kind)

{

onst graph& G = gw.get_graph();

bool flush0 = gw.set_flush(false);

node v;

forall_nodes(v,G) {

swit
h (kind[v℄) {

ase 0: gw.set_
olor(v,grey1);

gw.set_border_
olor(v,grey1);

gw.set_label_
olor(v,grey2);

break;

ase 2: gw.set_
olor(v,grey1);

gw.set_label_type(v,no_label);

gw.set_width(v,8);

gw.set_height(v,8);

break;

ase 3:

ase 4: gw.set_shape(v,re
tangle_node);

gw.set_
olor(v,red);

break;

ase -3: gw.set_shape(v,re
tangle_node);

gw.set_
olor(v,blue2);

break;

}

}

edge e;

forall_edges(e,G) gw.set_
olor(e,grey1);

forall(e,E)

{ gw.set_
olor(e,bla
k);

12.4 Edit and Run: A Simple Recipe for Interactive Demos 23

Figure 12.9 The planarity test demo: Highlighting a Kuratowski subdivision.

gw.set_width(e,2);

}

gw.redraw();

gw.set_flush(flush0);

}

Exercises for 12.4
1 Write a program that animates quicksort. Have a graph with one node for each input and

no edges. Change the layout of the graph as the sort progresses.
2 Write a program that animates heapsort.
3 Write a program that always shows a DFS-structure of the currently edited graph by

drawing the different edge types (tree, backward, forward,cross) in different colors or
styles.

24 GraphWin

12.5 Customizing the Interactive Interface

We describe three ways for customizing the interactive interface:

• Call-back functions,

• Extended and/or additional menus, and

• Redefined edit actions.

Each method will allow us to write nicer demos.

12.5.1 Call-Back Functions
Call-back or handler functions can be used to associate arbitrary functionality with the edit
operations ofGraphWin. Two handlers can be defined for every operation. The first one,
the so-calledpre-handler, is called immediately before the corresponding edit operation.
The second one, the so-calledpost-handler, is called at the end of the operation. For move
operations of nodes and sliders, there is a third handler, the so-calledmove-handlerwhich
is called for all intermediate positions.

The pre-handlers have a boolean return value which tellsGraphWinwhether the corre-
sponding edit operation is to be executed or not. This provides a simple way of disallowing
edit operations under certain conditions. In general, pre-and post-handler also have differ-
ent parameter lists.

The null-handler (NULL) can be used to remove a pre- or post-handler from an edit
operation.

We give a list of the most important handlers and the correspondingsetoperations. There
are two versions of eachsethandler, one each for defining the pre- and post-handler. The
functions have the same name and differ in the type of the function pointer argument: func-
tions for setting pre-handlers take an argument of typebool (∗func)(GraphWin& ,...) and
functions for setting post-handlers take an argument of typevoid (∗func)(GraphWin& ,...).

void gw.set new node handler(bool (*f)(GraphWin&,point));

sets the pre-handler of the new-node operation tof , i.e., f (gw, p) is called before a node
is created at positionp.

void gw.set new node handler(void (*f)(GraphWin&,node));

sets the post-handler of the new-node operation tof , i.e., f (gw, v) is called after a new
nodev has been created.

void gw.set new edge handler(bool (*f)(GraphWin&,node,node));

sets the pre-handler of the new-edge operation tof , i.e., f (gw, v, w) is called before a new
edge(v, w) is created.

void gw.set new edge handler(void (*f)(GraphWin&,edge));

sets the post-handler of the new-edge operation tof , i.e., f (gw, e) is called after a new
edgee has been created.

12.5 Customizing the Interactive Interface 25

void gw.set del node handler(bool (*f)(GraphWin&,node));

sets the pre-handler of the del-node operation tof , i.e., f (gw, v) is called each time before
a nodev is deleted.

void gw.set del node handler(void (*f)(GraphWin&));

sets the post-handler of the del-node operation tof , i.e., f (gw) is called each time a node
has been deleted.

void gw.set del edge handler(bool (*f)(GraphWin&,edge));

sets the pre-handler of the del-edge operation tof , i.e., f (gw, e) is called each time before
an edgee is deleted.

void gw.set del edge handler(void (*f)(GraphWin&));

sets the post-handler of the del-edge operation tof , i.e., f (gw) is called each time an edge
has been deleted.

void gw.set init graph handler(bool (*f)(GraphWin&));

sets the pre-handler of the init-graph operation tof , i.e., f (gw) is called every time before
any global update of the graph, e.g., in a clear, generate, orload operation.

gw.set init graph handler(void (*f)(GraphWin&));

sets the post-handler of the init-graph operation tof , i.e., f is called after each global
update of the graph.

Node moving and edge slider moving operations may have threedifferent handlers. The
first is called before the moving starts, the second is calledfor every intermediate position,
and the third one is called at the final position of the node after the moving has been finished.
The handlers are set by:

gw.set start move node handler(bool (*f)(GraphWin&,node));

gw.set move node handler(bool (*f)(GraphWin&,node,point));

gw.set end move node handler(void (*f)(GraphWin&,node));

gw.set start edge slider handler(

void (*f)(GraphWin& gw,edge,double),int i);

gw.set edge slider handler(

void (*f)(GraphWin& gw,edge,double),int i);

gw.set end edge slider handler(

void (*f)(GraphWin& gw,edge,double),int i);

Recall that each edge has three sliders associated with it. The integer argumenti in the last
three functions selects the slider, 0≤ i ≤ 2.

26 GraphWin

12.5.2 A Recipe for On-line Demos of Graph Algorithms
The edit-and-run paradigm for demos of graph algorithms requires an explicit user action,
namely a click on the done-button, to start the graph algorithm to be demonstrated. Call-
back or handler functions allow us to write on-line demos which show the result of a graph
algorithm while the graph is edited and not only after editing.

