
Kurt Mehlhorn and Peter Sanders

Algorithms and Data Structures

The Basic Toolbox

October 3, 2007

Springer

Your dedication goes here

Preface

Algorithms are at the heart of every nontrivial computer application. Therefore every
computer scientist and every professional programmer should know about the basic
algorithmic toolbox: structures that allow efficient organization and retrieval of data,
frequently used algorithms, and basic techniques for modeling, understanding, and
solving algorithmic problems.

This book is a concise introduction to this basic toolbox intended for students
and professionals familiar with programming and basic mathematical language. We
have used sections of the book for advanced undergraduate lectures on algorithmics
and as the basis for a beginning graduate level algorithms course. We believe that a
concise yet clear and simple presentation makes the material more accessible as long
as it includes examples, pictures, informal explanations, exercises, and some linkage
to the real world.

Most chapters have the same basic structure. We begin by discussing the problem
adressed as it occurs in a real-life situation. We illustrate the most important applica-
tions and then introduce simple solutions as informally as possible and as formally
as necessary to really understand the issues at hand. When moving to more advanced
and optional issues, this approach logically leads to a more mathematical treatment
including theorems and proofs. Advanced sections, that can be skipped on first read-
ing are marked with a star*. Exercises provide additional examples, alternative ap-
proaches and opportunities to think about the problems. It is highly recommended
to have a look at the exercises even if there is no time to solve them during the first
reading. In order to be able to concentrate on ideas rather than programming details,
we use pictures, words, and high level pseudocode for explaining our algorithms. A
section with implementation notes links these abstract ideas to clean, efficient im-
plementations in real programming languages such as C++ or Java. [C-sharp]Each ⇐=
chapter ends with a section on further findings that provides a glimpse at the state of
research, generalizations, and advanced solutions.

Algorithmics is a modern and active area of computer science, even at the level of
the basic tool box. We made sure that we present algorithms in a modern way, includ-
ing explicitly formulated invariants. We also discuss recent trends, such as algorithm
engineering, memory hierarchies, algorithm libraries, and certifying algorithms.

VIII Preface

Karlsruhe, Saarbrücken, Kurt Mehlhorn
October, 2007 Peter Sanders

Contents

1 Appetizer: Integer Arithmetics . 3
1.1 Addition . 4
1.2 Multiplication: The School Method . 5
1.3 Result Checking . 7
1.4 A Recursive Version of the School Method . 9
1.5 Karatsuba Multiplication . 11
1.6 Algorithm Engineering . 14
1.7 The Programs . 15
1.8 The Proofs of Lemma 3 and Theorem 3 . 18
1.9 Implementation Notes . 19
1.10 Historical Notes and Further Findings . 20

2 Introduction . 21
2.1 Asymptotic Notation . 22
2.2 Machine Model . 25
2.3 Pseudocode . 27
2.4 Designing Correct Algorithms and Programs . 33
2.5 An Example — Binary Search . 35
2.6 Basic Program Analysis . 37

2.6.1 “Doing Sums” . 38
2.6.2 Recurrences . 38
2.6.3 Global Arguments . 42

2.7 Average Case Analysis . 42
2.8 Randomized Algorithms . 45
2.9 Graphs . 49
2.10 P and NP . 53
2.11 Implementation Notes . 56
2.12 Historical Notes and Further Findings . 57

X Contents

3 Representing Sequences
by Arrays and Linked Lists . 59
3.1 Linked Lists . 60

3.1.1 Doubly Linked Lists . 60
3.1.2 Singly Linked Lists . 65

3.2 Unbounded Arrays . 66
3.3* Amortized Analysis . 71
3.4 Stacks and Queues . 74
3.5 Lists versus Arrays . 77
3.6 Implementation Notes . 78
3.7 Historical Notes and Further Findings . 79

4 Hash Tables and Associative Arrays . 81
4.1 Hashing with Chaining . 83
4.2 Universal Hash Functions . 85
4.3 Hashing with Linear Probing . 90
4.4 Chaining Versus Linear Probing . 92
4.5* Perfect Hashing . 92
4.6 Implementation Notes . 94
4.7 Historical Notes and Further Findings . 96

5 Sorting and Selection . 99
5.1 Simple Sorters . 101
5.2 Mergesort — an O(n log n) Sorting Algorithm 103
5.3 A Lower Bound . 106
5.4 Quicksort . 108

5.4.1 Analysis . 109
5.4.2 Refinements . 111

5.5 Selection . 114
5.6 Breaking the Lower Bound . 116
5.7* External Sorting . 119
5.8 Implementation Notes . 122
5.9 Historical Notes and Further Findings . 124

6 Priority Queues . 127
6.1 Binary Heaps . 129
6.2 Addressable Priority Queues . 133

6.2.1 Pairing Heaps . 135
6.2.2 *Fibonacci Heaps . 136

6.3* External Memory . 140
6.4 Implementation Notes . 141
6.5 Historical Notes and Further Findings . 142

Contents XI

7 Sorted Sequences . 145
7.1 Binary Search Trees . 147
7.2 (a, b)-Trees . 149
7.3 More Operations . 156
7.4 Amortized Analysis of Update Operations . 158
7.5 Augmented Search Trees . 160

7.5.1 Parent Pointers . 160
7.5.2 Subtree Sizes . 161

7.6 Implementation Notes . 162
7.7 Historical Notes and Further Findings . 164

8 Graph Representation . 167
8.1 Unordered Edge Sequences . 168
8.2 Adjacency Arrays — Static Graphs . 168
8.3 Adjacency Lists — Dynamic Graphs . 170
8.4 Adjacency Matrix Representation . 171
8.5 Implicit Representation . 172
8.6 Implementation Notes . 172
8.7 Historical Notes and Further Findings . 173

9 Graph Traversal . 175
9.1 Breadth-First Search . 175
9.2 Depth-First Search . 178

9.2.1 DFS Numbering, Finishing Times, and Topological Sorting . 178
9.2.2 *Strongly connected components (SCCs) 181

9.3 Implementation Notes . 187
9.4 Historical Notes and Further Findings . 188

10 Shortest Paths . 189
10.1 From Basic Concepts to a Generic Algorithm 190
10.2 Directed Acyclic Graphs (DAGs) . 193
10.3 Non-Negative Edge Costs (Dijkstra’s Algorithm) 194
10.4 Monotone Integer Priority Queues . 198

10.4.1 Bucket Queues . 199
10.4.2 Radix Heaps . 199

10.5 Arbitrary Edge Costs (Bellman-Ford Algorithm) 204
10.6 All-Pairs Shortest Paths and Potential Functions 205
10.7 Shortest Path Queries . 207
10.8 Implementation Notes . 211
10.9 Historical Notes and Further Findings . 212

11 Minimum Spanning Trees . 213
11.1 Cut and Cycle Properties . 214
11.2 The Jarník-Prim Algorithm . 216
11.3 Kruskal’s Algorithm . 217

XII Contents

11.4 The Union-Find Data Structure . 218
11.5 Certification of Minimum Spanning Trees . 222
11.6 External Memory . 223

11.6.1 Semi-External Kruskal . 223
11.6.2 Edge Contraction . 224
11.6.3 Sibeyn’s Algorithm . 224

11.7 Applications . 226
11.7.1 The Steiner Tree Problem . 227
11.7.2 Traveling Salesman Tours . 228

11.8 Implementation Notes . 229
11.9 Historical Notes and Further Findings . 230

12 Generic Approaches to Optimization . 233
12.1 Linear Programming — A Black Box Solver . 234

12.1.1 Integer Linear Programming . 238
12.2 Greedy Algorithms — Never Look Back . 239
12.3 Dynamic Programming — Building it Piece by Piece 242
12.4 Systematic Search — If in Doubt, Use Brute Force 246
12.5 Local Search — Think Globally, Act Locally 249

12.5.1 Hill Climbing . 250
12.5.2 Simulated Annealing — Learning from Nature 252
12.5.3 More on Local Search . 258

12.6 Evolutionary Algorithms . 259
12.7 Implementation Notes . 261
12.8 Historical Notes and Further Findings . 262

A Appendix . 265
A.1 General Mathematical Notation . 265
A.2 Basic Probability Theory . 268
A.3 Useful Formulae . 272

References . 275

Contents 1

[amuse geule arithmetik. Bild von Al Chawarizmi] ⇐=

1

Appetizer: Integer Arithmetics

Fig. 1.1. Al-Khwarizmi
(born approx. 780; died
between 835 and 850),
Persian mathematician
and astronomer from
the Khorasan province
of todays Uzbekistan.
The word ‘algorithm’ is
derived from his name.

[Bild oben wie in anderen Kapiteln?] An appetizer is sup- ⇐=
posed to stimulate the appetite at the beginning of a meal.
This is exactly the purpose of this chapter. We want to stim-
ulate your interest in algorithmic techniques by showing you
a first surprising result. The school method for multiplying
integers is not the best multiplication algorithm; there are
much faster ways to multiply large integers, i.e., integers
with thousands and even million of digits, and we will teach
you one of them.

Arithmetic on long integers is needed in areas such as
cryptography, geometric computing, and computer algebra
and so the improved multiplication algorithm is not just an
intellectual gem but also useful for applications.

On the way, we will learn basic analysis and basic al-
gorithm engineering techniques in a simple setting. We will
also see the interplay of theory and experiment.

We assume that integers are represented as digit strings.
In the base B number system, where B is an integer larger
than one, there are digits 0, 1, to B − 1 and a digit string
an−1an−2 . . . a1a0 represents the number

∑

0≤i<n aiB
i.

The most important systems with a small value of B are base
2 with digits 0 and 1, base 10 with digits 0 to 9, and base 16
with digits 0 to 15 (frequently written as 0 to 9, A, B, C, D, E, F). Larger bases, such
as 28, 216, 232, and 264, are also useful. We have

”10101” in base 2 represents 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = 21

”924” in base 10 represents 9 · 102 + 2 · 2 · 101 + 4 · 100 = 924 .

We assume that we have two primitive operations at our disposal: the addition of
three digits with a two digit result (this is sometimes called a full adder) and the

4 1 Appetizer: Integer Arithmetics

multiplication of two digits with a two digit result1. For example, in base 10, we
have

3
5
5

13

and 6 · 7 = 42 .

We will measure the efficiency of our algorithms by the number of primitive opera-
tions executed.

We can artificially turn any n-digit integer into an m-digit integer for any m ≥ n
by adding additional leading zeroes. Concretely, "425" and "000425" represent the
same integer. We will use a and b for the two operands of an addition or multi-
plication and assume throughout this section that a and b are n-digit integers. The
assumption that both operands have the same length simplifies presentation without
changing the key message of the chapter. We come back to this remark at the end
of the chapter. We refer to the digits of a as an−1 to a0 with an−1 being the most
significant (also called leading) digit and a0 being the least significant digit and write
a = (an−1 . . . a0). The leading digit may be zero. Similarly, we use bn−1 to b0 to
denote the digits of b and write b = (bn−1 . . . b0).

1.1 Addition

We all know how to add two integers a = (an−1 . . . a0) and b = (bn−1 . . . b0). We
simply write one under the other with the least significant digits aligned and sum
digit-wise, carrying a single digit from one position to the next. The result will be an
n + 1-digit integer s = (sn . . . s0). Graphically,

an−1 . . . a1 a0 first operand
bn−1 . . . b1 b0 second operand

cn cn−1 . . . c1 0 carries
sn sn−1 . . . s1 s0 sum

where cn to c0 is the sequence of carries and s = (sn . . . s0) is the sum. We have
c0 = 0, ci+1 · B + si = ai + bi + ci for 0 ≤ i < n and sn = cn. As a program, this
is written as:

c = 0 : Digit // Variable for the carry digit
for i := 0 to n − 1 do add ai, bi, and c to form si and a new carry c
sn = c

We need one primitive operation for each position and hence a total of n primitive
operations.

Theorem 1. The addition of two n-digit integers requires exactly n primitive opera-
tions. The result is an n + 1-digit integer.
1 Observe that the sum of three digits is at most 3(B − 1) and the product of two digits is at

most (B − 1)2 and that both expressions are bounded by (B − 1) ·B1 + (B − 1) ·B0 =
B2 − 1, the largest integer that can be written with two digits.

1.2 Multiplication: The School Method 5

1.2 Multiplication: The School Method

We all know how to multiply two integers. In this section we will review the school
method. In a later section we will get to know a method which is significantly faster
for large integers.

We will proceed slowly. We first review how to multiply an n-digit integer a by
a 1-digit integer bj . We use bj for the 1-digit integer since this is how we need it
below. For any digit ai of a we form the product ai · bj . The result is a two-digit
integer (cidi), i.e.,

ai · bj = ci · B + di .

We form two integers c = (cn−1 . . . c0 0) and d = (dn−1 . . . d0) from the c’s and
d’s, respectively. Since the c’s are the higher order digits in the products, we add a
zero digit at the end. We add c and d to obtain the product pj = a · bj . Graphically,

(an−1 . . . ai . . . a0) · bj −→
cn−1 cn−2 . . . ci ci−1 . . . c0 0

dn−1 . . . di+1 di . . . d1 d0

sum of c and d

Let us determine the number of primitive operations. For each i, we need one primi-
tive operation to form the product ai · bj , for a total of n primitive operations. Then
we add two n + 1-digit numbers. This requires n + 1 primitive operations. So the
total number of primitive operations is 2n + 1.

Lemma 1. We can multiply an n-digit number with a 1-digit number with 2n + 1
primitive operations. The result is an n + 1-digit number.

When you multiply an n-digit number by a 1-digit number you probably proceed
slightly differently. You combine2 the generation of the products ai · bj with the
summation of c and d into a single phase, i.e., you create the digits of c and d when
they are needed in the final addition. We have chosen to generate them in a separate
phase because this simplifies the description of the algorithm.

Exercise 1. Give a program for the multiplication of a and bj that operates in a single
phase.

We can now turn to the multiplication of two n-digit integers. The school method
for integer multiplication works as follows: we first form partial products pj by mul-
tiplying a with the j-th digit bj of b and then sum the suitably aligned products pj ·Bj

to obtain the product of a and b. Graphically,

p0,n−1 . . . p0,2 p0,1 p0,0

p1,n−1 p1,n−2 . . . p1,1 p1,0

p2,n−1 p2,n−2 p2,n−3 . . . p2,0

. . .
pn−1,n−1 . . . pn−1,1 pn−1,0

sum of the n partial products

2 In compiler construction and performance optimization literature, this transformation is
known as loop fusion.

6 1 Appetizer: Integer Arithmetics

The description in pseudocode is more compact. We initialize the product p to zero
and then add to it the partial products a · bj · Bj one by one.

p = 0 :
�

for j := 0 to n − 1 do p := p + a · bj · Bj

Let us analyze the number of primitive operations required by the school method.
Each partial product pj requires 2n + 1 primitive operations and hence all partial
products require a total of 2n2 + n primitive operations. The product a · b is a 2n-
digit number and hence all summations p + a · bj · Bj are summations of 2n-digit
integers. Each such addition requires at most 2n primitive operations and hence all
additions require at most 2n2 primitive operations. Thus, we need no more than
4n2 + n primitive operations in total.

A simple observation allows us to improve the bound. The number a · bj ·Bj has
n + 1 + j digits, the last j of which are zero. We can therefore start the addition in
the j+1-th position. Also, when we add a ·bj ·Bj to p, we have p = a ·(bj−1 · · · b0),
i.e., p has n + j digits. Thus, the addition of p and a · bj ·Bj amounts to the addition
of two n + 1 digit numbers and requires only n + 1 primitive operations. Therefore,
all additions require only n2 + n primitive operations. We have thus shown:

Theorem 2. The school method multiplies two n-digit integers with 3n2 + 2n prim-
itive operations.

We have now analyzed the number of primitive operations required by the school
methods for integer addition and integer multiplication. The number Mn of primitive
operations for the school method for integer multiplication is 3n2 +2n. Observe that
3n2 +2n = n2(3+2/n) and hence 3n2 +2n is essentially the same as 3n2 for large
n. We say that Mn grows quadratically. Observe also that

Mn/Mn/2 =
3n2 + 2n

3(n/2)2 + 2(n/2)
=

n2(3 + 2/n)

(n/2)2(3 + 4/n)
= 4 · 3n + 2

3n + 4
≈ 4 ,

i.e., quadratic growth has the consequence of essentially quadrupling the number of
primitive operations when the size of the instance is doubled.

Assume now that we actually implement the multiplication algorithm in our fa-
vorite programming language (we will do so later in the chapter) and then time the
program on our favorite machine for different n-digit integers a and b and different
n. What should we expect? We want to argue that we will see quadratic growth.
The reason is that primitive operations are representative for the running time of the
algorithm. Consider addition of two n-digit integers first. What happens when the
program is executed? For each position i, the digits ai and bi have to be moved to
the processing unit, the sum ai + bi + c has to be formed, the digit si of the result
needs to be stored in memory, the carry c is updated, the index i is incremented and
a test for loop exit needs to be performed. Thus for each i, the same number of ma-
chine cycles is executed. We counted one primitive operation for each i and hence
the number of primitive operations is representative for the number of executed ma-
chine cycles. Of course, there are additional effects: for example, pipelining and the

1.3 Result Checking 7

complex transport mechanism for data between memory and processing unit, but
they will have a similar effect for all i and hence the number of primitive operations
is also representative for the running time of an actual implementation on an actual
machine. The argument extends to multiplication since multiplication of a number
by a 1-digit number is a process similar to addition and since the second phase of the
school method for multiplication amounts to a series of additions.

Let us confirm the argument by an experiment. Figure 1.2 shows execution times
of a C++ implementation of the school method; the program can be found in Sec-
tion 1.7. For each n, we performed a large number3 of multiplications of n-digit
random integers and then determined the average running time Tn; Tn is listed in
the second column. We also show the ratio Tn/Tn/2. Figure 1.2 also shows a plot
of the data points4 (log n, log Tn). The data exhibits approximately quadratic growth
as we can deduce in different ways. The ratio Tn/Tn/2 is always close to four, and
the double logarithmic plot shows essentially a line of slope two. The experiments
are quite encouraging: our theoretical analysis has predictive value. Our theoretical
analysis showed quadratic growth of the number of primitive operations, we argued
above that actual running time should be related to the number of primitive opera-
tions, and the actual running time essentially grows quadratically. However, we also
see systematic deviations. For small n, the growth from one row to the next is less
than four, as linear and constant terms in the running time still play a substantial
role. For larger n, the ratio is very close to four. For very large n (too large to be
timed conveniently), we would probably see a factor larger than four since access
time to memory depends on the size of the data. We will come back to this point in
Section ??.

Exercise 2. Write programs for long integer addition and multiplication. Represent
integers as sequences (arrays or lists or whatever your programming language of-
fers) of decimal digits and use the built-in arithmetic to implement the primitive
operations. Then write the ADD, MULTIPLY1, and MULTIPLY functions that add
integers, multiply an integer by a 1-digit number, and multiply integers respectively.
Use your implementation to produce your own version of Figure 1.2. Experiment
with using a larger base than base 10, say base 216.

Exercise 3. Describe and analyze the school method for division.

1.3 Result Checking

Our algorithms for addition and multiplication are quite simple and hence it is fair to
assume that we can implement them correctly in the programming language of our
3 The internal clock measuring CPU time returns its timings in some unit, say milliseconds,

and hence the required rounding introduces an error of up to one-half of this unit. It is
therefore important that the experiment timed takes much longer than this unit, in order to
reduce the effect of rounding.

4 Throughout this book we use log x to denote the logarithm log2 x to base 2.

8 1 Appetizer: Integer Arithmetics

n Tn [sec] Tn/Tn/2

8 0.00000469

16 0.0000154 3.28527

32 0.0000567 3.67967

64 0.000222 3.91413

128 0.000860 3.87532

256 0.00347 4.03819

512 0.0138 3.98466

1024 0.0547 3.95623

2048 0.220 4.01923

4096 0.880 4

8192 3.53 4.01136

16384 14.2 4.01416

32768 56.7 4.00212

65536 227 4.00635

131072 910 4.00449

 100

 10

 1

 0.1

 0.01

 0.001

 0.0001

216214212210282624

tim
e

[s
ec

]

n

school method

Fig. 1.2. The running time of the school method for the multiplication of n-digit integers. The
three columns of the table on the left give n, the running time Tn of the C++ implementation
of Section 1.7, and the ratio Tn/Tn/2. The plot on the right shows log Tn versus log n and we
see essentially a line. Observe, if Tn = αnβ for some constants α and β then Tn/Tn/2 = 2β

and log Tn = β log n+log α, i.e., log Tn depends linearly on log n with slope β. In our case,
the slope is two. Please, use a ruler to check.

choice. However, writing software5 is an error-prone activity and hence we should
always ask ourselves whether we can check the results of a computation. For mul-
tiplication, the authors were taught the following technique in elementary school.
The method is known as Neunerprobe in German, casting out nines in English, and
preuve par neuf in French.

Add the digits of a. If the sum is a number with more than one digit, sum its
digits. Repeat until you arrive at a one digit number, called the checksum of a. We
use sa to denote it. Here is an example:

4528 → 19 → 10 → 1 .

Do the same for b and the result c of the computation. This gives the checksums
sb and sc. All checksums are single digit numbers. Compute sa · sb and form its
checksum s. If s differs from sc, c is not equal to a ·b. This test was already described
by Al-Kwarizmi in his book on algebra.

Let us go through a simple example. Let a = 429, b = 357, and c = 154153.
Then sa = 6, sb = 6 and sc = 1. Also sa · sb = 36 and hence s = 9. So sc 6= s and
5 The bug in the division algorithm of the floating point unit of the original Pentium chip

became famous. It was caused by a few missing entries in a lookup table used by the
algorithm.

1.4 A Recursive Version of the School Method 9

hence sc is not the product of a and b. Indeed, the correct product is c = 153153.
Its checksum is 9 and hence the correct product passes the test. The test is not fool-
proof, as c = 135153 also passes the test. However, the test is quite useful and detects
many mistakes.

What is the mathematics behind this test? We explain a more general method.
Let q be any positive integer; in the method described above, q = 9. Let sa be the
remainder or residue in the integer division a divided by q, i.e. sa = a − ba/qc · q.
Then6 0 ≤ sa < q. In mathematical notation, sa = a mod q. Similarly, sb =
b mod q and sc = c mod q. Finally, s = (sa · sb) mod q. If c = a · b, then it must
be the case that s = sc. Thus s 6= sc proves c 6= a · b and uncovers a mistake in the
multiplication. What do we know if s = sc? We know that q divides the difference
of c and a · b. If this difference is non-zero, the mistake will be detected by any q
which does not divide the difference.

Let us continue with our example and take q = 7. Then a mod 7 = 2, b mod 7 =
0 and hence s = (2 · 0) mod 7 = 0. But 135153 mod 7 = 4 and we uncovered that
135153 6= 429 · 357.

Exercise 4. Explain why the method learned by the authors in school corresponds to
the case q = 9. Hint: 10k mod 9 = 1 for all k ≥ 0.

Exercise 5 (Elferprobe, Casting out Elevens). Powers of ten have very simple re-
minders modulo 11, namely 10k mod 11 = (−1)k for all k ≥ 0, i.e., 1 mod 11 = 1,
10 mod 11 = −1, 100 mod 11 = +1, 1000 mod 11 = −1. Describe a simple test
to check correctness of a multiplication modulo 11.

1.4 A Recursive Version of the School Method

We will derive a recursive version of the school method. This will be our first en-
counter of the divide-and-conquer paradigm, one of the fundamental paradigms in
algorithm design.

Let a and b be our two n-digit integers which we want to multiply. Let k =
bn/2c. We split a into two numbers a1 and a0; a0 consists of the k least significant
digits and a1 consists of the n − k most significant digits7. We split b analogously.
Then

a = a1 · Bk + a0 and b = b1 · Bk + b0

and hence

a · b = a1 · b1 · B2k + (a1 · b0 + a0 · b1) · Bk + a0 · b0 .

This formula suggests the following algorithm for computing a · b:
6 The method taught in school uses residues 1 to 9 instead of 0 to 8 according to the definition

sa = a− (da/qe − 1) · q
7 Observe that we changed notation. a0 and a1 now denote the two parts of a and are no

longer single digits.

10 1 Appetizer: Integer Arithmetics

..

..

PSfrag replacements

a0

a0

a0

a1

a1

a1 b0b0 b0

b1b1 b1

Fig. 1.3. Visualization of the school method and its recursive variant: the rhombus-shaped area
indicates the partial products in the multiplication a · b. The four sub-areas correspond to the
partial products in the multiplications a1 · b1, a1 · b0, a0 · b1, and a0 · b0, respectively. In the
recursive scheme, we first sum the partial products in the four sub-areas and then in a second
step add the four resulting sums.

(a) Split a and b into a1, a0, b1, and b0.
(b) Compute the four products a1 · b1, a1 · b0, a0 · b1, and a0 · b0.
(c) Add the suitably aligned products to obtain a · b.

Observe that the numbers a1, a0, b1, and b0 are dn/2e-digit numbers and hence the
multiplications in step (b) are simpler than the original multiplication if dn/2e < n,
i.e., n > 1. The complete algorithm is now as follows: to multiply 1-digit numbers,
use the multiplication primitive. To multiply n-digit numbers for n ≥ 2, use the
three-step approach above.

It is clear why this approach is called divide-and-conquer. We reduce the problem
of multiplying a · b to some number of simpler problems of the same kind. A divide
and conquer algorithm always consists of three parts: in the first part, we split the
original problem into simpler problems of the same kind (our step (a)), in the second
part we solve the simpler problems using the same method (our step (b)), and in the
third part, we obtain the solution to the original problem from the solutions to the
subproblems (our step (c)).

What is the connection of our recursive integer multiplication to the school
method? It is really the same method. Figure 1.3 shows that the products a1 · b1,
a1 · b0, a0 · b1, and a0 · b0 are also computed by the school method. Knowing that
our recursive integer multiplication is just the school method in disguise tells us that
the recursive algorithm uses a quadratic number of primitive operations. Let us also
derive this from first principles. This will allow us to introduce recurrence relations,
a powerful concept for the analysis of recursive algorithm.

Lemma 2. Let T (n) be the maximal number of primitive operations required by our
recursive multiplication algorithm when applied to n-digit integers. Then

T (n) ≤
{

1 if n = 1,

4 · T (dn/2e) + 3 · 2 · n if n ≥ 2.

Proof. Multiplying two 1-digit numbers requires one primitive multiplication. This
justifies the case n = 1. So assume n ≥ 2. Splitting a and b into the four pieces

1.5 Karatsuba Multiplication 11

a1, a0, b1, and b0 requires no primitive operations8. Each piece has at most dn/2e
digits and hence the four recursive multiplications require at most 4 ·T (dn/2e) prim-
itive operations. Finally, we need three additions to assemble the final result. Each
addition involves two numbers of at most 2n digits and hence requires at most 2n
primitive operations. This justifies the inequality for n ≥ 2.

In Section 2.6 we will learn that such recurrences are easy to solve and yield the
already conjectured quadratic execution time of the recursive algorithm.

Lemma 3. Let T (n) be the maximal number of primitive operations required by our
recursive multiplication algorithm when applied to n-digit integers. Then T (n) ≤
7n2 if n is a power of two and T (n) ≤ 28n2 for all n.

Proof. We refer the reader to Section 1.8 for a proof.

1.5 Karatsuba Multiplication

In 1962 the Soviet mathematician Karatsuba [101] discovered a faster way of mul-
tiplying large integers. The running time of his algorithm grows like nlog 3 ≈ n1.58.
The method is surprisingly simple. Karatsuba observed that a simple algebraic iden-
tity allows one multiplication to be eliminated in the divide-and-conquer implemen-
tation, i.e., one can multiply n-bit numbers using only three multiplications of inte-
gers half the size.

The details are as follows. Let a and b be our two n-digit integers which we want
to multiply. Let k = bn/2c. As above, we split a into two numbers a1 and a0; a0

consists of the k least significant digits and a1 consists of the n − k most significant
digits. We split b in the same way. Then

a = a1 · Bk + a0 and b = b1 · Bk + b0

and hence (the magic is in the second equality)

a · b = a1 · b1 · B2k + (a1 · b0 + a0 · b1) · Bk + a0 · b0

= a1 · b1 · B2k + ((a1 + a0) · (b1 + b0) − (a1 · b1 + a0 · b0)) · Bk + a0 · b0

At first sight, we have only made things more complicated. A second look shows that
the last formula can be evaluated with only three multiplications, namely, a1 · b1, a1 ·
b0, and (a1+a0)·(b1+b0). We also need six additions9. That is three more than in the
recursive implementation of the school method. The key is that additions are cheap
compared to multiplications and hence saving a multiplication more than outweighs
three additional additions. We obtain the following algorithm for computing a · b:

1. Split a and b into a1, a0, b1, and b0.
8 It will require work, but it is work that we do not account for in our analysis.
9 Actually five additions and one subtraction. We leave it to the reader to convince himself

that subtractions are no harder than additions.

12 1 Appetizer: Integer Arithmetics

 10

 1

 0.1

 0.01

 0.001

 0.0001

 1e-05

214212210282624

tim
e

[s
ec

]

n

school method
Karatsuba4

Karatsuba32

Fig. 1.4. The running times of implementations of the Karatsuba and the school method for
integer multiplication. The running times for two versions of Karatsuba’s method are shown:
Karatsuba4 switches to the school method for integers with less than four digits and Karat-
suba32 switches to the school method for integers with less than 32 digits. The slope of the
lines for the Karatsuba variants is approximately 1.58.

2. Compute the three products p2 = a1 · b1, p0 = a0 · b0, and p1 = (a1 + a0) ·
(b1 + b0).

3. Add the suitably aligned products to obtain a · b, i.e., compute a · b according to
the formula a · b = p2 · B2k + (p1 − (p2 + p0)) · Bk + p0.

The numbers a1, a0, b1, b0, a1 + a0, and b1 + b0 are dn/2e + 1-digit numbers and
hence the multiplications in step (b) are simpler than the original multiplication if
dn/2e + 1 < n, i.e., n ≥ 4. The complete algorithm is now as follows: to multiply
3-digit numbers, use the school method, and to multiply n-digit numbers for n ≥ 4,
use the three-step approach above.

Figure 1.4 shows the running times TK(n) and TS(n) of C++ implementations
of the Karatsuba method and the school method for n-digit integers. The scale on
both axes is logarithmic. We essentially see straight lines of different slope. The
running time of the school method grows like n2 and hence the slope is 2 in case

1.5 Karatsuba Multiplication 13

of the school method. The slope is smaller in case of the Karatsuba method and
this suggests that its running time grows like nβ with β < 2. In fact, the ratio10

TK(n)/TK(n/2) is close to three and this suggests that β is such that 2β = 3 or
β = log 3 ≈ 1.58. Alternatively, you may determine the slope from Figure 1.4. We
will prove below that TK(n) grows like nlog 3. We say that the Karatsuba method
has better asymptotic behavior. We also see that inputs have to be quite big until
the superior asymptotic behavior of the Karatsuba method actually results in smaller
running time. Observe that for n = 28, the school method is still faster, that for
n = 29, the two methods have about the same running time, and that Karatsuba wins
for n = 210. The lessons to remember are:

• Better asymptotic behavior ultimately wins.
• An asymptotically slower algorithm can be faster on small inputs.

In the next section we will learn how to improve the behavior of the Karatsuba
method for small inputs. The resulting algorithm will always be at least as good
as the school method. It is time to derive the asymptotics of the Karatsuba method.

Lemma 4. Let TK(n) be the maximal number of primitive operations required by
the Karatsuba algorithm when applied to n-digit integers. Then

TK(n) ≤
{

3n2 + 2n if n ≤ 3,

3 · TK(dn/2e + 1) + 6 · 2 · n if n ≥ 4.

Proof. Multiplying two n-bit numbers with the school method requires no more than
3n2 + 2n primitive operations by Lemma 2. This justifies the first line. So assume
n ≥ 4. Splitting a and b into the four pieces a1, a0, b1, and b0 requires no primitive
operations11. Each piece and the sums a0 + a1 and b0 + b1 have at most dn/2e + 1
digits and hence the three recursive multiplications require at most 3 ·TK(dn/2e+1)
primitive operations. Finally, we need two additions to form a0 + a1 and b0 + b1 and
four additions to assemble the final result. Each addition involves two numbers of at
most 2n digits and hence requires at most 2n primitive operations. This justifies the
inequality for n ≥ 4.

In Section 2.6 we will learn general techniques for solving recurrences of this
kind.

Theorem 3. Let TK(n) be the maximal number of primitive operations required by
the Karatsuba algorithm when applied to n-digit integers. Then TK(n) ≤ 99nlog 3 +
48 · n + 48 · log n for all n.

Proof. We refer the reader to Section 1.8 for a proof.
10 TK(1024) = 0.0455, TK(2048) = 0.1375, and TK(4096) = 0.41.
11 It will require work, but it is work that we do not account for in our analysis.

14 1 Appetizer: Integer Arithmetics

1.6 Algorithm Engineering

Karatsuba integer multiplication is superior to the school method for large inputs.
In our implementation the superiority only shows for integers with more than 1000
digits. However, a simple refinement improves the performance significantly. Since
the school method is superior to Karatsuba for short integers, we should stop the re-
cursion earlier and switch to the school method for numbers which have less than n0

digits for some yet to be determined n0. We call this approach the refined Karatsuba
method. It is never worse than either the school method or the original Karatsuba
algorithm.

 0.4

 0.3

 0.2

 0.1

 1024 512 256 128 64 32 16 8 4
recursion threshhold

Karatsuba, n = 2048
Karatsuba, n = 4096

Fig. 1.5. The running time of the
Karatsuba method as a function of
the recursion threshold n0. The times
for multiplying 2048-digit and 4096-
digit integers are shown. The mini-
mum is at n0 = 32.

What is a good choice for n0? We will answer this question experimentally and
analytically. Let us discuss the experimental approach first. We simply time the re-
fined Karatsuba algorithm for different values of n0 and then adopt the value giving
the smallest running time. For our implementation the best results were obtained for
n0 = 32, see Figure 1.5. The asymptotic behavior of the refined Karatsuba method
is shown in Figure 1.4. We see that the running time of the refined method still grows
like nlog 3, that the refined method is about three times faster than the basic Karatsuba
method and hence the refinement is highly effective, and that the refined method is
never slower than the school method.

Exercise 6. Derive a recurrence for the worst case number TR(n) of primitive oper-
ations performed by the refined Karatsuba method.

We can also approach the question analytically. If we use the school method to
multiply n-digit numbers, we need 3n2 + 2n primitive operations. If we use one
Karatsuba step and then multiply the resulting numbers of length dn/2e + 1 using
the school method, we need about 3(3(n/2+1)2 +2(n/2+1))+12n primitive op-
erations. The latter is smaller for n ≥ 28 and hence a recursive step saves primitive
operations as long as the number of digits is more than 28. You should not take this
as an indication that an actual implementation should switch at integers of approx-
imately 28 digits as the argument concentrates solely on primitive operations. You

1.7 The Programs 15

should take it as an argument, that it is wise to have a non-trivial recursion threshold
n0 and then determine the threshold experimentally.

Exercise 7. Throughout this chapter we assumed that both arguments of a multipli-
cation are n-digit integers. What can you say about the complexity of multiplying
n-digit and m-digit integers? (a) Show that the school method requires no more than
α · nm primitive operations for some constant α. (b) Assume n ≥ m and divide
a into dn/me numbers of m digits each. Multiply each of the fragments with b us-
ing Karatsuba’s method and combine the results. What is the running time of this
approach?

1.7 The Programs

We give C++ programs for the school and the Karatsuba method. The programs
were used for the timing experiments in this chapter. The programs were executed
on a 2 GHz dual core Intel T7200 with 2 Gbyte of main memory and 4 MB of
cache memory. The programs were compiled with GNU C++ version 3.3.5 using
optimization level -O2.

A digit is simply an unsigned int and an integer is a vector of digits; here vector is
the vector type of the standard template library. A declaration integer a(n) declares
an integer with n digits, a.size() returns the size of a and a[i] returns a reference to
the i-th digit of a. Digits are numbered starting at zero. The global variable B stores
the base. Functions fullAdder and digitMult implement the primitive operations on
digits. We sometimes need to access digits beyond the size of an integer; the function
getDigit(a, i) returns a[i] if i is a legal index for a and returns zero otherwise.

typedef unsigned int digit;
typedef vector<digit> integer;
unsigned int B = 10; // Base, 2 <= B <= 2^16

void fullAdder(digit a, digit b, digit c, digit& s, digit& carry)
{ unsigned int sum = a + b + c; carry = sum/B; s = sum - carry*B; }

void digitMult(digit a, digit b, digit& s, digit& carry)
{ unsigned int prod = a*b; carry = prod/B; s = prod - carry*B; }

digit getDigit(const integer& a, int i)
{ return (i < a.size()? a[i] : 0); }

We want to run our programs on random integers: randDigit is a simple random
generator for digits and randInteger fills its argument with random digits.

unsigned int X = 542351;

digit randDigit() { X = 443143*X + 6412431; return X % B ; }

void randInteger(integer& a)
{ int n = a.size(); for (int i = 0; i < n; i++) a[i] = randDigit(); }

16 1 Appetizer: Integer Arithmetics

We come to the school method of multiplication. We start with a routine that mul-
tiplies an integer a with a digit b and returns the result in atimesb. In each iteration,
we compute d and c such that c ∗B +d = a[i] ∗ b. We then add d, the c from the pre-
vious iteration, the carry from the previous iteration, store the result in atimesb[i],
and remember the carry . The school method (function mult) multiplies a with each
digit of b and then adds it at the appropriate position to the result (function addAt).

void mult(const integer& a, const digit& b, integer& atimesb)
{ int n = a.size(); assert(atimesb.size() == n+1);

digit carry = 0, c, d, cprev = 0;

for (int i = 0; i < n; i++)
{ digitMult(a[i],b,d,c);

fullAdder(d, cprev, carry, atimesb[i], carry); cprev = c;
}

d = 0;
fullAdder(d, cprev, carry, atimesb[n], carry); assert(carry == 0);

}

void addAt(integer& p, const integer& atimesbj, int j)
{ // p has length n+m,

digit carry = 0; int L = p.size();
for (int i = j; i < L; i++)

fullAdder(p[i], getDigit(atimesbj,i-j), carry, p[i], carry);
assert(carry == 0);

}

integer mult(const integer& a, const integer& b)
{ int n = a.size(); int m = b.size();

integer p(n + m,0); integer atimesbj(n+1);
for (int j = 0; j < m; j++)

{ mult(a, b[j], atimesbj); addAt(p, atimesbj, j); }
return p;

}

For Karatsuba’s method we also need methods for general addition and subtrac-
tion. The subtraction method may assume that the first argument is no smaller than
the second. It computes its result in the first argument.

integer add(const integer& a, const integer& b)
{ int n = max(a.size(),b.size());

integer s(n+1); digit carry = 0;
for (int i = 0; i < n; i++)

fullAdder(getDigit(a,i), getDigit(b,i), carry, s[i], carry);
s[n] = carry;
return s;

}

void sub(integer& a, const integer& b) // requires a >= b
{ digit carry = 0;

for (int i = 0; i < a.size(); i++)
if (a[i] >= (getDigit(b,i) + carry))

1.7 The Programs 17

{ a[i] = a[i] - getDigit(b,i) - carry; carry = 0; }
else { a[i] = a[i] + B - getDigit(b,i) - carry; carry = 1;}

assert(carry == 0);
}

The function split splits an integer into two integers of half the size.

void split(const integer& a,integer& a1, integer& a0)
{ int n = a.size(); int k = n/2;

for (int i = 0; i < k; i++) a0[i] = a[i];
for (int i = 0; i < n - k; i++) a1[i] = a[k+ i];

}

Karatsuba works exactly as described in the text. If the inputs have less than n0

digits, the school method is employed. Otherwise, the inputs are split into numbers
of half the size and the products p0 , p1 , and p2 are formed. Then p0 and p2 are
written into the output vector, subtracted from p1 , and finally the modified p1 is
added to the result.

integer Karatsuba(const integer& a, const integer& b, int n0)
{ int n = a.size(); int m = b.size(); assert(n == m); assert(n0 >= 4);

integer p(2*n);

if (n < n0) return mult(a,b);

int k = n/2; integer a0(k), a1(n - k), b0(k), b1(n - k);

split(a,a1,a0); split(b,b1,b0);

integer p2 = Karatsuba(a1,b1,n0),
p1 = Karatsuba(add(a1,a0),add(b1,b0),n0),
p0 = Karatsuba(a0,b0,n0);

for (int i = 0; i < 2*k; i++) p[i] = p0[i];
for (int i = 2*k; i < n+m; i++) p[i] = p2[i - 2*k];

sub(p1,p0); sub(p1,p2); addAt(p,p1,k);

return p;
}

The following program generates the data for Figure 1.4.

inline double cpuTime() { return double(clock())/CLOCKS_PER_SEC; }

int main(){

for (int n = 8; n <= 131072; n *= 2)
{ integer a(n), b(n); randInteger(a); randInteger(b);

double T = cpuTime(); int k = 0;
while (cpuTime() - T < 1) { mult(a,b); k++; }
cout << "\n" << n << " school = " << (cpuTime() - T)/k;

18 1 Appetizer: Integer Arithmetics

T = cpuTime(); k = 0;
while (cpuTime() - T < 1) { Karatsuba(a,b,4); k++; }
cout << " Karatsuba4 = " << (cpuTime() - T) /k; cout.flush();

T = cpuTime(); k = 0;
while (cpuTime() - T < 1) { Karatsuba(a,b,32); k++; }
cout << " Karatsuba32 = " << (cpuTime() - T) /k; cout.flush();

}
return 0;
}

1.8 The Proofs of Lemma 3 and Theorem 3

To make this Chapter self-contained, we include proofs of Lemma 3 and Theorem 3.
We start with the analysis of the recursive version of the school method. Recall that
T (n), the maximal number of primitive operations required by our recursive multi-
plication algorithm when applied to n-digit integers, satisfisfies

T (n) ≤
{

1 if n = 1,

4 · T (dn/2e) + 3 · 2 · n if n ≥ 2.

We use induction on n to show T (n) ≤ 7n2 − 6n for n being a power of two. For
n = 1, we have T (1) ≤ 1 = 7n2 − 6n. For n > 1, we have

T (n) ≤ 4T (n/2) + 6n ≤ 4(7(n/2)2 − 6n/2) + 6n = 7n2 − 6n ,

where the second inequality follows from the induction hypothesis. For general n,
we observe that multiplying n-digit integers is certainly no more costly than multi-
plying 2dlog ne-digit integers and hence T (n) ≤ T (2dlog ne). Since 2dlog ne ≤ 2n, we
conclude T (n) ≤ 28n2 for all n.

Exercise 8. Prove a bound on the recurrence T (1) ≤ 1 and T (n) ≤ 4T (n/2) + 9n
for n a power of two.

How did we know that “7n2−6n” is the bound to prove? There is no magic here.
For n = 2k repeated substitution yields:

T (2k) ≤ 4 · T (2k−1) + 6 · 2k ≤ 42T (2k−2) + 6 · (41 · 2k−1 + 2k)

≤ 43T (2k−3) + 6 · (42 · 2k−2 + 41 · 2k−1 + 2k) ≤ . . .

≤ 4kT (1) + 6
∑

0≤i≤k−1

4i2k−i ≤ 4k + 6 · 2k
∑

0≤i≤k−1

2i

≤ 4k + 6 · 2k(2k − 1) = n2 + 6n(n − 1) = 7n2 − 6n .

We turn to the proof of Theorem 3. Recall that TK satisfies the recurrence

TK(n) ≤
{

3n2 + 2n if n ≤ 3,

3 · TK(dn/2e + 1) + 12n if n ≥ 4.

1.9 Implementation Notes 19

The recurrence for the school method has the nice property that for n being a power
of two, the arguments of T on the right-hand side were again powers of two. This is
not true for TK . However, if n = 2k + 2 and k ≥ 1 then dn/2e + 1 = 2k−1 + 2 and
hence we should now use numbers of the form n = 2k +2, k ≥ 0, as the basis of the
inductive argument. We show

TK(2k + 2) ≤ 33 · 3k + 12 · (2k+1 + 2k − 2)

for k ≥ 0. For k = 0, we have

TK(20 + 2) = TK(3) ≤ 3 · 32 + 2 · 3 = 33 = 33 · 20 + 12 · (21 + 2 · 0 − 2) .

For k ≥ 1, we have

TK(2k + 2) ≤ 3TK(2k−1 + 2) + 12 · (2k + 2)

≤ 3 · (33 · 3k−1 + 12 · (2k + 2(k − 1) − 2) + 12 · (2k + 2)

= 33 · 3k + 12 · (2k+1 + 2k − 2) .

Again, there is no magic in coming up with the right induction hypothesis. It is
obtained by repeated substitution. Namely,

TK(2k + 2) ≤ 3TK(2k−1 + 2) + 12 · (2k + 2)

≤ 3kTK(20 + 2) + 12 · (2k + 2 + 2k−1 + 2 + . . . + 21 + 2)

≤ 33 · 3k + 12 · (2k+1 − 2 + 2k) .

It remains to extend the bound to all n. Let k be the minimal integer with n ≤ 2k +2.
Then k ≤ 1 + log n. Also, multiplying n-digit numbers is no more costly than
multiplying (2k + 2)-digit numbers and hence

TK(n) ≤ 33 · 3k + 12 · (2k+1 − 2 + 2k)

≤ 99 · 3log n + 48 · (2log n − 2 + 2(1 + log n))

≤ 99 · nlog 3 + 48 · n + 48 · log n ,

where the equality 3log n = 2(log 3)·(log n) = nlog 3 is used.

Exercise 9. Solve the recurrence

TR(n) ≤
{

3n2 + 2n if n < 32,

3 · TR(dn/2e + 1) + 12n if n ≥ 4.

1.9 Implementation Notes

The programs given in Section 1.7 are not optimized. The base of the number system
should be chosen as a power of two so that sums and carries can be extracted by bit

20 1 Appetizer: Integer Arithmetics

operations. Also, the size of a digit should agree with the word size of the machine
and a bit more work should be invested in implementing primitive operations on
digits.

C++: GMP [74] and LEDA [115] offer high-precision integer, rational, and floating
point arithmetic. Highly optimized implementations of Karatsuba’s method are used
for multiplication.

Java: Java.math implements arbitrary precision integers and floating point num-
bers. [font fuer java.math]=⇒

1.10 Historical Notes and Further Findings

Is the Karatsuba method the fastest known method for integer multiplication? No,
much faster methods are known. Karatsuba’s method splits integer into two parts and
requires three multiplications of integers of half the length. The natural extension is
to split into k parts of length n/k each. If the recursive step requires ` multiplications
of numbers of length n/k, the running time of resulting algorithm grows like nlogk `.
In this way, Toom [185] and Cook [44] reduced the running time to12 O

(

n1+ε
)

for
arbitrary positive ε. The asymptotically most efficient algorithms are the work of
Schönhage and Strassen [161] and Schönhage [160]. The former multiplies n-bit
integers with O(n log n loglog n) bit operations and it can be implemented to run in
this time bound on a Turing machine. The latter runs in linear time O(n) and requires
the machine model discussed in Section 2.2. In this model, integers with log n bits
can be multiplied in constant time.

12 O(·)-notation is defined in Section 2.1.

2

Introduction

[Stonehenge.png verwenden ?] ⇐=
When you want to become a sculptor, you will have to learn some basic tech-

niques: Where to get the right stones, how to move them, how to handle the chisel,
how to erect scaffolding, Knowing these techniques will not make you a famous
artist, but even if you are a really exceptional talent, it will be very difficult to develop
into a successful artist without knowing them. It is not necessary to master all basic
techniques, before sculpting the first piece. But you always have to be willing to go
back to improve your basic techniques.

This introductory chapter plays a similar role for this book. We introduce basic
concepts that make it simpler to discuss and analyze algorithms in the subsequent
chapters. There is no need for you to read this chapter from beginning to end be-
fore you proceed to later chapters. On first reading, we recommend to read carefully
till the end of Section 2.3 and to skim through the remaining sections. We begin in
Section 2.1 by introducing notation and terminology that allows us to argue about
the complexity of algorithms in a concise way. We then introduce a simple machine
model in Section 2.2 that allows us to abstract from the highly variable complications
introduced by real hardware. The model is concrete enough to have predictive value
and abstract enough to allow elegant arguments. Section 2.3 then introduces a high
level pseudocode notation for algorithms that is much more convenient for express-
ing algorithms than the machine code of our abstract machine. Pseudocode is also
more convenient than actual programming languages since we can use high level
concepts borrowed from mathematics without having to worry about how exactly
they can be compiled to run on actual hardware. We frequently annotate programs
to make algorithms more readable and easier to prove correct. This is the content
of Section 2.4. Section 2.5 gives a first comprehensive example: binary search in
a sorted array. In Section 2.6 we introduce mathematical techniques for analyzing
the complexity of programs, in particular, for analyzing nested loops and recursive
procedure calls. Additional analysis techniques are needed for average case analysis
which are covered in Section 2.7. Randomized algorithms, discussed in Section 2.8

22 2 Introduction

use coin tosses in their execution. Section 2.9 is devoted to graphs, a concept that will
play an important role throughout the book. In Section 2.10 we discuss the question
when an algorithm should be called efficient and introduce complexity classes P and
NP. Finally, as in every chapter of this book, there are sections on implementation
notes (Section 2.11) and on historical notes and further findings (Section 2.12).

2.1 Asymptotic Notation

The main purpose of algorithm analysis is to give performance guarantees, e.g,
bounds on running time, that are at the same time accurate, concise, general, and
easy to understand. It is difficult to meet all these criteria simultaneously. For exam-
ple, the most accurate way to characterize the running time T of an algorithm is to
view T as a mapping from the set I of all inputs to the set of nonnegative numbers�

+. For any problem instance i, T (i) is the running time on i. This level of detail
is so overwhelming that we could not possibly derive a theory on it. A useful theory
needs a more global view on the performance of an algorithm.

We group the set of all inputs into classes of “similar” inputs and summarize the
performance on all instances in the same class into a single number. The most useful
grouping is by size. Usually, there is a natural way to assign a size to each problem
instance. The size of an integer is the number of digits in its representation and the
size of a set is the number of elements in the set. The size of an instance is always
a natural number. Sometimes, we will use more than one parameter to measure the
size of an instance; for example, it is customary to measure the size of a graph by its
number of nodes and by its number of edges. We ignore this complication for now.
We use size(i) to denote the size of instance i and In to denote the instances of size
n for n ∈ �

. For the inputs of size n, we are interested in the maximum, minimum,
and average execution time.1

worst case: T (n) = max {T (i) : i ∈ In}
best case: T (n) = min {T (i) : i ∈ In}
average case: T (n) = 1

|In|

∑

i∈In
T (i)

We are most interested in the worst case execution time since it gives us the
strongest performance guarantee. The comparison of the best case and the worst
case tells us how much the execution time varies for different inputs in the same
class. If the discrepancy is big, the average case may give more insight into the true
performance of the algorithm. Section 2.7 gives an example.

We are going to make one more step of data reduction. We will concentrate on
growth rate or asymptotic analysis. Functions f(n) and g(n) have the same growth
rate if there are positive constants c and d such that c ≤ f(n)/g(n) ≤ d for all
sufficiently large n and f(n) grows faster than g(n) if for all positive constants c,
we have f(n) ≥ c · g(n) for all sufficiently large n. For example, the functions n2,

1 We will make sure that {T (i) : i ∈ In} always has a proper minimum and maximum, and
that In is finite when we consider averages.

2.1 Asymptotic Notation 23

n2 +7n, 5n2 −7n and n2/10+106n all have the same growth rate. Also, they grow
faster than n3/2 which in turn grows faster than n log n. Growth rate talks about the
behavior for large n. The word “asymptotic” in asymptotic analysis also stresses the
fact that we are interested in the behavior for large n.

Why are we only interested in growth rates and the behavior for large n? We are
interested in the behavior for large n, since the whole purpose of designing efficient
algorithms is to be able to solve large instances. For large n, an algorithm whose run-
ning time has smaller growth rate than the running time of another algorithm will be
superior. Also, our machine model is an abstraction of real machines and hence can
predict actual running time only up to a constant factor, and this suggests to make
no difference between algorithms whose running time has the same growth rate. A
pleasing side effect of concentrating on growth rate is that we can characterize the
running times of algorithms by simple functions. However, in the sections on imple-
mentation we will frequently take a closer look and go beyond asymptotic analysis.
Also, when using one of the algorithms described in this book, you should always
ask yourself whether the asymptotic view is justified.

The following definitions allow us to argue precisely about asymptotic behavior.
Let f(n) and g(n) denote functions that map nonnegative integers to nonnegative
real numbers.

O(f(n)) = {g(n) : ∃c > 0 : ∃n0 ∈ �
+ : ∀n ≥ n0 : g(n) ≤ c · f(n)} (2.1)

Ω(f(n)) = {g(n) : ∃c > 0 : ∃n0 ∈ �
+ : ∀n ≥ n0 : g(n) ≥ c · f(n)} (2.2)

Θ(f(n)) = O(f(n)) ∩ Ω(f(n)) (2.3)
o(f(n)) = {g(n) : ∀c > 0 : ∃n0 ∈ �

+ : ∀n ≥ n0 : g(n) ≤ c · f(n)} (2.4)
ω(f(n)) = {g(n) : ∀c > 0 : ∃n0 ∈ �

+ : ∀n ≥ n0 : g(n) ≥ c · f(n)} (2.5)

The left-hand sides should be read as “big O of f”, “big Omega of f”, “Theta of f”,
“little o of f”, and “little omega of f”, respectively.

Let us see some examples. O
(

n2
)

is the set of all functions that grow at most
quadratically, o

(

n2
)

is the set of functions that grow less than quadratically, and
o(1) is the set of functions that go to zero as n goes to infinity. Here 1 stands for
the function n 7→ 1 which is one everywhere and hence f ∈ o(1) if f(n) ≤ c ·
1 for any positive c and sufficiently large n, i.e., f(n) goes to zero as n goes to
infinity. Generally, O(f(n)) is the set of all functions that “grow no faster than”
f(n). Similarly, Ω(f(n)) is the set of all functions that “grow at least as fast as”
f(n). For example, the Karatsuba algorithm for integer multiplication has worst case
running time in O

(

n1.58
)

whereas the school algorithm has worst case running time
in Ω

(

n2
)

so that we can say that the Karatsuba algorithm is asymptotically faster than
the school algorithm. The “little-o” notation o(f(n)) denotes the set of all functions
that “grow strictly more slowly than” f(n). Its twin ω(f(n)) is rarely used and only
shown for completeness.

The growth rate of most algorithms discussed in this book is either a polynomial
or a logarithmic function or the product of a polynomial and a logarithmic function.
We use polynomials to introduce our readers into basic manipulations of asymptotic
notation.

24 2 Introduction

Lemma 5. Let p(n) =
∑k

i=0 ain
i denote any polynomial and assume ak > 0. Then

p(n) ∈ Θ
(

nk
)

.

Proof. It suffices to show p(n) ∈ O
(

nk
)

and p(n) ∈ Ω
(

nk
)

. First observe that for
n > 0,

p(n) ≤
k
∑

i=0

|ai|ni ≤ nk
k
∑

i=0

|ai| ,

and hence p(n) ≤ (
∑k

i=0 |ai|)nk for all positive n. Thus[mit oder ohne komma?]=⇒
p(n) ∈ O

(

nk
)

.
Let A =

∑k−1
i=0 |ai|. For positive n we have

p(n) ≥ aknk − Ank−1 =
ak

2
nk + nk−1(

ak

2
n − A)

and hence p(n) ≥ (ak/2)nk for n > 2A/ak. We chose c = ak/2 and n0 = 2A/ak

in the definition of Ω
(

nk
)

, and obtain p(n) ∈ Ω
(

nk
)

.

Exercise 10. Right or wrong? (a) n2 + 106n ∈ O
(

n2
)

, (b) n log n ∈ O(n), (c)
n log n ∈ Ω(n), (d) log n ∈ o(n).

Asymptotic notation is used a lot in algorithm analysis and it is convenient to
stretch mathematical notation a bit in order to allow treating sets of functions (such as
O
(

n2
)

) similarly to ordinary functions. In particular, we will always write h = O(f)
instead of h ∈ O(f) and O(h) = O(f) instead of O(h) ⊆ O(f). For example,

3n2 + 7n = O
(

n2
)

= O
(

n3
)

.

Be warned that sequences of equalities involving O-notation should only be read
from left to right.

If h is a function, F and G are sets of functions and ‘◦’ is an operator like +,
·, /,. . . then F ◦ G is a shorthand for {f ◦ g : f ∈ F, g ∈ G} and h ◦ F stands for
{h} ◦F . So f(n)+ o(f(n)) denotes the set of all functions f(n)+ g(n) where g(n)
grows strictly slower than f(n), i.e., the ratio (f(n) + g(n))/f(n) goes to one as
n goes to infinity. Equivalently, we can write (1 + o(1))f(n). We use this notation
whenever we care about the constant in the leading term but want to ignore lower
order terms.

Lemma 6. The following rules hold for O-notation:

cf(n) = Θ(f(n)) for any positive constant c (2.6)
f(n) + g(n) = Ω(f(n)) (2.7)
f(n) + g(n) = O(f(n)) if g(n) = O(f(n)) (2.8)

O(f(n)) · O(g(n)) = O(f(n) · g(n)) (2.9)

Exercise 11. Prove Lemma 6.

Exercise 12. Sharpen Lemma 5 and show p(n) = aknk + o(nk).

2.2 Machine Model 25

2.2 Machine Model

Fig. 2.1. John von Neumann
born Dec. 28, 1903 in Budapest,
died Feb. 8, 1957, Washington
DC.

In 1945 John von Neumann introduced a computer
architecture [142] which is simple and yet powerful.
The limited hardware technology of the time forced
him to come up with an elegant design concentrating
on the essentials; otherwise, realization would have
been impossible. Hardware technology has developed
tremendously since 1945. However, the programming
model resulting from von Neumann’s design is so el-
egant and powerful, that it is still the basis for most
of modern programming. Usually, programs written
with von Neumann’s model in mind also work well
on the vastly more complex hardware of today’s ma-
chines.

The variant of von Neumann’s model used in al-
gorithmic analysis is called the RAM (random access
machine) model. It was introduced by Sheperdson
and Sturgis [168]. It is a sequential machine with uni-
form memory, i.e., there is a single processing unit
and all memory accesses take the same amount of
time. The memory or store consists of infinitely many cells S[0], S[1], S[2], . . . ;
at any point in time, only a finite number of them will be in use.

The memory cells store “small” integers. In our discussion of integer arithmetic
in Chapter 1, we assumed that small means one digit. It is more reasonable and
convenient to assume that the interpretation of “small” depends on the input size.
Our default assumption is that integers bounded by a polynomial in the size of the
data being processed can be stored in a single cell. Such integers can be represented
with a number of bits that is logarithmic in the size of the input. The assumption
is reasonable because we could always spread out the content of a single cell over
logarithmically many cells for a logarithmic overhead in time and space and obtain
constant size cells. The assumption is convenient because we want to be able to
store array indices in a single cell. The assumption is necessary, since allowing cells
to store arbitrary numbers would lead to absurdly over-optimistic algorithms. For
example, by repeated squaring, we could generate a number with 2n bits in n steps.
Namely, if we start with the number 2 = 21, squaring it once gives 4 = 22 = 221

,
squaring it twice gives 16 = 24 = 222

, and squaring it n times gives 22n

. Our
model supports a limited form of parallelism. We can perform simple operations on
a logarithmic number of bits in constant time.

In addition to the main memory, there is a small number of registers R1, . . . , Rk.
Our RAM can execute the following machine instructions.

Ri := S[Rj] loads the content of the memory cell indexed by the content of Rj into
register Ri.

S[Rj] := Ri stores register Ri into the memory cell indexed by the content of Rj .

26 2 Introduction

Ri := Rj ¯ R` is a binary register operation where ‘¯’ is a placeholder for a vari-
ety of operations. Arithmetic operations are the the usual +, −, and ∗ but also
the bit-wise operations | (or), & (and), >> (shift right), << (shift left), and ⊕
(exclusive or). Operations div and mod stand for integer division and remainder
respectively. Comparison operations ≤, <, >, ≥ yield true (= 1) or false (=
0). Logical operations ∧ and ∨ manipulate the truth values 0 and 1. We may also
assume that there are operations which interpret the bits stored in a register as a
floating point number, i.e., a finite precision approximation of a real number.

Ri := ¯Rj is a unary operation using the operators −, ¬ (logical not), or ~ (bitwise
not).

Ri := C assigns a constant value to Ri.
JZ j, Ri continues execution at memory address j if register i is zero.
J j continues execution at memory address j.

Each instruction takes one time step to execute. The total execution time of a program
is the number of instructions executed. A program is a list of instructions numbered
starting at one. The addresses in jump-instructions refer to this numbering. The input
for a computation is stored in memory cells S[1] to S[R1].

It is important to remember that the RAM model is an abstraction. One should
not confuse it with physically existing machines. In particular, real machines have
finite memory and a fixed number of bits per register (e.g., 32 or 64). In contrast,
word size and memory of a RAM scales with input size. This can be viewed as an
abstraction of historical development. Microprocessors subsequently had 4, 8, 16,
32, and now often 64 bit words. Words with 64 bits can index a memory of size 264.
Thus at current prices, memory size is limited by cost and not by physical limitations.
Observe, that this statement was also true when 32-bit words were introduced.

Our complexity model is also a gross oversimplification: Modern processors at-
tempt to execute many instructions in parallel. How well they succeed depends on
factors like data dependencies between subsequent operations. As a consequence,
an operation does not have a fixed cost. This effect is particularly pronounced for
memory accesses. The worst case time for a memory access from main memory
can be hundreds of times higher than the best case time. The reason is that modern
processors attempt to keep frequently used data in caches — small, fast memories
close to the processors. How well caches work depends a lot on their architecture,
the program, and the particular input.

We could attempt to introduce a very accurate cost model but this would miss
the point. We would end up with a complex model that is difficult to handle. Even
a successful complexity analysis would be a monstrous formula depending on many
parameters that change with every new processor generation. Although such a for-
mula would contain detailed information, the very complexity of the formula would
make it useless. We therefore go to the other extreme and eliminate all model pa-
rameters by assuming that each instruction takes exactly one unit of time. The result
is that constant factors in our model are quite meaningless — one more reason to
stick to asymptotic analysis most of the time. We compensate this drawback by im-
plementation notes in which we discuss implementation choices and tradeoffs.

2.3 Pseudocode 27

External Memory: The biggest difference between a RAM and real machines is
the memory: a uniform memory in a RAM and a complex memory hierarchy in real
machines. In Sections 5.7, 6.3 and 7.6 we will discuss algorithms which are specif-
ically designed for huge data sets which have to be stored on slow memory, such a
disks. We will use the so-called external memory model to study these algorithms.

The external memory model is like the RAM model except that the fast memory
S is limited in size to M words. Additionally, there is an external memory with
unlimited size. There are special I/O operations that transfer B consecutive words
between slow and fast memory. For example, the external memory could be a hard
disk, M would then be the main memory size and B would be a block size that is a
good compromise between low latency and high bandwidth. On current technology,
M = 1 GByte and B = 1 MByte are realistic values. One I/O step would then be
around 10ms which is 107 clock cycles of a 1GHz machine. With another setting of
the parameters M and B, we could model the smaller access time difference between
a hardware cache and main memory.

Parallel Processing: On modern machines, we are confronted with many forms
of parallel processing. Many processors have 128–512 bit wide SIMD registers that
allow the parallel execution of a Single instruction on multiple data objects. Simulta-
neous multi-threading allows processors to better utilize their resources by running
multiple threads of activity on a single processor core. Even mobile devices often
have multiple processor cores that can independently execute a program and most
servers have several such multicore processors accessing the same shared memory.
Co-processors, in particular for graphics processing, have even more parallelism on
a single chip. High performance computers consist of multiple server-type systems
interconnected by a fast, dedicated network. Finally, more loosely connected com-
puters of all types interact through various kind of networks (internet, radio net-
works,. . .) in distributed systems that may consist of millions of nodes. As you can
imagine, no single simple model can be used to describe parallel programs on these
many levels of parallelism. We will therefore restrict ourselves to occasional infor-
mal arguments why a certain sequential algorithm may be more or less easy to adapt
to parallel processing. For example, the algorithms for high precision arithmetics in
Chapter 1 could make use of SIMD-instructions.

2.3 Pseudocode

Our RAM model is an abstraction and simplification of the machine programs exe-
cuted on microprocessors. The purpose of the model is to have a precise definition
of running time. However, the model is much too low level for formulating complex
algorithms. Our programs would become too long and too hard to read. Instead we
formulate our algorithms in pseudocode that is an abstraction and simplification of
imperative programming languages like C, C++, Java, Pascal, etc. , combined with
a liberal use of mathematical notation. We now describe the conventions used in
this book and derive a timing model for pseudocode programs. The timing model is

28 2 Introduction

quite simple: basic pseudocode instructions take constant time and procedure and
function calls take constant time plus the time to execute their body. We justify the
timing model by outlining how pseudocode can be translated into equivalent RAM-
code. We do this only to the extent necessary to understand the timing model. There
is no need to worry about compiler optimization techniques since constant factors
are outside our theory. The reader may decide to skip the paragraphs describing the
translation and adopt the timing model as an axiom. The syntax of our pseudocode
is akin to Pascal [97] because we find this notation typographically nicer for a book
than the more widely known syntax of C and its descendents C++ and Java.

A variable declaration “v = x : T ” introduces a variable v of type T and initial-
izes it with value x. For example, “answer = 42 :

�
” introduces a variable answer

assuming integer values and initializes it to the value 42. When the type of a vari-
able is clear from the context, we sometimes omit it from the declaration. A type
is either a basic type (e.g., integer, boolean value, or pointer) or a composite type.
We have predefined composite types such as arrays and application specific classes
(see below). When the type of a variable is irrelevant for the discussion, we use the
unspecified type Element as a placeholder for an arbitrary type. We take the liberty
of extending numeric types by values −∞ and ∞, whenever this is convenient. Sim-
ilarly, we sometimes extend types by an undefined value (denoted by the symbol ⊥)
which we assume to be distinguishable from any “proper” element of T . In particu-
lar, for pointer types it is useful to have an undefined value. The values of the pointer
type "Pointer to T " are handles of objects of type T . In the RAM model, this is the
index of the first cell in a region of storage holding an object of type T .

A declaration “a : Array [i..j] of T ” introduces an array a consisting of j−i+1
elements of type T stored in a[i], a[i + 1], . . . , a[j]. Arrays are implemented as
contiguous pieces of memory. To find element a[k], it suffices to know the starting
address of a and the size of an object of type T . For example, if register Ra stores the
starting address of array a[0..k] and elements have unit size, the instruction sequence
“R1:=Ra+42; R2:=S[R1]” loads a[42] into register R2. The size of an array is fixed
at the time of declaration; such arrays are also called static. In Section 3.2 we show
how to implement unbounded arrays that can grow and shrink during execution.

A declaration “c : Class age :
�

, income :
�

end ” introduces a variable c whose
values are pairs of integers. The components of c are denoted c.age and c.income .
For a variable c, addressof c returns the address of c. We also say, it returns a
handle to c. If p is an appropriate pointer type, p := addressof c stores a handle
to c in p and ∗p gives us back c. The fields of c can then also be accessed through
p → age and p → income . Alternatively, one may write (but nobody ever does)
(∗p).age and (∗p).income .

Arrays and objects referenced by pointers can be allocated and deallocated by
the commands allocate and dispose. For example, p := allocate Array [1..n]
of T allocates an array of n objects of type T , i.e., allocates a contiguous chunk of
memory of size n times the size of an object of type T , and assigns a handle of
this chunk (= starting address of the chunk) to p. Instruction dispose p frees this
memory and makes it available for reuse. With allocate and dispose we cut our
memory array S into disjoint pieces that can be referred to separately. The functions

2.3 Pseudocode 29

can be implemented to run in constant time. The most simple implementations is
as follows. We keep track of the used portion of S, say free contains the index of
the first free cell of S. A call of allocate reserves a chunk of memory starting at
free and increases free by the size of the allocated chunk. A call of dispose does
nothing. This implementation is time-efficient, but not space efficient. Any call of
allocate or dispose takes constant time. However, the total space consumption is
the total space ever allocated and not the maximal space simultaneously used, i.e.,
allocated but not yet freed, at any one time. It is not known whether an arbitrary
sequence of allocate and dispose operations can be realized space-efficiently and
with constant time per operation. However, for all algorithms presented in this book,
allocate and dispose can be realized in a time and space efficient way. We will
ask the reader to design efficient schemes in the exercises.

We borrow some composite data structures from mathematics, in particular, we
will use tuples, sequences, and sets. Pairs, Triples, and, more generally, Tuples are
written in round brackets, e.g., (3, 1), (3, 1, 4) or (3, 1, 4, 1, 5). Since tuples only con-
tain a constant number of elements, operations on them can be broken into operations
on their constituents in an obvious way. Sequences store elements in a specified or-
der, e.g., “s = 〈3, 1, 4, 1〉 : Sequence of � ” declares a sequence s of integers and
initializes it to contain the numbers 3, 1, 4, and 1 in this exact order. Sequences
are a natural abstraction for many data structures like files, strings, lists, stacks, and
queues. In Chapter 3 we will study many ways to represent sequences. In later chap-
ters, we will make extensive use of sequences as a mathematical abstraction with
little further reference to implementation details. The empty sequence is written as
〈〉.

Sets play an important role in mathematical arguments and we will also use them
in our pseudocode. In particular, you will see declarations like “M = {3, 1, 4} : Set

of
�

” that are analogous to declarations of arrays or sequences. Sets are usually
implemented as sequences.

Having discussed variables and their declaration, we come to statements. The
simplest statement is an assignment x := E where x is a variable and E is an ex-
pression. An assignment is easily transformed into a constant number of RAM in-
structions. For example, the statement a := a + bc is translated into “R1 := Rb ∗Rc;
Ra := Ra + R1” where Ra, Rb, and Rc stand for the registers storing a, b, and
c respectively. From C we borrow the shorthands ++ and -- for incrementing and
decrementing variables. We also use parallel assignment to several variables. For ex-
ample, if a and b are variables of the same type, “(a, b) := (b, a)” swaps the contents
of a and b.

The conditional statement "if C then I else J", where C is a boolean expression
and I and J are statements, translates into the instruction sequence

eval(C); JZ sElse Rc; trans(I); J sEnd ; trans(J)

where eval(C) is a sequence of instructions evaluating the expression C and stor-
ing its result in register Rc, trans(I) is a sequence of instructions implementing
statement I , trans(J) implements J , sElse is the address of the first instruction in

30 2 Introduction

trans(J), and sEnd is the address of the first instruction after trans(J). The se-
quence above first evaluates C. If C evaluates to false (= 0), the program jumps to
the first instruction of the translation of J . If C evaluates to true (= 1), the program
continues with the translation of I and then jumps to the instruction after the trans-
lation of J . The statement “if C then I” is a shorthand for “if C then I else ;”, i.e.,
an if-then-else with an empty else part.

Our write-up of programs is intended for humans and uses less strict syntax than
programming languages. In particular, we usually group statements by indentation
and in this way avoid the the proliferation of brackets observed in programming
languages like C that are designed as a compromise of readability for humans and
computers. We use brackets only if the write-up would be ambiguous otherwise. For
the same reason, a line break can replace a semicolon for separating statements.

The loop “repeat I until C” translates into trans(I); eval(C); JZ sI Rc where
sI is the address of the first instruction in trans(I). We will also use many other
types of loops that can be viewed as shorthands for repeat-loops. In the following
list, the shorthand on the left expands into the statements on the right.

while C do I if C then repeat I until ¬C
for i := a to b do I i := a; while i ≤ b do I; i++
foreach e ∈ s do I for i := 1 to |s| do e := s[i]; I

Many low level optimizations are possible when translating loops into RAM code.
They are of no concern for us. For us, it is only important that the execution time
of a loop can be bounded by summing the execution times of each of its iterations
including the time needed for evaluating conditions.

A subroutine with name foo is declared in the form “Procedure foo(D) I”
where I is the body of the procedure and D is a sequence of variable declarations
specifying the parameters of foo. A call of foo has the form foo(P) where P is a
parameter list. The parameter list has the same length as the variable declaration list.
Parameter passing is either “by value” or “by reference”. Our default assumption is
that basic objects such as integers and boolean are passed by value and that complex
objects such as arrays are passed by reference. These conventions are similar to the
conventions used by C and guarantee that parameter passing takes constant time. The
semantics of parameter passing is defined as follows: for a value parameter x of type
T the actual parameter must be an expression E of type T and parameter passing
is equivalent to the declaration x = E : T and for a reference parameter x of type
T , the actual parameter must be a variable of type T and the formal parameter is
simply an alternative name for the actual parameter. As for variable declarations,
we sometimes omit type declarations for parameters if they are unimportant or clear
from the context. Sometimes we also declare parameters implicitly using mathemat-
ical notation. For example, the declaration Procedure bar(〈a1, . . . , an〉) introduces
a procedure whose argument is a sequence of n elements of unspecified type.

Most procedure calls can be compiled into machine code by simply substitut-
ing the procedure body for the procedure call and making provisions for parameter
passing; this is called inlining. Value passing is implemented by making appropriate
assignments to copy the parameter values into the local variables of the procedure.

2.3 Pseudocode 31

Function factorial(n) : �
if n = 1 then return 1 else return n · factorial(n− 1)

factorial : // the first instruction of factorial

Rn := RS [Rr − 1] // load n into register Rn

JZ thenCase, Rn // jump to then-case, if n is zero
RS [Rr] = aRecCall // else-case; return address for recursive call
RS [Rr + 1] := Rn − 1 // parameter is n− 1
Rr := Rr + 2 // increase stack pointer
J factorial // start recursive call
aRecCall : // return address for recursive call
Rresult := RS [Rr − 1] ∗Rresult // store n ∗ factorial(n− 1) in result register
J return // goto return
thenCase : // code for then case
Rresult := 1 // put 1 into result register
return : // code for return
Rr := Rr − 2 // free activation record
J RS [Rr] // jump to return address

Fig. 2.2. A recursive function factorial and the corresponding RAM-code. The RAM-code
returns the function value in register Rresult.

PSfrag replacements
aRecCall

aRecCall

afterCall

5

4

3

Rr

Fig. 2.3. The recursion stack of a call factorial(5) when the recursion has reached
factorial(3).

Reference passing to a formal parameter x : T is implemented by changing the type
of x to Pointer to T , replacing all occurrences of x in the body of the procedure by
(∗x) and initializing x by the assignment x := addressof y, where y is the actual
parameter. Since the compiler subsequently has many opportunities for optimization,
inlining is the most efficient approach for small procedures and procedures that are
only called from a single place.

[Rewrap figure 2.3.] Functions are similar to procedures except that they allow ⇐=
the return statement to return a value. Figure 2.2 shows the declaration of a recursive
function that returns n! and its translation into RAM-code. The substitution approach
fails for recursive procedures and functions that directly or indirectly call themselves

32 2 Introduction

— substitution would never terminate. Realizing recursive procedures in RAM-code
requires the concept of a recursion stack r. It is not only used for recursive pro-
cedures but also for procedures where inlining is inappropriate for other reasons,
e.g., because it would lead to a large increase in code size. The recursion stack is
a reserved part of the memory; we use RS to denote it. RS contains a sequence of
so-called activation records, one for each active procedure call. A special register Rr

always points to the first free entry on this stack. The activation record for a proce-
dure with k parameters and ` local variables has size 1 + k + `. The first location
contains the return address, i.e., the address of the instruction where execution is to
be continued after the call has terminated, the next k locations are reserved for the pa-
rameters, and the final ` locations are for the local variables. A procedure call is now
implemented as follows. First, the calling procedure caller pushes the return address
and the actual parameters onto the stack, increases Rr accordingly, and jumps to the
first instruction of the called routine called . It reserves space for its local variables
by increasing Rr accordingly. Then the body of called is executed. During execu-
tion of the body, any access to the i-th formal parameter (0 ≤ i < k) is an access to
RS [Rr − `− k + i] and any access to the i-th local variable (0 ≤ i < `) is an access
to RS [Rr − ` + i]. When called executes a return statement, it decreases Rr by
1 + k + ` (observe that called knows k and `) and execution continues at the return
address (which can be found at RS [Rr]). Thus control is returned to caller . Note
that recursion is no problem with this scheme since each incarnation of a routine will
have its own stack area for its parameters and local variables. Figure 2.3 shows the
content of the recursion stack of a call factorial(5) when the recursion has reached
factorial(3). The label afterCall is the address of the instruction following the
call factorial(5) and aRecCall is defined in Figure 2.2.

Exercise 13 (Sieve of Eratosthenes). Translate the following pseudocode for find-
ing all prime numbers up to n into RAM machine code. Argue correctness first.

a = 〈1, . . . , 1〉 : Array [2..n] of {0, 1} // if a[i] is false, i is known to be non-prime
for i := 2 to b√nc do

if a[i] then for j := 2i to n step i do a[j] := 0
// if a[i] is true, i is prime and all multiples of i are non-prime

for i := 2 to n do if a[i] then output “i is prime”

We also need a simple form of object oriented programming so that we can sep-
arate the interface and implementation of data structures. We will introduce our no-
tation by way of example. The definition

Class Complex(x, y : Element) of Number

Number r := x
Number i := y

Function abs : Number return
√

r2 + i2

Function add(c′ : Complex) : Complex return Complex(r + c′.r, i + c′.i)

gives a (partial) implementation of a complex number type that can use arbitrary
numeric types for real and imaginary parts. Very often, our class names will begin

2.4 Designing Correct Algorithms and Programs 33

Function power(a : � ; n0 : �) : �
assert n0 ≥ 0 and ¬(a = 0 ∧ n0 = 0) // It is not so clear what 00 should be
p = a : � ; r = 1 : � ; n = n0 : � // we have: pnr = an0

while n > 0 do
invariant pnr = an0

if n is odd then n--; r := r · p // invariant violated between assignments
else (n, p) := (n/2, p · p) // parallel assignment maintains invariant

assert r = an0 // This is a consequence of the invariant and n = 0
return r

Fig. 2.4. An algorithm that computes integer powers of real numbers.

with capital letters. The real and imaginary parts are stored in the member variables r
and i respectively. Now, the declaration “c : Complex (2, 3) of

�
” declares a complex

number c initialized to 2+3i; c.i is the imaginary part, and c.abs returns the absolute
value of c.

The type after the of allows us to parameterize classes with types in a way similar
to the template mechanism of C++ or the generic types of Java. Note that in the light
of this notation, the previously mentioned types “Set of Element” and “Sequence

of Element” are ordinary classes. Objects of a class are initialized by setting the
member variables as specified in the class definition.

2.4 Designing Correct Algorithms and Programs

An algorithm is a general method for solving problems of a certain kind. We describe
algorithms using natural language and mathematical notation. Algorithms as such
cannot be executed by a computer. The formulation of an algorithm in a program-
ming language is called a program. Designing correct algorithms and translating a
correct algorithm into a correct program are non-trivial and error-prone tasks. In this
section we learn about assertions and invariants, two useful concepts for the design
of correct algorithms and programs.

Assertions and invariants describe properties of the program state, i.e., properties
of single variables and relations between the values of several variables. Typical
properties are: a pointer has a defined value, an integer is non-negative, a list is non-
empty, or the value of an integer variable length is equal to the length of a certain list
L. Figure 2.4 shows an example of the use of assertions and invariants in a function
power(a, n0) that computes an0 for a real number a and a non-negative integer n0.

We start with the assertion assert n0 ≥ 0 and ¬(a = 0 ∧ n0 = 0). It states
that the program expects a non-negative integer n0 and that not both a and n0 are
allowed to be zero. We make no claim about the behavior of our program for inputs
violating the assertion. For this reason, the assertion is called the precondition of the
program. It is good programming practice to check the precondition of a program,
i.e., to write code which checks the precondition and signals an error if it is violated.

34 2 Introduction

When the precondition holds (and the program is correct), the postcondition holds at
termination of the program. In our example, we assert that r = an0 . It is also good
programming practice to verify the postcondition before returning from a program.
We come back to this point at the end of the section.

One can view preconditions and postconditions as a contract between the caller
and the called routine: If the caller passes parameters satisfying the precondition, the
routine produces a result satisfying the postcondition.

For conciseness, we will use assertions sparingly assuming that certain “obvi-
ous” conditions are implicit from the textual description of the algorithm. Much more
elaborate assertions may be required for safety critical programs or even formal ver-
ification.

Pre- and postconditions are assertions describing the initial and the final state
of a program or function. We also need to describe properties of intermediate states.
Some particularly important consistency properties should hold at many places in the
program. They are called invariants. Loop invariants and data structure invariants are
of particular importance.

A loop invariant holds before and after each loop iteration. In our example, we
claim pnr = an0 before each iteration. This is certainly true before the first iteration
by the way the program variables are initialized. In fact, the invariant frequently tells
us how to initialize the variables. Assume the invariant holds before execution of the
loop body and n > 0. If n is odd, we decrement n and multiply r by p. This re-
establishes the invariant. However, the invariant is violated between the assignments.
If n is even, we halve n and square p and again re-establish the invariant. When the
loop terminates, we have pnr = an0 by the invariant and n = 0 by the condition of
the loop. Thus r = an0 and we have established the postcondition.

