
Contents

11 Windows and Panels page2
11.1 Pixel and User Coordinates 2
11.2 Creation, Opening, and Closing of a Window 4
11.3 Colors 5
11.4 Window Parameters 7
11.5 Window Coordinates and Scaling 9
11.6 The Input and Output Operators≪ and≫ 10
11.7 Drawing Operations 11
11.8 Pixrects and Bitmaps 12
11.9 Clip Regions 17
11.10 Buffering 18
11.11 Mouse Input 20
11.12 Events 23
11.13 Timers 31
11.14 The Panel Section of a Window 33
11.15 Displaying Three-Dimensional Objects: d3window 44

Bibliography 46

Index 47

1

11

Windows and Panels

The data typewindow is the base type for all visualisation and animation supportin the
LEDA system. It provides an interface for the graphical input and output of basic geometric
objects for both theX11system on Unix platforms and for MicrosoftWindowssystems.

An instanceW of typewindowis a rectangular window on the display screen. The width
w and heighth of W are measured in pixels and can be defined in the constructor. The
default constructor initializes the width and height ofW to default values depending on the
system and screen resolution of the display. The position onthe display is given by the pixel
coordinates of the upper left corner ofW. It can be specified in thedisplayoperation.

A window consists of two rectangular regions, apanel sectionin the upper part and a
drawing sectionin the rest of the window. Either section may be empty. The panel section
containspanel itemssuch as sliders, choice fields, string items, and buttons. They have to
be created by the operations described in Section 11.14 before the window is displayed for
the first time. Figure 11.1 shows a typical LEDA window. If a window has no drawing
section we call it apanel. Figure 11.2 shows the LEDA panel used for thexlmanmanual
reader.

The drawing section can be used to draw geometric objects such as points, lines, seg-
ments, arrows, circles, polygons, graphs, . . . and to input any of these objects using the
mouse input device.

In this chapter we discuss LEDA windows and show how to use them in demo and visu-
alization programs.

2

11.1 Pixel and User Coordinates 3

Figure 11.1 A typical LEDA window.

Figure 11.2 A typical LEDA panel: xlman.

11.1 Pixel and User Coordinates

The underlying graphics systems (X11 or Windows) maps windows to rectangular regions
of the display screen using a pixel based coordinate system.In this pixel coordinate sys-
tem, the upper left corner of the window rectangle has coordinates (0, 0), x-coordinates
increase from left to right, and y-coordinate increase fromtop to bottom. This is illustrated
in Figure 11.3.

All drawing and input operations in the drawing section use theuser coordinate system
whose y-axis is oriented in the usual mathematical way, i.e., from bottom to top. The

4 Windows and Panels

3

4

(0, 0)
width

height

Figure 11.3 The pixel coordinate system: the pixel with coordinates(3, 4).

user coordinate system is defined by three numbers of typedouble: xmin, the minimal x-
coordinate,xmax, the maximal x-coordinate, andymin, the minimal y-coordinate. The two
parametersxminandxmaxdefine the scaling factor

scaling= w/(xmax− xmin),

wherew is the width of the window in pixels. The maximal y-coordinate ymaxof the
drawing section is equal toymin+ h · scaling, whereh is the height of the drawing section
in pixels. The user coordinates(x, y) correspond to the pixel

(scaling· (x − xmin), scaling· (y − ymin)).

The window type provides operations for translating user coordinates into window coor-
dinates and vice versa.

11.2 Creation, Opening, and Closing of a Window

We describe how to create, open, and close a window.

11.2 Creation, Opening, and Closing of a Window 5

Figure 11.4 The LEDA default icon.

window W;

creates a window of default size.

window W(int w, int h);

creates a windowW of sizew × h pixels.

void W.display();

opensW and displays it at the default position on the screen. Note that W.display() has to
be called before all drawing operations and that all operations adding panel items toW (cf.
Section 11.14) have to be called before the first call ofW.display().

void W.display(int x, int y);

opensW and displays it with its left upper corner at position(x, y) in pixel coordinates.
The three special constantswindow::min, window::center, window::maxcan be used for
positioningW at the minimal or maximalx- or y-coordinate or centering it horizontally or
vertically on the screen.

void W.display(window W0, int x=window::enter, int y=window::enter);

opensW and displays it at position(x, y) above windowW0 which must be displayed
already.

void W.ionify();

closesW and displays it as a small icon. If no user-defined icon is specified (see theicon
pixrectparameter) the LEDA default icon, as shown in Figure 11.4, isused.

void W.lose();

closesW and removes it from the display.

6 Windows and Panels

11.3 Colors

The data typecolor represents all colors available in drawing operations.
Each color value corresponds to a triple of integers(r, g, b) with 0 ≤ r, g, b ≤ 255, the

so-calledrgb-valueof the color. The number of available colors is restricted and depends
on the underlying hardware. A color can be created from rgb-values,

olor ol(int r, int g, int b);

from a color name in a system data base (X11 only)

olor ol(string olor name);

or from one of the integer color constants defined in<LEDA/impl/x window.h>

olor ol(int olor onst);

wherecolor constis one of the constants from the enumeration

enum { blak, white, red, green, blue, yellow, violet,

orange, yan, brown, pink, green2, blue2,

grey1, grey2, grey3, ivory, invisible }

A drawing operation with the special colorinvisiblehas no effect on the display.
The definition of a color may fail due to one of the following reasons:

• There is a system dependent limitation on the total number ofdifferent colors any
application may use and the construction exceeds this limit.

• One of the specified(r, g, b)-values is illegal, i.e., not in the range [0, . . . , 255].

• The color name is not present in the systems color data base orthe system does not
support this method of specifying colors.

If the definition of a color fails, we say that the constructedcolor isbad; it is calledgood
otherwise. The operation

bool ol.is good()

tests whether a color is good or bad.
It is also possible to retrieve the(r, g, b)-values of a color by

void ol.get rgb(int& r, int& g, int& b);

The following program tries to construct all 256 possible grey colors and reports how
many of them are available.

〈greyscales.c〉�

#inlude <LEDA/window.h>

#inlude <LEDA/array.h>

main()

{

array<olor> grey(256);

int n = 0;

11.4 Window Parameters 7

for(int i = 0; i < 256; i++)

{ olor (i,i,i);

if (.is_good()) grey[n++℄ = ;

}

out << n << " different greys available." << endl;

return 0;

}

Exercises for 11.3
1 How man different versions of “red” are available on your system? Write a program to

find out.
2 Write a program that displays a rainbow.

11.4 Window Parameters

Every window has a list of parameters which control its appearance and the way drawing
operations are performed on the window. In this section we will first survey the available
window parameters and then show how to read and to change them.

The Available Parameters: We list the parameters together with their type, default value,
and a short description of their meaning.

background color: A parameter of typecolor (default valuewhite) defining the default
background color (e.g., used byW.clear() to erase the drawing area).

background pixrect: A parameter of typechar∗ (default value:NULL) defining a pixrect
(see Section 11.8) that is used to tile the background of the window. If it is different from
NULL the background color parameter is ignored.

foreground color: A parameter of typecolor (default value:black) defining the default
color to be used in all drawing operations. All drawing operations have an optional color
argument that can be used to override the default foregroundcolor temporarily.

mouse cursor: A parameter of typeint (default value:−1) defining the shape of the
mouse cursor. Its value must be either the default value or one of the values listed in
<LEDA/X11/cursorfont.h>.

text font: A parameter of type string (default value: system dependent) defining the name
of the font to be used in text drawing operations. Possible values are strings of the form:
T<num>, F<num>, I <num>, and B<num>. HereT stands for (normal) text,F for fixed
size,I for italic, andB for bold, andnumgives the font size in points. These special names
are used by the window class to provide a platform independent way of specifying fonts.
For example, ”B14” specifies a “usual” 14pt bold font of the underlying operating system.
Note, however, that, in general, a font specified in this way will look different for different

8 Windows and Panels

platforms. On Unix systems fonts can also be specified by an X11 font name as for instance
-adobe-helvetia-medium-r-*-*-14-*-*-*-*-*-*-*.

window coordinates (xmin, xmax, ymin): Parameters of typedouble (default values:
(0, 100, 0)) defining the user coordinate space of the window, i.e.,xmin is the minimal
x-coordinate,xmaxthe maximalx-coordinate, andymin the minimaly-coordinate of the
drawing area. The maximaly-coordinateymaxdepends on the shape and size of the draw-
ing area.

grid width: A parameter of typeint (default value: 0) defining the width of the grid used
in the drawing area. A grid width of 0 indicates that no grid isto be used.

grid style: A parameter of typegrid style(default value:pointgrid) defining how a grid
is represented in the window. Possible values areinvisiblegrid, pointgrid, andline grid.