We give the generic structure of a demo that calls a graph algorithm after every addition
or deletion of a node or edge and after the initialization of the graph (for example, by
reading it from a file). We define a functionrun anddisplaythat runs the graph algorithm
on the graph associated withgw and updates the display. We then define post-handlers for
thenewnode, newedge, delnode, deledge, andinit graphoperations; each handler simply
calls run anddisplay(gw). In the main program we tellGraphWinwhich handlers to use
by calling the correspondingsethandlerfunctions, display the window, and callgw.edit().
That’s all.

〈gw handler.c〉�

#in
lude <LEDA/graph_alg.h>

#in
lude <LEDA/graphwin.h>

void run_and_display(GraphWin& gw)

{ 〈run algorithm and update display〉 }

void new_node_handler(GraphWin& gw, node) { run_and_display(gw); }

void new_edge_handler(GraphWin& gw, edge) { run_and_display(gw); }

void del_edge_handler(GraphWin& gw) { run_and_display(gw); }

void del_node_handler(GraphWin& gw) { run_and_display(gw); }

void init_graph_handler(GraphWin& gw) { run_and_display(gw); }

int main()

{

GraphWin gw;

gw.set_init_graph_handler(init_graph_handler);

gw.set_new_edge_handler(new_edge_handler);

gw.set_del_edge_handler(del_edge_handler);

gw.set_new_node_handler(new_node_handler);

gw.set_del_node_handler(del_node_handler);

gw.display();

gw.edit();

return 0;

}

We will next derive a specific demo from this framework by instantiating therun anddisplay
function. We illustrate the strongly connected componentsof the graph associated withgw;
all nodes belonging to the same component should be colored the same and nodes in differ-
ent components should be colored differently.

The “work horse” of our demo is a functionvoid runanddisplay(GraphWin&) that uses
the graph algorithmSTRONGCOMPONENTSto compute a numberingcompnumof the
nodes of the current graph, such that all nodes of a strongly connected component receive
the same number. Each node is painted with the number of its component.

12.5 Customizing the Interactive Interface 27

Figure 12.10 An screen shot of an on-line demo for the strongly connected components of a
graph.

〈run algorithm and update display〉�

graph& G = gw.get_graph();

node_array<int>
omp_num(G);

STRONG_COMPONENTS(G,
omp_num);

node v;

forall_nodes(v,G) gw.set_
olor(v,
olor(
omp_num[v℄));

Figure 12.10 shows a screen shot of the program after a few editing operations.

12.5.3 Defining and Changing Menus
The menus ofGraphWinare not fixed. New sub-menus and buttons can be added to the
main window and any sub-menu, in this way extending the set offunctions and algorithms
that can be applied to the current graph by a mouse click. Furthermore, the set of default
menus in the main window’s menu bar can be changed by removingstandard menus. All

28 GraphWin

operations for changing menus have to be called before the window is displayed for the first
time.

Changing the Standard Main Menu: The default menus inGraphWin’s menu bar are
determined by a bit mask that is the bitwise-or of an arbitrary subset of the predefined con-
stantsM FILE, M EDIT, M GRAPH, M LAYOUT, M WINDOW, M OPTIONS, M HELP,
andM DONE. Each of these constants represents the corresponding standard menu dis-
cussed in Section 12.1. The valueM COMPLETEis defined as the bitwise-or of all con-
stants above, i.e., it specifies a menu bar containing all standard menus. The operation

long gw.set default menu(long mask);

defines the set of standard menus, wheremaskis the bitwise-or of an arbitrary subset of the
predefined constants listed above. The operation

void gw.del menu(long mask);

removes all menus corresponding to 1-bits inmaskfrom the menu bar.

Adding New Menus: New sub-menus can be added to an existing menu (or the main menu
bar) by calling theaddmenuoperation. Each menu is represented by an integer (menuid)
from an internal numbering of all menus. The main menu bar hasmenuid zero.

int gw.add menu(GraphWin& gw, string label, int menu id = 0),

creates a sub-menu in menu with idmenuid. The corresponding button is labeled with
label. The operation returns the menu id of the new menu. The menu idof a standard menu
can be obtained by callinggetmenu(string) with the name of the menu, e.g.,

get menu("Help");

returns the menu id of the help menu.

Adding Simple Functions: We call functions of typevoid func(GraphWin& gw) simple.
Theaddsimplecall operation ofGraphWincan be used to add (buttons for starting) simple
functions to an existing menu or the main menu bar.

void gw.add simple
all(void (*fun
)(GraphWin&),

string label, int menu id = 0);

adds a new button with labellabel to the menu with menu idmenuid. Whenever this button
is pressed during edit modefunc(gw) is called.

We give an example. Assume we want to add a button to the main menu that runs a DFS
algorithm of type

void dfs(graph& G, node s, node array<bool>& rea
hed)

on the current graph. We write a simple functionvoid (run dfs)(GraphWin&) that tells
GraphWinhow to calldfsand how to display its result.

12.5 Customizing the Interactive Interface 29

void run dfs(GraphWin& gw)

{

// provide arguments

graph& G = gw.get graph();

node s = gw.ask node();

node array<bool> rea
hed(G,false);

//
all fun
tion

dfs(G,s,rea
hed);

// display result

node v;

forall nodes(v,G) if (rea
hed[v℄) gw.set
olor(v,red);

}

and add the function to the main menu by calling

gw.add simple
all(run dfs,"dfs");

The string argument “dfs” will be used as the label of the new menu button. We may also
want to extend the help menu. We define a simple functionaboutdfsthat opens a panel and
displays a help string

void about dfs(GraphWin& gw)

{ window& W = gw.get window();

panel P;

P.set panel bg
olor(win p->mono() ? white : ivory);

P.text item("The dfs-button runs dfs on the
urrent graph.");

P.button("OK");

W.disable panel();

P.open(W);

W.enable panel();

}

and add it to the help menu.

int h menu = gw.get menu("Help");

gw.add simple
all(about dfs, "About DFS",h menu);

Adding GraphWin Member Functions: Not every operation of the programming inter-
face ofGraphWinis available in the interactive interface. However, there is an easy way of
adding operations of typevoid GraphWin::func(), i.e., member functions without parame-
ters and without a result. The operation

gw.add member(void (*GraphWin::fun
)(), string label, int menu id = 0);

adds a new button with labellabel to the menu with menu idmenuid. Whenever this button
is pressed during edit modegw.func() is called.

