
1

Appetizer: Integer Arithmetic

An appetizer is supposed to stimulate the appetite at the beginning of a meal. This

is exactly the purpose of this chapter. We want to stimulate your interest in algorith-

mic1 techniques by showing you a surprising result. Although, the school method for

multiplying integers has been familiar to all of us since our school days and seems

to be the natural way to multiply integers, it is not the best multiplication algorithm;

there are much faster ways to multiply large integers, i.e., integers with thousands or

even millions of digits, and we shall teach you one of them.

Algorithms for arithmetic are not only among the oldest algorithms, but are also es-
sential in areas such as cryptography, geometric computing, computer algebra, and
computer architecture. The three former areas need software algorithms for arith-
metic on long integers, i.e., numbers with up to millions of digits. We shall present
the algorithms learned in school, but also an improved algorithm for multiplication.
The improved multiplication algorithm is not just an intellectual gem but is also ex-
tensively used in applications. Computer architecture needs very fast algorithms for
moderate-length (32 to 128 bits) integers. We shall present fast parallel algorithms
suitable for hardware implementation for addition and multiplication. On the way,
we shall learn basic algorithm analysis and basic algorithm engineering techniques
in a simple setting. We shall also see the interplay of theory and experiment.

We assume that integers2 are represented as digit strings. In the base B number
system, where B is an integer larger than 1, there are digits 0,1, . . . ,B− 1, and a
digit string an−1an−2 . . .a1a0 represents the number ∑0≤i<n aiB

i. The most important
systems with a small value of B are base 2, with digits 0 and 1, base 10, with digits 0

1 The Soviet stamp on this page shows Muhammad ibn Musa al-Khwarizmi (born approxi-
mately 780; died between 835 and 850), Persian mathematician and astronomer from the
Khorasan province of present-day Uzbekistan. The word “algorithm” is derived from his
name.

2 Throughout this chapter, we use “integer” to mean a nonnegative integer.

2 1 Appetizer: Integer Arithmetic

to 9, and base 16, with digits 0 to 15 (frequently written as 0 to 9, A, B, C, D, E, and
F). Larger bases, such as 28, 216, 232, and 264, are also useful. For example,

“10101” in base 2 represents 1 ·24 + 0 ·23+ 1 ·22+ 0 ·21+ 1 ·20 = 21,

“924” in base 10 represents 9 ·102+ 2 ·101+ 4 ·100 = 924.

We assume that we have two primitive operations at our disposal: the addition
of three digits with a two-digit result (this is sometimes called a full adder), and the
multiplication of two digits with a two-digit result.3 For example, in base 10, we
have

3
5
5

13

and 6 ·7 = 42.

We shall measure the efficiency of our algorithms by the number of primitive opera-
tions executed.

We can artificially turn any n-digit integer into an m-digit integer for any m ≥ n

by adding additional leading 0’s. Concretely, “425” and “000425” represent the same
integer. We shall use a and b for the two operands of an addition or multiplication
and assume throughout this chapter that a and b are n-digit integers. The assumption
that both operands have the same length simplifies the presentation without changing
the key message of the chapter. We shall come back to this remark at the end of the
chapter. We refer to the digits of a as an−1 to a0, with an−1 being the most significant
digit (also called leading digit) and a0 being the least significant digit, and write
a = (an−1 . . .a0). The leading digit may be 0. Similarly, we use bn−1 to b0 to denote
the digits of b, and write b = (bn−1 . . .b0).

1.1 Addition

We all know how to add two integers a = (an−1 . . .a0) and b = (bn−1 . . .b0). We
simply write one under the other with the least significant digits aligned, and sum
the integers digitwise, carrying a single digit from one position to the next. This digit
is called a carry. The result will be an (n+1)-digit integer s =(sn . . .s0). Graphically,

an−1 . . . a1 a0 first operand
bn−1 . . . b1 b0 second operand

cn cn−1 . . . c1 0 carries
sn sn−1 . . . s1 s0 sum

3 Observe that the sum of three digits is at most 3(B− 1) and the product of two digits is
at most (B− 1)2, and that both expressions are bounded by (B− 1) ·B1 +(B− 1) ·B0 =
B2−1, the largest integer that can be written with two digits. This clearly holds for B = 2.
Increasing B by 1 increases the first expression by 3, the second expression by 2B−1, and
the third expression by 2B+1. Hence the claim holds for all B.

1.1 Addition 3

where c0, . . . ,cn is the sequence of carries and s = (sn . . . s0) is the sum. We have
c0 = 0, ci+1 ·B+ si = ai + bi + ci for 0 ≤ i < n, and sn = cn. As a program, this is
written as

c = 0 : Digit // Variable for the carry digit
for i :=0 to n− 1 do add ai, bi, and c to form si and a new carry c

sn := c

We need one primitive operation for each position, and hence a total of n primitive
operations.

Theorem 1.1. The addition of two n-digit integers requires exactly n primitive oper-

ations. The result is an (n+ 1)-digit integer.

1.1.1 Parallel Addition

Our addition algorithm produces the result digits one after the other, from least sig-
nificant to most significant. In fact, the ith carry depends on the (i−1)th carry, which
in turn depends on the (i−2)nd carry, and so on. So, it seems natural to compute the
result digits sequentially. Is there a parallel algorithm for addition that produces all
digits in time less than linear in the number of digits? Parallel addition is not an aca-
demic exercise but crucial for microprocessor technology, because processors need
fast, hardware-implemented algorithms for arithmetic. Suppose that engineers had
insisted on using serial addition algorithms for microprocessors. In that case it is
likely that we would still be using 8-bit processors wherever possible, since they
would be up to eight times faster than 64-bit processors.

Our strategy for parallel addition is simple and ambitious – we want to perform
all digit additions ai + bi + ci in parallel. Of course, the problem is how to compute
the carries ci in parallel. Consider the following example of the addition of two 8-
digit binary numbers a and b:

position 8 7 6 5 4 3 2 1 0
a 1 0 0 0 0 1 1 1
b 0 1 0 0 1 0 1 0
c 0 0 0 0 1 1 1 0 0
x p p s s p p g p

y s s s s g g g p

Row c indicates the carries. Why is there a carry into position 4, why is c4 = 1? Be-
cause position 1 generates a carry, since a1+b1 = 2, and positions 2 and 3 propagate
it, since a2 +b2 = a3 +b3 = 1. Why is there no carry into position 8, why is c8 = 0?
Positions 6 and 7 would propagate a carry, since a6 + b6 = a7 + b7 = 1, but there
is nothing to propagate, since no carry is generated in position 5 since a5 + b5 = 0.
The general rule is: We have a carry into a certain position if a carry is generated
somewhere to the right and then propagated through all intermediate positions.

Rows x and y implement this rule. Row x indicates whether a position generates
(g), propagates (p), or stops (s) a carry. We have

4 1 Appetizer: Integer Arithmetic

xi =

g if ai + bi = 2,

p if ai + bi = 1,

s if ai + bi = 0.