frame label: A parameter of typestring (default value: LEDA header) defining the frame
label of the window that is used by the graphics system or window manager.

icon label: A parameter of typestring (default value: empty) defining the icon label of
the window.

icon pixrect: A parameter of typechar∗ (default value:NULL) defining a pixrect (see
Section 11.8) that is used as the icon of the window. If it has valueNULL the default icon
is used.

show coordinates: A parameter of typebool (default value:false) determining whether
the current coordinates of the mouse pointer are displayed in the upper right corner of the
window.

line width: A parameter of typeint (default value: 1) defining the width of all kinds of
lines (segments, arrows, edges, circles, polygons) in pixels.

line style: A parameter of typeline style(default value:solid) defining the style of all
kinds of lines. Possible styles aresolid, dashed, dotted, anddasheddotted.

node width: A parameter of typeint (default value: 10) defining the diameter of nodes
created by thedrawnodeanddrawfilled nodeoperations.

text mode: A parameter of typetextmode(default value:transparent) defining how text
is inserted into the window. Possible values aretransparentandopaque.

drawing mode: A parameter of typedrawingmode(default value:srcmodedefining the
logical operation that is used for setting pixels in all drawing operations. Possible values are
srcmodeandxor mode. In srcmodepixels are set to the respective color value, inxor mode
the value is bitwise added to the current pixel value.

clip region: A parameter defining the clipping region of the window, i.e., the region of
the window to which drawing operations are applied (defaultvalue: the entire drawing
area). In the current implementation clip regions are restricted to rectangles (defined by
setclip rectangle) and ellipses (defined bysetclip ellipse).

redraw function: A parameter of typevoid (∗func)(window∗) (default value: NULL).

11.4 Window Parameters 9

Its value is a pointer to a function that is called with a pointer to the corresponding win-
dow, whenever a redrawing of the window is necessary, e.g., if the shape of the window is
changed or previously hidden parts of the window become visible.

client data: A parameter of typevoid∗ (default value: NULL). Its value is an arbitrary
pointer value that can be set or read by client applications.In most cases it is used to
associate user-defined data with a window for use inredrawor other call-back functions.

buttons per line: A parameter of typeint (default value:∞) defining the maximal number
of buttons in one line of the panel section.

Reading and Changing Parameters: Most parameters may be retrieved or changed by
getandsetfunctions. We useparamto denote any of the window parameters andparamt
to denote its type.

param t W.get param()

returns the current value of parameterparam, and

param t W.set param(param t val)

sets the value of parameterparamof type paramt to the new valueval and returns the
former value of the parameter.

Here are some simple examples:

line style = W.get line style();

int lw = W.get line width();

W.set ursor(XC dotbox);

W.set bg pixret(leda pixmap);

W.set grid dist(10);

W.set grid style(line grid);

W.set line width(1)

W.set bg olor(ivory)

W.set olor(blue)

W.set redraw(redraw fun);

The fact that theset-operation returns the old value of the parameter is very convenient
when a parameter is to be changed only temporarily. For instance, in order to change the
mouse cursor to a “watch symbol” during the execution of a time consuming operation, one
writes:

int old ursor = W.set ursor(XC wath);

// some time onsuming omputation

W.set ursor(old ursor);

There are a few operations for changing parameters that do not follow the scheme de-
scribed above, e.g., theinit operation for changing the user coordinate system that is ex-
plained in the next section.

10 Windows and Panels

11.5 Window Coordinates and Scaling

We discuss the connection between coordinates and pixels. We usew andh for the width
and the height of the drawing section in pixels. Both values are determined by the appear-
ance of a window on the screen. The coordinate system underlying the drawing area is
defined by theinit operation.

void W.init(double x0, double x1, double y0, int grid dist=0);

defines the coordinate system underlying the drawing area ofW by settingxminto x0, xmax
to x1, andymin to y0. It also defines implicitly a scaling factorscalingand the maximal
y-coordinateymaxof the drawing area.

scaling= w/(xmax− xmin) and ymax= ymin+ h · scaling.

If, in addition, agrid dist argument is supplied, it is used to initialize the grid distance of
the window. The following function give information about the window coordinates and the
scaling factor:

double W.xmin()

returnsxmin, the minimalx-coordinate of the drawing area ofW, i.e., the coordinate of
the left window border in user space. The analogous functions W.xmax(), W.ymin(), and
W.ymax() are also available.

double W.sale()

returns the scaling factor of the drawing area ofW, i.e. the number of pixels of a unit length
line segment in user space.

double W.pix to real(int p)

translates pixel distances into user space distances, moreprecisely, returns the length of ap
pixel horizontal or vertical line segment in the user coordinate system.

double W.real to pix(double d)

translates user space distances into pixel distances, moreprecisely, returns the number of
pixels contained in a horizontal or vertical line segment oflengthd.

11.6 The Input and Output Operators ≪ and ≫

For the input and output of basic two-dimensional geometricobjects of the floating point
kernel (point, segment, ray, line, circle, polygon) the≪ and≫ operators can be used. In
analogy to C++ input streams, windows have an internal state indicating whether there was
more input to read or not. The state is true initially and is turned to false if an input sequence
is terminated by clicking the right mouse button (similar toending stream input by theeof-
character). In conditional statements, objects of typewindoware automatically converted

11.7 Drawing Operations 11

to boolean by returning this internal state. Thus, window-objects can be used in conditional
statements in the same way as C++ input streams. For example, to read a sequence of points
terminated by a right button click, use

while (W >> p) { }

The following program uses the≫ operator to read points defined by mouse clicks and
draws each point using the≪ operator until input is terminated by clicking the right mouse
button.

〈draw points.c〉�

#inlude <LEDA/window.h>

main()

{

window W(400,400);

W.display(window::enter,window::enter);

point p;

while (W >> p) W << p;

W.sreenshot("draw_points.ps");

}

Graphical input and output for LEDA windows can be extended to user-defined types by
overloading the≪ and≫ operators. This is in analogy to C++ stream input and output. For
example,<LEDA/rat window.h> contains input and output operators for the objects of the
rational kernel.

window& operator<<(window& W, onst rat point& p)

{ return W << p.to point(); }

window& operator>>(window& W, rat point& p)

{ point q;

W >> q;

p = rat point(q);

return W;

}

Exercises for 11.6
1 Modify the programdrawpoints.c such that segments (circles, line, or polygons) are

echoed. The modified program is supposed to work for only one of the mentioned ob-
jects.

2 Write operators≪ and≫ for rat polygons.

11.7 Drawing Operations

The W ≪ objectoutput operators apply to the basic objects of the floating point kernel.
The windows class also provides a large number of additionaldrawing operations that give

12 Windows and Panels

more flexibility. In this book we can only give a few examples.For the complete list of
operations we refer the reader to the LEDA User Manual.

There are two kinds of drawing operations

void W.draw objet(oords, olor ol=window::fg olor);

void W.draw objet(objet, olor ol=window::fg olor);

For the first variant, a geometric object is given by its coordinates in the user coordinate
system of the window, and for the second variant, the object is given as an object of the
floating point kernel. For example,

W.draw irle(double x, double y, double r, olor ol);

draws a circle with center(x, y) and radiusr ,

W.draw polygon(list<point> P, olor ol);

draws a polygon with vertex sequenceP,

W.draw irle(irle C, olor ol);

draws the circleC, and

W.draw polygon(polygon P, olor ol);

draws the polygonP.
The allowed objects are points, pixels, segments, lines rays, ellipses, circles and disks,

triangles (unfilled and filled), polygons (unfilled and filled), rectangles and boxes, arcs,
Bezier curves, splines, arrows, text, nodes, and edges. Thewindow data type can draw
many more types of objects than are available in the geometrykernel. For these types only
the first variant exists that takes an explicit coordinate representation as input.

The optional color argument at the end of the parameter list can be used to specify a color
that is to be used as foreground color by the operation. If it is omitted the current value of
the foreground color parameter (cf. Section 11.4) is used.

The clear operation erases the window by painting it with thebackground color or tiling
it using the background pixrect (if defined).

void W.lear();

void W.lear(double x0, double y0, double x1, double y1);

The second variant only clears rectangle(x0, y0, x1, y1).

Exercises for 11.7
1 Write a program that draws a red circle, a green line segment, and a blue filled polygon.
2 Write a program that draws a filled box for each available shading of grey.

11.8 Pixrects and Bitmaps

Pixrects and bitmaps are rectangular regions of pixels and bits, respectively.

11.8 Pixrects and Bitmaps 13

11.8.1 Pixrects
Pixrects (often called pixmaps) are rectangles of pixels ofa certain width and height. Each
pixel has a color value from the possible set of colors available in the underlying graphics
system. In this way pixrects represent rectangular pictures.