As an example, we add a ”redraw” button, that calls thegw.redraw() operation, to the
main panel.

gw.add member
all(&GraphWin::redraw,"redraw");

30 GraphWin

Adding Families of Functions: Sometimes, one wants to add an entire group of functions,
all with the same interface, to a menu. In this case it would betedious to write a wrapper
for each of these functions. It is more convenient to write only a singlecaller function that
can deal with all functions of the group. The caller takes a reference to aGraphWinand a
pointer to the function to be called as arguments. More precisely, if the function to be called
is of typefunctiont, the caller has typevoid (∗caller)(GraphWin& , functiont).

Thegwaddcall function template adds a function together with its caller to a menu. This
operation should better be realized by a member function template. However, only a few
compilers currently support this feature of C++.

template <
lass fun
tion t>

void gw add
all(GraphWin& gw, fun
tion t fun
,

void (*
aller)(GraphWin&, fun
tion t),

string label, int menu id=0);

adds a new button with labellabel to the menu with menu idmenuid. Whenever this button
is pressed in edit mode, the functioncaller is called with argumentsgwandfunc.

We use a family of graph drawing functions as an example. Assume we have a library
of graph drawing algorithms (e.g., the AGD library [JMN]) and want to build agraphdraw
menu which makes all functions in the library available on a mouse click. We assume that
all graph drawing algorithms take a graphG and compute for every nodev of G a position
(xcoord[v], ycoord[v]).

void draw alg1(
onst graph& G, node array<double> x
oord,

node array<double> y
oord);

void draw alg2(
onst graph& G, node array<double> x
oord,

node array<double> y
oord);

...

A generic caller function for this type of graph algorithm isas follows:

typedef void (*draw alg)(graph&, node array<double>&,

node array<double>&);

void
all draw alg(GraphWin& gw, draw alg draw)

{

// provide arguments

graph& G = gw.get graph();

node array<double> x
oord(G);

node array<double> y
oord(G);

//
all fun
tion

draw(G,x
oord,y
oord);

// display result

gw.adjust
oords to win(x
oord,y
oord);

gw.set layout(x
oord,y
oord);

if (!gw.get flush()) gw.redraw();

}

The new menu is now easily created.

12.5 Customizing the Interactive Interface 31

int draw menu = gw.add menu("graph drawing");

gw add
all(gw,draw alg1,
all draw alg,"draw alg1",draw menu)

gw add
all(gw,draw alg2,
all draw alg,"draw alg2",draw menu)

...

A Complete Example: We give a complete example that illustrates the possibilities to ex-
tend and modify menus. We will write a demo that illustrates dfs, spanning trees, connected
components, and strongly connected components.

For dfs and spanning trees we use simple functions.

〈simple functions〉�

void dfs_num(GraphWin& gw)

{ graph& G = gw.get_graph();

node_array<int> dfsnum(G);

node_array<int>
ompnum(G);

DFS_NUM(G,dfsnum,
ompnum);

node v;

forall_nodes(v,G) gw.set_label(v,string("%d|%d",dfsnum[v℄,
ompnum[v℄));

if (gw.get_flush() == false) gw.redraw();

}

void span_tree(GraphWin& gw)

{ graph& G = gw.get_graph();

list<edge> L = SPANNING_TREE(G);

gw.set_
olor(L,red);

gw.set_width(L,2);

if (gw.get_flush() == false) gw.redraw();

}

The LEDA functions to compute components of a graph all have the same interface. They
take a graph and compute a node array ofints, and return an int. Any such function can be
added to a GraphWin using the caller

〈components caller〉�

// a
aller for
omponent algorithms

void
all_
omp(GraphWin& gw,

int (*
omp)(
onst graph& G, node_array<int>&
ompnum))

{ graph& G = gw.get_graph();

node_array<int>
ompnum(G);

omp(G,
ompnum);

node v;

forall_nodes(v,G)

{ int i =
ompnum[v℄;

gw.set_label(v,string("%d",i));

gw.set_
olor(v,(
olor)(i%16));

}

if (gw.get_flush() == false) gw.redraw();

}

32 GraphWin

In the main program we define a GraphWin, delete some of the standard menus (just
to illustrate how it is done), add our simple calls, add a reset button, and finally create a
sub-menu for the components functions.

〈gw menu.c〉�

#in
lude <LEDA/graphwin.h>

#in
lude <LEDA/graph_alg.h>

#in
lude <LEDA/graph_mis
.h>

〈components caller〉

〈simple functions〉

int main()

{

GraphWin gw;

// we delete some of the standard menus

gw.set_default_menu(M_COMPLETE & ~M_LAYOUT & ~M_HELP);

// add two simple fun
tion
alls

gw.add_simple_
all(dfs_num, "dfsnum");

gw.add_simple_
all(span_tree, "spanning");

// a member
all

gw.add_member_
all(&GraphWin::reset,"reset");

// and a menu with three non-simple fun
tions using

// a
ommon
all fun
tion

int menu1 = gw.add_menu("
omponents");

gw_add_
all(gw,COMPONENTS,
all_
omp,"simply
onne
ted", menu1);

gw_add_
all(gw,COMPONENTS1,
all_
omp,"simply
onne
ted1", menu1);

gw_add_
all(gw,STRONG_COMPONENTS,
all_
omp,"strongly
onne
ted",menu1);

gw.display();

gw.edit();

return 0;

}

Figure 12.11 shows a screen shot of this demo.