Algorithm 2.4 and many more algorithms explained in this book have a quite
simple structure: A couple of variables are declared and initialized to establish the
loop invariant. Then a main loop manipulates the state of the program. When the
loop terminates, the loop invariant together with the termination condition of the loop
imply that the correct result has been computed. The loop invariant therefore plays
a pivotal role in understanding why a program works correctly. Once we understand
the loop invariant, it suffices to check that the loop invariant is true initially and after
each loop iteration. This is particularly easy if the loop body consists of only a small
number of statements as in the example above.

More complex programs encapsulate their state in objects whose consistent rep-
resentation is also governed by invariants. Such data structure invariants are declared
together with the data type. They are true after an object is constructed and they are
preconditions and postconditions of all methods of the class. For example, we will
discuss the representation of sets by sorted arrays. The data structure invariant will
state that the data structure uses an array a and an integer n, that n is the size of
a, that the set S stored in the data structure is equal to {a[1], . . . , a[n]} and that
a[1] < a[2] < . . . < a[n]. The methods of the class have to maintain this invariant
and they are allowed to leverage the invariant, e.g., the search method may make use
of the fact that the array is sorted.

2.5 An Example — Binary Search 35

We mentioned above that it is good programming practice to check assertions. It
is not always clear how to do this efficiently; in our example program, it is easy to
check the precondition, but there seems to be no easy way to check the postcondition.
In many situations, however, the task of checking assertions can be simplified by
computing additional information. The additional information is called a certificate
or witness and its purpose it to simplify the check of an assertion. When an algorithm
computes a certificate for the postcondition, we call it a certifying algorithm. We
illustrate the idea by an example. Consider a function whose input is a graph G =
(V,E). Graphs are defined in Section 2.9. The task is to test whether the graph is
bipartite, i.e., whether there is a labelling of the vertices of G with colors blue and red
such that any edge of G connects vertices of distinct colors. As stated, the function
returns true or false, true if G is bipartite and false otherwise. With this rudimentary
output, the postcondition cannot be checked. However, we may augment the program
as follows. When the program declares G bipartite, it also returns a two-coloring
of the graph. When the program declares G non-bipartite, it also returns a cycle
of odd length in the graph. For the augmented program, the postcondition is easy
to check. In the first case, we simply check whether all edges connect vertices of
distinct colors and in the second case, we do nothing. An odd length cycle proves
that the graph is non-bipartite. Most algorithms in this book can be made certifying
without increasing asymptotic running time.

2.5 An Example — Binary Search

Binary search is a very useful technique for searching in an ordered set of items. We
will use it over and over again in later chapters.

The most simple scenario is as follows: We are given a sorted array a[1..n] of
elements, i.e., a[1] < a[2] < . . . < a[n], and an element x and are supposed to find
the index i with a[i − 1] < x ≤ a[i]; here a[0] and a[n + 1] should be interpreted as
fictitious elements with value −∞ and +∞, respectively. We can use the fictitious
elements in the invariants and the proofs, but cannot access them in the program.

Binary search is based on the principle of divide-and-conquer. We choose an
index m ∈ [1..n] and compare x and a[m]. If x = a[m] we are done and return
i = m. If x < a[m], we restrict the search to the part of the array before a[m], and
if x > a[m], we restrict the search to the part of the array after a[m]. We need to
say more clearly what it means to restrict the search to a subinterval. We have two
indices ` and r into the array and maintain the invariant

(I) 0 ≤ ` < r ≤ n + 1 and a[`] < x < a[r] .

This is true initially with ` = 0 and r = n + 1. If ` and r are consecutive indices, x
is not contained in the array. Figure 2.5 shows the complete program.

The comments in the program show that the second part of the invariant is main-
tained. With respect to the first part, we observe that the loop is entered with ` < r.
If ` + 1 = r, we stop and return. Otherwise, ` + 2 ≤ r and hence ` < m < r. Thus

36 2 Introduction

(`, r) := (0, n + 1)
while true do

invariant I // i.e., Invariant (I) holds here
if ` + 1 = r then return “a[`] < x < a[` + 1]”
m := b(r + `)/2c // ` < m < r
s := compare(x, a[m]) // −1 if x < a[m], 0 if x = a[m], +1 if x > a[m]
if s = 0 then return “x is equal to a[m]”;
if s < 0

then r := m // a[`] < x < a[m] = a[r]
else ` := m // a[`] = a[m] < x < a[r]

Fig. 2.5. Binary Search for x in a sorted array a[1..n]

m is a legal array index and we can access a[m]. If x = a[m], we stop. Otherwise,
we either set r = m or ` = m and hence have ` < r at the end of the loop. Thus the
invariant is maintained.

Let us argue termination next. We observe first, that if an iteration is not the last
then we either increase ` or decrease r and hence r − ` decreases. Thus the search
terminates. We want to show more. We want to show that the search terminates in a
logarithmic number of steps. We study the quantity r − ` − 1. Note that this is the
number of indices i with ` < i < r and hence a natural measure of the size of the
current subproblem. If an iteration is not the last, this quantity decreases to

max(r − b(r + `)/2c − 1, b(r + `)/2c − ` − 1)

≤ max(r − ((r + `)/2 − 1/2) − 1, (r + `)/2 − ` − 1)

= max((r − ` − 1)/2, (r − `)/2 − 1) = (r − ` − 1)/2 ,

and hence it at least halved. We start with r − `− 1 = n + 1− 0− 1 = n and hence
have r − ` − 1 ≤

⌊

n/2k
⌋

after k iterations. The (k + 1)-th iteration is certainly the
last, if we enter it with r = ` + 1. This is guaranteed if n/2k < 1 or k > log n.
We conclude that at most 2 + log n iterations are performed. Since the number of
comparisons is a natural number, we can sharpen the bound to 2 + blog nc.

Theorem 4. Binary search finds an element in a sorted array in 2+blog nc compar-
isons between elements.

Exercise 14. Show that the bound is sharp, i.e., for every n there are instances where
exactly 2 + blog nc comparisons are needed.

Exercise 15. Formulate binary search with two-way comparisons, i.e., distinguish
between the cases x < a[m], and x ≥ a[m].

We next discuss two important extensions of binary search. First, there is no
need for the values a[i] to be stored in an array. We only need the capability to
compute a[i] given i. For example, if we have a strictly monotone function f and
arguments i and j with f(i) < x < f(j), we can use binary search to find m with

2.6 Basic Program Analysis 37

f(m) ≤ x < f(m + 1). In this context, binary search is often referred to as the
bisection method.

Second, we can extend binary search to the case that the array is infinite. Assume
we have an infinite array a[1..∞] with a[1] ≤ x and want to find m such that a[m] ≤
x < a[m + 1]. If x is larger than all elements in the array, the procedure is allowed
to diverge. We proceed as follows. We compare x with a[21], a[22], a[23], . . . , until
the first i with x < a[2i] is found. This is called an exponential search. Then we
complete the search by binary search on the array a[2i−1..2i].

Theorem 5. Exponential and binary search finds x in an unbounded sorted array in
2 log m + 3 comparisons, where a[m] ≤ x < a[m + 1].

Proof. We need i comparisons to find the first i with x < a[2i] and then log(2i −
2i−1) + 2 comparisons for the binary search. This makes 2i + 1 comparisons. Since
m ≥ 2i−1 we have i ≤ 1 + log m and the claim follows.

Binary search is certifying. It returns an index m with a[m] ≤ x < a[m + 1]. If
x = a[m], the index proves that x is stored in the array. If a[m] < x < a[m + 1] and
the array is sorted, the index proves that x is not stored in the array. Of course, if the
array violates the precondition and is not sorted, we know nothing. There is no way
to check the precondition in logarithmic time.

2.6 Basic Program Analysis

Let us summarize the principles of program analysis. We abstract from the compli-
cations of a real machine to the simplified RAM model. In the RAM model, running
time is measured by the number of instructions executed. We simplify further by
grouping inputs by size and focussing on the worst case. The use of asymptotic no-
tation allows us to ignore constant factors and lower order terms. This coarsening of
our view also allows us to look at upper bounds on the execution time rather than
the exact worst case as long as the asymptotic result remains unchanged. The total
effect of these simplifications is that the running time of pseudocode can be analyzed
directly. There is no need for translating into machine code first.

We will next introduce a set of simple rules for analyzing pseudocode. Let T (I)
denote the worst case execution time of a piece of program I . Then the following
rules tell us how to estimate running time for larger programs given that we know
the running time of their constituents:

• T (I; I ′) = T (I) + T (I ′).
• T (if C then I else I ′) = O(T (C) + max(T (I), T (I ′))).
• T (repeat I until C) = O

(

∑k
i=1 T (i)

)

where k is the number of loop iterations,
and where T (i) is the time needed in the i-th iteration of the loop.

We postpone the treatment of subroutine calls to Section 2.6.2. Among the rules
above, only the rule for loops is non-trivial to apply. It requires evaluating sums.

38 2 Introduction

2.6.1 “Doing Sums”

We introduce basic techniques for evaluating sums. Sums arise in the analysis of
loops, in average case analysis, and also in the analysis of randomized algorithms.

For example, the insertion sort algorithm introduced in Section 5.1 has two nested
loops. The outer loop counts i from 2 to n. The inner loop performs at most i − 1
iterations. Hence, the total number of iterations of the inner loop is at most

n
∑

i=2

(i − 1) =
n−1
∑

i=1

i =
n(n − 1)

2
= O

(

n2
)

,

where the second equality is Equation (A.11). Since the time for one execution of
the inner loop is O(1), we get a worst case execution time of Θ

(

n2
)

. All nested
loops with an easily predictable number of iterations can be analyzed in an analogous
fashion: Work your way inside out by repeatedly finding a closed form expression
for the innermost loop. Using simple manipulations like

∑

i cai = c
∑

i ai,
∑

i(ai +
bi) =

∑

i ai +
∑

i bi, or
∑n

i=2 ai = −a1 +
∑n

i=1 ai one can often reduce the sums
to simple forms that can be looked up in a catalogue of sums. A small sample of
such formulae can be found in Appendix A. Since we are usually only interested in
the asymptotic behavior, we can frequently avoid doing sums exactly and resort to
estimates. For example, instead of evaluating the sum above exactly, we may argue
more simply:

n
∑

i=2

(i − 1) ≤
n
∑

i=1

n = n2 = O
(

n2
)

n
∑

i=2

(i − 1) ≥
n
∑

i=dn/2e

n/2 = bn/2c · n/2 = Ω
(

n2
)

.

2.6.2 Recurrences

In our rules for analyzing programs we have so far neglected subroutine calls. Non-
recursive subroutines are easy to handle since we can analyze the subroutine sepa-
rately and then substitute the obtained bound into the expression for the running time
of the calling routine. For recursive programs this approach does not lead to a closed
formula, but to a recurrence relation.

For example, for the recursive variant of school multiplication, we obtained
T (1) = 1 and T (n) = 6n + 4T (dn/2e) for the number of primitive operations.
For the Karatsuba algorithm, the corresponding expression was T (n) = 3n2 + 2n
for n ≤ 3 and T (n/2) = 12n + 3T (dn/2e + 1) otherwise. In general, a recurrence
relation defines a function in terms of the same function using smaller arguments.
Explicit definitions for small parameter values make the function well defined. Solv-
ing recurrences, i.e., giving non-recursive, closed form expressions for them is an
interesting subject of mathematics. Here we focus on recurrence relations that typi-
cally emerge from divide-and-conquer algorithms. We begin with a simple case that

2.6 Basic Program Analysis 39

d=b=2

d=2, b=4

d=3, b=2

Fig. 2.6. Examples for the three cases of the master theorem. Problems are indicated by hori-
zontal segments with arrows on both ends. The length of a segment represents the size of the
problem and the subproblems resulting from a problem are shown in the next line. The topmost
figure corresponds to the case d = 2 and b = 4, i.e., each problem generates 2 subproblems
of one-fourth the size. Thus the total size of the subproblems is only half of the original size.
The middle figure illustrates the case d = b = 2 and the bottommost figure illustrates the case
d = 3 and b = 2.

already suffices to understand the main ideas. We have a problem of size n = bk and
integer k. If k > 1, we invest linear work cn on dividing the problem and combining
the results of the subproblems and generate d subproblems of size n/b. If k = 0,
there are no recursive calls, we invest work a and are done.

Theorem 6 (Master Theorem (Simple Form)). For positive constants a, b, c, and
d, and n = bk for some integer k, consider the recurrence

r(n) =

{

a if n = 1

cn + d · r(n/b) if n > 1 .

Then

r(n) =











Θ(n) if d < b

Θ(n log n) if d = b

Θ
(

nlogb d
)

if d > b .

Figure 2.6 illustrates the main insight behind Theorem 6: We consider the amount of
work done at each level of recursion. We start with a problem of size n. At the i-th
level of the recursion we have di problems each of size n/bi. Thus the total size of
the problems at the i-th level is equal to

di n

bi
= n

(

d

b

)i

.

The work performed for a problem is c times the problem size and hence the work
performed on a certain level of the recursion is proportional to the total problem size

40 2 Introduction

on that level. Depending on whether d/b is smaller, equal, or larger than 1, we have
different kinds of behavior.

If d < b, the work decreases geometrically with the level of recursion and the
first level of recursion already accounts for a constant fraction of total execution time.

If d = b, we have the same amount of work at every level of recursion. Since
there are logarithmically many levels, the total amount of work is Θ(n log n).

Finally, if d > b we have a geometrically growing amount of work in each level
of recursion so that the last level accounts for a constant fraction of the total running
time. We next formalize this reasoning.

Proof. We start with a single problem of size n = bk. Call this level zero of the
recursion. At level one, we have d problems each of of size n/b = bk−1. At level two,
we have d2 problems each of size n/b2 = bk−2. At level i, we have di problems each
of size n/bi = bk−i. At level k, we have dk problems each of size n/bk = bk−k = 1.
Each such problem has cost a and hence the total cost at level k is adk.

Let us next compute the total cost of the divide-and-conquer steps in levels 1 to
k − 1. At level i, we have di recursive calls each for subproblems of size bk−i. Each
call contributes a cost of c · bk−i and hence the cost at level i is di · c · bk−i. Thus the
combined cost over all levels is

k−1
∑

i=0

di · c · bk−i = c · bk ·
k−1
∑

i=0

(

d

b

)i

= cn ·
k−1
∑

i=0

(

d

b

)i

.

We now distinguish cases according to the relative size of d and b.
Case d = b: We have cost adk = abk = an = Θ(n) for the bottom of the recursion
and cnk = cn logb n = Θ(n log n) for the divide-and-conquer steps.
Case d < b: We have cost adk < abk = an = O(n) for the bottom of the recursion.
For the cost of the divide-and-conquer steps we use Formula A.13 for a geometric
series, namely

∑

0≤i<k xi = (1 − xk)/(1 − x) for x > 0 and x 6= 1, and obtain

cn ·
k−1
∑

i=0

(

d

b

)i

= cn · 1 − (d/b)k

1 − d/b
< cn · 1

1 − d/b
= O(n)

and

cn ·
k−1
∑

i=0

(

d

b

)i

= cn · 1 − (d/b)k

1 − d/b
> cn = Ω(n) .

Case d > b: First note that

dk = 2k log d = 2k log b
log b log d = bk log d

log b = bk logb d = nlogb d .

Hence the bottom of the recursion has cost anlogb d = Θ
(

nlogb d
)

. For the divide-
and-conquer steps we use the geometric series again and obtain

cbk (d/b)k − 1

d/b − 1
= c

dk − bk

d/b − 1
= cdk 1 − (b/d)k

d/b − 1
= Θ

(

dk
)

= Θ
(

nlogb d
)

.

2.6 Basic Program Analysis 41

The recurrence T (n) = 3n2+2n for n ≤ 3 and T (n/2) = 12n+3T (dn/2e+1)
otherwise governing Karatsuba’s algorithm is not covered by our master theorem.
We will now show how to extend the master theorem to this situation: assume r(n)
is defined by r(n) ≤ a for n ≤ n0 and r(n) ≤ cn + d · r(dn/be + e) for n > n0

where n0 is such that dn/be + e < n for n > n0 and a, b, c, d and e are constants.
We proceed in two steps. We first concentrate on n of the form bk +z where z is such
that dz/be+ e = z. For example, for b = 2 and e = 3, we would choose z = 6. Note
that for n of this form we have dn/be+e =

⌈

(bk + z)/b
⌉

+e = bk−1 +dz/be+e =
bk−1 + z, i.e., the reduced problem size has the same form. For the n’s in special
form we then argue exactly as in Theorem 6.

How do we generalize to arbitrary n? The simplest way is semantic reasoning. It
is clear2 that it is more difficult to solve larger inputs than smaller inputs and hence
the cost for input size n will be no larger than the time needed on an input whose
size is equal to the next input size of special form. Since this input is at most b
times larger and b is a constant, the bound derived for special n is only affected by a
constant factor.

Formal reasoning is as follows (you may want to skip this paragraph and come
back to it when need arises): We define a function R(n) by the same recurrence with
≤ replaced by equality: R(n) = a for n ≤ n0 and R(n) = cn + dR(dn/be + e)
for n > n0. Obviously, r(n) ≤ R(n). We derive a bound for R(n) and n of special
form as described above. Finally, we argue by induction that R(n) ≤ R(s(n)) where
s(n) is the smallest number of the form bk + z with bk + z ≥ n. The induction step
is as follows:

R(n) = cn + dR(dn/be + e) ≤ cs(n) + dR(s(dn/be + e)) = R(s(n)) ,

where the inequality uses the induction hypothesis and n ≤ s(n) and the last equality
uses the fact that for s(n) = bk + z and hence bk−1 + z < n we have bk−2 + z <
dn/be + e ≤ bk−1 + z and hence s(dn/be + e) = bk−1 + z = ds(n)/be + e.

There are many generalizations of the Master Theorem: We might break the re-
cursion earlier, the cost for dividing and conquering may be nonlinear, the size of
the subproblems might vary within certain bounds, the number of subproblems may
depend on the input size, etc. We refer the reader to the books [164, 79] for further
information.

Exercise 16. Consider the recurrence C(1) = 1 and C(n) = C(bn/2c)+C(dn/2e)+
cn for n > 1. Show C(n) = O(n log n).

*Exercise 17 Suppose you have a divide-and-conquer algorithm whose running
time is governed by the recurrence

T (1) = a, T (n) = cn +
⌈√

n
⌉

T (
⌈

n/
⌈√

n
⌉⌉

) .

Show that the running time of the program is O(n log log n).
2 Be aware that most errors in mathematical arguments are near occurrences of the word

‘clearly’.

42 2 Introduction

Exercise 18. Access to data structures is often governed by the following recurrence:
T (1) = a, T (n) = c + T (n/2). Show T (n) = O(log n).

2.6.3 Global Arguments

The program analysis techniques introduced so far are syntax-oriented in the follow-
ing sense. In order to analyze a large program, we first analyze its parts and then
combine the analyses of the parts to an analysis of the large program. The combine
step involves sums and recurrences.

We will also use a completely different approach which one might call semantics-
oriented. In this approach we associate parts of the execution with parts of a combi-
natorial structure and then argue about the combinatorial structure. For example, we
might argue that a certain piece of program is executed at most once for each edge
of a graph or that execution of a certain piece of program at least doubles the size of
a certain structure, that the size is one initially, at most n at termination, and hence
the number of executions is bounded logarithmically.

2.7 Average Case Analysis

In this section we will introduce you to average case analysis. We do so by way of
three examples of increasing complexity. We assume that you are familiar with basic
concepts of probability theory such as discrete probability distributions, expected
values, indicator variables, and linearity of expectation. Appendix A.2 reviews the
basics.

We come to our first example. Our input is an array a[0..n − 1] filled with digits
zero and one. We want to increment the number represented by the array by one.

i := 0
while (i < n and a[i] = 1) do a[i] = 0; i++;
if i < n then a[i] = 1

How often is the body of the while-loop executed? Clearly, n times in the worst
case and 0 times in the best case. What is the average case? The first step in an
average case analysis is always to define the model of randomness, i.e. to define
the underlying probability space. We postulate the following model of randomness.
Each digit is zero or one with probability 1/2 and different digits are independent.
The loop body is executed k times, 0 ≤ k ≤ n, iff the last k+1 digits of a are 01k or
k is equal to n and all digits of a are equal to one. The former event has probability
2−(k+1) and the latter event has probability 2−n. Therefore, the average number of
executions is equal to

∑

0≤k<n

k2−(k+1) + n2−n ≤
∑

k≥0

k2−k = 2 ,

where the last equality is Equation (A.14).

2.7 Average Case Analysis 43

Our second example is slightly more demanding. Consider the following simple
program that determines the maximum element in an array a[1..n].

m := a[1] for i := 2 to n do if a[i] > m then m := a[i]

How often is the assignment m := a[i] executed? In the worst case, it is executed in
every iteration of the loop and hence n − 1 times. In the best case, it is not executed
at all. What is the average case? Again, we start by defining the probability space.
We assume that the array contains n distinct elements and that any order of these
elements is equally likely. In other words, our probability space consists of the n!
permutations of the array elements. Each permutation is equally likely and therefore
has probability 1/n!. Since the exact nature of the array elements is unimportant, we
may assume that the array contains the numbers 1 to n in some order. We are inter-
ested in the average number of left-to-right maxima. A left-to-right maximum in a
sequence is an element which is larger than all preceding elements. So (1, 2, 4, 3) has
three left-to-right-maxima and (3, 1, 2, 4) has two left-to-right-maxima. For a per-
mutation π of the integers 1 to n, let Mn(π) be the number of left-to-right-maxima.
What is E[Mn]? We will describe two ways to determine the expectation. For small
n, is easy to determine E[Mn] by direct calculation. For n = 1, there is only one
permutation, namely (1) and it has one maximum. So E[M1] = 1. For n = 2, there
are two permutations, namely (1, 2) and (2, 1). The former has two maxima and the
latter has one maximum. So E[M2] = 1.5. For larger n, we argue as follows.

We write Mn as a sum of indicator variables I1 to In, i.e., Mn = I1 + . . . + In

where Ik is equal to one for a permutation π if the k-th element of π is a left-to-right-
maximum. For example, I3((3, 1, 2, 4)) = 0 and I4((3, 1, 2, 4)) = 1. We have

E[Mn] = E[I1 + I2 + . . . + In]

= E[I1] + E[I2] + . . . + E[In]

= prob(I1 = 1) + prob(I2 = 1) + . . . + prob(In = 1) ,

where the second equality is linearity of expectations (Equation A.2) and the third
equality follows from the Ik’s being indicator variables. It remains to determine the
probability that Ik = 1. The k-th element of a random permutation is a left-to-right
maximum with probability 1/k because this is the case if and only if the k-th element
is the largest of the first k elements. Since every permutation of the first k elements
is equally likely, this probability is 1/k. Thus prob(Ik = 1) = 1/k and hence

E[Mn] =
∑

1≤k≤n

prob(Ik = 1) =
∑

1≤k≤n

1

k
.

So E[M4] = 1 + 1/2 + 1/3 + 1/4 = (12 + 6 + 4 + 3)/12 = 25/12. The sum
∑

1≤k≤n 1/k will show up several times in this book. It is known under the name n-
th harmonic number and is denoted Hn. It is known that ln n ≤ Hn ≤ 1 + ln n, i.e.,
Hn ≈ ln n; see Equation (A.12). We conclude that the average number of left-right
maxima is much smaller than the worst case.

Exercise 19. Show that
n
∑

k=1

1

k
≤ ln n + 1. Hint: show first that

n
∑

k=2

1

k
≤
∫ n

1

1

x
dx.

44 2 Introduction

We come to an alternative analysis. Introduce An as a shorthand for E[Mn] and
set A0 = 0. The first element is always a left-to-right maximum and each number
is equally likely as first element. If the first element is equal to i, then only the
numbers i+1 to n can be further left-to-right maxima. They appear in random order
in the remaining sequence and hence we will see an expected number of An−i further
maxima. Thus

An = 1 +





∑

1≤i≤n

An−i



 /n or nAn = n +
∑

1≤i≤n−1

Ai .

The corresponding equation for n − 1 instead of n is (n − 1)An−1 = n − 1 +
∑

1≤i≤n−2 Ai. Subtracting both equations yields

nAn − (n − 1)An−1 = 1 + An−1 or An = 1/n + An−1 ,

and hence An = Hn.
We come to our third example; this example is even more demanding. Consider

the following searching problem. We have items 1 to n which we are supposed to ar-
range linearly in some order, say we put item i in position `i. Once we have arranged
the items, we perform searches. In order to search for an item x, we go through the
sequence from left to right until we encounter x. In this way, it will take `i steps to
access item i.

Suppose now that we also know that we access the items with different probabil-
ities, say we search for item i with probability pi where pi ≥ 0 for all i, 1 ≤ i ≤ n,
and

∑

i pi = 1. In this situation, the expected or average cost of a search is equal to
∑

i pi`i since we search for item i with probability pi and the cost of the search is `i.
What is the best way of arranging the items? Intuition tells us that we should

arrange the items in order of decreasing probability. Let us prove this.

Lemma 7. An arrangement is optimal with respect to expected search cost if it has
the property that pi > pj implies `i < `j . If p1 ≥ p2 ≥ . . . pn, the placement `i = i
results in the optimal expected search cost Opt =

∑

i pii.

Proof. Consider an arrangement in which for some i and j we have pi > pj and
`i > `j , i.e., item i is more probable than item j and yet placed after it. Interchanging
items i and j changes the search cost by

−(pi`i + pj`j) + (pi`j + pj`i) = (pi − pj)(`i − `j) < 0 ,

i.e., the new arrangement is better and hence the old arrangement is not optimal.
Let us now consider the case p1 > p2 > . . . > pn. Since there are only n!

possible arrangements, there is an optimal arrangement. Also, if i < j and i is placed
after j, the arrangement is not optimal by the preceding paragraph. Thus the optimal
arrangement puts item i in position `i = i and its expected search cost is

∑

i pii.
If p1 ≥ p2 ≥ . . . pn, the arrangement `i = i for all i is still optimal. However,

if some probabilities are equal, we have more than one optimal arrangement. Within
blocks of equal probabilities, the order is irrelevant.

2.8 Randomized Algorithms 45

Can we still do something intelligent, if the probabilities pi are not known to us?
The answer is yes and a very simple heuristic does the job. It is called the move-
to-front-heuristic. Suppose we access item i and find it in position `i. If `i = 1,
we are happy and do nothing. Otherwise, we place it in position 1 and move the
items in positions 1 to `i − 1 one position to the rear. The hope is that in this way
frequently accessed items tend to stay near the front of the arrangement and infre-
quently accessed items move to the rear. We next analyze the expected behavior of
the move-to-front-heuristic.

Consider two items i and j and suppose both of them were accessed in the past.
Item i will be before item j if the last access to item i occurred after the last access
to item j. Thus the probability that item i is before item j is pi/(pi + pj). With
probability pj/(pi + pj) item j stands before item i.

Now `i is simply one plus the number of elements before i in the list. Thus the
expected value of `i is equal to 1 +

∑

j; j 6=i pj/(pi + pj) and hence the expected
search cost in the move-to-front-heuristic is

CMTF =
∑

i

pi(1 +
∑

j; j 6=i

pj

pi + pj
) =

∑

i

pi +
∑

ij; i6=j

pipj

pi + pj
.

Observe that for each i and j with i 6= j, the term pipj/(pi + pj) appears twice in
the list above. In order to proceed in the analysis, we assume p1 ≥ p2 ≥ . . . ≥ pn.
This is an assumption used in the analysis, the algorithm has no knowledge of this.
Then

CMTF =
∑

i

pi + 2
∑

j; j<i

pipj

pi + pj
=
∑

i

pi(1 + 2
∑

j; j<i

pj

pi + pj
)

≤
∑

i

pi(1 + 2
∑

j; j<i

1) <
∑

i

pi2i = 2
∑

i

pii = 2Opt .

Theorem 7. The move-to-front-heuristic achieves an expected search time which is
at most twice the optimum.

2.8 Randomized Algorithms

Suppose you are offered to participate in a TV game show: There are 100 boxes that
you can open in an order of your choice. Box i contains an amount mi of money.
The amount is unknown to you and becomes known once the box is opened. No two
boxes contain the same amount of money. The rules of the game are very simple.

• At the beginning of the game, the show master gives you 10 tokens.
• When you open a box and the content of the box is larger than the content of all

previously opened boxes, you have to hand back a token3.
3 The content of the first box opened is larger than the content of all previously opened boxes

and hence the first token goes back to the show master in the first round.

46 2 Introduction

• When you have to hand back a token, but have no token, the game ends and you
loose.

• When you manage to open all boxes, you win and can keep all the money.

There are strange pictures on the boxes and the show master gives hints by suggesting
the box to be opened next. Your Aunt, who is addicted to this show, tells you that
only few candidates win. Now you ask yourself whether it is worth participating in
this game. Is there a strategy that gives you a good chance to win? Are the hints of
the show master useful?

Let us first analyze the obvious algorithm — you always follow the show master.
The worst case is that he makes you open the boxes in order of increasing weight.
Whenever you open a box, you have to hand back a token and when you open the
11-th box you are dead. The candidates and viewers would hate the show master and
he would be fired soon. Worst case analysis does not give us the right information in
this situation. The best case is that the show master immediately tells you the best
box. You would be happy but there would be no time to place advertisements so
that the show master would again be fired. Best case analysis also does not give us
the right information in this situation. We next observe that the game is really the
left-right maxima question of the preceding section in disguise. You have to hand
back a token whenever a new maximum shows up. We saw in the preceding section
that the expected number of left-right maxima in a random permutation is Hn, the
n-th harmonic number. For n = 100, Hn < 6. So if the show master would point to
the boxes in random order, on average, you would have to hand back only 6 tokens.
But, why should the show master offer you the boxes in random order? He has no
incentive to have too many winners.

The solution is to take your fate in your own hands: open the boxes in random or-
der. You select one of the boxes at random, open it, then choose a random box among
the remaining ones, and so on. How do you chose a random box? When there are k
boxes left, you choose a random box by tossing a die with k sides or by choosing a
random number in the range 1 to k. In this way, you generate a random permutation
of the boxes and hence the analysis from the previous section still applies. On aver-
age you will have to return less than 6 tokens and hence your ten tokens suffice. You
have just seen a randomized algorithm. We want to stress that, although the mathe-
matical analysis is the same, the conclusions are very different. In the average case
scenario, you are at the mercy of the show master. If he opens the boxes in random
order, the analysis applies, if he does not, it does not. You have no way to tell except
after many shows and in hindsight. In other words, the show master controls the dices
and it is up to him whether he uses a fair dice. The situation is completely different
in the randomized algorithms scenario. You control the dices and you generate the
random permutation. The analysis is valid no matter what the show master does.

Formally, we equip our RAM with an additional instruction: Ri := randInt(C)
assigns a random integer between 0 and C − 1 to Ri. In Pseudocode we write v :=
randInt(C), where v is an integer variable. The cost of making a random choice is
one time unit.

2.8 Randomized Algorithms 47

The running time of a randomized algorithm will generally depend on the random
choices made by the algorithm. So the running time on an instance i is no longer a
number, but a random variable depending on the random choices. We may eliminate
the dependency of the running time on random choices by equipping our machine
with a timer. At the beginning of the execution, we set the timer to a value T (n), say
depending on the size n of the problem instance, and stop the machine once the timer
goes off. In this way, we can guarantee that the running time is bounded by T (n).
However, if the algorithm runs out of time, it does not deliver an answer.

The output of a randomized algorithm may also depend on the random choices
made. How can an algorithm be useful, if the answer on an instance i may depend
on the random choices made by the algorithm? If the answer is “Yes” today and
maybe “No” tomorrow. If the two cases are equally probable, the answer given by
the algorithm has no value. However, if the correct answer is much more likely than
the incorrect answer, the answer does have value. Let us see an example.

Alice and Bob are connected over a slow telephone line. Alice has an integer xA

and Bob has an integer xB , each with n bits. They want to determine whether they
have the same number. They could send the digits in turn. In the worst-case they
will have to transmit n digits. Alternatively, they might do the following. Each one
of them prepares an ordered list of prime numbers. The list consists of the smallest
L primes with k or more bits. We say more about the choice of L and k below. In
this way, it is guaranteed that they both generate the same list. Then Alice chooses
a index i, 1 ≤ i ≤ L, at random and sends i and xA mod pi to Bob. Bob computes
xB mod pi. If xA mod pi 6= xB mod pi, he declares that the numbers are different.
Otherwise, he declares the numbers the same. Clearly, if the numbers are the same,
Bob will say so. If the number are different and xA mod pi 6= xB mod pi, he will
declare them different. However, if xA 6= xB and yet xA mod pi = xB mod pi, he
will erroneously declare the numbers equal. What is the probability of an error?

An error occurs if xA 6= xB and yet xA mod pi = xB mod pi. The latter con-
dition is equivalent to pi dividing the difference xA − xB . The difference is at most
2n in absolute value. Since each prime pi has value at least 2k, our list contains
at most n/k primes that divide the difference. So the probability of error is at most
(n/k)/L. We can make this probability arbitrarily small by choosing L large enough.
Say, we want to make the probability to be less than 0.0000001 = 10−6. We choose
L = 106(n/k).

How many bits will the protocol transmit? Out of the numbers with k bits, ap-
proximately 2k/k are primes4. Hence, if 2k/k ≥ 106n/k, the list will only contain
k-bit integers. The condition 2k ≥ 106n is tantamount to k ≥ log n + 6 log 10. Thus
the protocol transmits log L+k = log n+12 log 10 bits. This is exponentially better
than the naive protocol.
4 For any integer x, let π(x) be the number of primes less than or equal to x. For example,

π(10) = 4 because there are four prime numbers (2, 3, 5 and 7) less than or equal to 10.
Then x

ln x+2
< π(x) < x

ln x−4
for x ≥ 55. See the Wikipedia entry on prime numbers for

more information.

48 2 Introduction

What can we do if we want error probability less than 10−12. We could redo the
calculations above with L = 1012n. Alternatively, we could run the protocol twice
and declare the numbers different if at least one run declares them different. The
two-stage protocol errs only if both runs err and hence the probability of error is at
most 10−6 · 10−6 = 10−12.

Exercise 20. Compare the efficiency of the two approaches for obtaining error prob-
ability 10−12.

Exercise 21. Assume you have an algorithm which errs with probability at most 1/4.
Run the algorithm k times and output the majority output. Derive a bound on the error
probability as a function of k. Do a precise calculation for k = 2 and k = 3 and give
a bound for large k. Finally, determine k such that the error probability is less than a
given ε.

Randomized algorithms come in two main varieties, the Las Vegas and the Monte
Carlo variety. A Las Vegas algorithm always computes the correct answer but its
running time is a random variable. Our solution for the game show is a Las Vegas
algorithm; it always finds the box containing the maximum; however, the number
of left-right maxima is a random variable. A Monte Carlo algorithm always has the
same run time yet there is a nonzero probability that it gives an incorrect answer. The
probability that the answer is incorrect is at most 1/4. Our algorithm for comparing
two numbers over a telephone line is a Monte Carlo algorithm. In Exercise 21 it is
shown that the error probability can be made arbitrarily small.

Exercise 22. Suppose you have a Las Vegas algorithm with expected execution time
t(n). Run it for 4t(n) steps. If it returns an answer within the alloted time, return the
answer. Otherwise return an arbitrary answer. Show that the resulting algorithm is a
Monte Carlo algorithm.

Exercise 23. Suppose you have a Monte Carlo algorithm with execution time m(n)
that gives a correct answer with probability p and a deterministic algorithm that ver-
ifies in time v(n) whether the Monte Carlo algorithm has given the correct answer.
Explain how to use these two algorithms to obtain a Las Vegas algorithm with ex-
pected execution time 1

1−p (m(n) + v(n)).

We come back to our game show example. You have ten tokens available to you.
The expected number of tokens required is less than 6. How sure should you be that
you go home as a winner? We need to bound the probability that Mn is larger than
11, because you loose exactly if the sequence in which you order the boxes has 11
or more left-right maxima. The so-called Tschebyscheff inequality allows to bound
this probability. It states, that for a non-negative random variable X and any constant
c ≥ 1, prob(X ≥ c ·E[X]) ≤ 1/c; see Equation (??) for additional information. We
apply the inequality with X = Mn, and c = 11/6. Then

prob(Mn ≥ 11) ≤ prob(Mn ≥ 11

6
E[Mn]) ≤ 6

11
,

and hence the probability to win is more than 5/11.

2.9 Graphs 49

2.9 Graphs

Graphs are an extremely useful concept in algorithmics. We use them whenever we
want to model objects and relations between them; in graph terminology, the objects
are called nodes and the relation between nodes are called edges. Obvious applica-
tions are road maps or communication networks, but there are also more abstract
applications. For example, nodes could be tasks to be completed when building a
house like “build the walls” or “put in the windows” and edges model precedence
relations like “the walls have to be built before the windows can be put in”. We will
also see many examples of data structures where it is natural to view objects as nodes
and pointers as edges between the object storing the pointer and the object pointed
to.

When humans think about graphs, they usually find it convenient to work
with pictures showing nodes as bullets and edges as lines and arrows. For treat-
ing graphs algorithmically, a more mathematical notation is needed: A directed
graph G = (V,E) is a pair consisting of a node set (or vertex set) V and an
edge set E ⊆ V × V . We sometimes abreviate directed graph to digraph. For
example, Figure 2.7 shows the graph G = ({s, t, u, v, w, x, y, z} , {(s, t), (t, u),
(u, v), (v, w), (w, x), (x, y), (y, z), (z, s), (s, v), (z, w), (y, t), (x, u)}). Throughout
this book, we use the convention n = |V | and m = |E| if no other definitions
for n or m are given. An edge e = (u, v) ∈ E represents a connection from u to
v. We call u and v the source and target of e, respectively. We say that e is incident
to u and v and that v and u are adjacent. The special case of a self-loop (v, v) is
disallowed unless specifically mentioned.

The outdegree of a node v is the number of edges leaving it and its indegree
is the number of edges ending at it, formally, outdegree(v) = |{(v, u) ∈ E}| and
indegree(v) = |{(u, v) ∈ E}|. For example, node w in graph G in Figure 2.7 has
indegree two and outdegree one.

A bidirected graph is a digraph where for any edge (u, v) also the reverse edge
(v, u) is present. An undirected graph can be viewed as a streamlined representation
of a bidirected graph where we write a pair of edges (u, v), (v, u) as the two element
set {u, v}. Figure 2.7 shows a three node undirected graph and its bidirected coun-
terpart. Most graph theoretic terms for undirected graphs have the same definition as
for their bidirected counterparts so that this section concentrates on directed graphs
and only mentions undirected graphs when there is something special about them.
For example, the number of edges of an undirected graph is only half the number of
edges of its bidirected counterpart. Nodes of an undirected graph have identical in-
and outdegree and so we simply talk about their degree. Undirected graphs are im-
portant because directions often do not matter and because many problems are easier
to solve (or even to define) for undirected graphs than for general digraphs.

A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. Given
G = (V,E) and a subset V ′ ⊆ V , the subgraph induced by V ′ is defined as G′ =
(V ′, E ∩ (V ′ × V ′)). In Figure 2.7, the node set {v, w} in G induces the subgraph
H = ({v, w} , {(v, w)}). A subset E′ ⊆ E of edges induces the subgraph (V,E ′).

50 2 Introduction

self−loop

undirected bidirected

K5

K3,3

v

w

1
v

w

1

u

w v

u

w v

u

w v

s

t

x

U

t

u

yz

s

x

1

1

1

1

1

2 −2

2

2

1

1

G

H

Fig. 2.7. Some graphs.

Often additional information is associated with nodes or edges. In particular,
we will often need edge weights or costs c : E → �

mapping edges to some nu-
meric value. For example, the edge (z, w) in graph G from Figure 2.7 has weight
c((z, w)) = −2. Note that edge {u, v} of an undirected graph has a unique edge
weight whereas in a bidirected graph we can have c((u, v)) 6= c((v, u)).

We have now seen quite a lot of definitions on one page of text. If you want to
see them at work, you may want to jump to Chapter 8 to see algorithms operating on
graphs. But things are also becoming more interesting here.

An important higher level graph-theoretic concept is the notion of a path. A path
p = 〈v0, . . . , vk〉 is a sequence of nodes in which subsequent nodes are connected
by edges in E, i.e, (v0, v1) ∈ E, (v1, v2) ∈ E, . . . , (vk−1, vk) ∈ E; p has length
k and runs from v0 to vk. Sometimes a path is also represented by its sequence of
edges. For example, 〈u, v, w〉 = 〈(u, v), (v, w)〉 is a path of length two in Figure 2.7.
A path is simple if its nodes, except maybe for v0 and vk, are pairwise distinct. In
Figure 2.7, 〈z, w, x, u, v, w, x, y〉 is a non-simple path.

Cycles are paths with a common first and last node. A simple cycle visiting all
nodes of a graph is called a Hamiltonian cycle. 〈s, t, u, v, w, x, y, z, s〉 in graph G in
Figure 2.7 is Hamiltonian. A simple undirected cycle contains at least three nodes
since we also do not allow edges to be used twice in simple undirected cycles.

The concept of paths and cycles helps us to define yet higher level concepts. A
digraph is strongly connected, if for any two nodes u and v there is a path from u to
v. Graph G in Figure 2.7 is strongly connected. A strongly connected component of
a digraph is a maximal node-induced strongly connected subgraph. Removing edge
(w, x) from G in Figure 2.7, we obtain a digraph without any directed cycles. A di-
graph without any cycles is called a directed acyclic graph (DAG). In a DAG, every
strongly connected component consists of a single node. An undirected graph is con-
nected if the corresponding bidirected graph is strongly connected. The connected
components are the strongly connected components of the corresponding bidirected
graph. For example, graph U in Figure 2.7 has connected components {u, v, w},
{s, t}, and {x}. Node set {u,w} induces a connected subgraph but it is not maximal
and hence not a component.

2.9 Graphs 51

rooted

directed expressionundirected rootedundirected
r

s ut

v

r

s ut

v

a

r

s ut

v

r

s t

vu

+

/

2 b

Fig. 2.8. Different kinds of trees: From left to right, we see an undirected tree, an undirected
rooted tree, a directed out-tree, a directed in-tree, and an arithmetic expression.

An undirected graph is a tree if there is exactly one path between any pair of
nodes; see Figure 2.8 for an example. An undirected graph is a forest if there is at
most one path between any pair of nodes. Note that each component of a forest is a
tree.

Lemma 8. The following properties of an undirected graph G are equivalent:

1. G is a tree.
2. G is connected and has exactly n − 1 edges.
3. G is connected and contains no cycles.

Proof. In a tree, there is a unique path between any two nodes. Hence the graph is
connected and contains no cycles. Conversely, if there are two nodes that are con-
nected by more than one path, the graph contains a cycle. Thus (1) and (3) are equiv-
alent. We next show the equivalence of (2) and (3). So assume that G = (V,E) is
connected and let m = |E|. Perform the following experiment. Start with the empty
graph and add the edges in E one by one. Addition of an edge can reduce the num-
ber of connected components by at most one. We start with n components and must
end up with one component. Thus m ≥ n − 1. Assume now that there is an edge
e = {u, v} whose addition does not reduce the number of connected components.
Then u and v are already connected by a path and hence addition of e creates a cycle.
If G is cycle-free, this case cannot occur and hence m = n− 1. Thus (3) implies (2).
Assume next that G is connected and has exactly n − 1 edges. Again add the edges
one by one and assume that adding e = {u, v} creates a cycle. Then u and v are al-
ready connected and hence e does not reduce the number of connected components.
Thus (2) implies (3).

Lemma 8 does not carry over to digraphs. For example, a DAG may have many
more than n − 1 edges. A directed graph is an out-tree with root node r if there is
exactly one path from r to any other node. It is an in-tree with root node r if there is
exactly one path from any other node to r. Figure 2.8 shows examples.

We can also make an undirected graph rooted by declaring one of its nodes as the
root. Computer scientists have the peculiar habit to draw rooted trees with the root
at the top and all edges going downward. For rooted trees, it is customary to denote
relations between nodes by terms borrowed from family relations. Edges go between

52 2 Introduction

a unique parent and its children. Nodes with the same parent are siblings. Nodes
without childred are leaves. Non-root, non-leaf nodes are interior nodes. Consider a
path such that u is between the root and another node v. Then u is an ancestor of
v and v is a descendant of u. A node u and its descendants form a subtree rooted
at u. For example, in Figure 2.8 r is the root; s, t, and v are leaves; s, t, and u are
siblings because they are children of the same parent r; v is an interior node; r and u
are ancestors of v; s, t, u and v are descendants of r; v and u form a subtree rooted
at u.

It is time for a graph algorithm. We will describe an algorithm for testing whether
a directed graph is acyclic. We use the simple observation that a node v with outde-
gree zero cannot appear in any cycle. Hence, by deleting v (and its incoming edges)
from the graph, we obtain a new graph G′ that is acyclic if and only if G is acyclic.
By iterating this transformation, we either arrive at the empty graph which is cer-
tainly acyclic, or we obtain a graph G∗ where every node has outdegree at least one.
In the latter case, it is easy to find a cycle: Start at any node v and construct a path
by repeatedly choosing an arbitrary outgoing edge until you reach a node v′ that you
have seen before. The constructed path will have the form (v, . . . , v′, . . . , v′), i.e.,
the part (v′, . . . , v′) forms a cycle. For example, in Figure 2.7 graph G has no node
with outdegree zero. To find a cycle, we might start at node z and follow the walk
〈z, w, x, u, v, w〉 until we encounter w a second time. Hence, we have identified the
cycle 〈w, x, u, v, w〉. In contrast, if edge (w, x) is removed, there is no cycle. Indeed,
our algorithm will remove all nodes in the order w, v, u, t, s, z, y, x. In Chapter 8 we
will see how to represent graphs such that this algorithm can be implemented to run
in linear time. See also Exercise 151. We can easily make our algorithm certifying.
If the algorithm finds a cycle, the graph is certainly cyclic. If the algorithm reduces
the graph to the empty graph, number the nodes in increasing order in which they are
removed from G. Since we always remove a node v of outdegree zero in the current
graph, any edge out of v in the original graph must go a node that was removed previ-
ously and hence has received a smaller number. Thus the ordering proves acyclicity:
along any edge, the node numbers decrease.

Ordered Trees: Trees are ideally suited to represent hierarchies. For example, con-
sider the expression a + 2/b. We have learned that this expression means that a and
2/b are added. But deriving this from the sequence of characters 〈a,+, 2, /, b〉 is dif-
ficult. For example, it requires knowledge of the rule that division binds more tightly
than addition. Therefore compilers isolate this syntactical knowledge in so-called
parsers that produce a more structured representation based on trees. Our example
would be transformed into the expression tree given in Figure 2.8. Such trees are
directed and in contrast to graph theoretic trees, they are ordered. In our example, a
is the first or left child of the root and / is the right or second child of the root.

Expression trees are easy to evaluate by a simple recursive algorithm. Figure 2.9
shows an algorithm for evaluating expression trees whose leaves are numbers and
whose interior nodes are binary operators (say +,-,*,/).

2.10 P and NP 53

Function eval(r) : �
if r is a leaf then return the number stored in r
else // r is an operator node

v1:=eval(first child of r)
v2:=eval(second child of r)
return v1operator(r)v2 // apply the operator stored in r

Fig. 2.9. Recursive evaluation of an expression tree rooted at r.

We will see many more examples of ordered trees in this book. Chapters 6 and
7 use them to represent fundamental data structures and Chapter 12 uses them to
systematically explore solution spaces.

Exercise 24. Describe ten substantially different applications that can be modeled
using graphs; car and bicycle networks are not considered substantially different. At
least five should not be mentioned in this book.

Exercise 25. Exhibit an n node DAG that has n(n − 1)/2 edges.

Exercise 26. A planar graph is a graph that can be drawn on a sheet of paper such
that no two edges cross each other. Argue street networks are not necessarily planar.
Show that the graphs K5 and K33 in Figure 2.7 are not planar.

2.10 P and NP

When should we call an algorithm efficient? Are there problems for which there is no
efficient algorithm? Of course, drawing the line between “efficient” and “inefficient”
is a somewhat arbitrary business. But as a first approximation, the following distinc-
tion has proved useful: An algorithm A runs in polynomial time or is a polynomial
time algorithm if there is a polynomial p(n) such that its execution time on inputs of
size n is O(p(n)). If not otherwise mentioned, the size of the input will be measured
in bits. A problem can be solved in polynomial time if there is a polynomial time
algorithm solving it. We equate efficiently solvable with polynomial time solvable.
All chapters of this book except for Chapter 12 are about efficient algorithms. A big
advantage of this definition is that implementation details are usually not important.
For example, it does not matter whether a clever data structure can accelerate an
O
(

n3
)

algorithm by a factor n.
There are many problems for which no efficient algorithm is known. Here are

six:

Hamiltonian Cycle Problem: given an undirected graph, decide whether it contains
a Hamiltonian cycle.

Boolean Satisfiability Problem: given a boolean expression in conjunctive form, de-
cide whether it has a satisfying assignment. A boolean expression in conjunctive
form is a conjunction C1 ∧ C2 ∧ . . . ∧ Ck of clauses. A clause is a disjuntion

54 2 Introduction

`1 ∨ `2 ∨ . . . ∨ `h of literals and a literal is a variable or a negated variable. So
v1 ∨ ¬v3 ∨ ¬v9 is a clause.

Clique Problem: Given an undirected graph and an integer k, decide whether the
graph contains a complete subgraph (= a clique) on k nodes.

Knapsack Problem: Given n pairs of integers (wi, pi) and integers M and P , decide
whether there is a subset I ⊆ [1..n] such that

∑

i∈I wi ≤ M and
∑

i∈I pi ≥ P .
Traveling Salesman Problem: Given an edge-weighted undirected graph and an in-

teger C, decide whether the graph contains a Hamiltonian cycle of length at most
C.

Graph Coloring: Given an undirected graph and an integer k, decide whether there
is a coloring of the nodes with k colors such that any two adjacent nodes are
colored differently.

The fact that we know no efficient algorithms for these problems, does not imply that
none exist. It is simply not known, whether an efficient algorithm exists or not. In
particular, we have no proof that they do not exist. In general, it is very hard to prove
that a problem cannot be solved in a given time bound. We will see some simple
lower bounds in Section ??. Most algorithmicists believe that the three problems
above have no efficient algorithm.

Complexity theory has found an interesting surrogate for the absence of lower
bound proofs. It clusters algorithmic problems into large groups that are equivalent
with respect to some complexity measure. In particular, there is a large class of equiv-
alent problems known as NP-complete problems. Here, NP is an abbreviation for
non-deterministic polynomial time. If the term non-deterministic polynomial time
does not mean anything to you, ignore it and carry on. The three problems men-
tioned above are NP-complete and so are many other natural problems. It is widely
believed that P is a proper subset of NP. This would imply, in particular, that NP-
complete problems have no efficient algorithm. In the remainder of this section, we
will give a formal definition of the class NP. We refer the reader to books about
theory of computation and complexity theory [72, 12, 169, 192] for a thorough treat-
ment.

We assume, as in customary in complexity theory, that inputs are encoded in
some fixed finite alphabet Σ. A decision problem is a subset L ⊆ Σ∗. We use χL to
denote the characteristic function of L, i.e, χL(x) = 1 if x ∈ L and χL(x) = 0 if
x 6∈ L. A decision problem is polynomial time solvable iff its characteristic function
is polynomial time computable. We use P to denote the class of polynomial time
solvable decision problems.

A decision problem L is in NP iff there is a predicate Q(x, y) and a polynomial
p such that

1. for any x ∈ Σ∗: x ∈ L iff there is a y ∈ Σ∗ with |y| ≤ p(|x|) and Q(x, y) and
2. Q is computable in polynomial time.

We call y a witness or proof of membership. For our three example problems, it is
easy to show that they belong to NP. In case of the Hamiltonian cycle problem, the
witness is a Hamiltonian cycle in the input graph, in the Boolean satisfiablity prob-

2.10 P and NP 55

lem, the witness is a satisfying assignment, and in the clique problem, the witness is
a clique of size k.

A decision problem L is polynomial time reducible (or simply reducible) to a
decision problem L′ if there is a polynomial time computable function g such that
for all x ∈ Σ∗, we have x ∈ L iff g(x) ∈ L′. Clearly, if L is reducible to L′

and L′ ∈ P then L ∈ P. Also, reducibility is transitive. A decision problem L
is NP-hard if every problem in NP is polynomial time reducible to it. A prob-
lem is NP-complete if it is an NP-hard and in NP. At first glance, it seems pro-
hibitively difficult to prove any problem NP-complete — one would have to show
that every problem in NP is polynomial time reducible to it. However, in 1971,
Cook and Levin independently managed to do this for the boolean satisfiability prob-
lem [45, 116]. From then on it was “easy”. Assume you want to show that problem
L is NP-complete. You need to show two things: (1) L ∈ NP and (2) there is
some known NP-complete problem L′ that can be reduced to it. Transitivity of
the reducibility relation then implies that all problems in NP are reducible to L.
With every new complete problem, it becomes simpler to show that other prob-
lems are NP-complete. The website http://www.nada.kth.se/~viggo/
wwwcompendium/wwwcompendium.html maintains a compendium of NP-
complete problems. We give one example for a reduction.

Lemma 9. The boolean satisfiability problem is polynomial time reducible to the
clique problem.

Proof. Let F = C1 ∧ . . . ∧ Ck with Ci = `i1 ∨ . . . ∨ `ihi
and `ij = x

βij

ij be a
formula in conjunctive form. Here xij is a variable and βij ∈ {0, 1}. A superscript 0
indicates a negated variable. Consider the following graph G. Its vertices V represent
the literals in our formula, i.e., V = {rij : 1 ≤ i ≤ k and 1 ≤ j ≤ hi}. Two vertices
rij and ri′j′ are connected by an edge iff i 6= i′ and either xij 6= xi′j′ or βij = βi′j′ .
In words, the representatives of two literals are connected by an edge if they belong
to different clauses and an assignment can satisfy them simultaneously. We claim
that F is satisfiable iff G has a clique of size k.

Assume first that there is a satisfying assignment α. The assignment must satisfy
at least one literal in every clause, say literal `iji

in clause Ci. Consider the subgraph
of G spanned by the riji

, 1 ≤ i ≤ k. It is a clique of size k. Assume otherwise, say
riji

and ri′ji′
are not connected by an edge. Then xiji

= xi′ji′
and βiji

6= βi′ji′
. But

then literals `iji
and `i′ji′

are complements of each other and α cannot satisfy them
both.

Conversely, assume that there is a clique K of size k in G. We construct a satis-
fying assignment α. For each i, 1 ≤ i ≤ k, K contains exactly one vertex riji

. We
construct a satisfying assignment α by setting α(xiji

) = βiji
. Note that α is well-

defined because xiji
= xi′ji′

implies βiji
= βi′ji′

; otherwise riji
and ri′ji′

would
not be connected by an edge. α clearly satisfies F .

Exercise 27. Show that the Hamiltonian cycle problem is polynomial time reducible
to the Traveling Salesman problem.

56 2 Introduction

All NP-complete problems have a common destiny. If anybody finds a polyno-
mial time algorithm for one of them, NP and P collapse. Since so many people have
tried to find such solutions, it becomes less and less likely that this will ever happen:
the NP-complete problems are mutual witnesses of their hardness.

Does the theory of NP-completeness also apply to optimization problems? Op-
timization problems are easy turned into decision problems. Instead of asking for
an optimal solution we ask the question whether there is a solution with objective
value greater or equal to k where k is an additional input. Conversely, if we have an
algorithm to decide whether there is a solution with value greater or equal to k, we
can use exponential and binary search (see Section 2.5) to find the optimal objective
value.

An algorithm for a decision problem returns yes or no depending on whether
the instance belongs to the problem or not. It does not return a witness. Frequently,
witnesses can be constructed by applying the decision algorithm repeatedly. Assume
we want to find a clique of size k, but have only an algorithm that decides whether
a clique of size k exists. We select an arbitrary node v and ask whether G′ = G \ v
has a clique of size k. If so, we recursively search for a clique in G′. If not, we know
that v must be part of the clique. Let V ′ be the set of neighbors of v. We recursively
search for a clique Ck−1 of size k−1 in the subgraph spanned by V ′. Then v∪Ck−1

is a clique of size k in G.

2.11 Implementation Notes

Our pseudocode is easily converted into actual programs in any imperative program-
ming language. We will give more detailed comments for C++ and Java below. The
Eiffel programming language [132] has extensive support for assertions, invariants,
preconditions, and postconditions.

Our special values ⊥, −∞, and ∞ are available for floating point numbers. For
other data types, we have to emulate these values. For example, one could use the
smallest and largest representable integers for −∞, and ∞ respectively. Undefined
pointers are often represented as a null pointer null . Sometimes we use special
values for convenience only and a robust implementation should circumvent using
them. You will find examples in later chapter.

Randomized algorithms need access to a random source. You have the choice
between a hardware generator that generates true random numbers or an algorith-
mic generator that generates pseudo-random numbers. We refer the reader to the
Wikipedia page on random numbers for more information.

C++: Our pseudocode can be viewed as a concise notation for a subset of C++.
The memory management operations allocate and dispose are similar to the C++
operations new and delete. C++ calls the default constructor for each element of
an array, i.e., allocating an array of n objects takes time Ω(n) whereas allocating an
array n of ints takes constant time. In contrast, we assume that all arrays which
are not explicitly initialized contain garbage. In C++ you can obtain this effect us-
ing the C functions malloc and free. However, this is a deprecated practice and

2.12 Historical Notes and Further Findings 57

should only be used when array initialization would be a severe performance bottle-
neck. If memory management of many small objects is performance critical, you can
customize it using the allocator class of the C++ standard library.

Our parameterization of classes using of is a special case of the C++-template
mechanism. The parameters added in brackets after a class name correspond to the
parameters of a C++ constructor.

Assertions are implemented as C-macros in the include file assert.h. By de-
fault, violated assertions trigger a runtime error and print the line number and file
where the assertion was violated. If the macro NDEBUG is defined, assertion check-
ing is disabled.

For many data structures and algorithms discussed in this book, excellent imple-
mentations are available in software libraries. Good sources are the standard template
library STL [148], the Boost [28] C++ libraries, and the LEDA [115] library of effi-
cient algorithms and data structures.

Java: Java has no explicit memory management. Rather, a garbage collector period-
ically recycles pieces of memory that are no longer referenced. While this simplifies
programming enormously, it can be a performance problem. Remedies are beyond
the scope of this book. Generic types provide parameterization of classes. Assertions
are implemented with the assert statement.

Excellent implementations for many data structures and algorithms are available
in the package java.util and in the JDSL [77] data structure library in Java.

2.12 Historical Notes and Further Findings

Sheperdson and Sturgis [168] defined the RAM-model for use in algorithmic analy-
sis. The RAM model restricts cells to hold a logarithmic number of bits. Dropping
this assumption has undesirable consequences, e.g., the complexity classes P and
PSPACE collapse [86]. Knuth [110] describes a more detailed abstract machine
model.

Floyd [62] introduced the method of invariants to assign meaning to programs
and Hoare [90, 91] systemized their use.

The book [80] is a compendium on sums and recurrences and, more generally,
discrete mathematics.

Books on compiler construction [137, 194] tell you more about the compilation
of high-level programming languages into machine code.

3

Representing Sequences
by Arrays and Linked Lists

[todo: Titel im Inhaltsverzeichnis reparieren] ⇐=

[todo: Bilder positionieren] Perhaps the world’s oldest data structures were ⇐=
tablets in cuneiform script used more than 5000 years ago by custodians in Sume-
rian temples. They kept lists of goods, their quantities, owners and buyers. The pic-
ture on the left shows an example. Possibly this was the first application of written
language. The operations performed on such lists have remained the same — adding
entries, storing them for later, searching entries and changing them, going through a
list to compile summaries, etc. The Peruvian quipu you see in the picture on the right
served a similar purpose in the Inca empire using knots in colored strings arranged
sequentially on a master string. Probably it is easier to maintain and use data on
tablets than using knotted string, but one would not want to haul stone tablets over
the Andean mountain trails. Apparently, it makes sense to consider different repre-
sentations for the same kind of logical data.

The abstract notion of a sequence, list, or table is very simple and is independent
of its representation in a computer. Mathematically, the only important property is
that the elements of a sequence s = 〈e0, . . . , en−1〉 are arranged in a linear order —
in contrast to the trees and graphs in Chapters 7 and 8, or the unordered hash tables
discussed in Chapter 4. There are two basic ways for referring to the elements of a
sequence.

One is to specify the index of an element. This is the way we usually think about
arrays where s[i] returns the i-th element of sequence s. Our pseudocode supports
static arrays. In a static data structure, the size is known in advance and the data
structure is not modified by insertions and deletions. In a bounded data structure,

60 3 Representing Sequences by Arrays and Linked Lists

the maximal size is known in advance. In Section 3.2 we introduce dynamic or un-
bounded arrays that can grow and shrink as elements are inserted and removed. The
analysis of unbounded arrays introduces the concept of amortized analysis.

The second way for referring to the elements of a sequence is relative to other
elements. For example, one could ask for the successor of an element e, for the
predecessor of an element e′ or for the subsequence 〈e, . . . , e′〉 of elements between
e and e′. Although relative access can be simulated using array indexing, we will
see in Section 3.1 that list-based representation of sequences is more flexible. In
particular, it becomes easier to insert or remove arbitrary pieces of a sequence.

In many algorithms, it does not matter very much whether sequences are imple-
mented using arrays or linked lists because only a very limited set of operations is
needed that can be handled efficiently using either representation. Section 3.4 in-
troduces stacks and queues which are the most common data types of that kind. In
Section 3.5 we summarize the findings of the Chapter.

3.1 Linked Lists

In this section we study the representation of sequences by
linked lists. In a doubly linked list each item points to its suc-
cessor and to its predecessor. In a singly linked list each item
points to its successor. We will see that linked lists are eas-
ily modified in many ways: we may insert or delete items or
sublists, we may concatenate lists. The drawback is that ran-
dom access (operator [·]) is not supported. We study doubly
linked lists in Section 3.1.1 and singly linked lists in Sec-
tion 3.1.2. Singly linked lists are more space efficient and
somewhat faster and should therefore be preferred whenever
their functionality suffices. A good way to think of a linked

list is to imagine a chain where one element is written on each link. Once we get
hold of one link of the chain, we can retrieve all elements. [replace figure chain.ps
by http://de.fotolia.com/id/3797184?]=⇒

3.1.1 Doubly Linked Lists

Figure 3.1 shows the basic building block of a linked list. A list item stores an element
and pointers to successor and predecessor. We call a pointer to a list item a handle.
This sounds simple enough, but pointers are so powerful that we can make a big mess
if we are not careful. What makes a consistent list data structure? We require that for
each item it , the successor of the predecessor is equal to it and the predecessor of
the successor is equal to it .

A sequence of n elements is represented by a ring of n + 1 items. There is a
special or dummy item h which stores no element. The successor h1 of h stores the
first element of the sequence, the successor of h1 stores the second element of the
sequence, and so on. The predecessor of h stores the last element of the sequence,

3.1 Linked Lists 61

Class Handle = Pointer to Item

Class Item of Element // one link in a doubly linked list
e : Element
next : Handle // -

¾
-

¾
-

¾
prev : Handle
invariant next→prev = prev→next = this

Fig. 3.1. The items of a doubly linked list.

-

⊥

-

¾

e1

· · ·

· · ·
¾

en

¾

-

Fig. 3.2. The representation of sequence 〈e1, . . . , en〉 by a doubly linked list. There are n + 1
items arranged in a ring, a special item h containing no element and one item for each element
of the sequence. The item containing ei is the successor of the item containing ei−1 and the
predecessor of the item containing ei+1. The special item is between the item containing en

and the item containing e1.

see Figure 3.2. The empty sequence is represented by a ring consisting only of the
special item. Since there are no elements in the sequence, the special item is its own
successor and predecessor. Figure 3.4 contains the definition of the list representation
of sequences. An object of class List contains a single list item h. The constructor of
the class initializes the header h to an item containing ⊥ and having itself as successor
and predecessor. In this way, the list is initialized to the empty sequence.

We implement all basic list operations in terms of the single operation splice

shown in Figure 3.3. Splice cuts out a sublist from one list and inserts it after some
target item. The sublist is specified by handles a and b to its first and last element,
respectively. In other words, b must be reachable from a by following zero or more
next pointers and without going through the special element. The target item t can
be either in the same list or in a different list; in the former case, it must not be inside
the sublist starting at a and ending at b.

Splice does not change the number of items in the system. We assume that there
is one special list, freeList , that keeps a supply of unused elements. When inserting
new elements into a list, we take the necessary items from freeList and when deleting
elements we return the corresponding items to freeList . The function checkFreeList

allocates memory for new items when necessary. We defer its implementation to
Exercise 30 and a short discussion in Section 3.6.

With these conventions in place, a large number of useful operations can be im-
plemented as one line functions that all run in constant time. Thanks to the power of
splice , we can even manipulate arbitrarily long sublists in constant time. Figures 3.4
and 3.5 show many examples. In order to test whether a list is empty, we simply

62 3 Representing Sequences by Arrays and Linked Lists

// Remove 〈a, . . . , b〉 from its current list and insert it after t
// . . . , a′, a, . . . , b, b′, . . . + . . . , t, t′, . . . 7→ . . . , a′, b′, . . . + . . . , t, a, . . . , b, t′, . . .

Procedure splice(a,b,t : Handle)
assert a and b belong to the same list, b is not before a , and t 6∈ 〈a, . . . , b〉

// cut out 〈a, . . . , b〉 a′ a b b′

· · ·
· · ·-

¾
-

¾
-

¾
-

¾a′ := a→ prev
b′ := b→ next
a′ → next := b′ //
b′ → prev := a′ // · · ·

· · ·
R

¾
-

¾
-

¾
-

Y

// insert 〈a, . . . , b〉 after t
t′ := t→ next //

t a b t′

· · ·
· · ·

R
¾

-
¾

-

Y

b→ next := t′ //
a→ prev := t // · · ·

· · ·
R

¾
-

¾
-

¾
-

Y

t→ next := a //
t′ → prev := b // · · ·

· · ·-
¾

-
¾

-
¾

-
¾

Fig. 3.3. Splicing lists.

Class List of Element
// Item h is the predecessor of the first element and the successor of the last element.

h =
„

⊥
this
this

«

: Item // init to empty sequence
⊥

¾
-

// Simple access functions
Function head() : Handle; return address of h // Pos. before any proper element

Function isEmpty : {0, 1}; return h.next = this // 〈〉?
Function first : Handle; assert ¬isEmpty; return h.next
Function last : Handle; assert ¬isEmpty; return h.prev

// Moving elements around within a sequence.
// (〈. . . , a, b, c . . . , a′, c′, . . .〉) 7→ (〈. . . , a, c . . . , a′, b, c′, . . .〉)
Procedure moveAfter(b, a′ : Handle) splice(b, b, a′)
Procedure moveToFront(b : Handle) moveAfter(b, head)
Procedure moveToBack(b : Handle) moveAfter(b, last)

Fig. 3.4. Some constant time operations on doubly linked lists.

check whether h is its own successor. If a sequence is non-empty, its first and last el-
ement are the successor and predecessor of h, respectively. In order to move an item
b after an item a′, we simply cut out the sublist starting and ending at b and insert it
after a′. This is exactly what splice(b, b, a′) does. In order to move an element to the
first or last position of a sequence, we simply move it after head or after last. In order

3.1 Linked Lists 63

// Deleting and inserting elements.
// 〈. . . , a, b, c, . . .〉 7→ 〈. . . , a, c, . . .〉
Procedure remove(b : Handle) moveAfter(b, freeList.head)
Procedure popFront remove(first)
Procedure popBack remove(last)

// 〈. . . , a, b, . . .〉 7→ 〈. . . , a, e, b, . . .〉
Function insertAfter(x : Element; a : Handle) : Handle

checkFreeList // make sure freeList is nonempty. See also Exercise 30
a′ := freeList.first // Obtain an item a′ to hold x,
moveAfter(a′, a) // put it at the right place.
a′ → e := x // and fill it with the right content.
return a′

Function insertBefore(x : Element; b : Handle) : Handle return insertAfter(e, pred(b))
Procedure pushFront(x : Element) insertAfter(x, head)
Procedure pushBack(x : Element) insertAfter(x, last)

// Manipulations of entire lists
// (〈a, . . . , b〉, 〈c, . . . , d〉) 7→ (〈a, . . . , b, c, . . . , d〉, 〈〉)
Procedure concat(L′ : List)

splice(L′.first, L′.last, last)

// 〈a, . . . , b〉 7→ 〈〉
Procedure makeEmpty

freeList.concat(this) //
-

⊥
-

¾ · · ·
· · ·
¾ ¾

- 7→
⊥

¾
-

Fig. 3.5. More constant time operations on doubly linked lists.

to delete an element b, we move it to freeList . To insert a new element e, we take the
first item of freeList , store the element in it and move it to the place of insertion.

There are alternative ways of representing sequences by lists. A popular one
avoids the special list item h and instead stores a handle to the first list item in the
list object.

Exercise 28 (Alternative list implementation). Discuss an alternative implementa-
tion of List that does not need the dummy item h. Instead it stores a handle to the first
list item in the list object. In the interfaces, the position before the first list element is
encoded as a null pointer. The interface and the asymptotic execution times of all op-
erations should remain the same. Give at least one advantage and one disadvantage
of this implementation compared to the one given in the text.

The dummy item is also useful for other operations. For example, consider the
problem of finding the next occurrence of an element x starting at item from . If x
is not present, head should be returned. We use the dummy element as a sentinel.
A sentinel is an element in a data structure that makes sure that some loop will
terminate. In the case of lists, we store the key we are looking for in the dummy
element. This ensures that x is present in the list structure and hence a search for

64 3 Representing Sequences by Arrays and Linked Lists

it will always terminate. It will terminate in a proper list item or the dummy item
depending on whether x is present in the list originally. The trick of using head as a
sentinal saves us an additional test in each iteration, namely, whether or not the end
of the list is reached.

Function findNext(x : Element; from : Handle) : Handle
h.e = x // Sentinel

-
x

-
¾ · · ·

· · ·
¾ ¾

-while from → e 6= x do
from := from → next

return from

Exercise 29. Implement a procedure swap that swaps two sublists in constant time,
i.e., sequences (〈. . . , a′, a, . . . , b, b′, . . .〉, 〈. . . , c′, c, . . . , d, d′, . . .〉) are transformed
into (〈. . . , a′, c, . . . , d, b′, . . .〉, 〈. . . , c′, a, . . . , b, d′, . . .〉). Is splice a special case of
swap?

Exercise 30 (Memory management for lists). Implement the function checkFreelist

called by insertAfter in Figure 3.5. Since an individual call of the programming
language primitive allocate for every single item might be too slow, your function
should allocate space for items in large batches. The worst case execution time of
checkFreeList should be independent of the batch size. Hint: In addition to freeList

use a small array of free items.

Exercise 31. Give a constant time implementation for rotating a list to the right:
〈a, . . . , b, c〉 7→ 〈c, a, . . . , b〉. Generalize your algorithm to rotate 〈a, . . . , b, c, . . . , d〉
to 〈c, . . . , d, a, . . . , b〉 in constant time.

Exercise 32. findNext using sentinels is faster than an implementation that checks
for the end of the list in each iteration. But how much faster? What speed difference
do you predict for many searches in a small list with 100 elements, or for a large
list with 10 000 000 elements respectively? Why is the relative speed difference
dependent on the size of the list?

Maintaining the Size of a List

In our simple list data type, it is not possible to determine the number of elements
in constant time. This can be fixed by introducing a member variable size that is
updated whenever the number of elements changes. Operations that affect several
lists now need to know about the lists involved even if low level functions such as
splice would only need handles to the items involved. For example, consider the
following code for moving an element a from a list L to the position after a′ in list
L′:

Procedure moveAfter(b, a′ : Handle; L, L′ : List)
splice(b,b,a′); L.size--; L′.size++

3.1 Linked Lists 65

Maintaining the size of lists interferes with other list operations. When we move
elements as above, we need to know the sequences containing them and, more seri-
ously, operations, that move around sublists between lists, cannot be implemented in
constant time any more. The next exercise offers a compromise.

Exercise 33. Design a list data type that allows sublists to be moved between lists
in constant time and allows constant time access to size whenever sublist operations
have not been used since the last access to the list size. When sublist operations have
been used, size is only recomputed when needed.

Exercise 34. Explain how the operations remove , insertAfter , and concat have to
be modified to keep track of the length of a List .

3.1.2 Singly Linked Lists

The two pointers per item of a doubly linked list make programming quite easy.
Singly linked lists are the lean sisters of doubly linked lists. We use SItem to refer
to an item in a singly linked list. SItems scrap the predecessor pointer and only store
a pointer to the successor. This makes singly linked lists more space efficient and
often faster than their doubly linked brothers. The downside is that some operations
can no longer be performed in constant time or can no longer be supported in full
generality. For example, we can remove an SItem only if we know its predecessor.

We adopt the implementation approach from doubly linked lists. SItems form
collections of cycles and an SList has a dummy SItem h that precedes the first
proper element and is the successor of the last proper element. Many operations of
Lists can still be performed if we slightly change the interface. For example, the
following implementation of splice needs the predecessor of the first element of the
sublist to be moved.

// (〈. . . , a′, a, . . . , b, b′ . . .〉, 〈. . . , t, t′, . . .〉) 7→ (〈. . . , a′, b′ . . .〉, 〈. . . , t, a, . . . , b, t′, . . .〉)

Procedure splice(a′,b,t : SHandle)
(

a′ → next

t → next

b → next

)

:=

(

b → next
a′ → next

t → next

)

//

a′ a b b′

-
z

- · · · -
j

-

-
3

-

t t′

Similarly, findNext should not return the handle of the SItem with the next hit
but its predecessor so that it remains possible to remove the element found. Conse-
quently, findNext can only start searching at the item after the item given to it. A
useful addition to SList is a pointer to the last element because it allows us to support
pushBack in constant time.

Exercise 35. Implement classes SHandle, SItem , and SList for singly linked lists
in analogy to Handle, Item , and List . Show that the functions below can be im-
plemented to run in constant time. Operations head , first , last , isEmpty , popFront ,
pushFront , pushBack , insertAfter , concat , and makeEmpty should have the same

66 3 Representing Sequences by Arrays and Linked Lists

interface as before. Operations moveAfter , moveToFront , moveToBack , remove ,
popFront , and findNext need different interfaces.

We will see several applications of singly linked lists in later chapters, for exam-
ple in hash tables in Section 4.1 or for mergesort in Section 5.2. We may also use
singly linked lists to implement free lists of memory managers — even for items of
doubly linked lists.

3.2 Unbounded Arrays

Consider an array data structure that, besides the indexing operation [·], supports the
following operations pushBack , popBack , and size.

〈e0, . . . , en〉.pushBack(e) = 〈e0, . . . , en, e〉
〈e0, . . . , en〉.popBack = 〈e0, . . . , en−1〉
size(〈e0, . . . , en−1〉) = n

Why are unbounded arrays important? Because in many situations we do not know in
advance how large an array should be. Here is a typical example: suppose you want
to implement the Unix command sort for sorting the lines of a file. You decide
to read the file into an array of lines, sort the array internally, and finally output the
sorted array. With unbounded arrays this is easy. With bounded arrays, you would
have to read the file twice: once to find the number of lines it contains and once to
actually load it into the array.

We come to the implementation of unbounded arrays. We emulate an unbounded
array u with n elements by a dynamically allocated bounded array b with w entries,
where w ≥ n. The first n entries of b are used to store the elements of u. The last
w−n entries of b are unused. As long as w > n, pushBack simply increments n and
uses the first unused entry of b for the new element. When w = n, the next pushBack

allocates a new bounded array b′ that is a constant factor larger (say a factor two).
To reestablish the invariant that u is stored in b, the content of b is copied to the new
array so that the old b can be deallocated. Finally, the pointer defining b is redirected
to the new array. Deleting the last element with popBack is even easier since there
is no danger that b may become too small. However, we might waste a lot of space
if we allow b to be much larger than needed. The wasted space can be kept small by
shrinking b when n becomes too small. Figure 3.6 gives the complete pseudocode
for an unbounded array class. Growing and shrinking is performed using the same
utility procedure reallocate . Our implementation uses constants α and β with β = 2
and α = 4. Whenever the current bounded array becomes too small, we replace it by
an array of β times the old size. Whenever the size of the current array becomes α
times as large as its used part, we replace it by an array of size βn. The choice of α
and β will become clear later.

3.2 Unbounded Arrays 67

Class UArray of Element
Constant β = 2 : � + // growth factor
Constant α = 4 : � + // worst case memory blowup
w = 1 : � // allocated size
n = 0 : � // current size. invariant n ≤ w < αn or n = 0 and w ≤ β

b : Array [0..w − 1] of Element // b→ e0 · · · en−1

n
· · ·

w

Operator [i : �] : Element

assert 0 ≤ i < n
return b[i]

Function size : � return n

Procedure pushBack(e : Element) // Example for n = w = 4:
if n = w then // b→ 0 1 2 3

reallocate(βn) // b→ 0 1 2 3
b[n] := e // b→ 0 1 2 3 e

n++ // b→ 0 1 2 3 e

Procedure popBack // Example for n = 5, w = 16:
assert n > 0 // b→ 0 1 2 3 4
n-- // b→ 0 1 2 3 4
if αn ≤ w ∧ n > 0 then // reduce waste of space

reallocate(βn) // b→ 0 1 2 3

Procedure reallocate(w′ : �) // Example for w = 4, w′ = 8:
w := w′ // b→ 0 1 2 3
b′ := allocate Array [0..w − 1] of Element // b′ →

(b′[0], . . . , b′[n− 1]) := (b[0], . . . , b[n− 1]) // b′ → 0 1 2 3
dispose b // b→ 0 1 2 3
b := b′ // pointer assignment b→ 0 1 2 3

Fig. 3.6. Unbounded arrays

Amortized Analysis of Unbounded Arrays

Our implementation of unbounded arrays follows the algorithm design principle
“make the common case fast”. Array access with [·] is as fast as for bounded ar-
rays. Intuitively, pushBack and popBack should “usually” be fast — we just have
to update n. However, some insertions and deletions incur a cost of Θ(n). We will
show that such expensive operations are rare and that any sequence of m operations
starting with an empty array can be executed in time O(m).

68 3 Representing Sequences by Arrays and Linked Lists

Lemma 10. Consider an unbounded array u that is initially empty. Any sequence
σ = 〈σ1, . . . , σm〉 of pushBack or popBack operations on u is executed in time
O(m).

Lemma 10 is a non-trivial statement. A small and innocent looking change to the
program invalidates it.

Exercise 36. Your manager asks you to change the initialization of α to α = 2. He
argues that it is wasteful to shrink an array only when already three fourths of it are
unused. He proposes to shrink it already when n ≤ w/2. Convince him that this is a
bad idea by giving a sequence of m pushBack and popBack operations that would
need time Θ

(

m2
)

if his proposal were implemented.

Lemma 10 makes a statement about the amortized cost of pushBack and popBack

operations. Although single operations may be costly, the cost of a sequence of m
operations is O(m). If we divide the total cost for the operations in σ by the number
of operations, we get a constant. We say that the amortized cost of each operation
is constant. Our usage of the term amortized is similar to its usage in everyday lan-
guage, but it avoids a common pitfall. “I am going to cycle to work every day from
now on and hence it is justified to buy a luxury bike. The cost per ride will be very
small — the investment will amortize”. Does this kind of reasoning sound familiar
to you? The bike is bought, it rains, and all good intentions are gone. The bike has
not amortized. We will insist that a large expenditure is justified by savings in the
past and not by expected savings in the future. Suppose your ultimate goal is to go to
work in a luxury car. However, you are not going to buy it on your first day of work.
Instead you walk and put a certain amount of money per day into a savings account.
At some point, you will be able to buy a bicycle. You continue to put money away.
At some point later, you will be able to buy a small car, and even later you can finally
buy a luxury car. In this way every expenditure can be paid for by past savings and
all expenditures amortize. Using the notion of amortized costs, we can reformulate
Lemma 10 more elegantly. The increased elegance also allows better comparisons
between data structures.

Corollary 1. Unbounded arrays implement the operation [·] in worst case constant
time and the operations pushBack and popBack in amortized constant time.

To prove Lemma 10, we use the bank account or potential method. We asso-
ciate an account or potential with our data structure and force every pushBack and
popBack to put a certain amount into this account. Usually, we call our unit of cur-
rency token. The idea is that whenever a call of reallocate occurs, the balance of the
account is sufficiently high to pay for it. The details are as follows. A token can pay
for a constant amount of work. For each call reallocate(βn) we withdraw n tokens
from the account. Observe, that the cost of the call is O(n) and hence covered by
the value of the tokens. We charge two tokens to each call of pushBack and one
token to each call of popBack . We next show that these charges suffice to cover the
withdrawals made by reallocate.

3.2 Unbounded Arrays 69

The first call of reallocate occurs when there is one element already in the array
and a new element is inserted. The element already in the array deposited two tokens
in the account and this more than covers the one token withdrawn by reallocate . The
new element provides its tokens for the next call of reallocate.

After a call of reallocate we have an array of w elements: w/2 slots are occupied
and w/2 are free. The next call of reallocate occurs when either n = w or 4n ≤ w.
In the first case, at least w/2 elements were added to the array since the last call of
reallocate and each one of them deposited two tokens. So we have at least w tokens
available and can cover the withdrawal made by the next call of reallocate. In the
latter case, at least w/2−w/4 = w/4 elements were deleted from the array since the
last call of reallocate and each one of them deposited one token. So we have at least
w/4 tokens available. The call of reallocate needs at most w/4 tokens and hence the
cost of the call is covered. This completes the proof of Lemma 10.