There are operations to copy a pixrect into a rectangle of thedrawing area of a displayed
window of the appropriate size and to construct a pixrect from a rectangle of the drawing
area. Pixrects can also be constructed from external representations of pictures stored inxpm
files orxpmdata strings. xpm data strings are of typechar∗ ∗, i.e., they are represented by
arrays of C++ strings. An xpm file contains the (C++) definition of an xpm data string,
see Figure 11.5 for an example. For the exact definition of thexpm format we refer the
reader to one of theX11handbooks or manuals [Nye93]. LEDA provides a small collection
of icon pictures stored in xpm files in the<LEDA/pixmaps/button32> directory. A typical
X11 system provides tools for the construction and manipulation of xpm files.

In the current implementation of LEDA pixrects and bitmaps are not realized by real data
types but by pointers (of typechar∗). In particular, there is no constructor and destructor,
i.e., the user must explicitly create and destroy pixrects or bitmaps by callingcreateand
destroyoperations.

Constructing and Destroying Pixrects: We discuss functions for constructing and de-
stroying pixrects.

har* W.reate pixret(double x0, double y0, double x1, double y1)

constructs a pixrect of all pixels contained in the rectangle (x0, y0, x1, y1) of the drawing
area ofW and returns it.

har* W.get window pixret()

constructs a pixrect of all pixels in the drawing area ofW and returns it.

har* W.reate pixret(har** xpm)

constructs a pixrect from the xpm pixmap data string xpm.

har* W.reate pixret(string xpm file)

constructs a pixrect from the xpm pixmap data in filexpmfile.

void W.del pixret(har* pret)

destroys pixrectprect.

Drawing Pixrects: We discuss the functions for drawing picrects.

void W.put pixret(double x, double y, har* pret)

void W.put pixret(point p, har* pret)

copies the pixels of pixrectprect into a rectangle of the drawing area ofW which is placed
with its left lower corner at the specified position of the drawing area.

14 Windows and Panels

<<xpm_example_file.h>>=

/* XPM */

stati har *example_xpm[℄ = {

/* width height nolors hars_per_pixel */

"32 32 6 1",

/* olors */

"` #000000",

"a #F5DEB3",

"b #E6E6FA",

" #DBDBDB",

"d #CC9933",

"e #FFFFCC",

/* pixels */

"",

"",

"````",

"```bebe`````",

"``bebebebeb`beb``",

"`ebebebebebebebeb`b`",

"`bebebebebeb`bebebeb`",

"`bebe``b```bebebebe`",

"```b```dd``beb`bebe`",

"```ddddddd````ebebe`",

"``````dddddddddddd`ebeb`",

"``aaa``d`ddd`ddd`dd```be`",

"``aaaa``dd`ddd`ddd`d```eb`",

"`aaa````dd`ddd`ddd`d``eb`",

"`aa```dd`ddd`ddd`d``be`",

"`aa```dd`ddd`ddd`d``eb`",

"`aa```dd`ddd`ddd`d``b`",

"`aa```dd`ddd`ddd`d``e`",

"`aa```dd`ddd`ddd`d``b`",

"`aa```dd`ddd`ddd`d``e`",

"`aa```dd`ddd`ddd`d``b`",

"`aa```dd`ddd`ddd`d``e`",

"`aaa````dd`ddd`ddd`d``b`",

"``aaaa``dd`ddd`ddd`d``e`",

"``aaa``dd`ddd`ddd`d```",

"``````dd`ddd`ddd`d``",

"``d`dd``dd``dd``",

"``dddddddddddd``",

"````````````````",

"``````````````",

"",

""

};

Figure 11.5 A pixrect stored inxpmformat.

void W.enter pixret(double x, double y, har* pret)

void W.enter pixret(point p, har* pret)

copies the pixels of pixrectprect into a rectangle of the drawing area ofW that is placed
with its center at the specified position of the drawing area.

In the following example we construct a pixrect representing the LEDA icon and put
it (with its lower left corner) at positions defined by mouse clicks. Figure 11.6 shows a
screenshot.

11.8 Pixrects and Bitmaps 15

Figure 11.6 A screenshot of the putpixrect program.

〈put pixrect.c〉�

#inlude <LEDA/window.h>

#inlude <LEDA/pixmaps/leda_ion.xpm>

main()

{

window W(400,400);

W.display();

har* pr = W.reate_pixret(leda_ion);

point p;

while (W >> p) W.put_pixret(p,pr);

W.del_pixret(pr);

W.sreenshot("put_pixret.ps");

return 0;

}

11.8.2 Bitmaps
Bitmaps are pixrects containing pixels of only two possiblecolors: black and white. The
name indicates that each pixels in a bitmap can be represented by a single bit and that is
exactly the way bitmaps are usually represented: by a triple(w, h, s), wherew andh give
the width and height of the bitmap ands is a string of bits (of typechar∗). A file that
contains the (C++) definition of such a string is called a bitmap file. Usually the suffixxbm
(x bit map) is used for such a file. LEDA provides a small collection of bitmap pictures

16 Windows and Panels

stored inxbmfiles in the<LEDA/bitmaps/button32.h> directory. As for pixmaps there are
many programs for constructing and manipulatingxbmfiles.

Bitmap Operations:

har* W.reate bitmap(int w, int h, har* xbm)

creates a bitmap of widthw and heighth from the bits in the xbm stringxbm. The length
of xbmmust be at leastw · h bits, i.e.,⌈(w · h)/8⌉ characters.

void W.put bitmap(double x, double y, har* bmap, olor)

void W.put bitmap(point p, har* bmap, olor)

places the bitmapbmapwith its left lower corner at the specified position of the drawing
area and draws with colorc all pixels in the drawing area that correspond to a pixel ofbmap
with value one.

void W.del bitmap(har* bmap)

destroys bitmapbmap.
The following program is very similar to the last example program but uses a bitmap

instead of a pixrect. First, we construct a bitmap representing the LEDA icon and put it
(with its lower left corner) at positions defined by mouse clicks.

〈bitmap.c〉�

#inlude <LEDA/window.h>

#inlude <LEDA/bitmaps/leda_ion.xbm>

main()

{

window W(400,400);

W.set_bg_olor(yellow);

W.display();

// onstrut bitmap from the bitmap data in

// <LEDA/bitmaps/leda_ion.xbm>

har* bm = W.reate_bitmap(leda_ion_width, leda_ion_height,

(har*)leda_ion_bits);

// opy opies of bm into the window

point p;

while (W >> p) W.put_bitmap(p.xoord(),p.yoord(),bm,blue);

W.del_bitmap(bm);

W.sreenshot("bitmap.ps");

return 0;

}

Exercises for 11.8
1 Write a program that converts a bitmap into a pixrect.
2 Construct a pixrect containing your picture.
3 What is shown in the pixrect of Figure 11.5

11.9 Clip Regions 17

11.9 Clip Regions

Sometimes it is necessary to limit the effect of a drawing operation to some restricted area,
a so-calledclipping regionof the window. The following operations allow us to define
clipping regions.

void W.set lip retangle(double x0, double y0, double x1, double y1);

sets the clipping region to rectangle(x0, y0, x1, y1).

void W.set lip ellipse(double x0, double y0, double r1, double r2);

sets the clipping region to the ellipse with center(x0, y0), horizontal radiusr1 and vertical
radiusr2.

void W.reset lipping();

resets the clipping region to the entire drawing area of the window.

We give an example for the usefulness of clipping. We show howto fill a circle with a
pixrect picture. In this situation, we have to restrict the effect of aputpixrectoperation to
the interior of this circle. This can be done by defining a corresponding clip-ellipse. Here is
the program and the resulting picture (Figure 11.7).

〈clip pixrect.c〉�

#inlude <LEDA/window.h>

#inlude <LEDA/pixmaps/leda_ion.xpm>

void draw_pix_irle(window& W, onst irle& C, har* pret)

{

point p = C.enter();

double x = p.xoord();

double y = p.yoord();

double r = C.radius();

W.draw_dis(C,blak);

W.set_lip_ellipse(x,y,r,r);

W.enter_pixret(x,y,pret);

W.reset_lipping();

}

main()

{

window W(400,400, "Clipping a Pixmap");

W.display();

// reate a pixret using LEDA's xpm ion

har* leda_pix = W.reate_pixret(leda_ion);

irle ;

while (W >>) draw_pix_irle(W,,leda_pix);

W.del_pixret(leda_pix);

W.sreenshot("lip_pixret.ps");

return 0;

}

18 Windows and Panels

Figure 11.7 A screenshot demonstrating the effect of clip regions.

