
434 14 Load Balancing

makespan. A trivial lower bound for the makespan is the average work ∑ j t j/p. An-
other lower bound is the length ∑ j∈P t j of any path P in G. The critical path length

is the maximum such length over all paths in G. Figure 14.7 gives an example.

Theorem 14.3. Consider any schedule that never leaves a PE idle when a task is

ready for execution. Then its makespan is at most the average work plus the critical

path length. This is a two-approximation of the optimal schedule.

Proof. Let G = (V,E) be the scheduling problem and let T denote the makespan
of the schedule. Partition [0,T] into (at most 2|V |) intervals I1, . . . , Ik such that jobs
start or finish only at the beginning or end of an interval. Call an interval busy if all p

processors are active during that interval and call it idle otherwise. Then T is the total
length of the busy intervals plus the total length of the idle intervals. The total length
of the busy intervals is at most ∑ j t j. Now consider any path P through G and any
idle interval. Since the schedule leaves no ready job idle, some job from P must be
executing during the interval or all jobs on P must have finished before the interval.
Thus the length of P is bounded by the total length of the idle intervals.

Since both the average work and the critical path length are lower bounds for the
makespan, their sum must be a two-approximation of the makespan. ⊓⊔

A more careful analysis yields an approximation ratio of 2− 1/p. Improving upon
this seems difficult. The only known better bounds increase the constant factor in
the 1/p term [120]. We view this as a good reason to stick to the simple schedules
characterized above. In particular, Theorem 14.3 applies even when the execution
times are unknown and G unfolds with the computation. We only have to make sure
that idle PEs find ready jobs efficiently. All the load-balancing algorithms described
in this section can be adapted for this purpose.

Master–Worker. The master is informed about finished tasks. When a task becomes
ready, it is inserted into the queue of tasks that can be handed out to idle PEs.

Randomized static. Each PE executes the ready jobs assigned to it.

Work stealing. Multithreaded computations [20] define a computation DAG implic-
itly by spawning tasks and waiting for them to finish. It can be shown that random-
ized work stealing leads to asymptotically optimal execution time. Compared with
our result for tree-shaped computations, this is a more general result but also a con-
stant factor worse with respect to the T/p term. Also, in practice, we might observe
this constant factor because a multithreaded computation needs to generate the entire
computation graph whereas tree-shaped computations only split work when this is
actually needed.

A

Mathematical Background

A.1 Mathematical Symbols

{e0, . . . ,en−1}: set containing elements e0, . . . , en−1.

{e : P(e)}: set of all elements that fulfill the predicate P.

〈e0, . . . ,en−1〉: sequence consisting of elements e0, . . . , en−1.

〈e ∈ S : P(e)〉: subsequence of all elements of sequence S that fulfill the predicate P.

|x|: the absolute value of x, for a real number x.

⌊x⌋: the largest integer ≤ x, for a real number x.

⌈x⌉: the smallest integer ≥ x, for a real number x.

[a,b] := {x ∈ R : a≤ x≤ b}.

i.. j: abbreviation for {i, i+ 1, . . . , j}.

AB: the set of all functions mapping B to A.

A×B: the set of ordered pairs (a,b) with a ∈ A and b ∈ B.

⊥: an undefined value.

(+/−)∞: (plus/minus) infinity.

∀x : P(x): For all values of x, the proposition P(x) is true.

∃x : P(x): There exists a value of x such that the proposition P(x) is true.

N: nonnegative integers; N = {0,1,2, . . .}.

N+: positive integers; N+ = {1,2, . . .}.

436 A Mathematical Background

Z: integers.

R: real numbers.

R>0/R≥0: positive/nonnegative real numbers.

Q: rational numbers.

|, &,≪,≫, ⊕: bitwise OR, bitwise AND, shift left, shift right, and exclusive OR
(XOR) respectively.

∑n
i=1 ai = ∑1≤i≤n ai = ∑i∈1..n ai := a1 + a2+ · · ·+ an.

∏n
i=1 ai = ∏1≤i≤n ai = ∏i∈1..n ai := a1 ·a2 · · ·an.

n! := ∏n
i=1 i, the factorial of n.

Hn := ∑n
i=1 1/i, the nth harmonic number (see (A.13)).

a ·b :=∑n
i=1 aibi is the dot product of vectors a = (a1, . . . ,an) and b = (b1, . . . ,bn).

logx: the logarithm to base two of x, log2 x, for x > 0.

log∗ x, for x > 0: the smallest integer k such that log(log(. . . log(x) . . .))
︸ ︷︷ ︸

k-fold application

≤ 1.

lnx: the (natural) logarithm of x to base e = 2.71828

µ(s, t): the shortest-path distance from s to t; µ(t) :=µ(s, t).

div: integer division; mdivn := ⌊m/n⌋.

mod : modular arithmetic; m mod n = m− n(mdivn).

a≡ b mod m: a and b are congruent modulo m, i.e., a+ im = b for some integer i.

≺: some ordering relation. In Sect. 9.3, it denotes the order in which nodes are
marked during depth-first search.

1, 0: the Boolean values “true” and “false”.

Σ∗: The set {〈a1, . . . ,an〉 : n ∈N,a1, . . . ,an ∈ Σ} of all strings or words over Σ . We
usually write a1 . . .an instead of 〈a1, . . . ,an〉.

|x|: The number n of characters in a word x = a1 . . .an over Σ ; also called the length
of the word.

A.2 Mathematical Concepts

antisymmetric: A relation R⊆ A×A is antisymmetric if for all a and b in A, a R b

and b R a implies a = b.

A.2 Mathematical Concepts 437

associative: An operation⊗ with the property that (x⊗y)⊗ z = x⊗ (y⊗ z) for all x,
y, and z.

asymptotic notation:

O(f (n)) := {g(n) : ∃c > 0 : ∃n0 ∈ N+ : ∀n≥ n0 : g(n)≤ c · f (n)} .