The different xi’s are independent and can be computed in parallel. Row y gives
information whether we have a carry into a certain position. For i≥ 1, we have a carry
into position i, i.e., ci = 1, if and only if yi−1 = g. We never have a carry into position
0, i.e., c0 = 0. We give two rules for determining the sequence of y’s. Consider the
maximal subsequences of the x-sequence consisting of a string of p’s followed by
either an s or a g or the right end. Within each subsequence, turn all symbols into
the last symbol; leave the sequence of trailing p’s unchanged. In our example, the
maximal subsequences are x7x6x5, x4, and x3x2x1, and the sequence of trailing p’s
consists of x0. Therefore y7y6y5 become s’s, y4 becomes s, y3y2y1 become g’s, and
y0 becomes p. It would be equally fine to turn the trailing p’s into s’s. However, this
would make the formal treatment slightly more cumbersome. Alternatively, we may
state the rule for the yi’s as follows:

yi =

{

xi if i = 0 or xi ∈ {s,g},
yi−1 otherwise, i.e., i > 0 and xi = p.

Our task is now to compute the yi’s in parallel. The first step is to rewrite the
definition of yi as

yi =

{

x0 if i = 0,

xi⊗ yi−1 if i > 0,
where

⊗ s p g

s s s s

p s p g

g g g g

The operator ⊗4 returns its left argument if this argument is s or g and returns its
right argument when the left argument is p. We next expand the definition of yi and
obtain

yi = xi⊗ yi−1 = xi⊗ (xi−1⊗ yi−2) = xi⊗ (xi−1⊗ (xi−2 . . . (x1⊗ x0) . . .)).

This formula corresponds to the sequential computation of yi. We first compute x1⊗
x0, then left-multiply by x2, then by x3, and finally by xi. The operator⊗ is associative
(we shall prove this below) and hence we can change the evaluation order without
changing the result. Compare the following formulae for y6:

y6 = x6⊗ (x5⊗ (x4⊗ (x3⊗ (x2⊗ (x1⊗ x0)))))

and

y6 = (x6⊗ ((x5⊗ x4)⊗ ((x3⊗ x2)⊗ (x1⊗ x0)).

4 Pronounced “otimes”.

1.1 Addition 5

x7 x6 x5 x4 x3 x2 x1 x0

y7 y6 y5 y4 y3 y2 y1 y0

⊗⊗⊗

⊗

⊗

⊗ ⊗⊗

⊗⊗⊗⊗

circuit for n = 4

step 1 (form pairs)

step 3 (compute y6, y4, . . .)

Fig. 1.1. The computation of y7 to y0 from x7 to x0. The horizontal partition of the computation
corresponds to the general description of the algorithm. We first form pairs. In the second row
of gates, we combine pairs, and in the third row, we combine pairs of pairs. Then we start to
fill in gaps. In row four, we compute y5, and in the last row, we compute y6, y4, and y2.

The latter formula corresponds to a parallel evaluation of y6. We compute x5⊗ x4,
x3⊗ x2, and x1⊗ x0 in parallel, then x6⊗ (x5⊗ x4) and (x3⊗ x2)⊗ (x1⊗ x0), and
finally y6. Thus three rounds of computation suffice instead of the six rounds for the
sequential evaluation. Generally, we can compute yi in ⌈log i⌉ rounds of computation.
The computation of the different yi’s can be intertwined, as Fig. 1.1 shows.

We next give a more formal treatment for a general base B. We start with the
simple observation that the carry digit is either 0 or 1.

Lemma 1.2. ci ∈ {0,1} for all i.

Proof. We have c0 = 0 by definition. Assume inductively, that ci ∈ {0,1}. Then
ai + bi + ci ≤ 2(B− 1)+ 1= 2B− 1 = 1 ·B+B− 1 and hence ci+1 ∈ {0,1}. ⊓⊔

Two input digits ai and bi will generate a carry no matter what happens to the right
of them if ai + bi > B− 1. On the other hand, the addition involving ai and bi will
stop any carry if ai + bi < B− 1; this holds because an incoming carry is at most 1.
If ai+bi = B−1, an incoming carry will be propagated to the left. Hence, we define

xi :=

s if ai + bi < B− 1 (stop),

p if ai + bi = B− 1 (propagate),

g if ai + bi > B− 1 (generate).

(1.1)

Lemma 1.3. The operator⊗ is associative, i.e., (u⊗ v)⊗w = u⊗ (v⊗w) for any u,

v, and w. Let yi =
⊗

0≤ j≤i x j. Then ci = 1 if and only if yi−1 = g.

Proof. If u 6= p, then (u⊗ v)⊗w = u⊗w = u = u⊗ (v⊗w). If u = p, then (u⊗ v)⊗
w = v⊗w = u⊗ (v⊗w).

6 1 Appetizer: Integer Arithmetic

We have a carry into position i if and only if there is a k < i such that a carry is
generated in position k and propagated by positions k+ 1 to i− 1, i.e., xk = g and
xk+1 = . . .xi−1 = p. Then yk = xk = g. This completes the argument when i− 1 = k.
Otherwise, yk+1 = p⊗ yk = g, yk+2 = p⊗ yk+1 = g, . . . , yi−1 = p⊗ yi−2 = g. ⊓⊔

We now come to the parallel computation of the yi’s. For simplicity, we assume
n to be a power of 2. If n = 1 = 20, we simply return x0. Otherwise, we do the
following:

(a) Combine consecutive pairs of inputs: z0 = x1⊗ x0, z1 = x3⊗ x2, . . . , zn/2−1 =
xn−1⊗ xn−2.

(b) Apply the algorithm recursively to the sequence zn/2−1, . . . ,z0 to obtain its se-
quence of prefix sums wn/2−1, . . . ,w0.

(c) Assemble the output as y2i+1 = wi for i ∈ 0..n/2− 1 and y0 = x0 and y2i =
x2i⊗wi−1 for i ∈ 1..n/2− 1.

Figure 1.1 illustrates the computation for n = 8. The number N(n) of gates satisfies
N(1) = 0 and N(n) = n/2+N(n/2)+ n/2− 1≤ N(n/2)+ n. Note that we use n/2
gates in step (a), n/2− 1 gates in step (c), and N(n/2) gates in step (b). By repeated
substitution, we obtain N(n)≤ n+N(n/2)≤ n+n/2+n/4+n/8+ . . .= O(n). The
number of rounds of computation is 0 for n = 1, is 1 for n = 2, and grows by 2
whenever n doubles. Thus the number of rounds is 2 logn− 1.

The algorithm for computing the yi’s in parallel is an example of a prefix sum

computation – a frequently useful collective computation described in more detail in
Sect. 13.3.

1.2 Multiplication: The School Method

We all know how to multiply two integers. In this section, we shall review the “school
method”. In a later section, we shall get to know a method which is significantly
faster for large integers.

We shall proceed slowly. We first review how to multiply an n-digit integer a by
a one-digit integer b j. We use b j for the one-digit integer, since this is how we need
it below. For any digit ai of a, we form the product ai · b j. The result is a two-digit
integer (cidi), i.e.,

ai ·b j = ci ·B+ di.