Exercise 37. Redo the argument above for general values of α and β and charge
β/(β − 1) tokens to each call of pushBack and β/(α − β) tokens to each call
of popBack . Let n′ such that w = βn′. Then, after a reallocate, n′ elements are
occupied and (β − 1)n′ = ((β − 1)/β)w are free. The next call of reallocate occurs
when either n = w or αn ≤ w. Argue that in both cases there are enough tokens.

Amortized analysis is an extremely versatile tool and so we think it is worthwhile
to know alternative proof methods. We give two variants of the proof above.

We charged two tokens to each pushBack and one token to each popBack . Al-
ternatively, we could charge three tokens to each pushBack and not charge popBack

at all. The accounting is simple. The first two tokens pay for the insertion as above
and the third token is used when the element is deleted.

Exercise 38 (continuation of Exercise 37). Show that a charge of β/(β − 1) +
β/(α − β) tokens to each pushBack is enough. Determine values of α such that
β/(α − β) ≤ 1/(β − 1) and β/(α − β) ≤ β/(β − 1), respectively.

We come to a second modification of the proof. In the argument above, we used a
global argument in order to show that there are enough tokens in the account before
each call of reallocate. We now show how to replace the global argument by a local
argument. Recall that immediately after a call of reallocate we have an array of w
elements out of which w/2 are filled and w/2 are free. We now argue that at any time
after the first call of reallocate the following token invariant holds: the account con-
tains at least max(2(n−w/2), w/2−n) tokens. Observe that this number is always
non-negative. We use induction on the number of operations. Immediately, after the
first reallocate there is one token in the account and the invariant requires none. A
pushBack increases n by one and adds 2 tokens. So the invariant is maintained. A
popBack removes one element and adds one token. So the invariant is maintained.
When a call of reallocate occurs, we have either n = w or 4n ≤ w. In the former
case, the account contains at least n tokens and n tokens are required for the reallo-
cation. In the latter case, the account contains at least w/4 tokens and n are required.
So in either case the number of tokens suffices.

70 3 Representing Sequences by Arrays and Linked Lists

Exercise 39. Charge three tokens to a pushBack and no token to a popBack . Argue
that the account contains always at least n+max(2(n−w/2), w/2−n) = max(3n−
w,w/2) tokens.

Exercise 40 (Popping many elements). Implement an operation popBack(k) that
removes the last k elements in amortized constant time independent of k.

Exercise 41 (Worst case constant access time). Suppose for a real time application
you need an unbounded array data structure with worst case constant execution time
for all operations. Design such a data structure. Hint: store the elements in up to
two arrays. Start moving elements to a larger array well before the small array is
completely exhausted.

Exercise 42 (Implicitly growing arrays). Implement unbounded arrays where the
operation [i] allows any positive index. When i ≥ n, the array is implicitly grown
to size n = i + 1. When n ≥ w, the array is reallocated as for UArray . Initialize
entries that have never been written with some default value ⊥.

Exercise 43 (Sparse arrays). Implement bounded array with constant time for al-
locating arrays and constant time for operation [·]. All array elements should be
(implicitly) initialized to ⊥. You are not allowed to make any assumptions on the
contents of a freshly allocated array. Hint: Use an extra array of the same size and
store the number t of array elements to which a value was already assigned. Then
t = 0 initially. An array entry i to which a value was already assigned stores the
value and an index j, 1 ≤ j ≤ t, of the extra array and i is stored in that index of the
extra array.

We give a second example of an amortized analysis, the amortized cost of incre-
menting a binary counter. The value n of the counter is represented by a sequence
. . . βi . . . β1β0 of binary digits, i.e., βi ∈ {0, 1} and n =

∑

i≥0 βi2
i. The initial value

is zero. Its representation is a string of all zeroes. We define the cost of incrementing
the counter as one plus the number of trailing ones in the binary representation, i.e.,
the transition

. . . 01k → . . . 10k has cost k + 1.

What is the total cost of m increments? We show that the cost is O(m). Again, we
give a global argument first and then a local argument.

When the counter is incremented m times, the final value is m. The represen-
tation of the number m requires L = 1 + dlog me bits. Among the numbers 0 to
m − 1 there are at most 2L−k−1 numbers whose binary representation ends with a
zero followed by k ones. For each one of them the increment costs 1 + k. Thus the
total cost of the m increments is bounded by

∑

0≤k<L

(k + 1)2L−k−1 = 2L
∑

1≤k≤L

k/2k ≤ 2L
∑

k≥1

k/2k = 2 · 2L ≤ 4m .

Thus the amortized cost of an increment is O(1).

3.3* Amortized Analysis 71

The argument above is global in the sense that it requires an estimate of the
number of representations ending in a zero followed by k ones. We now give a local
argument which does not need such a bound. We associate a bank account with the
counter. Its balance is the number of ones in the binary representation of the counter.
So the balance is initially zero. Consider an increment of cost k + 1. Before the
increment the representation ends in a zero followed by k ones, after the increment
the representation ends in a one followed by k − 1 zeroes. So the number of ones in
the representation decreases by k − 1, i.e., the operation releases k − 1 tokens from
the account. The cost of the increment is k + 1. We cover k − 1 tokens from the
account and charge two tokens to the operation. Thus the total cost of m operations
is at most 2m.

3.3* Amortized Analysis

We give a general definition of amortized time bounds and amortized analysis. We
recommend to read this section quickly and to come back to it when needed. We
consider an arbitrary data structure. The values of all program variables comprise
the state of the data structure; we use S to denote the set of states. In the example
of the previous section, the state of our data structures is formed by the values of n,
w, and b. Let s0 be the initial state. In our example, we have n = 0, w = 1, and
b an array of size one in the initial state. We have operations to transform the data
structure. In our example, we had operations pushBack , popBack , and reallocate .
The application of operation X in a state s transforms the data structure to a new
state s′ and has cost TX(s). In our example, the cost of a pushBack or popBack is 1
excluding the cost of the possible call to reallocate. The cost of a call reallocate(βn)
is Θ(n).

Let F be a sequence of operations Op1, Op2, Op3, . . . , Opn. Starting at the
initial state s0, F takes us through a sequence of states to a final state sn:

s0
Op1−→ s1

Op2−→ s2
Op3−→ · · · Opn−→ sn .

The cost T (F) of F is given by

T (F) =
∑

1≤i≤n

TOpi
(si−1) .

A family of functions AX(s), one for each operation X , is called a family of amor-
tized time bounds if for every sequence F of operations:

T (F) ≤ A(F) := c +
∑

1≤i≤n

AOpi
(si−1)

for some constant c not depending on F , i.e., up to an additive constant the total
actual execution time is bounded by the total amortized execution time.

72 3 Representing Sequences by Arrays and Linked Lists

There is always a trivial way to define a family of amortized time bounds, namely
AX(s) := TX(s) for all s. The challenge is to find a family of simple functions
AX(s) forming a family of amortized time bounds. In our example, the functions
ApushBack (s) = ApopBack (s) = A[·](s) = O(1) and Areallocate(s) = 0 for all s
form a family of amortized time bounds.

The Potential or Bank Account Method for Amortized Analysis

We now formalize the technique used in the previous section. We have a function
pot that associates a non-negative potential with every state of the data structure,
i.e., pot : S −→ �

≥0. We call pot(s) the potential of the state s or the balance of the
savings account when the data structure is in state s. It requires ingenuity to come
up with an appropriate function pot. For an operation X transforming a state s into
a state s′ and having cost TX(s), we define the amortized cost AX(s) as the sum of
the potential change and the actual cost, i.e., AX(s) = pot(s′) − pot(s) + TX(s).
The functions obtained in this way form a family of amortized time bounds.

Theorem 8 (Potential Method). Let S be the set of states of a data structure, let
s0 be the initial state, and let pot : S −→ �

≥0 be a non-negative function. For an

operation X and a state s with s
X−→ s′ define

AX(s) = pot(s′) − pot(s) + TX(s).

Then the functions AX(s) are a family of amortized time bounds.

Proof. A short computation suffices. Consider a sequence F = 〈Op1, . . . ,Opn〉 of
operations. We have :

∑

1≤i≤n

AOpi
(si−1) =

∑

1≤i≤n

(pot(si) − pot(si−1) + TOpi
(si−1))

= pot(sn) − pot(s0) +
∑

1≤i≤n

TOpi
(si−1)

≥
∑

1≤i≤n

TOpi
(si−1) − pot(s0),

since pot(sn) ≥ 0. Thus T (F) ≤ A(F) + pot(s0).

Let us formulate the analysis of unbounded arrays in the language above. The
state of an unbounded array is characterized by the values of n and w. Following
Exercise 39, the potential in state (n,w) is max(3n − w,w/2). The actual costs T
of pushBack and popback is one and the actual cost of reallocate(βn) is n. The
potential of the initial state (n,w) = (0, 1) is 1/2. A pushBack increases n by one
and hence increases the potential by at most three. Thus its amortized cost is bounded
by four. A popBack decreases n by one and hence does not increase its potential.
Its amortized cost is therefore at most one. The first reallocate occurs when the data

3.3* Amortized Analysis 73

structure is in state (n,w) = (1, 1). The potential of this state is max(3−1, 1/2) = 2
and the actual cost of the reallocate is 1. After the reallocate the data structure is in
state (n,w) = (1, 2) and has potential max(3 − 2, 1) = 1. Therefore the amortized
cost of the first reallocate is 1−2+1 = 0. Consider any other call of reallocate . We
have either n = w or 4n ≤ w. In the former case, the potential before the reallocate
is 2n, the actual cost is n, the new state is (n, 2n) and has potential n. Thus the
amortized cost is n−2n+n = 0. In the latter case, the potential before the operation
is w/2, the actual cost is n which is at most w/4 and the new state is (n,w/2) and
has potential w/4. Thus the amortized cost is at most w/4 − w/2 + w/4 = 0.
We conclude that the amortized cost of pushBack and popBack is O(1) and the
amortized cost of reallocate is zero or less. Thus a sequence of m operations on an
unbounded array has cost O(m).

Exercise 44 (Amortized analysis of binary counters). Consider a nonnegative in-
teger c represented by an array of binary digits and a sequence of m increment and
decrement operations. Initially, c = 0. This exercise continues the discussion at the
end of Section 3.2.

1. What is the worst case execution time of an increment or a decrement as a func-
tion of m? Assume that you can only work at one bit per step.

2. Prove that the amortized cost of increments is constant if there are no decre-
ments. Hint: define the potential of c as the number of ones in the binary repre-
sentation of c.

3. Give a sequence of m increment and decrement operations with cost Θ(m log m).
4. Give a representation of counters such that you can achieve worst case constant

time for increment and decrement.
5. Allow each digit di to take values from {−1, 0, 1}. The value of the counter is

c =
∑

i di2
i. Show that in this redundant ternary number system increments and

decrements have constant amortized cost. Is there an easy way to tell whether the
value of the counter is zero?

Universality of Potential Method

We argue that the potential function technique is strong enough to obtain any family
of amortized time bounds.

Theorem 9. Let BX(s) be a family of amortized time bounds. Then there is a po-
tential function pot such that AX(s) ≤ BX(s) for all states s and all operations X
where AX(s) is defined according to the Theorem 8.

Proof. Let c be such that T (F) ≤ B(F) + c for any sequence of operations F
starting at the initial state. For any state s we define its potential pot(s) by

pot(s) = inf {B(F) + c − T (F) : F is a sequence of operations with final state s} .

We need to write inf instead of min, since there might be infinitely many sequences
leading to s. We have pot(s) ≥ 0 for any s since T (F) ≤ B(F) + c for any se-
quence F . Thus pot is a potential function and the functions AX(s) form a family

74 3 Representing Sequences by Arrays and Linked Lists

of amortized time bounds. We need to show AX(s) ≤ BX(s) for all X and s. Let
ε > 0 be arbitrary. We show AX(s) ≤ BX(s) + ε. Since ε is arbitrary, this proves
AX(s) ≤ BX(s).

Let F be a sequence with final state s and B(F) + c − T (F) ≤ pot(s) + ε. Let
F ′ be F followed by X , i.e.,

s0
F−→ s

X−→ s′ .

Then pot(s′) ≤ B(F ′) + c− T (F ′) by definition of pot(s′), pot(s) ≥ B(F) + c−
T (F) − ε by choice of F , B(F ′) = B(F) + BX(s) and T (F ′) = T (F) + TX(s)
since F ′ = F ◦X , and AX(s) = pot(s′)− pot(s) + TX(s) by definition of AX(s).
Combining the inequalities we obtain

AX(s) ≤ (B(F ′) + c − T (F ′)) − (B(F) + c − T (F) − ε) + TX(s)

= (B(F ′) − B(F)) − (T (F ′) − T (F) − TX(s)) + ε

= BX(s) + ε .

3.4 Stacks and Queues

Sequences are often used in a rather limited way. Let us start with examples from
precomputer days. Sometimes a clerk tends to work in the following way: he keeps
a stack of unprocessed files on his desk. New files are placed on the top of the stack.
When he processes the next file he also takes it from the top of the stack. The easy
handling of this “data structure” justifies its use; of course, files may stay in the stack
for a long time. In the terminology of the preceding sections, a stack is a sequence
that only supports the operations pushBack , popBack , and last . We will use the
simplified names push , pop, and top for the three stack operations.

Behavior is different when people stand in line waiting for service at a post office.
Customers join the line at one end and leave it at the other end. Such sequences are
called FIFO queues (First In First Out) or simply queues. In the terminology of the
List class, FIFO queues only use the operations first , pushBack and popFront .

The more general deque1, or double-ended queue allows operations first , last ,
pushFront , pushBack , popFront and popBack and can also be observed at a post
office, when some not so nice individual jumps the line, or when the clerk at the
counter gives priority to a pregnant woman at the end of the line. Figure 3.7 illustrates
the access patterns of stacks, queues and deques.

Exercise 45 (The Towers of Hanoi). In the great temple of Brahma in Benares, on
a brass plate under the dome that marks the center of the world, there are 64 disks
of pure gold that the priests carry one at a time between these diamond needles
according to Brahma’s immutable law: no disk may be placed on a smaller disk. In
the beginning of the world, all 64 disks formed the Tower of Brahma on one needle.
1 Deque is pronounced like “deck”.

3.4 Stacks and Queues 75

...
stack

...
FIFO queue

...

pushBack popBackpushFrontpopFront

deque

Fig. 3.7. Operations on stacks, queues, and double-ended queues (deques).

Now, however, the process of transfer of the tower from one needle to another is in
mid-course. When the last disk is finally in place, once again forming the Tower of
Brahma but on a different needle, then the end of the world will come and all will
turn to dust. [92].2

Describe the problem formally for any number k of disks. Write a program that
uses three stacks for the poles and produces a sequence of stack operations that trans-
form the state (〈k, . . . , 1〉, 〈〉, 〈〉) into the state (〈〉, 〈〉, 〈k, . . . , 1〉).

Exercise 46. Explain how to implement a FIFO queue using two stacks so that each
FIFO operation takes amortized constant time.

Why should we care about these specialized types of sequences if we already
know the list data structure which supports all operations above and more in constant
time. There are at least three reasons. First, programs become more readable and
are easier to debug if special usage patterns of data structures are made explicit.
Second, simple interfaces also allow a wider range of implementations. In particular,
the simplicity of stacks and queues allows for specialized implementations that are
more space efficient than general Lists. We will elaborate this algorithmic aspect in
the remainder of this section. In particular, we will strive for implementations based
on arrays rather than lists. Third, lists are not suited for external memory use because
each access to a list item may cause a cache fault. The sequential access patterns to
stacks and queues translate into good reuse of cache blocks when stacks and queues
are implemented by arrays.

Bounded stacks, where we know the maximal size in advance, are readily imple-
mented with bounded arrays. For unbounded stacks we can use unbounded arrays.
Stacks can also be implemented by singly linked lists: the top of the stack corre-
sponds to the front of the list. FIFO queues are easy to realize with singly linked
lists with a pointer to the last element. However, deques cannot be implemented effi-
ciently by singly linked lists.
2 In fact, this mathematical puzzle was invented by the French mathematician Edouard Lucas

in 1883.

76 3 Representing Sequences by Arrays and Linked Lists

Class BoundedFIFO(n : �) of Element
b : Array [0..n] of Element

h = 0 : � // index of first element
t = 0 : � // index of first free entry

h

t0n

b

Function isEmpty : {0, 1}; return h = t

Function first : Element; assert ¬isEmpty; return b[h]

Function size : � ; return (t− h + n + 1) mod (n + 1)

Procedure pushBack(x : Element)
assert size< n
b[t] :=x
t :=(t + 1) mod (n + 1)

Procedure popFront assert ¬isEmpty; h :=(h + 1) mod (n + 1)

Fig. 3.8. An array-based bounded FIFO queue implementation.

We next discuss an implementation of bounded FIFO queues by arrays, see Fig-
ure 3.8. We view the array as a cyclic structure where entry zero follows the last
entry. In other words, we have array indices 0 to n and view indices modulo n + 1.
We maintain two indices h and t delimiting the range of valid queue entries; the
queue comprises the array elements indexed h, h + 1, . . . , t − 1. The indices travel
around the cycle as elements are queued and dequeued. The cyclic semantics of the
indices can be implemented using arithmetics modulo the array size3. We always
leave at least one entry of the array empty because otherwise it would be difficult to
distinguish a full queue from an empty queue. The implementation is readily gener-
alized to bounded deques. Circular arrays also support the random access operator
[·].
Operator [i :

�
] : Element; return b[i + h mod n]

Bounded queues and deques can be made unbounded using similar techniques as for
unbounded arrays in Section 3.2.

We have now seen the major techniques for implementing stacks, queues and
deques. The techniques may be combined to obtain solutions particularly suited for
very large sequences or external memory computations.

Exercise 47 (Lists of arrays). Here we want to develop a simple data structure for
stacks, FIFO queues, and deques that combines all the advantages of lists and un-
bounded arrays and is more space efficient for large queues than either of them. Use
a list (doubly linked for deques) where each item stores an array of K elements for
some large constant K. Implement such a data structure in your favorite program-
ming language. Compare space consumption and execution time to linked lists and
unbounded arrays for large stacks.
3 On some machines one might obtain significant speedups by choosing the array size as a

power of two and replacing mod by bit operations.

3.5 Lists versus Arrays 77

Operation List SList UArray CArray explanation of ‘∗’
[·] n n 1 1
size 1∗ 1∗ 1 1 not with inter-list splice

first 1 1 1 1
last 1 1 1 1
insert 1 1∗ n n insertAfter only
remove 1 1∗ n n removeAfter only
pushBack 1 1 1∗ 1∗ amortized
pushFront 1 1 n 1∗ amortized
popBack 1 n 1∗ 1∗ amortized
popFront 1 1 n 1∗ amortized
concat 1 1 n n
splice 1 1 n n
findNext ,. . . n n n∗ n∗ cache efficient

Table 3.1. Running times of operations on sequences with n elements. Entries have an implicit
O(·) around them. List stands for doubly linked lists, SList stands for singly linked list,
UArray stands for unbounded array, and CArray stands for circular array.

Exercise 48 (External memory stacks and queues). Design a stack data structure
that needs O(1/B) I/Os per operation in the I/O model from Section 2.2. It suf-
fices to keep two blocks in internal memory. What can happen in a naive imple-
mentation with only one block in memory? Adapt your data structure to implement
FIFOs, again using two blocks of internal buffer memory. Implement deques using
four buffer blocks.

3.5 Lists versus Arrays

Table 3.1 summarizes the findings of this chapter. Arrays are better at indexed ac-
cess whereas linked lists have their strength in sequence manipulations at arbitrary
positions. Both approaches realize the operations needed for stacks and queues ef-
ficiently. However, arrays are more cache efficient here whereas lists provide worst
case performance guarantees.

Singly linked lists can compete with doubly linked lists in most but not all re-
spects. The only advantage of cyclic arrays over unbounded arrays is that they can
implement pushFront and popFront efficiently.

Space efficiency is also a nontrivial issue. Linked lists are very compact if ele-
ments are much larger than pointers. For small Element types, arrays are usually
more compact because there is no overhead for pointers. This is certainly true if
the size of the arrays is known in advance so that bounded arrays can be used. Un-
bounded arrays have a tradeoff between space efficiency and copying overhead dur-
ing reallocation.

78 3 Representing Sequences by Arrays and Linked Lists

3.6 Implementation Notes

Every decent programming language supports bounded arrays. Also unbounded ar-
rays, lists, stacks, queues and deques are provided in libraries available for the major
imperative languages. Nevertheless, you will often have to implement list-like data
structures yourself, e.g., when your objects are members of several linked lists. In
such implementations, memory management is often a major challenge.

C++ : The class vector〈Element〉 in the STL realizes unbounded arrays. It gives
additional control over the allocated size w and is likely to be more efficient than our
simple implementation. Usually you will give some initial estimate for the sequence
size n when the vector is constructed. This can save you many grow operations. Of-
ten, you also know when the array will stop changing size and you can then force
w = n. With these refinements, there is little reason to use the built-in C style ar-
rays. An added benefit of vectors is that they are automatically destructed when the
variable gets out of scope. Furthermore, during debugging you may switch to imple-
mentations with bound checking.

There are some additional issues that you might want to address if you need very
high performance for arrays that grow or shrink a lot. During reallocation, vector has
to move array elements using the copy constructor of Element . In most cases, a call
to the low-level byte copy operation memcpy would be much faster. Another low
level optimization is to implement reallocate using the standard C function realloc

The memory manager might be able to avoid copying the data entirely.
A stumbling block with unbounded arrays is that pointers to array elements be-

come invalid when the array is reallocated. You should make sure that the array does
not change size while such pointers are used. If reallocations cannot be ruled out,
you can use array indices rather than pointers.

The STL and LEDA offer doubly linked lists in the class list〈Element〉, and
singly linked lists in the class slist〈Element〉. Their memory management uses free
lists for all objects of (roughly) the same size, rather than only for objects of the same
class.

If you need to implement a list-like data structure, note that the operator new can
be redefined for each class. The standard library class allocator offers an interface
that allows you to use your own memory management while cooperating with the
memory managers of other classes.

The STL provides classes stack〈Element〉 and deque〈Element〉 for stacks and
double-ended queues, respectively. Deques also allow constant-time indexed access
using [·]. LEDA offers classes stack〈Element〉 and queue〈Element〉 for unbounded
stacks, and FIFO queues implemented via linked lists. It also offers bounded variants
that are implemented as arrays.

Iterators are a central concept of the STL; they implement our abstract view of
sequences independent of the particular representation.

Java: The util package of the Java 6 platform provides Vector for unbounded ar-
rays, LinkedList for doubly linked lists. There is a Deque interface with implemen-

3.7 Historical Notes and Further Findings 79

tations by ArrayDeque and LinkedList . A Stack is implemented as an extension to
Vector .

Many Java books proudly announce that Java has no pointers so that you might
wonder how to implement linked lists. The solution is that object references in Java
are essentially pointers. In a sense, Java has only pointers, because members of non-
simple type are always references, and are never stored in the parent object itself.

Explicit memory management is optional in Java, since it provides garbage col-
lections of all objects that are not needed any more.

3.7 Historical Notes and Further Findings

All algorithms described in this chapter are folklore, i.e., they have been around for
a long time and nobody claims to be their inventor. Indeed, we have seen that many
of the concepts predate computers.

Amortization is as old as the analysis of algorithms. The bank account and the
potential methods were introduced at the beginning of the 80s by R.E. Brown, S.
Huddlestone, K. Mehlhorn, D.D. Sleator, and R.E. Tarjan [32, 93, 170, 171]. The
overview article [176] popularized the term amortized analysis and Theorem 9 first
appeared in [123].

There is an array-like data structure that supports indexed access in constant time
and arbitrary element insertion and deletion in amortized time O(

√
n). The trick is

relatively simple. The array is split into subarrays of size n′ = Θ(
√

n). Only the last
subarray may contain less elements. The subarrays are maintained as cyclic arrays
as described in Section 3.4. Element i can be found in entry i mod n′ of subarray
bi/n′c. A new element is inserted in its subarray in time O(

√
n). To repair the in-

variant that subarrays have the same size, the last element of this subarray is inserted
as the first element of the next subarray in constant time. This process of shifting
the extra element is repeated O(n/n′) = O(

√
n) times until the last subarray is

reached. Deletion works similarly. Occasionally, one has to start a new last subarray
or change n′ and reallocate everything. The amortized cost of these additional opera-
tions can be kept small. With some additional modifications, all deque operations can
be performed in constant time. We refer the reader to [104] for more sophisticated
implementations of deques and an implementation study.

4

Hash Tables and Associative Arrays

[ps:Das Bild ist aus Wikipedia. Ich habe auch eine hÃűherauflÃűsende
Variante] If you want to get a book from the central library of the University of ⇐=
Karlsruhe, you have to order the book an hour in advance. The library personnel
fetches the book from the stack and delivers it to a room with 100 shelves. You find
your book in a shelf numbered with the last two digits of your library card. Why the
last digits and not the leading digits? Probably, because this distributes the books
more evenly about the shelves. The library cards are numbered consecutively as stu-
dents sign up and the University of Karlsruhe was founded in 1825. Therefore, the
students enrolled at the same time are likely to have the same leading digits in their
card number and only a few shelves would be in use.

The subject of this chapter is the robust and efficient implementation of the above
“delivery shelf data structure”. In Computer Science the data structure is known as a
hash table. Hash tables are one implementation of associative arrays or dictionaries.
The other implementation are tree data structures which we will study in Chapter 7.
An associative array is an array with a potentially infinite or at least very large index
set out of which only a small number of indices are actually in use. For example,
the potential indices are all strings and the indices in use are all identifiers used in a
particular C++ program. Or the potential indices are all ways of placing chess pieces
on a chess board and the indices in use are the placements required in the analysis
of a particular game. Associative arrays are versatile data structures. Compilers use
them for their symbol table that associates identifiers with information about them.
Combinatorial search programs often use them for detecting whether a situation was
already looked at. For example, chess programs have to deal with the fact that board
positions can be reached by different sequences of moves. However, each position
should be evaluated only once. The solution is to store positions in an associate ar-
ray. One of the most widely used implementations of the join-operation in relational
databases temporarily stores one of the participating relations in an associative ar-
ray. Scripting languages such as awk [6] or perl [190] use associative arrays as
their only data structure. In all examples above, the associate array is usually imple-
mented as a hash table. The exercises of this section ask you to work out some uses
of associative arrays.

82 4 Hash Tables and Associative Arrays

Formally, an associative array S stores a set of elements. Each element e has an
associated key key(e) ∈ Key . We assume keys to be unique, i.e., distinct elements
have distinct keys. Associative arrays support the following operations:

S.insert(e : Element): S :=S ∪ {e}
S.remove(k : Key): S :=S \ {e} where e is the unique element with key(k) = k.
S.find(k : Key): If there is an e ∈ S with key(k) = k return e otherwise return ⊥.

In addition, we assume a mechanism that allows us to retrieve all elements in S.
Since this forall operation is usually easy to implement, we only discuss it in the
exercises. Observe that the find -operation is essentially the random access operator
in an array; therefore, the name associative array. Key is the set of potential array
indices and the elements in S are the indices in use at any particular time. Throughout
this chapter, we use n to denote the size of S and N to denote the size of Key . In a
typical application of associative arrays, N is humongous and hence the usage of an
array of size N is out of the question. We are aiming for solutions which use space
O(n).

In the library example, Key is the set of all library card numbers and elements are
the book orders. Another pre-computer example is an English-German dictionary.
The keys are English words and an element is an English word together with its
German translations.

The basic idea behind the hash table implementation of associative arrays is sim-
ple. We use a so-called hash function h to map the set Key of potential array in-
dices to a small range [0..m − 1] of integers. We also have an array t with index set
[0..m − 1], the so-called hash table. In order to keep the space requirement low, we
want m to be about the number of elements in S. The hash function associates with
each element e a hash value h(key(e)). In order to simplify notation, we write h(e)
instead of h(key(e)) for the hash value of e. In the library example, h maps each
library card number to its last two digits. Ideally, we would like to store element e
in table entry t[h(e)]. If this works, we obtain constant execution time1 for our three
operations insert , remove , and find .

Unfortunately, storing e in t[h(e)] will not always work as several elements might
collide, i.e., map to the same table entry. The library examples suggests a fix: Al-
low several book orders to go to the same shelf. Then the entire shelf has to be
searched to find a particular order. The generalization of this fix leads to hashing
with chaining. We store a set of elements in each table entry and implement the set
using singly linked lists. Section 4.1 analyzes hashing with chaining using rather op-
timistic (and hence unrealistic) assumptions about the properties of the hash function.
In this model, we achieve constant expected time for all three dictionary operations.

In Section 4.2 we drop the unrealistic assumptions and construct hash functions
that come with (probabilistic) performance guarantees. Already our simple examples
show that finding good hash functions is non-trivial. For example, if we apply the
1 Strictly speaking, we have to add additional terms for evaluating the hash function and for

moving elements around. To simplify notation, we assume in this chapter that all of this
takes constant time.

4.1 Hashing with Chaining 83

least significant digit idea from the library example to an English-German dictionary,
we might come up with a hash function based on the last four letters of a word. But
then we would have lots of collisions for words ending on ‘tion’, ‘able’, etc.

We can simplify hash tables (but not their analysis) by returning to the original
idea of storing all elements in the table itself. When a newly inserted element e
finds entry t[h(x)] occupied, it scans the table until a free entry is found. In the
library example, assume that shelves can hold exactly one book. The librarians would
then use the adjacent shelves to store books that map to the same delivery shelf.
Section 4.3 elaborates on this idea, which is known as hashing with open addressing
and linear probing.

Why are hash tables called hash tables? The dictionary explains “to hash” as
“to chop up, as of potatoes”. This is exactly, what hash functions usually do. For
example, if keys are strings, the hash function may chop up the string into pieces
of fixed size, interpret each fixed-size piece as a number, and then compute a single
number from the sequence of numbers. A good hash function creates disorder and in
this way avoids collisions.

Exercise 49. Assume you are given a set M of pairs of integers. M defines a binary
relation RM . Use an associative array to check whether RM is symmetric. A relation
is symmetric if ∀(a, b) ∈ M : (b, a) ∈ M .

Exercise 50. Write a program that reads a text file and outputs the 100 most frequent
words in the text.

Exercise 51 (A billing system:). Assume you have a large file consisting of triples
(transaction, price, customer ID). Explain how to compute the total payment due for
each customer. Your algorithm should run in linear time.

Exercise 52 (Scanning a hash table.). Show how to realize the forall operation for
hashing with chaining and hashing with open addressing and linear probing. What is
the running time of your solution?

4.1 Hashing with Chaining

Hashing with chaining maintains an array t of linear lists, see Figure 4.1. The asso-
ciative array operations are easy to implement. To insert an element e, we insert it
somewhere in sequence t[h(e)]. To remove the element with key k, we scan through
t[h(k)]. If an element e with h(e) = k is encountered, we remove it and return.
To find the element with key k, we also scan through t[h(k)]. If an element e with
h(e) = k is encountered, we return it. Otherwise, we return ⊥.

Insertions take constant time. Space consumption is O(n + m). To remove or
find a key k, we have to scan the sequence t[h(k)]. In the worst case, for example, if
find looks for an element that is not there, the entire list has to be scanned. If we are
unlucky, all elements are mapped to the same table entry and the execution time is
Θ(n). So in the worst case hashing with chaining is no better than linear lists.

84 4 Hash Tables and Associative Arrays

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z

<chop, lop>

<axe,dice,cube>

<fell>
<hack>

<slash,hash>

remove

"clip"

insert

"slash"

<chop, clip, lop>

<axe,dice,cube>

<fell>
<hack>

<slash,hash>

<chop, clip, lop>

<axe,dice,cube>

<fell>
<hack>

<hash>

PSfrag replacements

ttt

Fig. 4.1. Hashing with chaining. We have a table t of sequences. The picture shows an exam-
ple where a set of words (short synonyms of ‘hash’) is stored using a hash function that maps
the last character to the integers 0..25. We see that this hash function is not very good.

Are there hash functions that guarantee that all sequences are short? The answer
is clearly no. A hash function maps the set of keys to the range [0..m − 1] and
hence for every hash function there is always a set of N/m keys that all map to the
same table entry. In most applications, n < N/m and hence hashing can always
deteriorate to linear search. We will study three approaches to dealing with the worst
case behavior. The first approach is average case analysis. In Exercise 55 we will
ask you to argue that random sets of keys fare well. The second approach is to use
randomization and to choose the hash function at random from a collection of hash
functions. We will study this approach in this section and the next. The third approach
is to change the algorithm. For example, we could make the hash function depend
on the set of keys in actual use. We will investigate this approach in Section 4.5 and
show that it leads to good worst case behavior.

Let H be the set of all functions from Key to [0..m − 1]. We assume that the
hash function h is chosen randomly2 from H and show that for any fixed set S of n
keys, the expected execution time of remove or find will be O(1 + n/m).

Theorem 10. If n elements are stored in a hash table with m entries and a random
hash function is used, the expected execution time of remove or find is O(1 + n/m).

Proof. The proof requires the probabilistic concepts of random variables, their ex-
pectation, and linearity of expectation as described in Appendix A.2. Consider the
execution time of remove or find for a fixed key k. Both need constant time plus
2 This assumption is completely unrealistic. There are mN functions in H and hence it re-

quires N log m bits to specify a function in H . This defeats the goal of reducing the space
requirement from N to n.

4.2 Universal Hash Functions 85

the time for scanning the sequence t[h(k)]. Hence the expected execution time is
O(1 + E[X]) where the random variable X stands for the length of sequence t[h(k)].
Let S be the set of n elements stored in the hash table. For each e ∈ S, let Xe be
the indicator variable which tells us whether e hashes to the same location as k, i.e.,
Xe = 1 if h(e) = h(k) and Xe = 0 otherwise. In short hand, Xe = [h(e) = h(k)].
We have X =

∑

e∈S Xe. Using linearity of expectation, we obtain

E[X] = E[
∑

e∈S

Xe] =
∑

e∈S

E[Xe] =
∑

e∈S

prob(Xi = 1) .

A random hash function maps e to all m table entries with the same probability,
independent of h(k). Hence, prob(Xe = 1) = 1/m and therefore E[X] = n/m.
Thus, the expected execution time of find and remove is O(1 + n/m).

We can achieve linear space requirement and constant expected execution time
of all three operations by guaranteeing m = Θ(n) at all times. Adaptive reallocation
as described for unbounded arrays in Section 3.2 is the appropriate technique.

Exercise 53 (Unbounded Hash Tables). Explain how to guranatee m = Θ(n) in
hashing with chaining. You may assume the existence of a hash function h′ : Key →�

. Set h(k) = h′(k) mod m and use adaptive reallocation.

Exercise 54 (Waste of space). Waste of space in hashing with chaining is due to
empty table entries. Assuming a random hash function, compute the expected num-
ber of empty table entries as a function of m and n. Hint: Define indicator random
variables Y0, . . . , Ym−1 where Yi = 1 if t[i] is empty.

Exercise 55 (Average Case Behavior). Assume that the hash function distributes
Key evenly over the table, i.e., for each i, 0 ≤ i ≤ m−1, we have | {k ∈ Key : h(k) = i} | ≤
dN/me. Assume that a random set S of n keys is stored in the table, i.e., S is a ran-
dom subset of Key of size n. Show that for any table position i, the expected number
of elements in S hashing to i is at most dN/me · n/N ≈ n/m.

4.2 Universal Hash Functions

Theorem 10 is unsatisfactory as it presupposes that the hash function is chosen ran-
domly from the set of all functions3 from keys to table positions. The class of all
such functions is much too big to be useful. We will show in this section that the
same performance can be obtained with much smaller classes of hash functions. The
families presented in this section are so small that a member can be specified in
constant space. Moreover, the functions are easy to evaluate.
3 We will usually talk about a class of functions or a family of functions in this chapter and

reserve the word set for the set of keys stored in the hash table.

86 4 Hash Tables and Associative Arrays

Definition 1. Let c be a positive constant. A family H of functions from Key to
[0..m − 1] is called c-universal if any two distinct keys collide with probability at
most c/m, i.e., for all x, y in Key with x 6= y

| {h ∈ H : h(x) = h(y)} | ≤ c

m
|H| .

In other words, for random h ∈ H ,

prob(h(x) = h(y)) ≤ c

m
.

The definition is made such that the proof of Theorem 10 extends.

Theorem 11. If n elements are stored in a hash table with m entries using hashing
with chaining and a random hash function from a c-universal family is used, the
expected execution time of remove or find is O(1 + cn/m).

Proof. We can reuse the proof of Theorem 10 almost literally. Consider the execution
time of remove or find for a fixed key k. Both need constant time plus the time for
scanning the sequence t[h(k)]. Hence the expected execution time is O(1 + E[X])
where the random variable X stands for the length of sequence t[h(k)]. Let S be the
set of n elements stored in the hash table. For each e ∈ S, let Xe be the indicator
variable which tells us whether e hashes to the same location as k, i.e., Xe = 1 if
h(e) = h(k) and Xe = 0 otherwise. In short hand, Xe = (h(e) = h(k)). We have
X =

∑

e∈S Xe. Using linearity of expectation, we obtain

E[X] = E[
∑

e∈S

Xe] =
∑

e∈S

E[Xe] =
∑

e∈S

prob(Xi = 1) .

Since h is chosen uniformly from a c-universal class, we have prob(Xe = 1) ≤ c/m
and hence E[X] = cn/m. Thus, the expected execution time of find and remove is
O(1 + cn/m).

Now it remains to find c-universal families of hash functions that are easy to
construct and easy to evaluate. We explain a simple and quite practical 1-universal
family in detail and give further examples in the exercises. We assume that our keys
are bitstrings of a certain fixed length; in the exercises, we discuss how the fixed
length assumption can be overcome. We also assume that the table size m is a prime
number. Why a prime number? Because arithmetic modulo a prime is particularly
nice, in particular, the set � m = {0, . . . ,m − 1} of numbers modulo m form a field4.
Let w = blog mc. We subdivide the keys into pieces of w bits each, say k pieces. We
interpret each piece as an integer in the range [0..2w−1] and keys as k-tuples of such
integers. For a key x we write x = (x1, . . . , xk) to denote its partition into pieces.
Each xi lies in [0..2w − 1]. We can now define our class of hash functions. For each

4 A field is a set with special elements 0 and 1 and operations addition and multiplication.
Addition and multiplication satisfy the usual laws known from the field of rational numbers.

4.2 Universal Hash Functions 87

a = (a1, . . . , ak) ∈ {0..m − 1}k we define a function ha from Key to {0..m − 1}
as follows. Let x = (x1, . . . , xk) be a key and let a · x =

∑k
i=1 aixi denote the

scalar product of a and x. Then

ha(x) = a · x mod m .

We give an example to clarify the definition. Let m = 17 and k = 4. Then w =
4 and we view keys as 4-tuples of integers in the range [0..15], for example x =
(11, 7, 4, 3). A hash function is specified by a 4-tuple of integers in the range [0..16],
e.g., a = (2, 4, 7, 16). Then ha(x) = (2 · 11 + 4 · 7 + 7 · 4 + 16 · 3) mod 17 = 7.

Theorem 12.
H · =

{

ha : a ∈ {0..m − 1}k
}

is a 1-universal family of hash functions if m is prime.

In other words, the scalar product between a tuple representation of a key and a
random vector defines a good hash function.

Proof. Consider two distinct keys x = (x1, . . . , xk) and y = (y1, . . . , yk). To de-
termine prob(ha(x) = ha(y)), we count the number of choices for a such that
ha(x) = ha(y). Fix an index j such that xj 6= yj . Then (xj − yj) 6≡ 0(modm)
and hence any equation of the form aj(xj − yj) = b(modm) where b ∈ � m has
a unique solution in aj , namely aj = (xj − yj)

−1b(modm). Here (xj − yj)
−1

denotes the multiplicative inverse5 of (xj − yj).
We claim that for each choice of the ai’s with i 6= j there is exacly one choice of

aj such that ha(x) = ha(y). We have

ha(x) = ha(y) ⇔
∑

1≤i≤k

aixi ≡
∑

1≤i≤k

aiyi (modm)

⇔ aj(xj − yj) ≡
∑

i6=j

ai(yi − xi) (modm)

⇔ aj ≡ (yj − xj)
−1
∑

i6=j

ai(xi − yi) (modm).

There are mk−1 ways to choose the ai with i 6= j and for each such choice there is
a unique choice for aj . Since the total number of choices for a is mk, we obtain

prob(ha(x) = ha(y)) =
mk−1

mk
=

1

m
.

Is it a serious restriction that we need prime table sizes? At a first glance, yes. We
certainly cannot burden users with the task of providing appropriate primes. Also,
when we adaptively grow or shrink an array, it is not clear how to get prime numbers
for the new value of m. A closer look shows that the problem is easy to resolve.
5 In a field, any element z 6= 0 has a unique multiplicative inverse, i.e., there is a unique

element z−1 such that z−1· = 1. Multiplicative inverses allow to solve linear equations of
the form zx = b where z 6= 0. The solution is x = z−1b.

88 4 Hash Tables and Associative Arrays

The easiest solution is to consult a table of primes. An analytical solution is not
much harder to obtain. First, number theory [81] tells us that primes are abundant.
More precisely, for any integer k there is a prime in the interval [k3, (k + 1)3]. So,
if we are aiming for a table size of about m, we determine k such that k3 ≤ m ≤
(k + 1)3 and then search for a prime in the interval. How do we search for a prime
in the interval? Any non-prime in the interval must have a divisor which is at most
√

(k + 1)3 = (k+1)3/2. We therefore iterate over the numbers from 1 to (k+1)3/2

and for each such j remove its multiples in [k3, (k + 1)3]. For each fixed j this takes
time ((k + 1)3 − k3)/j = O

(

k2/j
)

. The total time required is

∑

j≤(k+1)3/2

O
(

k2

j

)

= k2
∑

j≤(k+1)3/2

O
(

1

k

)

= O
(

k2 ln
(

(k + 1)3/2
)

)

= O
(

k2 ln k
)

= o(m)

and hence is negligable compared to the cost of initializing a table of size m. The
second equality in the equation above uses the harmonic summation formula (A.12).

Exercise 56 (Strings as keys.). Implement the universal family H · for strings. As-
sume that each character requires eight bits (= a byte). You may assume that the table
size is at least m = 257. The time for evaluating a hash function should be propor-
tional to the length of the string being processed. Input strings may have arbitrary
lengths not known in advance. Hint: compute the random vector a lazily, extending
it only when needed.

Exercise 57 (Hashing using bit matrix multiplication.). [Literatur? Martin fra-
gen] For this exercise, keys are bit strings of length k, i.e., Key = {0, 1}k, and the=⇒
table size m is a power of two, say m = 2w. Each w × k matrix M with entries in
{0, 1} defines a hash function hM . For x ∈ {0, 1}k, let hM (x) = Mx mod 2, i.e.,
hM (x) is matrix-vector product computed modulo 2. The resulting w-bit vector is
interpreted as a number in [0 . . . m − 1]. Let

H⊕ =
{

hM : M ∈ {0, 1}w×k
}

.

For M =
(1 0 1 1
0 1 1 1

)

and x = (1, 0, 0, 1) we have Mx mod 2 = (0, 1). Note that

multiplication modulo two is the logical and-operation, and that addition modulo two
is the logical exclusive-or operation ⊕.

1. Explain how hM (x) can be evaluated using k bit-parallel exclusive-or opera-
tions. Hint: the ones in x select columns of M . Add the selected columns.

2. Explain how hM (x) can be evaluated using w bit-parallel and operations and w
parity operations. Many machines provide an instruction parity(y) that is one
if the number of ones in y is odd and zero otherwise. Hint: multiply each row of
M with x.

4.2 Universal Hash Functions 89

3. We now want to show that H⊕ is 1-universal. (1) Show that for any two keys
x 6= y, any bit position j where x and y differ, and any choice of the columns
Mi of the matrix with i 6= j, there is exactly one choice of column Mj such that
hM (x) = hM (y). (2) Count the number of ways to choose k−1 columns of M .
(3) Count the total number of ways to choose M . (4) Compute the probability
prob(hM (x) = hM (y)) for x 6= y if M is chosen randomly.

*Exercise 58 (More matrix multiplication.) Define a class of hash functions

H× =
{

hM : M ∈ {0..p}w×k
}

that generalizes class H⊕ by using arithmetic modulo p for some prime number p.
Show that H× is 1-universal. Explain how H · is a special case of H×.

Exercise 59 (Simple linear hash functions.). Assume Key = [0..p − 1] = � p for
some prime number p. For a, b ∈ � p let h(a,b)(x) = ((ax + b) mod p) mod m. For
example, if p = 97, m = 8, we have h(23,73)(2) = ((23 · 2+73) mod 97) mod 8 =
22 mod 8 = 6. Let

H∗ =
{

h(a,b) : a, b ∈ [0..p − 1]
}

.

Show that this family is (dp/me /(p/m))2-universal.

Exercise 60 (Continuation.). Show that the following holds for the class H∗ defined
in the previous exercise. For any pair of distinct keys x and y and any i and j in
[0..m − 1], prob(h(a,b)(x) = i and h(a,b)(y) = j) ≤ c/m2 for some constant c.

Exercise 61 (A counterexample.). Let Key = [0..p−1] and consider the set of hash
functions

H fool =
{

h(a,b) : a, b ∈ [0..p − 1]
}

with h(a,b)(x) = (ax + b) mod m. Show that there is a set S of dp/me keys such
that for any two keys x and y in S, all functions in H fool map x and y to the same
value. Hint: Let S = {0,m, 2m, . . . , bp/mcm}.

Exercise 62 (Table size 2`.). Let Key = [0..2k − 1]. Show that the family of hash
functions

HÀ =
{

ha : 0 < a < 2k ∧ a is odd
}

with ha(x) = (ax mod 2k) div 2k−` is 2-universal.

Exercise 63 (Table lookup.). Let m = 2w and view keys as k + 1-tuples where the
0-th element is a w-bit number and the remaining elements are a-bit numbers for
some small constant a. A hash function is defined by tables t1 to tk, each having size
s = 2a and storing bit-strings of length w. Then

h⊕(t1,...,tk)((x0, x1, . . . , xk)) = x0 ⊕
k
⊕

i=1

ti[xi] ,

90 4 Hash Tables and Associative Arrays

i.e., xi selects an element in table ti and then the bitwise exlusive-or of x0 and the
ti[xi] is formed. Show that

H⊕[] =
{

h(t1,...,tk) : ti ∈ {0..m − 1}s}

is 1-universal.

4.3 Hashing with Linear Probing

Hashing with chaining is categorized as a closed hashing approach because each
table entry has to cope with all elements hashing to it. In contrast, open hashing
schemes open up other table entries to take the overflow from overloaded fellow
entries. This added flexibility allows us to do away with secondary data structures
such as linked lists—all elements are stored directly in table entries. Many ways of
organizing open hashing have been investigated. We will only explore the simplest
scheme. Unused entries are filled with a special element ⊥. An element e is stored in
entry t[h(e)] or further to the right. But we only go away from index h(e) with good
reason: if e is stored in t[i] with i > h(e) then positions h(e) to i − 1 are occupied
by other elements.

The implementation of insert and find is trivial. To insert an element e, we lin-
early scan the table starting at t[h(e)] until a free entry is found, where e is then
stored. Figure 4.2 gives an example. Similarly, to find an element e, we scan the
table starting at t[h(e)] until the element is found. The search is aborted when an
empty table entry is encountered. So far this sounds easy enough, but we have to
deal with one complication. What happens if we reach the end of the table during
insertion? We choose a very simple fix by allocating m′ table entries to the right
of the largest index produced by the hash function h. For ‘benign’ hash functions it
should be sufficient to choose m′ much smaller than m in order to avoid table over-
flows. Alternatively, one may treat the table as a cyclic array, see Exercise 64 and
Section 3.4. The alternative is more robust but slightly slower.

The implementation of remove is non-trivial. Simply overwriting the element
by ⊥ does not suffice as it may destroy the invariant. Assume h(x) = h(z),
h(y) = h(x)+1 and x, y and z are inserted in this order. Then z is stored at position
h(x) + 2. Overwriting y by ⊥ will make z inaccessible. There are three solutions.
First, disallow removals. Second, mark y but do not actually remove it. Searches are
only allowed to stop at ⊥, but not at marked elements. The problem with this ap-
proach is that the number of nonempty cells (occupied or marked) keeps increasing,
so searches eventually become slow. This can only be mitigated by introducing the
additional complication of periodic reorganizations of the table. Third, actively re-
store the invariant. Assume that we want to remove the element at i. We overwrite it
by ⊥ leaving a “hole”. We then scan the entries to the right of i to check for viola-
tions of the invariant. Set j to i + 1. If t[j] = ⊥, we are finished. Otherwise, let f
be the element stored in t[j]. If h(f) > i, there is nothing to do and we increment j.
If h(f) ≤ i, leaving the hole would violate the invariant and f would not be found

4.3 Hashing with Linear Probing 91

: axe, chop, clip, cube, dice, fell, hack, lop, slashinsert

0 1 5 7 9 10 11
c d g ip q t w y zna bo
2 3 4

er fs
6

hu
8
v j kx l m

12

axechop clip cube dice fellhack
axechop clip cube dice fellhackhash lop

hash

axechop clip
axechop clip cube
axechop clip cube dice
axechop clip cube dice fell

axe
axechop

clipremove

axechop clip cube dice fellhackhash lop slash

axechop cube dice fellhackhash lop slash

chop cube dice fellhackhashaxelop slash

chop cube dice fellhackhash slashaxelop
chop cube dice fellhackhashaxelop slash

clip
lop

slashPSfrag replacements

t

Fig. 4.2. Hashing with linear probing. We have a table t with 13 entries storing synonyms of
‘hash’. The hash function maps the last character of the word to the integers 0..12 as indicated
above the table: a and n are mapped to 0, b and o are mapped to 1, and so on. First, the words
are inserted in alphabetical order. Then ‘clip’ is removed. The picture shows the state changes
of the table. Gray areas show the range that is scanned between the state changes.

anymore. We therefore move f to t[i] and write ⊥ into t[j]. In other words, we swap
f and the hole. We set the hole position i to its new position j and continue with
j := j + 1. Figure 4.2 gives an example.

Exercise 64 (Cyclic linear probing.). Implement a variant of linear probing where
the table size is m rather than m+m′. To avoid overflow at the right end of the array,
make probing wrap around. (1) Adapt insert and remove by replacing increments
with i := i + 1 mod m. (2) Specify a predicate between(i, j, k) that is true if and
only if j is cyclically between i and j. (3) Reformulate the invariant using between .
(4) Adapt remove .

Exercise 65 (Unbounded linear probing.). Implement unbounded hash tables us-
ing linear probing and universal hash functions. Pick a new random hash function
whenever the table is reallocated. Let 1 < γ < β < α denote constants we are
free to choose. Keep track of the number of stored elements n. Expand the table to
m = βn if n > m/γ. Shrink the table to m = βn if n < m/α. If you do not use
cyclic probing as in Exercise 64, set m′ = δm for some δ < 1 and reallocate the
table if the right end should overflow.

92 4 Hash Tables and Associative Arrays

4.4 Chaining Versus Linear Probing

We have seen two different approaches to hash tables, chaining and linear probing.
Which one is better? This question is beyond theoretical analysis as the answer de-
pends on the intended use and many technical parameters. We therefore discuss some
qualitative issues and report about experiments performed by us.

An advantage of chaining is referential integrity. Subsequent find operations for
the same element will return the same location in memory and hence references to
the results of find operations can be established. In constrast, removal of an element
in linear probing may move other elements and hence invalidate references to them.

An advantage of linear probing is that, in each table access, a contiguous piece
of memory is accessed. The memory subsystems of modern processors are opti-
mized for this kind of access pattern, whereas they are quite slow at chasing pointers
when the data does not fit in cache memory. A disadvantage of linear probing is that
search times become high when the number of elements approaches the table size.
For chaining, the expected access time remains small. On the other hand, chaining
wastes space for pointers that could be used to support a larger table in linear prob-
ing. A fair comparison must be based on space consumption and not just on table
size.

We implemented both approaches and performed extensive experiments. The
outcome is that both techniques perform almost equally well when they are given
the same amount of memory. The differences are so small that details of the im-
plementation, compiler, operating system and machine used can reverse the picture.
Hence we do not report exact figures.

However, we found chaining harder to implement. Only the optimizations dis-
cussed in Section 4.6 make it competitive with linear probing. Chaining is much
slower if the implementation is sloppy or memory management is not implemented
well.

4.5* Perfect Hashing

The hashing schemes discussed so far guarantee only expected constant time for
operations find , insert , and remove . This makes them unsuitable for real-time ap-
plications requiring a worst case guarantee. In this section, we will study perfect
hashing which guarantees constant worst case for find . To keep things simple, we
will restrict ourselves to the static case where we consider a fixed set S of n elements
with keys k1 to kn.

In this section, we use Hm to denote a family of c-universal hash functions with
range [0..m − 1]. In Exercise 59 it is shown that 2-universal classes exist for every
m. For h ∈ Hm we use C(h) to denote the number of collisions produced by h, i.e.,
the number of pairs of distinct keys in S which are mapped to the same position:

C(h) = {(x, y) : x, y ∈ S, x 6= y and h(x) = h(y)} .

As a first step we derive a bound on the expectation of C(h).

4.5* Perfect Hashing 93

o
o
o

o

o

o

PSfrag replacements

S

B0

B`
h h`

s`

s` + m` − 1
s`+1

Fig. 4.3. Perfect hashing. The top
level hash function h splits S into
subsets B0, . . . , B`, Let b` =
|B`| and m` = cb`(b` − 1) + 1.
The function h` maps B` injectively
into a table of size m`. We arrange
the subtables into a single table. Then
the subtable for B` starts at position
s` = m0 + . . . + m`−1 and ends at
position s` + m` − 1.

Lemma 11. E[C(h)] ≤ cn(n−1)/m. Also, for at least half of the functions h ∈ Hm,
we have C(h) ≤ 2cn(n − 1)/m.

Proof. We define n(n − 1) indicator random variables Xij(h). For i 6= j, let
Xij(h) = 1 iff h(ki) = h(kj). Then C(h) =

∑

ij Xij(h) and hence

E[C] = E[
∑

ij

Xij] =
∑

ij

E[Xij] =
∑

ij

prob(Xij = 1) ≤ n(n − 1) · c/m ,

where the second equality follows from linearity of expectations (see Equation (A.2))
and the last equality follows from universality of Hm. The second claim follows from
Chebychev’s inequality (A.4).

If we are willing to work with a quadratic size table, our problem is solved.

Lemma 12. If m ≥ cn(n − 1) + 1, at least half the functions h ∈ Hm operate
injectively on S.

Proof. By Lemma 11, we have C(h) < 2 for half of the functions in Hm. Since
C(h) is even, C(h) < 2 implies C(h) = 0 and so h operates injectively on S.

So we choose a random h ∈ Hm with m ≥ cn(n − 1) + 1 and check whether it
is injective on S. If not, we repeat the exercise. After an average of two trials, we are
successful.

In the remainder of the section, we show how to bring the table size down to
linear. The idea is to use a two-stage mapping of keys, see Figure 4.3. The first stage
maps keys to buckets of constant average size. The second stage spends a quadratic
amount of space for each bucket. We will use the information about C(h) to bound
the number of keys hashing to any table location. For ` ∈ [0..m − 1] and h ∈ Hm,
let Bh

` be the elements in S that are mapped to ` by h and let bh
` be the cardinality of

Bh
` .

Lemma 13. C(h) =
∑

` bh
` (bh

` − 1).

Proof. For any `, the keys in Bh
` give rise to bh

` (bh
` − 1) pairs of keys mapping to the

same location. Summation over ` completes the proof.

94 4 Hash Tables and Associative Arrays

The construction of the perfect hash function is now as follows. Let α be a con-
stant which we fix later. We choose a hash function h ∈ Hdαne to split S into subsets
B`. Of course, we choose h in the good half of Hdαne, i.e., we choose h ∈ Hdαne

with C(h) ≤ 2cn(n − 1)/ dαne ≤ 2cn/α. For each `, let B` be the elements in S
mapped to ` and let b` = |B`|.

Consider now any B`. Let m` = cb`(b`−1)+1. We choose a function h` ∈ Hm`

which maps B` injectively into [0..m` − 1]. Half of the functions in Hm`
have this

property by Lemma 12 applied to B`. In other words, h` maps B` injectively into
a table of size m`. We stack the various tables on top of each other to obtain one
large table of size

∑

` m`. In this large table, the subtable for B` starts at position
s` = m0 + m1 + . . . + m`−1. Then

` := h(x). Return s` + h`(x)

computes an injective function on S. The function values are bounded by
∑

`

m` ≤ dαne + c ·
∑

`

b`(b` − 1)

≤ 1 + αn + c · C(h)

≤ 1 + αn + c · 2cn/α

≤ 1 + (α + 2c2/α)n

and hence we have constructed a perfect hash function mapping S into a linearly
sized range, namely [0..(α + 2c2/α)n]. In the derivation above, the first inequality
uses the definition of the m`’s, the second inequality uses Lemma ??, and the third
inequality uses C(h) ≤ 2cn/α. The choice α =

√
2c minimizes the size of the

range. For c = 1, the size of the range is 2
√

2n.

Theorem 13. For any set of n keys, a perfect hash function with range [0..2
√

2n]
can be constructed in linear expected time.

Constructions with smaller ranges are known. Also, it is possible to support in-
sertions and deletions.

Exercise 66 (Dynamization:). We will outline a scheme for dynamization. Consider
a fixed S and choose h ∈ H2dαne. For any ` let m` = 2cb`(b` − 1) + 1, i.e., all m’s
are chosen twice as large as in the static scheme. Construct a perfect hash function as
above. Insertion of a new x is handled as follows. Assume h maps x onto `. If h` is no
longer injective, choose a new h`. If b` becomes so large that m` = cb`(b` − 1) + 1,
choose a new h.

4.6 Implementation Notes

Although hashing is an algorithmically simple concept, a clean, efficient, and robust
implementation can be surprisingly nontrivial. Less surprisingly, the most impor-
tant issue are hash functions. Most applications seem to use simple very fast hash

4.6 Implementation Notes 95

functions based on xor, shifting, and table lookups rather than universal hash func-
tions, see for example www.burtleburtle.net/bob/hash/doobs.html
or search for “hash table” in the internet. Although these functions seem to work well
in practice, we believe that the universal hash functions presented in Section 4.2 are
competitive. Unfortunately, there is no implementation study. In particular, family
H⊕[] from Exercise 63 should be suitable for integer keys and Exercise 56 formu-
lates a good function for strings. It might be possible to implement the latter func-
tion particularly fast using the SIMD-instructions in modern processors that allow
the parallel execution of several small precision operations.

Implementing Hashing with Chaining:

Hashing with chaining uses only very specialized operations on sequences, for which
singly linked lists are ideally suited. Since these lists are extremely short, some devi-
ations from the implementation scheme from Section 3.1 are in order. In particular,
it would be wasteful to store a dummy item with each list. Instead, one should use
a single shared dummy item to mark the end of all lists. This item can then be used
as a sentinel element for find and remove as in function findNext in Section 3.1.1.
This trick not only saves space, but also makes it likely that the dummy item resides
in the cache memory.

With respect to the first element of the lists there are two alternatives. One can
either use a table of pointers and store the first element outside the table or store
the first element of each list directly in the table. We refer to the alternatives as
slim tables and fat tables, respectively. Fat tables are usually faster and more space
efficient. Slim tables are superior when elements are very large. Observe that a slim
table wastes the space for m pointers and that a fat table wastes the space of the
unoccupied table positions, see Exercise 54. Slim tables also have the advantage of
referential integrity even when tables are reallocated. We have already observed this
complication for unbounded arrays in Section 3.6.

Comparing the space consumption of hashing with chaining and linear probing
is even more subtle than outlined in Section 4.4. On the one hand, the linked lists
burden the memory management with many small pieces of allocated memory. See
Section 3.1.1 for a discussion of memory management for linked lists. On the other
hand, implementations of unbounded hash tables based on chaining can avoid occu-
pying two tables during reallocation by using the following method: first, concatenate
all lists to a single list L. Deallocate the old table. Only then allocate the new table.
Finally, scan L moving the elements to the new table.

Exercise 67. Implement hashing with chaining and linear probing on your own ma-
chine using your favorite programming language. Make experiments to compare
their performance. Also try hash table implementations from software libraries in
comparison. Use elements of size 8 byte.

Exercise 68 (Large elements.). Repeat the measurements with element sizes 32 and
128. Also, add an implementation of slim chaining, where table entries only store
pointers to the first list element (see also Section 4.6 below).

96 4 Hash Tables and Associative Arrays

Exercise 69 (Large keys). Discuss the impact of large keys on the relative merits of
chaining versus linear probing. Which variant will profit? Why?

Exercise 70. Implement a hash table data type for very large tables stored in a file.
Should you use chaining or linear probing? Why?

C++:

The C++ standard library does not define a hash table data type. However, the pop-
ular implementation by SGI (http://www.sgi.com/tech/stl/) offers sev-
eral variants: hash_set , hash_map, hash_multiset , hash_multimap. Here “set”
stands for the kind of interfaces used in this chapter whereas a “map” is an associa-
tive array indexed by Keys. The term “multi” stands for data types that allow multiple
elements with the same key. Hash functions are implemented as function objects, i.e.,
the class hash<T> overloads the operator “()” so that an object can be used like
a function. The reason for this approach is that it allows the hash function to store
internal state such as random coefficients.

LEDA offers several hashing based implementations of dictionaries. The class
h_array〈Key ,T 〉 implements an associative array storing objects of type T assum-
ing that a hash function int Hash(Key&) is defined by the user and returns an in-
teger value that is then mapped to a table index by LEDA. The implementation uses
hashing with chaining and adapts the table size to the number of elements stored.
The class map is similar but uses a built-in hash function.

Java:

The class java.util .hashtable implements unbounded hash tables using the function
hashCode defined in class Object as a hash function.

Exercise 71 (Associative arrays.). Implement a C++-class for associative arrays.
Support operator[] for any index type that supports a hash function. Make sure
that H[x]=... works as expected if x is the key of a new element.

4.7 Historical Notes and Further Findings

Hashing with chaining and hashing with linear probing was already used in the fifties.
The analysis of hashing began soon after. In the 60s and 70s, average case analysis
in the spirit of Theorem 10 prevailed. Different schemes were analysed for random
sets of keys and random hash functions. An early survey paper was written by Mor-
ris [136]. The book [109] contains a wealth of material.[todo:some theoretical re-
sults for linear probing]=⇒

Universal hash functions were introduced by Carter and Wegman [35]. The orig-
inal paper proves Theorem 11 und introduces the universal classes discussed in Exer-
cises 59. [Who introduced the other classes] The family in Exercise 62 is due to=⇒
Keller and Abholhassan. Perfect hashing was a black art till Fredman, Komlos, and

4.7 Historical Notes and Further Findings 97

Szemeredi [65] introduced the construction shown in Theorem 13. Dynamization is
due to M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohn-
ert, and R. Tarjan [55]. Cuckoo Hashing [145] is an alternative approach to perfect
hashing.

Universal hashing bounds the probability of any two keys colliding. A more gen-
eral notion is k-way independence; here k is a positive integer. A family H of hash
functions is k-way independent if for some constant c, any k distinct keys x1 to xk

and any k hash values a1 to ak, prob(h(x1) = a1 ∧ · · · ∧ h(xk) = ak) ≤ c/mk. A
simple k-wise independent family of hash functions are polynomials of degree k− 1
with random coefficients [34], see Exercise 60.

The maximum occupancy is the maximal number of elements hashed to the same
position, i.e., max` bh

` . Assume n = m. A random hash function produces an ex-
pected maximum occupancy of O(log m/ log log m). Universal families produce
expected maximum occupancy O(

√
n); this follows from Lemmas 11 and 13. k-

wise independent hash functions guarantee maximum expected occupancy O
(

n1/k
)

,
see [55]. Maximum occupancy is relevant in real time and parallel environments. Di-
etzfelbinger and Meyer auf der Heide [56][check ref] give a family of hash functions ⇐=
that [which bound, outline trick.]. [m vs n dependence?] ⇐=

⇐=[todo: some remarks on cryptographic hash functions] ⇐=

5

Sorting and Selection

Telephone directories are sorted alphabetically by last names. Why? Because a
sorted index can be searched quickly. Even in the telephone directory of a huge city
one can usually find a name in a few seconds. In an unsorted index, nobody would
even try to find a name. In a first approximation, this chapter teaches you how to
turn an unordered collection of elements into an ordered collection, i.e., how to sort
the collection. However, sorting has many other uses as well. An early example of a
massive data processing task is the statistical evaluation of census data. 1500 people
needed seven years to manually process the US census in 1880. The engineer Her-
man Hollerith1, who participated in this evaluation as a statistician, spent much of
the ten years to the next census developing counting and sorting machines for mecha-
nizing this gigantic endeavor. Although the 1890 census had to evaluate more people
and more questions, the basic evaluation was finished in 1891. Hollerith’s company
continued to play an important role in the development of the information processing
industry; since 1924 it has been known as International Business Machines (IBM).
Sorting is important for census statistics because one often wants to form subcollec-
tions, e.g., all persons between age 20 and 30 and living on a farm. Two applications
of sorting solve the problem. First sort all persons by age and form the subcollection
1 The picuture to the right shows Herman Hollerith, born February 29 1860, Buffalo NY;

died November 17, 1929, Washington DC. The small machine in the picture on the left is
one of his sorting machines.

100 5 Sorting and Selection

of persons between 20 and 30 years of age. Then sort the subcollection by home and
extract the subcollection of persons living on a farm.

Although we probably all have an intuitive concept of what sorting is about,
let us give a formal definition. The input is a sequence s = 〈e1, . . . , en〉 of n ele-
ments. Each element ei has an associated key ki = key(ei). The keys come from
an ordered universe, i.e., there is a linear order ≤ defined on keys2. For ease of no-
tation, we extend the comparison relation to elements so that e ≤ e′ if and only if
key(e) ≤ key(e′). The task is to produce a sequence s′ = 〈e′1, . . . , e′n〉 such that s′

is a permutation of s and such that e′1 ≤ e′2 ≤ · · · ≤ e′n. Observe that the ordering of
equivalent elements is arbitrary.

Although different comparison relations for the same data type may make sense,
the most frequent relations are the obvious order for numbers and the lexicographic
order (see Appendix A) for tuples, strings, or sequences. The lexicographic order
for strings comes in different flavors. We may declare the same small and capital
characters as equivalent or not and different rules for treating accented characters are
used in different contexts.

Exercise 72. Given linear orders ≤A of A and ≤B of B define a linear order on
A × B.

Exercise 73. Define a total order for complex numbers where x ≤ y implies |x| ≤
|y|.

Sorting is an ubiquitous algorithmic tool; it is frequently used as a preprocessing
step in more complex algorithms. We will give some examples.

Preprocessing for fast search: In Section 2.5 on binary search, we have already
seen that not only humans can search a sorted directory more easily than an unsorted
one. Moreover a sorted directory supports additional operations such as finding all
elements in a certain range. We will discuss searching in more detail in Chapter 7.
Hashing is a method for searching unordered sets.

Grouping: Often we want to bring equal elements together to count them, eliminate
duplicates, or otherwise process them. Again, hashing is an alternative. But sorting
has advantages since we will see rather fast deterministic algorithms for it that use
very little space and that extend gracefully to huge data sets.

Processing in sorted order: Certain algorithms become very simple if the inputs
are processed in sorted order. Exercise 74 gives an example. Other examples are
Kruskal’s algorithm in Section 11.3 and several of the algorithms for the knapsack
problem in Chapter 12. You may also want to remember sorting when you solve
Exercise 154 on interval graphs.
2 A linear order is a reflexive, transitive and weakly antisymmetric relation ≤, i.e., x ≤ x

for all x, x ≤ y and y ≤ z imply x ≤ z, and for any two x and y either x ≤ y or y ≤ x
or both. Two keys x and y are called equivalent if x ≤ y and y ≤ x; we write x ≡ y. If
x 6≡ y, exactly one of x ≤ y or y ≤ x holds. We write x < y in the former case and y < x
in the latter case.

5.1 Simple Sorters 101

In Section 5.1 we will introduce several simple sorting algorithms. They have
quadratic complexity, but are still useful for small input sizes. Moreover, we will
learn some low-level optimizations. Section 5.2 introduces mergesort, a simple
divide-and-conquer sorting algorithm that runs in time O(n log n). Section 5.3 estab-
lishes that this bound is optimal for all comparison-based algorithms, i.e., algorithms
that treat elements as black boxes that can only be compared and moved around. The
quicksort algorithm described in Section 5.4 is also based on the divide-and-conquer
principle and is perhaps the most frequently used sorting algorithm. Quicksort is
also a good example for a randomized algorithm. The idea behind quicksort leads
to a simple algorithm for a problem related to sorting. Section 5.5 explains how the
k-th smallest from n elements can be found in time O(n). Sorting can be made even
faster than the lower bound from Section 5.3 by looking at the bit pattern of the keys
as explained in Section 5.6. Finally, Section 5.7 generalizes quicksort and mergesort
to very good algorithms for sorting inputs that do not fit into internal memory.

Exercise 74 (A simple scheduling problem). A hotel manager has to process n ad-
vance bookings of rooms for the next season. His hotel has k identical rooms. Book-
ings contain arrival date and departure date. He wants to find out whether there are
enough rooms in the hotel to satisfy the demand. Design an algorithm that solves
this problem in time O(n log n). Hint: Consider the set of all arrivals and departures.
Sort the set and process in sorted order.

Exercise 75 (Sorting with few different keys). Design an algorithm that sorts n
elements in O(k log k + n) expected time if there are only k different keys appearing
in the input. Hint: Combine hashing and sorting.

Exercise 76 (Checking). It is easy to check whether a sorting routine produces
sorted output. It is less easy to check whether the output is also a permutation of
the input. But here is a fast and simple Monte Carlo algorithm for integers: (1)
Show that 〈e1, . . . , en〉 is a permutation of 〈e′1, . . . , e′n〉 iff the polynomial q(z) :=
(z−e1) · · · (z−en)−(z−e′1) · · · (z−e′n) is identically zero. Here z is a variable. (2)
For any ε > 0 let p be a prime with p > max {n/ε, e1, . . . , en, e′1, . . . , e

′
n}. Now the

idea is to evaluate the above polynomial modp for a random value z ∈ [0..p − 1].
Show that if 〈e1, . . . , en〉 is not a permutation of 〈e′1, . . . , e′n〉 then the result of the
evaluation is zero with probability at most ε. Hint: A nonzero polynomial of degree
n has at most n zeroes.

5.1 Simple Sorters

We will introduce two simple sorting techniques: selection sort and insertion sort.
Selection sort repeatedly selects the smallest element from the input sequence,

deletes it, and adds it to the end of the output sequence. The output sequence is
initially empty. The process continues until the input sequence is exhausted. For
example,

102 5 Sorting and Selection

〈〉, 〈4, 7, 1, 1〉 ; 〈1〉, 〈4, 7, 1〉 ; 〈1, 1〉, 〈4, 7〉 ; 〈1, 1, 4〉, 〈7〉 ; 〈1, 1, 4, 7〉, 〈〉 .

The algorithm can be implemented so that it uses a single array of n elements
and works in place, i.e., needs no additional storage beyond the input array and a
constant amount of space for loop counters etc. The running time is quadratic.

Exercise 77 (Simple selection sort). Implement selection sort so that it sorts an ar-
ray with n elements in time O

(

n2
)

by repeatedly scanning the input sequence. The
algorithm should be in-place, i.e., both the input sequence and the output sequence
should share the same array. Hint: The implementation operates in n phases num-
bered 1 to n. At the beginning of the i-th phase, the first i − 1 locations of the array
contain the i − 1 smallest elements in sorted order and the remaining n − i + 1
locations contain the remaining elements in arbitrary order.

In Section 6.5 we will learn about a more sophisticated implementation where
the input sequence is maintained as a priority queue. Priority queues support effi-
cient repeated selection of the minimum element. The resulting algorithm runs in
time O(n log n) and is frequently used. It is efficient, it is deterministic, it works
in-place, and the input sequence can be dynamically extended by elements that are
larger than all previously selected elements. The last feature is important in discrete
event simulations where events are to be processed in increasing order of time and
processing an event may generate further events in the future.

Selection sort maintains the invariant that the output sequence is sorted by care-
fully choosing the element to be deleted from the input sequence. Insertion sort
maintains the same invariant by choosing an arbitrary element of the input sequence
but taking care to insert this element at the right place in the output sequence. For
example,

〈〉, 〈4, 7, 1, 1〉 ; 〈4〉, 〈7, 1, 1〉 ; 〈4, 7〉, 〈1, 1〉 ; 〈1, 4, 7〉, 〈1〉 ; 〈1, 1, 4, 7〉, 〈〉 .

Figure 5.1 gives an in-place array implementation of insertion sort. The implementa-
tion is straightforward except for a small trick that allows the inner loop to use only
a single comparison. When the element e to be inserted is smaller than all previously
inserted elements, it can be inserted at the beginning without further tests. Other-
wise, it suffices to scan the sorted part of a from right to left while e is smaller than
the current element. This process has to stop because a[1] ≤ e. In the worst case,
insertion sort is quite slow. For example, if the input is sorted in decreasing order,
each input element is moved all the way to a[1], i.e., in iteration i of the outer loop,
i elements have to be moved. Overall, we obtain

n
∑

i=2

(i − 1) = −n +

n
∑

i=1

i =
n(n + 1)

2
− n =

n(n − 1)

2
= Ω

(

n2
)

movements of elements (see also Equation (A.11)).
Nevertheless, insertion sort is useful. It is fast for small inputs (say n ≤ 10)

and hence can be used as the base case in divide-and-conquer algorithms for sorting.
Furthermore, in some applications the input is already “almost” sorted and in this
situation insertion sort will be fast.

5.2 Mergesort — an O(n log n) Sorting Algorithm 103

Procedure insertionSort(a : Array [1..n] of Element)
for i := 2 to n do

invariant a[1] ≤ · · · ≤ a[i− 1]
// move a[i] to the right place
e := a[i]
if e < a[1] then // new minimum

for j := i downto 2 do a[j] := a[j − 1]
a[1] := e

else // use a[1] as a sentinel
for j := i downto −∞ while a[j − 1] > e do a[j] := a[j − 1]
a[j] := e

Fig. 5.1. Insertion sort

Exercise 78 (Almost sorted inputs). Prove that insertion sort runs in time O(n + D)
where D =

∑

i |r(ei) − i| and r(ei) is the rank (position) of ei in the sorted output.

Exercise 79 (Average case analysis). Assume that the input to insertion sort is a
permutation of the numbers 1 to n. Show that the average execution time over all
possible permutations is Ω

(

n2
)

. Hint: Argue formally that about one third of the
input elements in the right third of the array have to be moved to the left third of the
array. Can you improve the argument to show that on average n2/4−O(n) iterations
of the inner loop are needed?

Exercise 80 (Insertion sort with few comparisons). Modify the inner loops of the
array-based insertion sort algorithm from Figure 5.1 so that it needs only O(n log n)
comparisons between elements. Hint: Use binary search as discussed in Chapter 7.
What is the running time of this modification of insertion sort?

Exercise 81 (Efficient insertion sort?). Use the data structure for sorted sequences
from Chapter 7 to derive a variant of insertion sort that runs in time O(n log n). How
will this sorting algorithm compare to mergesort or quicksort?

*Exercise 82 (Formal verification) Use your favorite verification formalism, e.g.
Hoare calculus, to prove that insertion sort produces a permutation of the input (pro-
duces a sorted permutation of the input).

5.2 Mergesort — an O(n log n) Sorting Algorithm

Mergesort is a straightforward application of the divide-and-conquer principle. The
unsorted sequence is split into two parts of about equal size. The parts are sorted
recursively and the sorted parts are merged into a single sorted sequence. The ap-
proach is efficient because merging two sorted sequences a and b is quite simple.
The globally smallest element is either the first element of a or the first element of
b. So we move the smaller element to the output, find the second smallest element

104 5 Sorting and Selection

Function mergeSort(〈e1, . . . , en〉) : Sequence of Element
if n = 1 then return 〈e1〉
else return merge(mergeSort(e1, . . . , ebn/2c),mergeSort(ebn/2c+1, . . . , en))

// merging two sequences represented as lists
Function merge(a, b : Sequence of Element) : Sequence of Element

c := 〈〉
loop

invariant a, b, and c are sorted and ∀e ∈ c, e′ ∈ a ∪ b : e ≤ e′

if a.isEmpty then c.concat(b); return c
if b.isEmpty then c.concat(a); return c
if a.first ≤ b.first then c.moveToBack(a.first)
else c.moveToBack(b.first)

Fig. 5.2. Mergesort

271 8281

2 71 82 81

17 28 18

127 1288

2718281

1222788

17 8 2 8 1

split

split

split

merge

merge

merge

a b c operation
〈1, 2, 7〉 〈1, 2, 8, 8〉 〈〉 move a
〈2, 7〉 〈1, 2, 8, 8〉 〈1〉 move b
〈2, 7〉 〈2, 8, 8〉 〈1, 1〉 move a
〈7〉 〈2, 8, 8〉 〈1, 1, 2〉 move b
〈7〉 〈8, 8〉 〈1, 1, 2, 2〉 move a
〈〉 〈8, 8〉 〈1, 1, 2, 2, 7〉 move a

〈〉 〈〉 〈1, 1, 2, 2, 7, 8, 8〉 concat b

Fig. 5.3. Execution of mergeSort(〈2, 7, 1, 8, 2, 8, 1〉). The left part illustrates the recursion in
mergeSort and the right part illustrates the merge in the outermost call.

using the same approach and iterate until all elements have been moved to the output.
Figure 5.2 gives pseudocode and Figure 5.3 illustrates a sample execution. We have
elaborated the merging routine for sequences represented as linear lists as introduced
in Section 3.1. Note that no allocation and deallocation of list items is needed. Each
iteration of the inner loop of merge performs one element comparison and moves
one element to the output. Each iteration takes constant time. Hence merging runs in
linear time.

Theorem 14. Function merge applied to sequences of total length n executes in time
O(n) and performs at most n − 1 element comparisons.

For the running time of mergesort we obtain.

Theorem 15. Mergesort runs in time O(n log n) and performs no more than n log n
element comparisons.

Proof. Let C(n) denote the worst case number of element comparisons performed.
We have C(1) = 0 and C(n) ≤ C(bn/2c) + C(dn/2e) + n − 1 using Theorem 14.

5.2 Mergesort — an O(n log n) Sorting Algorithm 105

The master theorem for recurrence relations (6) suggests that C(n) = O(n log n).
We give two proofs. The first proof shows C(n) ≤ 2n dlog ne and the second proof
shows C(n) ≤ n dlog ne.

For n a power of two, define D(1) = 0 and D(n) = 2D(n/2)+n. Then D(n) =
n log n for n a power of two by the master theorem for recurrence relations. We
claim that C(n) ≤ D(2k) where k is such that 2k−1 < n ≤ 2k. Then C(n) ≤
D(2k) = 2kk ≤ 2n dlog ne. It remains to argue the inequality C(n) ≤ D(2k). We
use induction on k. For k = 0, we have n = 1 and C(1) = 0 = D(1) and the claim
certainly holds. For k > 1, we observe that bn/2c ≤ dn/2e ≤ 2k−1 and hence

C(n) ≤ C(bn/2c) + C(dn/2e) + n − 1 ≤ 2D(2k−1) + 2k − 1 ≤ D(2k) .

This completes the first proof. We turn to the refined proof. We prove that

C(n) ≤ n dlog ne − 2dlog ne + 1 ≤ n log n

by induction over n. For n = 1, the claim is certainly true. So assume n > 1. We
distinquish two cases. Assume first that we have 2k−1 < bn/2c ≤ dn/2e ≤ 2k for
some integer k. Then dlog bn/2ce = dlog dn/2ee = k and dlog ne = k + 1 and
hence

C(n) ≤ C(bn/2c) + C(dn/2e) + n − 1

≤
(

bn/2c k − 2k + 1
)

+
(

dn/2e k − 2k + 1
)

+ n − 1

= nk + n − 2k+1 + 1 = n(k + 1) − 2k+1 + 1 = n dlog ne − 2dlog ne + 1 .

Otherwise, we have bn/2c = 2k−1 and dn/2e = 2k−1 + 1 for some integer k and
therefore dlog bn/2ce = k − 1, dlog dn/2ee = k and dlog ne = k + 1. Thus

C(n) ≤ C(bn/2c) + C(dn/2e) + n − 1

≤
(

2k−1(k − 1) − 2k−1 + 1
)

+
(

(2k−1 + 1)k − 2k + 1
)

+ 2k + 1 − 1

= (2k + 1)k − 2k−1 − 2k−1 + 1 + 1

= (2k + 1)(k + 1) − 2k+1 + 1 = n dlog ne − 2dlog ne + 1 .

The bound for the execution time can be verified using a similar recurrence relation.