Ω(f (n)) := {g(n) : ∃c > 0 : ∃n0 ∈ N+ : ∀n≥ n0 : g(n)≥ c · f (n)} .

Θ(f (n)) := O(f (n))∩Ω(f (n)) .

o(f (n)) := {g(n) : ∀c > 0 : ∃n0 ∈ N+ : ∀n≥ n0 : g(n)≤ c · f (n)} .

ω(f (n)) := {g(n) : ∀c > 0 : ∃n0 ∈ N+ : ∀n≥ n0 : g(n)≥ c · f (n)} .

See also Sect. 2.1.

concave: A function f is concave on an interval [a,b] if

∀x,y ∈ [a,b] : ∀t ∈ [0,1] : f (tx+(1− t)y)≥ t f (x)+ (1− t) f (y),

i.e., the function graph is never below the line segment connecting the points
(x, f (x)) and (y, f (y)).

convex: A function f is convex on an interval [a,b] if

∀x,y ∈ [a,b] : ∀t ∈ [0,1] : f (tx+(1− t)y)≤ t f (x)+ (1− t) f (y),

i.e., the function graph is never above the line segment connecting the points
(x, f (x)) and (y, f (y)).

equivalence relation: a transitive, reflexive, and symmetric relation.

field: a set of elements (with distinguished elements 0 and 1) that support addi-
tion, subtraction, multiplication, and division by nonzero elements. Addition and
multiplication are associative and commutative, and have neutral elements anal-
ogous to 0 and 1 for the real numbers. The most important examples are R, the
real numbers; Q, the rational numbers; and Zp, the integers modulo a prime p.

iff: abbreviation for “if and only if”.

lexicographic order: the canonical way of extending a total order on a set
of elements to tuples, strings, or sequences over that set. We have
〈a1,a2, . . . ,ak〉 < 〈b1,b2, . . . ,bℓ〉 if and only if there is an i ≤ min{k, ℓ}
such that 〈a1,a2, . . . ,ai−1〉 = 〈b1,b2, . . . ,bi−1〉 and ai < bi or if k < ℓ and
〈a1,a2, . . . ,ak〉 = 〈b1,b2, . . . ,bk〉. An equivalent recursive definition is as fol-
lows: 〈〉 < 〈b1,b2, . . . ,bℓ〉 for all ℓ > 0; for k > 0 and ℓ > 0, 〈a1,a2, . . . ,ak〉 <
〈b1,b2, . . . ,bℓ〉 if and only if a1 < b1 or a1 = b1 and 〈a2, . . . ,ak〉< 〈b2, . . . ,bℓ〉.

linear order: (also total order) a reflexive, transitive, antisymmetric, and total re-
lation. Linear orders are usually denoted by the symbol ≤. For a ≤ b, one also
writes b≥ a. The strict linear order < is defined by a< b if and only if a≤ b and

438 A Mathematical Background

a 6= b. The relation < is transitive, irreflexive (a < b implies a 6= b), and total in
the sense that for all a and b either a < b or a = b or a > b. A typical example is
the relation < for real numbers.

linear preorder: (also linear quasi-order) a reflexive, transitive, and total relation.
The symbols ≤ and ≥ are also used for linear preorders. Note that there can be
distinct elements a and b with a≤ b and b≤ a. The strict variant < is defined as
a < b if a ≤ b and not a ≥ b. An example is the relation R ⊆ R×R defined by
x R y if and only if |x| ≤ |y|.

median: an element with rank ⌈n/2⌉ among n elements.

multiplicative inverse: If an object x is multiplied by a multiplicative inverse x−1

of x, we obtain x · x−1 = 1 – the neutral element of multiplication. In particular,
in a field, every element except 0 (the neutral element of addition) has a unique
multiplicative inverse.

prime number: An integer n, n ≥ 2, is a prime if and only if there are no integers
a,b > 1 such that n = a ·b.

rank: Let ≤ be a linear preorder on a set S = {e1, . . . ,en}. A one-to-one mapping
r : S→ 1..n is a ranking function for the elements of S if r(ei)< r(e j) whenever
ei < e j. If ≤ is a linear order, there is exactly one ranking function.

reflexive: A relation R⊆ A×A is reflexive if a R a for all a ∈ A.

relation: a set of ordered pairs R over some set A. Often we write relations as infix
operators; for example, if R⊆ A×A is a relation, a R b means (a,b) ∈ R.

symmetric relation: A relation R⊆ A×A is symmetric if for all a and b in A, a R b

implies b R a.

total order: a synonym for linear order.

total relation: A relation R ⊆ A×A is total if for all a and b in A, either a R b or
b R a or both. If a relation R is total and transitive, then the relation ∼R defined
by a∼R b if and only if a R b and b R a is an equivalence relation.

transitive: A relation R ⊆ A×A is transitive if for all a, b, and c in A, a R b and
b R c imply a R c.

A.3 Basic Probability Theory

Probability theory rests on the concept of a sample space S . For example, to de-
scribe the rolls of two dice, we would use the 36-element sample space {1, . . . ,6}×
{1, . . . ,6}, i.e., the elements of the sample space (also called elementary events or

A.3 Basic Probability Theory 439

simply events) are the pairs (x,y) with 1 ≤ x,y ≤ 6 and x,y ∈ N. Generally, a sam-
ple space is any nonempty set. In this book, all sample spaces are finite.1 In a ran-

dom experiment, any element of s ∈S is chosen with some elementary probability

ps, where ∑s∈S ps = 1. The function that assigns to each event s its probability ps

is called a distribution. A sample space together with a probability distribution is
called a probability space. In this book, we use uniform distributions almost ex-
clusively; in this case ps = p = 1/|S |. Subsets E of the sample space are called
events. The probability of an event E ⊆S is the sum of the probabilities of its ele-
ments, i.e., prob(E) = |E |/|S | in the uniform case. So the probability of the event
{(x,y) : x+ y = 7}= {(1,6),(2,5), . . . ,(6,1)} is equal to 6/36 = 1/6, and the prob-
ability of the event {(x,y) : x+ y≥ 8} is equal to 15/36 = 5/12.