We form two integers, c = (cn−1 . . .c0 0) and d = (dn−1 . . .d0) from the ci’s and di’s,
respectively. Since the c’s are the higher-order digits in the products, we add a 0 digit
at the end. We add c and d to obtain the product p j = a ·b j. Graphically,

(an−1 . . .ai . . .a0) ·b j −→
cn−1 cn−2 . . . ci ci−1 . . . c0 0

dn−1 . . . di+1 di . . . d1 d0

sum of c and d

Let us determine the number of primitive operations. For each i, we need one prim-
itive operation to form the product ai ·b j, for a total of n primitive operations. Then

1.2 Multiplication: The School Method 7

we add two (n+1)-digit numbers (cn−1 . . .c00) and (0dn−1 . . .d0). However, we may
simply copy the digit d0 to the result and hence effectively add two n-digit numbers.
This requires n primitive operations. So the total number of primitive operations is
2n. The leftmost addition of cn−1 and the carry into this position generates carry 0
as a · b j ≤ (Bn− 1) · (B− 1)< Bn+1, and hence the result can be written with n+ 1
digits.

Lemma 1.4. We can multiply an n-digit number by a one-digit number with 2n prim-

itive operations. The result is an (n+ 1)-digit number.

When you multiply an n-digit number by a one-digit number, you will probably
proceed slightly differently. You combine5 the generation of the products ai ·b j with
the summation of c and d into a single phase, i.e., you create the digits of c and d

when they are needed in the final addition. We have chosen to generate them in a
separate phase because this simplifies the description of the algorithm.

Exercise 1.1. Give a program for the multiplication of a and b j that operates in a
single phase.

We can now turn to the multiplication of two n-digit integers. The school method
for integer multiplication works as follows: We first form partial products p j by
multiplying a by the jth digit b j of b, and then sum the suitably aligned products
p j ·B j to obtain the product of a and b. Graphically,

p0,n p0,n−1 . . . p0,2 p0,1 p0,0

p1,n p1,n−1 p1,n−2 . . . p1,1 p1,0

p2,n p2,n−1 p2,n−2 p2,n−3 . . . p2,0

. . .
pn−1,n . . . pn−1,3 pn−1,2 pn−1,1 pn−1,0

sum of the n partial products

The description in pseudocode is more compact. We initialize the product p to 0
and then add to it the partial products a ·b j ·B j one by one:

p = 0 : N

for j := 0 to n− 1 do p := p+ a ·b j ·B j

Let us analyze the number of primitive operations required by the school method.
Each partial product p j requires 2n primitive operations, and hence all partial prod-
ucts together require 2n2 primitive operations. The product a ·b is a 2n-digit number,
and hence all summations p+ a · b j ·B j are summations of 2n-digit integers. Each
such addition requires at most 2n primitive operations, and hence all additions to-
gether require at most 2n2 primitive operations. Thus, we need no more than 4n2

primitive operations in total.

5 In the literature on compiler construction and performance optimization, this transforma-
tion is known as loop fusion.

8 1 Appetizer: Integer Arithmetic

n Tn / sec Tn/Tn/2

8 0.00000469
16 0.0000154 3.28
32 0.0000567 3.67
64 0.000222 3.91

128 0.000860 3.87
256 0.00347 4.03
512 0.0138 3.98

1 024 0.0547 3.95
2 048 0.220 4.01
4 096 0.880 4.00
8 192 3.53 4.01

16 384 14.2 4.01
32 768 56.7 4.00
65 536 227 4.00

131 072 910 4.00

0.0001

0.001

0.01

0.1

1

10

100

2
4

2
6

2
8

2
10

2
12

2
14

2
16

ti
m

e
/

se
c

school method

n

Fig. 1.2. The running time of the school method for the multiplication of n-digit integers.
The three columns of the table on the left give n, the running time Tn in seconds of the C++
implementation given in Sect. 1.8, and the ratio Tn/Tn/2. The plot on the right shows logTn

versus logn, and we see essentially a line. Observe that if Tn = αnβ for some constants α and
β , then Tn/Tn/2 = 2β and logTn = β logn+ logα , i.e., logTn depends linearly on logn with
slope β . In our case, the slope is 2. Please use a ruler to check.

A simple observation allows us to improve this bound. The number a ·b j ·B j has
n+ 1+ j digits, the last j of which are 0. We can therefore start the addition in the
(j+1)th position. Also, when we add a ·b j ·B j to p, we have p= a ·(b j−1 . . .b0), i.e.,
p has n+ j digits. Thus, the addition of p and a ·b j ·B j amounts to the addition of two
n+1-digit numbers and requires only n+1 primitive operations. Therefore, all n−1
additions together require no more than (n−1)(n+1)< n2 primitive operations. We
have thus shown the following result.

Theorem 1.5. The school method multiplies two n-digit integers with 3n2 primitive

operations.

We have now analyzed the numbers of primitive operations required by the
school methods for integer addition and integer multiplication. The number Mn of
primitive operations for the school method for integer multiplication is essentially
3n2. We say that Mn grows quadratically. Observe also that

Mn

Mn/2
=

3n2

3(n/2)2 = 4,

i.e., quadratic growth has the consequence of essentially quadrupling the number of
primitive operations when the size of the instance is doubled.

Assume now that we actually implement the multiplication algorithm in our fa-
vorite programming language (we shall do so later in the chapter), and then time the

1.2 Multiplication: The School Method 9

program on our favorite machine for various n-digit integers a and b and various n.
What should we expect? We want to argue that we shall see quadratic growth. The
reason is that primitive operations are representative of the running time of the al-

gorithm. Consider the addition of two n-digit integers first. What happens when the
program is executed? For each position i, the digits ai and bi have to be moved to the
processing unit, the sum ai + bi + c has to be formed, the digit si of the result needs
to be stored in memory, the carry c is updated, the index i is incremented, and a test
for loop exit needs to be performed. Thus, for each i, the same number of machine
cycles is executed. We have counted one primitive operation for each i, and hence
the number of primitive operations is representative of the number of machine cy-
cles executed. Of course, there are additional effects, for example pipelining and the
complex transport mechanism for data between memory and the processing unit, but
they will have a similar effect for all i, and hence the number of primitive operations
is also representative of the running time of an actual implementation on an actual
machine. The argument extends to multiplication, since multiplication of a number
by a one-digit number is a process similar to addition and the second phase of the
school method for multiplication amounts to a series of additions.

Let us confirm the above argument by an experiment. Figure 1.2 shows execution
times of a C++ implementation of the school method; the program can be found in
Sect. 1.8. For each n, we performed a large number6 of multiplications of n-digit
random integers and then determined the average running time Tn; Tn is listed in the
second column of the table. We also show the ratio Tn/Tn/2. Figure 1.2 also shows
a plot of the data points7 (logn, logTn). The data exhibits approximately quadratic
growth, as we can deduce in various ways. The ratio Tn/Tn/2 is always close to four,
and the double logarithmic plot shows essentially a line of slope 2. The experiments
are quite encouraging: Our theoretical analysis has predictive value. Our theoretical

analysis showed quadratic growth of the number of primitive operations, we argued

above that the running time should be related to the number of primitive operations,

and the actual running time essentially grows quadratically. However, we also see
systematic deviations. For small n, the growth factor from one row to the next is by
less than a factor of four, as linear and constant terms in the running time still play a
substantial role. For larger n, the ratio is very close to four. For very large n (too large
to be timed conveniently), we would probably see a factor larger than four, since the
access time to memory depends on the size of the data. We shall come back to this
point in Sect. 2.2.