Mergesort is the method of choice for sorting linked lists and is therefore fre-
quently used in functional and logical programming languages that have lists as their
primary data structure. In Section 5.3 we will see that mergesort is basically opti-
mal as far as the number of comparisons is concerned; so it is also a good choice if
comparisons are expensive. When implemented using arrays, mergesort has the ad-
ditional advantage that it streams through memory in a sequential way. This makes
it efficient in memory hierarchies. Section 5.7 has more on that issue. Mergesort is
still not the usual method of choice for an efficient array-based implementation since
merge does not work in-place. (But see Exercise 88 for a possible way out.)

106 5 Sorting and Selection

Exercise 83. Explain how to insert k new elements into a sorted list of size n in time
O(k log k + n).

Exercise 84. We discussed merge for lists but used abstract sequences for the de-
scription of mergeSort . Give the details of mergeSort for linked lists.

Exercise 85. Implement mergesort in your favorite functional programming lan-
guage.

Exercise 86. Give an efficient array-based implementation of mergesort in your fa-
vorite imperative programming language. Besides the input array, allocate one aux-
iliary array of size n at the beginning and then use these two arrays to store all
intermediate results. Can you improve running time by switching to insertion sort
for small inputs? If so, what is the optimal switching point in your implementation?

Exercise 87. The way we describe merge , there are three comparisons for each loop
iteration — one element comparison and two termination tests. Develop a variant
using sentinels that needs only one termination test. Can you do it without appending
dummy elements to the sequences?

Exercise 88. Exercise 47 introduces a list-of-blocks representation for sequences.
Implement merging and mergesort for this data structure. In merging, reuse emptied
input blocks for the output sequence. Compare space and time efficiency of merge-
sort for this data structure, plain linked lists, and arrays. Pay attention to constant
factors.

5.3 A Lower Bound

Algorithms give upper bounds on the complexity of a problem. By the preceding
discussion we know that we can sort n items in time O(n log n). Can we do better,
maybe even achieve linear time? A “yes” answer requires a better algorithm and its
analysis. But how could be potentially argue a “no” answer? We would have to argue
that no algorithm, however ingenious, can run in time o(n log n). Such an argument
is called a lower bound. So what is the answer? The answer is no and yes. The answer
is no, if we restrict ourselves to comparison-based algorithms and the answer is yes, if
we go beyond comparison-based algorithms. We will discuss non-comparison-based
sorting in Section 5.6.

So what is a comparison-based sorting algorithm? The only way, it can learn
about its inputs is by comparing two input elements[ps was: them]. It is not allowed=⇒
to exploit the representation of keys as bitstrings. [ps inserted word] Deterministic=⇒
comparison-based algorithms can be viewed as trees. We make an initial comparison,
say the algorithms asks “ei ≤ ej?” with outcomes yes and no. Based on the outcome,
the algorithm proceeds to the next comparison. The key point is that the comparison
made next depends only on the outcome of all preceding comparisons and nothing
else. Figure 5.4 shows a sorting tree for three elements.

5.3 A Lower Bound 107

PSfrag replacements

≤ ≤

≤

≤

≤ >

>

>

>
e1?e2

e2?e3

e1?e3

e2?e3

e1?e3 e1?e3e1 ≤ e2 ≤ e3

e1 ≤ e3 < e2 e3 < e1 ≤ e2

e2 < e1 ≤ e3

e2 ≤ e3 < e1 e1 > e2 > e3

Fig. 5.4. A tree that sorts three elements. We first compare e1 and e2. If e1 ≤ e2, we compare
e3 with e2. If e2 ≤ e3, we have e1 ≤ e2 ≤ e3 and are finished. Otherwise, we compare
e1 with e3. For either outcome, we are finished. If e1 > e2, we compare e2 with e3. If
e2 > e3, we have e1 > e2 > e3 and are finished. Otherwise, we compare e1 with e3. For
either outcome, we are finished. The worst-case number of comparisons is three. The average
number is (2 + 3 + 3 + 2 + 3 + 3)/6 = 8/3.

When the algorithms terminates, it must have collected sufficient information so
that it can commit to a permutation of the input. When can it commit? We perform
the following thought experiment. We assume that the input keys are distinct and we
consider any of the n! permutations of the inputs, say π. The permutation π corre-
sponds to the situation that eπ(1) < eπ(2) < . . . < eπ(n). We answer all questions
posed by the algorithm so that they conform to the ordering defined by π. This will
lead us to a leaf `π of the comparison tree.

Lemma 14. Let π and σ be two distinct permutations of n elements. Then the leaves
`π and `σ must be distinct.

Proof. Assume otherwise. In the leaf, the algorithm commits to some ordering of
the input and so it cannot commit to both π and σ. Say it commits to π. Then, on an
input ordered according to σ, the algorithm is incorrect, a contradiction.

The lemma above tells us that any comparison tree for sorting must have at least
n! leaves. Since a tree of depth T has at most 2T leaves, we must have

2T ≥ n! or T ≥ log n! .

Via Stirling’s approximation of the factorial (Equation (A.9)) we obtain:

T ≥ log n! ≥ log
(n

e

)n

= n log n − n log e .

Theorem 16. Any comparison-based sorting algorithm needs n log n − O(n) com-
parisons in the worst case.

We state without proof that the bound also applies to randomized sorting al-
gorithms and to to the average case complexity of sorting, i.e., worst case sorting
problems are not much more difficult than randomly permuted inputs. Furthermore,
the bound even applies if we only want to solve the seemingly simpler problem of
checking whether some element appears twice in a sequence.

108 5 Sorting and Selection

Theorem 17. Any comparison-based sorting algorithm needs n log n − O(n) com-
parisons on average, i.e,

∑

π dπ

n!
= n log n −O(n) ,

where the sum extends over all n! permutations of n elements and dπ is the depth of
leaf `π .

Exercise 89. Show that any comparison-based algorithm for determining the small-
est among n elements requires n − 1 comparisons. Also show that any comparison-
based algorithm for determining the smallest and the second smallest elements
among n elements requires at least n − 1 + log n comparisons. Give an algorithm
with this performance.

Exercise 90. The element uniqueness problem is the task of deciding whether in a
set of n elements[ps added comma], all elements are pairwise distinct. Argue that=⇒
comparison-based algorithms require Ω(n log n) comparisons. Why does this not
contradict the fact, that with we can solve the problem in linear expected time using
hashing?

Exercise 91 (Lower bound for average case). With the notation above let dπ be the
depth of the leaf `π . Argue that A = (1/n!)

∑

π dπ is the average case complexity of
a comparison-based sorting algorithm. Try to show A ≥ log n!. Hint: prove first that
∑

π 2−dπ ≤ 1. Then consider the minimization problem “minimize
∑

π dπ subject
to
∑

π 2−dπ ≤ 1”. Argue that the minimum is attained when all di are equal.

Exercise 92 (Sorting small inputs optimally). Give an algorithm for sorting k ele-
ment using at most dlog k!e element comparisons: (a) for k ∈ {2, 3, 4} use merge-
sort. (b) for k = 5 you are allowed to use 7 comparisons. This is difficult. Mergesort
does not do the job as it uses up to 8 comparisons. (c) for k ∈ {6, 7, 8} use the case
k = 5 as a subroutine.

5.4 Quicksort

Quicksort is a divide-and-conquer algorithm that is complementary to the mergesort
algorithm of Section 5.2. Quicksort does all the difficult work before the recursive
calls. The idea is to distribute the input elements to two or more sequences that
represent nonoverlapping[ps was: disjoint] ranges of key values. Then it suffices=⇒
to sort the shorter sequences recursively and to concatenate the results. To make the
duality to mergesort complete, we would like to split the input into two sequences of
equal size. Unfortunately, this is a non-trivial task. However, we can come close by
picking a random splitter element. The splitter element is usually called pivot. Let p
denote the pivot element chosen. Elements are classified into three sequences a, b,
and c of elements that are smaller, equal to, or larger than p respectively. Figure 5.5
gives a high-level realization of this idea and Figure 5.6 depicts a sample execution.

5.4 Quicksort 109

Function quickSort(s : Sequence of Element) : Sequence of Element
if |s| ≤ 1 then return s // base case
pick p ∈ s uniformly at random // pivot key
a := 〈e ∈ s : e < p〉
b := 〈e ∈ s : e = p〉
c := 〈e ∈ s : e > p〉
return concatenation of quickSort(a), b, and quickSort(c)

Fig. 5.5. Quicksort

〈3, 6, 8, 1, 0, 7, 2, 4, 5, 9〉

〈1, 0, 2〉

〈0〉 〈1〉 〈2〉

〈3〉 〈6, 8, 7, 4, 5, 9〉

〈4, 5〉

〈〉 〈4〉 〈5〉

〈6〉 〈8, 7, 9〉

〈7〉 〈8〉 〈9〉

Fig. 5.6. Execution of quickSort (Figure 5.5) on 〈3, 6, 8, 1, 0, 7, 2, 4, 5, 9〉 using the first ele-
ment of a subsequence as the pivot: The first call of quicksort uses 3 as the pivot and generates
the subproblems 〈1, 0, 2〉, 〈3〉, and 〈6, 8, 7, 4, 5, 9〉. The recursive call for the third subproblem
uses 6 as a pivot and generates the subproblems 〈4, 5〉, 〈6〉, and 〈8, 7, 9〉.

Quicksort has expected execution time O(n log n) as we will show in Section 5.4.1.
In Section 5.4.2 we discuss refinements that make quicksort the most widely used
sorting algorithm in practice.

5.4.1 Analysis

To analyze the running time of quicksort for an input sequence s = 〈e1, . . . , en〉
we focus on the number of element comparisons performed. [ps moved sentence:] ⇐=
We allow three-way comparisons here, with possible outcomes ‘smaller’, ‘equal’,
and ‘larger’. Other operations contribute only constant factors and small additive
terms to the execution time.

Let C(n) denote the worst case number of comparisons needed for any input
sequence of size n and any choice of pivots. The worst case performance is easily
determined. The subsequences a, b and c in Figure 5.5 are formed by comparing
the pivot with all other elements. This makes n − 1 comparisons. Assume there are
k elements smaller than the pivot and k′ elements larger than the pivot. We obtain
C(0) = C(1) = 0 and

C(n) ≤ n − 1 + max {C(k) + C(k′) : 0 ≤ k ≤ n − 1, 0 ≤ k′ < n − k} .

By induction it is easy to verify that

110 5 Sorting and Selection

C(n) ≤ n(n − 1)

2
= Θ

(

n2
)

.

The worst case occurs if all elements are different and we always pick the largest or
smallest element as the pivot. Thus C(n) = n(n − 1)/2.

The expected performance is much better. We first argue an O(n log n) bound
and then show a bound of 2n ln n. We concentrate on the case that all elements are
different. Other cases are easier because a pivot that occurs several times results in
a larger middle sequence b that need not be processed any further. Consider a fixed
element ei and let Xi denote the total number of times ei is compared to a pivot
element. Then

∑

i Xi is the total number of comparisons. Whenever ei is compared
to a pivot element, it ends up in a smaller subproblem. Therefore Xi ≤ n − 1 and
we have another proof for the quadratic upper bound. Let us call a comparison good
for ei, if ei moves to a subproblem of at most 3/4-th the size. Then any ei can be
involved in at most log4/3 n good comparisons. Also, the probability that a pivot is
chosen, which is good for ei, is at least 1/2; this holds since a bad pivot must belong
to either the smallest or largest quarter of elements. So E[Xi] ≤ 2 log4/3 n and hence
E[
∑

i Xi] = O(n log n). We will next give a different argument and a better bound.

Theorem 18. The expected number of comparisons performed by quicksort is

C̄(n) ≤ 2n ln n ≤ 1.45n log n .

Proof. Let s′ = 〈e′1, . . . , e′n〉 denote the elements of the input sequence in sorted or-
der. Elements e′i and e′j are compared at most once and only if one of them is picked
as a pivot. Hence, we can count comparisons by looking at the indicator random vari-
ables Xij , i < j where Xij = 1 if e′i and e′j are compared and Xij = 0 otherwise.
We obtain

C̄(n) = E[

n
∑

i=1

n
∑

j=i+1

Xij] =

n
∑

i=1

n
∑

j=i+1

E[Xij] =

n
∑

i=1

n
∑

j=i+1

prob(Xij = 1) .

The middle transformation follows from the linearity of expectation (Equation (A.2)).
The last equation uses the definition of the expectation of an indicator random vari-
able E[Xij] = prob(Xij = 1). Before we can further simplify the expression for
C̄(n), we need to determine the probability of Xij being 1.

Lemma 15. For any i < j, prob(Xij = 1) =
2

j − i + 1
.

Proof. Consider the j − i + 1 element set M = {e′i, . . . , e′j}. As long as no pivot
from M is selected, e′i and e′j are not compared but all elements from M are passed
to the same recursive calls. Eventually, a pivot p from M is selected. Each element in
M has the same chance 1/|M | to be selected. If p = e′i or p = e′j we have Xij = 1.
The probability for this event is 2/|M | = 2/(j − i + 1). Otherwise, e′i and e′j are
passed to different recursive calls so that they will never be compared.

5.4 Quicksort 111

Now we can finish proving Theorem 18 using relatively simple calculations.

C̄(n) =
n
∑

i=1

n
∑

j=i+1

prob(Xij = 1) =
n
∑

i=1

n
∑

j=i+1

2

j − i + 1
=

n
∑

i=1

n−i+1
∑

k=2

2

k

≤
n
∑

i=1

n
∑

k=2

2

k
= 2n

n
∑

k=2

1

k
= 2n(Hn − 1) ≤ 2n(1 + ln n − 1) = 2n ln n .

For the last steps, recall the properties of the n-th harmonic number Hn :=
∑n

k=1 1/k ≤
1 + ln n (Equation A.12).

Note that the calculations in Section 2.8 for left-right maxima were very similar
although we had quite a different problem at hand.

5.4.2 Refinements

We will discuss refinements of the basic quicksort algorithm. The resulting algo-
rithm, called qsort , works in place, and is fast and space efficient. Figure 5.7 shows
the pseudocode and Figure 5.8 shows a sample execution. The refinements are non-
trivial and we need to discuss them carefully.

Function qsort operates on an array a. The arguments ` and r specify the subar-
ray to be sorted. The outermost call is qsort(a, 1, n). If the size of the subproblem is
smaller than some constant n0, we resort to a simple algorithm3 such as the insertion
sort from Figure 5.1. The best choice for n0 depends on many details of machine and
compiler and needs to be determined experimentally; a value somewhere between 10
and 40 should work fine under a variety of conditions.

The pivot element is chosen by a function pickPivotPos that we will not specify
further. Correctness does not depend on the choice of the pivot, but efficiency does.
Possible choices are: The first element, a random element, the median (“middle”)
element of the first three elements, or the median of a random sample of k elements
for k either a small constant, say three, or a number depending on the problem size,
say
⌈√

r − l + 1
⌉

. The first choice requires the least amount of work, but gives little
control over the size of the subproblems; the last choice requires a non-trivial but
still sublinear amount of work, but yields balanced subproblems with high probabil-
ity. After selecting the pivot p, we swap it into the first position of the subarray (=
position ` of the full array).

The repeat-until loop partitions the subarray into two proper (smaller) subarrays.
It maintains two indices i and j. Initially, i is at the left end of the subarray and j is
at the right end;[ps was: comma] i scans to the right, and j scans to the left. After ⇐=
termination of the loop we have i = j + 1 or i = j + 2, all elements in the subarray
a[l..j] are no larger than p, all elements in the subarray a[i..r] are no smaller than p,
3 Some authors propose leaving small pieces unsorted and cleaning up at the end using a

single insertion sort that will be fast according to Exercise 78. Although this nice trick re-
duces the number of instructions executed, the solution shown is faster on modern machines
because the subarray to be sorted will already be in cache.

112 5 Sorting and Selection

either subarray is a proper subarray, and if i = j +2, a[i+1] is equal to p. So we can
complete the sort by recursive calls qSort(a, `, j) and qsort(a, i, r). We make these
recursive calls in a non-standard fashion; this is discussed below.

Let us see in more detail how the partitioning loops work. In the first iteration
of the repeat loop, i does not advance at all but stays put at `, and j moves left to
the rightmost element no larger than p. So j ends at ` or larger, generally larger. We
swap a[i] and a[j], increment i and decrement j. In order to describe the total effect,
we distinguish cases.

If p is the unique smallest element of the subarray, j moves all the way to `, the
swap has no effect, and j = ` − 1 and i = ` + 1 after the increment and decrement.
We have an empty subproblem `..` − 1 and a subproblem ` + 1..r. Partitioning is
complete and both subproblems are proper subproblems.

If j moves down to i + 1, we swap, increment i to ` + 1 and decrement j to
`. Partitioning is complete and we have the subproblems `..` and ` + 1..r. Both
subarrays are proper subarrays.

If j stops at an index larger than i + 1, we have ` < i ≤ j < r after the
swap, increment of i, and decrement of j. Also, all elements left of i are at most
p (and there is at least one such element) and all elements right of j are at least p
(and there is at least one such element). Since the scan loop for i skips only over
elements smaller than p and the scan loop for j skips only over elements larger than
p, further iterations of the repeat-loop maintain this invariant. Also, all further scan
loops are guaranteed to terminate by the claims in brackets and so there is no need
for an index-out-bounds check in the scan loops. In other words, the scan loops are
as concise as possible; they consist of a test and an increment or decrement.

Let us next study how the repeat loop terminates. If we have i ≤ j + 2 after the
scan loops, we have i ≤ j in the termination test. Hence, we continue the loop. If
we have i = j − 1 after the scan loops, we swap, increment i, and decrement j. So
i = j + 1 and the repeat-loop terminates with the proper subproblems `..j and i..r.
The case i = j after the scan loops can only occur if a[i] = p. In this case the swap
has no effect. After incrementing i and decrementing j we have i = j+2 resulting in
the proper subproblems `..j and j +2..r separated by one occurence of p. We finally
need to discuss the case that i > j after the scan loops. Then either i goes beyond j
in the first scan loop or j goes below i in the second scan loop. By our invariant, i
must stop at j +1 in the first case and then j does not move in its scan loop or j must
stop at i− 1 in the second case. In either case we have i = j +1 after the scan loops.
We do not swap, nor do we increment and decrement. So we have subproblems `..j
and i..r and both subproblems are proper.

We have now shown that the partioning step is correct, terminates and generates
proper subproblems.

Exercise 93. Is it safe to make the scan loops skip over elements equal to p? Is it
safe, if it is known that the elements of the array are pairwise distinct?

Refined quicksort handles recursion in a seemingly strange way. [ps begin re-
formulated the old version used an not so logical order of the measures:]=⇒
Recall that we need to make the recursive calls qSort(a, `, j) and qSort(a, i, r). We

5.4 Quicksort 113

Procedure qSort(a : Array of Element ; `, r : �) // Sort the subarray a[`..r]
while r − ` ≥ n0 do // Use divide-and-conquer.

j :=pickPivotPos(a, l, r) // Pick a pivot element and
swap(a[`], a[j]) // bring it to the first position.
p := a[`] // p is the pivot now.
i := `; j := r
repeat // a: ` i→ j← r

while a[i] < p do i++ // Skip over elements
while a[j] > p do j-- // already in the correct subarray.
if i ≤ j then // If partitioning is non yet complete,

swap(a[i], a[j]); i++; j-- // swap misplaced elements and go on.
until i > j // Partitioning is complete.
if i < (` + r)/2 then qSort(a, `, j); ` := i // Recurse on
else qSort(a, i, r); r := j // smaller subproblem.

endwhile
insertionSort(a[`..r]) // faster for small r − `

Fig. 5.7. Refined quicksort

i → ← j
3 6 8 1 0 7 2 4 5 9
2 6 8 1 0 7 3 4 5 9
2 0 8 1 6 7 3 4 5 9
2 0 1 8 6 7 3 4 5 9

j i

3 6 8 1 0 7 2 4 5 9
2 0 1|8 6 7 3 4 5 9

|
1 0|2|5 6 7 3 4|8 9

| | |
0 1| |4 3|7 6 5|8 9

	3 4	5 6	7
		5 6	

Fig. 5.8. Execution of qSort (Figure 5.7) on 〈3, 6, 8, 1, 0, 7, 2, 4, 5, 9〉 using the first element
as the pivot and n0 = 1. The left-hand side illustrates the firt partitioning step showing ele-
ments in bold that have just been swapped. The right-hand side shows the result of the recur-
sive partitioning operations.

may make these calls in either order. We exploit this flexibilty by making the call for
the smaller subproblem first. The call for the larger subproblem would then be the
last thing done in qSort . This situation is known as tail recursion in the program-
ming language literature. Tail recursion can be eliminted by setting the parameters
(` and r) to the right values and jumping to the first line of the procedure. This is
precisely what the while loop does. Why is this manipulation useful? Because this
guarantees that the recursion stack stays logarithmically bounded; the precise bound
is dlog(n/n0)e. This follows from the fact that we make a single recursive call for a
subproblem which is at most half the size. [ps end reformulated] ⇐=

Exercise 94. What is the maximal depth of the recursion stack without the “smaller
subproblem first” strategy? Give a worst case example.

Exercise 95. Implement different versions of qSort in your favorite programming
language. Use or do not use the refinements discussed in this section and study the
effect on running time and space consumption.

114 5 Sorting and Selection

*Exercise 96 (Sorting Strings using Multikey Quicksort [22]) Let s be a sequence
of n strings. We assume that each string ends in a special character that is differ-
ent from all “normal” characters. Show that function mkqSort(s, 1) below sorts
a sequence s consisting of different strings. What goes wrong if s contains equal
strings? Solve this problem. Show that the expected execution time of mkqSort is
O(N + n log n) if N =

∑

e∈s |e|.
Function mkqSort(s : Sequence of String, i :

�
) : Sequence of String

assert ∀e, e′ ∈ s : e[1..i − 1] = e′[1..i − 1]
if |s| ≤ 1 then return s // base case
pick p ∈ s uniformly at random // pivot character
return concatenation of mkqSort(〈e ∈ s : e[i] < p[i]〉 , i),

mkqSort(〈e ∈ s : e[i] = p[i]〉 , i + 1), and
mkqSort(〈e ∈ s : e[i] > p[i]〉 , i)

5.5 Selection

Selection refers to a class of problems that are easily reduced to sorting, but do
not require the full power of sorting. Let s = 〈e1, . . . , en〉 be a sequence and let
s′ = 〈e′1, . . . , e′n〉 be the sorted version of it. Selection of the smallest element re-
quires determining e′1, selection of the smallest and the largest requires determining
e′1 and e′n, and selection of the k-th largest requires determining e′k. Selection of the
median refers to selecting the bn/2c-th largest element. Selection of the median and
also quartiles is a basic problem in statistics. It is easy to determine the smallest or
the smallest and the largest element by a single scan of a sequence in linear time.
We show that the k-th largest element can also be determined in linear time. The
following simple recursive procedure solves the problem.

// Find an element with rank k
Function select(s : Sequence of Element; k : �) : Element

assert |s| ≥ k
pick p ∈ s uniformly at random // pivot key
a :=〈e ∈ s : e < p〉
if |a| ≥ k then return select(a, k) // a

k

b :=〈e ∈ s : e = p〉
if |a|+ |b| ≥ k then return p // a b

k

c :=〈e ∈ s : e > p〉
return select(c, k − |a| − |b|) // a b c

k

Fig. 5.9. Quickselect

The procedure is akin to quicksort and is therefore called quickselect. The key
insight is that it suffices to follow one of the recursive calls, see Figure 5.9. As before,

5.5 Selection 115

a pivot is chosen and the input sequence s is partitioned into subsequences a, b, and
c containing the elements smaller than the pivot, equal to the pivot, and larger than
the pivot, respectively. If |a| ≥ k, we recurse on a, and if k > |a|+ |b|, we recurse on
c, of course with a suitably adjusted k. If |a| < k ≤ |a| + |b|, the task is solved: The
pivot has rank k and we return it. Observe, that the last case also covers the situation
|s| = k = 1 and hence no special base case is needed. Figure 5.10 illustrates the
execution of quickselect.

s k p a b c

〈3, 1, 4, 5, 9,2, 6, 5, 3, 5, 8〉 6 2 〈1〉 〈2〉 〈3, 4, 5, 9, 6, 5, 3, 5, 8〉
〈3, 4, 5, 9,6, 5, 3, 5, 8〉 4 6 〈3, 4, 5, 5, 3, 4〉 〈6〉 〈9, 8〉
〈3, 4,5, 5, 3, 5〉 4 5 〈3, 4, 3〉 〈5, 5, 5〉 〈〉

Fig. 5.10. The execution of select(〈3, 1, 4, 5, 9, 2, 6, 5, 3, 5, 8, 6〉, 6). The (bold) middle ele-
ment of the current s is used as the pivot p.

As for quicksort, the worst case execution time of quickselect is quadratic. But
the expected execution time is linear and hence a logarithmic factor faster than quick-
sort.

Theorem 19. Algorithm quickselect runs in expected time O(n) on an input of size
n.

Proof. We will give an analysis that is simple and shows linear expectation. It does
not give the smallest constant possible. Let T (n) denote the expected execution time
of quickselect. Call a pivot good if neither |a| nor |b| are larger than 2n/3. Let γ
denote the probability that the pivot is good. Then γ ≥ 1/3. We now make the
conservative assumption that the problem size in the recursive call is only reduced
for good pivots and that even then it is only reduced by a factor of 2/3. Since the
work outside the recursive call is linear in n, there is an appropriate constant c such
that

T (n) ≤ cn + γT

(

2n

3

)

+ (1 − γ)T (n) or, equivalently

T (n) ≤ cn

γ
+ T

(

2n

3

)

≤ 3cn + T

(

2n

3

)

≤ 3c(n +
2n

3
+

4n

9
+ . . .)

≤ 3cn
∑

i≥0

(

2

3

)i

≤ 3cn
1

1 − 2/3
= 9cn .

Exercise 97. Modify quickselect so that it returns the k smallest elements.

Exercise 98. Give a selection algorithm that permutes an array in such a way that
the k smallest elements are in entries a[1],. . . , a[k]. No further ordering is required
except that a[k] should have rank k. Adapt the implementation tricks from array-
based quicksort to obtain a nonrecursive algorithm with fast inner loops.

116 5 Sorting and Selection

Exercise 99 (Streaming selection).

1. Develop an algorithm that finds the k-th smallest element of a sequence that
is presented to you one element at a time in an order you cannot control. You
have only space O(k) available. This models a situation where voluminous data
arrives over a network or at a sensor.

2. Refine your algorithm so that it achieves running time O(n log k). You may want
to read some of Chapter 6 first.

*c) Refine the algorithm and its analysis further so that your algorithm runs in aver-
age case time O(n) if k = O(n/ log n). Here, average means that all presenta-
tion orders of elements in the sequence are equally likely.

5.6 Breaking the Lower Bound

The title of this section is, of course, non-sense. A lower bound is an absolute state-
ment. It states that in a certain model of computation a certain task cannot be carried
out faster than the bound. So a lower bound cannot be broken. Be careful. It cannot
be broken within the model of computation. It does not exclude the possibility that a
faster solution exists in a richer model of computation. In fact, we may even interpret
the lower bound as a guideline for getting faster. It tells us that we must enlarge our
repertoire of basic operations in order to get faster.

What does this mean for sorting? So far, we restricted ourselves to comparison-
based sorting. The only way to learn about the order of items was by comparing two
of them. For structured keys, there are more effective ways to gain information and
this will allow us to break the Ω(n log n) lower bound valid for comparison-based
sorting. For example, numbers and strings have structure; they are sequences of digits
and characters, respectively.

Let us start with a very simple algorithm Ksort that is fast if the keys are small
integers, say in the range 0..K − 1. The algorithm runs in time O(n + K). We use
an array b[0..K − 1] of buckets that are initially empty. Then we scan the input and
insert an element with key k into bucket b[k]. This can be done in constant time per
element, for example, by using linked lists for the buckets. Finally, we append all the
nonempty buckets to obtain a sorted output. Figure 5.11 gives the pseudocode. For
example, if elements are pairs whose first element is a key in range 0..3 and

s = 〈(3, a), (1, b), (2, c), (3, d), (0, e), (0, f), (3, g), (2, h), (1, i)〉

we obtain b = [〈(0, e), (0, f)〉, 〈(1, b), (1, i)〉, 〈(2, c), (2, h)〉, 〈(3, a), (3, d), (3, g)〉]
and output 〈(0, e), (0, f), (1, b), (1, i), (2, c), (2, h), (3, a), (3, d), (3, g)〉. The exam-
ple illustrates an important property of Ksort . It is stable, i.e., elements with the
same key inherit their relative order from the input sequence. Here it is crucial that
elements are appended to their respective bucket.

KSort can be used as a building block for sorting larger keys. The idea behind
radix sort is to view integer keys as numbers represented by digits in the range

5.6 Breaking the Lower Bound 117

Procedure KSort(s : Sequence of Element)
b = 〈〈〉, . . . , 〈〉〉 : Array [0..K − 1] of Sequence of Element
foreach e ∈ s do b[key(e)].pushBack(e) //

PSfrag replacements

s e

b[0] b[1] b[2] b[3] b[4]

s :=concatenation of b[0], . . . , b[K − 1]

Fig. 5.11. Sorting with keys in the range 0..K − 1.

Procedure LSDRadixSort(s : Sequence of Element)
for i := 0 to d− 1 do

redefine key(x) as (x div Ki) mod K // d−1 ...
digits

... 1 0

PSfrag replacements

x
key(x)

i

KSort(s)
invariant s is sorted with respect to digits i..0

Fig. 5.12. Sorting with keys in the range 0..Kd − 1 using Least Significant Digit radix sort.

Procedure uniformSort(s : Sequence of Element)
n := |s|
b = 〈〈〉, . . . , 〈〉〉 : Array [0..n− 1] of Sequence of Element
foreach e ∈ s do b[bkey(e) · nc].pushBack(e)
for i := 0 to n− 1 do sort b[i] in time O(|b[i]| log |b[i]|)
s :=concatenation of b[0], . . . , b[n− 1]

Fig. 5.13. Sorting random keys in the range [0, 1).

0..K − 1. Then KSort is applied once for each digit. Figure 5.12 gives a radix-
sorting algorithm for keys in the range 0..Kd − 1 that runs in time O(d(n + K)).
The elements are sorted first by their least significant digit then by the second least
significant digit and so on until the most significant digit is used for sorting. It is not
obvious why this works. Correctness rests on the stability of Ksort . Since KSort

is stable, the elements with the same i-th digit remain sorted with respect to digits
i − 1..0 during the sorting process with respect to digit i. For example, if K = 10,
d = 3, and

s =〈017, 042, 666, 007, 111, 911, 999〉, we successively obtain
s =〈111, 911, 042, 666, 017, 007, 999〉,
s =〈007, 111, 911, 017, 042, 666, 999〉, and
s =〈007,017,042,111,666,911,999〉 .

The mechanical sorting machine shown on Page 99 basically implemented one pass
of radix sort and was most likely used to run LSD radix sort.

Radix sort starting with the most significant digit (MSD radix sort) is also pos-
sible. We apply KSort to the most significant digit and then sort each bucket recur-
sively. The only problem is that the buckets might be much smaller than K so that
it would be expensive to apply KSort to small buckets. We then have to switch to

118 5 Sorting and Selection

another algorithm. This works particularly well if we can assume that the keys are
uniformly distributed. More specifically, let us now assume that keys are real num-
bers with 0 ≤ key(e) < 1. Algorithm uniformSort from Figure 5.13 scales these
keys to integers between 0 and n − 1 = |s| − 1, and groups them into n buckets
where bucket b[i] is responsible for keys in the range [i/n, (i + 1)/n). For example,
if s = 〈0.8, 0.4, 0.7, 0.6, 0.3〉 we obtain five buckets responsible for intervals of size
0.2 and

b = [〈〉, 〈0.3〉, 〈0.4〉, 〈0.6, 0.7〉, 〈0.8〉]
and only b[3] = 〈0.7, 0.6〉 is a non-trivial subproblem. uniformSort is very efficient
for random keys.

Theorem 20. If keys are independent uniformly distributed random values in [0.1),
uniformSort sorts n keys in expected time O(n) and worst case time O(n log n).

Proof. We leave the worst case bound as an exercise and concentrate on the average
case. Total execution time T is O(n) for setting up the buckets and concatenating
the sorted buckets plus the time for sorting the buckets. Let Ti denote the time for
sorting the i-th bucket. We obtain

E[T] = O(n) + E[
∑

i<n

Ti] = O(n) +
∑

i<n

E[Ti] = nE[T0] .

The first equality follows from linearity of expectation (Equation (A.2)) and the sec-
ond equality uses that all bucket sizes have the same distribution for uniformly dis-
tributed inputs. Hence, it remains to show that E[T0] = O(1). We prove the stronger
claim that E[T0] = O(1) even if a quadratic time algorithm such as insertion sort is
used for sorting the buckets. The analysis is similar to the arguments used to analyse
the behavior of hashing in Chapter 4.

Let B0 = |b[0]|. We have E[T0] = O
(

E[B2
0]
)

. The random variable B0 obeys a
binomial distribution (Equation (A.7)) with n trials and success probability 1/n and
hence

prob(B0 = i) =

(

n

i

)

1

ni

(

1 − 1

n

)n−i

≤ ni

i!

1

ni
≤ 1

i!
≤
(e

i

)i

,

where the last inequality follows from Stirling’s approximation of the factorial
(Equation (A.9)). We obtain

E[B2
0] =

∑

i≤n

i2prob(B0 = i) ≤
∑

i≤n

i2
(e

i

)i

≤
∑

i≤5

i2
(e

i

)i

+ e2
∑

i≥6

(e

i

)i−2

≤ O(1) + e2
∑

i≥6

(

1

2

)i−2

= O(1)

and hence E[T] = O(n).

5.7* External Sorting 119

formRuns formRuns formRuns formRuns

merge merge

make_things_

__aeghikmnst

as_simple_as

__aaeilmpsss

_possible_bu

__aaeilmpsss

t_no_simpler

__eilmnoprst

____aaaeeghiiklmmnpsssst ____bbeeiillmnoopprssstu

merge

________aaabbeeeeghiiiiklllmmmnnooppprsssssssttu

Fig. 5.14. An example of two-way mergesort with initial runs of length 12.

*Exercise 100 Implement an efficient sorting algorithm for elements with keys in
the range 0..K − 1 that uses the data structure from Exercise 47 as input and output.
Space consumption should be n+O(n/B + KB) for n elements and blocks of size
B.

5.7* External Sorting

Sometimes data is so huge that it does not fit into internal memory. In this section
we will learn how to sort such data sets in the external memory model introduced
in Section 2.2. It distinguishes between a fast internal memory of size M and a
large external memory. Data is moved in the memory hierarchy in blocks of size B.
Scanning data is fast in external memory and mergesort is based on scanning. We
therefore take mergesort as the starting point for external memory sorting.

Assume the input is given as an array in external memory. We describe a nonre-
cursive implementation for the case that the number of elements n is divisible by B.
We load subarrays of size M into internal memory, sort them using our favorite algo-
rithm, e.g., qSort, and write the sorted subarrays back to external memory. We refer
to the sorted subarrays as runs. The run formation phase takes n/B block reads and
n/B block writes, i.e., a total of 2n/B I/Os. Then we merge pairs of runs into larger
runs in dlog(n/M)e merge phases ending up with a single sorted run. Figure 5.14
gives an example for n = 48 and runs of length twelve.

How do we merge two runs? We keep one block from each of the two input
runs and the output run in internal memory. We call these blocks buffers. Initially,
the input buffers are filled with the first B elements of the input runs and the output
buffer is empty. We compare the leading elements of the input buffers and move
the smaller one to the output buffer. If an input buffer becomes empty, we fetch the
next block of the corresponding input run, if the output buffer is full, we write it to
external memory.

Each merge phase reads all current runs and writes new runs of twice the length.
Therefore each phase needs n/B block reads and n/B block writes. Summing over
all phases, we obtain 2n/B(1 + dlog n/Me) I/Os. The technique works provided
that M ≥ 3B.

120 5 Sorting and Selection

Multiway Mergesort

In general, internal memory can hold many blocks and not just three. We will de-
scribe how to make full use of the available internal memory during merging. The
idea is to merge more than just two runs; this will reduce the number of phases.
In k-way merging, we merge k sorted sequences into a single output sequence. In
each step we find the input sequence with the smallest first element. This element
is removed and appended to the output sequence. External memory implementation
is easy as long as we have enough internal memory for k input buffer blocks, one
output buffer block, and a small amount of additional storage.

For each sequence, we need to remember which element we are currently con-
sidering. To find the smallest element among all k sequences, we keep their current
elements in a priority queue. A priority queue maintains a set of elements supporting
the operations insertion and deletion of the minimum. Chapter 6 explains how prior-
ity queues can be implemented so that insertion and deletion take time O(log k) for k
elements. The priority queue tells us in each step which sequence contains the small-
est element. We delete it from the priority queue, move it to the output buffer, and
insert the next element from the corresponding input buffer into the priority queue. If
an input buffer runs dry, we fetch the next block of the corresponding sequence and
if the output buffer becomes full, we write it to the external memory.

How large can we choose k? We need to keep k + 1 blocks in internal memory
and we need a priority queue for k keys. So we need (k + 1)B + O(k) ≤ M or
k = O(M/B). The number of merging phases is reduced to dlogk(n/M)e and
hence the total number of I/Os becomes

2
n

B

(

1 +
⌈

logM/B

n

M

⌉)

. (5.1)

The difference to binary merging is the much larger base of the logarithm. Interest-
ingly, the above upper bound for the I/O-complexity of sorting is also a lower bound
[4], i.e., under fairly general assumptions, no external sorting algorithm with less I/O
operations is possible.

In practice, the number of merge phases will be very small. Observe that a single
merge phase suffices as long as n ≤ M 2/B. We first form M/B runs of length M
each and then merge these runs into a single sorted sequence. If internal memory
stands for DRAMs and external memory stands for disks, this bound on n is no real
restriction for all practical system configurations.

Exercise 101. Show that multiway mergesort needs only O(n log n) element com-
parisons.

Exercise 102 (Balanced systems). Study the current market prices of computers,
internal memory, and mass storage (currently hard disks). Also estimate the block
size needed to achieve good bandwidth for I/O. Can you find any configuration where
multi-way mergesort would require more than one merging phase for sorting an input
filling all the disks in the system? If so, which fraction of the system cost would you
have to spend on additional internal memory to go back to a single merging phase?

5.7* External Sorting 121

Sample Sort

The most popular internal memory sorting algorithm is not mergesort but quicksort.
So it is natural to look for an external memory sorting algorithm based on quick-
sort. We will sketch Sample sort. It has the same performance guarantee as multiway
mergesort (Expression 5.1), however only in expectation and not worst case. It is
is easier to adapt to parallel disks and parallel processors than merging-based al-
gorithms. Furthermore, similar algorithms can be used for fast external sorting of
integer keys along the lines of Section 5.6.

Instead of the single pivot element of quicksort, we now use k − 1 splitter el-
ements s1,. . . , sk−1 to split an input sequence into k output sequences or buckets.
Bucket i gets the elements e with si−1 ≤ e < si. To simplify matters we define the
artificial splitters s0 = −∞ and sk = ∞ and we assume that all elements have dif-
ferent keys. The splitters should be chosen in such a way that the buckets have a size
of roughly n/k. The buckets are then sorted recursively. In particular, buckets that fit
into the internal memory can subsequently be sorted internally. Note the similarity
to MSB-radix sort in Section 5.6.

The main challenge is to find good splitters quickly. Sample sort uses a fast and
simple randomized strategy. For some integer a, we randomly choose ak + k − 1
sample elements from the input. The sample S is then sorted internally and we define
the splitters as si = S[(a + 1)i] for 1 ≤ i ≤ k − 1, i.e., subsequent splitters are
separated by a samples, the first splitter is preceded by a samples, and the last splitter
is followed by a samples. Taking a = 0 results in a small sample set, but splitting will
not be very good. Moving all elements to the sample will result in perfect splitters,
but the sample is too big. The analysis shows that setting a = O(log k) achieves
roughly equal bucket sizes at low cost for sampling and sorting the sample.

The most I/O-intensive part of sample sort is k-way distribution of the input
sequence to the buckets. We keep one buffer block for the input sequence and one
buffer block for each bucket. These buffers are handled analogously to the buffer
blocks in k-way merging. If the splitters are kept in a sorted array, we can find the
right bucket for an input element e in time O(log k) using binary search.

Theorem 21. Sample sort sorts n inputs using

O
(n

B

(

1 +
⌈

logM/B

n

M

⌉))

expected I/O steps. Internal work is O(n log n).

We leave the detailed proof to the reader and explain only the key ingredient
of the analysis. We use k = Θ(min(n/M,M/B)) buckets and a sample of size
O(k log k). The following lemma shows that with this sample size, it is unlikely that
any bucket has size much larger than average. We hide the constant factors behind
O(·)-notation because our analysis is not very tight in this respect.

Lemma 16. Let k ≥ 2 and a + 1 = 12 ln k. A sample of size (a + 1)k − 1 suffices
to ensure that no bucket receives more than 4n/k elements with probability at least
1/2.

122 5 Sorting and Selection

Proof. As in our analysis of quicksort (Theorem 18), it is useful to study the sorted
version s′ = 〈e′1, . . . , e′n〉 of the input. Assume there is a bucket with at least 4n/k
elements assigned to it. We estimate the probability of this event.

We split s′ into k/2 segments of length 2n/k. The j-th segment tj contains
elements e′2jn/k+1 to e′2(j+1)n/k. If 4n/k elements end up in some bucket there must
be some segment tj such that all its elements end up in the same bucket. This can
only happen if less than a + 1 samples are taken from tj because otherwise at least
one splitter would be chosen from tj and its elements would not end up in a single
bucket. Let us concentrate on a fixed j.

We use random variable X to denote the number of samples taken from tj . Recall
that we take (a + 1)k − 1 samples. For each sample i, 1 ≤ i ≤ (a + 1)k − 1, we
define an indicator variable Xi with Xi = 1 if the i-th sample is taken from tj and
Xi = 0 otherwise. Then X =

∑

1≤i≤(a+1)k−1 Xi. Also, the Xi’s are independent
and prob(Xi = 1) = 2/k. Independence allows us to use the so-called Chernoff
bound (A.5) to estimate the probability that X < a+1. We have E[X] = ((a+1)k−
1) · 2

k = 2(a+1)−2/k ≥ 3(a+1)/2. Hence X < a+1 implies X < (1−1/3)E[X]
and so we can use (A.5) with ε = 1/3. Thus

prob(X < a + 1) ≤ e−(1/9)E[X]/2 ≤ e−(a+1)/12 = e− ln k =
1

k
.

The probability that an insufficient number of samples is chosen from a fixed tj is
thus at most 1/k and hence the probability that an insufficient number is chosen
from some tj is at most (k/2) ·(1/k) = 1/2. Thus with probability at least 1/2, each
bucket receives less than 4n/k elements.

Exercise 103. Work out the details of an external memory implementation of Sample
sort. In particular, explain how to implement multi-way distribution using 2n/B +
k + 1 I/O steps if the internal memory is large enough to store k + 1 blocks of data
and O(k) additional elements.

Exercise 104 (Many equal keys). Explain how to generalize multiway distribution
so that it still works if some keys occur very often. Hint: there are at least two differ-
ent solutions. One uses the sample to find out which elements are frequent. Another
solution makes all elements unique by interpreting an element e at input position i
as the pair (e, i).

*Exercise 105 (More accurate distribution.) A sample of size O
(

(k/ε2) log(k/εm)
)

guarantees with probability at least 1−1/m that no bucket has more than (1+ε)n/k
elements. (Can you even get rid of the ε in the logarithmic factor?)

5.8 Implementation Notes

Comparison-based sorting algorithms are usually available in standard libraries so
that you may not have to implement one yourself. Many libraries use tuned imple-
mentations of quicksort.

5.8 Implementation Notes 123

Procedure KSortArray(a,b : Array [1..n] of Element)
c = 〈0, . . . , 0〉 : Array [0..K − 1] of � // counters for each bucket
for i := 1 to n do c[key(a[i])]++ // Count bucket sizes

C :=0
for k := 0 to K − 1 do (C, c[k]) :=(C + c[k], C) // Store

P

i<k c[k] in c[k].

for i := 1 to n do // Distribute a[i]
b[c[key(a[i])]] :=a[i]
c[key(a[i])]++

Fig. 5.15. Array-based sorting with keys in the range 0..K − 1. The input is an unsorted array
a. The output is b with the elements of a in sorted order. We first count the number of inputs
for each key. Then we form the partial sums of the counts. Finally, we write each input element
to the correct position in the output array.

Canned non-comparison based-sorting routines are less readily available. Fig-
ure 5.15 shows a careful array-based implementation of Ksort. It works well for
small to medium-sized problems. For large inputs, it suffers from the problem that
the distribution of elements to buckets causes a cache fault for every element.

To fix this problem one can use multi-phase algorithms similar to MSD-radix
sort. The number K of output sequences should be chosen in such a way that one
block from each bucket is kept in the cache4. The distribution degree K can be larger
when the subarray to be sorted fits into the cache. We can then switch to a variant of
Algorithm uniformSort in Figure 5.13.

Another important practical aspect concerns the type of elements to be sorted.
Sometimes, we have rather large elements that are sorted with respect to small keys.
For example, you may want to sort an employee database by last name. In this sit-
uation, it makes sense to first extract the keys and store them in an array together
with pointers to the original elements. Then only the key-pointer pairs are sorted.
If the orginal elements need to be brought into sorted order, they can be permuted
accordingly in linear time using the sorted key-pointer pairs.

Multiway merging of a small number of sequences (perhaps up to eight) deserves
special mentioning. In this case, the tournament tree can be kept in the processor
registers [150, 193].

C/C++:

Sorting is one of the few algorithms that is part of the C standard library. However,
the C-sorting routine qsort is slower and harder to use than the C++–function sort .
The main reason is that the comparison function is passed as a function pointer and is
then called for every element comparison. In contrast, sort uses the template mech-
anism of C++ to figure out at compile time how comparisons are performed so that
4 If there are M/B cache blocks this does not mean that we can use k = M/B − 1. A

discussion of this issue can be found in [129].

124 5 Sorting and Selection

the code generated for comparisons is often a single machine instruction. The param-
eters passed to sort are an iterator pointing to the start of the sequence to be sorted
and an iterator pointing after the end of the sequence. Hence, sort can be applied to
lists, arrays, etc. In our experiments on an Intel Pentium III and gcc 2.95, sort on
arrays runs faster than our manual implementation of quicksort. One possible reason
is that compiler designers may tune there code optimizers until they find that good
code for the library version of quicksort is generated. There is an efficient parallel
disk external memory sorter in the STXXL [50], an external memory implementa-
tion of the STL. Efficient parallel sorters (parallel quicksort and parallel multiway
mergesort) for multicore machines are available with the Multi-Core STL [?][todo
url][part of gcc?].=⇒

=⇒
Java:

The Java 6 platform provides a method sort which implements stable binary merge-
sort for Arrays and Collections . One can use a customizable Comparator but there
is also a default implementation for all classes supporting the interface Comparable .

[C# ??? check everywhere]=⇒

Exercise 106. Give a C or C++-implementation of the quicksort in Figure 5.7 that
uses only two parameters: A pointer to the (sub)array to be sorted, and its size.

5.9 Historical Notes and Further Findings

In later chapters we will discuss several generalizations of sorting. Chapter 6 dis-
cusses priority queues, a data structure supporting insertions and removal of the
smallest element. In particular, inserting n elements followed by repeated deletion of
the minimum amounts to sorting. Fast priority queues result in quite good sorting al-
gorithms. A further generalization are the search trees introduced in Section 7, a data
structure for maintaining a sorted list that allows searching, inserting, and removing
elements in logarithmic time.

We have seen several simple, elegant, and efficient randomized algorithms in this
chapter. An interesting question is whether these algorithms can be replaced by de-
terministic ones. Blum et al. [26] describe a deterministic median selection algorithm
that is similar to the randomized algorithm from Section 5.5. This algorithm makes
pivot selection more reliable using recursion: It splits the input set into subsets of five
elements, determines the median of each subset by sorting the five-element subset,
then determines the median of the n/5 medians by calling the algorithm recursively,
and finally uses the median of the medians as the splitter. The resulting algorithm has
linear worst case execution time (we invite the reader to set up a recurrence for the
running time and to show that it has a linear solution), but the large constant factor
makes the algorithm impractical.

There are quite practical ways to reduce the expected number of comparisons re-
quired by quicksort. Using the median of three random elements yields an algorithm
with about 1.188n log n comparisons. The median of three medians of three-element

5.9 Historical Notes and Further Findings 125

subsets brings this down to ≈ 1.094n log n [20]. The number of comparisons can be
reduced further by making the number of elements considered for pivot selection
dependent on the size of the subproblem. Martinez and Roura [119] show that for a
subproblem of size m, the median of Θ(

√
m) elements is a good choice for the pivot.

With this approach, the total number of comparisons becomes (1+o(1))n log n, i.e.,
matches the lower bound of n log n − O(n) up to lower order terms. Interestingly,
the above optimizations can be counterproductive. Although less instructions are ex-
ecuted, it becomes impossible to predict when the inner while-loops of quicksort are
aborted. Since modern, deeply pipelined processors only work efficiently when they
can predict the directions of branches taken, the net effect on performance can even
be negative [?]. Therefore, [157] develops a comparison based sorting algorithm
that avoids conditional branch instructions. An interesting deterministic variant of
quicksort is proportion-extend sort [39].

A classical sorting algorithm of some historical interest is Shell sort [98, 163],
a generalization of insertion sort, that gains efficiency by also comparing nonadja-
cent elements. It is still open whether some variant of Shellsort achieves O(n log n)
average running time [98, 120].

There are some interesting techniques for improving external multiway merge-
sort. The snow plow heuristic [109, Section 5.4.1] forms runs of expected size 2M
using a fast memory of size M : Whenever an element is selected from the inter-
nal priority queue and written to the output buffer and the next element in the in-
put buffer can extend the current run, we add it to the priority queue. Also, the use
of tournament trees instead of general priority queues leads to a further improvement
of multiway merging [109].

Parallelism can be used to improve sorting very large data sets, either in the form
of a uni-processor using parallel disks or in the form of a multi-processor. Multiway
mergesort and distribution sort can be adapted to D parallel disks by striping, i.e.,
any D consecutive blocks in a run or bucket are evenly distributed over the disks.
Using randomization, this idea can be developed into almost optimal algorithms that
also overlaps I/O and computation [51]. The sample sort algorithm of Section 5.7
can be adapted to parallel machines [25] and results in an efficient parallel sorter.

We have seen linear time algorithms for highly structured inputs. A quite gen-
eral model, for which the n log n lower bound does not hold, is the word model.
In this model, keys are integers that fit into a single memory cell, say 32 or 64
bit keys, and the standard operations on words (bitwise-and, bitwise-or, addition,
. . .) are available in constant time. In this model, sorting is possible in deterministic
time O(n log log n) [9]. With randomization even O

(

n
√

log log n
)

is possible [196].
Flash sort [141] is a distribution-based algorithm that works almost in-place.

Exercise 107 (Unix spell checking). Assume you have a dictionary consisting of a
sorted sequence of correctly spelled words. To check a text, convert it to a sequence
of words, sort it, scan text and dictionary simultaneously, and output the words in
the text that do not appear in the dictionary. Implement this spell checker using unix
tools in a small number of lines of code. Can you do it in one line?

6

Priority Queues

Company TMG markets tailor-made first-rate garments. It organizes marketing,
measurements etc., but outsources the actual fabrication to independent tailors. The
company keeps 20% of the revenue. When the company was founded in the 19th cen-
tury, there were five subcontractors. Now it controls 15 % of the world market and
there are thousands of subcontractors worldwide.

Your task is to assign orders to the subcontractors. The rule is that an order is
assigned to the tailor who has so far (in the current year) been assigned the smallest
total value of orders. Your ancestors used a blackboard to keep track of the current
sum of orders for each tailor; in computer science terms, they kept a list of values and
spent linear time to find the correct tailor. The business has outgrown this solution.
Can you come up with a more scalable solution where you have to look only at a
small number of values to decide who will be assigned the next order?

In the following year the rules are changed. In order to encourage timely delivery,
the orders are now assigned to the tailor with the smallest value of unfinished orders,
i.e, whenever a finished order arrives, you have to deduct the value of the order from
the backlog of the tailor who executed it. Is your strategy for assigning orders flexible
enough to handle this efficiently?

Priority Queues are the data structure required for the problem above and for
many other applications. We start our discussion with the precise specification. Prior-
ity queues maintain a set M of Elements with Keys under the following operations:

M.build({e1, . . . , en}): M := {e1, . . . , en}
M.insert(e): M := M ∪ {e}
M.min: return min M
M.deleteMin: e := min M ; M := M \ {e}; return e

This is enough for the first part of our example: Each year we build a new priority
queue containing an Element with Key zero for each contract tailor. To assign an
order, we delete the smallest Element , add the order value to its Key , and reinsert it.
Section 6.1 presents a simple and efficient implementation of this basic functionality.

Addressable priority queues additionally support operations on arbitrary ele-
ments addressed by an element handle h.

insert : As before but return a handle to the element inserted.
remove(h): Remove the element specified by handle h.

128 6 Priority Queues

decreaseKey(h, k): Decrease the key of the element specified by handle h to k.
Q.merge(Q′): Q := Q ∪ Q′; Q := ∅.

In our example, operation remove might be helpful when a contractor is fired be-
cause it delivers poor quality. Together with insert we can also implement the “new
contract rules”: When an order is delivered, we remove the Element for the contrac-
tor who executed the order, subtract the value of the order from its Key value, and
reinsert the Element . DecreaseKey streamlines this process to a single operation. In
Section 6.2 we will see that this is not just convenient but that decreasing keys can
be implemented more efficiently than arbitrary element updates.

Priority queues have many applications. [VorwÃd’rtsverweis auf machine
scheduling wieder reinbauen.] For example, the rather naive selection-sort algo-=⇒
rithm from Section 5.1 can be implemented efficiently now: First insert all elements
into a priority queue. Then repeatedly delete the smallest element and output it. A
tuned version of this idea is described in Section 6.1. The resulting heapsort algo-
rithm is popular because it needs no additional space and is worst-case efficient.

In a discrete event simulation one has to maintain a set of pending events. Each
event happens at some scheduled point in time and creates zero or more new events
in the future. Pending events are kept in a priority queue. The main loop of the
simulation deletes the next event from the queue, executes it, and inserts newly gen-
erated events into the priority queue. Note that priorities (times) of the deleted ele-
ments (simulated events) are monotonically increasing during the simulation. It turns
out that many applications of priority queues have this monotonicity property. Sec-
tion 10.4 explains how to exploit monotonicity for integer keys.

Another application of monotone priority queues is the best first branch-and-
bound approach to optimization described in Section 12.4. Here elements are partial
solutions of an optimization problem and the keys are optimistic estimates of the ob-
tainable solution quality. The algorithm repeatedly removes the best looking partial
solution, refines it, and inserts zero or more new partial solutions.

We will see two applications of addressable priority queues in the chapters on
graph algorithms. In both applications the priority queue stores nodes of a graph.
Dijkstra’s algorithm for computing shortest paths (Section 10.3) uses a monotone
priority queue where the keys are path lengths. The Jarník-Prim algorithm for com-
puting minimum spanning trees (Section 11.2) uses a (non-monotone) priority queue
where the keys are the weights of edges connecting a node to a partial spanning tree.
In both algorithms, there can be a decreaseKey operation for each edge whereas
there is at most one insert and deleteMin for each node. Observe that the number
of edges may be much larger than the number of nodes and hence the implemention
of decreaseKey deserves special attention.

Exercise 108. Show how to implement bounded non-addressable priority queues by
arrays. The maximal size of the queue is w and when the queue has size n, the first
n entries of the array are used. Compare the complexity of the queue operations for
two naive implementations. In the first implementation the array is unsorted and in
the second implementation the array is sorted.

6.1 Binary Heaps 129

a

c g

hpdr

zj sw q

a c g hpdr zj sw q

10 11 12 13 1310 11 12

a

c

hdr

zj sw q p

g

b

a

c g

hpdr

zj sw q

hpr

zj sw

g

c

d

q

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

PSfrag replacements

h:

j:

insert(b)

deleteMin

Fig. 6.1. The top part shows a heap with n = 12 elements stored in an array h with w = 13
entries. The root has number one. The children of the root have numbers 2 and 3. The children
of node i have numbers 2i and 2i+1 (if they exist). The parent of a node i, i ≥ 2, has number
bi/2c. The elements stored in this implicitly defined tree fulfill the invariant that parents are
no larger than their children, i.e., the tree is heap-ordered. The left part shows the effect of
inserting b. The fat edges mark a path from the rightmost leaf to the root. The new element
b is moved up this path until its parent is smaller. The remaining elements on the path are
moved down to make room for b. The right part shows the effect of deleting the minimum.
The fat edges mark the path p starting at the root and always proceeding to the child with
smaller Key . Element q is provisionally moved to the root and then moves down path p until
its successors are larger. The remaining elements move up to make room for q.

Exercise 109. Show how to implement addressable priority queues by doubly linked
lists. Each list item represents an element in the queue and a handle is a handle of a
list item. Compare the complexity of the queue operations for two naive implemen-
tations. In the first implementation the list is unsorted and in the second implemen-
tation the list is sorted.

6.1 Binary Heaps

Heaps are a simple and efficient implementation of non-addressable bounded priority
queues. They can be made unbounded in the same way as bounded arrays are made
unbounded in Section 3.2. Heaps can also be made addressable, but we will see better
addressable queues in later sections.

We use an array h[1..w] that stores the elements of the queue. The first n entries
of the array are used. The array is heap-ordered, i.e.,

if 2 ≤ j ≤ n then h[bj/2c] ≤ h[j].

130 6 Priority Queues

Class BinaryHeapPQ(w : �) of Element
h : Array [1..w] of Element // The heap h is
n = 0 : � // initially empty and has the
invariant ∀j ∈ 2..n : h[bj/2c] ≤ h[j] // heap property which implies that
Function min assert n > 0 ; return h[1] // the root is the minimum.

Fig. 6.2. Class declaration for a priority queue based on binary heaps whose size is bounded
by w.

What does this mean? The key to understanding this definition is a bijection between
positive integers and the nodes of a complete binary tree as illustrated in Figure 6.1.
In a heap the minimum element is stored in the root (= array position 1). Thus min
takes time O(1). Creating an empty heap with space for w elements also takes con-
stant time as it only needs to allocate an array of size w. Figure 6.2 gives pseudocode
for this basic setup.

The minimum of a heap is stored in h[1] and hence can be found in constant time;
this is the same as for a sorted array. However, the heap property is much less restric-
tive than the property of being sorted. For example, there is only one sorted version
of the set {1, 2, 3}, but both 〈1, 2, 3〉 and 〈1, 3, 2〉 are legal heap representations.

Exercise 110. Give all representations of {1, 2, 3, 4} as a heap.

We will next see that the increased flexibility permits efficient implementations of
insert and deleteMin . We choose a description which is simple and can be easily
proven correct. Section 6.4 gives some hints towards a more efficient implementa-
tion. An insert puts a new element e tentatively at the end of the heap h, i.e., into
h[n] and then moves e to an appropriate position on the path from leaf h[n] to the
root.

Procedure insert(e : Element)
assert n < w
n++; h[n] := e
siftUp(n)

where siftUp(s) moves the contents of node s towards the root until the heap prop-
erty holds, cf. Figure 6.1.

Procedure siftUp(i :
�
)

assert the heap property holds except maybe for j = i
if i = 1 ∨ h[bi/2c] ≤ h[i] then return
assert the heap property holds except for j = i
swap(h[i], h[bi/2c])
assert the heap property holds except maybe for j = bi/2c
siftUp(bi/2c)

Correctness follows from the stated invariants.

6.1 Binary Heaps 131

Exercise 111. Show that the running time of siftUp(n) is O(log n) and hence an
insert takes time O(log n)

A deleteMin returns the contents of the root and replaces it by the contents of
node n. Since h[n] might be larger than h[1] or h[2], this manipulation may vio-
late the heap property at positions 1 or 2. This possible violation is repaired using
siftDown .

Function deleteMin : Element

assert n > 0
result = h[1] : Element

h[1] := h[n]; n--
siftDown(1)
return result

Procedure siftDown(1) moves the new contents of the root down the tree until the
heap property holds. More precisely, consider the path p starting at the root and
always proceeding to a child with smaller key, cf. Figure 6.1; in the case of equal
keys, the choice is arbitrary. We extend the path until all children (there may be
zero, one, or two) have a key no larger than h[1]. We put h[1] into this position and
move all elements on path p up by one position. In this way, the heap property is
restored. The strategy is most easily formulated as a recursive procedure. A call of
procedure siftDown(i) repairs the heap property in the subtree rooted at i, assuming
that it holds already for the subtrees rooted at 2i and 2i + 1. Let us say that the heap
property holds in the subtree rooted at i if it holds for all proper descendants of i but
not necessarily for i itself.

Procedure siftDown(i :
�
)

assert the heap property holds for the subtrees rooted at j = 2i and j = 2i + 1
if 2i ≤ n then // i is not a leaf

if 2i + 1 > n ∨ h[2i] ≤ h[2i + 1] then m := 2i else m := 2i + 1
assert the sibling of m does not exist or it has smaller priority than m
if h[i] > h[m] then // the heap property is violated

swap(h[i], h[m])
siftDown(m)

assert heap property @ subtree rooted at i

Exercise 112. Our current implementation of siftDown needs about 2 log n element
comparisons. Show how to reduce this to log n + O(log log n). Hint: Determine the
path p first and then use binary search on this path to find the proper position for
h[1]. Section 6.5 has more on variants of siftDown .

We can obviously build a heap from n elements by inserting them one after the
other in O(n log n) total time. Interestingly, we can do better by establishing the heap
property in a bottom-up fashion: siftDown allows us to establish the heap property
for a subtree of height k + 1 provided the heap property holds for its subtrees of
height k. The following exercise asks you to work out the details of this idea.

132 6 Priority Queues

Exercise 113 (buildHeap). Assume that we are given an arbitrary array h[1..n] and
want to establish the heap property on it by permuting its entries. Consider two pro-
cedures for achieving this:

Procedure buildHeapBackwards
for i := bn/2c downto 1 do siftDown(i)

Procedure buildHeapRecursive(i :
�
)

if 4i ≤ n then
buildHeapRecursive(2i)
buildHeapRecursive(2i + 1)

siftDown(i)

1. Show that both buildHeapBackwards , and buildHeapRecursive(1) establish
the heap property everywhere.

2. Implement both algorithms efficiently and compare their running time for ran-
dom integers and n ∈

{

10i : 2 ≤ i ≤ 8
}

. It will be important how efficiently
you implement buildHeapRecursive . In particular, it might make sense to un-
ravel the recursion for small subtrees.

*c) For large n, the main difference between the two algorithms are memory hi-
erarchy effects. Analyze the number of I/O operations needed to implement
the two algorithms in the external memory model from the end of Section 2.2.
In particular, show that if we have block size B and a fast memory of size
M = Ω(B log B) then buildHeapRecursive needs only O(n/B) I/O opera-
tions.

The following theorem summarizes our results on binary heaps.

Theorem 22. With the heap implementation of non-addressable priority queues, cre-
ating an empty heap and finding min takes constant time, deleteMin and insert take
logarithmic time O(log n), and build takes linear time.

Proof. The binary tree represented by an heap of n elements has depth k = dlog ne.
Insert and deleteMin explore one root to leaf path and hence have logarithmic run-
ning time, min returns the contents of the root and hence takes constant time. Creat-
ing an empty heap amounts to allocating an array and therefore takes constant time.
Build calls siftDown for 2` nodes of depth `. Such a call takes time O(k − `). Thus
total time is

O





∑

0≤`<k

2`(k − `)



 = O



2k
∑

0≤`<k

k − `

2k−`



 = O



2k
∑

j≥1

j

2j



 = O(n) .

The last equality uses Equation (A.14).

Heaps are the basis of heapsort. We first build a heap from the elements and then
repeatedly perform deleteMin . Before the i-th deleteMin operation the i-th smallest
element is stored at the root h[1]. We swap h[1] and h[n + i + 1] and sift the new

6.2 Addressable Priority Queues 133

root down to its appropriate position. At the end, h stores the elements sorted in
decreasing order. Of course, we can also sort in increasing order by using a max-
priority queue, i.e., a data structure supporting the operations insert and deleting the
maximum.

Heaps do not immediately implement the data type addressable priority queue,
since elements are moved around in the array h during insertion and deletion. Thus
the array indices cannot be used as handles.

Exercise 114 (Addressable binary heaps). Extend heaps to an implementation of
addressable priority queues. How many additional pointers per element do you need?
There is a solution with two additional pointers per element.

*Exercise 115 (Bulk insertion) Design an algorithm for inserting k new elements
into an n element heap. Give an algorithm that runs in time O(k + log n). Hint: Use
a similar bottom-up approach as for heap construction.

6.2 Addressable Priority Queues

Binary heaps have a rather rigid structure. All n elements are arranged into a single
binary tree of height dlog ne. In order to obtain faster implementations of operations
insert , decreaseKey , remove , and merge we now look at structures which are more
flexible in two aspects: First, the single tree is replaced by a collection of trees, a
forest. Each tree is still heap-ordered, i.e., no child is smaller than its parent. In other
words, the sequence of keys along any root to leaf path is non-decreasing. Figure 6.4
shows a heap-ordered forest. Second, the elements of the queue are stored in heap
items that have a persistent location in memory. Hence, pointers to heap items can
serve as handles to priority queue elements. The tree structure is explicitly defined
using pointers between items.

We will discuss several variants of addressable priority queues. We start with the
common principles underlying all of them. Figure 6.3 summarizes the commonali-
ties.

In order to keep track of the current minimum, we maintain the handle to the
root containing it. We use minPtr to denote this handle. The forest is manipulated
using three simple operations: adding a new tree (and keeping minPtr up to date),
combining two trees into a single one, and cutting out a subtree making it a tree of
its own.

An insert adds a new single node tree to the forest. So a sequence of n inserts
into an initially empty heap will simply create n single node trees. The cost of an
insert is clearly O(1).

A deleteMin operation removes the node indicated by minPtr . This turns all
children of the removed node into roots. We then scan the set of roots (old and new)
to find the new minimum, a potentially very costly process. We also perform some
rebalancing, i.e, we combine trees into larger ones. The details of this process distin-
guishes different addressable priority queues and is the key to efficiency.

134 6 Priority Queues
Class AddressablePQ

minPtr : Handle // root that stores the minimum
roots : Set of Handle // pointers to tree roots roots

minPtr

Function min return element stored at minPtr

Procedure link(a,b : Handle); assert a ≤ b
remove b from roots
make a the parent of b // b a a

bProcedure combine(a,b : Handle)
assert a and b are tree roots
if a ≤ b then link(a, b) else link(b, a)

Procedure newTree(h : Handle)
roots := roots ∪ {i}
if h < min then minPtr := i

Procedure cut(h : Handle)
remove the subtree rooted at h from its tree // h

hnewTree(h)

Function insert(e : Element) : Handle
i:=a Handle for a new Item storing e
newTree(i)
return i

Function deleteMin : Element

e:= the Element stored in minPtr

foreach child h of the root at minPtr do cut(h) //

e

perform some rebalancing // uses combine

return e

Procedure decreaseKey(h : Handle, k : Key)
change the key of h to k
if h is not a root then

cut(h); possibly perform some rebalancing

Procedure remove(h : Handle) key(h) :=−∞; decreaseKey(h); deleteMin

Procedure merge(o : AddressablePQ)
if minPtr > o.minPtr then minPtr := o.minPtr

roots := roots ∪ o.roots
o.roots := ∅; possibly perform some rebalancing

Fig. 6.3. Addressable priority queues.

1 0 4

785 3
Fig. 6.4. A heap-ordered forest representing
the set {0, 1, 3, 4, 5, 7, 8}.

6.2 Addressable Priority Queues 135

We turn to decreaseKey next. It is given a handle h and a new key k and de-
creases the key value of h to k. Of course, k must not be larger than the old key
stored with h. Decreasing the information associated with h may destroy the heap
property because h may now be smaller than its parent. In order to maintain the heap
property, we cut the subtree rooted at h and turn h into a root. This sounds simple
enough, but may create highly skewed trees. Therefore, some variants of addressable
priority queues perform additional operations to keep the trees in shape.

The remaining operations are easy. We can remove an item from the queue by
first decreasing its key so that it becomes the minimum item in the queue and then
perform a deleteMin . To merge a queue o into another queue we compute the union
of roots and o.roots . To update minPtr , it suffices to compare the minima of the
merged queues. If the root sets are represented by linked lists, and no additional
balancing is done, a merge needs only constant time.

In the sections to come we will discuss particular implementations of addressable
priority queues.

6.2.1 Pairing Heaps

Pairing heaps [66][ps consistently insert refs early. Check: Move even more
material from further findings?] use a very simple technique for rebalancing. Pair- ⇐=
ing heaps are efficient in practice, however a full theoretical analysis is missing. They
rebalance only in deleteMin . If 〈r1, . . . , rk〉 is the sequence of root nodes stored in
roots then deleteMin combines r1 with r2, r3 with r4, etc., i.e., the roots are paired.
Figure 6.5 gives an example.

cab f ed g

b d

a

f

gec
roots roots

PSfrag replacements
≤ ≥≥

Fig. 6.5. The deleteMin operation of pairing heaps combines pairs of root nodes.

Exercise 116 (Three pointer items). Explain how to implement pairing heaps using
three pointers per heap item: One to the oldest child, one to the next younger sibling
(if any), and one to the next older sibling. If there is no older sibling, the third pointer
goes to the parent. Figure 6.8 gives an example.

*Exercise 117 (Two pointer items.) Explain how to implement pairing heaps using
two pointers per heap item: One to the oldest child and one to next older younger sib-
ling. If there is no younger sibling, the second pointer goes to the parent. Figure 6.8
gives an example.

136 6 Priority Queues

6.2.2 *Fibonacci Heaps

Fibonacci heaps [67] use more intensive balancing operations than pairing heaps.
This paves the way to a theoretical analysis. In particular, we will get logarithmic
amortized time for remove and deleteMin and worst case constant time for all other
operations.

Each item of a Fibonacci heap stores four pointers that identify its parent, one
child, and two siblings (cf. Figure 6.8). The children of each node form a doubly-
linked circular list using the sibling pointers. The sibling pointers of the root nodes
can be used to represent roots in a similar way. Parent pointers of roots and child
pointers of leaf nodes have a special value, e.g., a null pointer.

In addition, every heap item contains a field rank . The rank of an item is the
number of its children. In Fibonacci heaps, deleteMin links roots of equal rank r.
The surviving root will then get rank r + 1. An efficient method to combine trees of
equal rank is as follows. Let maxRank be an upper bound on the maximal rank of
any node. We will prove below that maxRank is logarithmic in n. Maintain a set of
buckets, initially empty and numbered from 0 to maxRank . Then scan the list of old
and new roots. When a root of rank i is considered, inspect the i-th bucket. If the i-th
bucket is empty then put the root there. If the bucket is non-empty then combine the
two trees into one. This empties the i-th bucket and creates a root of rank i + 1. Try
to throw the new tree into the i + 1st bucket. If it is occupied, combine When
all roots have been processed in this way, we have a collection of trees whose roots
have pairwise distinct ranks. Figure 6.6 gives an example.

feg

roots
ab

ba
c

g d ab

b

a

f

dc

b

dcgedc

c

f

e a

Fig. 6.6. An example for the development of the bucket array during execution of deleteMin

of Fibonacci heaps. The arrows indicate the scanned roots. Note that scanning d leads to a
cascade of three combines.

A deleteMin can be very expensive if there are many roots. For example, a
deleteMin following n insertions has cost Ω(n). However, in an amortized sense, the
cost of deletemin is O(maxRank). The reader must be familiar with the technique
of amortized analysis before proceeding, see Section 3.3. For the amortized analysis
we postulate that each root holds one token. Tokens pay for a constant amount of
computing time.

Lemma 17. The amortized complexity of deleteMin is O(maxRank).

Proof. A deleteMin first calls newTree at most maxRank times (since the degree
of the old minimum is bounded by maxRank) and then initializes an array of size

6.2 Addressable Priority Queues 137

maxRank . Thus its running time is O(maxRank) and it needs to create maxRank

new tokens. The remaining time is proportional to the number of combine operations
performed. Each combine turns a root into a non-root and is paid for by the token
associated with the node turning into a non-root.

How can we guarantee that maxRank stays small? Let us consider a very simple
situation first. Suppose that we perform a sequence of inserts followed by a single
deleteMin . In this situation, we start with a certain number of single node trees and
all trees formed by combining are so-called binomial trees as shown in Figure 6.7.
The binomial tree B0 consists of a single node and the binomial tree Bi+1 is obtained
by combining two copies of Bi. This implies that the root of Bi has rank i and
contains exactly 2i nodes. Thus the rank of a binomial tree is logarithmic in the size
of the tree.

B0

B1

B2

B3

B4 B5

Fig. 6.7. The binomial trees of rank zero to five.

B3

binomial heaps
pairing heaps

3 pointers:

Fibonacci heaps
4 pointers:

Exercise 6.10
2 pointers:

Fig. 6.8. Three ways to represent trees of nonuniform degree. The binomial tree of rank three,
B3, is used as an example.

Unfortunately, decreaseKey may destroy the nice structure of binomial trees.
Suppose item v is cut out. We now have to decrease the rank of its parent w. The
problem is that the size of the subtrees rooted at the ancestors of w has decreased but
their rank has not changed and hence we can no longer claim that size of a tree stays
exponential in the rank of its root. Therefore, we have to perform some rebalancing

138 6 Priority Queues

6

de
cr

ea
se

K
ey

(,
6)

6

6

6

de
cr

ea
se

K
ey

(,
4)

de
cr

ea
se

K
ey

(,
2)

1

3

5

7

9 8

3

5

7

9

6

3

7 5 6 5 27141461

Fig. 6.9. An example for cascading cuts. Marks are drawn as crosses. Note that roots are never
marked.

to keep the trees in shape. An old solution [189] is to keep all trees in the heap
binomial. However, this causes logarithmic cost for a decreaseKey .

*Exercise 118 (Binomial heaps.) Work out the details of this idea. Hint: Cut the
following links: For each ancestor of v and including v cut the link to its parent. For
each sibling of v of rank higher than v cut the link to its parent. Argue that the trees
stay binomial and that the cost of decreaseKey is logarithmic.

Fibonacci heaps allow the trees to go out of shape but in a controlled way. The
idea is surprisingly simple and is inspired by the amortized analysis of binary coun-
ters. We introduce an additional flag for each node. A node may be marked or not.
Roots are never marked. In particular, when newTree(h) is called in deleteMin it
removes the mark from h (if any). Thus when combine combines two trees into one,
neither node is marked.

When a non-root item x looses a child because decreaseKey is applied to the
child, x is marked; this assumes that x is not already marked. When a marked node
x loses a child, we cut x, remove the mark from x, and attempt to mark x’s parent.
If x’s parent is already marked then This technique is called cascading cuts.
In other words, suppose that we apply decreaseKey to an item v and that the k-
nearest ancestors of v are marked. We turn v and the k-nearest ancestors of v into
roots, unmark them, and mark the k + 1st-nearest ancestor of v (if it is not a root).
Figure 6.9 gives an example. Observe the similarity to carry propagation in binary
addition.

For the amortized analysis, we postulate that each marked node holds two tokens
and each root holds one token. Please check that this assumption does not invalidate
the proof of Lemma 17.

Lemma 18. The amortized complexity of decreaseKey is constant.

Proof. Assume that we decrease the key of item v and that the k nearest ancestors of
v are marked. Here k ≥ 0. The running time of the operation is O(1+k). Everyone of
the k marked ancestors carries two tokens, i.e., we have a total of 2k tokens available.
We create k + 1 new roots and need one token for everyone of them. Also, we mark
one unmarked node and need two tokens for it. Thus we need a total of k +3 tokens.

6.3* External Memory 139

In other words k − 3 tokens are freed. They pay for all but O(1) of the cost of
decreaseKey . Thus the amortized cost of decreaseKey is constant.

How do cascading cuts affect the size of trees? We show that it stays exponential
in the rank of the root. In order to do so we need some notation. Recall the sequence
0,1,1,2,3,5,8,. . . of Fibonacci numbers. They are defined by the recurrence F0 = 0,
F1 = 1, and Fi = Fi−1 + Fi−2 for i ≥ 2. It is well-known that Fi+1 ≥ (1 +√

5/2)i ≥ 1.618i for all i ≥ 0.

Exercise 119. Prove Fi+1 ≥ (1 +
√

5/2)i ≥ 1.618i for all i ≥ 0 by induction.

Lemma 19. Let v be any item in a Fibonacci heap and let i be the rank of v. Then the
subtree rooted at v contains at least Fi+2 nodes. In a Fibonacci heap with n items
all ranks are bounded by 1.4404 log n.

Proof. Consider an arbitrary item v of rank i. Order the children of v by the time at
which they were made children of v. Let wj be the j-th child, 1 ≤ j ≤ i. When wj

was made child of v, both nodes had the same rank. Also, since at least the nodes
w1, . . . , wj−1 were children of v at that time, the rank of v was at least j − 1 at the
time when wj was made a child of v. The rank of wj has decreased by at most 1
since then because otherwise wj would no longer be a child of v. Thus the current
rank of wj is at least j − 2.

We can now set up a recurrence for the minimal number Si of nodes in a tree
whose root has rank i. Clearly S0 = 1, S1 = 2, and Si ≥ 2 + S0 + S1 + · · ·+ Si−2.
The last inequality follows from the fact that for j ≥ 2, the number of nodes in the
subtree with root wj is at least Sj−2, and that we can also count the nodes v and
w1. The recurrence above (with = instead of ≥) generates the sequence 1, 2, 3, 5,
8,. . . which is identical to the Fibonacci sequence (minus its first two elements).

Let’s verify this by induction. Let T0 = 1, T1 = 2, and Ti = 2+T0 + · · ·+Ti−2

for i ≥ 2. Then, for i ≥ 2, Ti+1−Ti = 2+T0 + · · ·+Ti−1−2−T0−· · ·−Ti−2 =
Ti−1, i.e., Ti+1 = Ti + Ti−1. This proves Ti = Fi+2.

For the second claim, we observe that Fi+2 ≤ n implies i·log(1+
√

5/2) ≤ log n
which in turn implies i ≤ 1.4404 log n.

This concludes our treatment of Fibonacci heaps. We have shown:

Theorem 23. The following time bounds hold for Fibonacci heaps: min , insert ,
and merge take worst case constant time; decreaseKey takes amortized constant
time and remove and deleteMin take amortized time logarithmic in the size of the
queue.

Exercise 120. Describe a variant of Fibonacci heaps where all roots have distinct
rank.

140 6 Priority Queues

so
rt

...ex
te

rn
al

B

min

m

insert

Q

Q’

PSfrag replacements

S1 S2 Sk

Fig. 6.10. Schematic view of an external mem-
ory priority queue.

6.3* External Memory

We now go back to nonaddressable priority queues and consider their cache effici-
ciency and I/O efficiency. A weakness of binary heaps is that the siftDown operation
goes down the tree in an unpredictable fashion. This leads to many cache faults and
makes binary heaps prohibitively slow when they do not fit into the main mem-
ory. We now outline a data structure for (nonadressable) priority queues with more
regular memory accesses. It is also a good example for a generally useful design
principle: construction of a data structure out of simpler and known components and
algorithms.

In this case, the components are internal memory priority queues, sorting, and
multiway merging (see also Section 5.7). Figure 6.10 depicts the basic design. The
data structure consists of two priority queues Q and Q′ (e.g., binary heaps) and k
sorted sequences S1,. . . , Sk. Each element of the priority queue is either stored in the
insertion queue Q, the deletion queue Q′, or in one of the sorted sequences. The size
of Q is limited to a parameter m. The deletion queue Q′ stores the smallest element
of each sequence together with the index of the sequence holding the element.

New elements are inserted into the insertion queue. If the insertion queue is full,
it is first emptied. In this case, its elements form a new sorted sequence:

Procedure insert(e : Element)
if |Q| = m then k++; Sk := sort(Q); Q := ∅; Q′.insert(Sk.popFront)
Q.insert(e)

The minimum is stored either in Q or in Q′. If the minimum is in Q′ and comes
from sequence Si, the next largest element from Si is inserted into Q′:

Function deleteMin
if min Q ≤ min Q′ then e := Q.deleteMin // assume min ∅ = ∞
else (e, i) := Q′.deleteMin

if Si 6= 〈〉 then Q′.insert((Si.popFront , i))
return e

It remains to explain how the ingredients of our data structure are mapped to the
memory hierarchy. The queues Q and Q′ are stored in the internal memory. The size
bound m for Q should be a constant fraction of the internal memory size M and a
multiple of the block size B. The sequences Si are largely kept externally. Initially,
only the B smallest elements of Si are kept in an internal memory buffer bi. When
the last element of bi is removed, the next B elements of Si are loaded. Note that

6.4 Implementation Notes 141

we are effectively merging the sequences Si. This is similar to our multiway merging
algorithm from Section 5.7. Each inserted element is written to disk at most once and
fetched back to internal memory at most once. Since all disk accesses are in units of
at least a full block, the I/O requirement of our algorithm is at most n/B for n queue
operations.