12.5.4 Defining Edit Actions
Mouse operations in the display region of aGraphWingenerate events. An event is charac-
terized by its event bit maskeventmask(which is the or of elementary masks to be defined
below) and the current positionmousepositionof the mouse pointer. Event masks have
associatededit actions. All edit actions are functions of type

void a
tion(GraphWin& gw,
onst point& pos);

When an event occurs, the associated action function is called with theGraphWinobject and
the current mouse pointer positionmousepositionas arguments. The object (node or edge)
under the current position can be queried by thegetedit nodeor getedit edgeoperation.

Event masks are the bitwise-or of some of the following predefined constants:

A LEFT, AMIDDLE, A RIGHT: If one of these bits is set, the corresponding mouse
button (left, middle, or right) has been clicked.

12.5 Customizing the Interactive Interface 33

Figure 12.11 Extending the menu: Computing a DFS-numbering.

A DRAG: This bit indicates that the mouse is moved with one or more buttons (specified
by the bits discussed above) held down.

A DOUBLE: This bit indicates a double click , i.e., the event that a mouse button has
been clicked twice.

A SHIFT, ACTRL, AALT: If one of these bits is set, the corresponding keyboard control
key (Shift,Ctrl,Alt) is pressed.

A NODE: If this bit is set, the mouse pointer is located over a node and the node can be
queried by thegw.getedit node() operation.

A EDGE: If this bit is set, the mouse pointer is located over an edge and the edge can be
queried by thegw.getedit edge() operation.

34 GraphWin

A SLIDER: If this bit is set, the mouse pointer is located over a sliderof an edge. The
corresponding edge can be queried as above and the number of the slider (0,1, or 2) can be
obtained by calling thegw.getedit slider() operation.

An event mask is defined by a combination of these bits, for instance

(A LEFT | A NODE | A DOUBLE)

describes a double click of the left mouse button on a node.

Setting Edit Actions: The following operations can be used to change the action functions
associated with events.

gw a
tion gw.set a
tion(long mask,void (*fun
)(GraphWin&,
onst point&));

sets the action on conditionmaskto funcand return the previous action of this condition.
After this call func is called with theGraphWinobject and the current edit position as
arguments whenever the condition defined bymaskbecomes true.

void gw.reset a
tions();

resets all actions to their default values and

void gw.
lear a
tions();

sets all actions toNULL.

The following piece of code shows part of the initializationof the default edit actions.

// left button (
reate,move,s
roll,zoom)

set a
tion(A LEFT , gw new node);

set a
tion(A LEFT | A NODE , gw new edge);

set a
tion(A LEFT | A DRAG |A NODE , gw move node);

set a
tion(A LEFT | A DRAG |A EDGE , gw move edge);

set a
tion(A LEFT | A DRAG , gw s
roll graph);

set a
tion(A LEFT | A DRAG |A SLIDER, gw move edge slider);

set a
tion(A LEFT |A SHIFT |A DRAG |A NODE , gw move
omponent);

set a
tion(A LEFT |A DOUBLE | A NODE , gw setup node);

set a
tion(A LEFT |A DOUBLE | A EDGE , gw setup edge);

An Example Program: The following program redefines some of the default actions,for
example, when the left mouse button is clicked over a node with the control key pressed,
the node color will be increased by one.

〈gw action.c〉�

#in
lude<LEDA/graphwin.h>

void
hange_node_
olor(GraphWin& gw,
onst point&)

{ node v = gw.get_edit_node();

int
ol = (gw.get_
olor(v) + 1) % 16;

gw.set_
olor(v,
olor(
ol));

}

void
hange_edge_
olor(GraphWin& gw,
onst point&)

12.6 Visualizing Geometric Structures 35

{ edge e = gw.get_edit_edge();

int
ol = (gw.get_
olor(e) + 1) % 16;

gw.set_
olor(e,
olor(
ol));

}

void
enter_node(GraphWin& gw,
onst point& p)

{ node v = gw.get_edit_node();

gw.set_position(v,p);

}

void delete_node(GraphWin& gw,
onst point&)

{ node v = gw.get_edit_node();

gw.del_node(v);

}

void zoom_up(GraphWin& gw,
onst point&) { gw.zoom(1.5); }

void zoom_down(GraphWin& gw,
onst point&) { gw.zoom(0.5); }

main()

{

GraphWin gw;

gw.set_a
tion(A_LEFT | A_NODE | A_CTRL,
hange_node_
olor);

gw.set_a
tion(A_LEFT | A_EDGE | A_CTRL,
hange_edge_
olor);

gw.set_a
tion(A_LEFT | A_NODE | A_SHIFT,
enter_node);

gw.set_a
tion(A_RIGHT| A_NODE, delete_node);

gw.set_a
tion(A_LEFT | A_CTRL, zoom_up);

gw.set_a
tion(A_RIGHT| A_CTRL, zoom_down);

gw.display(window::
enter,window::
enter);

gw.edit();

}

12.6 Visualizing Geometric Structures

Many geometric data structures of LEDA are implemented by labeled graphs, e.g., Delau-
nay diagrams are represented by graphs of typeGRAPH<point, int> and Voronoi diagrams
are represented as graphs of typeGRAPH<CIRCLE, POINT>. Many geometry demos have
a GraphWin-button for viewing the underlying graph structures.

