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Priority Queues

The company TMG markets tailor-made first-rate garments. It organizes marketing,

measurements, etc., but outsources the actual fabrication to independent tailors. The

company keeps 20% of the revenue. When the company was founded in the 19th

century, there were five subcontractors. Now it controls 15% of the world market

and there are thousands of subcontractors worldwide.

Let us have a closer look at how orders are assigned to the subcontractors. The

rule is that an order is assigned to the tailor who has so far (in the current year) been

assigned the smallest total value of orders. The founders of TMG used a blackboard

to keep track of the current total value of orders for each tailor; in computer science

terms, they kept a list of values and spent linear time to find the correct tailor. The

business has outgrown this solution. Can you come up with a more scalable solution

where you have to look at only a small number of values to decide who will be

assigned the next order?

Next year, the rules will be changed. In order to encourage timely delivery, orders

will now be assigned to the tailor with the smallest value of unfinished orders, i.e.,

whenever an order is assigned to a tailor, you have to increase the backlog of the

tailor, and whenever a finished order arrives, you have to deduct the value of that

order from the backlog of the tailor who executed it. In order to assign an order, you

have to find the tailor with the smallest backlog. Is your strategy for assigning orders

flexible enough to handle this efficiently?

Priority queues1 are the data structure required for the problem above and for many
other applications. We start our discussion with the precise specification. (Nonad-
dressable) priority queues maintain a set M of Elements with Keys supporting the
following operations:

1 The photograph shows people queueing at the Eiffel Tower (Doods Dumaguing www.

flickr.com/photos/xianl2/8620507361).

www.flickr.com/photos/xianl2/8620507361
www.flickr.com/photos/xianl2/8620507361
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• M.build({e1, . . . ,en}): M :={e1, . . . ,en}.
• M.insert(e): M :=M∪{e}.
• M.min: return minM (an element with minimum key).
• M.deleteMin: e :=minM; M :=M \ {e}; return e.

This is enough for the first part of our example. Each year, we build a new priority
queue containing an Element with a Key of 0 for each contracted tailor. To assign an
order, we delete the smallest Element, add the order value to its Key, and reinsert it.
Section 6.1 presents a simple, efficient implementation of this basic functionality.

Addressable priority queues support additional operations. The elements in an
addressable priority queue are accessible through a handle. The handle is established
when the element is inserted into the queue. The additional operations are:

• M.insert(e): M :=M∪{e}; Return a handle to e.
• remove(h): Remove the element specified by the handle h.
• decreaseKey(h,k): Decrease the key of the element at handle h to k.
• M.merge(Q): M :=M∪Q; Q := /0.

In our example, the operation remove might be helpful when a contractor is fired
because he/she delivers poor quality. Using this operation together with insert, we
can also implement the “new contract rules”: When an order is assigned or delivered,
we remove the Element for the contractor who executed the order, update its backlog
value, and reinsert the Element. DecreaseKey streamlines the actions for a delivery
to a single operation. In Sect. 6.2, we shall see that this is not just convenient but that
decreasing keys can be implemented more efficiently than arbitrary element updates.

Priority queues have many applications. For example, in Sect. 12.2, we shall
see that our introductory example can also be viewed as a greedy algorithm for a
machine-scheduling problem. Also, the selection-sort algorithm of Sect. 5.1 can be
implemented efficiently now: First, insert all elements into a priority queue, and then
repeatedly delete the smallest element and output it. A tuned version of this idea is
described in Sect. 6.1. The resulting heapsort algorithm is popular because it needs
no additional space and is worst-case efficient.

In a discrete-event simulation, one has to maintain a set of pending events. Each
event happens at some scheduled point in time and creates some number, maybe zero,
of new events in the future. Pending events are kept in a priority queue. The main
loop of the simulation deletes the next event from the queue, executes it, and inserts
newly generated events into the priority queue. Note that the priorities (times) of the
deleted elements (simulated events) increase monotonically during the simulation. It
turns out that many applications of priority queues have this monotonicity property.
Section 10.5 explains how to exploit monotonicity for integer keys.

Another application of monotone priority queues is the best-first branch-and-

bound approach to optimization described in Sect. 12.4. Here, the elements are par-
tial solutions of an optimization problem and the keys are optimistic estimates of
the obtainable solution quality. The algorithm repeatedly removes the best-looking
partial solution, refines it, and inserts zero or more new partial solutions.

Scheduling tasks of different importance in a parallel system is an application
of parallel priority queues. For example, when parallelizing branch-and-bound, the
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partial solutions might be viewed as such tasks and the importance of a task might
be a bound on its objective value.

We shall see two applications of addressable priority queues in the chapters on
graph algorithms. In both applications, the priority queue stores nodes of a graph. Di-
jkstra’s algorithm for computing shortest paths (Sect. 10.3) uses a monotone priority
queue where the keys are path lengths. The Jarník–Prim algorithm for computing
minimum spanning trees (Sect. 11.2) uses a (nonmonotone) priority queue where the
keys are the weights of edges connecting a node to a partial spanning tree. In both
algorithms, there can be a decreaseKey operation for each edge, whereas there is
at most one insert and deleteMin for each node. Observe that the number of edges
may be much larger than the number of nodes, and hence the implementation of
decreaseKey deserves special attention.

Exercise 6.1. Show how to implement bounded nonaddressable priority queues us-
ing arrays. The size of the queue is bounded by w and when the queue has a size n, the
first n entries of the array are used. Compare the complexity of the queue operations
for two implementations: one by unsorted arrays and one by sorted arrays.

Exercise 6.2. Show how to implement addressable priority queues using doubly
linked lists. Each list item represents an element in the queue, and a handle is a
handle of a list item. Compare the complexity of the queue operations for two imple-
mentations: one by sorted lists and one by unsorted lists.