Our total requirement of internal memory is at most m+ kB +2k. This is below
the total fast memory size M if m = M/2 and k ≤ b(M/2 − 2k)/Bc ≈ M

2B . If
there are many insertions, the internal memory may eventually overflow. However,
the earliest this can happen is after m(1 + b(M/2 − 2k)/Bc) ≈ M2

4B insertions.
For example, if we have 1 GByte of main memory, 8-byte elements, and 512 KByte
disk blocks, we have M = 227 and B = 216 (measured in elements). We can then
perform about 236 insertions — enough for 128 GByte of data. Similar to external
mergesort, we can handle larger amounts of data by performing multiple phases of
multiway merging (e.g. [31, 154]). The data structure becomes considerably more
complicated but it turns out that the I/O requirement for n insertions and deletions is
about the same as for sorting n elements. An implementation of this idea is 2 − −3
times faster than binary heaps for the hierarchy between cache and main memory
[154]. There are also implementations for external memory [50].

6.4 Implementation Notes

There are various places where sentinels (cf. Chapter 3) can be used to simplify or
(slightly) accelerate the implementation of priority queues. Since this may require
additional knowledge about key values this could make a reusable implementation
more difficult however.

• If h[0] stores a Key no larger than any Key ever inserted into a binary heap then
siftUp need not treat the case i = 1 in a special way.

• If h[n + 1] stores a Key no smaller than any Key ever inserted into a binary
heap then siftDown need not treat the case 2i + 1 > n in a special way. If such
large keys are even stored in h[n + 1..2n + 1] then the case 2i > n can also be
eliminated.

• Addressable priority queues can use a special dummy item rather than a null
pointer.

For simplicity we have formulated the operations siftDown and siftUp of binary
heaps using recursion. It might be a bit faster to implement them iteratively instead.

Exercise 121. Give iterative versions of siftDown and siftUp.

Some compilers do the recursion elimination for you.
As for sequences, memory management for items of addressable priority queues

can be critical for performance. Often, a particular application may be able to do that
more efficiently than a general-purpose library. For example, many graph algorithms
use a priority queue of nodes. In this case, the item can be stored with the node.

142 6 Priority Queues

There are priority queues that work efficiently for integer keys. It should be noted
that these queues can also be used for floating point numbers. Indeed, the IEEE
floating point standard has the interesting property that for any valid floating point
numbers a and b, a ≤ b if an only bits(a) ≤ bits(b) where bits(x) denotes the
reinterpretation of x as an unsigned integer.

C++:

The STL class priority_queue offers non-addressable priority queues implemented
using binary heaps. The external memory library STXXL [50] offers an external
memory priority queue. LEDA implements a wide variety of addressable priority
queues including pairing heaps and Fibonacci heaps.

Java:

The class java.util .PriorityQueue supports addressable priority queues to the ex-
tent that remove is implemented. However decreaseKey and merge are not sup-
ported. Also, it seems that the current implementation of remove needs time Θ(n)!
JDSL offers an addressable priority queue jdsl .core.api .PriorityQueue which is
currently implemented as a binary heap.

6.5 Historical Notes and Further Findings

There is an interesting internet survey1 on priority queues. It lists the applications
(shortest) path planning (cf. Section 10), discrete event simulation, coding and com-
pression, scheduling in operating systems, computing maximum flows, and branch-
and-bound (cf. Section 12.4).

In Section 6.1 we have seen an implementation of deleteMin by top-down search
that needs about 2 log n element comparisons and a variant using binary search that
needs only log n+O(log log n) element comparisons. The latter is mostly of theoret-
ical interest. Interestingly a very simple algorithm that first sifts the element down all
the way to the bottom of the heap and than sifts it up again can be even better. When
used for sorting, the resulting Bottom-up heapsort requires 3

2n log n+O(n) compar-
isons in the worst case and n log n +O(1) in the average case [191, 61, 159]. While
bottom-up heapsort is simple and practical, our own experiments indicate that it is
not faster than the usual top-down variant (for integer keys). This surprised us. The
explanation might be that the outcomes of the comparisons saved by the bottom-up
variant are easy to predict. Modern hardware executes such predictable comparisons
very efficiently (see [157] for more discussion).

The recursive buildHeap routine from Exercise 113 is an example for a cache-
oblivious algorithm [69]. The algorithm is efficient in the external memory model
even though it does not explicitly use the block size or cache size.
1 http://www.leekillough.com/heaps/survey_results.html

6.5 Historical Notes and Further Findings 143

Pairing heaps [66] have amortized constant complexity for insert and merge [94]
and logarithmic amortized complexity for deleteMin . The best analysis is due to Pet-
tie [146]. Fredman [68] has given operation sequences consisting of O(n) insertions
and deleteMins and O(n log n) decreaseKeys that require time Ω(n log n log log n)
for a family of addressable priority queues that includes all previously proposed vari-
ants of pairing heaps.

The family of addressable priority queues from Section 6.2 is large. Vuillemin [189]
introduced binomial heaps and Fredman and Tarjan [67] invented Fibonacci heaps.
Høyer describes additional balancing operations that are akin to the operations used
for search trees. One such operation yields thin heaps [100] which have similar per-
formance guarantees as Fibonacci heaps and do without parent pointer and mark
bit. It is likely that thin heaps are faster in practice than Fibonacci heaps. There are
also priority queues with worst case bounds asymptotically as good as the amortized
bounds we have seen for Fibonacci heaps [30]. The basic idea is to tolerate violations
of the heap property and to continuously invest some work reducing the violations.
Another interesting variant are fat heaps [100].

Many applications only need priority queues for integer keys. For this special
case there are more efficient priority queues. The best theoretical bounds so far are
constant time decreaseKey and insert and O(log log n) time for deleteMin [182,
131]. Using randomization the time bound can even be reduced to O

(√
log log n

)

[196]. These algorithms are fairly complex. However, integer priority queues that
also have the monotonicity property can be simple and practical. Section 10.3 gives
examples. Calendar queues [33] are popular in the discrete event simulation commu-
nity. They are a variant of the bucket queues described in Section 10.4.1. [verstehe
den Text nicht ganz — ps: umformuliert] ⇐=

7

Sorted Sequences

All of us spend a significant part of our time on searching and so do computers:
they look up telephone numbers, balances of banking accounts, flight reservations,
bills and payments, In many applications, we want to search dynamic collections
of data. New bookings are entered into reservation systems, reservations are changed
or cancelled, and bookings turn into actual flights. We have already seen one solution
to the problem, namely hashing. It is often desirable to keep the dynamic collection
sorted. The “manual data structure” used for this purpose is a filing card box. We
can insert new cards at any position, we can remove cards, we can go through the
cards in sorted order, and we can use some kind of binary search to find a particular
card. Large libraries used to have filing card boxes with hundreds of thousands of
cards.

Formally, we want to maintain a sorted sequence, i.e. a sequence of Elements
sorted by their Key value, under the following operations:

M.locate(k : Key): return min {e ∈ M : e ≥ k}
M.insert(e : Element): M := M ∪ {e}
M.remove(k : Key): M := M \ {e ∈ M : key(e) = k}
where M is the set of elements stored in the sequence. For simplicity, we assume
that the elements have pairwise distinct keys. We will come to this assumption in
Exercise 131. We will show that these operations can be implemented to run in time
O(log n) where n denotes the size of the sequence. How do sorted sequences com-
pare with data structures known to us from previous chapters? They are more flexi-
ble than sorted arrays because they efficiently support insert and remove . They are
slower but also more powerful than hash tables since locate also works when there is
no element with key k in M . Priority queues are a special case of sorted sequences;
they can only locate and remove the smallest element.

Our basic realization of sorted lists consists of a sorted doubly linked list with
an additional navigation data structure supporting locate . Figure 7.1 illustrates this
approach. Recall that a doubly linked list for n elements consists of n + 1 items,
one for each element and one additional “header item”. We use the header item to
store a special key value +∞ which is larger than all conceivable keys. We can then
define the result of locate(k) as the handle to the smallest list item e ≥ k. If k is

146 7 Sorted Sequences

2 195 73 11 13 17

navigation data structure

PSfrag replacements ∞

Fig. 7.1. A sorted sequence as a doubly linked list plus a navigation data structure.

larger than all keys in M , locate will return a handle to the dummy item. In Sec-
tion 3.1.1 we learned that doubly linked lists support a large set of operations; most
of them can also be implemented efficiently for sorted sequences. For example, we
“inherit” constant time implementations for first , last , succ, and pred . We will see
constant amortized time implementations for remove(h : Handle), insertBefore ,
and insertAfter , and logarithmic time algorithms for concatenating and splitting
sorted sequences. The indexing operator [·] and finding the position of an element in
the sequence also take logarithmic time. Before we delve into explaining the naviga-
tion data structure, let us look at some concrete applications of sorted sequences.
Best First Heuristics: Assume we want to pack items into a set of bins. The items
arrive one at a time and have to be put into a bin immediately. Each item i has a
weight w(i) and each bin has a maximum capacity. The goal is to minimize the
number of bins used. A successful heuristic solution for this problem is to put item
i into the bin that fits best, i.e. whose remaining capacity is smallest among all bins
with residual capacity being at least as large as w(i) [42]. To implement this algo-
rithm, we can keep the bins in a sequence s sorted by their residual capacity. To
place an item, we call s.locate(w(i)), remove the bin we found, reduce its residual
capacity by w(i), and reinsert it into s. See also Exercise 214.
Sweep-Line Algorithms: Assume you have a set of horizontal and vertical line seg-
ments in the plane and want to find all points where two segments intersect. A sweep-
line algorithm moves a vertical line over the plane from left to right and maintains
the set of horizontal lines that intersect the sweep line in a sorted sequence s. When
the left endpoint of a horizontal segment is reached, it is inserted into s and when
its right endpoint is reached, it is removed from s. When a vertical line segment is
reached at position x that spans the vertical range [y, y′], we call s.locate(y) and
scan s until we reach key y′.1 All horizontal line segments discovered during this
scan define an intersection. The sweeping algorithm can be generalized to arbitrary
line segments [21], curved objects, and many other geometric problems[ps: cite sth
of recent results on curved objects?].=⇒
1 This range query operation is also discussed in Section 7.3.

7.1 Binary Search Trees 147

Data Base Indexes: A key problem in data bases is to make large collections of
data efficiently searchable. A variant of the (a, b)-tree data structure explained in
Section 7.2 is one of the most important data structures used in data bases.

The most popular navigation data structure are search trees. We will introduce
search tree algorithms in three steps. As a warm-up, Section 7.1 introduces (un-
balanced) binary search trees that support locate in O(log n) time under certain
favorable circumstances. Since binary search trees are somewhat difficult to main-
tain under insertions and removals, we switch to a generalization, (a, b)-trees that
allows search tree nodes of a larger degree. Section 7.2 explains how (a, b)-trees can
be used to implement all three basic operations in logarithmic worst case time. In
Section 7.3 we will augment search trees with additional mechanisms that support
further operations.

7.1 Binary Search Trees

Navigating a search tree is a bit like asking your way around a foreign city. You ask
a question, follow the advice, ask again, follow the advice, . . . , until you reach your
destination.

A binary search tree is a tree whose leaves store the elements of the sorted se-
quence in sorted order from left to right2. In order to locate a key k, we start at the
root of the tree and follow the unique path to the appropriate leaf. How do we iden-
tify the correct path? To this end, the interior nodes of a search tree store keys that
guide the search; we call these keys splitter keys. Every node in a binary search tree
with n ≥ 2 leaves has exactly two children, a left child and a right child. The splitter
key s associated with a node has the property that all keys k stored in the left subtree
satisfy k ≤ s and all keys k stored in the right subtree satisfy k > s.

With these definitions in place, it is clear how to identify the correct path when
locating k. Let s be the splitter key of the current node. If k ≤ s, go left. Otherwise,
go right. Figure 7.2 gives an example. The length of the path from the root to a node
is called its depth. The maximum depth of a leaf is the height of the tree. The height
therefore tells us the maximum number of search steps needed to locate a leaf.

Exercise 122. Prove that a binary search tree with n ≥ 2 leaves can be arranged such
that it has height dlog ne.

A search tree with height dlog ne is called perfectly balanced. [ps inserted half
sentence] The resulting logarithmic search time is a dramatic improvement, com- ⇐=
pared to the Ω(n) time needed for scanning a list. The bad news is that it is expensive
to keep perfect balance when elements are inserted and removed. To understand this
better, let us consider the “naive” insertion routine depicted in Figure 7.3. We locate
the key k of the new element e before its successor e′, insert e into the list, and then
introduce a new node v with left child e and right child e′. The old parent u of e′ now
points to v. In the worst case, every insertion operation will locate a leaf at maximum
2 There is also a variant of search trees where the elements are stored in all nodes of the tree.

148 7 Sorted Sequences

2 5 7 11 133 17 19

191152

133

7

17

PSfrag replacements
∞ rotate left

rotate rightPSfrag replacements

∞

x

x

y

y
A

A BB C

C

Fig. 7.2. Left: Sequence 〈2, 3, 5, 7, 11, 13, 17, 19〉 represented by a binary search tree. In each
node, we show the splitter key at the top and the pointers to the children at the bottom. Right:
rotation of a binary search tree. The triangles indicate subtrees. Observe that the ancestor
relationship between nodes x and y is interchanged.

depth so that the height of the tree increases every time. Figure 7.4 gives an example
that shows that in the worst case the tree may degenerate to a list; we are back to
scanning.

PSfrag replacements

e′ e′ e′e′ ee

u

u

u

u

TTT T

vv

insert einsert e

Fig. 7.3. Naive insertion into a binary search tree. A triangle indicates an entire subtree.

PSfrag replacements

∞∞∞∞

insert 17 insert 13 insert 11

11

11

13
13

1313

17
17

1717

17

1719

19
19

19
19

191919

Fig. 7.4. Naively inserting sorted elements leads to a degenerate tree.

An easy solution to this problem is a healthy portion of optimism; perhaps it will
not come to the worst. Indeed, if we insert n elements in random order, the expected
height of the search tree is ≈ 2.99 log n [53]. We will not prove this here but outline

7.2 (a, b)-Trees 149

a connection to quicksort to make the result plausible. For example, consider how the
tree from Figure 7.2 can be build using naive insertion[ps: reformulated sentence]. ⇐=
We first insert 17; this splits the set into subsets {2, 3, 5, 7, 11, 13} and {19}. Among
the elements in the left subsets, we first insert 7; this splits the left subset into {2, 3, 5}
and {11, 13}. In quicksort terminology, we would say that 17 is chosen as the splitter
in the top-level call and that 7 is chosen as the splitter in the left recursive call.
So building a binary search tree and quicksort are completely analogous processes;
the same comparisons are made, but at different times. Every element of the set is
compared with 17. In quicksort, these comparisons take place when the set is split
in the top-level call. In building a binary search tree, these comparisons take place
when the elements of the set are inserted. So the comparison between 17 and 11
either takes place in the top-level call of quicksort or when 11 is inserted into the tree.
We have seen (Theorem) that the expected number of comparisons in randomized
quicksort is O(n log n). By the correspondence, the expected number of comparisons
in building a binary tree by random insertions is also O(n log n). Thus any insertion
requires O(log n) comparisons on average. Even more is true; with high probability
each single insertion requires O(log n) comparisons and the expected height is ≈
2.99 log n.

Can we guarantee that the height stays logarithmic [ps added:]also in the worst ⇐=
case? Yes and there are many different ways to achieve logarithmic height. We will
survey the techniques in Section 7.7 and discuss two solutions in detail in the next
section. We will first discuss a solution which allows nodes of varying degree and
then show how to balance binary trees by rotations.

Exercise 123. Figure 7.2 indicates how the shape of a binary tree can be changed by
a transformation called rotation. Apply rotations to the tree in Figure 7.2 so that the
node labelled 11 becomes the root of the tree.

Exercise 124. Explain how to implement an implicit binary search tree, i.e. the tree
is stored in an array using the same mapping of tree structure to array positions as in
the binary heaps discussed in Section 6.1. What are the advantages and disadvantages
compared to a pointer-based implementation? Compare search in an implicit binary
tree to binary search in a sorted array.

7.2 (a, b)-Trees

An (a, b)-tree is a search tree where all interior nodes, except for the root, have
out-degree between a and b. Here a and b are constants. The root has degree one
for a trivial tree with a single leaf. Otherwise, the root has degree between 2 and b.
For a ≥ 2 and b ≥ 2a − 1, the flexibility in node degrees allows us to efficiently
maintain the invariant that all leaves have the same depth, as we will see in a short
while. Consider a node with out-degree d. With such a node we associate an array
c[1..d] of pointers to children and a sorted array s[1..d−1] of d−1 splitter keys. The
splitters guide the search. To simplify notation, we additionally define s[0] = −∞

150 7 Sorted Sequences

2 195 73 11 13 17

5

2 3 19

17

7 11 13PSfrag replacements

∞

r

`

h
e
ig

h
t=

2
Fig. 7.5. Sequence 〈2, 3, 5, 7, 11, 13, 17, 19〉 represented by a (2, 4)-tree. The tree has
height 2.

and s[d] = ∞. The keys of the elements e contained in the i-th child c[i] , 1 ≤
i ≤ d, lie between the i − 1-st splitter (exclusive) and the i-th splitter (inclusive),
i.e. s[i − 1] < key(e) ≤ s[i]. Figure 7.5 shows a (2, 4)-tree storing the sequence
〈2, 3, 5, 7, 11, 13, 17, 19〉.

Lemma 20. An (a, b)-tree for n elements has height at most 1 +

⌊

loga

n + 1

2

⌋

.

Proof. The tree has n + 1 leaves where the +1 accounts for the dummy leaf +∞.
If n = 0, the root has degree one and there is a single leaf. So assume n ≥ 1. Let h
be the height of the tree. Since the root has degree at least two and every other node
has degree at least a, the number of leaves is at least 2ah−1. So n + 1 ≥ 2ah−1 or
h ≤ 1 + loga(n + 1)/2. Since the height is an integer, the bound follows.

Exercise 125. Prove that an (a, b)-tree for n elements has height at least dlogb(n + 1)e.
Prove that this bound and the bound given in Lemma 20 are tight.

Searching an (a, b)-tree is only slightly more complicated than searching a binary
tree. Instead of performing a single comparison at a non-leaf node, we have to find
the correct child among up to b choices. Using binary search, we need at most dlog be
comparisons for each node on the search path. Figure 7.6 gives pseudocode for (a, b)-
trees and the locate operation. Recall that we use the search tree as a way to locate
items of a doubly linked list and that the dummy list item is considered to have key
value ∞. This dummy item is the rightmost leaf in the search tree. Hence, there is no
need to treat the special case of root degree 0 and the handle of the dummy item can
serve as a return value when locating a key larger than all values in the sequence.

Exercise 126. Prove that the total number of comparisons in a search is bounded by
dlog be (1 + loga(n + 1)/2). Assume b ≤ 2a. Show that this is O(log b) + O(log n).
What is the constant in front of the log n term?

[ps:swapped floor and ceil in Fig. 7.7 to make compatible with pseudo
code] To insert an element e, we first descend the tree recursively to find the small-=⇒

7.2 (a, b)-Trees 151

Class ABHandle : Pointer to ABItem or Item
// an ABItem (Item) is an item in the navigation data structure (doubly linked list)

Class ABItem(splitters : Sequence of Key, children : Sequence of ABHandle)
d = |children| : 1..b // out-degree
s = splitters : Array [1..b− 1] of Key
c = children : Array [1..b] of ABItem

Function locateLocally(k : Key) : �
return min {i ∈ 1..d : k ≤ s[i]}

Function locateRec(k : Key, h : �) : Handle
i:=locateLocally(k)
if h = 1 then return addressof c[i]
else return c[i]→locateRec(k, h− 1) //

7 11 13

13

1 2 4

12

3

PSfrag replacements

i

k = 12

h = 1 h > 1

Class ABTree(a ≥ 2 : � , b ≥ 2a− 1 : �) of Element
` = 〈〉 : List of Element
r : ABItem(〈〉, 〈`.head〉)
height = 1 : � //

PSfrag replacements

r

`
∞

// Locate the smallest Item with key k′ ≥ k
Function locate(k : Key) : Handle return r.locateRec(k, height)

Fig. 7.6. (a, b)-trees. An ABItem is constructed from a sequence of keys and a sequence of
handles to the children. The out-degree is the number of children. We allocate space for the
maximum possible out-degree b. There are two functions local to ABItem: locateLocally(k)
locates k among the splitters and locateRec(k, h) assumes that the ABItem has height h and
descends h levels down the tree.
The constructor for ABTree creates a tree for the empty sequence. The tree has a single leaf,
the dummy element, and the root has degree one. Locating a key k in an (a, b)-tree is solved
by calling r.locateRec(k, h) where r is the root and h is the height of the tree.

Fig. 7.7. Node splitting: the node v of degree b + 1 (here 5) is split into a node of degree
b(b + 1)/2c and a node of degree d(b + 1)/2e. The degree of the parent increases by one.
The splitter key separating the two “parts” of v is moved to the parent.

est sequence element e′ that is not smaller than e. If e and e′ have equal keys, e′ is
replaced by e.

Otherwise, e is inserted into the sorted list ` before e′. If e′ was the i-th child
c[i] of its parent node v then e will become the new c[i] and key(e) becomes the
corresponding splitter element s[i]. The old children c[i..d] and their corresponding
splitters s[i..d − 1] are shifted one position to the right. If d was less than b, the
incremented d is at most b and we are finished.

The difficult part is when a node v already had degree d = b and now would get
degree b + 1. Let s′ denote the splitters of this illegal node, c′ its children, and u
the parent of v (if it exists). The solution is to split v in the middle, see Figure 7.7.

152 7 Sorted Sequences

More precisely, we create a new node t to the left of v and reduce the degree of v to
d = d(b + 1)/2e by moving the b + 1 − d leftmost child pointers c′[1..b + 1 − d]
and the corresponding keys s′[1..b − d]. The old node v keeps the d rightmost child
pointers c′[b + 2 − d..b + 1] and the corresponding splitters s′[b + 2 − d..b].

The “leftover” middle key k = s′[b + 1 − d] is an upper bound for the keys
reachable from t. It and the pointer to t is needed in the predecessor u of v. The
situation in u is analogous to the situation in v before the insertion: if v was the
ith child of u, t is displacing it to the right. Now t becomes the i-th child and k is
inserted as the i-th splitter. The addition of t as an additional child of u increases the
degree of u. If the degree of u becomes b+1, we split u. The process continues until
either some ancestor of v has room to accommodate the new child or until the root is
split.

In the latter case, we allocate a new root node pointing to the two fragments of
the old root. This is the only situation where the height of the tree can increase. In
this case, the depth of all leaves increases by one, i.e. we maintain the invariant that
all leaves have the same depth. Since the height of the tree is O(log n) (cf. Exer-
cise 125), we get a worst case execution time of O(log n) for insert . Pseudocode is
shown in Figure 7.83.

We still need to argue that insert leaves us with a correct (a, b)-tree. When we
split a node of degree b+1, we create nodes of degree d = d(b + 1)/2e and b+1−d.
Both degrees are clearly at most b. Also, a ≤ b + 1 − d(b + 1)/2e if b ≥ 2a − 1.
Convince yourself that b = 2a − 2 will not work.

[todo:insertInlineBildchen ausrichten]=⇒

Exercise 127. It is tempting to streamline insert by calling locate to replace the
initial descent of the tree. Why does this not work? Would it work if every node had
a pointer to its parent?

We turn to operation remove. The approach is similar to what we already know
from insert . We locate the element to be removed, remove it from the sorted list,
and repair possible violations of invariants on the way back up. Figure 7.10 shows
pseudocode and Figure 7.9 illustrates node fusing and balancing. When a parent u
notices that the degree of its child c[i] has dropped to a − 1, it combines this child
with one of its neighbors c[i−1] or c[i+1] to repair the invariant. There are two cases.
If the neighbor has degree larger than a, we can balance the degrees by transferring
some nodes from the neighbor. If the neighbor has degree a, balancing cannot help
since both nodes together have only 2a−1 children so that we cannot give a children
to both of them. However, in this case we can fuse them to a single node since the
requirement b ≥ 2a − 1 ensures that the fused node has degree at most b.

To fuse a node c[i] with its right neighbor c[i + 1],[ps: added comma] we=⇒
concatenate their children arrays. To obtain the corresponding splitters, we need to
place the splitter s[i] from the parent between the splitter arrays. The fused node
replaces c[i + 1], c[i] can be deallocated, and c[i] together with the splitter s[i] can
be removed from the parent node.
3 From C++ we borrow the notation C :: m to define a method m for class C .

7.2 (a, b)-Trees 153

// Example:

PSfrag replacements

∞

r
k=3,t=

// 〈2, 3, 5〉.insert(12)
Procedure ABTree::insert(e : Element)

(k, t):=r.insertRec(e, height , `)
if t 6= null then // root was split

r:=new ABItem(〈k〉, 〈r, t〉)
height++

// Insert a new element into a subtree of height h.
// If this splits the root of the subtree,
// return the new splitter and subtree handle
Function ABItem::insertRec(e : Element, h : � , ` : List of Element) : Key×ABHandle

i := locateLocally(e)
if h = 1 then // base case

if key(c[i]→ e) = key(e) then
c[i]→ e := e
return (⊥,null)

else
(k, t) := (key(e), `.insertBefore(e, c[i])) //

2 3 5

2 3 5 12

PSfrag replacements

∞

e c[i]

c[i]

else
(k, t):=c[i]→insertRec(e, h− 1, `)
if t = null then return (⊥,null)

endif
s′ := 〈s[1], . . . , s[i− 1], k, s[i], . . . , s[d− 1]〉
c′ := 〈c[1], . . . , c[i− 1], t, c[i], . . . , c[d]〉 // 5

5

2 3 12

2 3

t

PSfrag replacements

∞

s′

c′
12 = k

if d < b then // there is still room here
(s, c, d) := (s′, c′, d + 1)
return (⊥,null)

else // split this node
d := b(b + 1)/2c
s := s′[b + 2− d..b]
c := c′[b + 2− d..b + 1] //

5

5

2

2 3 12

12

return(3,)

PSfrag replacements

∞

s
c

return (s′[b + 1− d],newABItem(s′[1..b− d], c′[1..b + 1− d]))

Fig. 7.8. Insertion into (a, b)-trees.

154 7 Sorted Sequences

Fig. 7.9. Node balancing and fusing in (2,4)-trees: node v has degree a − 1 (here 1). In the
situation on the left, it has sibling of degree a + 1 or more and we balance the degrees. In the
situation on the right the sibling has degree a and we fuse v and its sibling. Observe how keys
are moved. When two nodes are fused, the degree of the parent decreases.

Exercise 128. Suppose a node v has been produced by fusing two nodes as described
above. Prove that the ordering invariant is maintained: An element[ps was: ele-
ments] e reachable through child v.c[i] has key v.s[i − 1] < key(e) ≤ v.s[i] for=⇒
1 ≤ i ≤ v.d.

Balancing two neighbors is equivalent to first fusing them and then splitting the
result as in operation insert .

Since fusing two nodes decreases the degree of their parent, the need to fuse or
balance might propagate up the tree. If the degree of the root drops to one, we do one
of two things. If the tree has height one and hence contains only a single element,
there is nothing to do and we are finished. Otherwise, we deallocate the root and
replace it by its sole child. The height of the tree decreases by one.

As for insert , the execution time of remove is proportional to the height of the
tree and hence logarithmic in the size of the sorted sequence. We summarize the
performance of (a, b)-trees in the following theorem:

Theorem 24. For any integers a and b with a ≥ 2 and b ≥ 2a − 1, (a, b)-trees
support operations insert , remove , and locate on sorted sequences of size n in time
O(log n).

Exercise 129. Give a more detailed implementation of locateLocally based on bi-
nary search that needs at most dlog be comparisons. Your code should avoid both
explicit use of infinite key values and special case treatments for extreme cases.

Exercise 130. Suppose a = 2k and b = 2a. Show that (1 + 1
k) log n + 1 element

comparisons suffice to execute a locate operation in an (a, b)-tree. Hint: it is not quite
sufficient to combine Exercise 125 with Exercise 129 since this would give you an
additional term +k.

Exercise 131. Extend (a, b)-trees so that they can handle multiple occurences of[ps
was: with] the same key. Hint: start by defining the semantics of remove .=⇒

*Exercise 132 (Red-Black Trees) A red-black tree is a binary search tree where the
edges are colored either red or black. The black depth of a node v is the number of
black edges on the path from the root to v. The following invariants have to hold:

1. All leaves have the same black depth.
2. Edges into leaves are black.
3. No path from the root to a leaf contains two consecutive red edges.

7.2 (a, b)-Trees 155

// Example: 〈2, 3, 5〉.remove(5)
Procedure ABTree::remove(k : Key) // 5

2 3

2

3

5

...PSfrag replacements

∞

r

k
r.removeRec(k, height , `)
if r.d = 1 ∧ height > 1 then

r′ := r; r := r′.c[1]; dispose r′ //
2 3

2 3PSfrag replacements

∞

r

k

Procedure ABItem::removeRec(k : Key, h : � , ` : List of Element)
i:=locateLocally(k)
if h = 1 then // base case

if key(c[i]→ e) = k then // there is sth to remove
`.remove(c[i])
removeLocally(i) //

2

3

2 3

iPSfrag replacements

∞

r

s
c

else
c[i]→ removeRec(e, h− 1, `)
if c[i]→ d < a then // invariant needs repair

if i = d then i-- // make sure i and i + 1 are valid neighbors
s′ := concatenate(c[i]→ s, 〈s[i]〉, c[i + 1]→ s))
c′ := concatenate(c[i]→ c, c[i + 1]→ c)
d′ := |c′|
if d′ ≤ b then // fuse

(c[i + 1]→ s, c[i + 1]→ c, c[i + 1]→ d) := (s′, c′, d′)
dispose c[i]; removeLocally(i) //

2 3

2 3

PSfrag replacements

∞

r
s
c

s′

c′

i

else // balance
m := dd′/2e
(c[i]→ s, c[i]→ c, c[i]→ d) := (s′[1..m− 1], c′[1..m], m)
(c[i + 1]→ s, c[i + 1]→ c, c[i + 1]→ d):=
(s′[m + 1..d′ − 1],c′[m + 1..d′], d′ −m)
s[i] := s′[m]

// Remove the i-th child from an ABItem
Procedure ABItem::removeLocally(i : �)

c[i..d− 1] := c[i + 1..d]
s[i..d− 2] := s[i + 1..d− 1] // b c da a c d

zxx zyPSfrag replacements i i

c
s

d--

Fig. 7.10. Removal from an (a, b)-tree.

Fig. 7.11. The correspondance between (2,4)-trees and red-black trees. Nodes of degree 2, 3,
and 4 as shown on the left correspond to the configurations on the right. Red edges are shown
in bold.

Show that red-black trees and (2, 4)-trees are isomorphic in the following sense:
(2, 4)-trees can be mapped to red-black trees by replacing nodes of degree three or
four by two or three nodes connected by red edges respectively as shown in Fig-
ure 7.11. Red-black trees can be mapped to (2, 4)-trees using the inverse transfor-
mation, i.e. components induced by red edges are replaced by a single node. Now

156 7 Sorted Sequences

explain how to implement (2, 4)-trees using a representation as a red-black tree.4

Explain how expanding, shrinking, splitting, merging, and balancing nodes of the
(2, 4)-tree can be translated into recoloring and rotation operations in the red-black
tree. Colors should only be stored at the target nodes of the corresponding edges.

7.3 More Operations

Search trees support many operations in addition to insert , remove , and locate .
We study them in two batches. In this section we will discuss operations directly
supported by (a, b)-trees and in Section 7.5 we will discuss operations that require
augmentation of the data structure.
min/max: The constant time operations first and last on a sorted list give us the
smallest and largest element in the sequence in constant time. In particular, search
trees implement double-ended priority queues, i.e. sets that allow locating and re-
moving both the smallest and the largest element in logarithmic time. For example,
in Figure 7.5, the header element of list ` gives us access to the smallest element 2
and to the largest element 19 via its next and prev pointers respectively.

[todo: Ãijberall paragraph* → myparagraph]=⇒
Range queries: To retrieve all elements with keys in the range [x, y],[ps added
comma] we first locate x and then traverse the sorted list until we see an element=⇒
with a key larger than y. This takes time O(log n + output-size). For example, the
range query [4, 14] applied to the search tree in Figure 7.5 will find the 5, subse-
quently outputs 7, 11, 13, and stops when it sees the 17.
Build/Rebuild: Exercise 133 asks you to give an algorithm that converts a sorted
list or array into an (a, b)-tree in linear time. Even if we first have to sort an unsorted
list, this operation is much faster than inserting the elements one by one. We also
obtain a more compact data structure this way.

Exercise 133. Explain how to construct an (a, b)-tree from a sorted list in linear time.
Which (2, 4)-tree does your routine construct for the sequence 〈1..17〉? Next, remove
elements 4, 9, and 16.

* Concatenation: Two sorted sequences can be concatenated if the largest element of
the first sequence is smaller than the smallest element in the second sequence. If se-
quences are represented as (a, b)-trees, two sequences s1 and s2 can be concatenated
in time O(log max(|s1|, |s2|)). First, we remove the dummy item from s1 and con-
catenate the underlying lists. Next we fuse the root of one tree with an appropriate
node of the other tree in such a way that the resulting tree remains sorted and bal-
anced. More precisely, if s1.height ≥ s2.height , we descend s1.height − s2.height
levels from the root of s1 by following pointers to the rightmost children. The node v
we reach is then fused with the root of s2. The required new splitter key is the largest
4 This may be more space efficient than a direct representation, in particular if keys are large.

7.3 More Operations 157

key in s1. If the degree of v now exceeds b, v is split. From that point, the con-
catenation proceeds like an insert operation propagating splits up the tree until the
invariant is fulfilled or a new root node is created. The case s1.height < s2.height
is a mirror image. We descend s2.height − s1.height levels from the root of s2

by following pointers to the leftmost children, fuse The operation runs in time
O(1 + |s1.height − s2.height |) = O(log n). Figure 7.12 gives an example.

175

19

197 11 13 172 5

2 3

3 197 11 13 17

7 11 13

2 5

2 3

3

5 11 13 19

17 5:insert

1:delete 2:concatenate

3:fuse

4:split

PSfrag replacements

∞

∞∞

s1

s2

Fig. 7.12. Concatenating (2, 4)-trees for 〈2, 3, 5, 7〉 and 〈11, 13, 17, 19〉.

1913

1911 13 17

2 3

2 5 73 2 5 73

3

2 5 7

11 17 1913

11

13

17 19

PSfrag replacements
∞∞∞ ∞

split < 2.3.5.7.11.13.17.19 > at 11

Fig. 7.13. Splitting the (2, 4)-tree for 〈2, 3, 5, 7, 11, 13, 17, 19〉 from Figure 7.5 produces the
subtrees shown on the left. Subsequently concatenating the trees surrounded by the dashed
lines leads to the (2, 4)-trees shown on the right side.

* Splitting: We show how to split a sorted sequence at a given element in logarithmic
time. Consider sequence s = 〈w, . . . , x, y, . . . , z〉. Splitting s at y results in the se-
quences s1 = 〈w, . . . , x〉 and s2 = 〈y, . . . , z〉. We carry out the procedure as follows.
Consider the path from the root to leaf y. We split each node v on this path into two
nodes v` and vr. Node v` gets the children of v that are to the left of the path and vr

gets the children that are to the right of the path. Some of these nodes may get no chil-
dren. Each of the nodes with children can be viewed as the root of an (a, b)-tree. Con-
catenating the left trees and a new dummy sequence element yields the elements up
to x. Concatenating 〈y〉 and the right trees produces the sequence of elements starting
from y. We can do these O(log n) concatenations in total time O(log n) by exploit-
ing the fact that the left trees have strictly decreasing height and the right trees have
strictly increasing height. Let us look at the trees on the left in more detail. Let r1, r2

158 7 Sorted Sequences

to rk be the roots of the trees on the left and let h1, h2 to hh be their heights. Then
h1 ≥ h2 ≥ . . . ≥ hk. We first concatenate rk−1 and rk in time O(1 + hk−1 − hk),
then concatenate rk−2 with the result in time O(1 + hk−2 − hk−1), then concatenate
rk−3 with the result in O(1 + hk−2 − hk−1), and so on. The total time needed for
all concatenations is O

(

∑

1≤i<k(1 + hi − hi+1

)

= O(k + h1 − hk) = O(log n).
Figure 7.13 gives an example.

Exercise 134. We glanced over one issue in the argument above. What is the height
of the tree resulting from concatenating vk to vi. Show that the height is hi + O(1).

Exercise 135. Explain how to delete a subsequence 〈e ∈ s : α ≤ e ≤ β〉 from an
(a, b)-tree s in time O(log n).

7.4 Amortized Analysis of Update Operations

The best case time for an insertion or removal is considerably smaller than the worst
case time. In the best case, we basically pay to locate the affected element, the update
of the sequence, and the time for updating the bottommost internal node. The worst
case is much slower. Split or fuse operations may propagate all the way up the tree.

Exercise 136. Give a sequence of n operations on (2, 3)-trees that requires Ω(n log n)
fusing and split operations.

We now show that the amortized complexity is basically equal to the best case if
b is not at its minimum possible value but is at least 2a. In Section 7.5.1 we will see
variants of insert and remove that turn out to have constant amortized complexity
in the light of the analysis below.

Theorem 25. Consider an (a, b)-tree with b ≥ 2a that is initially empty. For any se-
quence of n insert or remove operations, the total number of split or fuse operations
is O(n).

Proof. We give the proof for (2, 4)-trees and leave the generalization to Exercise 137.
We use the bank account method introduced in Section 3.3. Splits and fuse opera-
tions are paid for by tokens. They cost one token each. We charge two tokens to each
remove and insert and claim that this suffices to pay for all split and fuse opera-
tions. In order to do the accounting, we associate the tokens with the nodes of the
tree and show that the nodes can hold tokens according to the following table (token
invariant):

degree 1 2 3 4 5
tokens ◦◦ ◦ ◦◦ ◦◦◦◦

Note that we have included the cases of degree 1 and 5 that occur during rebalancing.
The purpose of splitting and fusing is to remove these exceptional degrees.

[todo: redraw using tabular and latex picture]=⇒

7.4 Amortized Analysis of Update Operations 159

split: splitfor+ + for parent

=leftover
token

cost

remove
insert

operand
operation

balance: or

fuse: for parent+ for fuse+

Fig. 7.14. The effect of (a, b)-tree operations on the token invariant. The upper part illustrates
the addition or removal of a leaf. An insert is charged two tokens. When the leaf is added to a
node of degree three or four, the two tokens are put on the node. When the leaf is added to a
node of degree two, the two tokens are not needed and the token from the node is also freed.
The lower part illustrates the use of the tokens in balance, split, and fuse operations.

Creating an empty sequence makes a list with one dummy item and a root of
degree one. We charge two tokens to the create and put them on the root. Let us
next look at insertions and deletions. They add or remove a leaf and hence increase
or decrease the degree of a node immediately above leaf level. Increasing the degree
of a node requires up to two additional tokens on the node (if the degree increases
from 3 to 4 or from 4 to 5) and this is exactly what we charge to an insertion. If the
degree grows from 2 to 3, we do not need additional tokens and we are overcharging
the insertion; there is no harm in this. Similarly, reducing the degree by one, may
require one additional token on the node (if the degree decreases from 3 to 2 or from
2 to 1) and this uses up one of the tokens charged to the removal. The other token
we put aside for later use. So immediately after adding or removing a leaf, the token
invariant is satisfied. We have also put one token aside in the case of a removal.

We next need to consider what happens during rebalancing. Figure 7.14 summa-
rizes the discussion to follow graphically.

A split operation is performed on nodes of (temporary) degree five and results
in a node of degree three and a node of degree two. It also increases the degree of
the parent. The four tokens stored on the degree five node are spent as follows: one
token pays for the split , one token is put on the new node of degree two, and two
tokens are used for the parent node. Again, we may not need the additional tokens
for the parent node; in this case, we discard them.

A balance operation takes a node of degree one and a node of degree three or
four and moves one child from the high degree node to the node of degree one. If the

160 7 Sorted Sequences

high degree node has degree three, we have two tokens available to us and need two
tokens; if the high degree node has degree four, we have four tokens available to us
and need one token. In either case, the tokens available are sufficient to maintain the
token invariant. We still need to pay for the operation itself. Here we use the token
put aside. Observe, that a balance operation completes rebalancing after a removal
and hence it is correct to put only one token aside.

A fuse operation fuses a degree one node with a degree two node into a degree
three node and decreases the degree of the parent. We have three tokens available.
We use one to pay for the operation and we use one to pay for the decrease of the
degree of the parent. The third token is no longer needed and we discard it.

Let us summarize. We charge two tokens to each create, insert and remove. These
tokens suffice to pay one token each for every split, fuse or balance. Thus n insert
and remove operations can cause at most 2(n + 1) rebalance operations.

*Exercise 137 Generalize the proof to arbitrary a and b with b ≥ 2a. Show that n
insert or remove operations cause only O(n/(b − 2a + 1)) fuse or split operations.

*Exercise 138 (Weight-balanced trees [143]) Consider the following variant of (a, b)-
trees: the node-by-node invariant d ≥ a is relaxed to the global invariant that the tree
has at least 2aheight−1 leaves. Remove does not perform any fuse or balance opera-
tions. Instead, the whole tree is rebuilt using the routine from Exercise 133 when the
invariant is violated. Show that remove operations execute in O(log n) amortized
time.

7.5 Augmented Search Trees

We show that (a, b)-trees can support additional operations on sequences if we aug-
ment the data structure by additional information. However, augmentations come at
a cost. They consume space and require time for keeping them up to date. Augmen-
tations may also stand in each others’ way. [ps dropped (where what is in each
others way in this exercise????): The following exercise gives an example.]=⇒

Exercise 139 (Reduction). Some operations on search trees can be carried out with
the use of the navigation data structure alone and without the doubly linked list. Go
through the operations discussed so far and discuss whether they require the next

and prev pointers of linear lists. Range queries are a particular challenge.

7.5.1 Parent Pointers

Suppose we want to remove an element specified by the handle of a list item. In the
basic implementation from Section 7.2, the only thing we can do is to read the key k
of the element and call remove(k). This would take logarithmic time for the search
although we know from Section 7.4 that the amortized number of fuse operations
required to rebalance the tree is constant. This detour is not necessary if each node

7.5 Augmented Search Trees 161

v of the tree stores a handle indicating its parent in the tree (and perhaps an index i
such that v.parent .c[i] = v).

Exercise 140. Show that in (a, b)-trees with parent pointers, the operations
remove(h : Item) and insertAfter(h : Item) can be implemented to run in con-
stant amortized time.

*Exercise 141 (Avoiding Augmentation) Outline the implementation of a class
ABTreeIterator that represents a position in a sorted sequence in an ABTree
without parent pointers. Creating an iterator I works like search and may take log-
arithmic time. The class should support operations remove , insertAfter , and oper-
ations for moving backward and forward in the host sequence by one position. All
these operations should use constant amortized time. Hint: you may need a logarith-
mic amount of internal state.

*Exercise 142 (Finger Search) Augment search trees such that searching can profit
from a “hint” given in the form of the handle of a finger element e′. If the sought
element has rank r and the finger element e′ has rank r′, the search time should be
O(log |r − r0|). Hint: One solution links all nodes at each level of the search tree
into a doubly linked list.

*Exercise 143 (Optimal Merging) Explain how to use finger search to implement
merging of two sorted sequences in time O

(

n log m
n

)

where n is the size of the
shorter sequence and m is the size of the longer sequence.

7.5.2 Subtree Sizes

3

7

1952

2 195 7 11 13 173

17

11

134

7

222

select 6th element 9
subtree
size

2

3

PSfrag replacements

∞

0+7≥6

4+2≥6

0+4<6

4+1<6

i=0

i=4

i=4

i=5

Fig. 7.15. Selecting the
6th smallest element from
〈2, 3, 5, 7, 11, 13, 17, 19〉 repre-
sented by a binary search tree. The
fat arrows indicate the search path.

Suppose every non-leaf node t of a search tree stores its size, i.e. t.size is the
number of leaves in the subtree rooted at t. Then the k-th smallest element of the
sorted sequence can be selected in time proportional to the height of the tree. For
simplicity, we describe this for binary search trees. Let t denote the current search
tree node which is initialized to the root. The idea is to descend the tree while main-
taining the invariant that the k-th element is contained in the subtree rooted at t. We

162 7 Sorted Sequences

also maintain the number i of [ps dropped: the] elements that are to the left of t. ⇐=
Initially, i = 0. Let i′ denote the size of the left subtree of t. If i + i′ ≥ k then we
set t to its left successor. Otherwise, t is set to its right successor and i is increased
by i′. When a leaf is reached, the invariant ensures that the k-th element is reached.
Figure 7.15 gives an example.

Exercise 144. Generalize the above selection algorithm to (a, b)-trees. Develop two
variants. One that needs time O(b loga n) and stores only the subtree size. Another
variant needs only time O(log n) and stores d− 1 sums of subtree sizes in a node of
degree d.

Exercise 145. Explain how to determine the rank of a sequence element with key k
in logarithmic time.

Exercise 146. A colleague suggests supporting both logarithmic selection time and
constant amortized update time by combining the augmentations from Sections 7.5.1
and 7.5.2. What will go wrong?

7.6 Implementation Notes

Our pseudocode for (a, b)-trees is close to an actual implementation in a language
such as C++ except for a few oversimplifications. The temporary arrays s′ and c′ in
procedures insertRec and removeRec can be avoided by appropriate case distinc-
tions. In particular, a balance operation will not require calling the memory manager.
A split operation of a node v might get slightly faster if v keeps the left half rather
than the right half. We did not formulate it this way because then the cases of in-
serting a new sequence element and splitting a node are no longer the same from the
point of view of their parent.

For large b, locateLocally should use binary search. For small b, linear search
might be better[ps was: applicable]. Furthermore, we might want to have a spe-=⇒
cialized implementation for small, fixed values of a and b that unrolls5 all the inner
loops. Choosing b to be a power of two might simplify this task.

Of course, the crucial question is how a and b should be chosen. Let us start with
the cost of locate . There are two kinds of operations that dominate the execution
time of locate: element comparisons (because of their inherent cost and because
they may cause branch mispredictions6) and pointer dereferences (because they may
cause cache faults). Exercise 130 indicates that element comparisons are minimized
5 Unrolling a loop “for i := 1 to K do body i” means replacing it by the straight line

program “body1,. . . ,bodyK”. This saves the overhead for loop control and may give other
opportunities for simplifications.

6 Modern microprocessors attempt to execute many (up to a hundred or so) instructions in
parallel. This works best if they come from a linear, predictable sequence of instructions.
The branches in search trees have a 50 % chance of going either way by design and hence
are likely to disrupt this scheme. This leads to large delays when many partially executed
instructions have to be discarded.

7.6 Implementation Notes 163

by choosing a as a large power of two and b = 2a. Since the number of pointer
dereferences is proportional to the height of the tree (cf. Exercise 125), large values
of a are also good for this measure. Taking this reasoning to the extreme, we would
obtain best performance for a ≥ n, i.e. a single sorted array. This is not astonishing.
We have concentrated on searches and static data structures are best if updates are
neglected.

Insertions and deletions have the amortized cost of one locate plus a constant
number of node reorganizations (split, balance, or fuse) with cost O(b) each. We get
logarithmic amortized cost for update operations if[ps was for] b = O(log n). A ⇐=
more detailed analysis 137 would reveal that increasing b beyond 2a makes split and
fuse operations less frequent and thus saves expensive calls to the memory manager
associated with them. However, this measure has a slightly negative effect on the
performance of locate and it clearly increases space consumption. Hence, b should
remain close to 2a.

Finally, let us have a closer look at the role of cache faults. The cache can hold
Θ(M/b) nodes. These are most likely to be nodes close to the root since these are
visited more often than deeper nodes. In a first approximation, the top loga(M/b)
levels of the tree are stored in the cache. Below this level, every pointer dereference
is associated with a cache miss, i.e. we will have about loga(bn/Θ(M)) cache misses
in a cache of size M . Since cache blocks of processor caches start at addresses that
are a multiple of the block size, it makes sense to align the starting address of search
tree nodes to a cache block, i.e. to make sure that they also start at an address that is
a multiple of the block size. Note that (a, b)-trees might well be more efficient than
binary search for large data sets because we may save a factor log a cache misses.

Very large search trees are stored on disks. Indeed, under the name BTrees[check
B+ Trees???] [14], (a, b)-trees are the working horse of indexing data structures in ⇐=
data bases. In that case, internal nodes have a size of several KBytes. Furthermore,
the linked list items are also replaced by entire data blocks that store between a′

and b′ elements for appropriate values of a′ and b′ (See also Exercise 47). These
leaf blocks will then also be subject to splitting, balancing and fusing operations.
For example, assume we have a = 210, the internal memory is large enough (a few
MBytes) to cache the root and its children, and data blocks store between 16 and
32 KBytes of data. Then two disk accesses are sufficient to locate any element in
a sorted sequence that takes 16 GBytes of storage. Since putting elements into leaf
blocks dramatically decreases the total space needed for the internal nodes and makes
it possible to perform very fast range queries, this measure can also be useful for a
cache efficient internal memory implementation. However, note that update opera-
tions may now move an element in memory and thus will invalidate element handles
stored outside the data structure. There are many more tricks for implementing (ex-
ternal memory) (a, b)-trees. We refer the reader to [78] and [134, Chapters 2,14] for
overviews. A good free implementation of BTrees is available in STXXL [50].

Even from the augmentations discussed in Section 7.5 and the implementation
tradeoffs discussed here, you have hopefully learned that the optimal implementation
of sorted sequences does not exist but depends on the hardware and the operation mix
relevant for the actual application. We believe, that (a, b)-trees with b = 2k = 2a =

164 7 Sorted Sequences

O(log n) augmented with parent pointers and a doubly linked list of leaves are a
sorted sequence data structure that supports a wide range of operations efficiently.

Exercise 147. What choice of a and b in (a, b)-trees guarantees that the number of
I/O operations required for insert , remove , or locate is O

(

logB
n
M

)

? How many
I/O are needed to build an n elements (a, b)-tree using the external sorting algorithm
from Section 5.7 as a subroutine? Compare this with the number of I/Os needed for
building the tree naively using insertions. For example, try M = 229 byte, B =
218 byte7 , n = 232, and elements having 8 byte keys and 8 bytes of associated
information.

C++: The STL has four container classes set , map, multiset , and multimap for
sorted sequences. The prefix multi means that there may be several elements with the
same key. Maps offer the interface of an associative array (see also Chapter 4). For
example, someMap[k] :=x inserts or updates the element with key k and associated
information x.

Exercise 148. Explain how our implementation of (a, b)-trees can be generalized to
implement multisets. Elements with identical keys should be treated last-in-first-out,
i.e. remove(k) should remove the least recently inserted element with key k.

The most widespread implementation of sorted sequences in STL uses a variant of
red-black trees with parent pointers where elements are stored in all nodes rather
than only in the leaves. None of the STL data types supports efficient splitting or
concatenation of sorted sequences.

LEDA offers a powerful interface sortseq that supports all important (and many
not so important) operations on sorted sequences including finger search, concate-
nation, and splitting. Using an implementation parameter, there is a choice between
(a, b)-trees, red-black trees, randomized search trees, weight-balanced trees, and skip
lists.
Java: The Java library java .util [check wording/typesetting in other chapters]=⇒
offers the interface classes SortedMap and SortedSet which correspond to the
STL classes set and map respectively. The corresponding implementation classes
TreeMap and TreeSet are based on red-black trees.

7.7 Historical Notes and Further Findings

There is an entire zoo of sorted sequence data structures. Just about any of them
will do, if you just want to support insert , remove , and locate in logarithmic time.
Performance differences for the basic operations are often more dependent on imple-
mentation details than on fundamental properties of the underlying data structures.
The differences show up in the additional operations.
7 We are committing a slight oversimplification here since in practice one will use much

smaller block sizes for organizing the tree than for sorting.

7.7 Historical Notes and Further Findings 165

The first sorted sequence data structure to support insert , remove , and locate in
logarithmic time were AVL trees [3]. AVL trees are binary search trees which main-
tain the invariant that the heights of the subtrees of a node differ by one [ask google
whether “at the most” is really good English]at the most. Since this is a strong ⇐=
balancing condition, locate is probably a bit faster than in most competitors. On the
other hand, AVL trees do not support constant amortized update costs. Another small
disadvantage is that storing the heights of subtrees costs additional space. In compar-
ison, red-black trees have slightly higher costs for locate but they have faster updates
and the single color bit can often be squeezed in somewhere. For example, pointers
to items will always store even addresses so that their least significant bit could be
diverted to storing color information.

(2, 3)-trees were introduced in [5]. The generalization to (a, b)-trees and the
amortized analysis of Section ?? comes from [93]. There it is also shown that the
total number of splitting and fusing operations at the nodes of a certain height de-
creases exponentially in the height.

Splay trees [173] and some variants of randomized search trees [165] even work
without any additional information besides one key and two successor pointers. A
more interesting advantage of these data structures is their adaptability to nonuni-
form access frequencies. If an element e is accessed with probability p, these search
trees will be reshaped over time to allow an access to e in time O(log(1/p)). This
can be shown to be asymptotically optimal for any comparison-based data structure.
However, this property leads to improved running time only for quite skewed access
patterns because of the large constants.

Weight-balanced trees [143] balance the size of the subtrees instead of the height.
They have the advantages that a node of weight w (= number of leaves of its sub-
tree) is only rebalanced after Ω(w) insertions or deletions passing through it [27]
and [121, TODO]. [remember above TODO] ⇐=

There are so many search tree data structures for sorted sequences that these two
terms are sometimes used as synonyms. However, there are equally interesting data
structures for sorted sequences that are not based on search trees. Sorted arrays are
a simple static data structure. Sparse tables [95] are an elegant way to make sorted
arrays dynamic. The ideas is to accept some empty cells to make insertion easier.
[18] extends sparse tables to a data structure which is asymptotically optimal in an
amortized sense. Moreover, this data structure is a crucial ingredient for a sorted se-
quence data structure [18] which is cache oblivious [69], i.e. cache efficient on any
two levels of a memory hierarchy without even knowing the size of caches and cache
blocks. The other ingredient is oblivious static search trees [69]; these are perfectly
balanced binary search trees stored in an array such that any search path will exhibit
good locality in any cache. We describe the van Emde Boas layout used for this pur-
pose for the case that there are n = 22k

leaves for some integer k: store the top 2k−1

levels of the tree in the beginning of the array. After that, store the 2k−1 subtrees
of depth 2k−1 allocating consecutive blocks of memory for them. Recursively allo-
cate the resulting 1 + 2k−1 subtrees. At least static cache-oblivious search trees are
practical in the sense that they can outperform binary search in a sorted array.

166 7 Sorted Sequences

Skip lists [149] are based on another very simple idea. The starting point is a
sorted linked list `. The tedious task of scanning ` during locate can be accelerated
by producing a shorter list `′ that only contains some of the elements in `. If cor-
responding elements of ` and `′ are linked, it suffices to scan `′ and only descend
to ` when approaching the searched element. This idea can be iterated by building
shorter and shorter lists until only a single element remains in the highest level list.
This data structure supports all important operations efficiently in an expected sense.
Randomness comes in because the decision which elements to lift to a higher level
list is made randomly. Skip lists are particularly well suited for supporting finger
search.

Yet another family of sorted sequence data structures comes into play when we
no longer consider keys as atomic objects that can only be compared. If keys are
numbers in binary representation, we obtain faster data structures using ideas similar
to the fast integer sorting algorithms from Section 5.6. For example, sorted sequences
with w bit integer keys support all operations in time O(log w) [186, 125]. At least
for 32 bit keys these ideas bring considerable speedup also in practice [49]. Not
astonishingly, string keys are important. For example, suppose we want to adapt
(a, b)-trees to use variable length strings as keys. If we want to keep a fixed size for
node objects, we have to relax the condition on the minimal degree of a node. Two
ideas can be used to avoid storing long string keys in many nodes: common prefixes
of keys need to be stored only once, often in the parent nodes. Furthermore, it suffices
to store the distinguishing prefixes of keys in inner nodes, i.e. just enough characters
to be able to distinguish different keys in the current node [82]. Taking these ideas
to the extreme results in tries [64], a search tree data structure specifically designed
for strings keys: tries are trees whose edges are labelled by characters or strings. The
characters along a root leaf path represent a key. Using appropriate data structures
for the inner nodes, a trie can be searched in time O(s) for a string of size s.

We will close with three interesting generalizations of sorted sequences. The
first generalization is multi-dimensional objects such as intervals or points in d-
dimensional space. We refer to textbooks on geometry for this wide subject [48].
The second generalization is persistence. A data structure is persistent if it supports
non-destructive updates. For example, after the insertion of an element, there are
two versions of the data structure, the one before the insertion and the one after the
insertion. Both can be searched [60]. The third generalization is searching many se-
quences [38, 37, 126]. In this setting there are many sequences and searches need to
locate a key in all of them or a subset of them.

8

Graph Representation

Scientific results are mostly available in the form of articles in journals, con-
ference proceedings, and on various web resources. These articles are not self-
contained but they cite previous articles with related content. However, when you
read an article from 1975 with an interesting partial result, you often ask yourselves
what is the current state of the art. In particular, you would like to know which newer
articles cite the old article. Projects like Google Scholar provide this functionality
by analyzing the reference section of articles and by building a database of articles
that efficiently supports looking up articles citing a given article.

We can easily model this situation by a directed graph. The graph has a node for
each article and an edge for each citation. An edge (u, v) from article u to article v
means u cites v. In this terminology, every node (= article) stores all its outgoing
edges (= the articles cited by it) but not the incoming edges (the articles citing it). If
every node would also store the incoming edges, it would be easy to find the citing
articles. A main task of Google Scholar is to construct the reversed edges. The exam-
ple shows that the cost of even a very basic elementary operation on graphs, namely
finding all edges entering a particular node, depends heavily on the representation
of the graph. If the incoming edges are stored explicitly, the operation is easy, if the
incoming edges are not stored, the operation is non-trivial.

In this chapter, we will give an introduction to the various possibilities of repre-
senting graphs in a computer. We mostly focus on directed graphs and assume that
an undirected graph G = (V,E) is represented in the same way as the (bi)directed
graph G′ = (V,

⋃

{u,v}∈E {(u, v), (v, u)}). Figure 8.1 illustrates the concept of a
bidirected graph. Most of the presented data structures also allow us to represent
parallel edges and self-loops. We start with a survey of the operations that we may
want to support.

Accessing associated information: Given a node or an edge, we frequently want
to access information associated with it, e.g., the weight of an edge or the distance
of a node. In many representations, nodes and edges are objects and we can directly
store this information as a member of these objects. If not otherwise mentioned, we
assume that V = 1..n so that information associated with nodes can be stored in
arrays. When all else fails, we can always store node or edge information in a hash
table. Hence, accesses can be implemented to run in constant time. In the remainder

168 8 Graph Representation

of this book we abstract from the different options for realizing access by using data
types NodeArray and EdgeArray to indicate an array-like data structure that can be
indexed by nodes or edges, respectively.

Navigation: Given a node, we want to access its outgoing edges. It turns out that this
operation is at the heart of most graph algorithms. As we have seen in the scientific
article example, we sometimes also want to know the incoming edges.

Edge Queries: Given a pair of nodes (u, v), we may want to know whether this
edge is in the graph. This can always be implemented using a hash table but we may
want to have something even faster. A more specialized but important query is to find
the reverse edge (v, u) of a directed edge (u, v) ∈ E if it exists. This operation can
be implemented by storing additional pointers connecting edges with their reversal.

Construction, Conversion and Output: The representation most suitable for the
algorithmic problem at hand is not always the representation given initially. This is
not a big problem since most graph representations can be translated into each other
in linear time.

Update: Sometimes we want to add or remove nodes or edges. For example, the
description of some algorithms is simplified if a node is added from which all other
nodes can be reached (e.g. Figure 10.10).

8.1 Unordered Edge Sequences

Perhaps the simplest representation of a graph is an unordered sequence of edges.
Each edge contains a pair of node indices and possibly associated information such
as an edge weight. Whether these node pairs represent directed or undirected edges is
merely a matter of interpretation. Sequence representation is often used for input and
output. It is easy to add edges or nodes in constant time. However, many other op-
erations, in particular navigation, take time Θ(m) which is forbiddingly slow. Only
few graph algorithms work well with the edge sequence representation, most algo-
rithms require easy access to the edges incident to any given node. Then the ordered
representations discussed in the following sections are appropriate.[unignore ref to
Kruskal?]=⇒

8.2 Adjacency Arrays — Static Graphs

To support easy access to the edges leaving any particular node, we can store the
edges leaving any node in an array. If no additional information is stored with edges,
this array would just contain the indices of the target nodes. If the graph is static,
i.e., does not change over time, we can concatenate all these little arrays into a single
edge array E. An additional array V stores the starting positions of the sub-arrays,
i.e., for any node v, V [v] is the index in E of the first edge out of V . It is convenient
to add a dummy entry V [n+1] with V [n+1] = m+1. The edges out of any node v

8.2 Adjacency Arrays — Static Graphs 169

4

1

2

31

4

3

2

2

1
4

1
2

4
2

4
3

2
3

1
2 4 1 3 4 2 4 1 2 3

1

1

3 4

2 1

2

34

4

1

1 n

nn

m

0

B

B

@

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

1

C

C

A

Fig. 8.1. The first row shows an undirected graph and its its interpretation as a bidirected
graph. The second row shows the adjacency array and the adjacency list representations of
this bidirected graph. The third row shows the linked edge objects representation and the
adjacency matrix.

are then easily accessible as E[V [v]], . . . , E[V [v +1]−1]; the dummy entry ensures
that this also holds true for node n. Figure 8.1 shows an example.

The memory consumption for storing a directed graph using adjacency arrays is
n + m + Θ(1) words. This is even more compact than the 2m words needed for an
edge sequence representation.

Adjacency array representations can be generalized to store additional informa-
tion: we may store information associated with edges in separate arrays or within the
edge array. If we also need incoming edges, we may use additional arrays V ′ and E′

to store the reversed graph.

Exercise 149. Design a linear time algorithm for converting an edge sequence repre-
sentation of a directed graph into an adjacency array representation. You should use
only O(1) auxiliary space. Hint: view the problem as the task to sort edges by their
source node and adapt the integer-sorting algorithm from Figure 5.15.

170 8 Graph Representation

8.3 Adjacency Lists — Dynamic Graphs

Edge arrays are a compact and efficient graph representation. Their main disadvan-
tage is that it is expensive to add or remove edges. For example, assume we want to
insert a new edge (u, v). Even if there is room in the edge array E to accommodate
it, we still have to move the edges associated with nodes u + 1 to n one position to
the right which takes time O(m).

In Chapter 3 we learned how to implement dynamic sequences. We can use any
of the solutions presented there to arrive at a dynamic graph data structure. For each
node v, we represent the sequence Ev of outgoing (or incoming or outgoing and in-
coming) edges by an an unbounded array or by a (singly or doubly) linked list. We
inherit the advantages and disadvantages of the respective sequence representations.
Unbounded arrays are more cache efficient. Linked lists allow constant time inser-
tion and deletion of edges at arbitrary positions. Most graphs arising in practice are
sparse in the sense that every node has only a few incident edges. Adjacency lists
for sparse graphs should be implemented without the header item introduced in Sec-
tion 3.1 because an additional item would waste considerable space. In the example
in Figure 8.1 we show circularly linked lists.

Exercise 150. Suppose the edges adjacent to a node u are stored in an unbounded
array Eu and an edge e = (u, v) is specified by giving its position in Eu. Explain
how to remove e = (u, v) in constant amortized time. Hint: you do not have to
maintain the relative order of the other edges.

Exercise 151. Explain how to implement the algorithm for testing whether a graph
is acyclic discussed in Chapter 2.9 so that it runs in linear time, i.e., design an ap-
propriate graph representation and an algorithm using it efficiently. Hint: maintain a
queue of nodes with outdegree zero.

Bidirected graphs arise frequently. Undirected graphs are naturally presented as
bidirected graphs and some algorithms on directed graphs need access not only to
outgoing edges but also to incoming edges. In these situations, we frequently want
to store the information associated with the undirected edge or the directed edge and
its reversal only once. Also, we may want to have easy access from an edge to its
reversal.

We will describe two solutions. The first solution simply associates two addi-
tional pointers with every directed edge. One points to the reversal and the other
points to the information associated with the edge.

The second solution has only one item for each undirected edge (or pair of di-
rected edges) and makes this item a member of two adjacency lists. So the item for
undirected edge {u, v} would be a member of lists Eu and Ev . If we want doubly
linked adjacency information, the edge object for any edge {u, v} stores four point-
ers: two are used for the doubly linked list representing Eu and two are used for the
doubly linked list representing Ev . Any node stores a pointer to some edge incident
to it. Starting from it, all edges incident to the node can be traversed. The bottom part
of Figure 8.1 gives an example. A small complication lies in the fact that finding the

8.4 Adjacency Matrix Representation 171

other end of an edge now requires some work. Note that the edge object for an edge
{u, v} stores the endpoints in no particular order. Hence, when we explore the edges
out of a node u, we must inspect both endpoints and then choose the one which is
different from u. An elegant alternative is to store u ⊕ v in the edge object [138].
Then the exclusive-or with either endpoint yields the other endpoint. Also, the rep-
resentation is more space-efficient.

8.4 Adjacency Matrix Representation

[change notation for vectores and matrices (nonfat?)] An n-node graph can be ⇐=
represented by an n× n adjacency matrix A. Aij is 1 if (i, j) ∈ E and 0 otherwise.
Edge insertion or removal and edge queries work in constant time. It takes time O(n)
to get the edges entering or leaving a node. This is only efficient for very dense graphs
with m = Ω

(

n2
)

. Storage requirement is n2 bits and, for very dense graphs, this may
be better than the n+m+O(1) words required for adjacency arrays. However, even
for dense graphs, the advantage is small if additional edge information is needed.

Exercise 152. Explain how to represent an undirected loopless graph with n nodes
using n(n − 1)/2 bits.

Perhaps more important than actually storing the adjacency matrix is the con-
ceptual link between graphs and linear algebra introduced by the adjacency matrix.
On the one hand, graph theoretic problems can be solved using methods from linear
algebra. For example, if C = Ak, then Cij counts the number of paths from i to j
with exactly k edges.

Exercise 153. Explain how to store an n×n matrix A with m nonzero entries using
storage O(m + n) such that a matrix vector multiplication Ax can be performed in
time O(m + n). Describe the multiplication algorithm. Expand your representation
so that products of the form xT A can also be computed in time O(m + n).

On the other hand, graph theoretic concepts can be useful for solving problems
from linear algebra. For example, suppose we want to solve the matrix equation
Bx = c where B is a symmetric matrix. Now consider the corresponding adjacency
matrix A where Aij = 1 if and only if Bij 6= 0. If an algorithm for computing
connected components finds out that the undirected graph represented by A contains
two disconnected components, this information can be used to reorder the rows and
columns of B such that we get an equivalent equation of the form

(

B1 0

0 B2

)(

x1

x2

)

=

(

c1

c2

)

.

This equation can now be solved by solving B1x1 = c1 and B2x2 = c2 separately.
In practice, the situation is more complicated since we rarely get disconnected ma-
trices. Still, more sophisticated graph theoretic concepts such as cuts can help to
discover structure in the matrix which can then be exploited in solving problems in
linear algebra.

172 8 Graph Representation

Fig. 8.2. The grid graph G34 (left)
and an interval graph with 5 nodes
and 6 edges (right).

8.5 Implicit Representation

Many applications work with graphs of special structure. Frequently, this structure
can be exploited to obtain simpler and more efficient representations. We will give
two examples.

The grid graph Gk` with node set V = [0..k − 1] × [0..` − 1] and edge set

E =
{

((i, j), (i, j′)) ∈ V 2 : |j − j′| = 1
}

∪
{

((i, j), (i′, j)) ∈ V 2 : |i − i′| = 1
}

is completely defined by the two parameters k and `. Figure 8.2 shows G3,4. Edge
weights could be stored in two two-dimensional arrays, one for the vertical edges
and one for the horizontal edges.

An interval graph is defined by a set of intervals. For each interval we have a
node in the graph and two nodes are adjacent if the corresponding intervals overlap.
[removed: An interval graph may be specified by listing its intervals.]=⇒

Exercise 154 (Representation of Interval Graphs). (a) Show that for any set of n
intervals there is a set of intervals whose endpoints are integers in [1..2n] and that
defines the same graph. (b) Devise an algorithm that decides whether the graph de-
fined by a set of n intervals is connected. Hint: sort the endpoints of the intervals and
then scan over the endpoints in sorted order. Keep track of the number of intervals
that have started but not ended. (c*) Devise a representation for interval graphs that
needs O(n) space and supports efficient navigation. Given an interval I , you need to
find all intervals I ′ intersecting it; I ′ intersects I if I contains an endpoint of I ′ or
I ⊆ I ′. How can you find the former and the latter kind of intervals.

8.6 Implementation Notes

We have seen several representations of graphs. They are suitable for different sets
of operations on graphs and can be tuned further for maximum performance in a
particular application. The edge sequence representation is good only in specialized
situations. Adjacency matrices are good for rather dense graphs. Adjacency lists are
good if the graph changes frequently. Very often some variant of adjacency arrays
is fastest. This may be true even if the graph changes because often there are only
few changes or all changes happen in an initialization phase of a graph algorithm,
changes can be agglomerated into occasional rebuildings of the graph, or changes
can be simulated by building several related graphs.

There are many variants of adjacency array representations. Information associ-
ated with nodes and edges may be stored together with these objects or in separate

8.7 Historical Notes and Further Findings 173

arrays. A rule of thumb is that information that is frequently accessed should be
stored with the nodes and edges. Rarely used data should be kept in separate arrays
because otherwise it would often be moved to the cache without being used. How-
ever, there can be other, more complicated reasons why separate arrays are faster.
For example, if both adjacency information and edge weights are read but only the
weights are changed then separate arrays may be faster because the amount of data
written back to the main memory is reduced.

Unfortunately, no graph representation is best for all purposes. How can one
cope with the zoo of graph representations? First, libraries such as LEDA or the
Boost graph library offer different graph data types and one of them may suit your
purposes. Second, if your application is not particularly time or space critical, several
representations might do and there is no need to devise a custom-built representation
for the particular application. Third, we recommend to write graph algorithms in
the style of generic programming [71]. The algorithms should access the graph data
structure only through a small set of operations, such as iterating over the edges
out of a node, accessing information associated with an edge, and proceeding to the
target node of an edge. The interface can be captured in an interface description and
a graph algorithm can be run on any representation realizing the interface. In this
way, one can experiment with different representations. [removed:The template
mechanism of C++ is a convenient way to encapsulate interfaces.] Fourth, if ⇐=
you have to build a custom representation for your application, make it available to
others.

C++: [dissolvod long sentence] LEDA [127, 115] offers a very powerful graph ⇐=
data type that supports a large variety of operations in constant time, is convenient to
use, but space consuming. There LEDA also implements several more space-efficient
adjacency array representations.

The Boost graph library [28] emphasizes a strict separation of representation
and interface. In particular, Boost graph algorithms run on any representation re-
alizing the Boost interface. Boost also offers its own graph representation class
adjacency_list . A large number of parameters allow choosing between variants of
graphs (directed, undirected, multigraph), type of available navigation (in-edges, out-
edges, . . .) and representations of vertex and edge sequences (arrays, linked lists,
sorted sequences, . . .). However, it should be noted that the array representation uses
a separate array for the edges adjacent to each vertex.

Java: JDSL [77] offers rich support for graphs in jdsl .graph . It has a clear sepa-
ration between interfaces, algorithms, and representation. It offers an adjacency list
representation of graphs that supports directed and undirected edges.

8.7 Historical Notes and Further Findings

Special classes of graphs may result in additional requirements for their representa-
tion. An important example are planar graphs — graphs that can be drawn in the
plane without crossing edges. Here, the ordering of the edges adjacent to a node

174 8 Graph Representation

should be in counterclockwise order with respect to a planar drawing of the graph. In
addition, the graph data structure should efficiently support iterating over the edges
along a face of the graph, a cycle that does not enclose any other node. LEDA offers
representations for planar graphs.

Recall that bipartite graphs are special graphs where the node set V = L ∪ R
can be decomposed into two disjoint subsets L and R so that edges are only between
nodes in L and R. All representations discussed here also apply to bipartite graphs.
In addition, one may want to store the two sides L and R of the graph.

Hypergraphs H = (V,E) are generalizations of graphs where edges can connect
more than two nodes. Often hypergraphs are represented as the induced bipartite
graph BH = (E ∪ V, {(e, v) : e ∈ E, v ∈ V, v ∈ e}).

Cayley graphs are an interesting example for implicitly defined graphs. Recall
that a set V is a group if it has a associative multiplication operation ∗, a neutral el-
ement, and a multiplicative inverse operation. The Cayley graph (V,E) with respect
to a set S ⊆ V has the edge set {(u, u ∗ s) : u ∈ V, s ∈ S}. Cayley graphs are useful
because graph theoretic concepts can be useful in group theory. On the other hand,
group theory yields concise definitions of many graphs with interesting properties.
For example, Cayley graphs have been proposed as the interconnection networks for
parallel computers [10].

In this book we have concentrated on convenient data structures for processing
graphs. There is also a lot of work on storing graphs in a flexible, portable, and space
efficient way. Significant compression is possible if we have a priori information on
the graphs. For example, the edges of a triangulation of n points in the plane can be
represented with about 6n bits [43, 158].

9

Graph Traversal

Suppose you are working in the traffic planning department of a small town with
a nice medieval center. An unholy coalition of shop owners, who want more street-
side parking, and the green party, that wants to discourage car traffic all together,
have decided to turn most streets into one-way streets. You want to avoid the worst
by checking whether the current plan maintains the minimal requirement that one
can still drive from every point in town to every other point.

In the language of graphs, see Section 2.9, the question is whether the directed
graph formed by the streets is strongly connected. The same problem comes up in
other applications. For example, for a communication network with unidirectional
channels (e.g., radio transmitters) we want to know who can communicate with
whom. Bidirectional communication is possible within the strongly connected com-
ponents of the graph.

We will present a simple and efficient algorithm for computing strongly con-
nected components (SCCs) in Section 9.2.2. Computing SCCs and many other fun-
damental problems on graphs can be reduced to systematic graph exploration, in-
specting each edge exactly once. We present the two most important exploration
strategies: breadth-first search in Section 9.1 and depth-first search in Section 9.2.
Both strategies construct forests and partition the edges into four classes: tree edges
comprising the forest, forward edges running parallel to paths of tree edges, back-
ward edges running anti-parallel to paths of tree edges, and cross edges that connect
two different branches of a tree in the forest. Figure 9.1 illustrates the classification
of edges.

9.1 Breadth-First Search

A simple way to explore all nodes reachable from some node s is breadth-first search
(BFS). BFS explores the graph layer by layer. The starting node s forms layer 0. The

176 9 Graph Traversal

forward

backward
cross

s
tree

Fig. 9.1. Classification of graph edges into tree
edges, forward edges, backward edges, and
cross edges.

Function bfs(s : NodeId) : (NodeArray of NodeId)× (NodeArray of 0..n)
d = 〈∞, . . . ,∞〉 : NodeArray of NodeId // distance from root
parent = 〈⊥, . . . ,⊥〉 : NodeArray of NodeId
d[s] := 0
parent[s] := s // self-loop signals root
Q = 〈s〉 : Set of NodeId // current layer of BFS-tree
Q′ = 〈〉 : Set of NodeId // next layer of BFS-tree
for ` := 0 to∞ while Q 6= 〈〉 do // explore layer by layer

invariant Q contains all nodes with distance ` from s
foreach u ∈ Q do

foreach (u, v) ∈ E do // scan edges out of u
if parent(v) = ⊥ then // found an unexplored node

Q′ := Q′ ∪ {v} // remember for next layer
d[v] := ` + 1
parent(v) := u // update BFS-tree

(Q, Q′) := (Q′, 〈〉) // switch to next layer
return (d, parent) // the BFS-tree is now {(v, w) : w ∈ V, v = parent(w)}

Fig. 9.2. Breadth-first search starting at a node s.

direct neighbors of s form layer 1. In general, all nodes that are neighbors of a node
in layer i but not neighbors of nodes in layers 0,. . . ,i − 1 form layer i + 1.

The algorithm in Figure 9.2 takes a node s and constructs the BFS-tree rooted at
s. For each node v in the tree, it records its distance d(v) from s and the parent node
parent(v) from which v was first reached. The algorithm returns the pair (d, parent).
Initially, s is reached and all other nodes store some special value ⊥ to indicate that
they are not reached yet. Also, the depth of s is zero. The main loop of the algorithm
builds the BFS-tree layer by layer. We maintain two sets Q and Q′; Q contains the
nodes in the current layer and in Q′ we construct the next layer. The inner loops
inspect all edges (u, v) leaving nodes u in the current layer Q. Whenever v has no
parent pointer yet, we put it into the next layer Q′ and set parent pointer and distance
appropriately. Figure 9.3 gives an example for a BFS-tree and the resulting backward
and cross edges.

BFS has the useful feature that its tree edges define paths from s that have a
minimum number of edges. For example, you could use such paths to find railway
connections that minimize the number of times you have to change trains or to find
paths in communication networks with a minimal number of hops. An actual path
from s to a node v can be found by following the parent references from v backwards.

9.1 Breadth-First Search 177

s
s

1 2 30

cross
backward
tree

forward

PSfrag replacements

a

b

b

c

c

d
d

e

e

f

f

g

g

Fig. 9.3. An example how BFS (left) and DFS (right) classify edges into tree edges, backward
edges, cross edges and forward edges. BFS visits the nodes in the order s, b, c, d, e, f , g. DFS
visits the nodes in the order s, b, e, g, f , c, d.

Exercise 155. Show that BFS will never classify an edge as forward, i.e., there are
no edges (u, v) with d(v) > d(u) + 1.

Exercise 156. Explain what can go wrong with our implementation of BFS if parent [s]
would be initialized to ⊥ rather than s. Give an example of an erroneous computa-
tion.

Exercise 157. BFS-trees are not necessarily unique. In particular, we have not speci-
fied in which order nodes are removed from the current layer. Give the BFS-tree that
is produced when d is removed before b when doing BFS from node s in the graph
from Figure 9.3.

Exercise 158 (FIFO BFS). Explain how to implement BFS using a single FIFO
queue of nodes whose outgoing edges still have to be scanned. Prove that the two
algorithms compute exactly the same tree if our two-queue algorithm traverses the
queues in an appropriate order. Compare the FIFO version of BFS with Dijkstra’s
algorithm in Section 10.3, and the Jarník-Prim algorithm in Section 11.2. What do
they have in common? What are the main differences?

Exercise 159 (Graph representation for BFS). Give a more detailed description
of BFS. In particular make explicit how to implement it using the adjacency array
representation from Section 8.2. Your algorithm should run in time O(n + m).

Exercise 160 (Connected components). Explain how to modify BFS so that it com-
putes a spanning forest of an undirected graph in time O(m + n). In addition, your
algorithm should select a representative node for each connected component of the
graph and assign a value component [v] to each node that identifies this representa-
tive. Hint: start BFS from each node s ∈ V but only reset the parent array once in the
beginning. Note that isolated nodes are simply connected components of size one.

Exercise 161 (Transitive closure). The transitive closure G+ = (V,E+) of a graph
G = (V,E) has an edge (u, v) ∈ E+ whenever there is a path from u to v in E.
Design an algorithm for computing transitive closures. Hint: run bfs(v) for each node
v to find all nodes reachable from v. Try to avoid the full reinitialization of arrays d
and parent at the beginning of each call. What is the running time of your algorithm?

178 9 Graph Traversal

9.2 Depth-First Search

You may view breadth-first search (BFS) as a careful, conservative strategy for sys-
tematic exploration that looks at known things before venturing into unexplored ter-
ritory; in this respect depth-first search (DFS) is the exact opposite: whenever it finds
a new node, it immediately continues to explore from it. It goes back to previously
explored nodes only if it runs out of options. Although DFS leads to unbalanced and
strange-looking exploration trees compared to the orderly layers generated by BFS,
the combination of eager exploration with the perfect memory of a computer makes
DFS very useful. Figure 9.4 gives an algorithm template for DFS. We derive spe-
cific algorithms from it by specifying the subroutines init , root , traverseTreeEdge ,
traverseNonTreeEdge , and backtrack .

DFS marks a node when it first discovers it; initially all nodes are unmarked.
The main loop of DFS looks for unmarked nodes s and calls DFS (s, s) to grow a
tree rooted at s. The generic call DFS (u, v) explores all edges (v, w) out of v. The
argument (u, v) indicates that v was reached via the edge (u, v) into v. For root nodes
s, we use the “dummy” argument (s, s). We write DFS (∗, v) if the specific nature
of the incoming edge is irrelevant for the discussion at hand. Assume now that we
explore edge (v, w) within the call DFS (∗, v).

If w has been seen before, w is already a node of the DFS-tree. So (v, w) is not
a tree edge and hence we call traverseNonTreeEdge(v, w) and make no recursive
call of DFS .

If w has not been seen before, (v, w) becomes a tree edge. We therefore call
traverseTreeEdge(v, w), mark w and make the recursive call DFS (v, w). When we
return from this call we explore the next edge out of v. Once all edges out of v are
explored, we call backtrack on the incoming edge (u, v) to perform any summarizing
or clean-up operations needed and return.