11.10 Buffering

The default behavior of all drawing operations discussed inthe preceding sections is to draw
immediately into the drawing area of the displayed window. There are, however, situations
where this behavior is not desired, and where it is very useful to construct an entire drawing
in a memory buffer before copying it (or parts of it) into the drawing area.

Buffering allows us to draw complex objects, which require several primitive drawing
operations, in a single blow. One draws the complex object into a buffer and then copies the
buffer to the drawing area. In this way, the illusion is created that the entire object is drawn
by a single drawing operation. The ability to draw complex objects in a single operation is
frequently needed inanimations, where one wants to display a sequence of snapshots of a
scene that changes over time. Another application of buffering is to create a pixrect copy of
a drawing without displaying it in the drawing area. At the end of this section we will give
example programs for both applications.

These are the most important buffering operations:

void W.start buffering()

starts buffering of windowW, i.e, all subsequent drawing operations have no effect in the
drawing area of the displayed window, but draw into an internal buffer with the same size
and coordinates as the drawing area ofW.

void W.flush buffer()

copies the contents of the internal buffer intoW.

11.10 Buffering 19

void W.flush buffer(double x0, double y0, double x1, double y1)

copies all pixels in the rectangle(x0, y0, x1, y1) of the buffer into the corresponding rectan-
gle of W. This can be much faster if the rectangle is significantly smaller than the entire
drawing area ofW and is often used in animations when the drawing changes onlylocally
in a small rectangular area.

void W.stop buffering()

stops buffering and deletes the internal buffer; all subsequent drawing operations again draw
into the drawing area ofW. The alternative

void W.stop buffering(har*& pr)

stops buffering and converts the internal buffer into a picrect that is assigned topr.

The following program uses buffering to move the LEDA pixrect ball that was drawn
by the previous example program smoothly across the window and to let it bounce at the
window border lines.

〈buffering1.c〉�

#inlude <LEDA/window.h>

#inlude <LEDA/pixmaps/leda_ion.xpm>

void move_ball(window& W, irle& ball, double& dx, double& dy,

har* pret)

{

ball = ball.translate(dx,dy);

point = ball.enter();

double r = ball.radius();

if (.xoord()-r < W.xmin() || .xoord()+r > W.xmax()) dx = -dx;

if (.yoord()-r < W.ymin() || .yoord()+r > W.ymax()) dy = -dy;

W.lear();

W.set_lip_ellipse(.xoord(),.yoord(),r,r);

W.enter_pixret(.xoord(),.yoord(),pret);

W.reset_lipping();

W.draw_irle(ball,blak);

}

main()

{

window W(300,300, "Bouning Leda");

W.set_bg_olor(grey1);

W.display(window::enter,window::enter);

irle ball(50,50,16);

double dx = W.pix_to_real(2);

double dy = W.pix_to_real(1);

har* leda = W.reate_pixret(leda_ion);

W.start_buffering();

for(;;)

{ move_ball(W,ball,dx,dy,leda);

20 Windows and Panels

W.flush_buffer();

}

W.stop_buffering();

W.del_pixret(leda);

W.sreenshot("buffering1.ps");

return 0;

}

We next show how to use buffering to construct a pixrect copy of a drawing. The follow-
ing program uses an auxiliary windowW1 in buffering mode to create a pixrect picture that
is used as an icon for the primary windowW.

〈buffering2.c〉�

#inlude <LEDA/window.h>

main()

{

window W1(100,100);

W1.set_bg_olor(grey3);

W1.init(-1,+1,-1);

W1.start_buffering();

W1.draw_dis(0,0,0.8,blue); W1.draw_irle(0,0,0.8,blak);

W1.draw_dis(0,0,0.6,yellow);W1.draw_irle(0,0,0.6,blak);

W1.draw_dis(0,0,0.4,green); W1.draw_irle(0,0,0.4,blak);

W1.draw_dis(0,0,0.2,red); W1.draw_irle(0,0,0.2,blak);

har* pr;

W1.stop_buffering(pr);

window W(400,400);

W.set_ion_pixret(pr);

W.display(window::enter,window::enter);

point p;

while (W >> p) W.put_pixret(p,pr);

W.del_pixret(pr);

W.sreenshot("buffering2.ps");

return 0;

}

Exercises for 11.10
1 Draw ten random line segments, once without buffering and once with buffering.
2 Extend the “Bouncing LEDA” program, such that the ball is compressed when it hits the

boundary of the window.

11.11 Mouse Input

The main input operation for reading positions, mouse clicks, and buttons from a window
W is the operationW.readmouse(). This operation is blocking, i.e., waits for a button to be

11.11 Mouse Input 21

pressed which is either a “real” button on the mouse device ora button in the panel section
of W. In both cases, the number of the selected button is returned. Mouse buttons have
predefined numbersMOUSEBUTTON(1) for the left button,MOUSEBUTTON(2) for the
middle button, andMOUSEBUTTON(3) for the right button. The numbers of the panel
buttons can be defined by the user. If the selected button has an associated action function
or sub-window, this function/window is executed/opened (cf. Section 11.14 for details).

There is also a non-blocking input operationW.getmouse(), it returns the constant
NOBUTTONif no button was pressed since the last call ofgetmouseor readmouse, and
there are even more general input operations for reading window events. Both will be dis-
cussed at the end of this section.

Read Mouse: The function

int W.read mouse();

waits for a mouse button to be pressed inside the drawing areaor for a panel button of
the panel section to be selected. In both cases, the numbern of the button is returned.
The number is one of the predefined constantsMOUSEBUTTON(i) with i ∈ {1, 2, 3} for
mouse buttons and a user defined value (defined when adding thebutton withW.button())
for panel buttons. If the button has an associated action function, this function is called with
parametern. If the button has an associated windowM, M is opened andM.readmouse()

is returned.
The functions

int W.read mouse(double& x, double& y)

int W.read mouse(point& p)

wait for a button to be pressed. If the button is pressed inside the drawing area, the position
of the mouse cursor (in user space) is assigned to(x, y) or p, respectively. If a panel button
is selected, no assignment takes place. In either case the operation returns the number of
the pressed button.

The following program shows a trivial but frequent application of readmouse. We exploit
the fact thatreadmouseis blocking to stop the program at the statementW.readmouse().
The user may then leisurely view the scene drawn. Any click ofa mouse button resumes
execution (and terminates the program).

〈read mouse1.c〉�

#inlude <LEDA/window.h>

main()

{

window W;

W.init(-1,+1,-1);

W.display();

W.draw_dis(0,0,0.5,red);

W.read_mouse();

22 Windows and Panels

W.sreenshot("read_mouse1.ps");

return 0;

}

The next program prints the different return values ofreadmousefor clicks on mouse
and panel buttons.

〈read mouse2.c〉�

#inlude <LEDA/window.h>

main()

{

window W;

W.button("button 0"); W.button("button 1");

W.button("button 2"); W.button("button 3");

int exit_but = W.button("exit");

W.display();

for(;;)

{ int but = W.read_mouse();

if (but == exit_but) break;

swith (but) {

ase MOUSE_BUTTON(1): out << "left button lik" << endl; break;

ase MOUSE_BUTTON(2): out << "middle button lik" << endl; break;

ase MOUSE_BUTTON(3): out << "right button lik" << endl; break;

default: out << string("panel button: %d",but) << endl; break;

}

}

W.sreenshot("read_mouse2.ps");

return 0;

}

Get Mouse: The functions

int W.get mouse()

int W.get mouse(double& x, double& y)

int W.get mouse(point& p)

are non-blocking variants ofreadmouse, i.e., they do not wait for a mouse click, but check
whether there is an unprocessed click in the input queue of the window. If a click is avail-
able, it will be processed in the same way as by the corresponding readmouseoperation. If
there is no click, the special button valueNOBUTTONis returned.

The following program draws random points. It usesgetmouseat the beginning of every
execution of the main loop to check whether a mouse button hasbeen clicked or not. If the
right button has been clicked the loop is terminated, if the left button has been clicked the
drawing area is erased.

11.12 Events 23

〈get mouse.c〉�

#inlude <LEDA/window.h>

random_soure& operator>>(random_soure& ran, point& p)

{ int x,y;

ran >> x >> y;

p = point(x,y);

return ran;

}

main()

{

window W(400,400);

W.display(window::enter,window::enter);

W.message("left button: lear right button: stop");

random_soure ran(0,100);

int but;

while ((but = W.get_mouse()) != MOUSE_BUTTON(3))

{

if (but == MOUSE_BUTTON(1)) W.lear();

point p;

ran >> p;

W.draw_point(p,blue);

}

W.sreenshot("get_mouse.ps");

return 0;

}

Exercises for 11.11
1 The following lines of code wait for a mouse click.

int but;

do but = W.get mouse(); while (but == NO BUTTON);

What is the difference tobut = W.readmouse()?
2 Write a program that implements the input operator≪ for polygons.