A random variable is a mapping from the sample space to the real numbers.
Random variables are usually denoted by capital letters to distinguish them from
plain values. For our example of rolling two dice, the random variable X could give
the number shown by the first die, the random variable Y could give the number
shown by the second die, and the random variable S could give the sum of the two
numbers. Formally, if (x,y) ∈ S , then X((x,y)) = x, Y ((x,y)) = y, and S((x,y)) =
x+ y = X((x,y))+Y ((x,y)).

We can define new random variables as expressions involving other random vari-
ables and ordinary values. For example, if V and W are random variables, then
(V +W)(s) =V (s)+W(s), (V ·W)(s) =V (s) ·W (s), and (V + 3)(s) =V (s)+ 3.

Events are often specified by predicates involving random variables. For exam-
ple, X ≤ 2 denotes the event {(1,y),(2,y) : 1≤ y≤ 6}, and hence prob(X ≤ 2) =
1/3. Similarly, prob(X +Y = 11) = prob({(5,6),(6,5)}) = 1/18.

Indicator random variables are random variables that take only the values 0 and
1. Indicator variables are an extremely useful tool for the probabilistic analysis of
algorithms because they allow us to encode the behavior of complex algorithms into
simple mathematical objects. We frequently use the letters I and J for indicator vari-
ables. Indicator variables and events are in a one-to-one correspondance. If E is an
event, then IE with IE (s) = 1 if and only if s ∈ E is the corresponding indicator
variable. If an event is specified by a predicate P, one sometimes writes [P] for the
corresponding indicator variable, i.e., [P](s) = 1 if P(s) and [P](s) = 0 otherwise.

The expected value of a random variable Z : S → R is

E[Z] = ∑
s∈S

ps ·Z(s) = ∑
z∈R

z ·prob(Z = z), (A.1)

i.e., every sample s contributes the value of Z at s times its probability. Alternatively,
we can group all s with Z(s) = z into the event Z = z and then sum over the z ∈ R.

In our example, E[X] = (1+ 2+ 3+ 4+5+6)/6= 21/6= 3.5, i.e., the expected
value of the first die is 3.5. Of course, the expected value of the second die is also
3.5. For an indicator random variable I we have

1 All statements made in this section also hold for countable infinite sets, essentially with the
same proofs. Such sample spaces are, for example, needed to model the experiment “throw
a die repeatedly until the value six occurs”.

440 A Mathematical Background

E[I] = 0 ·prob(I = 0)+ 1 ·prob(I = 1) = prob(I = 1).

Sometimes we are more interested in a random variable Z and its behavior than
in the underlying probability space. In such a situation, it suffices to know the range
Z[S] of Z and the induced probabilities prob(Z = z), z ∈ Z[S]. We refer to the
function z 7→ prob(Z = z) defined on Z[S] as the distribution of Z. Two random
variables X and Y with the same distribution are called identically distributed.

For a random variable Z that takes only values in the natural numbers, there is a
very useful formula for its expected value:

E[Z] = ∑
k≥1

prob(Z ≥ k), if Z[S]⊆ N. (A.2)

This formula is easy to prove. For k, i∈N, let pk = prob(Z ≥ k) and qi = prob(Z = i).
Then pk = ∑i≥k qi and hence

E[Z] = ∑
z∈Z[S]

z ·prob(Z = z) = ∑
i∈N

i ·prob(Z = i) = ∑
i∈N

∑
1≤k≤i

qi = ∑
k≥1

∑
i≥k

qi = ∑
k≥1

pk.

Here, the next to last equality is a change of the order of summation.
Often we are interested in the expectation of a random variable that is defined in

terms of other random variables. This is particulary easy for sums of random vari-
ables due to the linearity of expectations of random variables: For any two random
variables V and W ,

E[V +W] = E[V]+E[W]. (A.3)

This equation is easy to prove and extremely useful. Let us prove it. It amounts
essentially to an application of the distributive law of arithmetic. We have

E[V +W] = ∑
s∈S

ps · (V(s)+W (s))

= ∑
s∈S

ps ·V(s)+ ∑
s∈S

ps ·W (s)

= E[V]+E[W].

As our first application, let us compute the expected sum of two dice. We have

E[S] = E[X +Y] = E[X]+E[Y] = 3.5+ 3.5 = 7.

Observe that we obtain the result with almost no computation. Without knowing
about the linearity of expectations, we would have to go through a tedious calcula-
tion:

E[S] = 2 · 1
36 + 3 · 2

36 + 4 · 3
36 + 5 · 4

36 + 6 · 5
36 + 7 · 6

36 + 8 · 5
36 + 9 · 4

36 + . . .+ 12 · 1
36

=
2 ·1+ 3 ·2+4 ·3+5 ·4+6 ·5+7 ·6+8 ·5+ . . .+ 12 ·1

36
= 7.

Exercise A.1. What is the expected sum of three dice?

