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Matchings

G = (AUB, E) bipartite graph

males and females, persons and jobs, families and houses, medical
students and hospitals, students and lab sessions

matching M = subset of edges no two of which share an endpoint

participants express preferences
either by assigning profits to the edges
or by ordering the edges (I prefer X overy)

optimize quality (cardinality and/or total happyness) of M
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Overview

Average Case Behavior of Matching Algorithms
STACS 04, joint work with H. Bast, G. Schafer, and H. Tamaki

Strongly Stable Matchings
STACS 04, joint work with T. Kavitha, D. Michail, and K. Paluch

Rank Maximal Matchings
SODA 04, joint work with R. Irving, T. Kavitha, D. Michail, and K. Paluch

Pareto-Optimal Matchings

joint work with D. Abraham, K. Cechlarova, D. Manlove

papers can be found on my web-page

feel freeto interrupt meat any time
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Average Case Behavior of Matching Algs (.~

Algorithms of Hopfcroft/Karp and Micali/Vazirani compute maximum
cardinality matchings in bipartite or general graphs in time O(,/nm)

observed behavior seems to be much better

number of phases seems to grow like logn (n < 10° in experiments)

Motwani(JACM, 94): running time is O(mlogn) with high probability for
random graphs in the Gy, , model provided that p > (Inn)/n.

Our result: running time is O(mlogn) with high probability for random graphs
in the G, , model provided that p > c,/n.

C,= 9.6 for bipartite graphs
35.1 for general graphs

Open problem: what happens for p with 0 < p <c,?

STACS 04, joint work with H. Bast, G. Schéafer, and H. Tamaki
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Random Graphs, the G, , model

every potential edge is present with probability p, independent of other
edges

bipartite graphs with n nodes on each side: n° potential edges
general graphs with n nodes: n(n—1) /2 potential edges
expected degree is pn for bipartite graphs

expected degree is p(n— 1) for general graphs
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The Result

G = random graph in G, , model
C,= 9.6 for bipartite graphs
35.1 for general graphs

with high probability G has the property that every non-maximum
matching has an augmenting path of length O(logn)

algs of Hopcroft/Karp and Micali/Vazirani compute maximum matchings
in expected time O(mlogn)

because running time is O(m- L), where L is length of longest shortest
augmenting path with respect to any non-maximum matching

Motwani (JACM 94) proved the result for p > (Inn)/n
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Pareto-Optimal Matchings

given a bipartite graph G = (AUB, E)
the nodes in A linearly order their incident edges

a matching M is pareto-optimal if there is no matching M’ in which at
least one a € A is better off and no @' € A is worse off

can compute maximum cardinality pareto-optimal matching in time
O(y/nm).

minimum cardinality problem is NP-complete.

joint work with D. Abraham, K. Cechlarova, D. Manlove
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Rank-Maximal Matchings

given a bipartite graph G = (AUP,E)

the nodes in A rank their incident edges (ties allowed)

rank of a matching M = (# of rank 1 edges, # of rank 2 edges,...)
compute a matching of maximal rank

time O(min(r - n%2.m,n-m)) and space O(m), where r is the maximal
rank of any edge in the optimal matching

previous best was O(r*n¥) by R. Irving

problem can also be solved by reduction to weighted matchings: assign
weight n"~' to the edges of rank i, see below

SODA 04, joint work with R. Irving, T. Kavitha, D. Michail, and K. Paluch
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s, =2 and p,, a3, and p, must be matched by
rank 1 edges

delete all rank > 1 edges incident on them

add the remaining rank 2 edges and extend
matching by augmentation

here we do not distinguish ranks 1 and 2

P,, a3, and p, stay matched and hence stay
matched via rank 1 edges

a, and a, must be matched by rank < 2 edges.
delete all higher rank edges incident on them

then a; and a, will stay matched in later phases of
the algorithm and will stay matched via rank < 2
edges.
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Variations of the Problem

s (M) = number of rank i edges in M
rank-maximal, i.e., maximize (S;,S,,...,S)
or a maximal cardinality matching of maximal rank

or a maximal cardinality matching minimizing (s,...,S,,$;)

all problems above reduce to weighted matching

for the first problem, assign weight n'~' to the edges of rank i

edge weights and node potentials require space O(r),
arithmetic ops on weights and potentials take time O(r)

general weighted matching requires O(nmlogn) arithmetic ops;
this results in time O(rnmlogn) and space O(rm)