Exercise 1.2. Write programs for the addition and multiplication of long integers.
Represent integers as sequences (arrays or lists or whatever your programming lan-
guage offers) of decimal digits and use the built-in arithmetic to implement the prim-
itive operations. Then write ADD, MULTIPLY1, and MULTIPLY functions that add

6 The internal clock that measures CPU time returns its timings in some units, say millisec-
onds, and hence the rounding required introduces an error of up to one-half of this unit. It
is therefore important that the experiment whose duration is to be timed takes much longer
than this unit, in order to reduce the effect of rounding.

7 Throughout this book, we use logx to denote the logarithm to base 2, log2 x.

10 1 Appetizer: Integer Arithmetic

integers, multiply an integer by a one-digit number, and multiply integers, respec-
tively. Use your implementation to produce your own version of Fig. 1.2. Experiment
with using a larger base than 10, say base 216.

Exercise 1.3. Describe and analyze the school method for division.

1.3 Result Checking

Our algorithms for addition and multiplication are quite simple, and hence it is fair
to assume that we can implement them correctly in the programming language of our
choice. However, writing software8 is an error-prone activity, and hence we should
always ask ourselves whether we can check the results of a computation. For multi-
plication, the authors were taught the following technique in elementary school. The
method is known as Neunerprobe in German, “casting out nines” in English, and
preuve par neuf in French.

Add the digits of a. If the sum is a number with more than one digit, sum its
digits. Repeat until you arrive at a one-digit number, called the checksum of a. We
use sa to denote this checksum. Here is an example:

4528→ 19→ 10→ 1.

Do the same for b and the result c of the computation. This gives the checksums
sb and sc. All checksums are single-digit numbers. Compute sa · sb and form its
checksum s. If s differs from sc, c is not equal to a · b. This test was described by
al-Khwarizmi in his book on algebra.

Let us go through a simple example. Let a = 429, b = 357, and c = 154153.
Then sa = 6, sb = 6, and sc = 1. Also, sa · sb = 36 and hence s = 9. So sc 6= s and
hence c is not the product of a and b. Indeed, the correct product is c = 153153.
Its checksum is 9, and hence the correct product passes the test. The test is not fool-
proof, as c= 135153 also passes the test. However, the test is quite useful and detects
many mistakes.

What is the mathematics behind this test? We shall explain a more general
method. Let q be any positive integer; in the method described above, q = 9. Let sa

be the remainder, or residue, in the integer division of a by q, i.e., sa = a−⌊a/q⌋ ·q.
Then 0 ≤ sa < q. In mathematical notation, sa = a mod q.9 Similarly, sb = b mod q

and sc = c mod q. Finally, s = (sa ·sb) mod q. If c = a ·b, then it must be the case that
s = sc. Thus s 6= sc proves c 6= a ·b and uncovers a mistake in the multiplication (or
a mistake in carrying out casting out nines). What do we know if s = sc? We know
that q divides the difference of c and a · b. If this difference is nonzero, the mistake
will be detected by any q which does not divide the difference.

8 The bug in the division algorithm of the floating-point unit of the original Pentium chip
became infamous. It was caused by a few missing entries in a lookup table used by the
algorithm.

9 The method taught in school uses residues in the range 1 to 9 instead of 0 to 8 according to
the definition sa = a− (⌈a/q⌉−1) ·q.

1.4 A Recursive Version of the School Method 11

Let us continue with our example and take q= 7. Then a mod 7 = 2, b mod 7 = 0
and hence s = (2 ·0) mod 7 = 0. But 135153 mod 7 = 4, and we have uncovered the
fact that 135153 6= 429 ·357.

Exercise 1.4. Explain why casting out nines corresponds to the case q = 9. Hint:
10k mod 9 = 1 for all k ≥ 0.

Exercise 1.5 (Elferprobe, casting out elevens). Powers of ten have very simple re-
mainders modulo 11, namely 10k mod 11= (−1)k for all k≥ 0, i.e., 1 mod 11=+1,
10 mod 11=−1, 100 mod 11=+1, 1000 mod 11=−1, etc. Describe a simple test
to check the correctness of a multiplication modulo 11.

1.4 A Recursive Version of the School Method

We shall now derive a recursive version of the school method. This will be our first
encounter with the divide-and-conquer paradigm, one of the fundamental paradigms
in algorithm design.

Let a and b be our two n-digit integers which we want to multiply. Let k = ⌊n/2⌋.
We split a into two numbers a1 and a0; a0 consists of the k least significant digits and
a1 consists of the n− k most significant digits.10 We split b analogously. Then

a = a1 ·Bk + a0 and b = b1 ·Bk + b0,

and hence
a ·b = a1 ·b1 ·B2k +(a1 ·b0 + a0 ·b1) ·Bk + a0 ·b0.

This formula suggests the following algorithm for computing a ·b:

(a) Split a and b into a1, a0, b1, and b0.
(b) Compute the four products a1 ·b1, a1 ·b0, a0 ·b1, and a0 ·b0.
(c) Add the suitably aligned products to obtain a ·b.

Observe that the numbers a1, a0, b1, and b0 are ⌈n/2⌉-digit numbers and hence
the multiplications in step (b) are simpler than the original multiplication if ⌈n/2⌉<
n, i.e., n > 1. The complete algorithm is now as follows. To multiply one-digit num-
bers, use the multiplication primitive. To multiply n-digit numbers for n≥ 2, use the
three-step approach above.

It is clear why this approach is called divide-and-conquer. We reduce the problem
of multiplying a and b to some number of simpler problems of the same kind. A
divide-and-conquer algorithm always consists of three parts: In the first part, we
split the original problem into simpler problems of the same kind (our step (a)); in
the second part, we solve the simpler problems using the same method (our step (b));
and, in the third part, we obtain the solution to the original problem from the solutions
to the subproblems (our step (c)). Instead of “we solve the simpler problems using

12 1 Appetizer: Integer Arithmetic

a0a1

b0

b1

a0 ·b0a1 ·b0

a0 ·b1a1 ·b1

Fig. 1.3. Visualization of the school
method and its recursive variant. The
rhombus-shaped area indicates the partial
products in the multiplication a · b. The
four subareas correspond to the partial
products a1 · b1, a1 · b0, a0 · b1, and a0 · b0.
In the recursive scheme, we first sum the
partial products in the four subareas and
then, in a second step, add the four result-
ing sums.

the same method”, one usually says more elegantly “we solve the simpler problems
recursively”.