A.3 Basic Probability Theory 441

We shall now give another example with a more complex sample space. We con-
sider the experiment of throwing n balls into m bins. The balls are thrown at random
and distinct balls do not influence each other. Formally, our sample space is the set of
all functions f from 1..n to 1..m. This sample space has size mn, and f (i), 1≤ i≤ n,
indicates the bin into which the ball i is thrown. All elements of the sample space
are equally likely. How many balls should we expect in bin 1? We use W to denote
the number of balls in bin 1. To determine E[W], we introduce indicator variables
Ii, 1 ≤ i ≤ n. The variable Ii is 1 if ball i is thrown into bin 1 and is 0 otherwise.
Formally, Ii(f) = 0 if and only if f (i) 6= 1. Then W = ∑i Ii. We have

E[W] = E

[

∑
i

Ii

]

= ∑
i

E[Ii] = ∑
i

prob(Ii = 1),

where the second equality is the linearity of expectations and the third equality fol-
lows from the Ii’s being indicator variables. It remains to determine the probability
that Ii = 1. Since the balls are thrown at random, ball i ends up in any bin2 with the
same probability. Thus prob(Ii = 1) = 1/m, and hence

E[I] = ∑
i

prob(Ii = 1) = ∑
i

1
m

=
n

m
.

Products of random variables behave differently. In general, we have E[X ·Y] 6=
E[X] ·E[Y]. There is one important exception: If X and Y are independent, equality
holds. Random variables X1, . . . , Xk are independent if and only if

∀x1, . . . ,xk : prob(X1 = x1∧·· ·∧Xk = xk) = ∏
1≤i≤k

prob(Xi = xi). (A.4)

As an example, when we roll two dice, the value of the first die and the value of the
second die are independent random variables. However, the value of the first die and
the sum of the two dice are not independent random variables.

Exercise A.2. Let I and J be independent indicator variables and let X = (I+J) mod
2, i.e., X is 1 if and only if I and J are different. Show that I and X are independent,
but that I, J, and X are dependent.

We will next show

E[X ·Y] = E[X] ·E[Y] if X and Y are independent.

We have

2 Formally, there are exactly mn−1 functions f with f (i) = 1.

442 A Mathematical Background

E[X] ·E[Y] =
(

∑
x

x ·prob(X = x)

)

·
(

∑
y

y ·prob(X = y)

)

= ∑
x,y

x · y ·prob(X = x) ·prob(X = y)

= ∑
x,y

x · y ·prob(X = x∧Y = y)

= ∑
z

∑
x,y with z=x·y

z ·prob(X = x∧Y = y)

= ∑
z

z · ∑
x,y with z=x·y

prob(X = x∧Y = y)

= ∑
z

z ·prob(X ·Y = z)

= E[X ·Y].

How likely is it that a random variable will deviate substantially from its expected
value? Markov’s inequality gives a useful bound. Let X be a nonnegative random
variable and let c be any constant. Then

prob(X ≥ c ·E[X])≤ 1
c

. (A.5)

The proof is simple. We have

E[X] = ∑
z∈R

z ·prob(X = z)

≥ ∑
z≥c·E[X]

z ·prob(X = z)

≥ c ·E[X] ·prob(X ≥ c ·E[X]),

where the first inequality follows from the fact that we sum over a subset of the
possible values and X is nonnegative, and the second inequality follows from the
fact that the sum in the second line ranges only over z such that z≥ cE[X].

Much tighter bounds are possible for some special cases of random variables.
The following situation arises several times in the book. We have a sum X = X1 +
· · ·+Xn of n independent indicator random variables X1,. . . , Xn and want to bound
the probability that X deviates substantially from its expected value. In this situation,
the following variant of the Chernoff bound is useful. For any ε > 0, we have

prob(X < (1− ε)E[X])≤ e−ε2E[X]/2, (A.6)

prob(X > (1+ ε)E[X])≤
(

eε

(1+ ε)(1+ε)

)E[X]

. (A.7)

A bound of the form above is called a tail bound because it estimates the “tail” of
the probability distribution, i.e., the part for which X deviates considerably from its
expected value.

A.4 Useful Formulae 443

Let us see an example. If we throw n coins and let Xi be the indicator variable
for the ith coin coming up heads, X = X1 + · · ·+Xn is the total number of heads.
Clearly, E[X] = n/2. The bound above tells us that prob(X ≤ (1− ε)n/2)≤ e−ε2n/4.
In particular, for ε = 0.1, we have prob(X ≤ 0.9 ·n/2)≤ e−0.01·n/4. So, for n= 10000,
the expected number of heads is 5000 and the probability that the sum is less than
4500 is smaller than e−25, a very small number.

Exercise A.3. Estimate the probability that X in the above example is larger than
5050.

If the indicator random variables are independent and identically distributed with
prob(Xi = 1) = p, X is binomially distributed, i.e.,

prob(X = k) =

(
n

k

)

pk(1− p)(n−k). (A.8)

Exercise A.4 (balls and bins continued). As above, let W denote the number of
balls in bin 1. Show that

prob(W = k) =

(
n

k

)(
1
m

)k(

1− 1
m

)(n−k)

,

and then attempt to compute E[W] as ∑k prob(W = k)k.

A.4 Useful Formulae

We shall first list some useful formulae and then prove some of them:

• A simple approximation to the factorial:
(n

e

)n

≤ n!≤ nn or, more precisely e
(n

e

)n

≤ n!≤ (en)
(n

e

)n

. (A.9)

• Stirling’s approximation to the factorial:

n! =

(

1+O

(
1
n

))√
2πn

(n

e

)n

. (A.10)

• An approximation to the binomial coefficients:
(

n

k

)

≤
(n · e

k

)k

. (A.11)

• The sum of the first n integers:

n

∑
i=1

i =
n(n+ 1)

2
. (A.12)

444 A Mathematical Background

• The harmonic numbers:

lnn≤ Hn =
n

∑
i=1

1
i
≤ lnn+ 1. (A.13)

• The geometric series:

n−1

∑
i=0

qi =
1− qn

1− q
for q 6= 1 and ∑

i≥0

qi =
1

1− q
for |q|< 1. (A.14)

∑
i≥0

2−i = 2 and ∑
i≥0

i ·2−i = ∑
i≥1

i ·2−i = 2. (A.15)

• Jensen’s inequality:
n

∑
i=1

f (xi)≤ n · f

(
∑n

i=1 xi

n

)

(A.16)

for any concave function f . Similarly, for any convex function f ,

n

∑
i=1

f (xi) ≥ n · f

(
∑n

i=1 xi

n

)

. (A.17)

• Approximations to the logarithm following from the Taylor series expansion:

x− 1
2

x2 ≤ ln(1+ x)≤ x− 1
2

x2 +
1
3

x3 ≤ x. (A.18)

A.4.1 Proofs

For (A.9), we first observe that n! = n(n− 1) · · ·1 ≤ nn. For the lower bound, we
recall from calculus that ex = ∑i≥0 xi/i! for all x. In particular, en ≥ nn/n! and hence
n!≥ (n/e)n.