In Sect. 6.1 we begin with a very simple array-based data structure that is well
suited to nonaddressable priority queues. We then discuss pointer-based addressable
priority queues in Sect. 6.2. Section 6.3 shows how nonaddressable queues can be
implemented efficiently in external memory. Section 6.4 discusses parallel priority
queues. We shall describe a version with bulk operations that accesses many elements
at once.

6.1 Binary Heaps

Heaps are a simple and efficient implementation of nonaddressable bounded priority
queues [331]. They can be made unbounded in the same way as bounded arrays can
be made unbounded; see Sect. 3.4. Heaps can also be made addressable, but we shall
see better addressable queues in later sections.

We use an array h[1..w] that stores the elements of the queue. The first n entries
of the array are used. The array is heap-ordered, i.e.,

for j with 2≤ j ≤ n: h[⌊ j/2⌋]≤ h[ j ].

What does “heap-ordered” mean? The key to understanding this definition is a bijec-
tion between positive integers and the nodes of a complete binary tree, as illustrated
in Fig. 6.1. Node 1 is the root of the tree, and the children of node i are the nodes
with numbers 2i and 2i+ 1. The parent of a node i≥ 2 is node ⌊i/2⌋. A heap of size
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Fig. 6.1. The top part shows a heap with n = 12 elements stored in an array h with w = 13
entries. The root corresponds to index 1. The children of the root correspond to indices 2 and
3. The children of node i have indices 2i and 2i+1 (if they exist). The parent of a node i, i≥ 2,
has index ⌊i/2⌋. If n elements are stored in the heap, they are stored in nodes 1 to n. The keys
are characters, with their usual alphabetic order. The invariant states that the key of a parent
is no larger than the keys of its children, i.e., the tree is heap-ordered. The left part shows
the effect of inserting b. We add node 13 as a new leaf to the heap. The thick edges mark a
path from node 13 to the root. The new element b is moved up this path until its parent is not
larger. The remaining elements on the path are moved down to make room for b. The right

part shows the effect of deleting the minimum. The thick edges mark the path p that starts at
the root and always proceeds to the child with the smaller Key. The element q stored in the
node n is provisionally moved to the root and then moves down p until its successor in p is
not smaller anymore. The remaining elements move up to make room for q.

n uses nodes 1 to n. In a heap, the key of a parent is no larger than the keys of the
children. In particular, a minimum element is stored in the root (= array position 1).
Thus the operation min takes time O(1). Creating an empty heap with space for w

elements also takes constant time, as it only needs to allocate an array of size w:

Class BinaryHeapPQ(w : N) of Element

h : Array [1..w] of Element // The heap h is
n = 0 : N // initially empty and has the
invariant ∀ j ∈ 2..n : h[⌊ j/2⌋]≤ h[ j ] // heap property, which implies that
Function min assert n > 0 ; return h[1] // the root contains the minimum.

The minimum of a heap is stored in h[1] and hence can be found in constant time; this
is the same as for a sorted array. However, the heap property is much less restrictive
than the property of being sorted. For example, there is only one sorted version of
the set {1,2,3}, but both 〈1,2,3〉 and 〈1,3,2〉 are legal heap representations.

Exercise 6.3. Give all representations of {1,2,3,4} as a heap.



6.1 Binary Heaps 215

We shall next see that the increased flexibility permits efficient implementations of
insert and deleteMin. We choose a description which is simple and easily proven
correct. Section 6.5 gives some hints towards a more efficient implementation. An
insert puts a new element e tentatively at the end of the heap h, i.e., it increments n

and tentatively puts the new element into h[n]. This may violate the heap property at
position n. To repair the heap property, we move e to an appropriate position on the
path from leaf h[n] to the root:

Procedure insert(e : Element)
assert n < w

n++; h[n] :=e

siftUp(n)

Here, siftUp(n) moves the contents of node n towards the root until either the root is
reached or the key in the parent is no larger anymore; see Fig. 6.1. We have to prove
that this restores the heap property. We write “heap except maybe at i” if h is a heap
or i > 1, h[i]< h[⌊i/2⌋] and replacing h[i] by h[⌊i/2⌋] turns h into a heap. When we
put the new element into h[n], h is a heap except maybe at n. Assume now that h is
a heap except maybe at i when siftUp(i) is called. By the preceding sentence, this is
true for the first call with i = n. If i = 1 or h[⌊i/2⌋] ≤ h[i], h is a heap and we are
done. If i > 1 and h[⌊i/2⌋]> h[i], we swap h[i] and h[⌊i/2⌋]. The heap property now
holds for the children of i, since it sufficed to replace h[i] by h[⌊i/2⌋] to restore the
heap property. It clearly holds for i, and it holds for the sibling of i since we have
replaced h[⌊i/2⌋] by something smaller. Hence h is a heap except maybe at ⌊i/2⌋,
and we have established the invariant for the recursive call.

Procedure siftUp(i : N)
assert h is a heap except maybe at i.
if i = 1∨h[⌊i/2⌋]≤ h[i] then return

swap(h[i],h[⌊i/2⌋])
siftUp(⌊i/2⌋)

Exercise 6.4. Show that the running time of siftUp(n) is O(logn) and hence an insert

takes time O(logn). Reformulate siftUp as a while-loop.