We sketch how this button is realized. In the demo below we compute the Delaunay
triangulationDT of a setL of twenty-five points on a regular grid. We then declare a
GraphWingw for DT, tell gw that we want each nodev to be drawn at positionDT[v], as
a circle of radius eight pixels, and without label, and that we want each edge to be drawn
with a color indicating its label. Start the demo and the graph shown in Figure 12.12 will
appear.

〈gw delaunay.c〉�

#in
lude <LEDA/plane_alg.h>

#in
lude <LEDA/graphwin.h>

main()

36 GraphWin

Figure 12.12 GraphWin displaying a Delaunay triangulation.

{

GRAPH<rat_point,int> DT;

list<rat_point> L;

latti
e_points(25,100,L);

DELAUNAY_TRIANG(L,DT);

GraphWin gw(DT);

node v;

forall_nodes(v,DT)

{ rat_point p = DT[v℄;

gw.set_position(v,p.to_point());

gw.set_label_type(v,no_label);

gw.set_width(v,8);

gw.set_height(v,8);

}

edge e;

forall_edges(e,DT)

{ swit
h (DT[e℄) {

ase DIAGRAM_EDGE: gw.set_
olor(e,green2); break;

ase NON_DIAGRAM_EDGE: gw.set_
olor(e,yellow); break;

12.7 A Recipe for On-line Demos of Network Algorithms 37

ase HULL_EDGE: gw.set_
olor(e,red); break;

}

}

gw.display();

gw.zoom_graph();

gw.edit();

}

12.7 A Recipe for On-line Demos of Network Algorithms

Networks are graphs whose edges (and sometimes nodes) are labeled with numbers, e.g.,
capacities or costs. On-line demos of network algorithms should allow the user to edit the
underlying graph as well as the edge capacities. We have already seen how to react on-
line to update operations. In this section we will show how toimplement capacity changes
by edge sliders. All demos of network algorithms follow the paradigm presented in this
section. We use the min cost flow algorithm as our example. Allother demos are simpler.
Figure 12.13 shows a screenshot.

The global structure of our demo is as follows. We define edge mapscap andcost in
order to make edge capacities and edge costs globally available for the handler functions.
We then define a function that runs the min cost flow algorithm and displays the result and
we define handlers for edge events and handlers for slider events.

In the main program we generate the grid graphG shown in Figure 12.13 and associate
the edge mapscapandcostwith it. We define a GraphWingw for G and set its header to
“Min Cost Max Flow”. We disable edge bends since sliders can be used for straight line
edges only. We set the node and edge attributes to the colors hinted at in the figure, and we
adjust the size of the layout such that it uses about 90% of thewindow. Finally, we open the
window and put it into edit mode.

〈gw mcmflow.c〉�

#in
lude <LEDA/graphwin.h>

#in
lude <LEDA/graph_alg.h>

stati
 edge_map<int>
ap;

stati
 edge_map<int>
ost;

〈run min cost flow and display result〉

〈edge handlers〉

〈capacity and cost sliders〉

int main()

{

//
onstru
t a (grid) graph

graph G;

node_array<double> x
oord;

node_array<double> y
oord;

38 GraphWin

Figure 12.13 Animation of a min-cost-flow algorithm.

grid_graph(G,x
oord,y
oord,5);

// initialize
ap and
ost maps

ap.init(G);

ost.init(G);

GraphWin gw(G,"Min Cost Max Flow");

// disable edge bends

gw.set_a
tion(A_LEFT | A_DRAG | A_EDGE , NULL);

〈set handlers〉

〈set attributes of nodes and edges〉

12.7 A Recipe for On-line Demos of Network Algorithms 39

//adjust layout

gw.adjust_
oords_to_win(x
oord,y
oord);

gw.set_layout(x
oord,y
oord);

gw.zoom(0.9);

// open gw

gw.display();

gw.edit();

return 0;

}

Setting the node and edge attributes is routine.

〈set attributes of nodes and edges〉�

gw.set_node_
olor(yellow);

gw.set_node_shape(
ir
le_node);

gw.set_node_label_type(no_label);

gw.set_node_width(14);

gw.set_node_height(14);

gw.set_edge_dire
tion(dire
ted_edge);

node s = G.first_node();

gw.set_shape(s,re
tangle_node);

gw.set_width(s,22);

gw.set_height(s,22);

gw.set_
olor(s,
yan);

gw.set_label(s,"S");

node t = G.last_node();

gw.set_shape(t,re
tangle_node);

gw.set_width(t,22);

gw.set_height(t,22);

gw.set_
olor(t,
yan);

gw.set_label(t,"T");

The function that runs the min cost flow algorithm and displays its result is similar to the
display function in the strongly connected components demoof Section 12.4, but slightly
more complex because we are aiming for a more elaborated visualization.

We obtain the graphG from gw, we sets andt to the first and last node, respectively, and
compute the flow using the global edge mapscapandcost. We compute the flow value and
the cost of the flow and we set the width of every edge proportional to the flow through the
edge. Edges with flow zero are faded to grey. We reset flush, write a message containing
flow value and cost, and redraw.

〈run min cost flow and display result〉�

void run_m
m_flow(GraphWin& gw)

{ bool flush = gw.set_flush(false);

graph& G = gw.get_graph();

node s = G.first_node();

node t = G.last_node();

gw.message("\\bf Computing MinCostMaxFlow");

40 GraphWin

edge_array<int> flow(G);

int F = MIN_COST_MAX_FLOW(G,s,t,
ap,
ost,flow);

int C = 0;

// sum up total
ost and indi
ate flow[e℄ by the width of e

edge e;

forall_edges(e,G)

{ C += flow[e℄*
ost[e℄;

gw.set_label_
olor(e,bla
k);

gw.set_label(e,string("%d",flow[e℄));

gw.set_width(e,1+int((flow[e℄+4)/5.0));

if (flow[e℄ == 0)

gw.set_
olor(e,grey2); // 0-flow edges are faded to grey

else

gw.set_
olor(e,bla
k);

}

gw.set_flush(flush);

gw.message(string("\\bf Flow: %d \\bf Cost: %d",F,C));

gw.redraw();

}

We come to the edge handlers. We first define an auxiliary function init edgethat sets the
capacity and the cost of an edge to random values and sets the slider values for the zeroth
and the first slider of the edge accordingly. Theinit handlerinitializes all edges, computes
a min cost flow and displays it. The new edge handler initializes the edge, computes a min
cost flow and displays it.