We now come to the sharper bounds. Also, for all i ≥ 2, ln i ≥ ∫ i
i−1 lnxdx, and

therefore

lnn! = ∑
2≤i≤n

ln i≥
∫ n

1
lnxdx =

[

x(ln x− 1)
]x=n

x=1
n(lnn− 1)+ 1.

Thus
n!≥ en(lnn−1)+1 = e(elnn−1)n = e(n/e)n.

For the upper bound, we use ln(i−1)≤ ∫ i
i−1 lnxdx and hence (n−1)!≤ ∫ n

1 lnxdx =
e(n/e)n. Thus n!≤ (en)(n/e)n.

Equation (A.11) follows almost immediately from (A.9). We have

(
n

k

)

=
n(n− 1) · · ·(n− k+ 1)

k!
≤ nk

(k/e)k
=
(n · e

k

)k

.

A.4 Useful Formulae 445

Equation (A.12) can be computed by a simple trick:

1+ 2+ . . .+ n =
1
2
((1+ 2+ . . .+ n− 1+ n)+ (n+n−1+ . . .+ 2+ 1))

=
1
2
((n+ 1)+ (2+ n−1)+ . . .+(n− 1+ 2)+ (n+1))

=
n(n+ 1)

2
.

The sums of higher powers are estimated easily; exact summation formulae are also
available. For example,

∫ i
i−1 x2 dx≤ i2 ≤

∫ i+1
i x2 dx, and hence

∑
1≤i≤n

i2 ≤
∫ n+1

1
x2 dx =

[x3

3

]x=n+1

x=1
=

(n+ 1)3− 1
3

and

∑
1≤i≤n

i2 ≥
∫ n

0
x2 dx =

[x3

3

]x=n

x=0
=

n3

3
.

For (A.13), we also use estimation by integral. We have
∫ i+1

i (1/x)dx ≤ 1/i ≤
∫ i

i−1(1/x)dx, and hence

lnn =
∫ n

1

1
x

dx≤ ∑
1≤i≤n

1
i
≤ 1+

∫ n

1

1
x

dx = 1+ lnn.

Equation (A.14) follows from

(1− q) · ∑
0≤i≤n−1

qi = ∑
0≤i≤n−1

qi− ∑
1≤i≤n

qi = 1− qn.

If |q|< 1, we may let n pass to infinity. This yields ∑i≥0 qi = 1/(1−q). For q = 1/2,
we obtain ∑i≥0 2−i = 2. Also,

∑
i≥1

i ·2−i = ∑
i≥1

2−i +∑
i≥2

2−i +∑
i≥3

2−i + . . .

= (1+ 1/2+ 1/4+1/8+ . . .) ·∑
i≥1

2−i

= 2 ·1 = 2.

For the first equality, observe that the term 2−i occurs in exactly the first i sums on
the right-hand side.

Equation (A.16) can be shown by induction on n. For n = 1, there is nothing
to show. So assume n ≥ 2. Let x∗ = ∑1≤i≤n xi/n and x̄ = ∑1≤i≤n−1 xi/(n− 1). Then
x∗ = ((n− 1)x̄+ xn)/n, and hence

446 A Mathematical Background

∑
1≤i≤n

f (xi) = f (xn)+ ∑
1≤i≤n−1

f (xi)

≤ f (xn)+ (n− 1) · f (x̄) = n ·
(

1
n
· f (xn)+

n− 1
n
· f (x̄)

)

≤ n · f (x∗),

where the first inequality uses the induction hypothesis and the second inequality
uses the definition of concavity with x = xn, y = x̄, and t = 1/n. The extension to
convex functions is immediate, since convexity of f implies concavity of − f .

B

Computer Architecture Aspects

In Sect. 2.2, we introduced several basic models of parallel computing, and then in
Sects. 2.4.3 and 2.15 hinted at aspects that make practical parallel computing more
complex (see Fig. 2.6 for an overview). However, in order to understand some aspects
of our practical examples, one needs a little more background. The purpose of this
appendix is to fill this gap in a minimalistic way – learning about these aspects from
sources dedicated to them might still be a good idea.

We discuss a concrete example – the machine used to run our examples of shared-
memory programs. This example will nevertheless lead to general insights, as the
most relevant aspects of its architecture have been stable for more than a decade and
essentially also apply to processors from other vendors. For more details of computer
architecture in general, see the textbook by Hennessy and Patterson [148]. Details of
the x86 architecture can be found in the Architecture Reference Manual [160].

B.1 Cores and Hardware Threads

We programmed our shared-memory examples on a machine with four Intel Xeon
E7-8890 v3 processors (previously codenamed Haswell-EX). Each of these proces-
sors has 18 cores. A processor core has one or several arithmetical and logical units
for executing instructions and a pipeline for controlling the execution of an instruc-
tion stream. The instructions come from up to two hardware threads. Each hardware
thread has a dedicated set of registers for storing operands. Most other resources of
a core are shared by the two threads.1 Since x86 is a CISC (complex instruction set
computer) architecture, it has a large range of instructions. Instructions can perform a
mix of memory access and arithmetic operations and their numbers of operands and

1 The hope is that the two hardware threads of a core will substantially increase the perfor-
mance of the core. Because each hardware thread has its own set of registers, switching be-
tween them incurs almost no cost. Software threads are managed by the operating system.
Activating a software thread requires it to be made into a hardware thread; in particular, the
registers must be loaded. The switch therefore incurs substantial cost.