What is the connection of our recursive integer multiplication to the school
method? The two methods are strongly related. Both methods compute all n2 digit
products aib j and then sum the resulting two-digit results (appropriately shifted).
They differ in the order in which these summations are performed. Figure 1.3 visual-
izes the digit products and their place values as rhombus-shaped regions. The school
method adds the digit products row by row. The recursive method first computes
the partial results corresponding to the four subregions, which it then combines to
obtain the final result with three additions. We may almost say that our recursive in-
teger multiplication is just the school method in disguise. In particular, the recursive
algorithm also uses a quadratic number of primitive operations.

We next derive the quadratic behavior without appealing to the connection to
the school method. This will allow us to introduce recurrence relations, a powerful
concept for the analysis of recursive algorithms.

Lemma 1.6. Let T (n) be the maximum number of primitive operations required by

our recursive multiplication algorithm when applied to n-digit integers. Then

T (n)≤
{

1 if n = 1,

4 ·T(⌈n/2⌉)+ 2 ·2 ·n if n≥ 2.

Proof. Multiplying two one-digit numbers requires one primitive multiplication.
This justifies the case n = 1. So, assume n≥ 2. Splitting a and b into the four pieces
a1, a0, b1, and b0 requires no primitive operations.11 Each piece has at most ⌈n/2⌉
digits and hence the four recursive multiplications require at most 4 ·T (⌈n/2⌉) prim-
itive operations. The products a0 · b0 and a1 · b1 ·B2k can be combined into a single
number without any cost as the former number is a 2k-digit number and the latter
number ends with 2k many 0’s. Finally, we need two additions to assemble the final
result. Each addition involves two numbers of at most 2n digits and hence requires
at most 2n primitive operations. This justifies the inequality for n≥ 2. ⊓⊔
10 Observe that we have changed notation; a0 and a1 now denote the two parts of a and are

no longer single digits.
11 It will require work, but it is work that we do not account for in our analysis.

1.5 Karatsuba Multiplication 13

In Sect. 2.8, we shall learn that such recurrences are easy to solve and yield the
already conjectured quadratic execution time of the recursive algorithm.

Lemma 1.7. Let T (n) be the maximum number of primitive operations required by

our recursive multiplication algorithm when applied to n-digit integers. Then T (n)≤
5n2 if n is a power of 2, and T (n)≤ 20n2 for all n.

Proof. We refer the reader to Sect. 1.9 for a proof. ⊓⊔

1.5 Karatsuba Multiplication

In 1962, the Soviet mathematician Karatsuba [174] discovered a faster way of multi-
plying large integers. The running time of his algorithm grows like nlog3 ≈ n1.58. The
method is surprisingly simple. Karatsuba observed that a simple algebraic identity al-
lows one multiplication to be eliminated in the divide-and-conquer implementation,
i.e., one can multiply n-digit numbers using only three multiplications of integers
half the size.

The details are as follows. Let a and b be our two n-digit integers which we want
to multiply. Let k = ⌊n/2⌋. As above, we split a into two numbers a1 and a0; a0

consists of the k least significant digits and a1 consists of the n− k most significant
digits. We split b in the same way. Then

a = a1 ·Bk + a0 and b = b1 ·Bk + b0

and hence (the magic is in the second equality)

a ·b = a1 ·b1 ·B2k +(a1 ·b0 + a0 ·b1) ·Bk + a0 ·b0

= a1 ·b1 ·B2k +((a1 + a0) · (b1 + b0)− (a1 ·b1 + a0 ·b0)) ·Bk + a0 ·b0.

At first sight, we have only made things more complicated. A second look, how-
ever, shows that the last formula can be evaluated with only three multiplications,
namely, a1 · b1, a0 · b0, and (a1 + a0) · (b1 + b0). We also need six additions.12 That
is three more than in the recursive implementation of the school method. The key
is that additions are cheap compared with multiplications, and hence saving a mul-
tiplication more than outweighs the additional additions. We obtain the following
algorithm for computing a ·b:

(a) Split a and b into a1, a0, b1, and b0.
(b) Compute the three products

p2 = a1 ·b1, p0 = a0 ·b0, p1 = (a1 + a0) · (b1 + b0).
12 Actually, five additions and one subtraction. We leave it to readers to convince themselves

that subtractions are no harder than additions.

14 1 Appetizer: Integer Arithmetic

(c) Add the suitably aligned products to obtain a ·b, i.e., compute a ·b according to
the formula

a ·b = (p2 ·B2k + p0)+ (p1− (p2 + p0)) ·Bk.

The first addition can be performed by concatenating the corresponding digit
strings and requires no primitive operation.

The numbers a1, a0, b1, b0, a1 + a0, and b1 + b0 are (⌈n/2⌉+ 1)-digit numbers
and hence the multiplications in step (b) are simpler than the original multiplication
if ⌈n/2⌉+ 1 < n, i.e., n ≥ 4. The complete algorithm is now as follows: To multiply
three-digit numbers, use the school method, and to multiply n-digit numbers for n≥
4, use the three-step approach above.

0.00001

0.0001

0.001

0.01

0.1

1

10

2
4

2
6

2
8

2
10

2
12

2
14

ti
m

e
/

se
c

school method
Karatsuba4

Karatsuba32

n

Fig. 1.4. The running times of im-
plementations of the Karatsuba and
school methods for integer multipli-
cation. The running times of two
versions of Karatsuba’s method are
shown: Karatsuba4 switches to the
school method for integers with
fewer than four digits, and Karat-
suba32 switches to the school method
for integers with fewer than 32 digits.
The slopes of the lines for the Karat-
suba variants are approximately 1.58.
The running time of Karatsuba32 is
approximately one-third the running
time of Karatsuba4.

Figure 1.4 shows the running times TS(n), TK4(n), and TK32(n) of C++ imple-
mentations of the school method and of two variants of the Karatsuba method for
the multiplication of n-digit numbers. Karatsuba4 (running time TK4(n)) uses the
school method for numbers with fewer than four digits and Karatsuba32 (running
time TK32(n)) uses the school method for numbers with fewer than 32 digits; we
discuss the rationale for this variant in Sect. 1.7. The scales on both axes are log-
arithmic. We see, essentially, straight lines of different slope. The running time of
the school method grows like n2, and hence the slope is 2 in the case of the school
method. The slope is smaller in the case of the Karatsuba method, and this suggests
that its running time grows like nβ with β < 2. In fact, the ratios13 TK4(n)/TK4(n/2)
and TK32(n)/TK32(n/2) are close to three, and this suggests that β is such that 2β = 3
or β = log3 ≈ 1.58. Alternatively, you may determine the slope from Fig. 1.4. We
shall prove below that TK(n) grows like nlog3. We say that the Karatsuba method has

13 TK4(1024) = 0.0455, TK4(2048) = 0.1375, and TK4(4096) = 0.41.

1.6 Parallel Multiplication 15

better asymptotic behavior than the school method. We also see that the inputs have
to be quite big before the superior asymptotic behavior of the Karatsuba method ac-
tually results in a smaller running time. Observe that for n = 28, the school method
is still faster, that for n = 29, the two methods have about the same running time, and
that the Karatsuba method wins for n = 210. The lessons to remember are:

• Better asymptotic behavior ultimately wins.
• An asymptotically slower algorithm can be faster on small inputs.