The init handler and the node and edge handlers ofgware set in the obvious way.

〈edge handlers〉�

void init_edge(GraphWin& gw, edge e)

{ // init
apa
ity and
ost to a random value

ap[e℄ = rand_int(10,50);

ost[e℄ = rand_int(10,75);

// set sliders a

ordingly

gw.set_slider_value(e,
ap[e℄/100.0,0); // slider zero

gw.set_slider_value(e,
ost[e℄/100.0,1); // slider one

}

void init_handler(GraphWin& gw)

{ edge e;

forall_edges(e,gw.get_graph()) init_edge(gw,e);

run_m
m_flow(gw);

}

void new_edge_handler(GraphWin& gw, edge e)

{ init_edge(gw,e);

run_m
m_flow(gw);

}

〈set handlers〉�

gw.set_init_graph_handler(init_handler);

12.7 A Recipe for On-line Demos of Network Algorithms 41

gw.set_del_edge_handler(run_m
m_flow);

gw.set_del_node_handler(run_m
m_flow);

gw.set_new_edge_handler(new_edge_handler);

We come to the sliders. The cap slider handlers handle the change of capacities. We use
the zeroth edge slider for the capacities. When an edge slider is picked up we display an
appropriate message. As long as the slider is moved we display the new capacity. When the
edge slider is released we recompute the flow and display it.

〈capacity and cost sliders〉�

//
apa
ity sliders

void start_
ap_slider_handler(GraphWin& gw, edge, double)

{ gw.message("\\bf\\blue Change Edge Capa
ity"); }

void
ap_slider_handler(GraphWin& gw,edge e, double f)

{
ap[e℄ = int(100*f);

gw.set_label_
olor(e,blue);

gw.set_label(e,string("
ap = %d",
ap[e℄));

}

void end_
ap_slider_handler(GraphWin& gw, edge, double)

{ run_m
m_flow(gw); }

〈set handlers〉+�

gw.set_start_edge_slider_handler(start_
ap_slider_handler,0);

gw.set_edge_slider_handler(
ap_slider_handler,0);

gw.set_end_edge_slider_handler(end_
ap_slider_handler,0);

gw.set_edge_slider_
olor(blue,0);

Cost sliders are treated completely analogously.

〈capacity and cost sliders〉+�

//
ost sliders

void start_
ost_slider_handler(GraphWin& gw, edge, double)

{ gw.message("\\bf\\red Change Edge Cost"); }

void
ost_slider_handler(GraphWin& gw, edge e, double f)

{
ost[e℄ = int(100*f);

gw.set_label_
olor(e,red);

gw.set_label(e,string("
ost = %d",
ost[e℄));

}

void end_
ost_slider_handler(GraphWin& gw, edge, double)

{ run_m
m_flow(gw); }

〈set handlers〉+�

gw.set_start_edge_slider_handler(start_
ost_slider_handler,1);

gw.set_edge_slider_handler(
ost_slider_handler,1);

gw.set_end_edge_slider_handler(end_
ost_slider_handler,1);

gw.set_edge_slider_
olor(red,1);

42 GraphWin

Figure 12.14 Visualization of an AVL tree.

Exercises for 12.7
1 Add menus to the main window for running and displaying the result of the different

shortest-path and network flow algorithms of LEDA. Use edge sliders for the input of
edge cost and capacities.

2 Design and implement an animation of the vertex addition planarity test algorithm dis-
cussed in Chapter 8.

3 Write an animation program of the generic preflow-push algorithm for computing a max-
imum flow in a network.

12.8 A Binary Tree Animation

We close this chapter with a demo which animates several implementations of balanced
binary trees, namely AVL-trees, BB[α]-trees, and red-black trees.

All balanced binary tree implementations use a common base,the classesbin tree and
bin treenode. A bin treeis a collection ofbin treenodes. Eachbin treenodestores pointers
to its parent and its children, and a balance of typeint. The interpretation of the balance

12.8 A Binary Tree Animation 43

of a node depends on the tree structure. In the case of AVL-trees it is the height difference
between the left and right subtree, in the case of BB[α]-trees it is the number of nodes in
the subtree rooted at the node, and in the case of red-black trees it encodes the color of the
node. The access functions

int T.get bal(bin tree node*)

bin tree node* T.parent(bin tree node*)

bin tree node* T.l
hild(bin tree node*)

bin tree node* T.r
hild(bin tree node*)

give access to the fields of a node. One can also ask whether a node is a root or a leaf

bool T.is root(bin tree node*)

bool T.is leaf(bin tree node*)

and one can inquire about the type and name of a tree. The name of a tree is one of “AVL
Tree”, “BB[alpha] Tree”, . . . , and the type of a tree is an integer from an enumeration type
encoding the same information as the name.

int T.tree type()

har* T.tree name()

A pointer to abin treenodeis abin treeitem.

The overall structure of the demo is as follows. We define the control parametersn, the
number of insertions,input, the choice between random and sorted insertions, andkind, the
type of tree to be used, we define a panel that allows us to set the control parameters, and we
define threebin treesand initialize them to an empty AVL-tree, BB[α]-tree, and red-black
tree, respectively. We then enter a loop.