At any point in time during the execution of DFS , there are a number of ac-
tive calls. More precisely, there are nodes v1, v2, . . . vk such that we are currently
exploring edges out of vk, and the active calls are DFS (v1, v1), DFS (v1, v2), . . . ,
DFS (vk−1, vk). In this situation, we say that the nodes v1, v2, . . . , vk are active
and form the DFS recursion stack. Strictly speaking, the recursion stack contains the
sequence 〈(v1, v1), (v1, v2), . . . , (vk−1, vk)〉, but we prefer the more concise formu-
lation. The node vk is called the current node. We say that a node v is reached, when
DFS (∗, v) is called, and is finished, when the call DFS (∗, v) terminates.

Exercise 162. Give a non-recursive formulation of DFS. You need to maintain a
stack of active nodes and for each active node the set of unexplored edges.

9.2.1 DFS Numbering, Finishing Times, and Topological Sorting

DFS has numerous applications. In this section, we use it to number the nodes in
two ways. As a byproduct, we see how to decide acyclicity of graphs. We number
the nodes in the order in which they are reached (array dfsNum) and in the or-
der in which they are finished (array finishTime). We have two counters dfsPos

9.2 Depth-First Search 179

Depth-first search of a directed graph G = (V, E)
unmark all nodes
init
foreach s ∈ V do

if s is not marked then
mark s // make s a root and grow
root(s) // a new DFS-tree rooted at it.
DFS(s, s)

Procedure DFS(u, v : NodeId) // Explore v coming from u.
foreach (v, w) ∈ E do

if w is marked then traverseNonTreeEdge(v, w) // w was reached before
else traverseTreeEdge(v, w) // w was not reached before

mark w
DFS(v, w)

backtrack(u, v) // return from v along the incoming edge

Fig. 9.4. A template for depth-first search of a graph G = (V, E). We say that a call
DFS(∗, v) explores v. The exploration is complete when we return from this call.

and finishingTime , both initialized to one. When we encounter a new root or tra-
verse a tree edge, we set dfsNum of the newly encountered node and increment
dfsPos . When we backtrack from a node, we set its finishTime and increment
finishingTime . We use the following subroutines:

init : dfsPos = 1 : 1..n; finishingTime = 1 : 1..n
root(s): dfsNum[s] := dfsPos++
traverseTreeEdge(v, w): dfsNum[w] := dfsPos++
backtrack(u, v): finishTime[v] := finishingTime++

The ordering by dfsNum is so useful that we introduce a special notation “≺”
for it. For any two nodes u and v, we define

u ≺ v ⇔ dfsNum[u] < dfsNum[v] .

The numberings dfsNum and finishTime encode important information about
the execution of DFS as we will show next. We will first show that DFS-numbers
increase along any path of the DFS-tree and then show that the numbering together
classify the edges according to their types.

Lemma 21. The nodes on the DFS recursion stack are sorted with respect to ≺.

Proof. dfsPos is incremented after every assignment to dfsNum . Thus, when a node
v becomes active by a call DFS (u, v), it has just been assigned the largest dfsNum

so far.

dfsNums and finishTimes classify edges according to their types as shown
in Figure 9.5. The argument is as follows. Two calls of DFS are either nested

180 9 Graph Traversal

type dfsNum[v] < dfsNum[w] finishTime[w] < FinishTime[v]

tree yes yes
forward yes yes
backward no no
cross yes no

Fig. 9.5. The classification of an edge (v, w). Tree and forward edges are also easily distin-
guished. Tree edges lead to recursive calls and forward edges do not.

within each other, i.e., when the second call starts the first is still active, or dis-
joint, i.e., when the second starts the first is already completed. If DFS (∗, w) is
nested in DFS (∗, v) the former call starts after the latter and finishes before it, i.e.,
dfsNum[v] < dfsNum[w] and finishTime[w] < finishTime[v]. If DFS (∗, w) and
DFS (∗, v) are disjoint and the former call starts before the latter it also ends be-
fore the latter, i.e., dfsNum[w] < dfsNum[v] and finishTime[w] < finishTime[v].
The tree edges record the nesting structure of recursive calls. When a tree edge
(v, w) is explored within DFS (∗, v), the call DFS (v, w) is made and hence nested
within DFS (∗, v). Thus w has a larger DFS-number and a smaller finishing time
than v. A forward edge (v, w) runs parallel to a path of tree edges and hence w
has a larger DFS-number and a smaller finishing time than v. A backward edge
(v, w) runs anti-parallel to a path of tree edges and hence w has a smaller DFS-
number and a larger finishing time than v. Let us finally look at a cross-edge (v, w).
Since (v, w) is not a tree, forward, or backward edge, the calls DFS (∗, v) and
DFS (∗, w) cannot be nested within each other. Thus they are disjoint. So w is ei-
ther marked before DFS (∗, v) starts or after it ends. The latter case is impossible,
since, in this case, w would be unmarked when the edge (v, w) is explored and the
edge would become a tree edge. So w is marked before DFS (∗, v) starts and hence
DFS (∗, w) starts and ends before DFS (∗, v). Thus dfsNum[w] < dfsNum[v] and
finishTime[w] < finishTime[v]. We summarize the discussion in

Lemma 22. Figure 9.5 shows the characterization of edge types in terms of dfsNum

and finishTime .

Exercise 163. Modify DFS such that it labels the edges with their type. What is the
type of an edge (v, w) when w is on the recursion stack when the edge is explored?

Finishing times have an interesting property for directed acyclic graphs.

Lemma 23. The following properties are equivalent: (i) G is an acyclic directed
graph (DAG). (ii) DFS on G produces no backward edge. (iii) All edges of G go from
larger to smaller finishing times.

Proof. Backward edges run anti-parallel to paths of tree edges and hence create cy-
cles. Thus DFS of an acyclic graph cannot create any backward edge. All other types
of edges run from larger to smaller finishing time according to Figure 9.5. Assume
next that all edges run from larger to smaller finishing time. Then the graph is clearly
acyclic.

9.2 Depth-First Search 181

An order of the nodes of a DAG in which all edges go from left to right[was:earlier
to later nodes] is called a topological sorting. By Lemma 23, the ordering by de- ⇐=
creasing finishing time is a topological ordering. Many problems on DAGs can be
solved efficiently by iterating over the nodes in topological order. For example, in
Section 10.2 we will see a fast and simple algorithm for computing shortest paths in
acyclic graphs.

Exercise 164 (Topological sorting). Design a DFS-based algorithm that outputs the
nodes in topological order if G is a DAG. Otherwise it should output a cycle.

Exercise 165. Design a BFS-based algorithm for topological sorting.

Exercise 166. Show that DFS on an undirected graph does not produce any cross
edges.

9.2.2 *Strongly connected components (SCCs)

We now come back to the problem posed at the beginning of this chapter. Recall that
two nodes belong to the same strongly connected component (SCC) of a graph iff
they are reachable from each other. In undirected graphs, the relation “being reach-
able” is symmetric and hence strongly connected components are the same as con-
nected components. Exercise 160 outlines how to compute connected components
using BFS and adapting this idea to DFS is equally simple. In directed graphs the
situation is more interesting, see Figure 9.6 for an example. We show that an exten-
sion of DFS computes the strongly connected components of a directed graph G in
linear time O(n + m). More precisely, the algorithm will output an array component

indexed by nodes such that component [v] = component [w] iff v and w belong to
the same SCC. Alternatively, it could output the node set of each SCC.

[probleme mit 9.6: Die beiden Graphen sollten gleich gezeichnet sein.
Kanten sollten so klassifziert werden wie vorher. Beschriftung grÃűÃ§er und
mit math fonts. letzten Satz der caption gestrichen] ⇐=

Consider a depth-first search on G and use Gc = (Vc, Ec) to denote the subgraph
already explored, i.e., Vc comprises the marked nodes and Ec comprises the explored
edges. The algorithm maintains the strongly connected components of Gc. In order to
derive the algorithm, we first introduce some notation and then state some properties
of Gc. We call an SCC open if it contains an unfinished node and closed otherwise.
We call a node open if it belongs to an open component and closed if it belongs
to a closed component. Observe that a closed node is always finished and an open
node may be finished or unfinished. In every component, we single out one node,
namely the node with the smallest DFS-number in the component, and call it the
representative of the component. Figure 9.6 illustrates these concepts. The following
statements capture important properties of Gc; see also Figure 9.7.

(1) All edges in G (not just Gc) out of closed nodes lead to closed nodes. In our
example, the nodes a and e are closed.

182 9 Graph Traversal

a

c

b

f

g

i

d

he

c/3

f/6

g/7h/8d/4

e/5

a/1 b/2

open nodes b c d f g h
representatives b c f

Fig. 9.6. The graph on the left has five strongly connected components, namely the subgraphs
spanned by the node sets {a}, {b}, {e}, {c, d, f, g, h}, and {i}. The picture on the right shows
a snapshot of depth-first search on this graph. A first DFS was started at node a and a second
DFS was started at node b, the current node is g and the recursion stack contains b, c, f , g.
The depth-first search numbers of the nodes are indicated. The edges (g, i) and (g, d) have
not been explored yet. Completed nodes are shaded. In Gc there are the closed components
{a} and {e} and open components {b}, {c, d}, and {f, g, h}. The representatives of the open
components are the nodes b, c, and f , respectively.

(2) The tree path to the current node contains the representatives of all open com-
ponents. Let S1 to Sk be the open components as they are traversed by the tree
path to the current node. Then there is a tree edge from a node in Si−1 to the
representative of Si and this is the only edge into Si, 2 ≤ i ≤ k. Also, there is
no edge from a Sj to a Si with i < j. Finally, all nodes in Sj are reachable from
the representative ri of Si for 1 ≤ i ≤ j ≤ k. In our example, the current node is
g. The tree path 〈b, c, f, g〉 to the current node contains the open representatives
b, c, and f . Every open component forms a subtree of the depth-first search tree.

(3) Consider the nodes in open components ordered by their DFS-numbers. The rep-
resentatives partition the sequence into the open components. In our example, the
sequence of open nodes is 〈b, c, d, f, g, h〉 and the representatives partition this
sequence into the open components {b}, {c, d}, and {f, g, h}.

We will show below that all three properties hold true generally and not only for
our example. The four properties will be invariants of the algorithm to be developed.
The first invariant implies that the closed SCCs of Gc are actually SCCs of G, i.e., it
is justified to call them closed. This observation is so important that it deserves to be
stated as a lemma.

Lemma 24. A closed SCC of Gc is an SCC of G.

Proof. Let v be a closed vertex, let S be the SCC of G containing v, and let Sc be
the SCC of Gc containing v. We need to show that S = Sc. Since Gc is a subgraph
of G, we have Sc ⊆ S. So, it suffices to show S ⊆ Sc. Let w be any vertex in S.

9.2 Depth-First Search 183

open nodes ordered by dfsNum

current
node

PSfrag replacements

v
S1 S2 Sk

w
r
r′

r1 r2 rk

Fig. 9.7. The open SCCs are indicated as ovals and the current node is shown as a circle. The
tree path to the current node is indicated. It enters each component at its representative. The
horizontal line below represents the open nodes ordered by dfsNum . Each open SCC forms a
contiguous subsequence with its representative as its leftmost element.

Then there is a cycle in G passing through v and w. The first invariant implies that
all vertices of C are closed. Since closed vertices are finished, all edges out of them
have been explored. Thus C is contained in Gc and hence w ∈ Sc.

Invariants (2) and (3) suggest a simple method to represent the open SCCs of
Gc. We simply keep a sequence oNodes of all open nodes in increasing order of
DFS-numbers and the subsequence oReps of open representatives. In our example,
we have oNodes = 〈b, c, d, f, g, h〉 and oReps = 〈b, c, f〉. We will later see that the
type stack of nodeId is appropriate for both sequences.

Let us next see how the SCCs of Gc develop during DFS. We discuss the various
actions of DFS one by one and show that the invariants are maintained. We also
discuss how to update our representation of the open components.

When DFS starts, the invariants clearly hold: no node is marked, no edge has been
traversed, Gc is empty, and hence there are neither open nor closed components yet.
Our sequences oNodes and oReps are empty.

Before a new root is marked, all marked nodes are finished and hence there
can only be closed components. Therefore, both sequences oNodes and oReps are
empty and marking a new root s produces the open component {s}. The invariants
are clearly maintained. We obtain the correct representation by adding s to both se-
quences.

If a tree edge e = (v, w) is traversed and hence w becomes marked, {w} becomes
an open component of its own. All other open components are unchanged. The first
invariant is clearly maintained, since v is active and hence open. The old current node
is v and the new current node is w. The sequence of open components is extended
by {w}. The open representatives are the old open representatives plus the node w.
Thus the second invariant is maintained. Also, w becomes the open node with the
largest DFS-number and hence oNodes and oReps are both extended by w. Thus the
third invariant is maintained.

Now suppose a non-tree edge e = (v, w) out of the current node v is explored.
If w is closed, the SCCs of Gc do not change by adding e to Gc since by Lemma 24
the SCC of Gc containing w is already an SCC of G before e is traversed. So assume

184 9 Graph Traversal

current
node

PSfrag replacements

v

w

ri rk

Si Sk

Fig. 9.8. The open SCCs are indicated as ovals and their representatives as circles. All repre-
sentatives lie on the tree path to the current node v. The non-tree edge e = (v, w) ends in an
open SCC Si with representative ri. There is a path from w to ri since w belongs to the SCC
with representative ri. Thus the edge (v, w) merges Si to Sk into a single SCC.

that w is open. Then w lies in some open SCC Si of Gc. We claim that the SCCs Si

to Sk are merged into a single component and all other components are unchanged.
Indeed, let ri be the representative of Si. Then we can go from ri to v along a tree
path by invariant (2), then follow the edge (v, w), and finally return to ri. The path
from w to ri exists since w and ri lie in the same SCC of Gc. We conclude that any
node in an Sj with i ≤ j ≤ k can be reached from ri and can reach ri. Thus the
SCCs Si to Sk become one SCC and ri is their representative. The Sj with j < i are
unaffected by addition of the edge.

The third invariant tells us how to find ri, the representative of the component
containing w. The sequence oNodes is ordered by dfsNum and the representative of
an SCC has the smallest dfsNum of any node in the component. Thus dfsNum[ri] ≤
dfsNum[w] and dfsNum[w] < dfsNum[rj] for all j > i. It is therefore easy to
update our representation. We simply delete all representatives r with dfsNum[r] >
dfsNum[w] from oReps .

Finally, we need to consider finishing a node v. When will this close an SCC?
By invariant (2), all nodes in a component are tree descendants of the representative
of the component and hence the representative of a component is the last node to
finish in the component. In other words, we close a component iff we finish a repre-
sentative. Since oReps is ordered by dfsNum we close a component iff the last node
of oReps finishes. So assume, we finish a representative v. Then by invariant (3),
the component Sk with representative v = rk consists of v and all nodes in oNodes

following v. Finishing v closes Sk. By invariant (2) there is no edge out of Sk into
an open component. Thus invariant (1) holds after closing Sk. The new current node
is the parent of v. By invariant (2), the parent of v lies in Sk−1. Thus invariant (2)
holds after closing Sk. Invariant (3) holds after removing v from oReps and v and
all nodes following it from oNodes .

It is now easy to instantiate the DFS template. Figure 9.10 shows the pseudocode
and Figure 9.9 illustrates a complete run. We use an array component indexed by
nodes to record the result and two stacks oReps and oNodes . When a new root is
marked or a tree edge is explored, a new open component consisting of a single node
is created by pushing this node onto both stacks. When a cycle of open components
is created, these components are merged by popping representatives from oReps as
long as the top representative is not to the left of the node w closing the cycle. An

9.2 Depth-First Search 185

closed SCC

open SCC

marked finished

representative node

nonrepresentative node nontraversed edge

traversed edge

traverse(i,e)

traverse(j,c)traverse(i,j) traverse(j,k)

traverse(k,d)

backtrack(d,d)

unmarked

backtrack(j,k) backtrack(i,j) backtrack(h,i)
backtrack(e,h) backtrack(d,e)

traverse(e,g) traverse(e,h) traverse(h,i)

root(a) traverse(a,b) traverse(b,c)

traverse(c,a)

backtrack(b,c) backtrack(a,b)

backtrack(a,a)

root(d) traverse(d,e) traverse(e,f) traverse(f,g)

backtrack(f,g) backtrack(e,f)

PSfrag replacements

aa bb cc dd ee ff gg

h

ii hh jj kk

Fig. 9.9. An example for the development of open and closed SCCs during DFS. Unmarked
nodes are shown as empty circles, marked nodes are shown in gray and finished nodes are
shown in black. Non-traversed edges are shown in gray and traversed edges are shown in
black. Open SCCs are shown as empty ovals and closed SCCs are shown as gray ovals. We
start in the situation at the upper left side. We make a a root and traverse the edges (a, b) and
(b, c). This creates three open SSCs. The traversal of edge (c, a) merges these components
into one. Next we backtrack to b, then to a, and finally from a. At this point, the component
becomes closed. Please, complete the description.

SCC S is closed when its representative v finishes. At that point, all nodes of S are
stored above v in oNodes . Operation backtrack therefore closes S by popping v from
oReps and by popping the nodes w ∈ S from oNodes and setting their component

to the representative v.
Note that the test w ∈ oNodes in traverseNonTreeEdge can be done in constant

time by storing information with each node that indicates whether the node is open or
not. This indicator is set when a node v is first marked and reset when the component
of v is closed. We give implementation details in Section 9.3. Furthermore, the while
loop and the repeat loop can make at most n iterations during the entire execution

186 9 Graph Traversal

init:
component : NodeArray of NodeId // SCC representatives
oReps = 〈〉 : Stack of NodeId // representatives of open SCCs
oNodes = 〈〉 : Stack of NodeId // all nodes in open SCCs

root(w) or traverseTreeEdge(v, w):
oReps.push(w) // new open
oNodes.push(w) // component

traverseNonTreeEdge(v, w):
if w ∈ oNodes then

while w ¹ oReps.top do oReps .pop // collapse components on cycle

backtrack(u, v):
if v = oReps.top then

oReps.pop // close
repeat // component

w := oNodes.pop
component[w] := v

until w = v

Fig. 9.10. An instantiation of the DFS template that computes strongly connected components
of a graph G = (V, E).

of the algorithm since each node is pushed on the stacks exactly once. Hence, the
execution time of the algorithm is O(m + n). We have the following theorem:

Theorem 26. The algorithm in Figure 9.10 computes strongly connected compo-
nents in time O(m + n).

Exercise 167 (Certificates). Let G be a strongly connected graph and let s be a node
of G. Show how to construct two trees rooted at s. The first tree proves that all nodes
can be reached from s and the second tree proves than s can be reached from all
nodes.

Exercise 168 (2-edge connected components). Two nodes of an undirected graph
are in the same 2-edge connected component (2ECC) iff they lie on a common cycle,
see Figure 9.11. Show that the SCC algorithm from Figure 9.10 computes 2-edge
connected components. Hint: show first that DFS of an undirected graph never pro-
duces any cross edges.

Exercise 169 (biconnected components). Two nodes of an undirected graph belong
to the same biconnected component (BCC) iff they are connected by an edge or there
are two edge disjoint paths connecting them, see Figure 9.11. A node is an artic-
ulation point if it belongs to more than BCC. Design an algorithm that computes
biconnected components using a single pass of DFS. Hint: adapt the strongly con-
nected components algorithm. Define the representative of a BCC as the node with

9.3 Implementation Notes 187

0
1

2

3

4
5

Fig. 9.11. The graph has two 2-edge con-
nected components, namely {0, 1, 2, 3, 4} and
{5}. The graph has three biconnected compo-
nents, namely the subgraphs spanned by the
sets {0, 1, 2}, {1, 3, 4} and {2, 5}. The ver-
tices 1 and 2 are articulation points.

the second smallest dfsNum in the BCC. Prove that a BCC consists of the parent of
the representative and all tree descendants of the representative that can be reached
without passing through another representative. Modify backtrack . When you return
from a representative v, output v, all nodes above v in oNodes , and the parent of v.

9.3 Implementation Notes

BFS is usually implemented by keeping unexplored nodes (with depths d and d + 1)
in a FIFO queue. We choose a formulation using two separate sets for nodes at depth
d and nodes at depth d+1 mainly because it allows a simple loop invariant that makes
correctness immediately evident. However, our formulation might also turn out to be
somewhat more efficient. If Q and Q′ are organized as stacks, we will get less cache
faults than for a queue in particular if the nodes of a layer do not quite fit into the
cache. Memory management becomes very simple and efficient by allocating just a
single array a of n nodes for both stacks Q and Q′. One stack grows from a[1] to the
right and the other grows from a[n] to the left. When switching to the next layer, the
two memory areas switch their roles.

Our SCC algorithm needs to store four kinds of information for each node v: an
indication whether v is marked, an indication whether v is open, something like a
DFS-number in order to implement ‘≺’, and, for closed nodes, the NodeId of the
representative of its component. The array component suffices to keep this informa-
tion. For example, if NodeIds are integers in 1..n, component [v] = 0 could indicate
an unmarked node. Negative numbers can indicate negated DFS-numbers so that
u ≺ v iff component [u] > component [v]. This works because ‘≺’ is never applied
to closed nodes. Finally, the test w ∈ oNodes simply becomes component [v] < 0.
[more tricks from the scc paper:]With these simplifications in place, additional ⇐=
tuning is possible. We make oReps store component numbers of representatives
rather than their IDs and save an access to component [oReps.top]. Finally, the array
component should be stored with the node data as a single array of records.

C++: LEDA has implementations for topological sorting, reachability from a node
(DFS), DFS-numbering, BFS, strongly connected components, biconnected compo-
nents, and transitive closure. BFS, DFS, topological sorting, and strongly connected
components are also available in a very flexible implementation (GIT_. . .) that sepa-
rates representation and implementation, supports incremental execution, and allows
various other adaptations.

188 9 Graph Traversal

The Boost graph library [28] uses the visitor concept to support graph traversal.
A visitor class has user-definable methods that are called at event points during the
execution of a graph traversal algorithm. For example, the DFS visitor defines event
points similar (there are more event points in Boost) to the operations init , root ,
traverse. . . , and backtrack used in our DFS template.

Java: The JDSL library [77] supports DFS in a very flexible way not very much dif-
ferent from the visitor concept described for Boost. There are also more specialized
algorithms for topological sorting and finding cycles.

9.4 Historical Notes and Further Findings

BFS and DFS were known before the age of computers. Tarjan [177] discovered
the power of DFS and provided linear time algorithms for many basic problems in
graphs, in particular biconnected and strongly connected components. [added some
more scc refs from paper] Our SCC algorithm was invented by Cheriyan and=⇒
Mehlhorn [40] and later rediscovered by Gabow [70]. Yet another linear time SCC
algorithm is due to Kosaraju and Sharir [167]. It is very simple, yet needs two passes
of DFS. DFS can be used to solve many other graph problems in linear time, e.g.,
ear decomposition, planarity test, planar embeddings, and triconnected components.

It may seem that problems solvable by graph traversal are so simple that little
further research is needed for them. However, the bad news is that graph traversal
itself is very difficult on advanced models of computations. In particular, DFS is a
nightmare for both parallel processing [151] and for memory hierarchies [134, 124].
Therefore alternative ways to solve seemingly simple problems are an interesting
area of research. For example, in Section 11.9 we describe an approach to construct
minimum spanning trees using edge contraction that also works for finding con-
nected components. Furthermore, the problem of finding biconnected components
can be reduced to finding connected components [179]. DFS-based algorithms for
biconnected components and strongly connected components are almost identical.
But this analogy completely disappears for advanced models of computations so
that algorithms for strongly connected components remain an area of intensive (and
sometimes frustrating) research. More generally, it seems that problems for undi-
rected graphs (such as biconnected components) are often easier to solve than anal-
ogous problems for directed graphs (such as strongly connected components).

10

Shortest Paths
M

G

F

N

PK

S

Q
O

R

L

0

5

11

13

15

17
18

19
20

Distance to M

17

C

H

V
J

W

E

The shortest, quickest or cheapest path problem is ubiquitous. You solve it daily.
When you are in location s and want to move to location t, you ask for the quickest
path from s to t. The fire department may want to compute the quickest routes from
a fire station s to all locations in town — the single-source problem. Sometimes, we
may even want a complete distance table from everywhere to everywhere — the all-
pairs problem. In a road atlas, you usually find an all-pairs distance table for the
most important cities.

Here is a route planning algorithm that requires a city map and a lot of dexterity
but no computer: lay thin threads along the roads of the city map. Make a knot
wherever roads meet and at your starting position. Now lift the starting knot until
the entire net dangles below it. If you have successfully avoided any tangles and the
threads and your knots are thin enough so that only gravity and tight threads hinder
a knot from moving down, the tight threads define shortest paths.

The introductory figure shows the campus map of the University of Karlsruhe
and illustrates the route planning algorithm for source node 5.

Route planning in road networks is one of the many applications of shortest path
computations. By defining an appropriate graph model, many problems turn out to
profit from shortest path computations. For example, Ahuja et al. [8] mention such di-
verse applications as planning flows in networks, urban housing, inventory planning,
DNA sequencing, the knapsack problem (see also Chapter 12), production planning,
telephone operator scheduling, vehicle fleet planning, approximating piecewise lin-
ear functions, or allocating inspection effort on a production line.

The most general formulation of the shortest path problem looks at a directed
graph G = (V,E) and a cost function c that maps edges to arbitrary real number
costs. It turns out that the most general problem is fairly expensive to solve. So we
are also interested in various restrictions that allow simpler and more efficient al-
gorithms: non-negative edge costs, integer edge costs, or acyclic graphs. Note that

190 10 Shortest Paths

PSfrag replacements

42

0

0

0

0

5
2

2−1

−1
−1

−2

−2

−2
−3

−3

+∞

−∞−∞ −∞

−∞

a b d f g

hijk s

Fig. 10.1. A graph with shortest path distances µ(s, v). Edge costs are shown as edge labels
and the distances are shown inside the nodes. Heavy edges indicate shortest paths.

we have already solved the very special case of unit edge costs in Section 9.1 —
the breadth-first search (BFS) tree rooted at node s is a concise representation of
all shortest paths from s. We begin in Section 10.1 with basic concepts that lead to
a generic approach to shortest path algorithms. The systematic approach will help
us to keep track of the zoo of shortest path algorithms. As a first example for a re-
stricted yet fast and simple algorithm we look at acyclic graphs in Section 10.2. In
Section 10.3 we come to the most widely used algorithm for shortest paths: Dijk-
stra’s algorithm for general graphs with non-negative edge costs. The efficiency of
Dijkstra’s algorithm heavily relies on efficient priority queues. In Section 10.4 we
discuss monotone priority queues for integer keys. Section 10.5 deals with arbitrary
edge costs and Section 10.6 treats the all-pairs problem. We show that the all-pairs
problem for general edge costs reduces to one general single-source problem plus n
single-source problems with non-negative edge costs. The reduction introduces the
generally useful concept of node potentials.

10.1 From Basic Concepts to a Generic Algorithm

We extend the cost function to paths in the natural way. The cost of a path is the
sum of the costs of its constituent edges, i.e., if p = 〈e1, e2, . . . , ek〉 then c(p) =
∑

1≤i≤k c(ei). The empty path has cost zero.
For a pair s and v of nodes, we are interested in a shortest path from s to v. We

avoid the use of the definite article “the”, since there may be more than one shortest
path. Does a shortest path always exist? Observe that the number of paths from s to
v may be infinite. For example, if r = pCq is a path from s to v containing a cycle
C, then we may go around the cycle an arbitrary number of times and still have a
path from s to v, see Figure 10.2. More precisely, p is a path leading from s to u,
C is a path leading from u to u and q is a path from u to v. Consider the path r(i)

which first uses p to go from s to u, then goes around the cycle i times, and finally
follows q from u to v. The cost of r(i) is c(p) + i · c(C) + c(q). If C is a so-called
negative cycle, i.e., c(C) < 0 then c(r(i+1)) < c(r(i)). In this situation there is no
shortest path from s to v. Assume otherwise, say P is a shortest path from s to v.

10.1 From Basic Concepts to a Generic Algorithm 191

...(2)

PSfrag replacements

p ps sq q
CC

v v
uu

Fig. 10.2. A non-simple path pCq from s to v.

Then c(r(i)) < c(P) for i large enough1 and so P is not a shortest path from s to v.
We will next show that shortest paths exist if there are no negative cycles.

Lemma 25. If G contains no negative cycle and v is reachable from s then a shortest
path from s to v exists. Moreover, the shortest path is simple.

Proof. Assume otherwise. Let ` be the minimal cost of a simple path from s to v and
assume that there is a non-simple path r from s to v of cost less than `. Since r is
non-simple we can, as in Figure 10.2, write r as pCq, where C is a cycle and pq is
a simple path. Then ` ≤ c(pq) and hence c(pq) + c(C) = c(r) < ` ≤ c(pq). So
c(C) < 0 and we have shown the existence of a negative cycle.

Exercise 170. Strengthen the lemma above and show: if v is reachable from s then a
shortest path from s to v exists iff there is no negative cycle that is reachable from s
and from which one can reach v.

For two nodes s and v, we define the shortest path distance µ(s, v) from s to v as

µ(s, v) :=











+∞ if there is no path from s to v

−∞ if there is no shortest path from s to v

c(a shortest path from s to v) otherwise.

Observe that if v is reachable from s, but there is no shortest path from s to v,
then there are paths of arbitrarily large negative cost. Thus it makes sense to define
µ(s, v) = −∞ in this case. Shortest paths have further nice properties which we
state as exercises:

Exercise 171 (Subpaths of Shortest Paths.). Show that subpaths of shortest paths
are themselves shortest paths, i.e., if a path of the form pqr is a shortest path than q
is also a shortest path.

Exercise 172 (Shortest Path Trees.). Assume that all nodes are reachable from s
and that there are no negative cycles. Show that there is an n-node tree T rooted as
s such that all tree paths are shortest paths. Hint: assume first that shortest paths are
unique and consider the subgraph T consisting of all shortest paths starting at s. Use
the preceding exercise to prove that T is a tree. Extend to the case when shortest
paths are not unique.
1 i > (c(p) + c(q)− c(P))/|c(C)| will do.

192 10 Shortest Paths

Our strategy for finding shortest paths from a source node s is a generalization of
the BFS algorithm in Figure 9.3. We maintain two NodeArrays d and parent . Here
d[v] contains our current knowledge about the distance from s to v and parent [v]
stores the predecessor of v on the currently shortest path to v. We usually refer to
d[v] as the tentative distance of v. Initially, d[s] = 0 and parent [s] = s. All other
nodes have infinite distance and no parent.

The natural way to improve distance values is to propagate distance information
across edges. If there is a path from s to u of cost d[u] and e = (u, v) is an edge out
of u, then there is a path from s to v of cost d[u] + c(e). If this cost is smaller than
the best previously known distance d[v], we update d and parent accordingly. This
process is called edge relaxation.

Procedure relax(e = (u, v) : Edge)
if d[u] + c(e) < d[v] then d[v] := d[u] + c(e); parent [v] := u

Lemma 26. After any sequence of edge relaxations: If d[v] < ∞, then there is a
path of length d[v] from s to v.

Proof. We use induction on the number of edge relaxations. The claim is certainly
true before the first relaxation. The empty path is a path of length zero from s to v and
all other nodes have infinite distance. Consider next a relaxation of edge e = (u, v).
By induction hypothesis, there is a path p of length d[u] from s to u and a path q of
length d[v] from s to v. If d[u] + c(e) ≥ d[v], there is nothing to show. Otherwise,
pe is a path of length d[u] + c(e) from s to v.

The common strategy of the algorithms in this chapter is to relax edges until
either all shortest paths are found or a negative cycle is discovered. For example, the
fat edges in Figure 10.1 give us the parent information obtained after a sufficient
number of edge relaxations: nodes f , g, i, and h are reachable from s using these
edges and have reached their respective µ(s, ·) values 2, −3, −1, and −3. Node b,
j, and d form a negative cost cycle so that their shortest path cost is −∞. Node a is
attached to this cycle and thus µ(s, a) = −∞.

What is a good sequence of edge relaxations? Let p = 〈e1, . . . , ek〉 be a path
from s to v. If we relax the edges in the order e1 to ek, we have d[v] ≤ c(p) after
the sequence of relaxations. If p is a shortest path from s to v, then d[v] cannot drop
below c(p) by the preceding Lemma and hence d[v] = c(p) after the sequence of
relaxations.

Lemma 27 (Correctness Criterion). After performing a sequence R of edge relax-
ations, we have d[v] = µ(s, v) if for some shortest path p = 〈e1, e2, . . . , ek〉 from s
to v, p is a subsequence of R, i.e., there are indices t1 < t2 < · · · < tk such that
R[t1] = e1, R[t2] = e2, . . . , R[tk] = ek. Moreover, the parent information defines a
path of length µ(s, v) from s to v.

Proof. Here is a schematic view of R and p: the first row indicates time. At time t1,
the edge e1 is relaxed, at time t2, the edge e2 is relaxed, and so on.

10.2 Directed Acyclic Graphs (DAGs) 193

1, 2, . . . , t1, . . . , t2, , tk, . . .
R := 〈 . . . , e1, . . . , e2, , ek, . . .〉
p:= 〈e1, e2, . . . , ek〉

We have µ(s, v) =
∑

1≤j≤k c(ej). For i ∈ 1..k let vi be the target node of ei and
define t0 = 0 and v0 = s. Then d[vi] ≤ ∑

1≤j≤i c(ej) after time ti as a simple
induction shows. This is clear for i = 0 since d[s] is initialized to zero and d-values
are only decreased. After the relaxation of ei = R[ti] for i > 0, we have d[vi] ≤
d[vi−1] + c(ei) ≤

∑

1≤j≤i c(ej). Thus after time tk, we have d[v] ≤ µ(s, v). Since
d[v] cannot go below µ(s, v) by Lemma 26, we have d[v] = µ(s, v) after time tk and
hence after performing all relaxations in R.

Let us next prove that the parent information traces out shortest paths. We do so
under the additional assumption that shortest paths are unique and leave the general
case to the reader. After the relaxations in R, we have d[vi] = µ(s, vi) for 1 ≤ i ≤ k.
When d[vi] was set to µ(s, vi) by an operation relax (u, vi), the existence of a path
of length µ(s, vi) from s to vi was established. Since, by assumption, the shortest
path from s to vi is unique, we must have u = vi−1 and hence parent [vi] = vi−1.

Exercise 173. Redo the second paragraph in the proof above, but without the as-
sumption that shortest paths are unique.

Exercise 174. Let ES be the edges of G in some arbitrary order and let ES (n−1) be
n − 1 copies of ES . Show µ(s, v) = d[v] for all nodes v with µ(s, v) 6= −∞ after
performing the relaxations ES (n−1).

In the next sections, we will exhibit more efficient sequences of relaxations for
acyclic graphs and graphs with non-negative edge weights. We come back to general
graphs is Section 10.5.

10.2 Directed Acyclic Graphs (DAGs)

3

9

s
1

4
5

2 7

6
8

Fig. 10.3. Order of edge relaxations for short-
est path computations from node s in a DAG.
The topological order of nodes is given by their
x-coordinate.

In a DAG, there are no directed cycles and hence no negative cycles. Moreover,
we have learned in Section 9.2.1 that the nodes of a DAG can be topologically sorted
into a sequence 〈v1, v2, . . . , vn〉 such that (vi, vj) ∈ E implies i < j. A topological
order can be computed in linear time O(n + m) using either depth-first search or
breadth-first search. The nodes on any path in a DAG are increasing in topological

194 10 Shortest Paths

Dijkstra’s Algorithm
declare all nodes unscanned and initialize d and parent

while there is an unscanned node with tentative distance < +∞ do

u:= the unscanned node with minimal tentative distance
relax all edges (u, v) out of u and declare u scanned

s

scanned

u

Fig. 10.4. Dijkstra’s shortest path algorithm for non-negative edge weights

order. Thus, by Lemma 27, we compute correct shortest path distances if we first
relax the edges out of v1, then the edges out of v2, etc, see Figure 10.3 for an exam-
ple. In this way, each edge is relaxed only once. Since every edge relaxation takes
constant time, we obtain a total execution time of O(m + n).

Theorem 27. Shortest paths in acyclic graphs can be computed in time O(n + m).

Exercise 175 (Route Planning for Public Transportation.). Finding quickest routes
in public transportation systems can be modeled as a shortest path problem in acyclic
graphs. Consider a bus or train leaving place p at time t and reaching its next stop p′

at time t′. This connection is viewed as an edge connecting nodes (p, t) and (p′, t′).
Also, for each stop p and subsequent events (arrival and/or departure) at p, say at
times t and t′ with t < t′, we have the waiting link from (p, t) to (p, t′). (a) Show
that the graph obtained in this way is a DAG. (b) You need an additional node model-
ing your starting point in space and time. There should also be one edge connecting
it to the transportation network. How should this edge look? (c) Suppose you have
computed the shortest path tree from your starting node to all nodes in the public
transportation graph reachable from it. How do you actually find the route you are
interested in?

10.3 Non-Negative Edge Costs (Dijkstra’s Algorithm)

We now assume that all edge costs are non-negative. Thus there are no negative
cycles and shortest paths exist for all nodes reachable from s. We will show that if
the edges are relaxed in a judicious order, every edge needs to be relaxed only once.

What is the right order? Along any shortest path, the shortest path distances in-
crease (more precisely, do not decrease). This suggests to scan nodes (to scan a node
means to relax all edges out of the node) in order of increasing shortest path dis-
tance. Lemma 27 tells us that this relaxation order ensures the computation of short-
est paths. Of course, in the algorithm we do not know shortest path distances, we
only know the tentative distances d[v]. Fortunately, for the unscanned node with
minimal tentative distance, true and tentative distance agree. We will prove this in
Theorem 28. We obtain the algorithm shown in Figure 10.4. The algorithm is known
as Dijkstra’s shortest path algorithm. Figure 10.5 shows an example run.

10.3 Non-Negative Edge Costs (Dijkstra’s Algorithm) 195

operation queue
insert(s) 〈(s, 0)〉
deleteMin; (s, 0) 〈〉

relax s
2
→ a 〈(a, 2)〉

relax s
10
→ d 〈(a, 2), (d, 10)〉

deleteMin; (a, 2) 〈(d, 10)〉

relax a
3
→ b 〈(b, 5), (d, 10)〉

deleteMin; (b, 5) 〈(d, 10)〉

relax b
2
→ c 〈(c, 7), (d, 10)〉

relax b
1
→ e 〈(e, 6), (c, 7), (d, 10)〉

deleteMin; (e, 6) 〈(c, 7), (d, 10)〉

relax e
9
→ b 〈(c, 7), (d, 10)〉

relax e
8
→ c 〈(c, 7), (d, 10)〉

relax e
0
→ d 〈(d, 6), (c, 7)〉

deleteMin; (d, 6) 〈(c, 7)〉

relax d
4
→ s 〈(c, 7)〉

relax d
5
→ b 〈(c, 7)〉

deleteMin; (c, 7) 〈〉

1
9

3 2

8

70

5

2 5 7

66

0
10

2

4

a

s

d e

b c

fPSfrag replacements

∞

Fig. 10.5. Example run of Dijkstra’s algorithm
on the graph given to the right. The bold edges
form the shortest path tree and the numbers in
bold indicate shortest path distances.
The table above illustrates the execution. The
queue consists of all pairs (v, d[v]) with v
reached and unscanned. Initially, s is reached
and unscanned. The actions of the algorithm
are given in the first and third column. The sec-
ond and fourth column show the state of the
queue after the action.

Note that Dijkstra’s algorithm is basically the thread-and-knot algorithm we saw
in the introduction of this chapter: Suppose we put all threads and knots on a table
and then lift up the starting node. The other knots will leave the surface of the table
in the order of their shortest path distance.

Theorem 28. Dijkstra’s algorithm solves the single-source shortest paths problem
for graphs with non-negative edge costs.

Proof. Assume that the algorithm is incorrect and consider the first time that we scan
a node with its tentative distance larger than its shortest path distance. Say at time t
we scan node v with µ(s, v) < d[v]. Let p = 〈s = v1, v2, . . . , vk = v〉 be a shortest
path from s to v and let i be minimal such that vi is unscanned just before time t.
Then i > 0 since s is the first node scanned (in the first iteration s is the only node
whose tentative distance is less than +∞) and µ(s, s) = 0 = d[s] when s is scanned.
Thus vi−1 was scanned before time t and hence d[vi−1] = µ(s, vi−1) when vi−1

was scanned (by definition of t[ps: geklammert. Immer noch etwas unschoen]). ⇐=
When vi−1 was scanned, d[vi] was set to µ(s, vi−1) + c(vi−1, vi) = µ(s, vi). Thus
d[vi] = µ(s, vi) ≤ µ(s, vk) < d[vk] just before time t and hence vi is scanned
instead of vk, a contradiction.

Exercise 176. Let v1, v2, . . . be the order in which nodes are scanned. Show µ(s, v1) ≤
µ(s, v2) ≤ . . ., i.e., nodes are scanned in order of increasing shortest path distances.

Exercise 177 (Verification of shortest path distances). Assume that all edge costs
are positive, that all nodes are reachable from s, and that d is a node array of non-
negative reals satisfying d[s] = 0 and d[v] = min(u,v)∈E d[u] + c(u, v) for v 6= s.
Show d[v] = µ(s, v) for all v.

196 10 Shortest Paths

Function Dijkstra(s : NodeId) : NodeArray×NodeArray
d = 〈∞, . . . ,∞〉 : NodeArray of � ∪ {∞} // tentative distance from root
parent = 〈⊥, . . . ,⊥〉 : NodeArray of NodeId
parent[s] := s // self-loop signals root
Q : NodePQ // unscanned reached nodes
d[s] :=0; Q.insert(s)
while Q 6= ∅ do

u :=Q.deleteMin // we have d[u] = µ(s, u)

foreach edge e = (u, v) ∈ E do
s

scanned

u

if d[u] + c(e) < d[v] then // relax
d[v] := d[u] + c(e)
parent[v] :=u // update tree
if v ∈ Q then Q.decreaseKey(v)

else Q.insert(v)
u v

reachedreturn (d, parent)

Fig. 10.6. Pseudocode for Dijkstra’s Algorithm.

*Exercise 178 [gesternt] Extend the statement of the previous exercise to non-=⇒
negative cost functions. Be careful.

We come to the implementation of Dijkstra’s algorithm. The crucial operation
is finding the unscanned reached node with minimum tentative distance value. The
addressable priority queues from Section 6.2 are the appropriate data structure. We
store all unscanned reached nodes in an addressable priority queue using their ten-
tative distance values as keys. The deletemin returns the unscanned reached node
with minimal distance. We also have a NodeArray A. For each unscanned reached
node v, A[v] stores the handle to the item representing v in the addressable priority
queue. For all other nodes, A[v] is nil. We call the combination of addressable pri-
ority queue and node array a NodePQ . An insert(v) adds an item for v with key
d[v] to the queue and stores the handle to the item in A[v]. A deleteMin returns the
node in the queue with minimal d-value, deletes the corresponding item from the
queue, and sets A[v] to nil. Finally, decreaseKey(v) uses A[v] to access the item for
v and updates the addressable priority queue so as to reflect the new value of d[v].
The node array A can be implemented in different ways as discussed in Chapter ??.
For example, we may use an array indexed by node ids or incorporate space for the
handle into the node objects.

We obtain the algorithm given in Figure 10.6. We next analyze its running time
in terms of the running times for the queue operations. Initializing the arrays d and
parent and setting up a priority queue Q = {s} takes time O(n). Checking for Q =
∅ and loop control takes constant time per iteration of the while-loop, i.e., O(n) time
in total. Every node reachable from s is removed from the queue exactly once. Every
reachable node is also inserted exactly once. Thus we have at most n deleteMin

and insert operations. Since each node is scanned at most once, each edge is relaxed

10.3 Non-Negative Edge Costs (Dijkstra’s Algorithm) 197

at most once and hence there can be at most m decreaseKey operations. We obtain
a total execution time of

TDijkstra := O(n · (TdeleteMin(n) + Tinsert (n)) + m · TdecreaseKey(n)) ,

where TdeleteMin , Tinsert , TdecreaseKey denote the execution time for deleteMin ,
insert , and decreaseKey , respectively. Note that these execution times are a function
of the queue size |Q| = O(n).

Exercise 179. Design a graph and a non-negative cost function such that the relax-
ation of m − (n − 1) edges causes a decreaseKey operation.

In his original 1959 paper, Dijkstra proposed the following implementation of the
priority queue:[ps: reformulated to avoid double ‘propose’] Maintain the number ⇐=
of reached unscanned nodes and two arrays indexed by nodes — an array d storing
the tentative distances and an array storing for each node whether it is unscanned
or reached. Then insert and decreaseKey take time O(1). A deleteMin takes time
O(n) since it has to scan the arrays in order to find the minimum tentative distance
of any reached unscanned node. Thus total running time becomes

TDijkstra59 = O(m + n2) .

Much better priority queue implementations were invented since Dijkstra’s orig-
inal paper. With the binary heap and Fibonacci heap priority queues from Section 6.2
we obtain[ps: added ‘respectively’, aligned] ⇐=

TDijkstraBHeap = O((m + n) log n)

TDijkstraFibonacchi = O(m + n log n) respectively.

Asymptotically, the Fibonacci heap implementation is superior except for sparse
graphs with m = O(n). In practice, Fibonacci heaps are usually not the fastest im-
plementation because they involve larger constant factors and since the actual num-
ber of decrease key operations tends to be much smaller than what the worst case
predicts. This experimental observation is supported by theoretical analysis. We will
show that the expected number of decreaseKey operations is O(n log(m/n)).

Our model of randomness is as follows: the graph G and the source nodes s are
arbitrary. Also, for each node v, we have an arbitrary set C(v) of indegree(v) non-
negative real numbers. So far, everything is arbitrary. The randomness comes now:
we assume that for each v the costs in C(v) are assigned randomly to the edges into
v, i.e., our probability space consists of

∏

v∈V indegree(v)! many assignments of
edge costs to edges. We want to stress that this model is quite general. In particular,
it covers the situation that edges costs are drawn independently from a common
distribution.

Theorem 29. Under the assumptions above, the expected number of decreaseKey

operations is O(n log m
n).

198 10 Shortest Paths

Proof. We present a proof due to Noshita [144]. Consider a particular node v and let
k = indegree(v). In any run of Dijkstra’s algorithm, the edges into v are relaxed in
some particular order, say e1, . . . , ek. Let ei = (ui, v). It is crucial to observe that the
order in which the edges into v are relaxed does not depend on how the costs in C(v)
are assigned to the edges into v. We have d[u1] ≤ d[u2] ≤ . . . ≤ d[uk] since nodes
are scanned in increasing order of tentative distances; here d[ui] is the tentative (and
hence true) distance of ui when ui is scanned. If ei causes a decreaseKey operation
then

d[ui] + c(ei) < min
j<i

d[uj] + c(ej) .

Since d[ui] ≤ d[uj], this implies

c(ei) < min
j<i

c(ej),

i.e., only left-right minima of the sequence c(e1),. . . ,c(ek) can cause decreaseKey

operations. We conclude that the number of decreaseKey operations on v is bounded
by the number of left-right minima in the sequence c(e1),. . . ,c(ek) minus one; the −1
accounts for the fact that the first element in the sequence counts as a left-right min-
imum but causes an insert and no decreaseKey . In Section 2.8 we have shown that
the expected number of left-right maxima in a permutation of size k is bounded by
Hk. The same bound holds for minima. Thus the expected number of decreaseKey

operations is bounded by Hk − 1 which in turn is bounded by ln k. Summing over
all nodes, we obtain the following bound for the expected number of decreaseKey

operations:
∑

v∈V

ln indegree(v) ≤ n ln
m

n
,

where the last inequality follows from the concavity of the ln-function (see Equa-
tion (A.16)). [todo: ueberall endofbeweis richtig machen]=⇒

We conclude that the expected running time is O(m+n log(m/n) log n) with the
binary heap implementation of priority queues. For sufficiently dense graphs (m >
n log n loglog n) we will obtain execution time linear in the size of the input.

Exercise 180. Show that E[TDijkstraBHeap] = O(m) if m = Ω(n log n loglog n).

10.4 Monotone Integer Priority Queues

Dijkstra’s algorithm does not really need a general purpose priority queue. It only
requires what is known as a monotone priority queue. The usage of a priority queue
is monotone if the sequence of deleted elements has non-decreasing keys. Dijkstra’s
algorithm uses its queue in a monotone way because insert and decreaseKey oper-
ations use distances of the form d[u] + c(e) where d[u] is the key value of the last
deleteMin and c(e) is a non-negative edge cost.

It is not known whether monotonicity can be exploited in the case of general
real edge costs. However, for integer edge costs significant savings are possible. We

10.4 Monotone Integer Priority Queues 199

therefore assume for this section that edges costs are integers in the range 0..C for
some integer C. C is assumed to be known when the queue is initialized.

Since a shortest path can consist of at most n−1 edges, shortest path distances are
at most (n − 1)C. The range of values in the queue at any one time is even smaller.
Let min be the last value deleted from the queue (zero before the first deletion).
Dijkstra’s algorithm maintains the invariant that all values in the queue are contained
in min..min +C. The invariant certainly holds after the first insertion. A deleteMin

may increase min . Since all values in the queue are bounded by C plus the old
value of min , this is certainly true for the new value of min . Edge relaxations insert
priorities of the form d[u] + c(e) = min + c(e) ∈ min..min + C.

10.4.1 Bucket Queues

A bucket queue is a circular array B of C + 1 doubly linked lists (see Figure 10.7
and also Algorithm 3.8). We view the natural numbers wrapped around the circular
array, all integers of the form i + (C + 1)j map to index i. A node v ∈ Q with
tentative distance d[v] is stored in B[d[v] mod (C + 1)]. Since the priorities in the
queue are contained in min..min +C at any one time, all nodes in a bucket have the
same distance value.

Initialization creates C + 1 empty lists. An insert(v) inserts v into B[d[v] mod
C + 1]. A decreaseKey(v) removes v from the list containing it and inserts it into
B[d[v] mod C + 1]. Thus insert and decreaseKey take constant time if buckets are
implemented as doubly linked lists.

A deleteMin first looks at bucket B[min mod C + 1]. If this bucket is empty, it
increments min and repeats. In this way the total cost of all deleteMin operations is
O(n+nC) = O(nC) since min is incremented at most nC times and since at most
n elements are deleted from the queue. Plugging the operation costs for the bucket
queue implementation with integer edge costs in 0..C into our general bound for the
cost of Dijkstra’s algorithm we obtain:

TDijkstraBucket = O(m + nC) .

*Exercise 181 (Dinitz’ Refinement of Bucket Queues [58].) Assume edge costs are
positive real numbers in [cmin, cmax]. Explain how to find shortest paths in time
O(m + ncmax/cmin). Hint: use Buckets of width cmin. Show that all nodes in the
smallest non-empty bucket have d[v] = µ(s, v).

10.4.2 Radix Heaps

Radix heaps improve on the bucket queue implementation by using buckets of dif-
ferent width. Narrow buckets are used for tentative distances close to min and wide
buckets are used for tentative distances far away from min . In this section we will
show how this approach leads to a version of Dijkstra’s algorithm with running time

TDijkstraRadix := O(m + n log C) .

200 10 Shortest Paths

a,29 b,30 30c,
d,31

e, 33
f, 35

g,36

a,29 g,36 f, 35 e, 33b,30 d,31 30c,

0
1
2

3
45

6
7
8

9

−1 0 1 2 3 4=K

min

<(a,29), (b,30), (c,30), (d,31), (e,33), (f,35), (g,36)>
Content=mod 10

Bucket queue with C = 9

Binary Radix Heap

Fig. 10.7. Example for a bucket queue and a radix heap. The upper part shows a bucket queue
with content 〈(a, 29), (b, 30), (c, 30), (d, 31), (e, 33), (f, 35), (g, 36)〉, C = 9, and min =
29. The lower part shows the corresponding bucket heap. The binary representation of 29 is
11101. Also, we have K = 1+dlog Ce = 4. Therefore, bucket B[−1] contains all nodes with
d-value equal to 29, B[0] is empty, B[1] contains all nodes whose d-value has a representation
of the form 1111*, i.e., d-value 30 or 31, buckets B[2] and B[3] are empty, and bucket B[4]
contains all nodes whose d-value has a binary representation containing a one in position 4 or
higher, i.e., d-value 32 or larger.

Radix heaps exploit the binary representation of tentative distances. We need the
concept of the most significant distinguishing index of two numbers. It is the largest
index where the binary representations differ, i.e., for numbers a and b with binary
representations a =

∑

i≥0 αi2
i and b =

∑

i≥0 βi2
i define the most significant dis-

tinguishing index msd(a, b) as the largest i with αi 6= βi and let it be −1 if a = b. If
a < b then a has a zero bit in position i = msd(a, b) and b has a one bit.

A radix heap consists of an array of buckets B[−1], B[0], . . . , B[K] where K =
1 + blog Cc. The queue elements are distributed over the buckets according to the
following rule:

any queue element v is stored in bucket B[i] where i = min(msd(min, d[v]),K).

We refer to this rule as the bucket queue invariant. Figure 10.7 illustrates the
bucket queue invariant. We remark that if min has a one bit in position i for
0 ≤ i < K, the corresponding bucket B[i] is empty. This holds since any d[v]
with i = msd(min, d[v]) would have a zero bit in position i and hence be smaller
than min . But all keys in the queue are at least as large as min .

How can we compute i := msd(a, b)? We first observe, that for a 6= b, the bit-
wise exclusive-or a ⊕ b of a and b has its most significant one in position i and
hence represents an integer whose value is at least 2i and less than 2i+1. Thus
msd(a, b) = blog(a ⊕ b)c, since log(a ⊕ b) is a real number with integer part equal
to i and the floor function extracts the integer part. Many processors support the com-

10.4 Monotone Integer Priority Queues 201

putation of msd by machine instructions2. Alternatively, we can use look-up tables
or yet different solutions. From now on we will assume that msd can be evaluated in
constant time.

We turn to the queue operations. Initialization, insert , and decreaseKey work
completely analogously to bucket queues with the only difference being that they
use the bucket queue invariant to compute bucket indices.

A deleteMin first finds the minimum i such that B[i] is non-empty. If i = −1,
an arbitrary element in B[−1] is removed and returned. If i ≥ 0, the bucket B[i]
is scanned and min is set to the smallest tentative distance contained in the bucket.
Since min has changed, the bucket queue invariant needs to be restored. A crucial
observation for the efficiency of radix heaps is that only the nodes in bucket i are
affected. We will discuss below, how they are affected. Let us first consider the buck-
ets B[j] with j 6= i. Buckets B[j], with j < i are empty. If i = K, there are
no j with j > K. If i < K, any key a in bucket B[j] with j > i will still have
msd(a,min) = j, because the old and new values of min agree on bit positions
greater than i.

What happens to the elements in B[i]? Its elements are moved to the appropriate
new bucket. Thus a deleteMin takes constant time if i = −1 and takes time O(i +
|B[i]|) = O(K + |B[i]|) if i ≥ 0. Lemma 28 below shows that every node in bucket
B[i] is moved to a bucket with a smaller index. This observation allows us to account
for the cost of a deleteMin using amortized analysis. As our unit of cost (one token)
we will use the time required to move one node between buckets.

We charge K + 1 tokens to operation insert(v) and associate the K tokens with
v. These tokens pay for the moves of v to lower number buckets in deleteMin oper-
ations. A node starts in some bucket j with ≤ K, ends in bucket −1, and in between
never moves back to a higher numbered bucket. Observe, that a decreaseKey(v) op-
eration will also never move a node to a higher number bucket. Hence, the K + 1
tokens can pay for all the node moves of deleteMin operations. The remaining
cost of a deleteMin is O(K) for finding a non-empty bucket. With amortized cost
K +1+O(1) = O(K) for an insert and O(1) for a decreaseKey , we obtain a total
execution time of O(n · (K + K) + m) = O(m + n log C) for Dijkstra’s algorithm
as claimed.

It remains to prove that deleteMin operations move nodes to lower numbered
buckets.

Lemma 28. Let i be minimal such that B[i] is non-empty and assume i ≥ 0. Let min

be the smallest element in B[i]. Then msd(min, x) < i for all x ∈ B[i].

Proof. First observe that the case x = min is easy since msd(x, x) = −1 < i. For
the non-trivial case x 6= min we distinguish the subcases i < K and i = K. Let
mino be the old value of min . Figure 10.8 shows the structure of the relevant keys.
Case i < K: The most significant distinguishing index of mino and any x ∈ B[i]

2 ⊕ is a direct machine instruction and blog xc is the exponent in the floating point represen-
tation of x.

202 10 Shortest Paths

1

1

1

1

j 0
0

0

1

h
Case i=K

min
i 0
0

min

x

o

Case i<K

PSfrag replacements

α

α

α

α

α

α

β

β

Fig. 10.8. The structure of the keys relevant for the proof of Lemma 28. In the proof it is
shown that β starts with j −K zeroes.

is i, i.e., mino has a zero in bit position i and all x ∈ B[i] have a one in bit position
i. They agree in all positions with index larger than i. Thus the most significant
distinguishing index for min and x is smaller than i.
Case i = K: Consider any x ∈ B[K]. Let j = msd(mino,min). Then j ≥ K since
min ∈ B[K]. Let h = msd(min, x). We want to show h < K. Let α comprise the
bits in positions larger than j in min0 and let A be the number obtained from mino

by setting the bits in positions 0 to j to zero. Then α followed by j + 1 zeroes is the
binary representation of A. Since the j-th bit of mino is zero and is one for min we
have min0 < A + 2j and A + 2j ≤ min . Also, x ≤ mino + C < A + 2j + C ≤
A + 2j + 2K . So

A + 2j ≤ min ≤ x < A + 2j + 2K

and hence the binary representations of min and x consist of the binary representa-
tion of A followed by a 1, followed by j − K zeroes, followed by some bitstring of
length K. Thus min and x agree in all bits with index K or larger and hence h < K.

In order to aid intuition, we give a second proof for the case i = K[ps
was:i = KK???]. We first observe that the binary representation of min starts=⇒
with α followed by a one. We next observe that x can be obtained from min0 by
adding some K-bit number. Since min ≤ x, the final carry in this addition must run
into position j. Otherwise, the j-th bit of x would be zero and hence x < min . Since
min0 has a zero in position j, the carry stops in position j. We conclude that the
binary representation of x is equal to α followed by a 1, followed by j − K zeroes
followed by some K bit string. Since min ≤ x, the j−K zeroes must also be present
in the binary representation of min .

*Exercise 182 Radix heaps can also be based on number representations with base
b for any b ≥ 2. In this situation we have buckets B[i, j] for i = −1, 0, 1, . . . K and
0 ≤ j ≤ b, where K = 1 + blog C/ log bc. An unscanned reached node x is stored
in bucket B[i, j] if msd(min, d[x]) = i and the i-th digit of d[x] is equal to j. We
also store for each i, the number of nodes contained in buckets ∪jB[i, j]. Discuss
the implementation of the priority queue operations and show that a shortest path
algorithm with running time O(m+n(b+log C/ log b)) results. What is the optimal
choice of b?

10.4 Monotone Integer Priority Queues 203

If the edge costs are random integers in the range 0..C, a small change of the
algorithm guarantees linear running time [133, 75]. For every node v, let cin

min(v)
denote the minimum cost of an incoming edge. We divide Q into two parts, a part
F which contains unscanned nodes whose tentative distance label is known to be
equal to their exact distance from s, and a part B which contains all other reached
unscanned nodes. B is organized as a radix heap. We also maintain a value min . We
scan nodes as follows.

When F is non-empty, an arbitrary node in F is removed and the outgoing edges
are relaxed. When F is empty, the minimum node is selected from B and min is set
to its distance label. When a node is selected from B, the nodes in the first non-empty
bucket B[i] are redistributed if i ≥ 0. There is a small change in the redistribution
process. When a node v is to be moved, and d[v] ≤ min + cin

min(v), we move v to F .
Observe that any future relaxation of an edge into v cannot decrease d[v] and hence
d[v] is known to be exact at this point.

The algorithm is correct since it is still true that d[v] = µ(s, v) when v is scanned.
For nodes removed from F this was argued in the previous paragraph and for nodes
removed from B this follows from the fact that they have the smallest tentative dis-
tance among all unscanned reached nodes.

Theorem 30. Let G be an arbitrary graph and let c be a random function from E to
0..C. Then the single-source problem can be solved in expected time O(n + m).

Proof. We still need to argue the bound on the running time. We modify the amor-
tized analysis of plain radix heaps. As before, nodes start out in B[K]. When a node
v is moved to a new bucket, but not yet to F , d[v] > min + cin

min(v) and hence v
is moved to a bucket B[i] with i ≥ log cin

min(v). Hence, it suffices if insert pays
K− log cin

min(v)+1 tokens into the account for node v in order to cover all costs due
to decreaseKey and deleteMin operations operating on v. Summing over all nodes
we obtain a total payment of

∑

v

(K − log cin
min(v) + 1) = n +

∑

v

(K − log cin
min(v)) .

We need to estimate the sum. For each vertex, we have one incoming edge contribut-
ing to this sum. We therefore bound the sum from above, if we sum over all edges,
i.e.,

∑

v

(K − log cin
min(v)) ≤

∑

e

(K − log c(e)) .

K− log c(e) is the number of leading zeros in the binary representation of c(e) when
written as a K-bit number. Our edge costs are uniform random numbers in 0..C and
K = 1 + blog Cc. Thus prob(K − log c(e)) = i) = 2−i. Using Equation (A.14) we
conclude

E

[

∑

e

(k − log c(e))

]

=
∑

e

∑

i≥0

i2−i = O(m).

Thus the total expected cost of deleteMin and decreaseKey operations is O(n+m).
The time spent outside these operations is also O(n + m).

204 10 Shortest Paths

Function BellmanFord(s : NodeId) : NodeArray×NodeArray
d = 〈∞, . . . ,∞〉 : NodeArray of � ∪ {−∞,∞} // distance from root
parent = 〈⊥, . . . ,⊥〉 : NodeArray of NodeId
d[s] := 0; parent[s] := s // self-loop signals root
for i := 1 to n− 1 do

forall e ∈ E do relax(e) // round i

forall e = (u, v) ∈ E do // postprocessing
invariant ∀v ∈ V : d[v] = −∞→ ∀w reachable from v : d[w] = −∞
if d[u] + c(e) < d[v] then infect(v)

return (d, parent)

Procedure infect(v)
if d[v] > −∞ then

d[v] :=−∞
foreach (v, w) ∈ E do infect(w)

Fig. 10.9. The Bellman-Ford algorithm for shortest paths in arbitrary graphs.

It is a bit odd that the maximum edge cost C appears in the premise, but not in
the conclusion of Theorem 30. Indeed, it can be shown that a similar result holds for
random real valued edge costs.

**Exercise 183 Explain how to adapt the above algorithm for the case that c is a
random function from E to the real interval (0, 1]. The expected time should still be
O(n+m). What assumptions do you need on the representation of edge costs and on
the machine instructions available? Hint: you may first want to solve Exercise 181.
The most narrow bucket should have width mine∈E c(e). Subsequent buckets have
geometrically growing widths.

10.5 Arbitrary Edge Costs (Bellman-Ford Algorithm)

For acyclic graphs and for non-negative edge costs we got away with m edge rela-
tions. For arbitrary edge costs no such result is known. However, it is easy to guar-
antee the correctness criterion of Lemma 27 using O(n · m) edge relaxations: the
Bellman-Ford algorithm given in Figure 10.9 performs n − 1 rounds. In each round
it relaxes all edges. Since simple paths consist of at most n− 1 edges, every shortest
path is a subsequence of this sequence of relaxations. Thus after the relaxations are
completed, we have d[v] = µ(s, v) for all v with −∞ < d[v] < ∞ by Invariant 2.
Moreover, parent encodes the shortest paths to these nodes. Nodes v unreachable
from s will still have d[v] = ∞ as desired.

It is not so obvious how to find the nodes v with µ(s, v) = −∞. Consider any
edge e = (u, v) with d[u]+c(e) < d[v]. We can set d[v]:=−∞ because if there were
a shortest path from s to v we would have found it by now and relaxing e would not
lead to shorter distances any more. We can then also set d[w] = −∞ for all nodes

10.6 All-Pairs Shortest Paths and Potential Functions 205

w reachable from v. The pseudocode implements this approach using a recursive
function infect(v). It sets the d-value of v and all nodes reachable from it to −∞. If
infect reaches a node w that already has d[w] = −∞, it breaks the recursion because
previous executions of infect have already explored all nodes reachable from w. If
d[v] is not set to −∞ during postprocessing, we have d[x]+c(e) ≥ d[y] for any edge
e = (x, y) on any path p from s to v. Thus d[s] + c(p) ≥ d[v] for any path p from s
to v, and hence d[v] ≤ µ(s, v). We conclude d[v] = µ(s, v).

Exercise 184. Show that postprocessing runs in time O(m). Hint: relate infect to
DFS .

Exercise 185. Someone proposes an alternative postprocessing algorithm: set d[v] to
−∞ for all nodes v for which following parents does not lead to s. Give an example,
where this method overlooks a node with µ(s, v) = −∞.

Exercise 186 (Arbitrage.). Consider a set of currencies C with an exchange rate of
rij between currencies i and j (you obtain rij units of currency j for one unit of
currency i). A currency arbitrage is possible if there is a sequence of elementary
currency exchange actions that starts with one unit of a currency and ends with more
than one unit of the same currency. (a) Show how to find out whether a matrix of
exchange rates admits currency arbitrage. Hint: log(xy) = log x + log y. (b) Refine
your algorithm so that it outputs a sequence of exchange steps that maximizes the
average profit per transaction.

Section 10.9 outlines further refinements for Bellman-Ford that are necessary for
good performance in practice.

10.6 All-Pairs Shortest Paths and Potential Functions

The all-pairs problem is tantamount to n single-source problems and hence can be
solved in time O(n2m). A considerable improvement is possible. We show that it
suffices to solve one general single-source problem plus n single-source problems
with non-negative edge costs. In this way, we obtain a running time of O(nm +
n(m + n log n)) = O(nm + n2 log n). We need the concept of a potential function.

A potential function assigns a number pot(v) to each node v. For an edge e =
(v, w) we define its reduced cost c̄(e) as:

c̄(e) = pot(v) + c(e) − pot(w) .

Lemma 29. Let p and q be paths from v to w. Then c̄(p) = pot(v)+ c(p)−pot(w)
and c̄(p) ≤ c̄(q) iff c(p) ≤ c(q). In particular, shortest paths with respect to c̄ are
the same as with respect to c.

Proof. The second and the third claim follow from the first. For the first claim, let
p = 〈e0, . . . , ek−1〉 with ei = (vi, vi+1), v = v0 and w = vk. Then

206 10 Shortest Paths

All-Pairs Shortest Paths in the Absence of Negative Cycles
add a new node s and zero length edges (s, v) for all v // no new cycles, time O(m)
compute µ(s, v) for all v with Bellman-Ford // time O(nm)
set pot(v) = µ(s, v) and compute reduced costs c̄(e) for e ∈ E // time O(m)
forall nodes x do // time O(n(m + n log n))

use Dijkstra’s algorithm to compute the reduced shortest path distances µ̄(x, v)
using source x and the reduced edge costs c̄

// translate distances back to original cost function // time O(m)
forall e = (v, w) ∈ V × V do µ(v, w) := µ̄(v, w) + pot(w)− pot(v)

Fig. 10.10. All-Pairs Shortest Paths in the Absence of Negative Cycles

c̄(p) =

k−1
∑

i=0

c̄(ei) =
∑

0≤i<k

(pot(vi) + c(ei) − pot(vi+1))

= pot(v0) +
∑

0≤i<k

c(ei) − pot(vk) = pot(v0) + c(p) − pot(vk) .

Exercise 187. Potential functions can be used to generate graphs with negative edge
costs but no negative cycles: generate a (random) graph, assign to every edge e a
(random) non-negative (!!!) cost c(e), assign to every node v a (random) potential
pot(v), and set the cost of e = (u, v) to c̄(e) = pot(u) + c(e) − pot(v). Show that
this rule does not generate negative cycles.

Lemma 30. Assume that G has no negative cycles and that all nodes can be reached
from s. Let pot(v) = µ(s, v) for v ∈ V . With this potential function reduced edge
costs are non-negative.

Proof. Since all nodes are reachable from s and since there are no negative cycles,
µ(s, v) ∈ �

for all v. Thus the reduced costs are well defined. Consider an arbitrary
edge e = (v, w). We have µ(s, v)+ c(e) ≥ µ(w) and hence c̄(e) = µ(s, v)+ c(e)−
µ(s, w) ≥ 0.

[ps: pseudocode von 10.10 deutlich umbeschrieben um undefinierte Sym-
bole zu vermeiden. letze Zeile berechnete Abstaende nur fÃijr (v, w) ∈ E
???]=⇒

Theorem 31. The all-pairs shortest paths problem in graphs without negative cycles
can be solved in time O

(

nm + n2 log n
)

.

Proof. The algorithm is shown in Figure 10.10. We add an auxiliary node s and zero
cost edges (s, v) for all nodes of the graph. This does not create negative cycles and
does not change µ(v, w) for any of the existing nodes. Then we solve the single-
source problem with source s and set pot(v) = µ(s, v) for all v. Next we compute
reduced costs and then solve the single-source problem for each node v by means of
Dijkstra’s algorithm. Finally, we translate the computed distances back to the original
cost function. The computation of the potentials takes time O(nm) and the n shortest

10.7 Shortest Path Queries 207

path calculations take time O(n(m + n log n)). Pre- and postprocessing takes linear
time.

The assumption that G has no negative cycles can be removed [128][ps: moved
citation from further findings]. ⇐=

Exercise 188. The diameter D of a graph G is defined as the largest distance be-
tween any two of its nodes. We can easily compute it using an all-pairs computa-
tion. Now we want to consider ways to approximate the diameter using a constant
number of single-source computations. (a) For any starting node s, let D′(s) :=
maxu∈V µ(s, u). Show that D′(s) ≤ D ≤ 2D′(s) in undirected graphs. Also, show
that no such relation holds in directed graphs. Let D′′(s) := maxu∈V µ(u, s). Show
that max(D′(s), D′′(s)) ≤ D ≤ D′(s) + D′′(s) for undirected and directed graphs.
(b) How should a graph be represented to support both forward and backward search?
(c) Can you improve the approximation by considering more than one node s?

10.7 Shortest Path Queries

Often, we are interested in the shortest path from a specific source node s to a specific
target node t; route planning in traffic networks is one such scenario. We will explain
some techniques for solving such shortest path queries efficiently and argue their
usefulness for the route planning application.

We start with a technique called early stopping. We run Dijkstra’s algorithm to
find shortest paths starting at s. We stop the search as soon as t is removed from the
priority queue, because at this point in time the shortest path to t is known. This helps
except for the unfortunate case when t is the farthest node from s. On average early
stopping saves a factor of two in scanned nodes in any application. In practical route
planning, early stopping saves much more because modern car navigation systems
have a map of an entire continent but are mostly used for distances of a few hundred
kilometers.

Another simple and general heuristic is bidirectional search from s forward and
from t backward until the search frontiers meet. More precisely, we run two copies
of Dijkstra’s algorithm side by side, one starting from s and one starting from t (and
running on the reversed graph). Each copy has its own queue, say Qs and Qt. We
grow the search regions at about the same speed, for example, by removing a node
from Qs if min Qs ≤ min Qt and a node from Qt, otherwise.

It is tempting to stop the search, once the first node u has been removed from
both queues, and to claim that µ(s, t) = µ(s, u) + µ(u, t). Observe that execution of
Dijkstra’s algorithm on the reversed graph with starting node t determined µ(u, t).
This is not quite correct, but almost so.

Exercise 189. Give an example, where u is not on the shortest path from s to t.

However, we have collected enough information once some node u has been re-
moved from both queues. Let ds and dt denote the tentative distance labels in the runs

208 10 Shortest Paths

PSfrag replacements

ss tt
Fig. 10.11. Standard Dijkstra search grows a circular
region centered at the source, goal-directed search grows
a region leaning towards the target.

with source s and source t, respectively. Let p = 〈s = v0, . . . , vi, vi+1, . . . , vk = t〉
be a shortest path from s to t. Let i be maximal such that vi was removed from
Qs. Then ds[vi+1] = µ(s, vi+1). Also, µ(s, u) ≤ µ(s, vi+1) since u was already
removed from Qs, but vi+1 was not. Next observe that

µ(s, vi+1) + µ(vi+1, t) = c(p) ≤ µ(s, u) + µ(u, t) ,

since p is a shortest path from s to t. Thus

µ(vi+1, t) ≤ µ(s, u) + µ(u, t) − µ(s, vi+1) ≤ µ(u, t)

and hence dt[vi+1] = µ(vi+1, t) when the search stops. So we can determine the
shortest distance from s to t by not only inspecting the first node removed from both
queues, but all nodes in say Qs. We iterate over all such nodes v and determine the
minimum value of ds[v] + dt[v].

Dijkstra’s algorithm scans nodes in order of increasing distance from the source.
In other words, it grows a circle centered at the source node. The circle is defined by
the shortest path metric in the graph. In the route planning application in road net-
works, we may also consider geometric circles centered at the source and argue that
shortest path circles and geometric circles are about the same. We can then estimate
the speedup obtained by bidirectional search using the following heuristic argument:
a circle of a certain diameter has twice the area of two circles of half the diame-
ter. We could thus hope that bidirectional search saves a factor of two compared to
unidirectional search.

Exercise 190 (Bidirectional Search). (a) Consider bidirectional search in a grid
graph. How much does it save over unidirectional search? (b) Try to find a family
of graphs where bidirectional search visits exponentially fewer nodes on the average
than unidirectional search. Hint: consider random graphs or hypercubes. (c) Give an
example where bidirectional search in real road networks takes longer than unidi-
rectional search. Hint: consider a densely inhabitated city with sparsely populated
surroundings. (d) Design a strategy for switching between forward and backward
search such that bidirectional search will never inspect more than twice as many
nodes as unidirectional search.

We will next describe two techniques that are more complex and less generally
applicable, however, if applicable, usually result in larger savings. Both techniques
mimic human behavior in route planning.

Goal-directed search: The idea is to bias the search space such that Dijkstra’s
algorithm does not grow a disc but a region protruding towards the target, see Fig-
ure 10.11. Assume, we know a function f : V → �

that estimates the distance to

10.7 Shortest Path Queries 209

the target, i.e., f(v) estimates µ(v, t) for all nodes v. We use the estimates to modify
the distance function. For each e = (u, v), let c̄(e) = c(e) + f(v) − f(u). We run
Dijkstra’s algorithm with the modified distance function. We know already that node
potentials do not change shortest paths and hence correctness is preserved. Tentative
distances are related via d̄[v] = d[v] + f(v)− f(s). An alternative view of this mod-
ification is that we run Dijkstra’s algorithm with the original distance function but
remove the node with minimal value d[v] + f(v) from the queue. The algorithm just
described is known as A∗-search.

Before we state requirements on the estimate f , let us see one specific example.
Assume, for a Gedankenexperiment, f(v) = µ(v, t). Then c̄(e) = c(e) + µ(v, t) −
µ(u, t) and hence edges on a shortest path from s to t have modified cost equal to
zero and all other edges have positive cost. Thus Dijkstra’s algorithm only follows
shortest paths without looking left or right.

The function f must have certain properties to be useful. First, we want the mod-
ified distances to be non-negative. So we need, c(e) + f(v) ≥ f(u) for all edges
e = (u, v). In other words, our estimate for the distance from u should be at most
our estimate for the distance from v plus the cost of going from u to v. This property
is called consistency of estimates. [ps:reformulated sentence:]We also want to be ⇐=
able to stop searching when t is removed from the queue. This works if f is a lower
bound on the distance to the target, i.e., f(v) ≤ µ(v, t) for all v ∈ V . Then f(t) = 0.
Consider the point in time, when t is removed from the queue and let p be any path
from s to t. If all edges of p have been relaxed at termination, d[t] ≤ c(p). If not all
edges of p have been relaxed at termination, there is a node v on p that it contained
in the queue at termination. Then

d[t] = d[t] + f(t) ≤ d[v] + f(v) ≤ d[v] + µ(v, t) ≤ c(p) ,

where the first inequality follows from the fact that t was removed before v. In either
case, we have d[t] ≤ c(p) and hence the shortest distance from s to t is known as
soon as t is removed from the queue.

What is a good heuristic function for route planning in road networks? Route
planners often give the choice between shortest or fastest connections. In the case
of shortest paths, a feasible lower bound f(v) is the straight line distance between
v and t. Speedups by a factor of roughly four are reported in literature. For fastest
paths, we may use the geometric distance divided by the speed assumed for the best
kind of road. This estimate is extremely optimistic, since targets are frequently in
the center of town, and hence no good speed-ups are reported. More sophisticated
methods for computing lower bounds are known; we refer the reader to [?] for a
thorough discussion.

Hierarchy: Road networks usually know a hierarchy of roads: throughways, state
roads, county roads, city roads, and so on. Average speed is usually higher on roads
of higher status and therefore fastest routes frequently follow the pattern that one
starts on a road of low status, keeps changing to roads of higher status, drives the
largest fraction of the path on a road of high status and finally changes down to
lower status roads near the target. A heuristic approach may therefore restrict the

210 10 Shortest Paths

search to high-status roads except for neighborhoods of source and target. Observe
however, that this heuristic sacrifices optimality. Try to think of an example from
your driving experience where shortcuts over small roads are required even far away
from source and target. Exactness can be combined with the idea of hierarchies if the
hierarchy is defined algorithmically and is not taken from the official classification
of roads. We outline one such approach [155], called highway hierarchies. It first
defines a notion of locality, say anything within a distance of ten kilometers from
either source or target. An edge (u, v) ∈ E is a highway edge with respect to this
notion of locality if there is a source node s and a target node t such that (u, v)
is on the fastest path from s to t, v is not in the local search radius of s, and u
is not in the local (backwards) search radius of t. The resulting network is called
the highway network. It usually has many vertices of degree two. Think of a fast
road into which a slow road connects. The slow road is not used on any fastest path
outside the local region of source or target and hence will not be in the highway
network. Thus the intersection will have degree three in the original road network,
but will have degree two in the highway network. Two edges joined by a degree-
two node may be collapsed into a single edge. In this way, the core of the highway
network is determined. Iterating this procedure of finding a highway network and
contracting degree-two nodes leads to a hierarchy of roads. For example, in the road
networks of Europe and North America a hierarchy of up to ten levels resulted. Route
planning using the resulting highway hierarchy can be several thousand times faster
than Dijkstra’s algorithm.

[ps new paragraph:]=⇒
Transit Node Routing: Using another observation from daily life, we can get even
faster [13]. When you drive to somewhere ‘far away’, you will leave your current lo-
cation via one of only a few ‘important’ traffic junctions. It turns out that in real world
road networks about 99 % of all quickest paths go through about O(

√
n) important

transit nodes that can be automatically selected, e.g., using highway hierarchies.
Moreover, for each particular source or target node, all long distance connections go
through about ten of these transit nodes — the access nodes. During preprocessing
we compute a complete distance table between the transit nodes and the distances
from all nodes to their access nodes. Now suppose we have a way to tell that source
s and target t are sufficiently far apart3. Then there must be access nodes as and at

such that µ(s, t) = µ(s, as) + µ(as, at) + µ(at, t). All these distances have been
precomputed and there are only about ten candidates for as and at respectably, i.e.,
we (only) need about 100 accesses to the distance table. This can be more than 1
000 000 times faster than Dijkstra’s algorithm. Local queries can be answered using
some other technique for which they are likely to be rather easy to handle, or we
can cover them using additional procomputed tables with more local information.
Figure ?? gives an example[todo: Am Ende transitHighRes.ps verwenden].=⇒
3 We may need additional preprocessing to decide this.

10.8 Implementation Notes 211

Fig. 10.12. Finding the optimal travel time between two points (the flags) somewhere between
Saarbrücken and Karlsruhe amounts to retrieving the 2× 4 access nodes (diamonds), per-
forming 16 table lookups between all pairs of access nodes, and checking that the two disks
defining the locality filter do not overlap. The small squares indicate further transit nodes.

10.8 Implementation Notes

Shortest path algorithms work over the set of extended reals
� ∪ {+∞,−∞}. We

may ignore −∞ since it is only needed in the presence of negative cycles and even
there it is only needed for the output, see Section ??. We can also get rid of +∞ by
noting that parent(v) = ⊥ iff d[v] = +∞, i.e., when parent(v) = ⊥, we assume
d[v] = +∞ and ignore the number stored in d[v].

A refined implementation of the Bellman-Ford algorithm [178, 127] explicitly
maintains a current approximation T of the shortest path tree. Nodes still to be
scanned in the current iteration of the main loop are stored in a set Q. Consider
the relaxation of an edge e = (u, v) that reduces d[v]. All descendants of v in T will
subsequently receive a new d-value. Hence, there is no reason to scan these nodes
with their current d-values and one may remove them from Q and T . Furthermore,
negative cycles can be detected by checking whether v is an ancestor of u in T .

C++: LEDA has special priority queue classes node_pq that places queue items in
graph nodes. Both LEDA and the Boost graph library [28] have implementations of
the algorithms of Dijkstra and Bellman-Ford and the algorithms for acyclic graphs
and the all-pairs problem. There is a graph iterator based on Dijkstra’s algorithm
that allows more flexible control of the search process. For example, you can use
it to search until a given set of target nodes has been found. LEDA also provides a
function that verifies the correctness of distance functions (see Exercise 177).

Java: JDSL [77] provides Dijkstra’s algorithm for integer edge costs. It allows sim-
ilarly detailed control over the search as the graph iterators of LEDA and Boost.