In the next section, we shall learn how to improve the behavior of the Karatsuba
method for small inputs. The resulting algorithm will always be at least as good as
the school method. It is time to derive the asymptotics of the Karatsuba method.

Lemma 1.8. Let TK(n) be the maximum number of primitive operations required by

the Karatsuba algorithm when applied to n-digit integers. Then

TK(n)≤
{

3n2 if n≤ 3,

3 ·TK(⌈n/2⌉+ 1)+ 8n if n≥ 4.

Proof. Multiplying two n-digit numbers using the school method requires no more
than 3n2 primitive operations, according to Theorem 1.5. This justifies the first line.
So, assume n ≥ 4. Splitting a and b into the four pieces a1, a0, b1, and b0 requires
no primitive operations.14 Each piece and the sums a0 +a1 and b0 +b1 have at most
⌈n/2⌉+ 1 digits, and hence the three recursive multiplications require at most 3 ·
TK(⌈n/2⌉+1) primitive operations. We need two additions to form a0 +a1 and b0 +
b1. The results of these additions have fewer than n digits and hence the additions
need no more than n elementary operations each. Finally, we need three additions
in order to compute the final result from the results of the multiplications. These are
additions of numbers with at most 2n digits. Thus these additions require at most
3 ·2n primitive operations. Altogether, we obtain the bound stated in the second line
of the recurrence. ⊓⊔

In Sect. 2.8, we shall learn some general techniques for solving recurrences of this
kind.

Theorem 1.9. Let TK(n) be the maximum number of primitive operations required

by the Karatsuba algorithm when applied to n-digit integers. Then TK(n)≤ 153nlog3

for all n.

Proof. We refer the reader to Sect. 1.9 for a proof. ⊓⊔

1.6 Parallel Multiplication

Both the recursive version of the school method and the Karatsuba algorithm are
good starting points for parallel algorithms. For simplicity, we focus on the school

14 It will require work, but remember that we are counting primitive operations.

16 1 Appetizer: Integer Arithmetic

method. Recall that the bulk of the work is done in the recursive multiplications
a0b0, a1b1, a0b1, and a1b0. These four multiplications can be done independently
and in parallel. Hence, in the first level of recursion, up to four processors can work
in parallel. In the second level of recursion, the parallelism is already 4 · 4 = 16.
In the ith level of recursion, 4i processors can work in parallel. Fig. 1.5 shows a
graphical representation of the resulting computation for multiplying two numbers
a11a10a01a00 and b11b10b01b00.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

a·b

a0·b1

a0·b0

a1·b0

a1·b1

a00·b00

a00·b01

a00·b10

a00·b11

a01·b00

a01·b01

a01·b10

a01·b11

a10·b00

a10·b01

a10·b10

a10·b11

a11·b00

a11·b01

a11·b10

a11·b11

Fig. 1.5. Task graph for parallel recursive multiplication with two levels of parallel recursion
and using the school method on two-digit numbers as the base case. A “>” stands for a shift
by two digits.

What is the running time of the algorithm if an unlimited number of processors
are available? This quantity is known as the span of a parallel computation; see
Sect. 2.10. For simplicity, we assume a sequential addition algorithm. As before, we
shall count only arithmetic operations on digits. For the span S(n) for multiplying
two n-digit integers, we get

S(n)≤
{

1 if n = 1,

S(⌈n/2⌉)+ 3 ·2 ·n if n≥ 2.

This recurrence has the solution S(n) ≤ 12n. Note that this is much less than the
quadratic number of operations performed. Hence, we can hope for considerable
speedup by parallel processing – even without parallel addition.

Exercise 1.6. Show that by using parallel addition (see Sect. 1.1.1), we can achieve
a span O

(
log2 n

)
for parallel school multiplication.

1.7 Algorithm Engineering 17

Parallel programming environments for multicore processors make it relatively
easy to exploit parallelism in the kind of divide-and-conquer computations described
above, see Sect. 2.14 for details. Roughly, they create a task for recursive calls and
automatically assign cores to tasks. They ensure that enough tasks are created to
keep all available cores busy, but also that tasks stay reasonably large. Section 14.5
explains the load-balancing algorithms behind this programming model.

Exercise 1.7. Describe a parallel divide-and-conquer algorithm for the Karatsuba
method. Show that its span is linear in the number of input digits.

1.7 Algorithm Engineering

Karatsuba integer multiplication is superior to the school method for large inputs.
In our implementation, the superiority only shows for integers with more than 1000
digits. However, a simple refinement improves the performance significantly. Since
the school method is superior to the Karatsuba method for short integers, we should
stop the recursion earlier and switch to the school method for numbers which have
fewer than n0 digits for some yet to be determined n0. We call this approach the
refined Karatsuba method. It is never worse than either the school method or the
original Karatsuba algorithm as long as n0 is not chosen too large.

 0.1

 0.2

 0.3

 0.4

 0.5

 4 8 16 32 64 128 256 512 1024

ti
m

e
/

se
c

Karatsuba, n = 2048
Karatsuba, n = 4096

recursion threshold n0

Fig. 1.6. The running time of the
Karatsuba method as a function of
the recursion threshold n0. The times
consumed for multiplying 2048-digit
and 4096-digit integers are shown.
The minimum is at n0 = 32.

What is a good choice for n0? We shall answer this question both experimentally
and analytically. Let us discuss the experimental approach first. We simply time the
refined Karatsuba algorithm for different values of n0 and then adopt the value giving
the smallest running time. For our implementation, the best results were obtained for
n0 = 32 (see Fig. 1.6). The asymptotic behavior of the refined Karatsuba method is
shown in Fig. 1.4. We see that the running time of the refined method still grows
like nlog3, that the refined method is about three times faster than the basic Karatsuba

18 1 Appetizer: Integer Arithmetic

method and hence the refinement is highly effective, and that the refined method is
never slower than the school method.

Exercise 1.8. Derive a recurrence for the worst-case number TR(n) of primitive op-
erations performed by the refined Karatsuba method.

We can also approach the question analytically. If we use the school method to
multiply n-digit numbers, we need 3n2 primitive operations. If we use one Karat-
suba step and then multiply the resulting numbers of length ⌈n/2⌉+ 1 using the
school method, we need about 3(3(n/2+ 1)2)+ 7n primitive operations. The latter
is smaller for n ≥ 23, and hence a recursive step saves primitive operations as long
as the number of digits is more than 23. You should not take this as an indication that
an actual implementation should switch at integers of approximately 23 digits, as the
argument concentrates solely on primitive operations. You should take it as an argu-
ment that it is wise to have a nontrivial recursion threshold n0 and then determine the
threshold experimentally.