scaling algs (Gabow/Tarjan,Ahuja/Orlin) for integer weights require
O(y/nmlog(nC)) arithmetic ops, where C is the largest weight;
this results in time O(r2,/nmlogn) and space O(rm)

the space requirement is a killer
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Scaling with Implicitly Given Weights

assume weights are integers in [0,C], hereC=n'
assume that one can compute individual bits of weights efficiently

we modify the scaling algs

algs compute near-optimal matching for weights w,(e), where w,(e)
consists of first £ bits of w(e) and 1 < / < logC

dual solution (= node potentials) is used for next iteration

node potentials are not stored, only the reduced costs of edges
edges are priced out as soon as their reduced costs exceeds 4n
in this way only numbers up to O(n) need to be handled

scaling up uses the weight-oracle to obtain the next bit of every
edge weight

O(y/nmlog(nC)) arithmetic ops on polynomially bounded integers and
space O(m); as before C is the largest weight

time O(ry/nmlogn) and space O(m)
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Strongly Stable Matchings

given a bipartite graph G = (AUB, E)
the nodes rank their incident edges (ties allowed)
a matching M is stable if there is no blocking edge
an edge (a,b) € E\ M is blocking if
a would prefer to match up with b and b would not object, i.e.,

a prefers b over her partner in M or is unmatched in M

b prefers a over her partner in M or is indifferent between them or
IS unmatched in M

decide existence of a stable matching and compute one

we do so in time O(nm), even if nodes in B have capacities

previous best was O(n¥) by R. Irving
Irving’s algorithm is used to match medical students and hospitals
open problem: deal with couples

Kurt Mehlhorn, MPI fiir Informatik Some Results on Matchings — p.12/22



An Instance without a Stable M atching

Xt Wy, Wy Wi X, Xg
Xor  {Wy, Wo} Wl Xy, Xg

both woman prefer X, to X;.
man X, prefers w, to w, and X, is indifferent between the women.

every man ranks every woman and vice versa and hence any strongly
stable matching must match all men and all women.

{(x¢, W), (X5, W,)} is not strongly stable since w; prefers X, to X, and X,
Is indifferent between w; and w,,.

{(x{,W,), (X5, Wy )} is not strongly stable since w, prefers X, to X, and X,
IS indifferent between w; and w,,.
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The Classical Algorithm (No Ties, Complete I nstances

M =0;
while dafree man x do
let e= (X, w) be the top choice of X;
If wis free or prefers X over her current partner then
dissolve the current marriage of w (if any);
add eto M:
delete all edges (X', w) which w ranks strictly after e,
else
discard €
end if
end while

once a woman is matched it stays matched
and to better and better partners
alg constructs a complete and stable matching (man-optimal)

alg for general case is similar, but more involved

Kurt Mehlhorn, MPI fiir Informatik Some Results on Matchings — p.14/22



Average Case Analysis, Some Details

G = random graph in G, , model
C,= 9.6 for bipartite graphs
35.1 for general graphs

with high probability G has the property that every non-maximum
matching has an augmenting path of length O(logn)

algs of Hopcroft/Karp and Micali/Vazirani compute maximum matchings
in expected time O(mlogn)

because running time is O(m- L), where L is length of longest shortest
augmenting path with respect to any non-maximum matching

Motwani (JACM 94) proved the result for p > (Inn)/n
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Notation and Basic Facts

G=(V,E), graph

matching = subset of edges no two of which share an endpoint
maximum matching = matching of maximum cardinality

M C E, matching

matching edge = edge in M

non-matching edge = edge outside M

matched node = node incident to an edge in M

free node = non-matched node

alternating path p= (g;,e,,...,6) withg e M iffg,; ZM
augmenting path = alternating path connecting two free nodes
If pis augmenting, M & p has one larger cardinality than M

If M Is non-maximum, there is augmenting path relative to it
SCV, I'(S) = neighbors of the nodes in S
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M otwani’s Argument

non-maximum matchings in expander
graphs have short augmenting paths
because alternating trees are bushy
and hence reach all nodes after logn
levels

expander graph: [['(S)| > (1+ ¢)|S for every node set Swith |§ < n/2

for p> (Inn)/n: random graphs are essentially expander graphs

sparse random graphs are far from being expander graphs
constant fraction of nodes is isolated
constant fraction of nodes has degree one
there are chains of length O(logn)
nevertheless, our proof also uses the concept of expansion
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Two Probabilistic Lemmas

An alternating path tree is a rooted tree of even depth, where each vertex in
Odd(T) has exactly one child.

We use Even(T) to denote the nodes of even depth excluding the root. Then
|Odd(T)| = |Even(T)|.