A deleteMin returns the content of the root and replaces it by the content of node n.
Since h[n] might be larger than h[2] or h[3], this manipulation may violate the heap
property at position 2 or 3. This possible violation is repaired using siftDown:

Function deleteMin : Element

assert n > 0
result = h[1] : Element

h[1] :=h[n]; n--

siftDown(1)
return result

The procedure siftDown(1) moves the new content of the root, which we call e, down
the tree until the heap property holds. More precisely, consider the path p that starts
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at the root and always proceeds to the child with the smaller key; see Fig. 6.1. In the
case of equal keys, the choice is arbitrary. We extend the path until all children of
the last node of the path (there may be zero, one, or two) have a key no smaller than
e. We put e into this position and move all elements on path p up by one position.
In this way, the heap property is restored. Clearly, e is no larger than the elements
stored in the children. Also moving the elements on p up by one position maintains
the heap property because p is always extended to the child with the smaller key. The
strategy is most easily formulated as a recursive procedure. A call of the following
procedure, siftDown(i), repairs the heap property in the subtree rooted at i, assuming
that it holds already for the subtrees rooted at 2i and 2i+ 1; the heap property holds
in the subtree rooted at i if we have h[⌊ j/2⌋]≤ h[ j] for all proper descendants j of i:

Procedure siftDown(i : N)
assert the heap property holds for the trees rooted at j = 2i and j = 2i+ 1
if 2i≤ n then // i is not a leaf

if 2i+ 1 > n∨h[2i]≤ h[2i+ 1] then m :=2i else m :=2i+ 1
assert the sibling of m does not exist or it has a larger key than m

if h[i]> h[m] then // the heap property is violated
swap(h[i],h[m])
siftDown(m)

assert the heap property holds for the tree rooted at i

Exercise 6.5. Why is it important that the path is always extended to the child with
the smaller key? Reformulate siftDown as a while-loop.

Exercise 6.6. Our current implementation of siftDown needs about 2 logn element
comparisons. Show how to reduce this to logn+O(loglogn). Hint: Determine the
path p first and then perform a binary search on this path to find the proper position
for h[1]. Section 6.6 has more on variants of siftDown.

We can obviously build a heap from n elements by inserting them one after the other
in O(n logn) total time. Interestingly, we can do better by establishing the heap prop-
erty in a bottom-up fashion: siftDown allows us to establish the heap property for a
subtree of height k+ 1 provided the heap property holds for its subtrees of height k.
The following exercise asks you to work out the details of this idea.

Exercise 6.7 (buildHeap). Assume that you are given an arbitrary array h[1..n] and
want to establish the heap property on it by permuting its entries. Consider two pro-
cedures for achieving this:

Procedure buildHeapBackwards

for i := ⌊n/2⌋ downto 1 do siftDown(i)

Procedure buildHeapRecursive(i : N)
if 4i≤ n then

buildHeapRecursive(2i)
buildHeapRecursive(2i+ 1)

siftDown(i)
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(a) Show that both buildHeapBackwards and buildHeapRecursive(1) establish the
heap property everywhere.

(b) Implement both algorithms efficiently and compare their running times for ran-
dom integer keys and n ∈

{
10i : 2≤ i≤ 8

}
. It will be important how efficiently

you implement buildHeapRecursive. In particular, it might make sense to un-
ravel the recursion for small subtrees.

*(c) For large n, the main difference between the two algorithms is in memory hierar-
chy effects. Analyze the number of I/O operations required by the two algorithms
in the external-memory model described at the end of Sect. 2.2. In particular,
show that if the block size is B and the fast memory has size M = Ω(B logB),
then buildHeapRecursive needs only O(n/B) I/O operations.

The following theorem summarizes our results on binary heaps.

Theorem 6.1. The heap implementation of nonaddressable priority queues realizes

creating an empty heap and finding the minimum element in constant time, deleteMin

and insert in logarithmic time O(logn), and build in linear time.

Proof. The binary tree represented by a heap of n elements has height k = ⌊logn⌋.
insert and deleteMin explore one root-to-leaf path and hence have logarithmic run-
ning time; min returns the content of the root and hence takes constant time. Creating
an empty heap amounts to allocating an array and therefore takes constant time. build

calls siftDown for at most 2ℓ nodes of depth ℓ. Such a call takes time O(k− ℓ). Thus
total the time is

O

(

∑
0≤ℓ<k

2ℓ(k− ℓ)

)

= O

(

2k ∑
0≤ℓ<k

k− ℓ

2k−ℓ

)

= O

(

2k ∑
j≥1

j

2 j

)

= O(n) .

The last equality uses (A.15). ⊓⊔

Heaps are the basis of heapsort. We first build a heap from the elements and then
repeatedly perform deleteMin. Before the ith deleteMin operation, the ith smallest
element is stored at the root h[1]. We swap h[1] and h[n− i+ 1] and sift the new
root down to its appropriate position. At the end, h stores the elements sorted in
decreasing order. Of course, we can also sort in increasing order by using a max-

priority queue, i.e., a data structure supporting the operations of insert and of deleting
the maximum.

Heaps do not directly implement the addressable priority queues, since elements
are moved around in the array h during insertion and deletion. Thus the array indices
cannot be used as handles.

Exercise 6.8 (addressable binary heaps). Extend heaps to an implementation of
addressable priority queues. How many additional pointers per element do you need?
There is a solution with two additional pointers per element.

*Exercise 6.9 (bulk insertion). Design an algorithm for inserting k new elements
into an n-element heap. Give an algorithm that runs in time O(k logk+ logn). Hint:
Use a bottom-up approach similar to that for heap construction.
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6.2 Addressable Priority Queues

Binary heaps have a rather rigid structure. All n elements are arranged into a sin-
gle binary tree of height ⌊logn⌋. In order to obtain faster implementations of the
operations insert, decreaseKey, remove, and merge, we now look at more flexible
structures. The single, left-complete binary tree is replaced by a collection of trees
(i.e., a forest) with arbitrary shape. Each tree is still heap-ordered, i.e., no child
is smaller than its parent. In other words, the sequence of keys along any root-to-
leaf path is nondecreasing. Here is an example of a heap-ordered forest for the set
{0,1,3,4,5,7,8}:

1 4

785 3

0

The elements of the queue are now stored in heap items that have a persistent
location in memory. Hence, pointers to heap items can serve as handle of priority
queue elements. The tree structure is explicitly defined using pointers between items.

We shall discuss several variants of addressable priority queues. We start with
the common principles underlying all of them. Figure 6.2 summarizes the common-
alities. In order to keep track of the current minimum, we maintain a handle to the
root containing it. We use minPtr to denote this handle. The forest is manipulated
using three simple operations: adding a new tree (and keeping minPtr up to date),
combining two trees into a single one, and cutting out a subtree, making it a tree on
its own.