Exercise 1.9. Throughout this chapter, we have assumed that both arguments of a
multiplication are n-digit integers. What can you say about the complexity of mul-
tiplying n-digit and m-digit integers? (a) Show that the school method requires no
more than α · nm primitive operations for some constant α . (b) Assume n ≥ m and
divide a into ⌈n/m⌉ numbers of m digits each. Multiply each of the fragments by b

using Karatsuba’s method and combine the results. What is the running time of this
approach?

1.8 The Programs

We give C++ programs for the school and Karatsuba methods below. These pro-
grams were used for the timing experiments described in this chapter. The programs
were executed on a machine with a 2 GHz dual-core Intel Core 2 Duo T7200 pro-
cessor with 4 MB of cache memory and 2 GB of main memory. The programs were
compiled with GNU C++ version 3.3.5 using optimization level -O2.

A digit is simply an unsigned int and an integer is a vector of digits; here, “vector”
is the vector type of the standard template library. A declaration integer a(n) declares
an integer with n digits, a.size() returns the size of a, and a[i] returns a reference to
the ith digit of a. Digits are numbered starting at 0. The global variable B stores the
base. The functions fullAdder and digitMult implement the primitive operations on
digits. We sometimes need to access digits beyond the size of an integer; the function
getDigit(a, i) returns a[i] if i is a legal index for a and returns 0 otherwise:

typedef unsigned int digit;

typedef vector<digit> integer ;

unsigned int B = 10; // Base, 2 <= B <= 2^16

void fullAdder(digit a, digit b, digit c, digit & s, digit & carry)

{ unsigned int sum = a + b + c; carry = sum/B; s = sum -carry*B; }

1.8 The Programs 19

void digitMult (digit a, digit b, digit & s, digit & carry)

{ unsigned int prod = a*b; carry = prod/B; s = prod - carry*B; }

digit getDigit (const integer& a, int i)

{ return (i < a.size()? a[i] : 0); }

We want to run our programs on random integers: randDigit is a simple random
generator for digits, and randInteger fills its argument with random digits.

unsigned int X = 542351;

digit randDigit () { X = 443143*X + 6412431; return X % B ; }

void randInteger(integer& a)

{ int n = a.size (); for (int i=0; i<n; i++) a[i] = randDigit ();}

We now come to the school method of multiplication. We start with a routine that
multiplies an integer a by a digit b and returns the result in atimesb. We need a carry-
digit carry, which we initialize to 0. In each iteration, we compute d and c such that
c ∗B+ d = a[i] ∗ b. We then add d, the c from the previous iteration, and the carry

from the previous iteration, store the result in atimesb[i], and remember the carry.
The school method (the function mult) multiplies a by each digit of b and then adds
it at the appropriate position to the partial result (the function addAt):

void mult(const integer& a, const digit& b, integer& atimesb)

{ int n = a.size (); assert(atimesb.size() == n+1);

digit carry = 0, c, d, cprev = 0;

for (int i = 0; i < n; i++)

{ digitMult (a[i], b,d,c);

fullAdder (d, cprev, carry, atimesb[i], carry);

cprev = c;

}

d = 0;

fullAdder (d, cprev, carry, atimesb[n], carry); assert(carry == 0);

}

void addAt(integer& p, const integer& atimesbj, int j)

{ // p has length n+m,

digit carry = 0; int L = p.size ();

for (int i = j ; i < L; i++)

fullAdder(p[i], getDigit (atimesbj, i - j), carry, p[i], carry);

assert(carry == 0);

}

integer mult(const integer& a, const integer& b)

{ int n = a.size (); int m = b.size ();

integer p(n + m,0); integer atimesbj(n+1);

for (int j = 0; j < m; j++)

{ mult(a, b[j], atimesbj); addAt(p, atimesbj, j); }

return p;

}

20 1 Appetizer: Integer Arithmetic

For Karatsuba’s method, we also need algorithms for general addition and subtrac-
tion. The subtraction method may assume that the first argument is no smaller than
the second. It computes its result in the first argument:

integer add(const integer& a, const integer& b)

{ int n = max(a.size(),b.size ());

integer s(n+1); digit carry = 0;

for (int i = 0; i < n; i++)

fullAdder(getDigit (a, i), getDigit (b, i), carry, s[i], carry);

s[n] = carry;

return s;

}

void sub(integer& a, const integer& b) // requires a >= b

{ digit carry = 0;

for (int i = 0; i < a.size (); i++)

if (a[i] >= (getDigit (b, i) + carry))

{ a[i] = a[i] - getDigit (b, i) - carry; carry = 0; }

else { a[i] = a[i] + B - getDigit (b, i) - carry; carry = 1;}

assert(carry == 0);

}

The function split splits an integer into two integers of half the size:

void split (const integer& a,integer& a1, integer& a0)

{ int n = a.size (); int k = n/2;

for (int i = 0; i < k; i++) a0[i] = a[i];

for (int i = 0; i < n - k; i++) a1[i] = a[k+ i];

}

The function Karatsuba works exactly as described in the text. If the inputs have
fewer than n0 digits, the school method is employed. Otherwise, the inputs are split
into numbers of half the size and the products p0, p1, and p2 are formed. Then p0 and
p2 are written into the output vector and subtracted from p1. Finally, the modified p1

is added to the result:

integer Karatsuba(const integer& a, const integer& b, int n0)

{ int n = a.size (); int m = b.size (); assert(n == m); assert(n0 >= 4);

integer p(2*n);

if (n < n0) return mult(a,b);

int k = n/2; integer a0(k), a1(n - k), b0(k), b1(n - k);

split (a,a1,a0); split (b,b1,b0);

integer p2 = Karatsuba(a1,b1,n0),

p1 = Karatsuba(add(a1,a0),add(b1,b0),n0),

p0 = Karatsuba(a0,b0,n0);

for (int i = 0; i < 2*k; i++) p[i] = p0[i];

for (int i = 2*k; i < n+m; i++) p[i] = p2[i - 2*k];

sub(p1,p0); sub(p1,p2); addAt(p,p1,k);

return p;

}

1.9 Proofs of Lemma 1.7 and Theorem 1.9 21

The following program generated the data for Fig. 1.4:

inline double cpuTime() { return double(clock())/CLOCKS_PER_SEC; }

int main(){

for (int n = 8; n <= 131072; n *= 2)

{ integer a(n), b(n); randInteger(a); randInteger(b);

double T = cpuTime(); int k = 0;

while (cpuTime() - T < 1) { mult(a,b); k++; }

cout << "\n" << n << " school = " << (cpuTime() -T)/k;

T = cpuTime(); k = 0;

while (cpuTime() - T < 1) { Karatsuba(a,b,4); k++; }

cout << " Karatsuba4 = " << (cpuTime() -T) /k; cout.flush ();

T = cpuTime(); k = 0;

while (cpuTime() - T < 1) { Karatsuba(a,b,32); k++; }

cout << " Karatsuba32 = " << (cpuTime() -T) /k; cout.flush ();

}

return 0;

}

1.9 Proofs of Lemma 1.7 and Theorem 1.9

To make this chapter self-contained, we include proofs of Lemma 1.7 and Theo-
rem 1.9. We start with an analysis of the recursive version of the school method.
Recall that T (n), the maximum number of primitive operations required by our re-
cursive multiplication algorithm when applied to n-digit integers, satisfies the recur-
rence relation

T (n)≤
{

1 if n = 1,

4 ·T(⌈n/2⌉)+ 4n if n≥ 2.