11.12 Events

In window systems like theX11 or Windowssystem, the communication between input
devices such as the mouse or the keyboard and application programs is realized by so-called
events. For example, if the mouse pointer is moved across a window, the system generates
motion events that can be handled by an application program to keep track of the current
position of the mouse pointer, or, if a mouse button is clicked, an event is generated that
carries the information which button was pressed at what position of the mouse pointer, or,
if a key is pressed, a keyboard event is triggered that tells application programs which key
was pressed and what window had the input focus, i.e., shouldreceive this character input.

24 Windows and Panels

Events are buffered in anevent queuesuch that applications can access them in a similar
way as character input of a C++ input stream. It is possible to read and remove the next
event from this queue, to test whether the queue is empty, andto push events back into the
queue.

LEDA supports only a restricted set of events. Each event is represented by a five-tuple
with the fields type, window, value, position, and time stamp.

Thetypeof an event defines the kind of input reported by this event, e.g., a click on a mouse
button or pressing a key on the keyboard. Event types are specified by integers from the
enumeration

enum {button press event, button release event, key press event,

key release event, motion event, onfigure event, no event}

Thewindowof an event specifies the window to which the event refers. This is usually the
window under the mouse cursor.

Thevalueof an event is an integer whose interpretation depends on thetype of the event,
e.g., the number of a mouse button for a button press event. See below for a description of
the possible values for each event type.

The position of an event gives the position of the mouse pointer in the usercoordinate
system of the window at the time the event occurred.

Thetime stampof an event is the time of a global system clock at which the event occurred.
It is measured in milliseconds.

The following event types are recognized by LEDA and can be handled in application
programs:

buttonpresseventindicates that a mouse button has been pressed. The value of the event is
the number of the pressed button. The mouse buttons are numberedMOUSEBUTTON(1),
MOUSEBUTTON(2), andMOUSEBUTTON(3).

buttonreleaseeventindicates that a mouse button has been released. The value ofthe event
is the number of the released button.

keypresseventindicates that a keyboard key has been pressed down. The value of the event
is the character associated with the key or in the case of a special key (such as a cursor or
function key) a special key code.

keyreleaseeventindicates that a keyboard key has been released, value as above.

motioneventindicates that the mouse pointer has been moved inside the drawing area. The
value of this event is unspecified.

configureeventindicates that the window size has changed.

Blocking Event Input: Similar to thereadmouseinput operation, there is areadeventop-
eration that removes the first event of the system’s event queue. This operation is blocking,
i.e., if the event queue is empty, the program waits until a new event occurs.

int W.read event(int& val, double& x, double& y, unsigned long& t)

11.12 Events 25

waits for an event with windowW (discarding all events with a different window field) and
returns its type, assigns the value of the event toval, its position to(x, y), and the time
stamp of the event tot .

int W.read event(int& val, double& x, double& y,

unsigned long& t, int timeout)

is similar, but waits (if no event forW is available) for at mosttimeoutmilliseconds; if no
event occurs during this period of time, the special eventnoeventis returned.

The next program implements a click and drag input routine for the definition of rect-
angles. In its main loop the program waits for a mouse click and stores the corresponding
position in a variablep by calling W.readmouse(p). If the right button was clicked, the
program terminates. Otherwise, we takep as the first endpoint of the diagonal of the rect-
angle to be defined, wait until the mouse button is released, say at some positionq, and take
q as the other endpoint of the diagonal of the rectangle. Waiting for the release of the button
is implemented by the inner loop

while (W.read event(val,x,y) != button release event) { ... }

This loop handles all events of windowW and terminates as soon as abuttonreleaseevent
occurs. For every event processed the value of the event is assigned toval and the position is
assigned to(x, y), in particular for motion events, the pair(x, y) keeps track of the position
of the mouse pointer in the drawing area ofW. In the body of the inner loop we draw
the (intermediate) rectangle with diagonal fromp to (x, y) as a yellow box with a black
border on top of the current drawing. The current drawing is kept as a pixrectwin buf and
is constructed by a call toW.getwindowpixrect() before the execution of the inner loop.
This allows us to restore the picture without the intermediate rectangles by copying the
pixels ofwin buf into the drawing area (W.putpixrect(win buf)). Of course,win buf has to
be destroyed after the inner loop has terminated.

In addition, we use buffering as discussed in Section 11.10,to prevent any flickering
effects. Figure 11.8 shows a screenshot.

〈event.c〉�

#inlude <LEDA/window.h>

#inlude <math.h>

int main()

{

window W(450,500,"Event Demo");

W.display();

W.start_buffering();

for(;;)

{

// read the first orner p of the retangle

// terminate if the right button was liked

point p;

26 Windows and Panels

Figure 11.8 A screenshot of the Event Demo.

if (W.read_mouse(p) == MOUSE_BUTTON(3)) break;

// draw retangle from p to urrent position

// while button down

int val;

double x,y;

har* win_buf = W.get_window_pixret();

while (W.read_event(val,x,y) != button_release_event)

{ point q(x,y);

W.put_pixret(win_buf);

W.draw_box(p,q,yellow);

W.draw_retangle(p,q,blak);

W.flush_buffer();

}

W.del_pixret(win_buf);

}

W.stop_buffering();

W.sreenshot("event.ps");

return 0;

}

The next example program uses the timeout-variant ofreadeventto implement a function
that recognizesdouble clicks. But what is a double click?

A double click is a sequence of three button events, a button press event followed by
button release event followed by a second button press event, with the property that the time

11.12 Events 27

interval between the two button press events is shorter thana given time limit. Usually, the
time limit is given in milliseconds by atimeoutparameter that can be adjusted by the user.
In our example we fix it at 500 milliseconds.

In the program we first wait for a button press event and store the corresponding time
stamp in a variablet press. If the pressed button was the right button the program is termi-
nated, otherwise, we wait for the next button release event and store the corresponding time
stamp in a variablet release. Now t release− t pressgives the time that has passed between
the pressing and releasing of the button. If this time is larger than our timeout parameter we
know that the next click cannot complete a double click. Otherwise, we wait for the next
click but no longer thantimeout− (t release− t press) milliseconds. If and only if a click
occurs within this time interval, we have a double click.

The program indicates double clicks by drawing a red ball andsimple clicks by drawing
a yellow ball. The middle button can be used to erase the window. Figure 11.9 shows a
screenshot of the program.

〈dblclick.c〉�

#inlude <LEDA/window.h>

int main()

{

unsigned long timeout = 500;

window W(400,400,"Double Clik Demo");

W.set_grid_dist(6);

W.set_grid_style(line_grid);

W.display(window::enter,window::enter);

for(;;)

{

int b;

double x0,y0,x,y;

unsigned long t, t_press, t_release;

while (W.read_event(b,x0,y0,t_press) != button_press_event);

// a button was pressed at (x0,y0) at time t_press

// the middle button erases the window

if (b == MOUSE_BUTTON(2)) { W.lear(); ontinue; }

// the right button terminates the program

if (b == MOUSE_BUTTON(3)) break;

while (W.read_event(b,x,y,t_release) != button_release_event);

// the button was released at time t_release

olor ol = yellow;

// If the button was held down no longer than timeout mses

// we wait for the remaining mses for a seond press, if the

// the button is pressed again within this period of time we

// have a double lik and we hange the olor to red.

if (t_release - t_press < timeout)

{ unsigned long timeout2 = timeout - (t_release - t_press);

if (W.read_event(b,x,y,t,timeout2) == button_press_event)

ol = red;

28 Windows and Panels

Figure 11.9 A screenshot of the double click program.

}

W.draw_dis(x0,y0,2.5,ol);

W.draw_irle(x0,y0,2.5,blak);

}

W.sreenshot("dbllik.ps");

return 0;

}

Putting Back Events: The function1

void put bak event();

puts the event handled last back to the system’s event queue,such that it will be processed
again by the nextreadeventor readmouseor basic input operation.

The function is very useful in programs that have to handle different types of input objects
using the basic input operators. We give an example. We partition the drawing area of a
window into four quadrants and want to draw points in the first, segments in the second,
circles in the third, and polygons in the fourth quadrant. The kind of object to be drawn
is defined by the position of the first mouse click. The main loop of the program waits for
a mouse click and performs, depending on the quadrant that contains the position of this
click, the corresponding input and output operation. The difficulty is that already the first

1 Observe that this function is a global function and not a member function of classwindow.

11.12 Events 29

click that we use to distinguish between the different inputobjects is part of the definition
of the object.

We use theputbackevent() function to push the first mouse click back into the event
queue and to make it available as the first event for the following basic input operator. The
details are given in the following code. Figure 11.10 shows ascreenshot.