An insert adds a new single-node tree to the forest. So, a sequence of n inserts
into an initially empty heap will simply create n single-node trees. The cost of an
insert is clearly O(1).

A deleteMin operation removes the node indicated by minPtr. This turns all chil-
dren of the removed node into roots. We then scan the set of roots (old and new)
to find the new minimum, a potentially very costly process. We also perform some
rebalancing, i.e., we combine trees into larger ones. The details of this process dis-
tinguish different kinds of addressable priority queue and are the key to efficiency.

We turn now to decreaseKey(h,k), which decreases the key value at a handle h

to k. Of course, k must not be larger than the old key stored with h. Decreasing the
key associated with h may destroy the heap property because h may now be smaller
than its parent. In order to maintain the heap property, we cut the subtree rooted at
h and turn h into a root. This sounds simple enough, but may create highly skewed
trees. Therefore, some variants of addressable priority queues perform additional
operations to keep the trees in shape.

The remaining operations are easy. We can remove an item from the queue by first
decreasing its key so that it becomes the minimum item in the queue, and then per-
form a deleteMin. To merge a queue o into another queue, we compute the union of
roots and o.roots. To update minPtr, it suffices to compare the minima of the merged
queues. If the root sets are represented by linked lists and no additional balancing is
done, a merge needs only constant time.

In the remainder of this section, we shall discuss particular implementations of
addressable priority queues.
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Class Handle = Pointer to PQItem

Class AddressablePQ

minPtr : Handle // root that stores the minimum
roots : Set of Handle // pointers to tree roots

roots
minPtr

Function min return element stored at minPtr

Procedure link(a,b : Handle)
assert a≤ b

remove b from roots

make a the parent of b //

b a a

b

Procedure combine(a,b : Handle)
assert a and b are tree roots
if a≤ b then link(a,b) else link(b,a)

Procedure newTree(h : Handle)
roots := roots∪{h}
if ∗h < min then minPtr :=h

Procedure cut(h : Handle)
remove the subtree rooted at h from its tree //

h

h
newTree(h)

Function insert(e : Element) : Handle

i:=a Handle for a new PQItem storing e

newTree(i)
return i

Function deleteMin : Element

e:= the Element stored in minPtr

foreach child h of the root at minPtr do cut(h) //

e

dispose minPtr

perform some rebalancing and update minPtr // uses combine

return e

Procedure decreaseKey(h : Handle, k : Key)
change the key of h to k

if h is not a root then

cut(h); possibly perform some rebalancing

Procedure remove(h : Handle) decreaseKey(h,−∞); deleteMin

Procedure merge(o : AddressablePQ)
if ∗minPtr > ∗(o.minPtr) then minPtr :=o.minPtr

roots := roots∪o.roots

o.roots := /0; possibly perform some rebalancing

Fig. 6.2. Addressable priority queues
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6.2.1 Pairing Heaps

Pairing heaps [114] use a very simple technique for rebalancing. Pairing heaps are
very efficient in practice. However, a full theoretical analysis is missing.

We present a simple variant of pairing heap that also has good provable bounds.
There is always exactly one tree, and nodes may have an arbitrary number of chil-
dren. Whenever an operation creates several roots, a rebalancing operation is nec-
essary. The most complex rebalancing is done after a deleteMin. The root contains
an element with a minimum key. After removal of the root, the children of the old
root form a sequence 〈r1, . . . ,rk〉 of roots. They are combined into a single tree in the
following two-pass process. In the first pass, the trees are combined in pairs, i.e., the
trees with roots r1 and r2, r3 and r4, and so on, are joined by calls of combine. The
resulting ⌈k/2⌉ trees are then combined into a single tree in the second pass. The last
tree is joined with the next to last, the resulting tree is joined with the last tree but
two, and so on. Figure 6.3 shows an example. The operations insert, decreaseKey

and merge generate pairs of roots. They are simply combined into a single tree by a
call of combine.

Exercise 6.10 (three-pointer items). Explain how to implement pairing heaps using
three pointers per heap item i: one to the oldest child (i.e., the child linked first to i),
one to the next younger sibling (if any), and one to the next older sibling. If there is
no older sibling, the third pointer goes to the parent. Figure 6.6 gives an example.

*Exercise 6.11 (two-pointer items). Explain how to implement pairing heaps using
two pointers per heap item: one to the oldest child and one to next younger sibling.
If there is no younger sibling, the second pointer goes to the parent. Figure 6.6 gives
an example.
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Fig. 6.3. The deleteMin operation for pairing heaps makes two passes over the nodes that
became roots after the deletion of the old root. In the first pass, roots are combined pairwise.
In the second pass, the roots are scanned sequentially from right to left and, in each step, the
last two roots are joined. In this example, e becomes the child of c, then d becomes the child
of c, and finally c becomes the child of a.
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6.2.2 *Fibonacci Heaps

Fibonacci heaps [115] use more intensive balancing operations than do pairing heaps.
This paves the way for a theoretical analysis. In particular, we obtain logarithmic
amortized time for remove and deleteMin and worst-case constant time for all other
operations.

Each item of a Fibonacci heap stores four pointers that link it to its parent, one
child, and two siblings; see Fig. 6.6. The children of each node form a doubly linked
circular list using the sibling pointers. The sibling pointers of the root nodes are used
to represent the set roots of all roots in a similar way. Parent pointers of roots and
child pointers of leaf nodes have a special value, for example a null pointer.