In each iteration of the loop we open the panel and ask the reader to set the control
parameters. We then define an objectT of classanimbin treefor the GraphWingwand the
tree selected bykind. The classanimbin tree will be discussed below and does the bulk
of the work. We performn insertions onT with either random inputs or increasing inputs.
Finally, we display the message “Press done to continue” andput gw into edit mode such
that the user can reply.

〈gw bintree.c〉�

#in
lude <LEDA/graphwin.h>

#in
lude <LEDA/impl/bin_tree.h>

#in
lude <LEDA/impl/avl_tree.h>

#in
lude <LEDA/impl/bb_tree.h>

#in
lude <LEDA/impl/rb_tree.h>

#in
lude <LEDA/impl/rs_tree.h>

#in
lude <LEDA/map.h>

〈class animbin trees〉

int main()

{

GraphWin gw(500,400);

gw.set_node_width(18);

gw.set_node_height(18);

44 GraphWin

gw.set_node_label_type(no_label);

gw.set_node_label_font(roman_font,10);

gw.set_edge_dire
tion(undire
ted_edge);

gw.set_show_status(false);

gw.display(window::
enter,window::
enter);

int n = 16;

int input = 0;

int kind = 0;

// define a panel P to
ontrol n, input, and kind

panel P;

P.text_item("\\bf\\blue Binary Tree Animation");

P.text_item("");

P.
hoi
e_item("tree type",kind, "avl-tree","bb-tree","rb-tree");

P.
hoi
e_item("input data",input,"random", "1 2 3 ...");

P.int_item("# inserts",n,0,64);

P.button("ok",0);

P.button("quit",1);

bin_tree* tree[3℄;

tree[0℄ = new avl_tree;

tree[1℄ = new bb_tree;

tree[2℄ = new rb_tree;

while (gw.open_panel(P) == 0)

{

anim_bin_tree T(gw,tree[kind℄);

swit
h (input) {

ase 0: { // random

for(int i=0;i<n;i++) T.insert(rand_int(0,99));

break;

}

ase 1: { // in
reasing

for(int i=0;i<n;i++) T.insert(i);

break;

}

}

gw.message("Press done to
ontinue.");

gw.edit();

}

delete[℄ tree;

return 0;

}

It remains to explain the classbin treeanim. An object of this class consists of a reference
T to a bin tree and a referencegw to a GraphWin, aGRAPH<point, int> G, and a map
NODE from tree items to graph nodes;T andgw are set in the constructor to references of
our GraphWin and the selected tree, respectively.

The idea is thatG represents a drawing ofT and thatNODEmakes the translation from
tree nodes to graph nodes. In the constructor we makeG the graph ofgw and setflush

12.8 A Binary Tree Animation 45

to false, and in the destructor we resetT to the empty tree. The other functions will be
discussed below.

〈class animbin trees〉�

lass anim_bin_tree {

GraphWin& gw;

bin_tree& T;

GRAPH<point,int> G;

map<bin_tree_item,node> NODE;

〈functions to compute a drawing of T〉

publi
:

anim_bin_tree(GraphWin& gwin, bin_tree* tptr) : gw(gwin), T(*tptr)

{ gw.message(string("\\bf\\blue %s",T.tree_name()));

//G.
lear();

gw.set_flush(false);

gw.set_graph(G);

}

~anim_bin_tree() { T.
lear(); }

〈anim bin tree:: insert〉

};

We next explain the functionscantree that computes the layout and sets the visual pa-
rameters of the nodes by callingsetnodeparamsfor each itemr of T . Setting the node
parameters is easy. We draw leaves and the root as rectanglesand all other nodes as el-
lipses. For non-leaves we display the balance of the node in an appropriate form: in the
case of AVL-trees we use the labels<, =, and>, in the case of BB[α]-trees we display the
balance, and in the case of red-black trees we display the balance as a color.

〈functions to compute a drawing of T〉�

void set_node_params(bin_tree_item r)

{

node v = NODE[r℄;

if (T.is_leaf(r))

{ gw.set_
olor(v,ivory);

gw.set_label(v,string("%d",T.key(r)));

gw.set_shape(v,re
tangle_node);

return;

}

if (T.is_root(r))

gw.set_shape(v,re
tangle_node);

else

gw.set_shape(v,ellipse_node);

gw.set_
olor(v,grey1);

int bal = T.get_bal(r);

swit
h (T.tree_type()) {

ase LEDA_AVL_TREE:

46 GraphWin

swit
h (bal) {

ase 0: gw.set_label(v,"="); break;

ase -1: gw.set_label(v,">"); break;

ase 1: gw.set_label(v,"<"); break;

}

break;

ase LEDA_BB_TREE:

gw.set_label(v,string("%d",bal));

break;

ase LEDA_RB_TREE:

gw.set_label_type(v,no_label);

gw.set_
olor(v,(bal == 0) ? red : grey3);

break;

}

}

The functionscantree computes the layout for the subtree rooted atr and also adds the
edges in the subtree toG. The subtree is placed in the rectangle with left boundaryx0, right
boundaryx1, upper boundaryy, and vertical displacementdy between parents and their
children. Such a layout is easily computed. We set thex-coordinate ofr to the midpoint
of x0 andx1 and they-coordinate to the upper boundary and then place the left subtree in
the left half of the rectangle and the right subtree in the right half of the rectangle. In both
halves we lower the upper boundary bydy.