〈putback.c〉�

#inlude <LEDA/window.h>

int main()

{

window W(400,400, "Putbak Event Demo");

W.init(-100,+100,-100);

W.display(window::enter,window::enter);

// partition the drawing area in four quadrants

W.draw_hline(0);

W.draw_vline(0);

for(;;)

{

double x,y;

// wait for first lik

int but = W.read_mouse(x,y);

// middle button erases the window

if (but == MOUSE_BUTTON(2))

{ W.lear();

W.draw_hline(0);

W.draw_vline(0);

ontinue;

}

// right button terminates the program

if (but == MOUSE_BUTTON(3)) break;

// now we put the mouse lik bak to the event queue

put_bak_event();

// and distinguish ases aording to its position

if (x < 0)

if (y > 0)

{ point p;

if (W >> p) W.draw_point(p,red);

}

else

{ segment s;

if (W >> s) W.draw_segment(s,green);

}

else

if (y > 0)

{ polygon pol;

if (W >> pol) W.draw_polygon(pol,blue);

}

else

30 Windows and Panels

Figure 11.10 A screenshot of the putback program.

{ irle ;

if (W >>) W.draw_irle(,orange);

}

}

W.sreenshot("putbak.ps");

return 0;

}

Non-Blocking Event Input: Similar to the non-blocking versions of thereadmouseoper-
ation, there are non-blocking variants of thereadeventoperation.

int W.get event(int& val, double& x, double& y)

looks for an event forW. More precisely, if there is an event for windowW in the event
queue, aW.readeventoperation is performed, otherwise the integer constantnoeventis
returned.

There is also a more general non-member variant that allows us to read events of arbitrary
windows.

int read event(window*& wp, int& val, double& x, double& y)

waits for an event. When an event occurs, it returns its type,assigns a pointer to the corre-
sponding window towp, the value toval, and the position to(x, y).

This version ofreadeventcan be used to write programs that can handle events for sev-
eral windows simultaneously. The following program opens two windowsW1andW2. The

11.13 Timers 31

main loop reads all events, determines for each event in which of the two windows it oc-
curred, and puts the event back to the systems event queue. Ifthe event occurred inW1, it
reads and draws a point inW1, if the event occurred inW2, it reads and draws a segment in
W2using the basic input and output operators discussed in Section 11.6.

〈two windows.c〉�

#inlude <LEDA/window.h>

main()

{

window W1(500,500,"Window 1: points");

W1.display(window::min,window::min);

window W2(500,500,"Window 2: segments");

W2.display(window::max,window::min);

for(;;)

{ window* wp;

double x,y;

int val;

if (read_event(wp,val,x,y) != button_press_event) ontinue;

if (val == MOUSE_BUTTON(3)) break;

put_bak_event();

if (wp == &W1) { point p; W1 >> p; W1 << p; }

if (wp == &W2) { segment s; W2 >> s; W2 << s; }

}

return 0;

}

Exercises for 11.12
1 Write a “click and drag” program for drawing circles.
2 Write a program that displays text written on the keyboard of your computer in a LEDA

window.
3 Implement a simple graph editor that can be used to draw the nodes and edges of a graph.

Your program should allow you to move a node by clicking on it and dragging it with
the mouse to a new position.

11.13 Timers

Each LEDA window has atimer clock that can be used to execute periodically a user-
defined function. The function and the time interval betweentwo consecutive calls of the
function are specified in the start operation

void W.start timer(int mse,void (*fun)(window*);

A call of this operation starts the timer ofW and makes it call the functionfunc with a
pointer toW as the actual parameter (func(&W)) everymsecmilliseconds.

32 Windows and Panels

Figure 11.11 A screenshot of the dclock program.

void W.stop timer();

stops the timer.

We show the usefulness of timers by writing a simple digital clock demo program. Fig-
ure 11.11 shows a screenshot of the clock.

〈dclock.c〉�

#inlude <LEDA/window.h>

#inlude <time.h>

void display_time(window* wp)

{

window& W = *wp;

// get the urrent time

time_t lok;

time(&lok);

tm* T = loaltime(&lok);

// and display it (entered in W)

double x = (W.xmax() - W.xmin())/2;

double y = (W.ymax() - W.ymin())/2;

W.lear();

W.draw_text(x,y,string("%2d:%02d:%02d",

T->tm_hour,T->tm_min,T->tm_se));

}

int main()

{

window W(150,50, "dlok");

W.set_bg_olor(grey1);

W.set_font("T32");

W.set_redraw(display_time);

W.display(window::enter,window::enter);

W.start_timer(1000,display_time);

W.read_mouse();

W.sreenshot("dlok.ps");

return 0;

}

Exercises for 11.13
1 Implement an analog clock.

11.14 The Panel Section of a Window 33

2 Write a program that draws randomly colored balls are random times.

11.14 The Panel Section of a Window

The panel section of a window is used for displaying text messages and for updating the
values of variables. It consists of a list of panel items and alist of panel buttons. We discuss
panel items and panel buttons in seperate subsections.

11.14.1Panel Items
A panel item consists of a string label and an associated variable of a certain type. The
value of this variable is visualized by the appearance of theitem in the window (e.g. by the
position of a slider) and can be manipulated through the item(e.g. by dragging the slider
with the mouse) during areadmouseor getmouseoperation.

There are five types of items. Figure 11.12 shows the representation of the items in a
panel. It also shows some menu buttons at the bottom of the panel. The program that
generates this panel can be found inLEDAROOT/demo/win/paneldemo.c.

Text itemshave only an associated string, but no variable. The string is formatted and
displayed in the panel section of the window.

Simple itemshave an associated variable of typeint, double, andstring. The item displays
the value of the variable as a string. The value can be updatedin a small sub-window
by typing text and using the cursor keys. For string items there exists a variant called
string menu itemthat in addition displays a menu from which strings can be selected.

Choice itemshave an associated variable of typeint whose possible values are from
an interval of integers [0.. k]. With every valuei of this range there is a choice string
si associated. These strings are arranged in a horizontal array of buttons and the current
value of the variable is displayed by drawing the corresponding button as pressed down and
drawing all other buttons as non-pressed (if the value of thevariable is out of the range
[0 .. k] no button is pressed). The value of the variable is set toi by pressing the button
with labelsi . Pressing a button will release the previously pressed button. It is tempting to
confuse the semantics of the stringsi with the integeri . LEDA will not hinder you to use
the string “seven” for the third button. Pressing the buttonwith name “seven” will assign 3
to the variable assigned with the button.

For multiple choice itemsthe state (pressed or unpressed) of the button with labelsi

indicates the value of thei -th bit in the binary representation of the integer value of the
associated variable. Multiple choice buttons allow several buttons to be pressed at the same
time. For example, the value of the variable associated withthe item named “multiple
choice” in Figure 11.12 is 1· 20 + 0 · 21 + 1 · 22 + 1 · 23 + 0 · 24 = 13.

In both cases there exist variants that use bitmapsb0, . . . ,bk instead of strings to label the
choice buttons. Furthermore, there are special choice items for choosing colors (color item)
and line styles (line styleitem).

34 Windows and Panels

Figure 11.12 Panel items and buttons.

Slider itemshave associated variables of typeint with values from an interval [low .. high].
The current value is shown by the position of a slider in a horizontal box. It can be changed
by moving the slider with the mouse.

Boolean itemsare used for variables of typebool. They consist of a single small button
whose state (pressed or unpressed) represents the two possible values (trueor false).

11.14 The Panel Section of a Window 35

We discuss the operations for adding panel items to a panel inSection 11.14.4. It is
possible to associate a so-calledcall-backor action function with a panel item. This is a
function of type

void (*ation)(T x)

whereT is the type of the variable of the item. The action function iscalled after each item
manipulation (e.g. dragging a slider or pressing down a choice button) with thenewvalue
of the item as its argument. However, the value of the variable associated with the item is
only changedafter the return of the action function. In this way, the old and thenew value
of the item variable is available in the action function. This is very useful as the following
program shows.

〈callback.c〉�

#inlude <LEDA/window.h>

stati int i_slider = 0;

stati int i_hoie = 0;

stati int i_multi = 0;

void f_slider(int i_new)

{ out << "slider: old = " << i_slider << ", new = " << i_new << endl; }

void f_hoie(int i_new)

{ out << "hoie: old = " << i_hoie << ", new = " << i_new << endl; }

void f_multi(int i_new)

{ out << "multi: old = " << i_multi << ", new = " << i_new << endl; }

main()

{

list<string> L;

for(int i = 0; i < 8; i++) L.append(string("%d",i));

window W(300,300);

W.int_item("slider", i_slider, 0, 100, f_slider);

W.int_item("hoie", i_hoie, 1, 8, 1, f_hoie);

W.hoie_mult_item("multi", i_multi, L, f_multi);

W.display();

W.read_mouse();

W.sreenshot("allbak.ps");

return 0;

}

In the main program we define three panel items, each with an associated action function.
In each case the action function prints the old value and the new value of the variable. The
slider item has a range [0.. 100], the choice item has eight buttons with associated values 1
to 8 (the smallest value is one, values are increased by one, and the largest value is no larger
than eight), and the multiple choice item has eight buttons labeled with strings “0”, “1”, . . . ,
“7”. The button with labeli represents thei -th bit of variablei multi.