In addition, every heap item contains a field rank. The rank of an item is simply
the number of its children. In Fibonacci heaps, deleteMin links only roots of equal
rank r. The surviving root will then obtain a rank of r + 1. An efficient method to
combine trees of equal rank is as follows. Let maxRank be an upper bound on the
rank of any node. We shall prove below that maxRank is logarithmic in n. Maintain a
set of buckets, initially empty and numbered from 0 to maxRank. Then scan the list
of all roots. When scanning a root of rank i, inspect the ith bucket. If the ith bucket
is empty, then put the root there. If the bucket is nonempty, then combine the two
trees into one. This empties the ith bucket and creates a root of rank i+ 1. Treat this
root in the same way, i.e., try to throw it into the (i+ 1)th bucket. If it is occupied,
combine . . . . When all roots have been processed in this way, we have a collection
of trees whose roots have pairwise distinct ranks; see Fig. 6.4.

A deleteMin can be very expensive if there are many roots. For example, a
deleteMin following n insertions has a cost Ω(n). However, in an amortized sense,
the cost of deletemin is O(maxRank). The reader must be familiar with the technique
of amortized analysis (see Sect. 3.5) before proceeding further. For the amortized
analysis, we postulate that each root holds one token. Tokens pay for a constant
amount of computing time.

Lemma 6.2. The amortized complexity of deleteMin is O(maxRank).

Proof. A deleteMin first calls newTree at most maxRank times (since the degree of
the root containing the old minimum is bounded by maxRank) and then initializes
an array of size maxRank. So far, the running time is O(maxRank), and at most
maxRank new tokens need to be created. The remaining time is proportional to the
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Fig. 6.4. An example of the development of the bucket array during execution of deleteMin

for a Fibonacci heap. The arrows indicate the roots scanned. Note that scanning d leads to a
cascade of three combine operations.
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number of combine operations performed. Each combine turns a root into a nonroot
and is paid for by the token associated with the node turning into a nonroot. ⊓⊔
How can we guarantee that maxRank stays small? Let us consider a simple situation
first. Suppose that we perform a sequence of insertions followed by a deleteMin.
In this situation, we start with a certain number of single-node trees, and all trees
formed by combining are binomial trees, as shown in Fig. 6.5. The binomial tree B0

consists of a single node, and the binomial tree Bi+1 is obtained by combining two
copies of Bi. This implies that the root of Bi has rank i and that Bi contains exactly
2i nodes. Thus the rank of a binomial tree is logarithmic in the size of the tree.

Unfortunately, decreaseKey may destroy the nice structure of binomial trees.
Suppose an item v is cut out. We now have to decrease the rank of its parent w. The
problem is that the size of the subtrees rooted at the ancestors of w has decreased
but their rank has not changed, and hence we can no longer claim that the size of
a tree stays exponential in the rank of its root. Therefore, we have to perform some
rebalancing to keep the trees in shape. An old solution [324] is to keep all trees in
the heap binomial. However, this causes logarithmic cost for a decreaseKey.

*Exercise 6.12 (binomial heaps). Work out the details of this idea. Assume that the
key of v is decreased and becomes smaller than the key stored in its parent. Cut the
following links. For each nonroot ancestor w of v (this includes v), cut the link to
its parent. Moreover, for each such node w, cut the links from all siblings of w of
rank higher than w to their parents. Show that all resulting trees are binomial. Then
combine trees of equal rank until there is at most one tree of each rank. Argue that
the cost of decreaseKey is logarithmic.

B0

B1

B2

B3

B4 B5

Fig. 6.5. The binomial trees of ranks 0 to 5

B3

binomial heaps
pairing heaps

3 pointers:

Fibonacci heaps
4 pointers:

Exercise 6.10
2 pointers:,

Fig. 6.6. Three ways to represent trees of nonuniform degree. The binomial tree of rank three,
B3, is used as an example.
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Fibonacci heaps allow the trees to go out of shape but in a controlled way. The
idea is surprisingly simple and is based on the amortized analysis of binary counters;
see Sect. 3.4.3. We introduce an additional flag for each node. A node may or may
not be marked. Roots are never marked. In particular, when newTree(h) is called in
deleteMin, it removes the mark from h (if any). Thus when combine combines two
trees into one, neither node is marked.

When a nonroot item x loses a child because decreaseKey has been applied to
the child, x is marked; this assumes that x is not already marked. Otherwise, when x

has already been marked, we cut x, remove the mark from x, and attempt to mark x’s
parent. If x’s parent is already marked, then we continue in the same way. This tech-
nique is called cascading cuts. In other words, suppose that we apply decreaseKey to
an item v and that the k nearest ancestors of v are marked. We turn v and the k nearest
ancestors of v into roots, unmark them, and mark the (k + 1)th nearest ancestor of
v (if it is not a root). Figure 6.7 gives an example. Observe the similarity to carry
propagation in binary addition.

For the amortized analysis, we postulate that each marked node holds two tokens
and each root holds one token. Please check that this assumption does not invalidate
the proof of Lemma 6.2.

Lemma 6.3. The amortized complexity of decreaseKey is constant.

Proof. Assume that we decrease the key of item v and that the k nearest ancestors of
v are marked. Here, k≥ 0. The running time of the operation is O(1+ k). Each of the
k marked ancestors carries two tokens, i.e., we have a total of 2k tokens available.
We create k+ 1 new roots and need one token for each of them. Also, we mark one
unmarked node and need two tokens for it. Thus we need a total of k+ 3 tokens.
In other words, k− 3 tokens are freed. They pay for all but O(1) of the cost of
decreaseKey. Thus the amortized cost of decreaseKey is constant. ⊓⊔

How do cascading cuts affect the size of trees? We shall show that it stays ex-
ponential in the rank of the root. In order to do so, we need some notation. Re-
call the sequence 0,1,1,2,3,5,8, . . . of Fibonacci numbers. These are defined by the
recurrence F0 = 0, F1 = 1, and Fi = Fi−1 + Fi−2 for i ≥ 2. It is well known that
Fi+2 ≥ ((1+

√
5)/2)i ≥ 1.618i for all i≥ 0.