448 B Computer Architecture Aspects

encoding lengths vary. Since CISC instructions are difficult to process in a pipeline,
they are first translated to microinstructions that are similar to the simple machine
instructions used in the machine model in Sect. 2.2 (RISC – reduced instruction set
computer).

The pipeline processes micro-instructions in up to 19 stages, where each stage
is responsible for some small substep of the execution (such as decoding, fetching
operands, . . .). Thus, each stage becomes very fast, allowing high clock frequencies.
Additional instruction parallelism is introduced because our machine is superscalar,
i.e., up to eight instructions can be in the same pipeline stage at the same time. The
hardware (assisted by the compiler) automatically extracts instruction parallelism
from a sequential program in order to keep this pipeline reasonably well filled. In
particular, the instructions might be executed in a different order than that specified
by the machine program as long as this does not change the semantics of the (se-
quential) program. Thus, a core can execute several instructions in every clock cycle.

There are many reasons why the number eight is rarely reached; including data
dependencies between instructions, large memory access latencies (cache misses),
and conditional branches. Thus, a typical sequential program will most of the time
use only a small fraction of the available arithmetical units or slots in the execution
pipeline. This waste can be reduced using the two hardware threads sharing these
resources.2 Thus, in some codes with many high-latency operations, the two hard-
ware threads do twice the work that a single thread could do. Usually however, the
performance gain is smaller and can even be negative, for example with highly opti-
mized numerical libraries that are carefully tuned to avoid cache misses and to use all
the available arithmetical units. Other examples are codes that suffer from software
overhead of additional threads (additional work for parallelization, scheduling, and
locking). Thus the PEs we are talking about in this book are either hardware threads

or dedicated cores – whatever gives better overall performance.

B.2 The Memory Hierarchy

Each core of our machine has a 32 KB level-one (L1) data cache; this cache is shared
by the hardware threads supported by the core. There is a separate L1 cache of the
same size that stores machine instructions. The content of the cache is managed in
blocks (aka cache lines) of 64 bytes whose address starts at a position divisible by
the block size – these addresses are said to be aligned to the cache line size.

Each core also has a larger (L2) cache of size 256 KB for data and instructions (a
unified cache). The reason for this division between L1 and L2 is that the L1 cache
is made as fast as possible almost without regard for cost per bit of memory, whereas
the L2 cache uses a more compact design at the price of higher access latencies
and lower throughput. Indeed, even using the same technology, a large cache will
inevitably have larger access latency than a small one, ultimately because the speed
of light is limited.

2 Some architectures support four or eight hardware threads per core.

B.3 Cache Coherence Protocols 449

Using an even more compact technology, all cores on a processor chip share a
large L3 cache of size 45 MB. Many concurrent memory operations on threads on
the same chip can be performed within the L3 cache without having to go through
the main memory. This is one reason why many shared-memory programs scale well
as long as they run on a single chip but scale worse (or not at all) when running on
multiple chips.

Our machine has 128 GB of main memory attached to each processor chip. For
uniformity, let us call this level four of the memory hierarchy. The processor chips
are connected by a high-speed interconnect interface. On our machine, every chip has
a dedicated link to every other chip.3 Any thread can transparently access the main
memory of every chip. However, nonlocal accesses will incur higher latency and
yield lower overall bandwidth. This effect is called Non Uniform Memory Access

(NUMA) and processor chips (or sockets) are therefore also called NUMA nodes4.

B.3 Cache Coherence Protocols

We first review how a typical sequential cache replacement strategy works. When a
core accesses the data at address i, it looks for the cache line b containing that data in
the data caches. Suppose the highest5 level of the hierarchy containing b is j. Then b

is copied to the caches at levels j− 1 down to 1 and then accessed from level 1. The
reason for this strategy is that the main cost is for reading the data from level j and
that having copies in the higher levels makes future accesses cheaper. A consequence
of moving a cache line into a cache is that another block may have to be evicted to
make room. If this block has been modified since the last access, it is written to the
next lower layer of the memory hierarchy.

It can happen that the data being accessed straddles two cache lines despite be-
ing smaller than the block size. Such nonaligned operations cause additional costs
by requiring both blocks to be moved. Moreover, certain operations cause additional
overheads for nonaligned accesses or do not work at all (e.g., 16-byte CAS). Hence,
an important performance optimization involves avoiding unaligned accesses by be-
ing careful with the data layout.

Assuming a write-back cache, write operations go to the L1 cache. When the
cache line being accessed is already present in the L1 cache, this is easy. Otherwise,
some other cache line may need to be evicted in order to make room. Moreover, the
accessed block first has to be read from the lower levels of the memory hierarchy.

3 On larger or cheaper machines, a more sparse network might be used, e.g., a ring of four
chips or a mesh network.

4 Identifiying sockets with NUMA nodes is an oversimplification because chips or multichip
modules on a single processor socket might also define multiple NUMA nodes.

5 The L1 cache is the highest level and the main memory is the lowest level. Instead of
“highest level” one may also say “closest level”, i.e., the level closest to the processing
unit.

450 B Computer Architecture Aspects

This is necessary in order to avoid additional bookkeeping about which parts of what
cache block contain valid data.6

In a shared-memory parallel computer, things get more complicated when several
PEs access the same memory block. Suppose block b is written by PE i. Some other
PE j may have a copy of b in a local cache. This copy is no longer valid, and thus has
to be invalidated. The inter-PE communication needed for invalidation and rereading
invalidated copies causes significant overhead and is one of the main reasons for the
limited scalability of shared-memory programs. Note that this overhead is incurred
even when PEs i and j access different memory locations in the same cache line.
This effect is called false sharing and has to be avoided by careful memory layout.
For example, we should usually allocate a full cache line for a lock variable or use
the remainder of that cache line for data that is accessed only by a thread that owns
that lock. The technique of making a data structure larger than necessary is called
padding. More generally, whenever we have the situation that multiple threads are
trying to write to the same cache line b at the same time, performance can go down
significantly. We call this situation contention on b.