〈functions to compute a drawing of T〉+�

node s
an_tree(bin_tree_item r,double x0, double x1, double y, double dy)

{

set_node_params(r);

node v = NODE[r℄;

double x = (x0 + x1)/2;

G[v℄ = point(x,y);

bin_tree_item left = T.l_
hild(r);

bin_tree_item right = T.r_
hild(r);

if (left) G.new_edge(v,s
an_tree(left,x0,x,y-dy,dy));

if (right) G.new_edge(v,s
an_tree(right,x,x1,y-dy,dy));

return v;

}

We finally explain the insertion procedure. We lookupx; our trees store generic pointers of
typevoid∗ as explained in Chapter 13. We therefore need to convertx to a generic pointer.
If x is already in the tree, we do nothing. Otherwise, we insert the pair(x, 0) into T and
store the tree item returned inp. If p is the root ofT , i.e., the current insertion was the first
insertion intoT , we add a node togw (and henceG), place it at the origin, and associate it
with p. If p is not the root ofT and hence the current insertion is not the first, the insertion
added two nodes to the tree as shown in Figure 12.15. The nodep is a leaf ofT and p and
r = T.getlastnode() are the new nodes ofT .

12.8 A Binary Tree Animation 47

q r

p q

f

p q

r

insertion of p rebalancing

Figure 12.15 Insertion of a new key adds a new leafp and a new noder . The search for the key
of p in the old tree ended inq and the key ofp is either smaller or larger than the key ofq. In the
former case,p will be the left child orr and in the latter case it will be the right child. After the
addition of the new leaf the tree is rebalanced andr might move to a different position in the
tree. A call ofT.getlast node() after the insertion returnsr . We set the initial positions ofp and
r to the position ofq before the insertion.

We add two new nodes togw, one corresponding top and the other one corresponding
to r . We place both nodes on top ofq. We next compute the drawing area and update the
drawing. We compute the drawing area as follows. We leave four pixels unused on either
side and we divide they-extension of the window into ten (since our trees will nevergrow
deeper than eight) strips. We leave the two top-most strips unused.

〈anim bin tree:: insert〉�

void insert(int x)

{

if (T.lookup(GenPtr(x))) return;

bin_tree_item p = T.insert(GenPtr(x),0);

if (T.is_root(p))

NODE[p℄ = gw.new_node(point(0,0));

else

{ bin_tree_item f = T.parent(p);

bin_tree_item q = T.l_
hild(f);

if (p == q) q = T.r_
hild(f);

point pos = gw.get_position(NODE[q℄);

bin_tree_item r = T.get_last_node();

NODE[p℄ = gw.new_node(pos);

NODE[r℄ = gw.new_node(pos);

}

node v = NODE[p℄;

//
ompute drawing area

double dx = gw.get_window().pix_to_real(4);

double x0 = gw.get_xmin() + dx;

double x1 = gw.get_xmax() - dx;

double y0 = gw.get_ymin();

double y1 = gw.get_ymax();

48 GraphWin

double dy = (y1-y0)/10;

〈update drawing〉
}

It remains to explain how we update the drawing. We first remove all edges fromG and then
call scantreefor the root ofT and the entire drawing area. This buildsT in G and computes
a new layout in the node data ofG. We then informgw thatG has changed and set the color
of the new node to green. We set flush to true so that changes go into effect and change the
node positions to the node data ofG by the callgw.setposition(G.nodedata()). Because
layout changes are animated this will make the tree move slowly into its new shape. You
may change the speed in the options menu. When the tree is in its new form we reset the
color ofv and set flush back to false.

〈update drawing〉�

G.del_all_edges();

s
an_tree(T.root(),x0,x1,y1-2*dy,dy);

gw.update_graph();

olor
ol = gw.set_
olor(v,green2);

gw.set_flush(true);

gw.set_position(G.node_data());

gw.set_
olor(v,
ol);

gw.set_flush(false);

Exercise for 12.8
1 Extend the binary tree animation of this chapter to allow deletions of keys by clicking

on the corresponding leaves.

Bibliography

[Him97] M. Himsolt. The graphlet system.Lecture
Notes in Computer Science, 1190:233–??, 1997.

[JMN] M. Jünger, P. Mutzel, and S. Näher. The
AGD graph drawing library. search the WEB
for AGD or one of the authors.

[LK] Lauer and M. Kaufmann. GraVis.
http://www-pr.informatik.uni-tuebingen.de/Fors
hung/GraVis.

49

Index

animation,see GraphWin

Delaunay triangulations
visualization, 35

dictionary array
animation, 42

GML-format, 17
GraphWin, see also window, 2–48

animation of data structures, 42–48
associating a graph, 11
attributes,seeparameters inGraphWin
default menu, 4

done-button, 5
edit operations, 4
file operations, 4
graph drawing operations, 5
graph generators and modifiers, 4
options, 5
undo-button, 5
zoom operations, 5

example programs
gw.c, 13
gw action.c, 34
gw attributes.c, 16
gw bintree.c, 43
gw delaunay.c, 35
gw handler.c, 26
gw mcmflow.c, 37
gw menu.c, 32
gw plandemo.c, 21
animation of data structures, 42
edit and run, 13
extending the menu, 31
min-cost-flow, 37
on-line demos, 26–27, 37–42
planarity demo, 21
simple demos, 20–23

interface, 11–20, 24–35
accessing and changing parameters, 14
animation speed, 10, 18
call-back functions, 24
creation of agraphwin, 11
edit actions, 32
entering edit mode, 12
event handling, 24
graph operations, 13
handler functions, 24
input and output, 17
layout operations, 17
leaving edit mode, 12
menus, 27
miscellaneous functions, 20
slider, 25, 41
zooming, 11, 19

mouse interaction
creating a node, 3
double click, 4
dragging a node, 4
moving a node, 4
resizing a node, 4

overview, 3–5
panel, 20,seepanel
parameters, 6–11

change of, 14
default values, 15
edge attributes, 9
global parameters, 10
node attributes, 6
reading them, 14

postscript output, 17
visualizing geometric structures, 35–37

visualization,see GraphWin
Voronoi diagrams

visualization, 35

50