An action function associated with a panel item of a windowW may obtain a pointer to
W by calling the static member functionwindow::getcall window().

36 Windows and Panels

The program below implements a simple color definition panel. It uses three slider items
for adjusting the(r, g, b)-values of the color. With each slider a call-back function is asso-
ciated that paints the window background with the current color. A screenshot is shown in
Figure 11.13.

〈defcolor.c〉�

#inlude <LEDA/window.h>

stati int r,g,b;

void slider_red(int x){window::get_all_window()->lear(olor(r,g,b));}

void slider_green(int x){window::get_all_window()->lear(olor(r,g,b));}

void slider_blue(int x)window::get_all_window()->lear(olor(r,g,b));}

int main()

{

window W(320,300,"define olor");

olor ol = green2;

ol.get_rgb(r,g,b);

W.int_item("red ",r,0,255,slider_red);

W.int_item("green",g,0,255,slider_green);

W.int_item("blue ",b,0,255,slider_blue);

W.set_bg_olor(ol);

W.display(window::enter, window::enter);

W.read_mouse();

W.sreenshot("defolor.ps");

return 0;

}

The values of item variables may also be changed in the program. This hasno effect on
the display until the panel is redrawn for the next time. Theredrawpaneloperation redraws
the panel area.

We use a simple progress indicator as an example. It uses a slider item to visualize the
increasing value of a counter. Figure 11.14 shows a screenshot.

〈progress.c〉�

#inlude <LEDA/window.h>

main()

{

int ount = 0;

window W(400,100);

W.set_item_width(300);

W.int_item("progress",ount,0,1000);

W.display(window::enter, window::enter);

for(;;)

{ ount = 0;

while (ount < 1000)

{ W.redraw_panel();

W.flush();

11.14 The Panel Section of a Window 37

Figure 11.13 A screenshot of the defcolor program.

Figure 11.14 A screenshot of the progress program.

leda_wait(0.05);

ount++;

}

if (W.read_mouse() == MOUSE_BUTTON(3)) break;

}

W.sreenshot("progress.ps");

return 0;

}

11.14.2Panel Buttons
Panel buttons are special panel items. They can be pressed byclicking a mouse button
when the mouse pointer is positioned inside their area. Pressing a panel button during a

38 Windows and Panels

readmouseor getmousecall has the same effect as pressing a mouse button in the drawing
area: the operation terminates and the number of the pressedbutton is returned.

Each panel button has a label or a pixrect image (displayed onthe button) and an asso-
ciated number. The number of a button is either defined by the user or is the rank of the
button in the list of all buttons. If a button is pressed (i.e.selected by a mouse click) during
a readmouseoperation its number is returned. Buttons can haveaction functionsof type

void (*ation)(int but)

Whenever a button with an associated action function is pressed this function is called with
the number of the button as its actual parameter.

Instead of an action function, a button may have an attached sub-window, in which case
we call it amenu button(since in most cases such a sub-window is used to realize a menu).
Whenever a menu button is pressed the attached sub-window (or menu)M will open and
the result ofM.readmouse() will be returned by the currently activereadmouseoperation.
Of course,M again can have menu buttons, . . .

11.14.3Panels and Menus
The data typespanelandmenuare two special types representing windows that have no
drawing area. Panels (windows of typepanel) support all panel operations of the general
windowtype described in the following section. In addition, they have a specialP.open()

operation that displays a panelP, executesP.readmouse(), closesP, and returns the result
of the readmouseoperation. There are variants of theopenoperation allowing us to pass
parameters for the (initial) positioning of the panel (see thedisplayoperations for windows
for an explanation).

int P.open(int xpos=window::enter, int ypos=window::enter);

int P.open(window& W, int xpos=window::enter, int ypos=window::enter);

Menus (windows of typemenu) are special panels that only consist of a vertical array of
buttons. They support only one kind of panel operation, the addition of buttons, and can be
used as sub-windows attached to (menu) buttons only.

11.14.4Adding Panel Items
The operations in this section add panel items or buttons to the panel section ofW. Note
that they have to be called before the window is displayed thefirst time.

All operations return a pointer to the corresponding panel item (typepanelitem)
The generic interface of an operation for adding a panel item(of kind XXXitem) for a

variablex of typeT is as follows:

panel item W.XXX item(string label, T x&, void (*ation)(T));

The last parameter is optional. We give some examples. In allexamples we use . . . to
indicate the optional action function argument.

11.14 The Panel Section of a Window 39

Simple Items: The following functions add simple items with names and associated vari-
ablex.

panel item W.bool item(string s, bool& x, ...);

panel item W.double item(string s, double& x, ...);

panel item W.int item(string s, int& x, ...);

panel item W.string item(string s, string& x, ...);

panel item W.olor item(string s, olor& x, ...);

String Menu Items: The functions

panel item W.string item(string s, string& x, list<string> L, ...);

panel item W.string item(string s, string& x, list<string> L,int h,...);

add string menu items with names, associated variablex, and a menu listL of candidate
values forx. The first version displays the strings ofL in a rectangular table of appropriate
size. The second version uses a scroll box of heighth with a vertical slider that can be used
to scroll through the list.

Choice Items: The functions

panel item W.int item(string s, int& x, int l, int h, int step);

panel item W.hoie item(string s, int& x, onst list<string>& L, ...);

panel item W.hoie item(string s, int& x, int n, int w, int h,

har** bm, ...);

panel item W.hoie mult item(string s, int& x,

onst list<string>& L, ...);

panel item W.hoie mult item(string s, int& x, int n, int w,

int h, har** bm, ...);

define choice and multi-choice items with names and associated variablex. The first variant
defines a choice item with buttonsl , l + step, . . . , the second variant defines a choice item
whose buttons are labeled by the strings inL, the third variant defines a choice item withn
buttons each of which is labeled by a bitmap of widthw and heighth (bm is the array that
contains the bitmaps). The fourth and fifth variant are analogous to the second and third
variant, but define multi-choice items instead of choice items.

Slider Items: The function

panel item W.int item(string s, int& x, int l, int h);

adds a slider item with names, associated variables, and range [l .. h].

11.14.5Adding Buttons
The following operations add buttons to the panel section ofa window. Note that buttons
are always positioned at the bottom of the panel area. There are three basic kinds of buttons:
buttons with string labels, buttons with bitmaps, and buttons with pixrects.

40 Windows and Panels

String Buttons:

int W.button(string label, int n);

adds a new button toW with labels and numbern.

int W.button(string label);

adds a new button toW with labels and number equal to its rank in the list of all buttons.

int W.button(string s, int n, void *(F)(int));

adds a button with labels, numbern, and action functionF to W. FunctionF is called with
actual parametern whenever the button is pressed.

int W.button(string s, void (*F)(int));

adds a button with labels, number equal to its rank, and action functionF to W. Function
F is called with the value of the button as argument whenever the button is pressed.

int W.button(string s, int n, window& M);

adds a button with labels, numbern, and attached sub-window (menu)M to W. Window
M is opened whenever the button is pressed.

int W.button(string s, window& M);

adds a button with labels and attached sub-windowM to W. The number returned by
readmouseis the number of the button selected in sub-windowM.

Bitmap Buttons: Bitmap buttons are labeled with bitmaps instead of string labels. Each
bitmap button has an associated bitmap(w, h, bm) that is specified in the operation for
adding the button (see below). There exist the same variants(with and without a user-
defined number, with action function or with sub-window) as for string buttons.

int W.button(int w, int h, har* bm, string s, int n);

int W.button(int w, int h, har* bm, string s);

int W.button(int w, int h, har* bm, string s, int n, void (*F)(int));

int W.button(int w, int h, har* bm, string s, void (*F)(int));

int W.button(int w, int h, har* bm, string s, int n, window& M);

int W.button(int w, int h, har* bm, string s, window& M);

The following program creates the panel shown in Figure 11.15.