We can see that accessing memory on a real-world machine is far away from
the idealized view of an instantaneous, globally visible effect. The cache coherence

mechanism of the hardware can only provide an approximation of the idealized view
to the application programs. The possible deviations from the idealized view are
defined in the memory consistency model or memory model of the machine. Coping
with these deviations is a major challenge for writers of parallel shared-memory
programs. Unfortunately, memory models vary between different architectures. Here
we describe the memory model of the x86 architecture and hint at differences in other
architectures.

The compiler or the hardware can reorder the memory access operations of a
thread in order to keep the pipelines filled. Additionally, in order to improve memory
performance, some write operations are delayed by buffering the data in additional
memory buffers. Within a sequential program, this is done in such a way that the
outcome of the computation is not changed. However, in a concurrent program this
can lead to problems. Thus, the first thing is to instruct the compiler to abstain from
undesired reorderings. In C++ the storage class volatile ensures that a variable
is always loaded from memory before using it. It is also ensured that the compiler
does not reorder accesses to volatile variables. In order to also exclude improper
reordering of other memory accesses the statement

atomic_signal_fence(memory_order_seq_cst);

defines a memory fence for the compiler – all reads and writes before the fence have
to be compiled to happen before all reads and writes after the fence. Once the com-
piler is tamed, the x86 architecture guarantees that the read operations of a thread
appear to all other threads in the right order. The same is true for the write opera-
tions. However, the x86 hardware may reorder reads with older writes to different

6 In order to avoid unnecessary overheads when the user knows that the entire cache line
will be written in the near future, one can use write combining aided by nontemporal write
instructions. An example in the case of sorting can be found in [278].

B.6 Memory Management 451

locations. The C++ command atomic_thread_fence() can be used to also
guarantee the ordering between read and write operations.

Note that it may still happen that the operations of different threads can be mixed
arbitrarily and may also appear to different threads in different orders.

B.4 Atomic Operations

We have already explained the compare-and-swap (CAS) operation in Sect. 2.4.1. On
the x86 architecture it works exactly as described there and is available for accesses
to 32-, 64-, or aligned 128-bit data. Some other architectures have CAS operations
up to only 64 bits or with slightly weaker guarantees – they may sometimes fail
even though the actual value is equal to the desired value. This sometimes requires
additional check loops.

The x86 architecture and others also offer atomic fetch-and-add/subtract/min/-
max/and/ or/xor instructions. Although it is easy to implement them using CAS (see
also Sect. 2.4.1), using the built-in operation may be faster, in particular when several
threads contend for operating on the same variable.

B.5 Hardware Transactional Memory

Beginning with the Haswell microarchitecture, Intel x86 processors have supported
an implementation of restricted hardware transactional memory called Transactional

Synchronization Extensions.7 The programmer can enclose a critical section using
the machine instructions XBEGIN and XEND. There is an important difference com-
pared to the simple mechanism described in Sect. 2.4.1. A transaction t may fail, i.e.,
the hardware notices that another thread has accessed a cache line touched by t in
such a way that t does not appear to be executed atomically.8 In that case, the trans-
action is rolled back, i.e., all its effects are undone and an abort handler is called. It is
possible to retry a transaction. However, it may happen that transactions keep failing
without the system making progress. Therefore, the programmer has to provide some
ultimate fallback mechanism that is guaranteed to work. For example, using locks or
atomic operations. The listing at the end of Sect. 4.6.3 gives an example. Hardware
transactions are attractive from the point of view of performance when an abort is
unlikely, i.e., when there is little contention on the pieces of memory accessed by the
transaction.

B.6 Memory Management

In reality, memory is not the simple one-dimensional array we have seen for the
RAM model in Sect. 2.2. First of all, a process sees logical addresses in virtual

7 IBM had already introduced a similar mechanism with the POWER8 architecture.
8 There are further reasons why a transaction may fail, e.g., that too many cache lines have

been touched.

452 B Computer Architecture Aspects

memory instead of physical addresses. Logical addresses are mapped to physical
memory by the hardware in cooperation with the operating system. Pages of virtual
memory (address ranges beginning at a multiple of the page size which is a power
of 2) are mapped to physical memory by changing the most significant digits of the
addresses using a combination of hardware buffers (translation lookaside buffers –
TLBs) and a translation data structure managed by the operating system.

Besides the overhead in virtual address translation, it matters which socket a
piece of virtual memory is mapped to. This has to be taken into account when allo-
cating memory. In LINUX, a useful mechanism is that a thread allocating memory
will by default allocate it on its local socket. Other placement policies are possible.
For example, sometimes it makes sense to map blocks round-robin, i.e., the ith block
of an array is mapped to socket i mod P, where P is the number of socket.

B.7 The Interconnection Network

The processors of a parallel machine are connected through an interconnection net-
work. When the number of processors is small, a complete network with all point-
to-point links is feasible. When the number of processors is larger, a sparse net-
work must be used. Figure B.1 shows some typical interconnection networks. Two-
dimensional and three-dimensional meshes have the advantage that they can be built
arbitrarily large with bounded wire length. This is also possible for torus networks,
which consist of ring interconnections in every direction; Fig. B.1 shows a physical
layout with only short connections. The log p-dimensional mesh is better known un-
der the name “hypercube” (see also Fig. 13.2). A good approximation to a complete
interconnection network can be achieved using hierarchical networks such as the
fat tree [199]. In this book, we have consciously avoided topology-dependent algo-
rithms in order to keep things simple and portable. However, we sometimes point out
opportunities for adapting algorithms to the network topology. We gave a nontrivial
example at the end of Sect. 13.1.4.