We use induction on n to show T (n) ≤ 5n2− 4n when n is a power of 2. For n = 1,
we have T (1)≤ 1 = 5n2− 4n. For n > 1, we have

T (n)≤ 4T (n/2)+ 4n≤ 4(5(n/2)2− 4n/2)+ 4n= 5n2− 4n,

where the second inequality follows from the induction hypothesis. For general n, we
observe that multiplying n-digit integers is certainly no more costly than multiplying
2⌈logn⌉-digit integers and hence T (n) ≤ T (2⌈logn⌉). Since 2⌈logn⌉ ≤ 2n, we conclude
T (n)≤ 20n2 for all n.

Exercise 1.10. Prove a bound on the recurrence T (1)≤ 1 and T (n)≤ 4T (n/2)+9n

when n is a power of 2.

How did we know that “5n2−4n” is the bound to be shown? There is no magic here.
For n = 2k, repeated substitution yields

22 1 Appetizer: Integer Arithmetic

T (2k)≤ 4 ·T (2k−1)+ 4 ·2k ≤ 4 · (4 ·Tk−2 + 4 ·2k−1)+ 4 ·2k

≤ 4 · (4 · (4 ·T(2k−3)+ 4 ·2k−2)+ 4 ·2k−1)+ 4 ·2k

≤ 43T (2k−3)+ 4 · (42 ·2k−2 + 41 ·2k−1 + 2k)≤ . . .

≤ 4kT (1)+ 4 ∑
0≤i≤k−1

4i2k−i ≤ 4k + 4 ·2k ∑
0≤i≤k−1

2i

≤ 4k + 4 ·2k(2k− 1) = n2 + 4n(n− 1) = 5n2− 4n.

We now turn to the proof of Theorem 1.9. Recall that TK satisfies the recurrence

TK(n)≤
{

3n2 if n≤ 3,

3 ·TK(⌈n/2⌉+ 1)+ 8n if n≥ 4.

The recurrence for the school method has the nice property that if n is a power of 2,
the arguments of T on the right-hand side are again powers of two. This is not true
for TK . However, if n = 2k + 2 and k ≥ 1, then ⌈n/2⌉+ 1 = 2k−1 + 2, and hence we
should now use numbers of the form n = 2k + 2, k ≥ 0, as the basis of the inductive
argument. We shall show that

TK(2
k + 2)≤ 51 ·3k− 16 ·2k− 8

for k≥ 0. For k = 0, we have

TK(2
0 + 2) = TK(3)≤ 3 ·32 = 27 = 51 ·30− 16 ·20− 8.

For k ≥ 1, we have

TK(2
k + 2)≤ 3TK(2

k−1 + 2)+ 8 · (2k+ 2)

≤ 3 ·
(

51 ·3k−1− 16 ·2k−1− 8
)

+ 8 · (2k+ 2)

= 51 ·3k− 16 ·2k− 8.

Again, there is no magic in coming up with the right induction hypothesis. It is
obtained by repeated substitution. Namely,

TK(2
k + 2)≤ 3TK(2

k−1 + 2)+ 8 · (2k+ 2)

≤ 3kTK(2
0 + 2)+ 8 ·

(

30(2k + 2)+ 31(2k−1 + 2)+ . . .+ 3k−1(21 + 2)
)

≤ 27 ·3k+ 8 ·
(

2k (3/2)k− 1
3/2− 1

+ 2
3k− 1
3− 1

)

≤ 51 ·3k− 16 ·2k− 8,

where the first inequality uses the fact that 2k + 2 is even, the second inequality
follows from repeated substitution, the third inequality uses TK(3) = 27, and the last
inequality follows by a simple computation.

1.11 Historical Notes and Further Findings 23

It remains to extend the bound to all n. Let k be the minimum integer such that
n≤ 2k + 2. Then k ≤ 1+ logn. Also, multiplying n-digit numbers is no more costly
than multiplying (2k + 2)-digit numbers, and hence

TK(n)≤ 51 ·3k− 16 ·2k− 8≤ 153 ·3logn ≤ 153 ·nlog3,

where we have used the equality 3logn = 2(log3)·(logn) = nlog3.

Exercise 1.11. Solve the recurrence

TR(n)≤
{

3n2 + 2n if n < n0,

3 ·TR(⌈n/2⌉+ 1)+ 8n if n≥ n0,

where n0 is a positive integer. Optimize n0.

1.10 Implementation Notes

The programs given in Sect. 1.8 are not optimized. The base of the number system
should be a power of 2 so that sums and carries can be extracted by bit operations.
Also, the size of a digit should agree with the word size of the machine and a little
more work should be invested in implementing the primitive operations on digits.

1.10.1 C++

GMP [127] and LEDA [194] offer exact arithmetic on integers and rational numbers
of arbitrary size, and arbitrary-precision floating-point arithmetic. Highly optimized
implementations of Karatsuba’s method are used for multiplication here.

1.10.2 Java

java.math implements exact arithmetic on integers of arbitrary size and arbitrary-
precision floating-point numbers.

1.11 Historical Notes and Further Findings

Is the Karatsuba method the fastest known method for integer multiplication? No,
much faster methods are known. Karatsuba’s method splits an integer into two parts
and requires three multiplications of integers of half the length. The natural exten-
sion is to split integers into k parts of length n/k each. If the recursive step requires
ℓ multiplications of numbers of length n/k, the running time of the resulting algo-
rithm grows like nlogk ℓ. In this way, Toom [315] and Cook [78] reduced the running
time to15 O

(
n1+ε

)
for arbitrary positive ε . Asymptotically even more efficient are the

15 The O(·) notation is defined in Sect. 2.1.

24 1 Appetizer: Integer Arithmetic

algorithms of Schönhage and Strassen [285] and Schönhage [284]. The former mul-
tiplies n-bit integers with O(n logn log logn) bit operations, and can be implemented
to run in this time bound on a Turing machine. The latter runs in linear time O(n)
and requires the machine model discussed in Sect. 2.2. In this model, integers with
logn bits can be multiplied in constant time. The former algorithm was improved by
Fürer [117] and De et al. [84] to O((n logn)2c log∗(n)) bit operations. Here, log∗ n is
the smallest integer k≥ 0 such that log(log(. . . log(n) . . .))≤ 1 (k-fold application of
the logarithm function). The function log∗ n grows extremely slowly.

Modern microprocessors use a base B = 2 multiplication algorithm that does
quadratic work but requires only O(logn) wire delays [148]. The basic idea is to first
compute n2 digit products in parallel. Bits with the same position in the output are
combined together using full adders, which reduce three values at position i to one
value at position i and one value at position i+ 1. This way, log3/2 n layers of full
adders suffice to reduce up to n initial bits at position i to two bits. The remaining
bits can be fed into an adder with logarithmic delay as in Sect. 1.1.1.