Exercise 6.13. Prove that Fi+2 ≥ ((1+
√

5)/2)i ≥ 1.618i for all i≥ 0 by induction.
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Fig. 6.7. Cascading cuts. Marks are drawn as crosses. Note that roots are never marked.
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Lemma 6.4. Let v be any item in a Fibonacci heap and let i be the rank of v. The

subtree rooted at v then contains at least Fi+2 nodes. In a Fibonacci heap with n

items, all ranks are bounded by 1.4404logn.

Proof. Consider an arbitrary item v of rank i. Order the children of v by the time at
which they were made children of v. Let w j be the jth child, 1 ≤ j ≤ i. When w j

was made a child of v, both nodes had the same rank. Also, since at least the nodes
w1, . . . ,w j−1 were children of v at that time, the rank of v was at least j−1 then. The
rank of w j has decreased by at most 1 since then, because otherwise w j would no
longer be a child of v. Thus the current rank of w j is at least j− 2.

We can now set up a recurrence for the smallest number Si of nodes in a tree
whose root has rank i. Clearly, S0 = 1 and S1 = 2. Also, Si ≥ 2+S0+S1+ · · ·+Si−2,
since for j ≥ 2 the number of nodes in the subtree with root w j is at least S j−2, and
there are the nodes v and w1. The recurrence above (with = instead of ≥) generates
the sequence 1, 2, 3, 5, 8, . . . , which is identical to the Fibonacci sequence (minus
its first two elements).

Let us verify this by induction. Let T0 = 1, T1 = 2, and Ti = 2+T0 + · · ·+Ti−2

for i≥ 2. Then, for i≥ 2, Ti+1−Ti = 2+T0+ · · ·+Ti−1−2−T0−·· ·−Ti−2 = Ti−1,
i.e., Ti+1 = Ti +Ti−1. This proves Ti = Fi+2.

For the second claim, we observe that Fi+2 ≤ n implies i · log((1+
√

5)/2) ≤
logn, which in turn implies i≤ 1.4404logn. ⊓⊔

This concludes our treatment of Fibonacci heaps. We have shown the following re-
sult.

Theorem 6.5. The following time bounds hold for Fibonacci heaps: min, insert, and

merge take worst-case constant time. decreaseKey takes amortized constant time.

remove and deleteMin take an amortized time logarithmic in the size of the queue.

Exercise 6.14. Describe a variant of Fibonacci heaps where all roots have distinct
ranks. Hint: Whenever a new root comes into existence, immediately check whether
there is already a root of the same rank. If so, combine.

6.3 *External Memory

We now go back to nonaddressable priority queues and consider their cache effi-
ciency and I/O efficiency. A weakness of binary heaps is that the siftDown operation
goes down the tree in an unpredictable fashion. This leads to many cache faults and
makes binary heaps prohibitively slow when they do not fit into the main memory.
We now outline a data structure for (nonaddressable) priority queues with more regu-
lar memory accesses. It is also a good example of a generally useful design principle:
construction of a data structure out of simpler, known components and algorithms.

In this case, the components are internal-memory priority queues, sorting, and
multiway merging; see also Sect. 5.12.1. Figure 6.8 depicts the basic design. The
data structure consists of two priority queues Q and Q′ (e.g., binary heaps) and k
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Fig. 6.8. Schematic view of an external-memory priority queue.

sorted sequences S1, . . . , Sk. Each element of the priority queue is stored either in
the insertion queue Q, in the deletion queue Q′, or in one of the sorted sequences.
The size of Q is limited to a parameter m. The deletion queue Q′ stores the small-
est element of each sequence, together with the index of the sequence holding the
element.

New elements are inserted into the insertion queue. If the insertion queue is full,
it is first emptied. In this case, its elements form a new sorted sequence:

Procedure insert(e : Element)
if |Q|= m then

k++; Sk := sort(Q); Q := /0; Q′.insert((Sk.popFront,k))
Q.insert(e)

Q or Q′ contains an element with the minimum key. We find it by comparing
their minimum elements. If the minimum is in Q′ and comes from sequence Si, the
next element in Si is inserted into Q′:

Function deleteMin

if minQ≤minQ′ then e :=Q.deleteMin // assume min /0 = ∞
else (e, i) :=Q′.deleteMin

if Si 6= 〈〉 then Q′.insert((Si.popFront, i))
return e

It remains to explain how the ingredients of our data structure are mapped to the
memory hierarchy. The queues Q and Q′ are stored in internal memory. The size
bound m for Q should be a constant fraction of the internal-memory size M and a
multiple of the block size B. The sequences Si are largely kept externally. Initially,
only the B smallest elements of Si are kept in an internal-memory buffer bi. When the
last element of bi is removed, the next B elements of Si are loaded. Note that we are
effectively merging the sequences Si. This is similar to our multiway merging algo-
rithm described in Sect. 5.12.1. Each inserted element is written to external memory
at most once and fetched back to internal memory at most once. Since all accesses to
external memory transfer full blocks, the I/O requirement of our algorithm is at most
n/B for n queue operations.
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The total requirement for internal memory is at most the space for m + kB+
2k elements. This is below the total fast-memory size M if m = M/2 and k ≤
⌊(M/2− 2k)/B⌋ ≈ M/(2B). If there are many insertions and few deletions, the in-
ternal memory may eventually overflow. However, the earliest this can happen is
after m(1+ ⌊(M/2− 2k)/B⌋) ≈M2/(4B) insertions. For example, if we have 8 GB
of main memory, 8-byte elements, and 1 MB disk blocks, we have M = 230 and
B = 217 (measured in elements). We can then perform about 241 insertions – enough
for 16 TB of data. Similarly to external mergesort, we can handle larger amounts of
data by performing multiple phases of multiway merging; see [54, 271]. The data
structure becomes considerably more complicated, but it turns out that the I/O re-
quirement for n insertions and deletions is about the same as for sorting n elements.
An implementation of this idea is two to three times faster than binary heaps for the
hierarchy between cache and main memory [271]. There are also implementations
for external memory [88].