〈bm buttons.c〉�

#inlude <LEDA/window.h>

#inlude <LEDA/bitmaps/button32.h>

int main()

{

panel P("Bitmap Buttons");

P.buttons_per_line(8);

P.set_button_spae(3);

for(int i=0; i < num_button32; i++)

P.button(32,32,bits_button32[i℄,string(name_button32[i℄));

11.14 The Panel Section of a Window 41

Figure 11.15 A screenshot of the bmbuttons program.

int button = P.open();

P.sreenshot("bm_buttons.ps");

return 0;

}

Pixrect Buttons: Pixrect buttons are labeled with pixrects instead of stringlabels. Each
button has two pixrects, the first one (pr1) is used for unpressed buttons and the second
(pr2) is used for pressed-down buttons. Again we have the same variants as for string
buttons.

int button(har* pr1, har* pr2, string s, int n);

int button(har* pr1, har* pr2, string s);

int button(har* pr1, har* pr2, string s, int n, void (*F)(int));

int button(har* pr1, har* pr2, string s, void (*F)(int));

int button(har* pr1, har* pr2, string s, int n, window& M);

int button(har* pr1, har* pr2, string s, window& M);

The following program creates the panel shown in Figure 11.16. For simplicity, we have
used the same pixrect for unpressed and pressed buttons.

〈pm buttons.c〉�

#inlude <LEDA/window.h>

#inlude <LEDA/pixmaps/button32.h>

int main()

{

panel P("Pixret Buttons");

P.buttons_per_line(10);

P.set_button_spae(3);

for(int i = 0; i < num_button32; i++)

{ har* pr = P.reate_pixret(xpm_button32[i℄);

P.button(pr,pr,name_button32[i℄,i);

}

int button = P.open();

42 Windows and Panels

Figure 11.16 A screenshot of the pmbuttons program.

P.sreenshot("pm_buttons.ps");

return 0;

}

Creating a Menu Bar: There are two styles for menu buttons, i.e., buttons with an attached
sub-window. In the default style menu buttons are displayedas buttons with an additional
menu-sign. In the second style the menu buttons are arrangedinto a menu bar at the top of
the panel section. Figure 11.17 shows both styles. The call

void W.make menu bar()

selects the menu button style.
The following program and the screenshots in Figure 11.17 demonstrate both alternatives.

With the command line argument “menu bar”, the menu bar version is chosen.

〈menubar.c〉�

#inlude <LEDA/window.h>

int main(int arg, har** argv)

{

menu M;

M.button("button 1"); M.button("button 2"); M.button("button 3");

M.button("button 4"); M.button("button 5");

window W(400,300,"Menu Demo");

W.button("File",M); W.button("Edit",M); W.button("Help",M);

W.button("exit");

if (arg > 1 && string(argv[1℄) == "menu_bar") W.make_menu_bar();

W.display();

W.read_mouse();

11.14 The Panel Section of a Window 43

Figure 11.17 Menu buttons: The upper screenshot shows the default style and the lower
screenshot shows the menu bar style.

W.sreenshot("menu_bar.ps");

return 0;

}

Exercises for 11.14
1 Implement a simple desk calculator with a graphical input.
2 Implement quicksort and use a panel to monitor the values ofall variables.
3 Implement a simple file viewer program with a menu bar containing a “File” menu with

operations for loading and saving text, and an “Option” menufor defining global param-
eters such as the font and color of the text.

44 Windows and Panels

11.15 Displaying Three-Dimensional Objects: d3 window

The data typed3windowuses a LEDA window to visualize and animate three-dimensional
drawings of graphs. If the graph to be shown is a planar map (asin the follwing application)
the faces are drawn in different grey scales.

The following program uses ad3windowto visualize the convex hull of a set of three-
dimensional points. Figure 11.1 at the beginning of this chapter shows a screenshot of the
programLEDAROOT/demo/geo/d3hulldemo.c which expands on the program below.

The convex hull algorithm

CONVEX HULL(onst list<d3 rat point>& L, GRAPH<d3 rat point,int>& H)

takes a listL of three-dimensional points and constructs the surface graph H of their convex
hull. H is a planar map that is embedded into three-dimensional space.

To visualize this graph we create a d3-windowd3win, whose constructor takes a window
W (that has to be displayed before), the graphH , and a node arrayposof vectors that gives
for every nodev of H the positionH [v] of v in space as a three-dimensional vector.

Finally, we calld3win.readmouse() that does something very similar to thereadmouse
operation for (two-dimensional) windows. It waits for a mouse click and returns the num-
ber of the mouse button pressed. While waiting for a click, the graphH is shown in a
two-dimensional projection and is, depending on the current position of the mouse pointer,
rotated in space. IfH is a planar map (as it is in this case), the d3-window, in addition,
computes its faces and paints them in different grey scales.

There are many parameters for controlling the appearance ofthe graph, e.g., whether
faces should be painted as described above, for the center and speed of rotation, for changing
colors of nodes and edges, For details, we refer the reader to the user manual.

〈d3 hull.c〉�

#inlude <LEDA/d3_hull.h>

#inlude <LEDA/d3_window.h>

main()

{

// onstrut a random set of points L

list<d3_rat_point> L;

random_d3_rat_points_in_ball(50,75,L);

// onstrut the onvex hull H of L

GRAPH<d3_rat_point,int> H;

CONVEX_HULL(L,H);

// open a window W

window W(400,400,"d3 hull demo");

W.init(-100,+100,-100);

W.display(window::enter,window::enter);

// extrat the node positions into an array of vetors

node_array<rat_vetor> pos(H);

node v;

forall_nodes(v,H) pos[v℄ = H[v℄.to_vetor();

// and display H in a d3_window for window W

11.15 Displaying Three-Dimensional Objects: d3window 45

d3_window d3win(W,H,pos);

d3win.read_mouse();

W.sreenshot("d3_hull.ps");

return 0;

}

Exercises for 11.15
1 Extend the 3d convex hull program by adding a panel section to the window that allows

you to choose between different types of input points and to specify the size of the input
point set. Your window should look like the window of Figure 11.1.

Bibliography

[Nye93] Adrian Nye.Xlib Programming Manual
for Version 11. O’Reilly & Associates, Inc.,
Sebastopol CA, 3 edition, 1993.

46

Index

<< for class window, 10
>> for class window, 10

animation,see window

bitmap, 15,see window
buffering drawing operations,see window
button, 20,seepanel

clipping regions,see window
col, seecolor
color, 6,see also window
convex hulls

3d-hull, 43
display of 3d-hull, 43

d3 window, 43
double click event, 26

event,see also window, 23–31
buttonpressevent, 24
button releaseevent, 24
configureevent, 24
double click, 26
key pressevent, 24
key releaseevent, 24
motion event, 24
non-blocking event input, 30
position, 24
put back, 28
queue, 24
read, 24, 30
time, 24
type, 24
value, 24
window, 24

geometric objects
drawing them in a window, 10

reading them in a window, 10
window, 10

graphics,see window

menu, 38,seepanel
mouse input,see window

panel,see also window, 33–43
action function, 35, 38
adding buttons, 40
adding items, 39
bitmap buttons, 40
bool item, 35
button, 38
call back, 35
choice item, 33
item, 33
menu bar, 42
menu button, 38
multiple choice item, 34
open, 38
pixrect buttons, 41
simple item, 33
slider, 35, 40
text item, 33

pixel, see window
pixel coordinate system, 3, 10,see window
pixmap, see window
pixrect, see window
put backevent, 28

read event, 31
rgb-value of a color, 6

screen shot,see window

timer, 32,see window

user coordinate system, 3, 10,see window

47

48 Index

visualization,see window

window, 2–45
<<, 10
>>, 10
bitmap, 15
buffering drawing operations, 18
button, 20
clearing a window, 12
clipping region, 17
color, 6, 12
creation, 4
d3 window, 43
drawing operations, 10–20
drawing section, 2
event, 23,seeevent
example programs

3d hull, 44
blocking mouse read, 21
bouncing ball, 19
callback functions, 35
clipping, 17
constructing colors, 6
creating a menu bar, 42
creating a panel, 41
event handling, 25
putting back an event, 29
recognizing a double click, 27
slider items, 36
two windows, 31
use ofredraw, 36
use of bitmap, 16
use of buffering, 20

use of buttons, 22
use of picrect, 14
use of timers, 32
use of<< and>>, 11

graphics system, 3
input, 10, 20–31
invisible color, 6
menu, 38
mouse cursor, 9
mouse input, 10, 20–31
opening and closing a window, 4–5
output, 10
panel, 33,seepanel
panel section, 2
parameters, 7–9

change of, 9
pix to real, 10
pixel, 2
pixel coordinate system, 3, 10
pixmap, 13
pixrect, 13–16
real to pix, 10
rgb-value of a color, 6
scaling factor, 4
screenshot, 11
src mode, 8
timer, 32
user coordinate system, 3, 10
xlman, 2
xor mode, 8
xpm data string, 13

xlman, 2