212 10 Shortest Paths

10.9 Historical Notes and Further Findings

Dijkstra [57], Bellman [16] and Ford [63] found their algorithms in the fifties. The
original version of Dijkstra’s algorithm had running time O(m + n2) and there is a
long history of improvements. Most improvements result from better data structures
for priority queues. We discussed binary heaps [195], Fibonacci heaps [67], bucket
heaps [54], and radix heaps [7]. Experimental comparisons can be found in [41, 127].
For integer keys, radix heaps are not the end of the story. The best theoretical result is
O(m + n log log n) time [183]. Interestingly, for undirected graphs, linear time can
be achieved [180]. The latter algorithm still settles nodes one after the other but not
in the same order as Dijkstra’s algorithm. [ps: removed duplicate mention of the
linear time results] [ps: moved Noshita citation to the place of the average=⇒
case theorem.]=⇒

Integrality of edge costs is of use also when negative edges costs are allowed.
If all edge costs are integers greater than −N , a scaling algorithm achieves time
O(m

√
n log N) [76].

In Section 10.7 we outlined a small number of speedup techniques for route
planning. Many other techniques exist. In particular, we have not mentioned ad-
vanced goal directed techniques, combinations of different techniques, etc. A re-
cent overview can be found in [156]. Theoretical performance guarantees beyond
Dijkstra’s algorithm are more difficult to achieve. Some work for specialized graph
families such as planar graphs, some only give approximations, and some combine
both kinds of restrictions, e.g., [? 184, 181]. [ps: Ãijberarbeitet. Aber vermutlich
hat Kurt noch konkretere Wuensche???]=⇒

A generalization of the shortest path problem considers several cost functions at
once. For example, your grandfather might want to know the fastest route for visiting
you but he only wants routes where he does not need to refuel his car or you may
want to know the fastest route subject to the condition that road toll does not exceed
a certain limit. Constrained shortest path problems are discussed in [84, 130].

Shortest paths can also be computed in geometric settings. In particular, there is
an interesting connection to optics. Different materials can have a different refractive
index which is related to the speed of light in this medium. Astonishingly, the laws
of optics dictate that a ray of light always travels along a shortest path.

Exercise 191. An ordered semi-group is a set S together with an associative and
commutative operation +, a neutral element 0, and a linear ordering ≤ such that for
all x, y, and z: x ≤ y implies x + z ≤ y + z. Which of the algorithms of this
chapter work for ordered semi-groups? Which work under the additional assumption
that 0 ≤ x for all x?

11

Minimum Spanning Trees

a
b

c d

7

9
6 3

4

2

The atoll Taka-Tuka-Land in the South Seas asks you for help. They want to con-
nect their islands by ferry lines. Since money is scarce, the total cost of the opened
connections should be minimal. It should be possible to travel between any two is-
lands but direct connections are not necessary. You are given a list of possible con-
nections together with their estimated cost. Which connections should be opened?

More generally, we want to solve the following problem: Consider a connected
undirected graph G = (V,E) with real edge costs c : E → �

+. A minimum span-

214 11 Minimum Spanning Trees

ning tree (MST) of G is defined by a set T ⊆ E of edges such that the graph (V, T)
is a tree c(T) :=

∑

e∈T c(e) is minimized. In our example, the nodes are islands,
the edges are possible ferry connections, and the costs are the costs of opening a
connection. Throughout this chapter, G denotes an undirected connected graph.

Minimum spanning trees (MSTs) are perhaps the simplest variant of an impor-
tant family of problems known as network design problems. Because MSTs are such
a simple concept, they also show up in many seemingly unrelated problems such
as clustering, finding paths that minimize the maximum edge cost used, or find-
ing approximations for harder problems. Section 11.9 has more on that. An equally
good reason to discuss MSTs in an algorithms text book is that there are simple,
elegant, and fast algorithms to find them. We will derive two simple properties of
MSTs in Section 11.1. They form the basis of most MST algorithms. The Jarník-
Prim algorithm grows an MST starting from a single node and will be discussed in
Section 11.2. Kruskal’s algorithm grows many trees in unrelated parts of the graph
and merges them into larger and larger trees. It will be discussed in Section 11.3.
An efficient implementation of the algorithm requires a data structure for maintain-
ing partitions of a set of elements under two operations: “determine whether two
elements are in the same subset” and “join two subsets”. We will discuss the so-
called union-find data structure in Section 11.4. It has many applications besides the
construction of minimum spanning trees.

Exercise 192. If the input graph is not connected, we may ask for a minimum span-
ning forest — a set of edges that defines an MST for each connected component of
G. Develop an efficient way to find minimum spanning forests using a single call
of a minimum spanning tree routine. Do not find connected components first. Hint:
insert n − 1 additional edges.

Exercise 193 (Spanning Sets). A set T of edges spans a connected graph G if (V, T)
is connected. Is a minimum cost spanning set of edges necessarily a tree? Is it a tree
if all edge costs are positive?

Exercise 194. Reduce the problem of finding maximum cost spanning trees to the
minimum spanning tree problem.

11.1 Cut and Cycle Properties

We prove two simple Lemmas which allow one to add edges to an MST and to
exclude edges from an MST. edges from consideration for an MST. We need the
concept of a cut in a graph. A cut in a connected graph is a subset E ′ of edges such
that G \ E′ is not connected. Here, G \ E′ is a short-hand for (V,E \ E′). If S is a
set of nodes with ∅ 6= S 6= V , the set of edges with exactly one endpoint in S forms
a cut. Figure 11.1 illustrates the proofs of the following Lemmas.

Lemma 31 (Cut Property). Let E ′ be a cut and let e be a minimal cost edge in E ′.
Then there is an MST T of G that contains e. Moreover, if T ′ is a set of edges that is

11.1 Cut and Cycle Properties 215

PSfrag replacements

u

u

v

v

u′ v′

e

e

e′

e′

E′

p p

T

Tu Tv

C

Fig. 11.1. Cut and Cycle Properties. The figure on the left illustrates the proof of the cut
property. e is an edge of minimum cost in the cut E ′ and p is a path in the MST connecting
the endpoints of e. p must contain an edge in E ′. The figure on the right illustrates the proof
of the cycle property. C is a cycle in G, e is an edge of C of maximal weight and T is an MST
containing e. Tu and Tv are the components of T \ e and e′ is an edge in C connecting Tu

and Tv .

contained in some MST and T ′ contains no edge in E′ then T ′∪{e} is also contained
in some MST.

Proof. We prove the second claim. The first claim follows by setting T ′ = ∅. Con-
sider any MST T of G with T ′ ⊆ T . Let u and v be the endpoints of e. Since T is
a spanning tree, it contains a path from u to v, say p. Since E ′ is a cut and u and v
are separated by it, p must contain an edge in E ′, say e′. Now, T ′′ := (T \ e′) ∪ e is
also a spanning tree, because removal of e′ splits T into two subtrees which are then
joined together by e. Since c(e) ≤ c(e′), we have c(T ′′) ≤ c(T), and hence, T ′′ is
also an MST.

Lemma 32 (Cycle Property). Consider any cycle C ⊆ E and an edge e ∈ C with
maximal cost among all edges of C. Then any MST of G′ = (V,E \ {e}) is also an
MST of G.

Proof. Consider any MST T of G. Suppose T contains e = (u, v). Edge e splits T
into two subtrees Tu and Tv . There must be another edge e′ = (u′, v′) from C such
that u′ ∈ Tu and v′ ∈ Tv . T ′ := (T \ {e}) ∪ {e′} is a spanning tree which does not
contain e. Since c(e′) ≤ c(e), T ′ is also an MST.

The cut property gives rise to a simple greedy algorithm for finding a minimum
spanning tree: start with an empty set T of edges. While T is not a spanning tree, let
E′ be a cut not containing any edge in T . Add a minimal cost edge in E ′ to T .

Different choices of E′ lead to different specific algorithms. We discuss two
approaches in detail in the following sections and outline a third approach in Sec-
tion 11.9. Also, we need to explain[ps was:detail] how to find a minimum cost edge ⇐=
in the cut.

The cycle property also gives rise to a simple algorithm for finding a minimum
spanning tree. Set T to the set of all edges. While T is not a spanning tree, find a

216 11 Minimum Spanning Trees

b

c

b

c

b 7

4

26
9

7

4

26
9

7

4

26
9

3 c 3 3d d d

a aa

Fig. 11.2. A sequence of cuts (dotted lines) corresponding to an execution of the Jarník-Prim
Algorithm with starting node a. The edges (a, c), (c, b) and (b, d) are added to the MST.

Function jpMST : Set of Edge
d = 〈∞, . . . ,∞〉 : NodeArray[1..n] of � ∪ {∞} // d[v] is the distance of v from the tree
parent : NodeArray of NodeId // parent[v] is shortest edge between S and v
Q : NodePQ // uses d[·] as priority
Q.insert(s) for some arbitrary s ∈ V
while Q 6= ∅ do

u :=Q.deleteMin
d[u] :=0 // d[u] = 0 encodes u ∈ S
foreach edge e = (u, v) ∈ E do

if c(e) < d[v] then // c(e) < d[v] implies d[v] > 0 and hence v 6∈ S
d[v] :=c(e)
parent[v] :=u
if v ∈ Q then Q.decreaseKey(v) else Q.insert(v)

invariant ∀v ∈ Q : d[v] = min {c((u, v)) : (u, v) ∈ E ∧ u ∈ S}
return {(v, parent [v]) : v ∈ V \ {s}}

Fig. 11.3. The Jarník-Prim MST Algorithm. Positive edge costs are assumed.

cycle in T and delete an edge of maximal cost from T . No efficient implementation
of this approach is known and we will not discuss it further.

Exercise 195. Show that the MST is uniquely defined if all edge costs are different.
Show that in this case the MST does not change if each edge cost is replaced by its
rank among all edge costs.

11.2 The Jarník-Prim Algorithm

The Jarník-Prim (JP) algorithm for MSTs is very similar to Dijkstra’s algorithm for
shortest paths.1 Starting from an (arbitrary) source node s, the JP algorithm grows
a minimum spanning tree by adding one node after the other. At any iteration, S is
the set of nodes already added to the tree and the cut E ′ is the set of edges with
1 Actually Dijkstra also describes this algorithm in his seminal 1959 paper on shortest paths

[57]. Since Prim described the same algorithm two years earlier it is usually named after
him. However, the algorithm actually goes back to a 1930 paper by Jarník [96].

11.3 Kruskal’s Algorithm 217

c d

b

c

b

c

b

c

b 7

4

26
9

3

7

4

26
9

3

7

4

26
9

3

7

4

26
9

3 d d d

aa aa

Fig. 11.4. In this example, Kruskal’s algorithm first proves that (b, d) and (b, c) are MST
edges using the cut property. Then (c, d) is excluded because it is the heaviest edge on the
cycle 〈b, c, d〉, and, finally, (a, b) completes the MST.

exactly one endpoint in S. A minimum cost edge leaving S is added to the tree
in every iteration. The main challenge is to find this edge efficiently. To this end,
the algorithm maintains the shortest connection between any node v ∈ V \ S to
S in a priority queue Q. The smallest element in Q gives the desired edge. When a
node is added to S, its incident edges are checked to see whether they yield improved
connections to nodes in V \S. Figure 11.3 shows the pseudocode for the JP algorithm
and Figure 11.2 illustrates an execution. When node u is added to S and an incident
edge e = (u, v) is inspected, the algorithm needs to know whether v ∈ S. A bit-
vector could be used to encode this information. When all edge costs are positive,
we may reuse the d-array to encode this information. For any node v, d[v] = 0
encodes v ∈ S and d[v] > 0 encodes v 6∈ S. This small trick does not only save
space, but also saves a comparison in the innermost loop. Observe that c(e) < d[v]
is only true if d[v] > 0, i.e., v 6∈ S, and e is an improved connection for v to S.

The only important difference to Dijkstra’s algorithm is that the priority queue
stores edge costs rather than path lengths. The analysis of Dijkstra’s algorithm car-
ries over to the JP algorithm, i.e., the use of a Fibonacci heap priority queue yields
running time O(n log n + m).

Exercise 196. Dijkstra’s algorithm for shortest paths can use monotone priority
queues. Show that monotone priority queues do not suffice for the JP algorithm.

*Exercise 197 (Average case analysis of the JP algorithm) Assume the edge costs
1,. . . ,m are randomly assigned to the edges of G. Show that the expected num-
ber of decreaseKey operations performed by the JP algorithm is then bounded by
O
(

n log m
n

)

. Hint: the analysis is very similar to the average case analysis of Dijk-
stra’s algorithm in Theorem 29.

11.3 Kruskal’s Algorithm

The JP algorithm is probably the best general purpose MST algorithm. Nevertheless,
we will now present an alternative algorithm, Kruskal’s algorithm [113]. It also has
its merits. In particular, it does not need a sophisticated graph representation, but
already works when the graph is represented by its list of edges. Also for sparse
graphs with m = O(n), its running time is competitive with the JP algorithm.

218 11 Minimum Spanning Trees

Function kruskalMST(V, E, c) : Set of Edge
T :=∅
invariant T is a subforest of an MST
foreach (u, v) ∈ E in ascending order of cost do

if u and v are in different subtrees of T then
T :=T ∪ {(u, v)} // join two subtrees

return T

Fig. 11.5. Kruskal’s MST algorithm.

The pseudocode given in Figure 11.5 is extremely compact. The algorithm scans
over the edges of G in order of increasing cost and maintains a partial MST T ; T
is empty initially. The algorithm maintains the invariant that T can be extended to
an MST. When an edge e is considered, it is either discarded or added to the MST.
The decision is made on the basis of the cycle or cut property. The endpoints of e
either belong to the same connected component of (V, T) or not. In the former case,
T ∪ e contains a cycle and e is an edge of maximum cost in this cycle; here it is
essential that edges are considered in order of increasing cost. Therefore e can be
discarded by the cycle property. In the latter case, e is a minimum cost edge in the
cut E′ consisting of all edges connecting distinct components of (V, T); again, it is
essential that edges are considered in order of increasing cost. We may therefore add
e to T by the cut property. The invariant is maintained.

The most interesting algorithmic aspect of Kruskal’s algorithm is how to im-
plement the test whether an edge connects to components of (V, T). In the next
section we will see that this can be implemented very efficiently so that the main
cost factor is sorting the edges. This takes time O(m log m) if we use an efficient
comparison-based sorting algorithm. The constant factor involved is rather small so
that for m = O(n) we can hope to do better than the O(m + n log n) JP algorithm.

Exercise 198 (Streaming MST). Suppose the edges of a graph are presented to you
only once (for example over a network connection) and you do not have enough
memory to store all of them. The edges do not necessarily arrive in sorted order.

1. Outline an algorithm that nevertheless computes an MST using space O(V).
*b) Refine your algorithm to run in time O(m log n). Hint: Process batches of O(n)

edges or use the dynamic tree data structure by Sleator and Tarjan [172].

11.4 The Union-Find Data Structure

A partition of a set M is a collection M1, . . . , Mk of subsets of M with the property
that the subsets are disjoint and cover M , i.e., Mi ∩ Mj = ∅ for i 6= j and M =
M1∪· · ·∪Mk. The subsets Mi are also called the blocks of the partition. For example,
in Kruskal’s algorithm the forest T partitions V . The blocks of the partition are the
connected components of (V, T). Some components may be trivial and consist of a

11.4 The Union-Find Data Structure 219

Class UnionFind(n : �) // Maintain a partition of 1..n
parent = 〈1, 2, . . . , n〉 : Array [1..n] of 1..n ...

1 2 nseniority = 〈0, . . . , 0〉 : Array [1..n] of 0.. log n // seniority of representatives

Function find(i : 1..n) : 1..n
if parent[i] = i then return i

else i′ :=find(parent[i]) // path compression
i’

i

PSfrag replacements parent [i]parent[i] :=i′

return i′

Procedure link(i, j : 1..n)
assert i and j are representatives of different blocks
if seniority[i] < seniority [j] then parent[i] :=j

else
2 3

3

3

i

i j i j

j2 2i j
parent[j] :=i
if seniority[i] = seniority [j] then seniority[i]++

Procedure union(i, j : 1..n)
if find(i) 6= find(j) then link(find(i), find(j))

Fig. 11.6. An efficient Union-Find data structure maintaining a partition of the set {1, . . . , n}.

single isolated node. Kruskal’s algorithms performs two operations on the partition:
testing whether two elements are in the same subset (subtree) and joining two subsets
into one (inserting an edge into T).

The union-find data structure maintains a partition of the set 1..n and supports
these two operations. Initially, each element is a block of its own. Each block chooses
one of its elements as its representative; the choice is made by the data structure and
not by the user. The function find(i) returns the representative of the block contain-
ing i. Thus, testing whether two elements are in the same block, amounts to compar-
ing their respective representatives. Operation link(i, j) applied to representatives of
different blocks joins the blocks.

A simple solution is as follows: each block is represented as a rooted tree2 with
the root being the representative of the block. Each element stores its parent in this
tree (array parent). We have self-loops at the roots.

The implementation of find(i) is trivial. We follow parent pointers until we en-
counter a self-loop. The self-loop is at the representative of i. The implementation
of link(i, j) is equally simple. We simply make one representative the parent of the
other. Then this represenative ceases to be a representative and the other becomes the
representative of the combined blocks. What we have said so far yields a correct but
inefficient union-find data structure. The parent references could form long chains
that are traversed again and again during find operations. In the worst case, each
operation may take linear time.
2 Note that this tree may have a very different structure compared to the corresponding sub-

tree in Kruskal’s algorithm.

220 11 Minimum Spanning Trees

Exercise 199. Give an example for an n node graph with O(n) edges where a naive
implementation of the union-find data structure without balancing or path compres-
sion would lead to quadratic execution time for Kruskal’s algorithm.

Therefore, Figure 11.6 makes two optimizations. The first optimization limits
the maximal depth of the trees representing blocks. Every representative stores a
non-negative integer which we call its seniority . Initally, every element is a repre-
sentative and has seniority zero. When we link two representatives and their seniority
is different, we make the representative of smaller seniority a child of the representa-
tive of larger seniority. When their seniority is the same, the choice of who becomes
parent is arbitrary; however, we increase the seniority of the new root. We refer to
the first optimization as union by seniority.

Exercise 200. Assume that the second optimization is not used. Show that the se-
niority of a representative is the height of the tree rooted at it.

Theorem 32. Union by seniority ensures that the depth of no tree exceeds log n.

Proof. Without path compression the seniority of a representative is equal to the
height of the tree rooted at it. Path compression does not increase heights. It there-
fore suffices to prove that seniority is bounded by log n. We show that a tree whose
root has seniority k contains at least 2k elements. This is certainly true for k = 0.
The seniority of a root grows from k − 1 to k, when it receives a child of seniority
k − 1. Thus the root had at least 2k−1 descendants before the link operation and it
receives a child which also had at least 2k−1 descendants. So the root has at least 2k

descendants after the link operation.

The second optimization is called path compression. It ensures that a chain of
parent references is never traversed twice. Rather, all nodes visited during an op-
eration find(i), redirect their parent pointer directly to the representative of i. In
Figure 11.6, we have formulated this rule as a recursive procedure. It first traverses
the path from i to its represenative and then uses the recursion stack to traverse the
path back to i. When the recursion stack is unraveled, the parent pointers are redi-
rected. Alternatively, one may direct the path twice in forward direction. In the first
traversal, one finds the representative, and in the second traversal, one redirects the
parent pointers.

Exercise 201. Describe a non-recursive implementation of find .

Union by seniority and path compression make the union-find data structure
“breath-takingly” efficient — the amortized cost of any operation almost constant.

Theorem 33. The union-find data structure of Figure 11.6 realizes m find and n− 1
link operations in time O(mαT (m,n)). Here

αT (m,n) = min {i ≥ 1 : A(i, dm/ne) ≥ log n}

where

11.4 The Union-Find Data Structure 221

A(1, j) = 2j for j ≥ 1

A(i, 1) = A(i − 1, 2) for i ≥ 2

A(i, j) = A(i − 1, A(i, j − 1)) for i ≥ 2 and j ≥ 2

Proof. The proof of this theorem is beyond the scope of this introductory text. We
refer the reader to [166] and [175].

You probably find the formulae overwhelming. The function3 A grows ex-
tremely fast. We have A(1, j) = 2j , A(2, 1) = A(1, 2) = 22 = 4, A(2, 2) =

A(1, A(2, 1)) = 24 = 16, A(2, 3) = A(1, A(2, 2)) = 216, A(2, 4) = 2216

,

A(2, 5) = 22216

, A(3, 1) = A(2, 2) = 16, A(3, 2) = A(2, A(3, 1)) = A(2, 16),
and so on.

Exercise 202. Estimate A(5, 1).

For all practical n, we have αT (m,n) ≤ 5, and union-find with union by senior-
ity and path compression essentially guarantees constant amortized cost per opera-
tion.

We close this section with an analysis of union-find with path compression but
without union by seniority. The analysis illustrates the power of path compression
and also gives a glimpse of how Theorem 33 can be proved.

[ps: The following theorem does not give much new insight into the com-
plexity of the combined routine and has a remarkably difficult to understand
proof. Drop? Or make easier to understand ?] ⇐=

Theorem 34. The union-find data structure with path compression but without union
by seniority processes m find and n − 1 link operations in time O((m + n) log n).

Proof. [say sth like “It suffices to count parent update ... therefore ...” as an
introduction?] We assign a weight to every node of our data structure. The weight ⇐=
of a node is the maximal number of descendants of the node (including itself) during
the evolution of the data structure. Observe that the weight of a node may increase as
long as the node is a representative, has maximal value when the node ceases to be a
representative, and may decrease[ps does not understand how the decreas can
happen.] due to find operations. We write w(x) for the weight of node x. Weights ⇐=
are integers in the range 1..n. All edges ever existing in our data structure go from
nodes of smaller weight to nodes of larger weight.

[ps: there is a barrage of interconnected definitions here. Not so easy
to understand.] The span of an edge in our data structure is defined as the weight ⇐=
difference of its endpoints. We say that an edge has class i if its span lies in the range
2i..2i+1 − 1. The class of any edge lies between 0 and dlog ne inclusive[ps: is this
correct English?]. ⇐=

Consider a particular node x. The first edge out of x is created when x ceases to
be a representative. [ps does not understand what the next phrase means.]Later ⇐=

3 The usage of the letter A is a reference to the logician Ackermann who first studied a
variant of this function in the late 1920s.

222 11 Minimum Spanning Trees

edges out of x are created when a find operation passes through the edge (x, parent(x))
and this edge is not the last edge traversed by the find. The new edge out of x has a
larger span.

[The first two thirds of this proof seems completely unmotivated until, at
the very end, things slowly start to make sense. But then we have already
losst 99.99??? of the readers? Explain the basic proof strategy at the begin-
ning?] We account for the edges out of x as follows. The first edge is charged to=⇒
the union operation. Consider now any edge e = (x, y) and the find operation which
destroys it. Let e have class i. The find operation traverses a path of edges. If e is the
last (= topmost) edge of class i traversed by the find, we charge the construction of
the new edge out of x to the find operation, otherwise, we charge it to x. Observe
that in this way,[ps added comma] at most 1 + dlog ne edges are charged to any=⇒
find operation[ps: why? This is not obvious to me.]. If the construction of the=⇒
new edge out of x is charged to x, there is another edge e′ = (x′, y′) following e
on the find path. Also, the new edge out of x has a span at least as large as the sum
of the spans of e and e′ since it goes to an ancestor (not necessarily proper[ps: is
this good English?]) of y′. Thus the new edge edge out of x has a spanof at least=⇒
2i + 2i = 2i+1 and hence is in class i + 1 or higher. We conclude that at most one
edge in each class is constructed for every node x. Thus the total number of edges
constructed is at most n + (n + m)(1 + dlog ne) and the time bound follows.

11.5 Certification of Minimum Spanning Trees

The Jarník-Prim and the Kruskal algorithm for minimum spanning trees are so sim-
ple that it is hard to implement them incorrectly[This is a reason why certification
is NOT interesting here. What about a more convincing intro? For example by
saying that MST algorithms for parallel or external memory are more com-
plicated and also more likely to suffer hardware errors?]. Of course, both of=⇒
them use data structures, namely priority queues and union-find, respectively[It is
not clear to ps why this makes certification interesting]. In this section, we want=⇒
to discuss certificates for minimum spanning trees. The cut property gives a simple
criterion.

Let T be a spanning tree. For any non-tree edge e, let pe be the path in T con-
necting the endpoints of e. If for any e ∈ E \T , the cost of e is at least as large at the
cost of any edge in pe, T is a minimum spanning tree. Can this criterion be checked
efficiently? A first way of doing it as follows. Select an arbitrary node r and make
it the root of T . Orient all edges of T towards the root. For any two nodes u and v,
let lca(u, v) be the lowest common ancestor of u and v. Then, for e = (u, v) the
path from u to v consists of the path from u to lca(u, v) followed by the path from
lca(u, v) to v. We can find the maximum cost edge on this path in time O(n) and
hence can check the cycle property for all edges in time O(mn). This is quite slow
compared to the construction time for MSTs.

We sketch an improvement. Let T = {e1, e2, . . . , en−1} be a minimum span-
ning tree where the edges are ordered such that c(e1) ≤ c(e2) ≤ . . . ≤ c(en−1). We

11.6 External Memory 223
PSfrag replacements

a

a

b

b

c

cd de e

1

1

2

2

33

4

4

Fig. 11.7. An MST and the corresponding auxiliary tree.

use an auxiliary tree TA[ps: changed Ta → TA everywhere to avoid confusion
with node a in the example. OK?] for visualizing the evolution of T as the edges ⇐=
of T are added in increasing order of cost: TA has n leaves, one for each node of
G, and n − 1 internal nodes, one for each edge of T . The internal nodes also rep-
resent subsets of nodes. The node for edge ei represents the connected component
of (V, {e1, . . . , ei}) containing ei. The children of the node for ei are the connected
components of (V, {e1, . . . , ei−1}) joined by ei. Figure 11.7 gives an example. Ta

has several useful properties. First, the cost of the edges associated with the inter-
nal nodes of any leaf to root path are in non-decreasing order. Second, for any edge
e = (u, v), the cost of the edge associated with lca(u, v) is the maximum cost edge
on pe. We therefore only have to check that c(e) is at least c(lca(u, v)). Fortunately,
there are very fast and compact data structures for the lca-problem [85, 23, 19]. They
can be constructed in linear time and find the least common ancestor of any pair of
nodes in constant time. With these data structures the verification of spanning trees
takes time O(n + m) plus the time to sort the spanning tree edges by weight. Lin-
ear time verification algorithms exist. [ps from here on new]These are based on ⇐=
sophisticated algorithms that can compute least common ancestors, or minima over
arbitrary intervals of an array in constant time [17]. Algorithms for MST verification
are also an ingredient of a randomized linear time algorithm outlined in Section 11.9.

11.6 External Memory

The MST problem is one of very few problems on graphs that is known to have an
efficient external memory algorithm. We will give a simple and elegant algorithm
that exemplifies many interesting techniques that are also useful for other external
memory algorithms or for computing MSTs in other models of computation. Our
algorithm is a composition of techniques that we have already seen: external sorting,
priority queues, and internal union-find. More details can be found in [52].

11.6.1 Semi-External Kruskal

We begin with an easy case. Suppose we have enough internal memory to store the
union-find data structure from Section 11.4 for n nodes. This is enough to implement

224 11 Minimum Spanning Trees

Kruskal’s algorithm in the external memory model. We first sort the edges using the
external memory sorting algorithm from Section 5.7. Then we scan the edges in
order of increasing weight and process them as described by Kruskal’s algorithm. If
an edge connects two subtrees, it is an MST edge and can be output; otherwise, it
is discarded. External memory graph algorithms that require Θ(n) internal memory
are called semi-external algorithms.

Exercise 203 (Streaming Algorithm). Consider a graph with n nodes and m edges.
The edges are stored in a file in no particular order. Suppose you have enough internal
memory to find an MST for any graph with n nodes and at most 2n edges. Explain
how to find the MST of the entire graph if you are only allowed to scan the input file
once.

11.6.2 Edge Contraction

If the graph has too many nodes for the semi-external algorithm of the preceding
section, we can try to reduce the number of nodes. This can be done using edge
contraction. Suppose, we know that e = (u, v) is an MST edge, e.g., because e
is the least weight edge incident to v. We add e and somehow need to remember
that u and v are already connected in the MST under construction. Above, we used
the union-find data structure to record this fact; now we use edge constraction to
encode the information into the graph itself. We identify u and v and replace them
by a single node. For simplicity, we call this node again u. In other words, we delete
v and relink all edges incident to v to u, i.e., any edge (v, w) now becomes edge
(u,w). Figure 11.8 gives an example. In order to keep track of the origin of relinked
edges, we associate an additional attribute with each edge that indicates its original
endpoints. With this additional information, an MST of the contracted graph is easily
translated back to the original graph. We simply replace each edge by its original.

We now have a blue print for an external MST algorithm: repeatedly find MST
edges and contract them. Once the number of nodes is small enough, switch to a
semi-external algorithm. The following section gives a particularly simple imple-
mentation of this idea.

11.6.3 Sibeyn’s Algorithm

Suppose V = 1..n. Consider the following simple strategy for reducing the number
of nodes from n to n′ [52]:

for v := 1 to n − n′ do
find the lightest edge (u, v) incident to v and contract it

Figure 11.8 gives an example with n = 4 and n′ = 2. The strategy looks deceivingly
simple. We need to discuss how we find the cheapest edge incident to v and how
we relink the other edges incident to v, i.e., how we inform the neighbors of v that
additional edges become incident to them. We can use a priority queue for both
purposes. For each edge, e = (u, v), we store the item

11.6 External Memory 225

output relink

was

...
output

relinkwas
c c

b

c
3

9

2
4

77

4

26
9

3

b 7

4

2
9

3

b
c

7 3

4 9d d d

d

a a

PSfrag replacements

(a, b)
(a

, b
)

(a, d)

(a, d)

(a, c)

(b, c)

(c, b)

(c, d)

(c, d)

(d, b)

Fig. 11.8. An execution of Sibeyn’s algorithm with n′ = 2. The edge (c, a, 6) is the cheapest
edge incident to a. We add it to the MST and merge a into c. The edge (a, b, 7) becomes
an edge (c, b, 7) and (a, d, 9) becomes (c, d, 9). In the new graph, (d, b, 2) is the cheapest
edge incident to b. We add it to the spanning tree and merge b into d. The edges (b, c, 3) and
(b, c, 7) become (d, c, 3) and (d, c, 7), respectively. The resulting graph has two nodes that are
connected by four parallel edges of weight 3, 4, 7, and 9, respectively.

Function sibeynMST(V, E, c) : Set of Edge
let π be a random permutation of 1..n
Q: priority queue // Order: min node, then min edge weight
foreach e = (u, v) ∈ E do

Q.insert(min {π(u), π(v)} , max {π(u), π(v)} , c(e), u, v))
current := 0 // we are just before processing node 1
loop

(u, v, c, u0, v0) :=min Q // next edge
if current 6= u then // new node

if u = n− n′ + 1 then break loop // node reduction completed
Q.deleteMin

output (u0, v0) // the original endpoints define an MST edge
(current , relinkTo) :=(u, v) // prepare for relinking remaining u-edges

else if v 6= relinkTo then
Q.insert((min {v, relinkTo} , max {v, relinkTo} , c, u0, v0)) // relink

S := sort(Q) // sort by increasing edge weight
apply semi-external Kruskal to S

Fig. 11.9. Sibeyns’s MST algorithm.

(min(u, v),max(u, v), weight of e, origin of e)

in the priority queue. The ordering is lexicographic by first and third components,
i.e., edges are ordered according to their lower number endpoint and for equal lower
numbered endpoint according to weight. The algorithm operates in phases. In each
phase, we select all edges incident to the current node. The lightest edge (= first edge
delivered by the queue), say (current , relinkTo), is added to the MST and all others
are relinked. In order to relink an edge (current , z, c, u0, v0) with z 6= RelinkTo,
we add (min(z,RelinkTo),max(z,RelinkTo), c, u0, v0) to the queue.

Figure 11.9 gives the details. For reasons that will become clear in the analysis,
we randomly renumber the nodes before starting the algorithm, i.e., we chose a ran-
dom permutation of the integers 1 to n and rename any node v as π(v). For any edge
e = (u, v) we store (min {π(u), π(v)} ,max {π(u), π(v)} , c(e), u, v)) in the queue.

226 11 Minimum Spanning Trees

[removed repetitive sentence] The main loop stops when the number of nodes is=⇒
reduced to n′. We complete the construction of the MST by sorting the remaining
edges and then running the semi-external Kruskal algorithm on them.

Theorem 35. The expected number of I/O steps required by algorithm sibeynMST

is O(sort(m ln(n/n′))) where sort denotes the I/O complexity of sorting.

Proof. From Section 6.3 we know that an external memory priority queue can ex-
ecute K queue operations using O(sort(K)) I/Os. Also, the semi-external Kruskal
at the end requires O(sort(m)) I/Os. Hence, it suffices, to count the number of op-
erations in the reduction phases. Besides the m insertions during initialization, the
number of queue operations is proportional to the sum of the degrees of the en-
countered nodes. Let the random variable Xi denote the degree of node i when
it is processed. [Umformuliert um Schachtelsatz zu entschÃd’rfen:] Since the=⇒
nodes are processed in random order, we can use linearity of expectation to evalu-
ate E[

∑

1≤i≤n−n′ Xi] =
∑

1≤i≤n−n′ E[Xi]. The number of edges in the contracted
graph is at most m so that the average degree of a graph n − i + 1 remaining nodes
is at most 2m/(n − i + 1). We get:

E[
∑

1≤i≤n−n′

Xi] =
∑

1≤i≤n−n′

E[Xi] ≤
∑

1≤i≤n−n′

2m

n − i + 1

= 2m





∑

1≤i≤n

1

i
−

∑

1≤i≤n′

1

i



 = 2m(Hn − Hn′)

= 2m(ln n − ln n′) + O(1) = 2m ln
n

n′
+ O(1) ,

where Hn :=
∑

1≤i≤n 1/i = ln n + Θ(1) is the n-th harmonic number (see Equa-
tion (A.12)).

Note that we could do without switching to semi-external Kruskal. However then
the logarithmic factor in the I/O complexity would become ln n rather than ln(n/n′)
and the practical performance would be much worse. Observe that n′ = Θ(M) is a
large number, say 108. For n = 1012, ln n is three times ln(n/n′).

Exercise 204. For any n give a graph with n nodes and O(n) edges where Sibeyn’s
algorithm without random renumbering would need Ω

(

n2
)

relink operations.

11.7 Applications

The MST problem is useful in attacking many other graph problems. We will discuss
the Steiner tree problem and the Traveling Salesman problem.

11.7 Applications 227

PSfrag replacements

node in S

node in V \ S

a b

c

u v

w x

yz

Fig. 11.10. Once around the tree: We have S = {v, w, z, y, z} and the minimum Steiner tree
is shown. The Steiner tree also involves the nodes a, b and c in V \S. Walking once around the
tree gives rise to the closed path 〈v, a, b, c, w, c, x, c, b, y, b, a, z, a, v〉. It maps into the closed
path 〈v, w, x, y, z, v〉 in the auxiliary graph.

11.7.1 The Steiner Tree Problem

We are given a non-negatively weighted undirected graph G = (V,E) and a set S
of nodes. The goal is to find a minimum cost subset T of the edges that connects
the nodes in S. Such a T is called a minimum Steiner tree. It is a tree connecting a
set U with S ⊆ U ⊆ V . The art is to choose U as to minimize the cost of the tree.
The minimum spanning tree problem is the special case that S consists of all nodes.
The Steiner tree problem arises naturally in our introductory example. Assume that
some of the islands in Taka-Tuka-land are unihabitated. The goal is to connect all the
inhabitated islands. The optimal solution will in general have some of the uninhabi-
tated islands in the solution.

The Steiner tree problem is NP-complete ??. We show how to construct a solution
which is within a factor two of optimum. We construct an auxiliary complete graph
with node set S: for any pair u and v of nodes in S, the cost of the edge (u, v) in the
auxiliary graph is their shortest path distance in G. Let TA be a minimum spanning
tree of the auxiliary graph. We obtain a Steiner tree of G by replacing every edge of
TA[ps was: T . Ab hier leicht umformuliert] by the path it represents in G. In the ⇐=
resulting subgraph of G we delete edges from cycles until it the remaining subgraph
is cycle-free. The cost of the resulting Steiner tree is at most the cost of TA.

Theorem 36. The algorithm above constructs a Steiner tree which is at most twice
the cost of an optimum Steiner tree.

Proof. The algorithm constructs a Steiner tree of cost at most c(TA). It therefore
suffices to show c(TA) ≤ 2c(Topt), where Topt is a minimum Steiner tree for S in
G. To this end, it suffices to show that the auxiliary graph has a spanning tree of cost
2c(Topt). Figure 11.10 indicates how to construct such a spanning tree. “Walking
once around the Steiner tree” defines a closed path in G of cost 2c(Topt); observe
that every edge in Topt occurs exactly twice in this path. Deleting the nodes outside
S in this path gives us a closed path in the auxiliary graph. The cost of this path is at
most 2c(Topt), because edge costs in the auxilary graph are shortest path distances in
G. The closed path in the auxiliary graph spans S and therefore the auxiliary graph
has a spanning tree of cost at most 2c(Topt).

228 11 Minimum Spanning Trees

Exercise 205. Improve the bound to 2(1 − 1/|S|) times the optimum.

The algorithm can be implemented to run in time O(m + n log n) [122]. Algo-
rithms with better approximation ratio exist [153].

Exercise 206. Outline an implementation of the algorithm above and analyse its run-
ning time.

11.7.2 Traveling Salesman Tours

[ps: inserted sentence]Here is one of most intensively studied optimization prob-=⇒
lems [1, 114, 11]: Given an undirected complete [ps removed: edge-weighted
(abschreckend)] graph on node set V with edge weights c(e), the goal is to find the=⇒
minimum weight simple cycle [was:closed path] passing through all nodes. This is=⇒
the path a traveling salesman would want to take whose goal is it to visit all nodes
of the graph. We assume for this section that the edge weights satisfy the triangle
inequality, i.e., c(u, v) + c(v, w) ≥ c(u,w) for all nodes u, v, and w. Then there
is always an optimal round-trip which visits no node twice (because leaving it out,
would not increase the cost).

Theorem 37. Let Copt and CMST be the cost of an optimum tour and a minimum
spanning tree, respectively. Then

CMST ≤ Copt ≤ 2CMST .

Proof. Let C be an optimal tour. Deleting any edge from C yields a spanning tree.
Thus CMST ≤ Copt. Conversely, let T be a minimum spanning tree. Walking once
around the tree as shown in Figure 11.10 gives us a cycle[ps was: closed path]=⇒
of cost at most 2CMST passing through all nodes. It may visit nodes several times.
Deleting an extra visit to a node does not increase cost due to the triangle inequality.

In the remainder of this section, we will briefly outline a technique for improving
the lower bound of Theorem 37. We need two additional concepts: 2-tree and poten-
tial function. A minimum 2-tree consists of the two cheapest edges incident to node 1
and a minimum spanning tree of G \ 1[ps: define this notation somewhere? Re-
formulate to avoid it?]. Since deleting the two edges incident to node 1 from a tour=⇒
C yields a spanning tree of G \ 1, we have C2 ≤ Copt, where C2 is the minimum
cost of a 2-tree. [ps: refer to definition in SSSP chapter? shorter here? forward
ref there?]A potential function is any real-valued function π defined on the nodes=⇒
of G. Any potential function gives rise to a modified cost function cπ by defining

cπ(u, v) = c(u, v) + π(v) + π(u)

for any pair u and v of nodes. For any tour C, the cost under c and cπ differ by
2Sπ := 2

∑

v π(v) since a tour uses exactly two edges incident to any node. Let Tπ

be a minimum 2-tree with respect to cπ . Then

11.8 Implementation Notes 229

cπ(Tπ) ≤ cπ(Copt) = c(Copt) + 2Sπ

and hence
c(Copt) ≥ max

π
(cπ(Tπ) − 2Sπ) .

This lower bound is known as the Held-Karp lower bound [87, 88]. The maximum
is over all potential functions π. It is hard to compute the lower bound exactly. How-
ever, there are fast iterative algorithms for approximating it. The idea is as follows
and we refer the reader to the original papers for details. Assume we have a potential
function π and the optimal 2-tree Tπ with respect to it. If all nodes of Tπ have degree
two, we have a Traveling Salesman tour and stop. Otherwise, we make the edges in-
cident to nodes of degree larger than two a bit more expensive and the edges incident
to nodes of degree one a bit cheaper. This can be done by modifiying the potential
function as follows. We define a new potential function π′ by

π′(v) = π(v) + ε · (deg(v, Tπ) − 2)

where ε is a parameter which goes to zero with the iteration number and deg(v, Tπ)
is the degree of v in Tπ . We next compute an optimum 2-tree with respect to π′ and
hope that it will yield a better lower bound.

11.8 Implementation Notes

The minimum spanning tree algorithms discussed in this chapter are so fast that
running time is usually dominated by the time to generate the graphs and appro-
priate representations. If an adjacency array representation of undirected graphs as
described in Section 8.2 is used, then the JP algorithm works well for all m and n
in particular if pairing heaps [135] are used for the priority queue. Kruskal’s algo-
rithm may be faster for sparse graphs, in particular, if only a list or array of edges is
available or if we know how to sort the edges very efficiently.

The union-find data structure can be implemented more space efficiently by
exploiting the fact that only representatives need a seniority whereas only non-
representatives need a parent. We can therefore omit the array seniority in Fig-
ure 11.5. Instead, a root of seniority g stores the value n + 1 + g in parent . Thus,
instead of two arrays, only one array with values in the range 1..n + 1 + dlog ne is
needed. This is particularly useful for the semi-external algorithm.

C++: LEDA [115] uses Kruskal’s algorithm for computing minimum spanning
trees. The union-find data structure is called partition in LEDA. The Boost graph li-
brary [28] gives the choice between Kruskal’s algorithm and the JP algorithm. Boost
offers no public access to the union-find data structure.

Java: JDSL [77] uses the JP algorithm.

230 11 Minimum Spanning Trees

11.9 Historical Notes and Further Findings

The oldest MST algorithm is based on the cut property and uses edge contractions.
Boruvka’s algorithm [29, 140] goes back to 1926 and hence represents one of the
oldest graph algorithms. The algorithm operates in phases and identifies many MST
edges in each phase. In a phase, each node identifies the lightest incident edge. These
edges are added to the MST (here it is assumed that edge costs are pairwise distinct)
and then contracted. Each phase can be implemented to run in time O(m). Since
a phase at least halves the number of remaining nodes, only a single node is left
after O(log n) phases and hence the total running time is O(m log n). Boruvka’s
algorithm is not often used because it is somewhat complicated to implement. It is
nevertheless important as a basis for parallel MST algorithms.

There is a randomized linear time MST algorithm that uses phases of Boruvka’s
algorithm to reduce the number of nodes [102, 108]. The second ingredient of this al-
gorithm reduces the number of edges to about 2n: sample O(m/2) edges randomly;
find an MST T ′ of the sample; remove edges e ∈ E that are the heaviest edge on
a cycle in e ∪ T ′. The last step is rather difficult to implement efficiently. But at
least for rather dense graphs this approach can yield a practical improvement [105].
The linear time algorithm can also be parallelized [83]. An adaptation to the external
memory model [2] saves a factor ln(n/n′) in the asymptotic I/O complexity com-
pared to Sibeyn’s algorithm but is impractical for currently interesting n due to its
much larger constant factor in the O-notation.

The theoretically best known deterministic MST algorithm [36, 147] has the in-
teresting property that it has optimal worst case complexity although it is not exactly
known what this complexity is. Hence, if you come tomorrow with a completely
different deterministic MST algorithm and prove that your algorithm runs in linear
time, then we know that the old algorithm also runs in linear time.

Minimum spanning trees define a single path between any pair of nodes. Interest-
ingly, this path is a bottleneck shortest path [8, Application 13.3], i.e., it minimizes
the maximum edge cost for all paths connecting the nodes in the original graph.
Hence, finding an MST amounts to solving the all-pairs bottleneck shortest path
problem in time much less than for solving the all-pairs shortest path problem.

A related and even more frequently used application is clustering based on the
MST [8, Application 13.5]: by dropping k − 1 edges from the MST it can be split
into k subtrees. Nodes in a subtree T ′ are far away from the other nodes in the sense
that all paths to nodes in other subtrees use edges that are at least as heavy as the
edges used to cut T ′ out of the MST.

Many applications lead to MST problems on complete graphs. Frequently, these
graphs have a compact description, e.g., if the nodes represent points in the plane and
edge costs are Euclidian distances (so-called Euclidean minimum spanning trees). In
these situations, it is an important concern whether one can rule out most of the
edges as too heavy without actually looking at them. This is the case for Euclidean
MSTs. It can be shown that Euclidean MSTs are contained in the so-called Delaunay
triangulation [47] of the point set. It has linear size and and can be computed in time

11.9 Historical Notes and Further Findings 231

O(n log n). This leads to an algorithm of the same time complexity for Euclidean
MSTs.

We discussed the application of MSTs to the Steiner tree and the Traveling Sales-
man problem. We refer the reader to the books [8, 11, 114, 112, 188][added ref to
Aplegate et al. 2006. Does this supersede Lawler et al.? In this case remove
ref here and above.] for more information about these and related problems. ⇐=

12

Generic Approaches to Optimization

A smuggler in the mountainous region of Profitania has n items in his cellar. If he
sells item i across the border, he makes profit pi. However, the smuggler’s trade union
only allows him to carry knapsacks with maximum weight M . If item i has weight
wi, what items should he pack into the knapsack to maximize the profit in his next
trip?

This problem, usually called the knapsack problem, has many other applications.
The books [118, 106] describe many. For example, an investment banker might have
an amount M of capital to invest and a set of possible investments each with an ex-
pected profit pi for an investment wi. In this chapter, we use the knapsack problem
as a model problem to illustrate several generic approaches to optimization. These
approaches are quite flexible and can be adapted to complicated situations that are
ubiquitous in practical applications. In the previous chapters we considered very ef-
ficient specific solutions for frequently occurring simple problems such as finding
shortest paths or minimum spanning trees. Now we look at generic solution methods
that work for a much larger range of applications. Of course, the generic methods
usually do not obtain the same efficiency as specific solutions. But, they save devel-
opment time.

Formally, an optimization problem can be described by a set U of potential so-
lutions, a set L of feasible solutions, and an objective function f : L → �

. In a
maximization problem, we are looking for a feasible solution x∗ ∈ L that maximizes
the objective value among all feasible solutions. In a minimization problem, we look
for a solution minimizing the objective value. In an existence problem, f is arbitrary
and the question is whether the set of feasible solutions is non-empty.

For example, in the case of the knapsack problem with n items, a potential solu-
tion is simply a vector x = (x1, . . . , xn) with xi ∈ {0, 1}. Here xi = 1 indicates that
“element i is put into the knapsack” and xi = 0 encodes that “element i is left out”.
Thus U = {0, 1}n. The profits and weights are specified by vectors p = (p1, . . . , pn)
and w = (w1, . . . , wn). A potential solution x is feasible if its weight does not ex-
ceed the capacity of the knapsack, i.e.,

∑

1≤i≤n wixi ≤ M . The dot-product w · x

234 12 Generic Approaches to Optimization

1

2
2

3

1

2

1 2 3 410
20

42

30

Instance

5 5 5

3

fractionaloptimalgreedy

Solutions:

M =

PSfrag replacements

p

w

M =

Fig. 12.1. The left part shows a knapsack instance with p = (10, 20, 15, 20), w = (1, 3, 2, 4),
and M = 5. The items are indicated as rectangles whose width and height correspond to
weight and profit, respectively. The right part shows three solutions: the one computed by the
greedy algorithm from Section 12.2, an optimal solution computed by the dynamic program-
ming algorithm from Section 12.3, and the solution of the linear relaxation (Section 12.1.1).
The optimal solution has weight 5 and profit 35.

is a convenient short-hand for
∑

1≤i≤n wixi. Then L = {x ∈ U : w · x ≤ M} is the
set of feasible solutions and f(x) = p · x is the objective function.

The distinction between minimization and maximization problems is not essen-
tial because setting f := −f converts a maximization problem into a minimization
problem and vice versa. We will use maximization as our default simply because our
model problem is more naturally viewed as a maximization problem.1

We will present seven generic approaches. We start out with black box solvers
that can be applied to any problem that can be formulated in the problem specifica-
tion language of the solver. Then the only task of the user is to formulate the given
problem in the language of the black box solver. Section 12.1 introduces this ap-
proach using linear programming and integer linear programming as examples. The
greedy approach that we have already seen in Section 11 is reviewed in Section 12.2.
The dynamic programming approach discussed in Section 12.3 is a more flexible way
to construct solutions. We can also systematically explore the entire set of potential
solutions as described in Section 12.4. Constraint programming and SAT-solvers are
special cases of systematic search. Finally we discuss two very flexible approaches to
explore only a subset of the solution space. Local search, discussed in Section 12.5,
modifies a single solution until it has the desired quality. Evolutionary algorithms,
explained in Section 12.6, simulate a population of solution candidates.

12.1 Linear Programming — A Black Box Solver

The easiest way to solve an optimization problem is to write down a specification of
the space of feasible solutions and of the objective function and then use an existing
software package to find an optimal solution. Of course, the question is for what kind
1 Be aware that most of the literature uses minimization as its default.

12.1 Linear Programming — A Black Box Solver 235

feasible solutions

better
solutions

PSfrag replacements

x

y

y ≤ 6

x + y ≤ 8
2x− y ≤ 8

x + 4y ≤ 26

(2,6)

Fig. 12.2. A simple two-dimensional linear program in variables x and y with three constraints
and the objective “maximize x + 4y”. The feasible region is shaded and (x, y) = (2, 6) is the
optimal solution. Its objective value is 26. The vertex (2, 6) is optimal because the half-plane
x + 4y ≤ 26 contains the entire feasible region and has (2, 6) in its boundary.

of specifications are general solvers available? Here we introduce a particularly large
class of problems for which efficient black box solvers are available.

Definition 2. A Linear Program (LP)2 with n variables and m constraints is a max-
imization problem defined on a vector x = (x1, . . . , xn) of real-valued variables.
The objective function is a linear function f in x, i.e., f :

� n → �
with f(x) = c · x

where c = (c1, . . . , cn) is the so-called cost or profit3vector. The variables are con-
strained by m linear constraints of the form ai · x ./i bi where ./i∈ {≤,≥,=} and
ai = (ai1, . . . , ain) ∈ � n and bi ∈ �

for i ∈ 1..m. The set of feasible solutions is
given by

L = {x ∈ � n : ∀i ∈ 1..m and j ∈ 1..n : xj ≥ 0 ∧ ai · x ./i bi} .

Figure 12.2 shows a simple example. A classical application of linear program-
ming is the so-called diet problem. A farmer wants to mix food for his cows. There
are n different kinds of food on the market, say, corn, soya, fish meal,. . . . One kilo-
gram of food j costs cj Euro. There are m requirements for healthy nutrition, e.g.,
the cows should get enough calories, proteins, Vitamin C, and so on. One kilo-
gram of food j contains aij percent of a cow’s daily requirement with respect to
requirement i. Then a solution to the following linear program gives a cost optimal
diet satisfying the health constraints: let xj denote the amount (in kilos) of food j
used by the farmer. The i-th nutritional requirement is modelled by the inequality
2 The term “linear program” stems from the 1940s [46] and has nothing to do with the mod-

ern meaning of “program” as in “computer program”.
3 It is common to use the term profit in maximization problems and cost in minimizations

problems.

236 12 Generic Approaches to Optimization

∑

j aijxj ≥ 100. The cost of the diet is given by
∑

j cjxj . The goal is to minimize
the cost of the diet.

Exercise 207. How do you model supplies that are available only in limited amounts,
e.g., food produced by the farmer himself? Also explain how to specify additional
constraints such as “no more than 0.01mg Cadmium contamination per cow and
day”.

Can the knapsack problem be formulated as a linear program? Probably not, the
reason being that the items in the knapsack problem must either put fully into the
knapsack or left out completely. There is no possibility of adding an item partially.
In contrast, it is assumed in the diet problem that any arbitrary amount of any food
can be purchased, e.g., 3.7245 kilos and not just 3 kilos or 4 kilos. Integer linear
programs, see Section 12.1.1, are the right tool for the knapsack problem.

We next connect linear programming to the problems we have studied in previ-
ous chapters of the book. We show how to formulate the single-source shortest path
problem with non-negative edge weights as a linear program. Let G = (V,E) be a
directed graph, s ∈ V the source node, and let c : E → �

≥0 be the cost function
on the edges of G. In our linear program, we have a variable dv for every vertex of
the graph. The intention is that dv denotes the cost of the shortest path from s to v.
Consider

maximize
∑

v∈V

dv

subject to ds = 0

dw ≤ dv + c(e) for all e = (v, w) ∈ E

Theorem 38. Let G = (V,E) be a directed graph, s ∈ V a designated vertex, and
c : E → �

≥0 a non-negative cost function. If all vertices of G are reachable from s,
the shortest path distances in G are a solution to the linear program above.

Proof. Let µ(s, v) be the length of the shortest path from s to v. Then µ(s, v) ∈ �
≥0

since all nodes are reachable from s and hence no vertex can have distance +∞
from s. We observe first that dv :=µ(s, v) for all v satisfies the constraints of the LP.
Indeed, µ(s, s) = 0 and µ(s, w) ≤ µ(s, v) + c(e) for any edge e = (v, w).

We next show that if (dv)v∈V satisfies all constraints of the LP above, then
dv ≤ µ(s, v) for all v. Consider any v, and let s = v0, v1, . . . , vk = v be a
shortest path from s to v. Then µ(s, v) =

∑

0≤i<k c(vi, vi+1). We show dvj
≤

∑

0≤i<j c(vi, vi+1) by induction on j. For j = 0, this follows from ds = 0 by the
first constraint. For j > 0, we have

dvj
≤ dvj−1

+c(vj−1, vj) ≤
∑

0≤i<j−1

c(vi, vi+1)+c(vj−1, vj) =
∑

0≤i<j

c(vi, vi+1) ,

where the first inequality follows from the second set of constraints of the LP and
the second inequality comes from the induction hypothesis.

12.1 Linear Programming — A Black Box Solver 237

We have now shown that (µ(s, v))v∈V is a feasible solution and that dv ≤ µ(s, v)
for all v for any feasible solution (dv)v∈V . Since the objective of the LP is to maxi-
mize the sum of the dv , we must have dv = µ(s, v) for all v in the optimal solution
to the LP.

Exercise 208. Where does the proof above fail, when not all nodes are reachable
from s or when there are negative weights? Does it still work in the absence of
negative cycles?

The proof that the LP above actually captures the shortest path problem is non-
trivial. When you formulate a problem as an LP, you should always prove that the
LP is indeed a correct description of the problem that you are trying to solve.

Exercise 209. Let G = (V,E) be a directed graph and s and t be two nodes. Let
cap : E → �

≥0 and c : E → �
≥0 be non-negative functions on the edges of G. For

an edge e, we call cap(e) and c(e) the capacity and cost of e, respectively. A flow is
a function f : E → �

≥0 with 0 ≤ f(e) ≤ cap(e) for all e and flow conservation at
all nodes except s and t, i.e., for all v 6= s, t we have

flow into v =
∑

e=(u,v)

f(e) =
∑

e=(v,w)

f(e) = flow out of v .

The value of the flow is the net flow out of s, i.e.,
∑

e=(s,v) f(e)−∑e=(u,s) f(e). The
maximum flow problem asks for a flow of maximum value. Show that this problem
can be formulated as an LP.

The cost of a flow is
∑

e f(e)c(e). The minimum cost maximum flow problem
asks for a maximum flow of minimum cost. Show how to formulate this problem as
an LP.

Linear programs are so important because they combine expressive power with
efficient solution algorithms.

Theorem 39. Linear programs can be solved in polynomial time [107, 103].

The worst case running time of the best algorithm known is Omax m,n7/2L. In
this bound it is assumed that all coefficients cj , aij , and bi are integers with absolute
value bounded by 2L; n and m are the number of variables and constraints, respec-
tively. Fortunately, the worst case rarely arises. Most linear programs can be solved
relatively quickly by several procedures. One, the simplex algorithm, is briefly out-
lined in Section 12.5.1. For now, we should remember two facts: first, many problems
can be formulated as linear programs, and second, there are efficient linear program
solvers that can be used as black boxes. In fact, although LP solvers are used on a
routine basis, very few people in the world know exactly how to implement a highly
efficient LP solver.

238 12 Generic Approaches to Optimization

12.1.1 Integer Linear Programming

The expressive power of linear program grows when some or all of the variables can
be designated to be integral. Such variables can then take on only integer values and
not arbitrary real values. If all variables are constrained to be integral, the problem
formulation is called an Integer Linear Program (ILP). If some, but not all, variables
are constrained to be integral, the problem formulation is called a Mixed Integer
Linear Program (MILP). For example, our knapsack problem is tantamount to the
following 0-1 integer linear program

maximize p · x

subject to
w · x ≤ M, and xi ∈ {0, 1} for i ∈ 1..n .

A 0-1 integer programming problem is one, where the variables are constrained to
the values 0 and 1.

Exercise 210. Explain how to replace any ILP by a 0-1 ILP assuming that you know
an upper bound U on the value of any variable in the optimal solution. Hint: replace
any variable of the original ILP by a set of O(log U) 0-1 variables.

Unfortunately, solving ILPs and MILPs is NP-hard. Indeed, even the knapsack
problem is NP-hard. Nevertheless, ILPs can often be solved in practice using linear
programming packages. In Section 12.4 we will outline how this is done. When an
exact solution would be too time-consuming, linear programming can help to find
approximate solutions. The linear program relaxation of an ILP is the LP obtained
by omitting the integrality constraints for the variables. For example in the knapsack
problem we would replace the constraint xi ∈ {0, 1} by the constraint xi ∈ [0, 1].

The LP relaxation can be solved by LP solvers. In many cases, the solution to the
relaxation teaches us something about the underlying ILP. One observation always
holds true: the objective value of the relaxation is at least as large as the objective
value of the underlying ILP; this assumes a maximization problem. The claim is
trivial because any feasible solution to the ILP is also a feasible solution of the re-
laxation. The optimal solution to the LP relaxation will in general be fractional, i.e.,
variables take on rational values that are not integral. However, it might be the case
that only a few variables have non-integral values. By appropriate rounding of frac-
tional variables to integer values, we can often obtain good integer feasible solutions.

We give an example. The linear relaxation of the knapsack problem is given by:

maximize p · x

subject to
w · x ≤ M, and xi ∈ [0, 1] for i ∈ 1..n .

It has a natural interpretation. It is no longer required to add items completely to the
knapsack, one can now take any fraction of an item. In our smuggling “scenario”,

12.2 Greedy Algorithms — Never Look Back 239

the fractional knapsack problem corresponds to the situation of divisible goods such
as liquids or powders.

The fractional knapsack problem is easy to solve in time O(n log n); there is
no need for using a general purpose LP solver: Renumber (sort) the items by profit
density such that

p1

w1
≥ p2

w2
≥ · · · ≥ pn

wn
.

Find the smallest index j such that
∑j

i=1 wi > M (if there is no such index, we can
take all knapsack items). Now set

x1 = · · · = xj−1 = 1, xj = (M −
j−1
∑

i=1

wi)/wj , and xj+1 = · · · = xn = 0 .

Figure 12.1 gives an example. The fractional solution above is the starting point for
many good algorithms for the knapsack problem. We will see more of this later.

Exercise 211 (Linear relaxation of the knapsack problem).

1. Prove that the above routine computes an optimal solution. Hint: you might want
to use an exchange argument similar to the one used to prove the cut property of
minimum spanning trees in Section 11.1.

2. Outline an algorithm that computes an optimal solution in linear expected time.
Hint: use quickSelect of Section 5.5.

A solution to the fractional knapsack problem is easily converted to a feasible
solution of the knapsack problem. We simply take the fractional solution and round
the sole fractional variable xj to zero. We call this algorithm roundDown .

Exercise 212. Formulate the following set covering problem as an ILP: given a set
M , subsets Mi ⊆ M for i ∈ 1..n with ∪Mi = M , and a cost ci for each Mi. Select
F ⊆ 1..n such that

⋃

i∈F Mi = M and
∑

i∈F ci is minimized.

12.2 Greedy Algorithms — Never Look Back

The term greedy algorithm is used for a problem-solving strategy where the items
under consideration are inspected in some order, usually some carefully chosen or-
der, and the decision about the item, for example, whether to include it in the solution
or not, is made when the item is considered. Decisions are never reversed. The al-
gorithm for the fractional knapsack problem given in the preceding section follows
the greedy strategy; we considered the items in decreasing order of profit density.
The algorithms for shortest paths in Chapter 10 and for minimum spanning trees in
Chapter 11 also follow the greedy strategy. For the single-source shortest path prob-
lem with non-negative weights we considered the edges in order of tentative distance
of their source nodes. For these problems, the greedy approach led to an optimal
solution.

240 12 Generic Approaches to Optimization

1

42

2 23 31 2 1

3 3ro
un

dD
ow

n

gr
ee

dy4
2 1 1

1

1
greedy

roundDown,
optimalSolutions:Instance Solutions:Instance

=

PSfrag replacements

ww

p
p

M M

M

M

Fig. 12.3. Two instances of the knapsack problem. Left: For p = (4, 4, 1), w = (2, 2, 1), and
M = 3 greedy performs better than roundDown . Right: For p = (1, M − 1), w = (1, M)
both greedy and roundDown are far from optimal.

Usually, greedy algorithms only yield suboptimal solutions. Let us again con-
sider the knapsack problem. A typical greedy approach would be to scan the items in
order of decreasing profit density and to include items that still fit into the knapsack.
We call this algorithm greedy . Figures 12.1 and 12.3 give examples. Observe that
greedy always gives solutions at least as good as roundDown . Once roundDown

encounters an item that it cannot include, it stops. However, greedy keeps on looking
and often succeeds in including additional items of less weight. Although the exam-
ple in Figure 12.1 gives the same result for both greedy and roundDown , they are
different. For example, with profits p = (4, 4, 1), weights w = (2, 2, 1), and M = 3,
greedy includes the first and third item yielding profit 5 whereas roundDown in-
cludes just the first item and only obtains profit 4. Both algorithms may produce
solutions that are far from optimum. For example, for any capacity M consider the
two item instance with profits p = (1,M−1), and weights w = (1,M). Both greedy

and roundDown include only the first item which has high profit density but very
small absolute profit. In this case it would be much better to include just item two.

We turn this observation into an algorithm which we call round . It computes two
solutions: the solution xd proposed by roundDown and the solution xc choosing
exactly the critical item xj of the fractional solution. It then returns the better of the
two.

We can give an interesting performance guarantee. Algorithm round always
achieves at least 50 % of the profit of the optimal solution. More generally, we say
that an algorithm achieves approximation ratio α if for all inputs, its solution is at
most a factor α worse than the optimal solution.

Theorem 40. Algorithm round achieves approximation ratio 2.

Proof. Let x∗ denote any optimal solution and let xf be the optimal solution to the
fractional knapsack problem. Then p · x∗ ≤ p · xf . The objective function value is
further increased by setting xj = 1 in the fractional solution. We obtain

p · x∗ ≤ p · xf ≤ p · xd + p · xc ≤ 2max {p · xd, p · xc} .

There are many ways to refine algorithm round without sacrificing this approx-
imation guarantee. We can replace xd by the greedy solution. We can similarly aug-
ment xc with any greedy solution for the smaller instance where item j is removed
and the capacity is reduced by wj .

12.2 Greedy Algorithms — Never Look Back 241

We come to another important class of optimization problems, so-called schedul-
ing problems. Consider the following scenario, known as the scheduling problem for
independent weighted jobs on identical machines. We are given m identical machines
on which we want to process n jobs; execution of job j takes tj time units. An as-
signment x : 1..n → 1..m of jobs to machines is called a schedule. The maximum
load assigned to any machine is called the makespan of the schedule, formally

Lmax = max
1≤j≤m

∑

i; x(i)=j

ti .

The goal is to minimize the makespan of the schedule.
An application scenario is as follows. We have a video game processor with sev-

eral identical processor cores. The jobs would be tasks of a video game such as au-
dio processing, preparing graphics objects for the image processing unit, simulating
physical effects, simulating the game intelligence, and so on.

We next give a simple greedy algorithm for the problem above that has the ad-
ditional property that it does not need to know the job sizes in advance. We assign
jobs in the order they arrive. Algorithms with this property are known as online
algorithms. When job i arrives, we assign it to a machine with the smallest load.
Formally, we compute the loads `j =

∑

h<i∧x(h)=j th of all machines j, and assign
the new job to the most lightly loaded machine, i.e., x(i) := ji where ji is such that
`ji

= min1≤j≤m `j . This algorithm is frequently refered to as the shortest queue al-
gorithm. It does not guarantee optimal solutions, but always computes nearly optimal
solutions.

Theorem 41. Shortest queue ensures Lmax ≤ 1

m

n
∑

i=1

ti +
m − 1

m
max

1≤i≤n
ti.

Proof. In the schedule generated by the shortest queue algorithm some machine has
load Lmax. We focus on the job ı̂ that is the last job being assigned to the machine
with maximum load. When job ı̂ is scheduled, all m machines have load at least
Lmax − tı̂, i.e.,

∑

i6=ı̂

ti ≥ (Lmax − tı̂) · m .

Solving this for Lmax yields

Lmax ≤ 1

m

∑

i6=ı̂

ti + tı̂ =
1

m

∑

i

ti +
m − 1

m
tı̂ ≤

1

m

n
∑

i=1

ti +
m − 1

m
max

1≤i≤n
ti .

We are almost finished. We only need to observe that
∑

i ti/m and maxi ti are
lower bounds on the makespan of any schedule and hence also the optimal schedule.
We obtain:

Corollary 2. Algorithm shortest queue achieves approximation ratio 2 − 1/m.

242 12 Generic Approaches to Optimization

Proof. Let L1 =
∑

i ti/m and L2 = maxi ti. The makespan of the optimal solution
is at least max(L1, L2). The makespan of the shortest queue solution is bounded by

L1 +
m − 1

m
L2 ≤ mL1 + (m − 1)L2

m
≤ (2m − 1)max(L1, L2)

m

= (2 − 1

m
) · max(L1, L2) .

Algorithm shortest queue is no better than claimed above. Consider an instance
with n = m(m − 1) + 1, tn = m, and ti = 1 for i < n. The optimal solution has
makespan Lopt

max = m whereas the shortest queue algorithm produces a solution with
makespan Lmax = 2m − 1. The shortest queue algorithm is an on-line algorithm.
It produces a solution which is at most a factor 2 − 1/m worse than the solution
produced by an algorithm that knows the entire input. In such a situation, we say that
the online algorithm has competitive ratio α = 2 − 1/m.

*Exercise 213 Show that the shortest queue algorithm achieves approximation ratio
4/3 if the jobs are sorted by decreasing size.

*Exercise 214 (Bin packing.) Suppose a smuggler boss has perishable goods in her
cellar. She has to hire enough porters to ship all items tonight. Develop a greedy
algorithm that tries to minimize the number of people she needs to hire assuming
that they can all carry weight M . Try to show an approximation ratio for your bin
packing algorithm.

Boolean formulae are another powerful description language. Here variables
range over the boolean values 1 and 0 and the connectors ∧, ∨, and ¬ are used to
build formulae. A boolean formula is satisfiable if there is an assignment of boolean
values to the variables such that the formula evaluates to 1. We show how to formu-
late the pigeon-hole principle as a satisfiability problem: it is impossible to pack n+1
items into n bits such that every bin contains one item at most. We have variables xij

for 1 ≤ i ≤ n+1 and 1 ≤ j ≤ n. So i ranges over items and j ranges over bins. Ev-
ery item must be put into (at least) one bin, i.e., xi1∨ . . .∨xin for 1 ≤ i ≤ n+1. No
bin should receive more than one item, i.e., ¬(∨1≤i<h≤n+1xijxhj) for 1 ≤ j ≤ n.
The conjunction of these formula is unsatisfiable. SAT solvers decide the satisfiabil-
ity of boolean formulae.

Exercise 215. Formulate the pigeon-hole principle as an integer linear program.

12.3 Dynamic Programming — Building it Piece by Piece

For many optimization problems, the following principle of optimality holds: An
optimal solution is composed of optimal solutions to subproblems. If a subproblem
has several optimal solutions, it does not matter which one is used.

12.3 Dynamic Programming — Building it Piece by Piece 243

The idea behind dynamic programming is to build an exhaustive table of optimal
solutions. We start with trivial subproblems. We build optimal solutions for increas-
ingly larger problems by constructing them from the tabulated solutions to smaller
problems.

Again, we use the knapsack problem as an example. Define P (i, C) as the max-
imum profit possible when only items 1 to i can be put in the knapsack and the total
weight is at most C. Our goal is to compute P (n,M). We start with trivial cases and
work our way up. The trivial cases are “no items” and “total weight zero”. In both
cases, the maximum profit it zero. So

P (0, C) = 0 for all C and P (i, 0) = 0 .

Consider next the case i > 0 and C > 0. In the solution maximizing the profit we
either use item i or we do not use it. In the latter case, the maximum achievable profit
is P (i − 1, C). In the former case, the maximum achievable profit is P (i − 1, C −
wi)+pi since we obtain profit pi for item i and must use a solution of total weight at
most C−wi for the first i−1 items. Of course, the former alternative is only feasible
if C ≥ wi. We summarize the discussion in the following recurrence for P (i, C):

P (i, C) =

{

max(P (i − 1, C), P (i − 1, C − wi) + pi) if wi ≤ C

P (i − 1, C) if wi > C
(12.1)

Exercise 216. Show that the case distinction in the definition of P (i, C) can be
avoided by defining P (i, C) = −∞ for C < 0.

Using the recurrence, we can compute P (n,M) by filling a table P (i, C) with
one column for each possible capacity C and one row for each item i. Table 12.1
gives an example. There are many ways to fill this table, for example row by row. In
order to reconstruct a solution from this table, we work our way backwards starting
at the bottom right-hand corner of the table. Set i = n and C = M . If P (i, C) =
P (i− 1, C) we set xi = 0 and continue in row i− 1 with column C. Otherwise, we
set xi = 1. We have P (i, C) = P (i− 1, C −wi) + pi and therefore continue in row
i − 1 with column C − wi. We continue with this procedure until we arrive at row 0
by which time the solution (x1, . . . , xn) has been completed.

Exercise 217. Dynamic programming, as described above, needs to store a table with
Θ(nM) integers. Give a more space-efficient solution that stores only a single bit in
each table entry except for two rows of P (i, C) values at a time. What information is
stored in this bit? How is it used to reconstruct a solution? How can you get down to
one row of stored values? Hint: exploit your freedom in the order of filling in table
values.

We will next describe an important optimization. It uses less space and is also
faster. Instead of computing P (i, C) for all i and all C, it only computes Pareto-
optimal solutions. A solution x is Pareto-optimal if there is no solution that domi-
nates it, i.e., has greater profit and no greater cost or the same profit and less cost. In

244 12 Generic Approaches to Optimization

i \ C 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 10 10 10 10 10
2 0 10 10 20 30 30
3 0 10 15 25 30 35
4 0 10 15 25 30 35

Table 12.1. A dynamic programming table for the knapsack instance with p =
(10, 20, 15, 20), w = (1, 3, 2, 4), and M = 5. Bold face entries contribute to the optimal
solution.

PSfrag replacements

P (i− 1, C)

P (i− 1, C − wi) + pi

Fig. 12.4. The solid step function shows C 7→ P (i − 1, C) and the dashed step function
shows C 7→ P (i − 1, C − wi) + pi. P (i, C) is the point-wise maximum of both functions.
The solid step function is stored as the sequence of solid points. The representation of the
dashed step function is obtained by adding (wi, pi) to every solid point. The representation
of C 7→ P (i, C) is obtained by merging both representations and deleting all dominated
elements.

other words, since P (i, C) is an increasing function of C, we only need to remember
those pairs (C,P (i, C)) where P (i, C) > P (i, C − 1). We store these pairs in a
list Li sorted by C value. So L0 = 〈(0, 0)〉 indicating P (0, C) = 0 for all C ≥ 0
and L1 = 〈(0, 0), (w1, p1)〉 indicating that P (1, C) = 0 for 0 ≤ C < w1 and
P (i, C) = p1 for C ≥ w1.

How can we go from Li−1 to Li? The recurrence for P (i, C) paves the way, see
Figure 12.4. We have the list representation Li−1 for the function C 7→ P (i− 1, C).
We obtain the representation L′

i−1 for C 7→ P (i − 1, C − wi) + pi by shifting ev-
ery point in Li−1 by (wi, pi). We merge Li−1 and L′

i−1 into a single list by order
of first component and delete all elements that are dominated by another value, i.e.,
we delete all elements that are preceded by an element with higher second compo-
nent and for each fixed value of C, we keep only the element with largest second
component.

Exercise 218. Give pseudo-code for the merge. Show that the merge can be carried
out in time |Li−1|. Conclude that the running time of the algorithm is proportional
to the number of Pareto-optimal solutions.

The basic dynamic programming algorithm for the knapsack problem and also
its optimization requires Θ(nM) worst case time. This is quite good if M is not

12.3 Dynamic Programming — Building it Piece by Piece 245

too large. Since the running time is polynomial in n and M , the algorithm is called
pseudo-polynomial. The “pseudo” means that it is not necessarily polynomial in the
input size measured in bits; however, it is polynomial in the natural parameters n
and M . There is, however, an important difference between the basic and the refined
approach. The basic approach has best case running time Θ(nM). The best case for
the refined approach is O(n). The average case complexity of the refined algorithm
is polynomial in n, independent of M . This even holds if the averaging is only done
over perturbations of an arbitrary instance by small random noise. We refer the reader
to [15] for details.

Exercise 219 (Dynamic Programming by Profit). Define W (i, P) to be the small-
est weight needed to achieve a profit of at least P using knapsack items 1..i.

1. Show that W (i, P) = min {W (i − 1, P),W (i − 1, P − pi) + wi}.
2. Develop a table-based dynamic programming algorithm using the above recur-

rence, that computes optimal solutions of the knapsack problem in time O(np∗)
where p∗ is the profit of the optimal solution. Hint: assume first that p∗ is known
or at least a good upper bound for it. Then remove this assumption.

Exercise 220 (Making Change). Suppose you have to program a vending machine
that should give exact change using a minimum number of coins.

1. Develop an optimal greedy algorithm that works in the Euro zone with coins
worth 1, 2, 5, 10, 20, 50, 100, and 200 cents and in the Dollar zone with coins
worth 1, 5, 10, 25, 50, and 100 cents.

2. Show that this algorithm would not be optimal if there were a 4 cent coin.
3. Develop a dynamic programming algorithm that gives optimal change for any

currency system.

Exercise 221 (Chained Matrix Products). We want to compute the matrix product
M1M2 · · ·Mn where Mi is a ki−1×ki matrix. Assume that a pairwise matrix product
is computed in the straight-forward way using mks element multiplications for the
product of an m × k matrix with a k × s matrix. Exploit the associativity of matrix
product to minimize the number of element multiplications needed. Use dynamic
programming to find an optimal evaluation order in time O

(

n3
)

. For example, the
product between a 4 × 5 matrix M1, a 5 × 2 matrix M2, and a 2 × 8 matrix M3 can
be computed in two ways. Computing M1(M2M3) takes 5 · 2 · 8 + 4 · 5 · 8 = 240
multiplications whereas computing (M1M2)M3 takes only 4 · 5 · 2 + 4 · 2 · 8 = 104
multiplications.

Exercise 222 (Minimum Edit Distance). The minimum edit distance (or Leven-
shtein distance) L(s, t) between two strings s and t is the minimum number of
character deletions, insertions, and replacements applied to s that produces string
t. For example, L(graph, group) = 3. (delete h, replace a by o, insert h before p).
Define d(i, j) = L(〈s1, . . . , si〉, 〈t1, . . . , tj〉). Show that

d(i, j) = min {d(i − 1, j) + 1, d(i, j − 1) + 1, d(i − 1, j − 1) + [si = tj]}
where [si = tj] is one if si is equal to tj and is zero otherwise.

246 12 Generic Approaches to Optimization

Function bbKnapsack((p1, . . . , pn), (w1, . . . , wn), M) : L
assert p1/w1 ≥ p2/w2 ≥ · · · ≥ pn/wn // assume input sorted by profit density
x̂ = heuristicKnapsack((p1, . . . , pn), (w1, . . . , wn), M) : L // best solution so far
x : L // current partial solution
recurse(1, M, 0)
return x̂

// Find solutions assuming x1, . . . , xi−1 are fixed, M ′ = M −
X

k<i

xiwi, P =
X

k<i

xipi.

Procedure recurse(i, M ′, P : �)
u := P + upperBound((pi, . . . , pn), (wi, . . . , wn), M ′)
if u > p · x̂ then

if i > n then x̂ :=x
else // Branch on variable xi

if wi ≤M ′ then xi := 1; recurse(i + 1, M ′ − wi, P + pi)
if u > p · x̂ then xi := 0; recurse(i + 1, M ′, P)

Fig. 12.5. A branch-and-bound algorithm for the knapsack problem. A first feasible solu-
tion is constructed by Function heuristicKnapsack using some heuristic algorithm. Function
upperBound computes an upper bound for the possible profit.

Exercise 223. Does the principle of optimality hold for minimum spanning trees?
Check the following three possibilities for definitions of subproblems: subsets of
nodes, arbitrary subsets of edges, and prefixes of the sorted sequence of edges.

Exercise 224 (Constrained Shortest Path). Consider a directed graph G = (V,E)
where edges e ∈ E have a length `(e) and a cost c(e). We want to find a path from
node s to node t that minimizes the total length subject to the constraint that the total
cost of the path is at most C. Show that subpaths 〈s′, t′〉 of optimal solutions are not
necessarily shortest paths from s′ to t′.

12.4 Systematic Search — If in Doubt, Use Brute Force

In many optimization problems, the universe U of possible solutions is finite so that
we can in principle solve the optimization problem by trying all possibilities. Naive
application of this idea does not lead very far. However, we can frequently restrict
the search to promising candidates and then the concept carries a lot further.

We will explain the concept of systematic search using the knapsack problem
and a specific approach to systematic search known as branch-and-bound. In Ex-
ercises 226 and 227 we outline systematic search routines following a somewhat
different pattern.

Figure 12.5 gives pseudo-code for a systematic search routine bbKnapsack for
the knapsack problem. Branching is the most fundamental ingredient of systematic
search routines. All sensible values for some piece of the solution are tried. For each
of these values, the resulting problem is solved recursively. Within the recursive call,

12.4 Systematic Search — If in Doubt, Use Brute Force 247

110? 35

1100 30

B bounded

10??

1???

100?

1010

37

25

30

35

101? 35

???? 37

01??

011?

0110

0???

35

35

35

35

11?? 37

B

B

BC

C

C improved solution

C

 C no capacity left

Fig. 12.6. The search space explored by knapsackBB for a knapsack instance with p =
(10, 20, 15, 20), w = (1, 3, 2, 4), and M = 5, and empty initial solution x̂ = (0, 0, 0, 0). The
function upperBound is computed by rounding down the optimal objective function value
of the fractional knapsack problem. The nodes of the search tree contain x1 · · ·xi−1 and the
upper bound u. Left children are explored first and correspond to setting xi := 1. There are
two reasons for not exploring a child. Either if there is not enough capacity left to include
an element (indicated by C) or if a feasible solution with profit equal to the upper bound is
already known (indicated by B).

the chosen value is fixed. Routine bbKnapsack first tries including an item by set-
ting xi := 1 and then excluding it by setting xi := 0. The variables are fixed one
after the other in order of decreasing profit density. Assignment xi := 1 is not tried if
this would exceed the remaining knapsack capacity M ′. With these definitions, after
all variables are set, in the n-th level of recursion, bbKnapsack has found a feasible
solution. Indeed, without the bounding rule below, the algorithm systematically ex-
plores all possible solutions and the first feasible solution encountered would be the
solution found by algorithm greedy . The (partial) solutions explored by the algorithm
form a tree. Branching happens at internal nodes of this tree.

Bounding is a method for pruning subtrees that cannot contain optimal solutions.
A branch-and-bound algorithm keeps the best feasible solution found in a global
variable x̂; this solution is often called the incumbent solution. It is initialized to a
solution determined by a heuristic routine and, at all times, provides a lower bound
p · x̂ on the objective function value that can be obtained. This lower bound is com-
plemented by an upper bound u for the objective function value obtainable by ex-
tending the current partial solution x to a full feasible solution. In our example, the
upper bound could be the profit for the fractional knapsack problem with items i..n
and capacity M ′ = M −∑j<i xiwi.

Branch-and-bound stops expanding the current branch of the search tree when
u ≤ p · x̂, i.e., when there is no hope for an improved solution in the current subtree
of the search space. Why do we test u > p · x̂ twice in procedure recurse? The
reason is that the case xi := 1 might lead to an improved feasible solution whose
profit matches the upper bound. Then there is no need to explore the case xi := 0.

248 12 Generic Approaches to Optimization

Exercise 225. Explain how to implement the function upperBound in Figure 12.5
so that it runs in time O(log n). Hint: precompute prefix sums

∑

k≤i wi and
∑

k≤i pi

and use binary search.