6.4 Parallel Priority Queues

We first have to decide what a parallel priority queue should be. For example, are we
allowing concurrent queue operations or are we only parallelizing single operations
of an otherwise sequential queue? A simple answer is that we only want to parallelize
single queue operations. There are indeed such data structures; see [55]. However,
the maximum speedup we can hope for is O(logn), and the constant factor for PE
interactions is likely to eat up much of that advantage. We are not aware of practical
implementations achieving high speedups. In practice, a little bit of speedup can be
obtained by parallelizing the sorting and multiway merging operations in priority
queues based on the external queues described in Sect. 6.3; see [35, 45] for details.

Another view on parallel priority queues asks for concurrent access to a priority
queue. However, as with the concurrent FIFOs discussed in Sect. 3.7, this raises two
severe issues. First of all, it becomes nonobvious how to define the semantics of the
queue operations. For example, if several PEs want to extract the minimum, should
they all receive the same element? This definition restricts parallelism on the level
of the program using the queue and – the second problem – leads to contention, as
several PEs will have to access the same element.

We shall therefore concentrate on a third view of parallel priority queues – bulk
parallel deletion on a distributed-memory machine. The operation deleteMin∗(k) is
executed collectively by all PEs and removes the k globally smallest elements from
the queue.2 Insertions still insert individual elements in an asynchronous fashion.

Our strategy for this kind of parallel priority queue is very simple. Each PE main-
tains a local priority queue Q. Inserted elements are sent asynchronously to a PE
chosen uniformly at random, and inserted there. Thus, each PE has a representative

2 We should point out that not all application programs can make use of bulk deletion. For
example, Dijkstra’s algorithm for computing shortest paths (Section 10.3) loses its label-
setting property (see Theorem 10.6) when we scan several nodes at the same time.
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Function deleteMin∗(k : N) : Sequence of Element

result:=〈〉
m := initialBufferSize(k, p) // choose initial # of removed elements such that with
repeat // high probability, one iteration of this loop is enough.

for i :=1 to m do result.pushBack(Q.deleteMin) // extract result candidates
(ek,khere) :=parSelect2(result,k) // see Fig. 5.16

until ∀i : ek ≤ Q@i.min // no result is missing. Needs all-reduce-and
for i :=1 to |result|−khere do Q.insert(result.popBack) // reinsert nonresult elements
return result

Fig. 6.9. SPMD pseudocode for bulk deleteMin of the k globally smallest elements from a
parallel priority queue.

sample of the overall data set. In particular, it can be shown that all globally small
elements are among the locally small elements with high probability.

Lemma 6.6. If ℓ≥ 1 and k =Ω(p log p), then with probability at least 1−1/kℓ, the k

globally smallest elements are among the O(ℓk/p) locally smallest elements of each

queue.

Exercise 6.15. Prove Lemma 6.6. Hint: Use the Chernoff bound (A.7).

Exercise 6.16. Refine Lemma 6.6 and derive the constant factors in the O-terms.
What happens for k = o(p log p)?

The operation deleteMin∗ exploits Lemma 6.6; see also the pseudocode in
Fig. 6.9 and the example in Fig. 6.10. It suffices to look at the locally small-
est elements of each local queue to find the globally smallest ones. The function
initialBufferSize makes an initial guess m of how many local elements will be needed.
A simple choice that works well for k = Ω(p log p) is m = 2k/p. For k≫ p log p,
we can use a value of m very close to k/p. Exercise 6.16 asks you to work out the
constants in more detail. The m locally smallest elements are removed. They are
tentativly moved to the result set. Then, parallel selection (see Fig. 5.16) is used to
identify the k globally smallest elements among these result candidates. Let ek de-
note the kth smallest result candidate. If there is no element smaller than ek in any
local queue, the result set contains the k globally smallest elements. Otherwise, we
continue to remove elements from the local queues. We complete the operation by
reinserting the result candidates that have not been selected for the final result.

Exercise 6.17. Our implementation of deleteMin∗ delivers the results locally irre-
spective of load imbalance. Explain how to modify deleteMin∗ such that every PE
gets the same number of result elements up to rounding up or down. Hint: Use prefix
sums.

Theorem 6.7. For k = Ω(p log p), the operation deleteMin∗ works in expected time

O( k
p

logn), where n is the total queue size.
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Proof. (Outline.) By Lemma 6.6, we can choose m = Θ(k/p) and achieve a con-
stant expected number of iterations of the repeat loop. An iteration of the loop takes
time O(m logn) for local deleteMin operations and expected time O(k/p+ log p) for
parallel selection; see Fig. 5.16. Testing for loop termination takes time O(log p) for
an all-reduce-and operation; see Sect. 13.2. Reinserting unneeded elements takes no
more time than deleting them in the first place. ⊓⊔

Exercise 6.18. Strengthen Theorem 6.7 and show a time bound of O( k
p

log n
p
) for

n = Ω(p log p).

Exercise 6.19. Show that a deleteMin∗ is communication-efficient in the sense that it
has total communication cost O(α log p) regardless of n and k. Are insertions equally
efficient with respect to communication overhead?

6.4.1 Refinements

An inefficiency of our implementation of deleteMin∗ is that it moves elements
back and forth between the result buffer and Q. For k = o(p log p) this also be-
comes an issue asymptotically. For example, for k = Θ(p), it is known that we need
m = Ω(log p/ loglog p) locally removed elements, although on average only a con-
stant number of elements per PE is actually returned. This problem can be avoided
by keeping the result buffer around, emptying it only occasionally. It can be shown
that this allows efficient operation all the way down to k = O(p) [270].