Lemma 1 (Expansion Lemma) Foreach &> 0and 3 > 1+ &, there are

constants a and ¢, such that a random graph G € G(n,n,c/n), where ¢ > c,,

with high probability has the following property:

for each alternating path tree T with a -logn < |Even(T)| < n/f3, it holds that
T (Even(T))| > (1 +¢) - |Even(T)]

Lemma 2 (Large Sets Lemma) For every 3 > 1, a random graph

G € G(n,n,c/n), where ¢ > 2B(1+ In3), with high probability has the
property that for every two disjoint sets of vertices, both of size at least n/f3
has an edge between them.

£=0.01, 3 =2.6,¢,=9.6

Kurt Mehlhorn, MPI fiir Informatik Some Results on Matchings — p.18/22



The Proof of the Main Theorem: Bipartite Ce

M non-maximum matching, p augmenting path, endpoints f, and f

grow alternating trees T, and T, rooted at f; and f,, respectively
suppose we have constructed even nodes at level 2|

put their unreached neighbors into level 2j + 1
stop if one of the new nodes is free or
belongs to other tree

put mates of new nodes into level 2] + 2
grow the trees in phases: in each phase add two levels to both trees

Claim: process ends after a logarithmic number of phases
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The Proof of the Main Theorem: Bipartite Ce

M non-maximum matching, p augmenting path, endpoints f, and f

grow alternating trees T, and T, rooted at f; and f,, respectively
suppose we have constructed even nodes at level 2|

put their unreached neighbors into level 2j + 1
stop if one of the new nodes is free or
belongs to other tree

put mates of new nodes into level 2] + 2

grow the trees in phases: in each phase add two levels to both trees

if |[Even(T,)| > n/p fori =1,2, the Large Sets Lemma guarantees an
edge connecting them and the process stops

use Expansion Lemma to show that situation of preceding item is
reached in a logarithmic number of phases

Expansion Lemma guarantees expansion of trees with at least
logarithmically many levels
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The Proof of the Main Theorem: Bipartite Case -

M non-maximum matching, p augmenting path, endpoints f, and f

grow alternating trees T, and T, rooted at f; and f,, respectively
suppose we have constructed even nodes at level 2|

put their unreached neighbors into level 2j + 1
stop if one of the new nodes is free or
belongs to other tree

put mates of new nodes into level 2] + 2

grow the trees in phases: in each phase add two levels to both trees

consider a phase 2j with | > o logn: then |[Even(T;)| > alogn
assume |[Even(T;)| < n/B and let T be the next tree

Expansion Lemma guarantees |["(Even(T,))| > (1+¢) - |[Even(T)|
[Even(T/)| = |Odd(T)| = | (Even(T;))

thus |Even(T/)| > (1+¢) - |[Even(T;)| and we have exponential growth
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Why do Trees expand, if Setsdo not?

Motwani used an expansion lemma for sets.

What is probability that some set does not expand, i.e., for some set S
S =s, we have |[T| < eswhere T =T(S)\S?

t;s (:) (n t_ S) (1—c/nyn=H)

there are (1) ways to choose S

and (", ®°) ways to choose T

and we want no edge from StoV \ T
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Why do Trees expand, if Setsdo not?

Motwani used an expansion lemma for sets.

What is probability that some set does not expand, i.e., for some set S
S =s, we have |[T| < eswhere T =T(S)\S?

t;s (:) (n t_ S) (1—c/nyn=H)

we concentrate on a single term and on the case where s+t < n. Then

(ST

S

we ignore the term involving t and obtain

In order for this to be small one needs c = Q(logn).
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And now for trees

What happens if we require in addition that G contains a tree on S?
We get an additional factor

s4(c/n)s?

the first factor counts the number of trees (Cayley’s theorem)

the second factor accounts for the fact that the edges of the tree must
be present

If we add this into our previous formula, we obtain
en
Sec

S ()

)* S H(e/m) = n/e (D) < (g

~ (
and this is small if s= Q(logn) and c a sufficiently large constant:

logarithmic size trees expand

of course, the details are slightly more involved
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Open Problems

IS the result true for all random graphs?
we need C>C,, Cy= 9.6 for bipartite graphs, . ..

result also holds for ¢ < 1, since only logarithmic size connected
components

what happens in between?

smoothed analysis
start with an arbitrary graph G
perturb it by deleting/adding a small number of edges

if edges are added with probability p > (Inn)/n Motwani’s analysis
still applies

what happens for p= c¢/n and constant c?
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