Solving Integer Linear Programs: In Section 12.1.1 we have seen how to formulate
the knapsack problem as a 0-1 integer linear program. We will now indicate how the
branch-and-bound procedure developed for the knapsack problem can be applied
to any 0-1 integer linear program. Recall that in a 0-1 integer linear program the
values of the variables are constrained to 0 and 1. Our discussion will be brief and
we refer the reader to a textbook on integer linear programming [139, 162] for more
information.

The main change is that function upperBound now solves a general linear pro-
gram that has variables xi,. . . ,xn with range [0, 1]. The constraints for this LP come
from the input ILP with variables x1 to xi−1 replaced by their values. In the remain-
der of this section we will simply refer to this linear program as “the LP”.

If the LP has a feasible solution, upperBound returns the optimal value of the
LP. If the LP has no feasible solution, upperBound returns −∞ so that the ILP
solver will stop exploring this branch of the search space. We will next describe
several generalizations of the basic branch-and-bound procedure that sometimes lead
to considerable improvements.

Branch Selection: We may pick any unfixed variable xj for branching. In particular,
we can make the choice depend on the solution of the LP. A commonly used rule is
to branch on a variable whose fractional value in the LP is closest to 1/2.

Order of Search Tree Traversal: In the knapsack example the search tree was tra-
versed depth first and the 1-branch was tried first. In general, we are free to choose
any order of tree traversal. There are at least two considerations influencing the
choice of strategy. As long as no good feasible solution is known, it is good to use
a depth-first strategy so that complete solutions are explored quickly. Otherwise, a
best-first strategy is better that explores those search tree nodes that are most likely
to contain good solutions. Search tree nodes are kept in a priority queue and the next
node to be explored is the most promising node in the queue. The priority could
be the upper bound returned by the LP. Since the LP is expensive to evaluate, one
sometimes settles for an approximation.

Finding Solutions: We may be lucky and the solution of the LP turns out to assign
integer values to all variables. In this case there is no need for further branching.
Application specific heuristics can additionally help to find good solutions quickly.

Branch-and-Cut: When an ILP solver branches too often, the size of the search
tree explodes and it becomes too expensive to find an optimal solution. One way to
avoid branching is to add constraints to the linear program that cut away solutions
with fractional values for the variables without changing the solutions with integer
values.

12.5 Local Search — Think Globally, Act Locally 249

Exercise 226 (15-puzzle). The 15-puzzle is a popular sliding-block puzzle. You have
to move 15 square tiles in a 4 × 4 frame into the right order. Define a move as the
action of interchanging a square and the hole.

Design a systematic search algorithm that finds a shortest

4 5 6 7

8 9 10 11

12 13 14 15

1 2 3

6 7

8 10 11

12 13 14 15

4

5 9

1 2 3 move sequence from a given starting configuration to the or-
dered configuration shown at the bottom. Use iterative deep-
ening depth first search [111]: Try all one move sequences
first, then all two move sequences, and so on. This should
work for the simpler 8-puzzle. For the 15-puzzle use the fol-
lowing optimizations: never undo the immediately preceding
move. Maintain the number of moves that would be needed
if all pieces could be moved freely. Stop exploring a sub-
tree if this bound proves that the current search depth is too
small. Decide beforehand, whether the number of moves is
odd or even. Implement your algorithm to run in constant
time per move tried.

Exercise 227 (Constraint programming and the eight queens problem). Con-
sider an 8 × 8 checkerboard. The task is to place 8 queens on the board so that
they do not attack each other, i.e., no two queens should be placed in the same row,
column, diagonal or anti-diagonal. So each row contains exactly one queen. Let xi

be the position of the queen in row i. Then xi ∈ 1..8. The solution must satisfy
the following constraints: xi 6= xj , i + xi 6= j + xj , and xi − i 6= xj − j for
1 ≤ i < j ≤ 8. What do these conditions express? Show that they are sufficient. A
systematic search can use the following optimization. When a variable xi is fixed to
some value, this excludes values for variables that are still free. Modify systematic
search so that it keeps track of the values that are still available for free variables.
Stop exploration as soon as there is a free variable that has no value available to it
anymore. This technique of eliminating values is basic to constraint programming.

12.5 Local Search — Think Globally, Act Locally

The optimization algorithms we have seen so far are only applicable in special cir-
cumstances. Dynamic programming needs a special structure of the problem and
may require a lot of space and time. Systematic search is usually too slow for large
inputs. Greedy algorithms are fast but often yield only low-quality solutions. Local
search is a widely applicable iterative procedure. It starts with some feasible solution
and then moves from feasible solution to feasible solution by local modifications.
Figure 12.7 gives the basic framework. We will refine it later.

Local search maintains a current feasible solution x and the best solution x̂ seen
so far. In each step, local search moves from the current solution to a neighboring
solution. What are neighboring solutions? Any solution that can be obtained from
the current solution by making small changes to it. For example, in the knapsack
problem, we might remove up to two items from the knapsack and replace them by

250 12 Generic Approaches to Optimization

find some feasible solution x ∈ L
x̂ :=x // x̂ is best solution found so far
while not satisfied with x̂ do

x :=some heuristically chosen element fromN (x) ∩ L
if f(x) < f(x̂) then x̂ :=x

Fig. 12.7. Local search.

up to two other items. The precise definition of the neighborhood depends on the
application and the algorithm designer. In the framework, we use N (x) to denote the
neighborhood of x. The second important design decision is which solution from the
neighborhood is chosen. Finally, some heuristic decides when to stop.

In the next sections, we will tell you more about local search.

12.5.1 Hill Climbing

Hill climbing is the greedy version of local search. It only moves to neighbors that
are better than the currently best solution. This restriction further simplifies local
search. The variables x̂ and x are the same and we stop when no improved solutions
are in the neighborhood N . The only non-trivial aspect of hill climbing is the choice
of the neighborhood. We will give two examples where hill climbing works quite
well followed by an example where it fails badly.

Our first example is the traveling salesman problem from Section ??[ps: changed
reference (was spath)]. Given an undirected graph and a distance function on the=⇒
edges satisfying the triangle inequality, the goal is to find a shortest tour visiting all
nodes of the graph. We define the neighbors of a tour as follows. Let (u, v) and (w, y)
be two edges of the tour, i.e., the tour has the form (u, v), p, (w, y), q, where p is a
path from v to w and q is a path from y to u. We remove the two edges from the tour
and replace them by the edges (u,w) and (v, y). The new tour first traverses (u,w),
then uses the reversal of p back to v, then uses (v, y) and finally traverses q back to
u. This move is known as a 2-exchange and a tour that cannot be improved by a 2-
exchange is called 2-optimal. In many instances of the traveling salesman problem,
2-optimal tours come quite close to optimum tours.

Exercise 228. Describe a scheme where three edges are removed and replaced by
new edges.

An interesting example of hill climbing with a clever choice of the neighborhood
function is the simplex algorithm for linear programming (see Section 12.1). It is the
most widely used algorithm for linear programming. The set of feasible solutions
L of a linear program is defined by a set of linear equalities and inequalities ai ·
x ./ bi, 1 ≤ i ≤ m. The points satisfying a linear equality ai · x = bi form a
hyperplane in Rn and the points satisfying a linear inequality ai · x ≤ bi or ai ·
x ≥ bi form a halfspace. Hyperplanes are the n-dimensional analogues of planes
and half-spaces are the analogues of half-planes. The set of feasible solutions is the

12.5 Local Search — Think Globally, Act Locally 251

PSfrag replacements

(0,0,0) (1,0,0)

(1,0,1)

(1,1,1)

Fig. 12.8. The 3-dimensional unit-cube is defined by the inequalities x ≥ 0, x ≤ 1, y ≥ 0,
y ≤ 1, z ≥ 0, and z ≤ 1. In the vertices (1, 1, 1) and (1, 0, 1) three inequalities are tight
and on the edge connecting these vertices the inequalities x ≤ 1 and z ≤ 1 are tight. For the
objective “maximize x + y + z”, the simplex algorithm starting in (0, 0, 0) may move along
the path indicated by arrows. The vertex (1, 1, 1) is optimal since the half-space x+y+z ≤ 3
contains the entire feasible region and has (1, 1, 1) in its boundary.

intersection of m half-spaces and hyperplanes and forms a convex polytope. We have
already seen an example in two dimensional space in Figure 12.2. Figure 12.8 shows
an example in three dimensional space. Convex polytopes are the n-dimensional
analogues of convex polygons. In the interior of the polytope all inequalities are strict
(= satisfied with inequality), on the boundary some inequalities are tight (= satisfied
with equality). The vertices and edges of the polytope are particularly important parts
of the boundary. In the vertices, n inequality constraints are tight, and on the edges,
n − 1 inequalities are tight 4. Please verify this statement for Figures 12.2 and 12.8.

The simplex algorithm starts in an arbitrary vertex of the feasible region. In each
step it moves to a neighboring vertex, i.e., a vertex reachable via an edge, with larger
objective value. If there is more than one such neighbor, a common strategy moves
to the neighbor with largest objective value. If there is no neighbor with a larger ob-
jective value, the algorithm stops. At this point, it has found the vertex with maximal
objective value. In the examples in Figures 12.2 and 12.8, the captions argue why
this is true. The general argument is as follows. Let x∗ be the vertex at which the
simplex algorithm stops. The feasible region is contained in the cone with apex x∗

and spanned by the edges incident to x∗. All these edges go to vertices with smaller
objective values and hence the entire cone is contained in the half-space c ·x ≤ c ·x∗.
Thus no feasible point can have an objective value larger than x∗. We described the
simplex algorithm as a walk on the boundary of a convex polytope, i.e, in geomet-
4 This statement assumes that the constraints are in general position and that there are no

equality constraints. Equality constraints can be used to eliminate a variable and so there is
no harm in restricting the argument to inequality constraints.

252 12 Generic Approaches to Optimization

find some feasible solution x ∈ L
T := some positive value // initial temperature of the system
while T is still sufficiently large do

perform a number of steps of the following form
pick x′ fromN (x) ∩ L uniformly at random
with probability min(1, exp(f(x′)−f(x)

T
) do x := x′

decrease T // make moves to inferior solutions less likely

Fig. 12.9. Simulated Annealing

ric language. It can be equivalently described using the language of linear algebra.
Actual implementations use the linear algebra description.

In the case of linear programming, hill climbing leads to an optimal solution.
In general, hill climbing will not find an optimal solution. In fact, it will not even
find a near optimal solution. Consider the following example. Our task is to find the
highest point on earth, i.e., Mount Everest. A feasible solution is any point on earth.
The local neighborhood of a point is any point within a distance of 10 kilometers. So
the algorithm would start at some point on earth, then go to the highest point within
a distance of 10 kilometers, then again go to the highest point within a distance of
10 kilometers, and so on. If one starts from the first of author’s home (altitude 206
meters), the first step would lead to an altitude 350 meters, and there the algorithm
would stop, because there is no higher hill within 10 kilometers from it. There are
very few places in the world, where the algorithm would continue for long, and even
fewer places, where it would find Mount Everest.

Why does hill climbing work so nicely for linear programming, but fails to find
Mount Everest. The reason is that the earth has many local optima, hills that are
highest within a range of 10 kilometers. On the contrary, a linear program has only
one local optimum (which then, of course, is also a global optimum). For a problem
with many local optima, we should expect any generic method to have difficulties.
Observe that increasing the size of the neighborhoods in the search for Mount Everest
does not really solve the problem, except if neighborhoods are made to cover the
entire earth. But then finding the optimum in a neighborhood is as hard as the full
problem.

12.5.2 Simulated Annealing — Learning from Nature

If we want to ban the bane of local optima in local search, we must find a way to
escape from them. This means that we sometimes have to accept moves that de-
crease the objective value. What could ‘sometimes’ mean in this context? We have
contradicting goals. On the one hand, we must be willing to make many downhill
steps so that we can escape from wide local optima. On the other hand, we must be
sufficiently target-oriented so that we find a global optimum at the end of a long nar-
row ridge. A very popular and successful approach for reconciling the contradicting
goals is simulated annealing, see Figure 12.9. It works in phases that are controlled

12.5 Local Search — Think Globally, Act Locally 253

liquid

crystal

anneal

glass

shock cool

Fig. 12.10. Annealing versus Shock Cooling.

by a parameter T , called the temperature of the process. We will explain below why
the language of physics is used in the description of simulated annealing. In each
phase, a number of moves are made. In each move, a neighbor x′ ∈ N (x) ∩ L is
chosen uniformly at random and the move from x to x′ is made with a certain prob-
ability. This probability is one, if x′ improves upon x. This probability is less than
one if the move is to an inferior solution. The trick is to make the probability de-
pend on T . If T is large, we make the move relatively likely, if T is close to zero,
we make the move relatively unlikely. The hope is that in this way, the process ze-
roes in on a region of a good local optimum in phases of high temperature and then
actually finds a near-optimal solution in the phases of small temperature. The exact
choice of transition probability in the case that x′ is an inferior solution is given by
exp((f(x′) − f(x)/T). Observe that T is in the denominator and that f(x′) − f(x)
is negative. So the probability decreases with T and also with the absolute loss in
objective value.

Why is the language of physics used and why this apparently strange choice of
transition probabilities? Simulated annealing is inspired by the physical process of
annealing that can be used to minimize5 the global energy of a physical system. For
example, consider a pot of molten silica (SiO2), see Figure 12.10. If we cool it very
quickly, we obtain glass — an amorphous substance in which every molecule is in
a local minimum of energy. This process of shock cooling has a certain similarity to
hill climbing. Every molecule simply drops into a state of locally minimal energy;
in hill climbing, we accept a local modification of state, if it leads to a smaller value
of the objective function. However, glass is not a state of global minimum energy. A
much lower state of energy is reached by a quartz crystal in which all molecules are
arranged in a regular way. This state can be reached (or approximated) by cooling
the melt very slowly and even slightly reheating it from time to time. This process
is called annealing. How can it be that molecules arrange into perfect shape over
a distance of billions of molecule diameters although they feel only local forces
extending over a few molecule diameters?

Qualitatively, the explanation is that local energy minima have enough time to
dissolve in favor of globally more efficient structures. For example, assume that a
cluster of a dozen molecules approaches a small perfect crystal that already consists
5 Note that we are talking about minimization now.

254 12 Generic Approaches to Optimization

of thousands of molecules. Then with enough time and the help of reheating, the
cluster will dissolve and its molecules can attach to the crystal. Here is a more formal
description of this process that can be shown to hold within a reasonable model of
the system: if cooling is sufficiently slow, the system reaches thermal equilibrium at
every temperature. Equilibrium at temperature T means that a state x of the system
with energy Ex is assumed with probability

exp(−Ex/T)
∑

y∈L exp(−Ey/T)

where T is the temperature of the system and L is the set of system states. This energy
distribution is called Boltzmann distribution. When T decreases, the probability of
states with minimal energy grows. Actually, in the limit T → 0, the probability of
states with minimal energy approaches one.

The same mathematics works for abstract systems corresponding to a maximiza-
tion problem. We identify the cost function f with the energy of the system and a
feasible solution with the state of the system. It can be shown that the system ap-
proaches a Boltzmann distribution for a quite general class of neighborhoods and the
following rules for choosing the next state:

pick x′ from N (x) ∩ L uniformly at random
with probability min(1, exp(f(x′)−f(x)

T) do x := x′

The physical analogy gives some idea of why simulated annealing might work6,
but it does not provide an implementable algorithm. We have to get rid of two in-
finities: for every temperature, wait infinitely long to reach equilibrium, and do that
for infinitely many temperatures. Simulated annealing algorithms therefore have to
decide on a cooling schedule, i.e., how the temperature T should be varied over time.
A simple schedule chooses a starting temperature T0 that is supposed to be just large
enough so that all neighbors are accepted. Furthermore, for a given problem instance
there is a fixed number N of iterations used at each temperature. The idea is that N
should be as small as possible but still allow the system to get close to equilibrium.
After every N iterations, T is decreased by multiplying it with a constant α less than
one. Typically, α is between 0.8 and 0.99. When T has become so small that moves
to inferior solutions have become highly unlikely (this is the case then T is compara-
ble to the smallest difference in objective value between any two feasible solutions),
T is finally set to 0, i.e, the annealing process concludes with a hill climbing search.

Better performance can be obtained with dynamic schedules. For example, the
initial temperature can be determined by starting with a low temperature and in-
creasing it quickly until the fraction of accepted transitions approaches one. Dynamic
schedules base their decision on how much T should be lowered on the actually ob-
served variation in f(x) during local search. If the temperature change is tiny com-
pared to the variation, it has too little effect. If the change is too close to or even
larger than the variation observed, there is the danger that the system is prematurely
forced into a local optimum. The number of steps to be made until the temperature
6 Note that we wrote “might work” and not “works”.

12.5 Local Search — Think Globally, Act Locally 255

5

6

8

4

7

3

9

6

8

1 9 5

7

6

3

2

8

4 1

6

3

1

6

82

5

7

1

1

1 11

1

2

22

2
3 3 44

PSfrag replacements

v

H

K

Fig. 12.11. The figure on the left shows a partial coloring of the graph underlying Sudoku
puzzles. The bold straight line segments indicate cliques consisting of all nodes touched by
the line. The figure on the right shows a step of Kempe Chain annealing using colors 1 and 2
and node v.

is lowered can be made dependent on the actual number of accepted moves. Fur-
thermore, one can use a simplified statistical model of the process to estimate when
the system approaches equilibrium. The details of dynamic schedules are beyond the
scope of this exposition.

Exercise 229. Design a simulated annealing algorithm for the knapsack problem.
The local neighborhood of a feasible solution are all solutions that can be obtained
by removing up to two elements and then adding up to two elements.

We exemplify simulated annealing on the so-called graph coloring problem. For
an undirected graph G = (V,E), a node coloring with k colors is an assignment
c : V → 1..k such that no two adjacent nodes get the same color, i.e., c(u) 6= c(v)
for all edges {u, v} ∈ E. There is always a solution with k = |V | colors; we simply
give each node its own color. The goal is to minimize k. There are many applications
for graph coloring and related problems. The most “classical” one is map coloring —
the nodes are countries and edges indicate that these countries have a common border
and thus should not be rendered in the same color. A famous theorem of graph theory
states that all maps (i.e. planar graphs) can be colored with at most four colors [152].
Sudoku puzzles are a well-known instance of the graph coloring problems, where the
player is asked to complete a partial coloring of the graph shown in Figure 12.11
with the digits 1..9. We will present two simulated annealing approaches to graph
coloring; many more have been tried.

Kempe Chain Annealing: Of course, the obvious objective function for graph col-
oring is the number of colors used. However, this choice of objective function is too
simplistic in a local search framework, since a typical local move will not change
the number of colors used. We need an objective function that rewards local changes
that are “on a good way” towards using fewer colors. One such function is the sum
of the squared sizes of the color classes. Formally, let Ci = {v ∈ V : c(v) = i} be

256 12 Generic Approaches to Optimization

the set of nodes that are colored i. Then

f(c) =
∑

i

|Ci|2 .

This objective function is to be maximized. Observe that the objective function in-
creases when a large color class is further enlarged at the cost of a small color class.
Thus local improvements will eventually empty some color classes, i.e., the number
of colors decreases.

Having settled the objective function, we come to the definition of local change or
neighborhood. A trivial definition is as follows: a local change consists in recoloring
a single vertex; it can be given any color not used on one of its neighbors. Kempe
chain annealing uses a more liberal definition of “local recoloring”. Kempe was one
of the early investigators of the four-color problem; he invented Kempe chains in
his futile proof attempts. Assume our goal it to recolor node v with current color
i = c(v) to color j. In order to maintain feasibility, we have to change some other
node colors too: node v might be connected to nodes currently colored j. So we color
these nodes with color i. These nodes might in turn be connected to other nodes of
color j and so on. More formally, consider the node induced subgraph H of G which
contains all nodes with colors i and j. The connected component of H that contains
v is the Kempe Chain K we are interested in. We maintain feasibility by swapping
colors i and j in K. Figure 12.11 gives an example. Kempe chain annealing starts
with any feasible coloring.

Exercise 230. Use Kempe chains to prove that any planar graph G can be colored
with five colors. Hint: use the fact that a planar graph is guaranteed to have a node
of degree five or less. Let v be any such node. Remove it from G and color G − v
recursively. Put v back it. If at most four different colors are used on the neighbors of
v, there is a free color for v. So assume otherwise. Assume w.l.o.g. that the neighbors
of v are colored with colors 1 to 5 in clockwise order. Consider the subgraph of nodes
colored 1 and 3. If the neighbors of v with colors 1 and 3 are in distinct connected
components of this subgraph, a Kempe chain can be used to recolor the node colored
1 with color 3. If they are in the same component, consider the subgraph of nodes
colored 2 and 4. Argue that the neighbors of v with colors 2 and 4 must be in distinct
components of this subgraph.

The Penalty Function Approach: A generally useful idea for local search is to relax
some of the constraints on feasible solutions in order to make the search more flexible
and in order to ease the discovery of a starting solution. Observe, that we assumed so
far somehow having a feasible solution available to us. However, in some situations
finding any feasible solution is already a hard problem; the eight queens problem
from Exercise 227 is an example. In order to obtain a feasible solution in the end, the
objective function is modified to penalize infeasible solutions. The constraints are
effectively moved into the objective function.

In the graph coloring example, we now also allow illegal colorings, i.e., colorings
in which neighboring nodes may have the same color. An initial solution is gener-
ated by guessing the number of colors needed and coloring the nodes randomly. A

12.5 Local Search — Think Globally, Act Locally 257

neighbor of the current coloring c is generated by picking a random color j and a
random node v colored j, i.e, x(v) = j. Then, a random new color for node v is
chosen among all the colors already in use plus one fresh, previously unused color.

As above, let Ci be the set of nodes colored i and let Ei = E ∩ Ci × Ci be the
set of edges connecting two nodes in Ci. The objective is to minimize

f(c) = 2
∑

i

|Ci| · |Ei| −
∑

i

|Ci|2 .

The first term penalizes illegal edges; each illegal edge connecting two nodes of
color i contributes the size of the i-th color class. The second favors large color
classes as we have already seen above. The objective function does not necessarily
have its global minimum at an optimal coloring, however, local minima are legal
colorings. Hence, the penalty version of simulated annealing is guaranteed to find a
legal coloring even if it starts with an illegal coloring.

Exercise 231. Show that the objective function above has its local minima at legal
colorings. Hint: consider the change of f(c) if one end of a legally colored edge
is recolored with a fresh color? Prove that the objective function above does not
necessarily have its global optimum at a solution using the minimal number of colors.

Experimental Results: Johnson et al. [99] performed a detailed study of algorithms
for graph coloring with particular emphasis on simulated annealing. We will briefly
report on their findings and then draw some conclusions. Most of their experiments
were performed on random graphs in the so-called Gn,p-model or on random geo-
metric graphs.

In the Gn,p-model, where p is a parameter in [0, 1], an undirected random graph
on n nodes is built by adding each of the n(n− 1)/2 candidate edges with probabil-
ity p. The experiments for distinct edges are independent. In this way, the expected
degree of every node is p(n − 1) and the expected number of edges is pn(n − 1)/2.
For random graphs with 1000 nodes and edge probability 0.5, Kempe chain anneal-
ing produces very good colorings given enough time. However, a sophisticated and
expensive greedy algorithm, XRLF, produces even better solutions in less time. For
very dense random graphs with p = 0.9, Kempe chain annealing performed better
than XRLF. For sparser random graphs with edge probability 0.1, penalty function
annealing outperforms Kempe chain annealing and can sometimes compete with
XRLF.

Another interesting class of random inputs are random geometric graphs: choose
n random uniformly distributed points in the unit square [0, 1]×[0, 1]. They represent
the nodes of the graph. Connect two points by an edge if their Euclidean distance
is at most some given range r. Figure 12.12 gives an example. Such instances are
frequently used to model applications where nodes are radio transmitters and colors
are frequency bands. Nodes that lie within distance r from one another must not use
the same frequency to avoid interference. For this model, Kempe chain annealing is
performed well, but was outperformed by a third annealing strategy called fixed-K
annealing.

258 12 Generic Approaches to Optimization

0
0 1

1
r

Fig. 12.12. Left: A random graph with 10 nodes and p = 0.5. Edges chosen are drawn solid,
edges rejected are drawn dashed. Right: A random geometric graph with 10 nodes and range
r = 0.27.

What should we learn from this? The relative performance of simulated anneal-
ing approaches strongly depends on the class of inputs and the available computing
time. Moreover, it is impossible to make predictions about the performance on an
instance class based on experience from other instance classes. So be warned. Sim-
ulated annealing is a heuristic and, as for any other heuristic, you should not make
claims about its performance on an instance class before having tested it extensively
on it.

12.5.3 More on Local Search

We close our treatment of local search with the discussion of two refinements that
can be used to modify or replace the approaches presented so far.

[todo: threshold acceptance verstÃd’ndlicher machen]=⇒
Threshold Acceptance: There seems to be nothing magic about the particular form
of the acceptance rule of simulated annealing. For example, a simpler yet also suc-
cessful rule uses the parameter T as a threshold. New states with a value f(x) below
the threshold are accepted others are not.

Tabu Lists: Local search algorithms sometimes return to the same suboptimal so-
lution again and again — they cycle. For example, simulated annealing might have
reached the top of a steep hill. Randomization will steer the search away from the
optimum but the state may remain on the hill for a long time. Tabu search steers
away from local optima by keeping a Tabu list of “solution elements” that should
be “avoided” in new solutions for the time being. For example, in graph coloring a
search step could change the color of a node v from i to j and then store the tuple
(v, i) in the Tabu list to indicate that color i is forbidden for v as long as (v, i) is in
the Tabu list. Usually, this Tabu condition is not applied if an improved solution is
obtained by coloring node v with color i. Tabu lists are so successful that they can
be used as the core technique of an independent variant of local search called Tabu
search.

12.6 Evolutionary Algorithms 259

Restarts: The typical behavior of a well-tuned local search algorithm is that it moves
to an area with good feasible solutions and then explores this area trying to find
better and better local optima. However, it might be that there are other, far away
areas with much better solutions. The search for Mount Everest illustrates the point.
If we start in Australia, the best we can hope for is to end up at Mount Kosciuszko
(altitude 2229 m), a solution far from optimum. It therefore makes sense to run the
algorithm multiple times with different random starting solutions because it is likely
that different starting points will explore different areas of good solutions. Starting
the search for Mount Everest at multiple locations and in all continents will certainly
lead to a better solution than just starting in Australia. Even if these restarts do not
improve the average performance of the algorithm, they may make it more robust
in the sense that it is less likely to produce grossly suboptimal solutions. Several
independent runs are also an easy source of parallelism. Just run the program on
different workstations concurrently.

12.6 Evolutionary Algorithms

Living beings are ingeniously adaptive to their environment and master the problems
encountered in daily life with great ease. Can we somehow use the principles of life
for developing good algorithms? The theory of evolution tells us that the mechanisms
leading to this performance are mutation, recombination, and survival of the fittest.
What could an evolutionary approach mean for optimization problems?

The genome describing an individual corresponds to the description of a feasible
solution. We can also interpret infeasible solutions as dead or ill individuals. In na-
ture, it is important that there is a sufficiently large population of genomes; otherwise,
recombination deteriorates to incest and survival of the fittest cannot demonstrate its
benefits. So, instead of one solution as in local search, we are now working with a
pool of feasible solutions.

The individuals in a population produce offsprings. Because resources are lim-
ited, individuals better adapted to the environment are more likely to survive and to
produce more offsprings. In analogy, feasible solutions are evaluated using a fitness
function f , and fitter solutions are more likely to survive and to produce offsprings.
Evolutionary algorithms usually work with a solution pool of limited size, say N .
Survival of the fittest can then be implemented as keeping only the best N solutions.

Even in bacteria which reproduce by cell division, no offspring is identical to
its parent. The reason is mutation. When a genome is copied, small errors happen.
Although mutations usually have an adverse effect on fitness, some also improve
fitness. Local changes of a solution are the analogy of mutations.

In evolution, an even more important ingredient is recombination. Offsprings
contain genetic information from both parents. The importance of recombination is
easy to understand if one considers how rare useful mutations are. Therefore it takes
much longer to obtain an individual with two new and useful mutations than it takes
to combine two individuals with two different useful mutations.

260 12 Generic Approaches to Optimization

Create an initial population population = {x1, . . . , xN}
while not finished do

if matingStep then
select individuals x1, x2 with high fitness and produce x′ := mate(x1, x2)

else select an individual x1 with high fitness and produce x′ = mutate(x1)

population := population ∪ {x′}
population := {x ∈ population : x is sufficiently fit}

Fig. 12.13. A generic evolutionary algorithm.

(3)

2 1 3

2

12

2

2 3

3

2

12
1

42

2 3

3

2

12
1

4

2

2

3

1 1

4

1

32
2

2

3

1 1

4

1

32

42 3

PSfrag replacements

x1

x2

x′
k

Fig. 12.14. Mating using crossover (left) and by stitching together pieces of a graph coloring
(right).

We now have all the ingredients needed for a generic evolutionary algorithm,
see Figure 12.13. As for the other approaches presented in this chapter, many details
need to be filled in before obtaining an algorithm for a specific problem. The algo-
rithm starts by creating an initial population of size N . This process should involve
randomness but it is also useful to use heuristics that produce good initial solutions.

In the loop, it is first decided whether an offspring should be produced by muta-
tion or by recombination. This is a probabilistic decision. Then one or two individuals
are chosen for reproduction. To put selection pressure on the population, it is impor-
tant to base reproduction success on the fitness of the individuals. However, usually
it is not desirable to draw a hard line and only use the fittest individuals because
this might lead to a too uniform population and incest. For example, one can choose
reproduction candidates randomly giving a higher selection probability to fitter indi-
viduals. An important design decision is how to fix these probabilities. One choice
is to sort the individuals by fitness and then to define the reproduction probability as
some decreasing function of rank. This indirect approach has the advantage that it is
independent of the objective function f and the absolute fitness differences between
individuals which is likely to decrease during the course of evolution.

The most critical operation is mate which produces new offsprings from two
ancestors. The “canonical” mating operation is called crossover: individuals are as-
sumed to be represented by a string of n bits. Choose an integer k. The new indi-

12.7 Implementation Notes 261

vidual takes the first k bits from one parent and the last n − k bits from the other
parent. Figure 12.14 shows this procedure. Alternatively, one may choose k random
positions from the first parent and the remaining bits from the other parent. For our
knapsack example, crossover is a quite natural choice. Each bit decides whether the
corresponding item is in the knapsack or not. In other cases, crossover is less natural
or would require a very careful encoding. For example, for graph coloring it seems
more natural to cut the graph in two pieces such that few edges are cut. Now one
piece inherits its colors from the first parent and the other piece inherits them from
the other parent. Some of the edges running between the pieces might now connect
nodes with the same color. This could be repaired using some heuristics, e.g., choos-
ing the smallest legal color for mis-colored nodes in the part corresponding to the
first parent. Figure 12.14 gives an example.

Mutations are realized as in local search. In fact, local search is nothing but an
evolutionary algorithm with population size one.

The simplest way to limit the size of the population is to keep it fixed by re-
moving the least fit individual in each iteration. Other approaches that give room to
different “ecological niches” can also be used. For example, for the knapsack prob-
lem one could keep all Pareto-optimal solutions. The evolutionary algorithm would
then resemble the optimized dynamic programming algorithm.

12.7 Implementation Notes

We have seen several generic approaches to optimization that are applicable to a
wide variety of problems. When you face a new application, you are therefore likely
to have the choice between more approaches than you can realistically implement.
In a commercial environment, you may even have to home in on a single approach
quickly. Here are some rules of thumb that may help:

• study the problem, relate it to problems you are familiar with, and search for it
on the web.

• look for approaches that have worked on related problems.
• consider black box solvers.
• if problem instances are small, systematic search or dynamic programming may

allow you to find optimal solutions.
• if none of the above looks promising, implement a simple prototype solver using

a greedy approach or some other simple and fast heuristic; the prototype helps
you to understand the problem and might be useful as a component of a more
sophisticated algorithm.

• develop a local search algorithm. Focus on a good representation for solutions
and how to incorporate application specific knowledge into the searcher. If you
have a promising idea for a mating operator, you can also consider evolutionary
algorithms. Use randomization and restarts to make the results more robust.

There are many implementations of linear programming solvers. Since a good
implementation is very complicated, you should use one of these packages except

262 12 Generic Approaches to Optimization

in very special circumstances. The Wikipedia page on linear programming is a good
starting point. Some systems for linear programming also support integer linear pro-
gramming.

There are also many frameworks that simplify implementing local search or evo-
lutionary algorithms. Since these algorithms are fairly simple, using the frameworks
is not as widespread as for linear programming. Nevertheless, the implementations
might have non-trivial built-in algorithms for dynamic setting of search parame-
ters and they might support parallel processing. [kennen wir irgendwelche wirk-
lich empfehlenswerte Systeme? CILib? http://eodev.sourceforge.
net/?]=⇒

12.8 Historical Notes and Further Findings

We have only scratched the surface of (integer) linear programming. Implementing
solvers, clever modeling of problems, and handling huge input instances have led to
thousands of scientific papers. In the late 1940s, Dantzig invented the simplex algo-
rithm [46]. Although this algorithm works well in practice, some of its variants take
exponential time in the worst case. It is a famous open problem whether some vari-
ant runs in polynomial time in the worst case. It is known though that even slightly
perturbing the coefficients of the constraints leads to polynomial expected execu-
tion time [174]. Sometimes, even problem instances with an exponential number of
constraints or variables can be solved efficiently. The trick is to handle explicitly
only constraints that may be violated and variables that may be non-zero in an op-
timal solution. This works, if we can efficiently find violated constraints or possibly
non-zero variables and if the total number of generated constraints and variables
remains small. Khachiyan [107] and Karmakar [103] found polynomial time algo-
rithms for linear programming. There are many good text books on linear program-
ming, e.g. [24, 139, 162, 59, 187, 73].

Another interesting black box solver is constraint programming, cf. [117, 89].
We hinted at the technique in Exercise 227. We are again dealing with variables and
constraints. However, now the variables come from discrete sets (usually small finite
sets). Constraints come in a much wider variety. There are equalities and inequalities
possibly involving arithmetic expressions but also higher-level constraints. For ex-
ample, allDifferent(x1, . . . , xk) requires that x1, . . . , xk all receive different values.
Constraint programs are solved using cleverly pruned systematic search. Constraint
programming is more flexible than linear programming but restricted to smaller prob-
lem instances. Wikipedia is a good starting point for learning more about constraint
programming.

12.8 Historical Notes and Further Findings 263

[was passiert mit Material in Summary?] ⇐=

A

Appendix

[section on recurrences and inequalities] ⇐=

A.1 General Mathematical Notation

{e0, . . . , en−1}: Set containing elements e0,. . . ,en−1.

{e : P (e)}: Set of all elements fulfilling predicate P .

〈e0, . . . , en−1〉: Sequence consisting of elements e0,. . . ,en−1.

〈e ∈ S : P (e)〉: subsequence of all elements of sequence S fulfilling predicate P .[ps:reinserted
since it is used in three chapters] ⇐=

|x|: The absolute value of x.

bxc: The largest integer ≤ x.

dxe: The smallest integer ≥ x.

[a, b] := {x ∈ �
: a ≤ x ≤ b}.[check halboffene Intervalle?] ⇐=

i..j: Abbreviation for {i, i + 1, . . . , j}.

AB: when A and B are sets this is the set of all functions mapping B to A.

A × B: The set of pairs (a, b) with a ∈ A and b ∈ B.

(fs)s∈S: An alternative way to define a function f on S. The accompanying text
specifies the range of the function. So “let d : V → �

be a function on the
vertices V of a graph” is equivalent to “let (dv)v∈V be a real-valued function
on the vertices V of a graph”. [ps: this complicated and rather specialized
notation is only used very locally in optimization (?). Define there and
drop here?] ⇐=

266 A Appendix

⊥: An undefined value.

(−)∞: (Minus) infinity.

∀x : P (x): For all values of x the proposition P (x) is true.

∃x : P (x): There exists a value of x such that the proposition P (x) is true.
�

: Non-negative integers,
�

= {0, 1, 2, . . .}
�

+: Positive integers,
�

+ = {1, 2, . . .}.

� : Integers
�

: Real numbers
�

: Rational numbers

|, &, «, », ⊕: Bit-wise ‘or’, ‘and’, right-shift, left-shift, and exclusive-or respectively.
∑n

i=1 ai =
∑

1≤i≤n ai =
∑

i∈{1,...,n} ai := a1 + a2 + · · · + an

∏n
i=1 ai =

∏

1≤i≤n

∏

i∈{1,...,n} ai := a1 · a2 · · · an

n! :=
∏n

i=1 i — the factorial of n.

div: Integer division. c = mdiv n is the largest non-negative integer with cn ≤ m.

mod: Modular arithmetic, m mod n = m − n(mdiv n).

a ≡ b(modm): a and b are congruent modulo m, i.e., a+ im = b for some integer i.

≺: Some ordering relation. In Section 9.2 it denotes the order in which nodes are
marked during depth-first search.

1, 0: The boolean values true and false[check with intro].=⇒

antisymmetric: A relation ∼ is antisymmetric if for all a and b, a ∼ b and b ∼ a
implies a = b.

concave: A function f is concave on an interval [a, b] if
∀x, y ∈ [a, b], t ∈ [0, 1] : f(tx + (1 − t)y) ≥ tf(x) + (1 − t)f(y).

convex: A function f is convex on an interval [a, b] if
∀x, y ∈ [a, b], t ∈ [0, 1] : f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y).

equivalence relation: a transitive, reflexive, symmetric relation.

field: A set of elements that support addition, subtraction, multiplication, and division
by non-zero elements. Addition and multiplication are associative, commutative,
and have neutral elements analogous to zero and one for the real numbers. The

A.1 General Mathematical Notation 267

prime examples are
�

, the real numbers,
�

, the rational numbers
�

, and � p, the
integers modulo a prime p.

Hn :=
∑n

i=1 1/i the n-th harmonic number. See also Equation (A.12).

iff: Abbreviation for “if and only if”.

lexicographic order: The most common way to extend a total order on a set of ele-
ments to tuples, strings, or sequences of these elements. We have 〈a1, a2, . . . , ak〉 <
〈b1, b2, . . . , bk〉 if and only if a1 < b1 or a1 = b1 and 〈a2, . . . , ak〉 <
〈b2, . . . , bk〉

linear order: See total order.

log x: The logarithm base two of x, log2 x.

median: An element with rank dn/2e among n elements.

multiplicative inverse: If an object x is multiplied with a multiplicative inverse x−1

of x, we obtain x·x−1 = 1 — the neutral element of multiplication. In particular,
in a field every element but zero (the neutral element of addition) has a unique
multiplicative inverse. [ps: removed Ω for a sample space. This was used
only locally anyway.] ⇐=

O(f(n)) := {g(n) : ∃c > 0 : ∃n0 ∈ �
+ : ∀n ≥ n0 : g(n) ≤ c · f(n)}. (see

Ω(f(n)) := {g(n) : ∃c > 0 : ∃n0 ∈ �
+ : ∀n ≥ n0 : g(n) ≥ c · f(n)}. also

Θ(f(n)) := O(f(n)) ∩ Ω(f(n)). Section

o(f(n)) := {g(n) : ∀c > 0 : ∃n0 ∈ �
+ : ∀n ≥ n0 : g(n) ≤ c · f(n)}. 2.1

ω(f(n)) := {g(n) : ∀c > 0 : ∃n0 ∈ �
+ : ∀n ≥ n0 : g(n) ≥ c · f(n)}.)

prime number: An integer n, n ≥ 2 is a prime iff there are no integers a, b > 1 such
that n = a · b.

rank: A one-to-one mapping r : S → 1..n is a ranking function for the elements of
a set S = {e1, . . . , en} if r(x) < r(y) whenever x < y.

reflexive: A relation ∼⊆ A × A is reflexive if ∀a ∈ A : (a, a) ∈ R.

relation: A set of pairs R. Often we write relations as operators, e.g., if ∼ is relation,
a ∼ b means (a, b) ∈∼.

symmetric relation: A relation ∼ is symmetric if for all a and b, a ∼ b implies b ∼ a.

total order: A reflexive, transitive, antisymmetric relation.

transitive: A relation ∼ is transitive if for all a, b, c, a ∼ b and b ∼ c imply a ∼ c.

268 A Appendix

A.2 Basic Probability Theory

[ps: macrofied the terms SampleSpace and Sample. I would like to avoid Ω to
avoid collisions with asymptotics. Moreover this stuff is used only here.] Prob-=⇒
ability theory rests on the concept of a sample space S. For example, to describe the
role of two dice, we would use the 36 element sample space {1, . . . , 6}×{1, . . . , 6},
i.e., the elements of the sample space are the pairs (x, y) with 1 ≤ x, y ≤ 6 and
x, y ∈ �

. Generally, a sample space is any set. In this book, all sample spaces
are finite. In a (uniform) random experiment, any element of S is chosen with the
elementary probability p = 1/|S|. More generally, an element s ∈ S is chosen
with probability ps where

∑

s∈S ps = 1. In this book, we will almost exclusively
use uniform probabilities; then ps = p = 1/|S|. Subsets E of the sample space
are called events. The probability of an event E ⊆ S is the sum of the proba-
bilities of its elements, i.e, prob(E) = |E|/|S|. So the probability of the event
{(x, y) : x + y = 7} = {(1, 6), (2, 5), . . . , (6, 1)} is equal to 6/36 = 1/6 and the
probability of the event {(x, y) : x + y ≥ 8} is equal to 15/36 = 5/12.

A random variable is a mapping from the sample space to the real numbers.
Random variables are usually denoted by capital letters to distinguish them from
plain values. A random variable is a familiar concept under a new name. A random
variable X is a function from S to

�
. For example, the random variable X could give

the number shown by the first dice, the random variable Y could give the number
shown by the second dice, and the random variable S could give the sum of the
two numbers. Formally, if (x, y) ∈ S then X((x, y)) = x, Y ((x, y)) = y, and
S((x, y)) = x + y = X((x, y)) + Y ((x, y)).

We can define new random variables as expressions involving other random vari-
ables and ordinary values. For example, if X and Y are random variables, then
(X + Y)(s) = X(s) + Y (s), (X · Y)(s) = X(s) · Y (s), (X + 3)(s) = X(s) + 3.

Events are often specified by predicates involving random variables. For exam-
ple, X ≤ 2 denotes the event {(1, y), (2, y) : 1 ≤ y ≤ 6} and hence prob(X ≤ 2) =
1/3. Similarly, prob(X + Y = 11) = prob({(5, 6), (6, 5)}) = 1/18.

Indicator random variables are random variables that only take the values zero
and one. Indicator variables are an extremely useful tool for the probabilistic analysis
of algorithms because they allow us to encode the behavior of complex algorithms
into simple mathematical objects. We frequently use the letters I and J for indicator
variables.

The expected value of a random variable Z : S → �
is

E[Z] =
∑

s∈S

ps · Z(s) =
∑

z∈ �
z · prob(Z = z) , (A.1)

i.e., every sample s contributes the value of Z at s times its probability. Alternatively,
we group all s with Z(s) = z into the event Z = z and then sum over the z ∈ �

.
In our example, E[X] = 1+2+3+4+5+6

6 = 21
6 = 3.5, i.e., the expected value of

the first dice is 3.5. Of course, the expected value of the second dice is also 3.5. For
an indicator random variable I we have

A.2 Basic Probability Theory 269

E[I] = 0 · prob(I = 0) + 1 · prob(I = 1) = prob(I = 1) .

Often we are interested in the expectation of a random variable that is defined in
terms of other random variables. This is easy for sums due to the so-called linearity
of expectations of random variables: For any two random variables X and Y ,

E[X + Y] = E[X] + E[Y] . (A.2)

The equation is easy to prove and extremely useful. Let us prove it. It amounts es-
sentially to an application of the distributive law of arithmetic. We have

E[X + Y] =
∑

s∈S

ps · (X(s) + Y (s))

=
∑

s∈S

ps · X(s) +
∑

s∈S

ps · Y (s)

= E[X] + E[Y] .

As our first application, let us compute the expected sum of two dices. We have

E[S] = E[X + Y] = E[X] + E[Y] = 3.5 + 3.5 = 7 .

Observe, that we obtain the result with almost no computation. Without knowing
about linearity of expectations, we would have to go through a tedious calculation:

E[S] = 2 · 1

36
+ 3 · 2

36
+ 4 · 3

36
+ 5 · 4

36
+ 6 · 5

36
+ 7 · 6

36

+ 8 · 5

36
+ 9 · 4

36
+ . . . + 12 · 1

36

=
2 · 1 + 3 · 2 + 4 · 3 + 5 · 4 + 6 · 5 + 7 · 6 + 8 · 5 + . . . + 12 · 1

36
= 7 .

Exercise 232. What is the expected sum of three dices?

We will give another example with a more complex sample space. The sample
space consists of all n! permutations of the numbers 1 to n. We are interested in the
expected number of left-to-right maxima in a random permutation. A left-to-right
maximum in a sequence is an element which is larger than all preceding elements.
So (1, 2, 4, 3) has three left-to-right-maxima and (3, 1, 2, 4) has two left-to-right-
maxima. For a permutation π of the integers 1 to n, let Mn(π) be the number of
left-to-right-maxima. What is E[Mn]? For small n, is easy to determine E[Mn] by
direct calculation. For n = 1, there is only one permutation, namely (1) and it has
one maximum. So E[M1] = 1. For n = 2, there are two permutations, namely
(1, 2) and (2, 1). The former has two maxima and the latter has one maximum. So
E[M2] = 1.5.

Exercise 233. Determine E[M3] and E[M4].

270 A Appendix

We now show how to determine E[Mn]. We write Mn as a sum of indicator
variables I1 to In, i.e., Mn = I1+ . . .+In where Ik is equal to one for a permutation
π if the k-th element of π is a left-to-right-maximum. For example, I3((3, 1, 2, 4)) =
0 and I4((3, 1, 2, 4)) = 1. We have

E[Mn] = E[I1 + I2 + . . . + In]

= E[I1] + E[I2] + . . . + E[In]

= prob(I1 = 1) + prob(I2 = 1) + . . . + prob(In = 1) ,

where the second equality is linearity of expectations and the third equality follows
from the Ik’s being indicator variables. It remains to determine the probability that
Ik = 1. The k-th element of a random permutation is a left-to-right maximum with
probability 1/k because this is the case if and only if the k-th element is the largest of
the first k elements. Since every permutation of the first k elements is equally likely,
this probability is 1/k. Thus prob(Ik = 1) = 1/k and hence

E[Mn] =
∑

1≤k≤n

prob(Ik = 1) =
∑

1≤k≤n

1/k = Hn ,

where Hn =
∑

1≤k≤n 1/k is the so-called n-th Harmonic number, see Equation
(A.12). So E[M4] = 1 + 1/2 + 1/3 + 1/4 = (12 + 6 + 4 + 3)/12 = 25/12.

Products of random variables behave differently. In general, we have E[X ·Y] 6=
E[X] ·E[Y]. There is one important exception: if X and Y are independent, equality
holds. Random variables X1, . . . , Xk are independent if and only if

∀x1, . . . , xk : prob(X1 = x1 ∧ · · · ∧ Xk = xk) =
∏

1≤i≤k

prob(Xi = xi) (A.3)

As an example, when we role two dice, the value of the first dice and the value of the
second dice are independent random variables. However, the value of the first dice
and the sum of the two dices are not independent random variables.

Exercise 234. Let I and J be independent indicator variables and let X = (I +
J) mod 2, i.e., X is one iff I and J are different. Show that I and X are independent,
but that I , J , and X are dependent.

Assume now that X and Y are independent. Then

A.2 Basic Probability Theory 271

E[X] · E[Y] = (
∑

x

x · prob(X = x)) · (
∑

y

y · prob(X = y))

=
∑

x,y

x · y · prob(X = x) · prob(X = y)

=
∑

x,y

x · y · prob(X = x ∧ Y = y)

=
∑

z

∑

x,y with z=x·y

z · prob(X = x ∧ Y = y)

=
∑

z

z ·
∑

x,y with z=x·y

prob(X = x ∧ Y = y)

=
∑

z

z · prob(X · Y = z)

= E[X · Y] .

How likely is it that a random variable deviates substantially from its expected
value? The so-called Tschebyscheff inequality gives a useful bound. Let X be a non-
negative random variable and let c be any constant. Then

prob(X ≥ c · E[X]) ≤ 1

c
. (A.4)

The proof is simple. We have

E[X] =
∑

z∈ �
z · prob(X = z)

≥
∑

z≥c·E[X]

z · prob(X = z)

≥ c · E[X] · prob(X ≥ c · E[X]) ,

where the first inequality follows from the fact that we sum over a subset of the
possible values and X is non-negative and the second inequality follows from the
fact that the sum in the second line ranges only over z with z ≥ cE[X].

Much tighter bounds are possible for special cases of random variables. The fol-
lowing situation will come up several times. We have a sum X = X1 + · · · + Xn

of n independent(!!) indicator random variables X1,. . . , Xn and want to bound the
probability that X deviates substantially from its expected value. In this situation,
the following variant of the so-called Chernoff bound is useful. For any ε > 0, we
have:

prob(X < (1 − ε)E[X]) ≤ e−ε2E[X]/2 (A.5)

prob(X > (1 + ε)E[X]) ≤
(

eε

(1 + ε)(1+ε)

)E[X]

. (A.6)

272 A Appendix

A bound of the form above is also called a tail bound because it estimates the “tail of
the probability” distribution, i.e., the part for which X is deviates considerably from
its expected value.

Let us see an example. If we role n dices and let Xi denote the value of the i-th
dice, then X = X1 + · · · + Xn is the sum of the n dices. We know already that
E[X] = 7n/2. The bound above tells us that prob(X ≤ (1 − ε)7n/2) ≤ e−ε27n/4.
In particular, for ε = 0.1 we have prob(X ≤ 0.9 · 7n/2) ≤ e−0.01·7n/4. So for
n = 1000, the expected sum is 3500 and the probability that the sum is less than
3150 is smaller than e−17, a very small number.

Exercise 235. Estimate the probability that X is larger than 3850.

If the indicator random variables are independent and identically distributed with
prob(Xi = 1) = p, X is binomially distributed, i.e.,

prob(X = i) =

(

n

i

)

pi(1 − p)(n−i) . (A.7)

A.3 Useful Formulae

We will first list some useful formulae and then prove some of them.
(n

e

)n

≤ n! ≤ nn (A.8)

Stirling’s approximation of the factorial: n! =

(

1 + O
(

1

n

))√
2πn

(n

e

)n

(A.9)

(

n

k

)

≤
(n · e

k

)k

(A.10)

n
∑

i=1

i =
n(n + 1)

2
(A.11)

Harmonic Numbers: ln n ≤ Hn =

n
∑

i=1

1

i
≤ ln n + 1 (A.12)

n−1
∑

i=0

qi =
1 − qn

1 − q
for q 6= 1 and

∑

i≥0

qi =
1

1 − q
for 0 ≤ q < 1 (A.13)

∑

i≥0

2−i = 2 and
∑

i≥0

i · 2−i =
∑

i≥1

i · 2−i = 2 (A.14)

A.3 Useful Formulae 273

[ps todo: schÃűnere Ausrichtung der benamsten Gleichungen]=⇒

Jensen’s inequality:
n
∑

i=1

f(xi) ≤ n · f
(∑n

i=1 xi

n

)

(A.15)

for any concave function f . Similarly, for any convex function f ,

n
∑

i=1

f(xi) ≥ n · f
(∑n

i=1 xi

n

)

. (A.16)

Proofs:

For Equation (A.8), we first observe n! = n(n − 1) · · · 1 ≤ nn. Also, for all i ≥ 2,
ln i ≥

∫ i

i−1
ln x dx and therefore

ln n! =
∑

2≤i≤n

ln i ≥
∫ n

1

ln x dx =
[

x(ln x − 1)
]x=n

x=1
≥ n(ln n − 1) .

Thus
n! ≥ en(ln n−1) = (eln n−1)n = (

n

e
)n .

Equation (A.10) follows almost immediately from Equation (A.8). We have
(

n

k

)

= n(n − 1) · · · (n − k + 1)/k! ≤ nk/(k/e)k = ((n · e)/k)k .

Equation (A.11) can be computed by a simple trick.

1 + 2 + . . . + n =
1

2
((1 + 2 + . . . + n − 1 + n) + (n + n − 1 + . . . + 2 + 1))

=
1

2
((n + 1) + (2 + n − 1) + . . . + (n − 1 + 2) + (n + 1))

= n(n + 1)/2 .

The sums of higher powers are estimated easily; exact summation formulae are also
available. For example,

∫ i

i−1
x2 dx ≤ i2 ≤

∫ i+1

i
x2 dx and hence

∑

1≤i≤n

i2 ≤
∫ n+1

1

x2 dx =
[x3

3

]x=n+1

x=1
=

(n + 1)3 − 1

3

and
∑

1≤i≤n

i2 ≥
∫ n

0

x2 dx =
[x3

3

]x=n

x=0
=

n3

3
.

274 A Appendix

For Equation (A.12), we also use estimation by integral. We have
∫ i

i−1
1/x dx ≥

1/i ≥
∫ i+1

i
1/x dx and hence

ln n ≤
∫ n

1

1

x
dx ≤

∑

1≤i≤n

1

i
≤ 1 +

∫ n

1

1

x
dx = 1 + ln n .

Equation (A.13) follows from

(1 − q) ·
∑

0≤i≤n−1

qi =
∑

0≤i≤n−1

qi −
∑

1≤i≤n

qi = 1 − qn .

Letting n pass to infinity yields
∑

i≥0 qi = 1/(1 − q) for 0 ≤ q < 1. For q = 1/2,
we obtain

∑

i≥0 2−i = 2. Also,

∑

i≥1

i · 2−i =
∑

i≥1

2−i +
∑

i≥2

2−i +
∑

i≥3

2−i + . . .

= (1 + 1/2 + 1/4 + 1/8 + . . .) ·
∑

i≥1

2−i

= 2 · 1 = 2 .

For the first equality observe that the term 2−i occurs exactly in the first i sums of
the right-hand side of the first equality.

Equation (A.16) can be shown by induction on n. For n = 1, there is nothing to
show. So assume n ≥ 2. Let x∗ =

∑

1≤i≤n xi/n and x̄ =
∑

1≤i≤n−1 xi/(n − 1).
Then x∗ = ((n − 1)x̄ + xn)/n and hence

∑

1≤i≤n

f(xi) = f(xn) +
∑

1≤i≤n−1

f(xi)

≤ f(xn) + (n − 1) · f(x̄) = n ·
(

1

n
· f(xn) +

n − 1

n
· f(x̄)

)

≤ n · f(x∗) ,

where the first inequality uses the induction hypothesis and the second inequality
uses the definition of concavity with x = xn, y = x̄ and t = 1/n. The extension to
convex functions is immediate, since convexity of f implies concavity of −f .

References

[1] Der Handlungsreisende - wie er sein soll und was er zu thun hat, um Auftraege
zu erhalten und eines gluecklichen Erfolgs in seinen Geschaeften gewiss zu
sein - Von einem alten Commis-Voyageur. 1832.

[2] J. Abello, A. Buchsbaum, and J. Westbrook. A functional approach to external
graph algorithms. Algorithmica, 32(3):437–458, 2002.

[3] G. M. Adel’son-Vel’skii and E. M. Landis. An algorithm for the organization
of information. Soviet Mathematics Doklady, 3:1259–1263, 1962.

[4] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and
related problems. Communications of the ACM, 31(9):1116–1127, 1988.

[5] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[6] A. V. Aho, B. W. Kernighan, and P. J. Weinberger. The AWK Programming
Language. Addison-Wesley, 1988.

[7] R. Ahuja, K. Mehlhorn, J. Orlin, and R. Tarjan. Faster Algorithms for the
Shortest Path Problem. Journal of the ACM, 3(2):213–223, 1990.

[8] R. K. Ahuja, R. L. Magnanti, and J. B. Orlin. Network Flows. Prentice Hall,
1993.

[9] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in linear time?
Journal of Computer and System Sciences, pages 74–93, 1998.

[10] F. Annexstein, M. Baumslag, and A. Rosenberg. Group action graphs and
parallel architectures. SIAM Journal on Computing, 19(3):544–569, 1990.

[11] D. L. Applegate, E. E. Bixby, V. ChvÃątal, and W. J. Cook. The Traveling
Salesman Problem: A Computational Study. Princeton University Press, 2006.

[12] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi. Complexity and Approximation: Combinatorial Optimization
Problems and their Approximability Properties. Springer Verlag, 1999.

[13] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast routing in road networks
with transit nodes. Science, 316(5824):566, 2007.

[14] R. Bayer and E. M. McCreight. Organization and maintenance of large or-
dered indexes. Acta Informatica, 1(3):173 – 189, 1972.

276 References

[15] R. Beier and B. Vöcking. Random knapsack in expected polynomial time. J.
Comput. Syst. Sci., 69(3):306–329, 2004.

[16] R. Bellman. On a routing problem. Quart. Appl. Math., 16:87–90, 1958.
[17] Bender and Farach-Colton. The level ancestor problem simplified. TCS: The-

oretical Computer Science, 321, 2004.
[18] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious B-

trees. In D. C. Young, editor, Proceedings of the 41st Annual Symposium on
Foundations of Computer Science, pages 399–409, Los Alamitos, California,
Nov. 12–14 2000. IEEE Computer Society.

[19] M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin.
Lowest common ancestors in trees and directed acyclic graphs. J. of Algo-
rithms, pages 75–94, 2005.

[20] J. L. Bentley and M. D. McIlroy. Engineering a sort function. Software Prac-
tice and Experience, 23(11):1249–1265, 1993.

[21] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geo-
metric intersections. IEEE Transactions on Computers, pages 643–647, 1979.

[22] J. L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching
strings. In ACM, editor, Proceedings of the Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, New Orleans, Louisiana, January 5–7, 1997,
pages 360–369, New York, NY 10036, USA, 1997. ACM Press.

[23] O. Berkman and U. Vishkin. Finding level ancestors in trees. J. of Computer
and System Sciences, 48:214–230, 1994.

[24] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, 1997.

[25] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and
M. Zagha. A comparison of sorting algorithms for the connection machine
CM-2. In ACM Symposium on Parallel Architectures and Algorithms, pages
3–16, 1991.

[26] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds
for selection. J. of Computer and System Sciences, 7(4):448, 1972.

[27] N. Blum and K. Mehlhorn. On the average number of rebalancing operations
in weight-balanced trees. Theoretical Computer Science, 11:303–320, 1980.

[28] Boost.org. boost C++ Libraries. www.boost.org.
[29] O. Boruvka. O jistém problému minimálním. Pràce, Moravské

Prirodovedecké Spolecnosti, pages 1–58, 1926.
[30] G. S. Brodal. Worst-case efficient priority queues. In Proc. 7th Symposium on

Discrete Algorithms, pages 52–58, 1996.
[31] G. S. Brodal and J. Katajainen. Worst-case efficient external-memory priority

queues. In 6th Scandinavian Workshop on Algorithm Theory, number 1432 in
LNCS, pages 107–118. Springer Verlag, Berlin, 1998.

[32] M. Brown and R. Tarjan. Design and analysis of a data structure for repre-
senting sorted lists. SIAM Journal of Computing, 9:594–614, 1980.

[33] R. Brown. Calendar queues: A fast O(1) priority queue implementation for
the simulation event set problem. Communications of the ACM, 31(10):1220–
1227, 1988.

References 277

[34] J. Carter and M. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, april 1979.

[35] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal
of Computer and System Sciences, 18(2):143–154, Apr. 1979.

[36] Chazelle. A minimum spanning tree algorithm with inverse-ackermann type
complexity. JACM: Journal of the ACM, 47:1028–1047, 2000.

[37] B. Chazelle and L. Guibas. Fractional cascading: II. Applications. Algorith-
mica, 1(2):163–191, 1986.

[38] B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring tech-
nique. Algorithmica, 1(2):133–162, 1986.

[39] J.-C. Chen. Proportion extend sort. SIAM Journal on Computing, 31(1):323–
330, 2001.

[40] J. Cheriyan and K. Mehlhorn. Algorithms for Dense Graphs and Networks.
Algorithmica, 15(6):521–549, 1996.

[41] B. Cherkassky, A. Goldberg, and T. Radzik. Shortest paths algorithms: The-
ory and experimental evaluation. In D. D. Sleator, editor, Proceedings of the
5th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’94), pages
516–525. ACM Press, 1994.

[42] E. G. Coffman, M. R. G. Jr., , and D. S. Johnson. Approximation algorithms
for bin packing: A survey. In D. Hochbaum, editor, Approximation Algorithms
for NP-Hard Problems, pages 46–93. PWS, 1997.

[43] D. Cohen-Or, D. Levin, and O. Remez. rogressive compression of arbitrary
triangular meshes. In Proc. IEEE Visualization, pages 67–72, 1999.

[44] S. Cook. On the Minimum Computation Time of Functions. PhD thesis, Har-
vard University, 1966.

[45] W. J. Cook. The complexity of theorem proving procedures. In 3rd ACM
Symposium on Theory of Computing, pages 151–158, 1971.

[46] G. B. Dantzig. Maximization of a linear function of variables subject to linear
inequalities. Activity Analysis of Production and Allocation, pages 339–347,
1951.

[47] M. de Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer, 1997.

[48] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computa-
tional Geometry Algorithms and Applications. Springer-Verlag, Berlin Hei-
delberg, 2., rev. ed. edition, 2000.

[49] R. Dementiev, L. Kettner, J. Mehnert, and P. Sanders. Engineering a sorted
list data structure for 32 bit keys. In Workshop on Algorithm Engineering &
Experiments, New Orleans, 2004.

[50] R. Dementiev, L. Kettner, and P. Sanders. Stxxl: standard template library for
xxl data sets. Software Practice and Experience, 2007. http://stxxl.
sourceforge.net/.

[51] R. Dementiev and P. Sanders. Asynchronous parallel disk sorting. In 15th
ACM Symposium on Parallelism in Algorithms and Architectures, pages 138–
148, San Diego, 2003.

278 References

[52] R. Dementiev, P. Sanders, D. Schultes, and J. Sibeyn. Engineering an external
memory minimum spanning tree algorithm. In IFIP TCS, Toulouse, 2004.

[53] L. Devroye. A note on the height of binary search trees. Journal of the ACM,
33:289–498, 1986.

[54] R. B. Dial. Shortest-path forest with topological ordering. Commun. ACM,
12(11):632–633, Nov. 1969.

[55] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. M. auf der Heide, H. Rohnert,
and R. Tarjan. Dynamic Perfect Hashing: Upper and Lower Bounds. SIAM
Journal of Computing, 23(4):738–761, 1994.

[56] M. Dietzfelbinger and F. Meyer auf der Heide. Simple, efficient shared mem-
ory simulations. In 5th ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 110–119, Velen, Germany, June 30–July 2, 1993. SIGACT and
SIGARCH.

[57] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[58] E. A. Dinic. Economical algorithms for finding shortest paths in a network.
In Transportation Modeling Systems, pages 36–44, 1978.

[59] W. Domschke and A. Drexl. Eeinführung in Operations Research. Springer,
2007.

[60] J. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan. Making data structures per-
sistent. Journal of Computer and System Sciences, 38(1):86–124, february
1989.

[61] R. Fleischer. A tight lower bound for the worst case of Bottom-Up-Heapsort.
Algorithmica, 11(2):104–115, Feb. 1994.

[62] R. Floyd. Assigning meaning to programs. In Mathematical Aspects of Com-
puter Science, pages 19–32, 1967.

[63] L. Ford. Network flow theory. Technical Report Report P-923, Rand Corpo-
ration, Santa Monica, California, 1956.

[64] E. Fredkin. Trie memory. CACM, 3:490–499, 1960.
[65] M. Fredman, J. Komlos, and E. Szemeredi. Storing a sparse table with o(1)

worst case access time. Journal of the ACM, 31:538–544, 1984.
[66] M. Fredman, R. Sedgewick, D. Sleator, and R. Tarjan. The pairing heap: A

new form of self-adjusting heap. Algorithmica, 1:111–129, 1986.
[67] M. Fredman and R. Tarjan. Fibonacci heaps and their uses in improved net-

work optimization algorithms. Journal of the ACM, 34:596–615, 1987.
[68] M. L. Fredman. On the efficiency of pairing heaps and related data structures.

Journal of the ACM, 46(4):473–501, July 1999.
[69] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious

algorithms. In 40th Symposium on Foundations of Computer Science, pages
285–298, 1999.

[70] H. Gabow. Path-based depth-first search for strong and biconnected compo-
nents. Inf. Process. Lett., pages 107–114, 2000.

[71] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

References 279

[72] M. Garey and D. Johnson. Computers and Intractability: A Guide to the The-
ory of NP-completeness. W.H. Freeman and Company, 1979.

[73] B. Gärtner and J. Matousek. Understanding and Using Linear Programming.
Springer, 2006.

[74] GMP (GNU multi-precision library). http://gmplib.org/.
[75] A. V. Goldberg. A practical shortest path algorithm with linear expected time.

to appear in Siam Journal of Computing.
[76] A. V. Goldberg. Scaling algorithms for the shortest path problem. SIAM

Journal on Computing, 24:494–504, 1995.
[77] M. T. Goodrich and R. T. et al. JDSL — the data structures library in java.

www.cs.brown.edu/cgc/jdsl/pub.html.
[78] G. Graefe and P.-A. Larson. B-tree indexes and cpu caches. In ICDE, pages

349–358. IEEE, 2001.
[79] R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics. Addison-

Wesley, 1994.
[80] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addi-

son Wesley, 1992.
[81] J. F. Grantham and C. Pomerance. Prime numbers. In K. H. Rosen, editor,

Handbook of Discrete and Combinatorial Mathematics, chapter 4.4, pages
236–254. CRC Press, 2000.

[82] R. Grossi and G. Italiano. Efficient techniques for maintaining multi-
dimenional keys in linked data structures. In ICALP 99, volume 1644 of
Lecture Notes in Computer Science, pages 372–381, 1999.

[83] S. Halperin and U. Zwick. Optimal randomized erew pram algorithms for
finding spanning forests and for other basic graph connectivity problems. In
7th ACM-SIAM symposium on Discrete algorithms, pages 438–447, Philadel-
phia, PA, USA, 1996. Society for Industrial and Applied Mathematics.

[84] G. Handler and I. Zang. A dual algorithm for the constrained shortest path
problem. Networks, 10:293–309, 1980.

[85] D. Harel and R. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. on Computing, 13(2):338–355, 1984.

[86] J. Hartmanis and J. Simon. On the power of multiplication in random access
machines. In FOCS, pages 13–23, 1974.

[87] M. Held and R. Karp. The traveling-salesman problem and minimum span-
ning trees. Operations Research, 18:1138–1162, 1970.

[88] M. Held and R. Karp. The traveling-salesman problem and minimum span-
ning trees, part ii. Mathematical Programming, 1:6–25, 1971.

[89] P. V. Hentenryck and L. Michel. Constraint-Based Local Search. MIT Press,
2005.

[90] C. A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12:576–585, 1969.

[91] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1:271–281, 1972.

[92] R. D. Hofstadter. Metamagical themas. Scientific American, (2):16–22, 1983.

280 References

[93] S. Huddlestone and K. Mehlhorn. A new data structure for representing sorted
lists. Acta Informatica, 17:157–184, 1982.

[94] J. Iacono. Improved upper bounds for pairing heaps. In 7th Scandina-
vian Workshop on Algorithm Theory, volume 1851 of LNCS, pages 32–45.
Springer, 2000.

[95] A. Itai, A. G. Konheim, and M. Rodeh. A sparse table implementation of
priority queues. In S. Even and O. Kariv, editors, Proceedings of the 8th Col-
loquium on Automata, Languages and Programming, volume 115 of LNCS,
pages 417–431, Acre, Israel, July 1981. Springer.

[96] V. Jarník. O jistém problému minimálním. Práca Moravské Pr̆írodovĕdecké
Spolec̆nosti, 6:57–63, 1930. In Czech.

[97] K. Jensen and N. Wirth. Pascal User Manual and Report. ISO Pascal Stan-
dard. Springer, 1991.

[98] T. Jiang, M. Li, and P. Vitányi. Average-case complexity of shellsort. In
ICALP, number 1644 in LNCS, pages 453–462, 1999.

[99] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization
by simulated annealing: Experimental evaluation; part ii, graph coloring and
number partitioning. Operations Research, 39(3):378–406, 1991.

[100] H. Kaplan and R. E. Tarjan. New heap data structures. Technical Report
TR-597-99, Princeton University, 1999.

[101] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on au-
tomata. Soviet Physics—Doklady, 7(7):595–596, Jan. 1963.

[102] D. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm
for finding minimum spanning trees. J. Assoc. Comput. Mach., 42:321–329,
1995.

[103] N. Karmakar. A new polynomial-time algorithm for linear programming.
Combinatorica, pages 373–395, 1984.

[104] J. Katajainen and B. B. Mortensen. Experiences with the design and imple-
mentation of space-efficient deque. In Workshop on Algorithm Engineering,
volume 2141 of LNCS, pages 39–50. Springer, 2001.

[105] I. Katriel, P. Sanders, and J. L. Träff. A practical minimum spanning tree
algorithm using the cycle property. Technical Report MPI-I-2002-1-003, MPI
Informatik, Germany, October 2002.

[106] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer, 2004.
[107] L. Khachiyan. A polynomial time algorithm in linear programming (in rus-

sian). Soviet Mathematics Doklady, 20(1):191–194, 1979.
[108] V. King. A simpler minimum spanning tree verification algorithm. Algorith-

mica, 18:263–270, 1997.
[109] D. E. Knuth. The Art of Computer Programming—Sorting and Searching,

volume 3. Addison Wesley, 2nd edition, 1998.
[110] D. E. Knuth. MMIXware: A RISC Computer for the Third Millennium. Num-

ber 1750 in LNCS. Springer, 1999.
[111] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.

Artificial Intelligence, 27:97–109, 1985.

References 281

[112] B. Korte and J.Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer, 2000.

[113] J. Kruskal. On the shortest spanning subtree of a graph and the travelling
salesman problem. In Proceedings of the American Mathematical Society,
pages 48–50, 1956.

[114] E. L. Lawler, J. K. L. A. H. G. R. Kan, and D. B. Shmoys. The Traveling
Salesman Problem. John Wiley & Sons, New York, 1985.

[115] LEDA (Library of Efficient Data Types and Algorithms). www.
algorithmic-solutions.com.

[116] L. Levin. Universal search problems (in russian). Problemy Peredachi Infor-
matsii, 9(3):265–266, 1973.

[117] I. Lustig and J.-F. Puget. Program does not equal program: contstraint pro-
gramming and its relationship to mathematical programming. Interfaces,
31:29–53, 2001.

[118] S. Martello and P. Toth. Knapsack Problems – Algorithms and Computer
Implementations. Wiley, 1990.

[119] C. Martínez and S. Roura. Optimal sampling strategies in Quicksort and
Quickselect. SIAM Journal on Computing, 31(3):683–705, June 2002.

[120] C. McGeoch, P. Sanders, R. Fleischer, P. R. Cohen, and D. Precup. Using finite
experiments to study asymptotic performance. In Experimental Algorithmics
— From Algorithm Design to Robust and Efficient Software, volume 2547 of
LNCS, pages 1–23. Springer, 2002.

[121] K. Mehlhorn. On the Sizeof Sets of Computable Functions. In Proceedings
of the 14th IEEE Symposium on Automata and Switching Theory, pages 190–
196, 1973.

[122] K. Mehlhorn. A faster approximation algorithm for the Steiner problem in
graphs. Information Processing Letters, 27(3):125–128, Mar. 1988.

[123] K. Mehlhorn. Amortisierte Analyse. In T. Ottmann, editor, Prinzipien des
Algorithmenentwurfs. Spektrum Lehrbuch, 1998.

[124] K. Mehlhorn and U. Meyer. External Memory Breadth-First Search with Sub-
linear I/O. In ESA, volume 2461 of LNCS, pages 723–735. Springer, 2002.

[125] K. Mehlhorn and S. Näher. Bounded ordered dictionaries in O(log log N)
time and O(n) space. Information Processing Letters, 35(4):183–189, 1990.

[126] K. Mehlhorn and S. Näher. Dynamic Fractional Cascading. Algorithmica,
5:215–241, 1990.

[127] K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial and Geo-
metric Computing. Cambridge University Press, 1999. 1018 pages.

[128] K. Mehlhorn, V. Priebe, G. Schäfer, and N. Sivadasan. All-Pairs Shortest-
Paths Computation in the Presence of Negative Cycles. Information Process-
ing Letters, pages 341–343, 2002.

[129] K. Mehlhorn and P. Sanders. Scanning multiple sequences via cache memory.
Algorithmica, 35(1):75–93, 2003.

[130] K. Mehlhorn and M. Ziegelmann. Resource Constrained Shortest Paths. In
ESA 2000, volume 1879 of Lecture Notes in Computer Science, pages 326–
337, 2000.

282 References

[131] R. Mendelson and U. Z. R. E. Tarjan, M. Thorup. Melding priority queues. In
9th Scandinavian Workshop on Algorithm Theory, pages 223–235, 2004.

[132] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Englewood
Cliffs, second edition, 1997.

[133] U. Meyer. Average-case complexity of single-source shortest-path algorithms:
lower and upper bounds. Journal of Algorithms, 48:91–134, 2003. preliminary
version in SODA 2001.

[134] U. Meyer, P. Sanders, and J. Sibeyn, editors. Algorithms for Memory Hierar-
chies, volume 2625 of LNCS Tutorial. Springer, 2003.

[135] B. M. E. Moret and H. D. Shapiro. An empirical analysis of algorithms for
constructing a minimum spanning tree. In Workshop Algorithms and Data
Structures (WADS), number 519 in LNCS, pages 400–411. Springer, Aug.
1991.

[136] R. Morris. Scatter storage techniques. CACM, 11:38–44, 1968.
[137] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufmann Publishers, San Francisco, Kalifornien, 1997.
[138] S. Näher and O. Zlotowski. Design and implementation of efficient data types

for static graphs. In ESA, volume ??? of LNCS, pages 748–759, 2002.
[139] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. John

Wiley & Sons, 1988.
[140] J. Nes̆etr̆il, H. Milková, and H. Nes̆etr̆ilová. Otakar boruvka on minimum

spanning tree problem: Translation of both the 1926 papers, comments, his-
tory. DMATH: Discrete Mathematics, 233, 2001.

[141] K. S. Neubert. The flashsort1 algorithm. Dr. Dobb’s Journal, pages 123–125,
February 1998.

[142] J. v. Neumann. First draft of a report on the EDVAC. Technical report, Uni-
versity of Pennsylvania, 1945. http://www.histech.rwth-aachen.
de/www/quellen/vnedvac.pdf.

[143] J. Nievergelt and E. Reingold. Binary search trees of bounded balance. SIAM
Journal of Computing, 2:33–43, 1973.

[144] K. Noshita. A theorem on the expected complexity of Dijkstra’s shortest path
algorithm. Journal of Algorithms, 6(3):400–408, 1985.

[145] R. Pagh and F. Rodler. Cuckoo hashing. J. Algorithms, 51:122–144, 2004.
[146] S. Pettie. Towards a final analysis of pairing heaps. focs, 0:174–183, 2005.
[147] S. Pettie and V. Ramachandran. An optimal minimum spanning tree algo-

rithm. In 27th ICALP, volume 1853 of LNCS, pages 49–60. Springer, 2000.
[148] P. J. Plauger, A. A. Stepanov, M. Lee, and D. R. Musser. The C++ Standard

Template Library. Prentice-Hall, 2000.
[149] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Communi-

cations of the ACM, 33(6):668–676, 1990.
[150] A. Ranade, S. Kothari, and R. Udupa. Register efficient mergesorting. In

High Performance Computing — HiPC, volume 1970 of LNCS, pages 96–
103. Springer, 2000.

[151] J. Reif. An optimal parallel algorithm for integer sorting. In 26th Symposium
on Foundations of Computer Science, pages 490–503, 1985.

References 283

[152] N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas. Efficiently four-
coloring planar graphs. In 28th ACM symposium on Theory of computing,
pages 571–575, New York, NY, USA, 1996. ACM Press.

[153] G. Robins and A. Zelikwosky. Improved Steiner tree approximation in graphs.
In 11th SODA, pages 770–779, 2000.

[154] P. Sanders. Fast priority queues for cached memory. ACM Journal of Experi-
mental Algorithmics, 5, 2000.

[155] P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest path
queries. In 13th European Symposium on Algorithms, volume 3669 of LNCS,
pages 568–579. Springer, 2005.

[156] P. Sanders and D. Schultes. Engineering fast route planning algorithms. In
C. Demetrescu, editor, 6th Workshop on Experimental Algorithms, volume
4525 of Lecture Notes in Computer Science, pages 23–36. Springer, 2007.

[157] P. Sanders and S. Winkel. Super scalar sample sort. In 12th European Sympo-
sium on Algorithms (ESA), volume 3221 of LNCS, pages 784–796. Springer,
2004.

[158] R. Santos and F. Seidel. A better upper bound on the number of triangulations
of a planar point set. Journal of Combinatorial Theory Series A, 102(1):186–
193, 2003.

[159] R. Schaffer and R. Sedgewick. The analysis of heapsort. Journal of Algo-
rithms, 15:76–100, 1993. Also known as TR CS-TR-330-91, Princeton Uni-
versity, January 1991.

[160] A. Schönhage. Storage modification machines. SIAM J. on Computing,
9:490–508, 1980.

[161] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Com-
puting, 7:281–292, 1971.

[162] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
[163] R. Sedgewick. Analysis of shellsort and related algorithms. LNCS, 1136:1–

11, 1996.
[164] R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms.

Addison-Wesley Publishing Company, 1996.
[165] R. Seidel and C. Aragon. Randomized search trees. Algorithmica, 16(4–

5):464–497, 1996.
[166] R. Seidel and M. Sharir. Top-down analysis of path compression. SIAM J.

Comput., pages 515–525, 2005.
[167] M. Sharir. A strong-connectivity algorithm and its applications in data flow

analysis. Computers and Mathematics with Applications, 7(1):67–72, 1981.
[168] J. Shepherdson and H. Sturgis. Computability of recursive functions. JACM,

pages 217–225, 1963.
[169] M. Sipser. Introduction to the Theory of Computation. MIT Press, 1998.
[170] D. Sleator and R. Tarjan. A data structure for dynamic trees. Journal of

Computer and System Sciences, 26(3):362–391, 1983.
[171] D. Sleator and R. Tarjan. Self-adjusting binary search trees. Journal of the

ACM, 32(3):652–686, 1985.

284 References

[172] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362–391, 1983.

[173] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of
the ACM, 32(3):652–686, 1985.

[174] D. Spielman and S.-H. Teng. Smoothed analysis of algorithms: why the sim-
plex algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–
463, 2004.

[175] R. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22:215–225, 1975.

[176] R. Tarjan. Amortized computational complexity. SIAM Journal on Algebraic
and Discrete Methods, 6(2):306–318, 1985.

[177] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on
Computing, 1:146–160, 1972.

[178] R. E. Tarjan. Shortest paths. Technical report, AT&T Bell Laboratories, 1981.
[179] R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm.

SIAM Journal on Computing, 14(4):862–874, 1985.
[180] M. Thorup. Undirected single source shortest paths in linear time. Journal of

the ACM, 46:362–394, 1999.
[181] M. Thorup. Compact oracles for reachability and approximate distances in

planar digraphs. J. ACM, 51(6):993–1024, 2004.
[182] M. Thorup. Integer priority queues with decrease key in constant time and the

single source shortest paths problem. In 35th ACM Symposium on Theory of
Computing, pages 149–158, 2004.

[183] M. Thorup. Integer priority queues with decrease key in constant time and the
single source shortest paths problem. J. Comput. Syst. Sci., 69(3):330–353,
2004.

[184] M. Thorup and U. Zwick. Approximate distance oracles. In 33th ACM Sym-
posium on the Theory of Computing, pages 316–328, 2001.

[185] A. Toom. The complexity of a scheme of functional elements realizing the
multiplication of integers. Soviet Math.—Doklady, 150(3):496–498, 1963.

[186] P. van Emde Boas. Preserving order in a forest in less than logarithmic time.
Information Processing Letters, 6(3):80–82, 1977.

[187] R. Vanderbei. Linear Programming: Foundations and Extensions. Springer,
2001.

[188] V. Vazirani. Approximation Algorithms. Springer, 2000.
[189] J. Vuillemin. A data structure for manipulating priority queues. Communica-

tions of the ACM, 21:309–314, 1978.
[190] L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly, 3rd

edition, 2000.
[191] I. Wegener. BOTTOM-UP-HEAPSORT, a new variant of HEAPSORT beat-

ing, on an average, QUICKSORT (if n is not very small). Theoretical Comput.
Sci., 118:81–98, 1993.

[192] I. Wegener. Complexity Theory: Exploring the Limits of Efficient Algorithms.
Springer, 2005.

References 285

[193] R. Wickremesinghe, L. Arge, J. S. Chase, and J. S. Vitter. Efficient sorting
using registers and caches. ACM Journal of Experimental Algorithmics, 7(9),
2002.

[194] R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley, 1995.
[195] J. W. J. Williams. Algorithm 232: Heapsort. CACM, 7:347–348, 1964.
[196] M. T. Y. Han. Integer sorting in O

(

n
√

log log n
)

expected time and linear
space. In 42nd Symposium on Foundations of Computer Science, pages 135–
144, 2002.