We can reduce communication overhead by a significant constant factor if we
allow some fluctuations in the size of the returned result set. Rather than running a
full-fledged selection algorithm with several iterations of sample sorting and parti-
tioning, we can just sort a single sample to determine a single pivot whose expected
global rank is k. We then simply return all result candidates bounded by this rank;
see also [157].
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6.5 Implementation Notes

There are various places where sentinels (see Chap. 3) can be used to simplify or
(slightly) accelerate the implementation of priority queues. Since sentinels may re-
quire additional knowledge about key values, this could make a reusable implemen-
tation more difficult, however:

• If h[0] stores a Key no larger than any Key ever inserted into a binary heap, then
siftUp need not treat the case i = 1 in a special way.

• If h[n+ 1] stores a Key no smaller than any Key ever inserted into a binary heap,
then siftDown need not treat the case 2i+ 1 > n in a special way. If such large
keys are stored in h[n+ 1..2n+ 1], then the case 2i > n can also be eliminated.

• Addressable priority queues can use a special dummy item rather than a null
pointer.

For simplicity, we have formulated the operations siftDown and siftUp for binary
heaps using recursion. It might be a little faster to implement them iteratively instead.
Similarly, the swap operations could be replaced by unidirectional move operations,
thus halving the number of memory accesses.

Exercise 6.20. Give iterative versions of siftDown and siftUp. Also, replace the swap

operations.

Some compilers do the recursion elimination for you.
As with sequences, memory management for items of addressable priority

queues can be critical for performance. Often, a particular application may be able
to do this more efficiently than a general-purpose library. For example, many graph
algorithms use a priority queue of nodes. In this case, items can be incorporated into
nodes.

There are priority queues that work efficiently for integer keys. It should be noted
that these queues can also be used for floating-point numbers. Indeed, the IEEE
floating-point standard has the interesting property that for any valid floating-point
numbers a and b, a ≤ b if and only if bits(a) ≤ bits(b), where bits(x) denotes the
reinterpretation of the bit string representing x as an integer.

6.5.1 C++

The STL class priority_queue offers nonaddressable priority queues implemented
using binary heaps. The external-memory library STXXL [88] offers an external-
memory priority queue. LEDA [194] and LEMON (Library for Efficient Modeling
and Optimization in Networks) [200] implement a wide variety of addressable prior-
ity queues, including pairing heaps and Fibonacci heaps.

6.5.2 Java

The class java.util.PriorityQueue supports addressable priority queues to the ex-
tent that remove is implemented. However, decreaseKey and merge are not sup-
ported. Also, it seems that the current implementation of remove needs time Θ(n).
JGraphT [166] offers an implementation of Fibonacci heaps.
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6.6 Historical Notes and Further Findings

There is an interesting internet survey3 of priority queues. It lists the following ap-
plications: (shortest-)path planning (see Chap. 10), discrete-event simulation, coding
and compression, scheduling in operating systems, computing maximum flows, and
branch-and-bound (see Sect. 12.4).

In Sect. 6.1 we saw an implementation of deleteMin by top-down search that
needs about 2 logn element comparisons, and a variant using binary search that needs
only logn+O(log logn) element comparisons. The latter is mostly of theoretical in-
terest. Interestingly, a very simple “bottom-up” algorithm can be even better: The
old minimum is removed and the resulting hole is sifted down all the way to the
bottom of the heap. Only then, does the rightmost element fill the hole and it is
subsequently sifted up. When used for sorting, the resulting bottom-up heapsort re-
quires 3

2 n logn+O(n) comparisons in the worst case and n logn+O(1) in the av-
erage case [105, 283, 327]. While bottom-up heapsort is simple and practical, our
own experiments indicate that it is not faster than the usual top-down variant (for
integer keys). This surprised us at first. The explanation is that the bottom-up vari-
ant usually causes more cache faults that the standard variant and that the number
of hard-to-predict branch operations is not reduced. Cache faults and incorrectly
predicted branch operations have a larger influence on running time than does the
number of comparisons; see [279] for more discussion. d-ary heaps, in which a node
has d children instead of only two, outperform binary heaps in practice; see [? ] for
experiments.

The recursive buildHeap routine in Exercise 6.7 is an example of a cache-

oblivious algorithm [116]. This algorithm is efficient in the external-memory model
even though it does not explicitly use the block size or cache size.

Pairing heaps [114] have constant amortized complexity for insert and
merge [159] and logarithmic amortized complexity for deleteMin. The best anal-
ysis is due to Pettie [252]. Fredman [112] has given operation sequences consist-
ing of O(n) insertions and deleteMins and O(n logn) decreaseKeys that require time
Ω(n logn loglogn) for a family of addressable priority queues that includes all previ-
ously proposed variants of pairing heaps. Haeupler et al. [140] introduced a variant
of pairing heaps that match the performance of Fibonacci heaps.

The family of addressable priority queues is large. Vuillemin [324] introduced bi-
nomial heaps, and Fredman and Tarjan [115] invented Fibonacci heaps. Høyer [156]
described additional balancing operations that are akin to the operations used for
search trees. One such operation yields thin heaps [173], which have performance
guarantees similar to those of Fibonacci heaps and do without parent pointers and
mark bits. It is likely that thin heaps are faster in practice than Fibonacci heaps.
There are also priority queues with worst-case bounds asymptotically as good as
the amortized bounds that we have seen for Fibonacci heaps [53]. The basic idea is
to tolerate violations of the heap property and to continuously invest some work in

3 www.leekillough.com/heaps/survey_results.html

www.leekillough.com/heaps/survey_results.html
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reducing these violations. Other interesting variants are fat heaps [173] and hollow

heaps [144].
Many applications need priority queues for integer keys only. For this spe-

cial case, there are more efficient priority queues. The best theoretical bounds
so far are constant time for decreaseKey and insert and O(loglogn) time for
deleteMin [223, 313]. Using randomization, the time bound can even be reduced
to O

(√
loglogn

)
[142]. The algorithms are fairly complex. However, integer pri-

ority queues for operation sequences satisfying a monotonicity property are simple
and practical. Section 10.3 gives examples. Calendar queues [58] are popular in the
discrete-event simulation community. These are a variant of the bucket queues de-
scribed in Sect. 10.5.1.