In sparse interconnection networks, arbitrary point-to-point communication has
to be realized by sending messages along paths through the network. Some of these

hypercube

fat tree
root

mesh torus 3D mesh

Fig. B.1. Common interconnection networks. The fat tree is an example of a multistage net-

work, connecting 16 PEs using two layers of 8-way switches.

B.8 CPU Performance Analysis 453

paths will have to share the same wire and thus cause contention. Carefully designed
routing algorithms can keep this contention small. For example, in a hypercube with
p nodes, the maximum length of a path between two nodes is Θ(log p) and hence, the
minimum delivery time is Θ(log p). There are routing algorithms for the hypercube
that guarantee that p messages with distinct sources and distinct destinations can be
delivered in time O(log p), thus achieving the minimum. We refer our readers to the
textbook [197] for a discussion of routing algorithms.

Processors contain dedicated subprocessors for efficient I/O and communication.
Using direct memory access (DMA), they move data between memory and interface
hardware controlling disk and network access. Therefore, it is possible to overlap
communication, I/O, and computation.

B.8 CPU Performance Analysis

Code optimization requires profiling for two reasons. First, algorithm analysis makes
asymptotic statements and ignores constant factors. Second, our models of sequential
and, even more so, of parallel computers are only approximations of real hardware.
Profiling provides detailed information about the execution of a program. Modern
processors have dedicated hardware performance-monitoring units (PMUs) to sup-
port profiling. PMUs count performance events (CPU cycles, cache misses, branch
mis-predictions, etc.) and also map them to particular instructions.

PMUs support hundreds of very detailed performance events9, which can be pro-
grammed using profiling software (CPU profilers). The open-source Linux perf pro-
filer10 has good support for common CPU architectures. The most advanced profiler
for the Intel CPU architecture is the Intel VTune Amplifier.11 Profilers usually offer
a basic analysis of program hotspots (where most of the cycles are spent). Advanced
analysis uses fine-grained performance events to identify bottlenecks in the processor
which are responsible for incurring many cycles during instruction execution [332].

Reading performance counters introduces a penalty itself, and therefore most
profilers use statistical sampling of hardware performance events to minimize the
side effects on program execution. If mapping to instructions is not required (for
example in an initial phase of performance analysis or when the bottlenecks in the
code are well understood), then PMUs can be used in counting mode where they are
read only when required, for example, before and after program execution to count
the total number of events. The Processor Counter Monitor12 and Linux perf support
this kind of lightweight analysis.

For the analysis of performance issues in very short actions (for example for
real-time processing in car engines or the response time of graphical user interfaces),

9 For Intel processors, the events are listed in the software developer manuals; see www.
intel.com/sdm.

10 perf.wiki.kernel.org
11 software.intel.com/en-us/intel-vtune-amplifier-xe
12 github.com/opcm/pcm/

www.intel.com/sdm
www.intel.com/sdm
perf.wiki.kernel.org
software.intel.com/en-us/intel-vtune-amplifier-xe
github.com/opcm/pcm/

454 B Computer Architecture Aspects

sampling or counting performance events is not appropriate, because of the high rel-
ative overhead. Recently, Intel Processor Trace (PT) has been introduced to address
the analysis of such performance issues related to responsiveness. PT allows one
to trigger collection of a full instruction execution trace together with timestamps.
Performance analysis based on PT is available in Intel VTune Amplifier and Linux
perf.

B.9 Compiler

If not stated otherwise we used GNU C++ Compiler (g++) version 4.7.2 to compile
our examples of shared-memory programs. The specific compiler options can be
found in Makefiles at github.com under basic-toolbox-sample-code/
basic-toolbox-sample-code/.

github.com
basic-toolbox-sample-code/basic-toolbox-sample-code/
basic-toolbox-sample-code/basic-toolbox-sample-code/

C

Support for Parallelism in C++

C++11 (a version of the C++ programming language standard) extends C++ by
new language constructs for native support of parallelism through multithreading
in shared-memory systems. The new constructs hide the implementation details of
thread management. They provide basic locks, generic atomic operations, and sup-
port for asynchronous tasks. The C++14 version of the standard adds a new lock type
for shared access. In our shared-memory implementation examples, we use only con-
structs available in C++11.

In the following sections we give a short introduction to the most important
C++11/14 classes for multithreading.1

The parallel-programming support in C++ is not only rather recent but also fairly
low-level. Hence, there are also tools outside the C++ standard that can be used for
parallel programming with C++. Section C.5 introduces some frequently used ones.

C.1 “Hello World” C++11 Program with Threads

Listing C.1 shows a minimalistic program that demonstrates basic management of
threads. It spawns the maximum number of threads supported by the hardware. These
threads execute a user-defined worker function. The parameters of the worker func-
tion are passed in the constructor of the thread (the current thread count). Each C++
thread is scheduled for execution on one of the hardware threads available in the sys-
tem. The C++ thread interface does not provide any methods to control the schedul-
ing such that execution of C++ threads might be delayed and/or several C++ threads
might need to share the same hardware thread 2. In our simple example, each worker
thread just prints its thread identifier passed as parameter to the C++ standard out-
put (cout). Since the cout object is a shared resource, concurrent access to it might

1 For an exhaustive overview, see the standard document [161] and the online C++ ref-
erence at en.cppreference.com/w/. A list of textbooks is available at isocpp.
org/get-started.

2 The only available scheduling call is a yield(), function giving a hint to deschedule the
thread.

en.cppreference.com/w/
isocpp.org/get-started
isocpp.org/get-started

456 C Support for Parallelism in C++

Listing C.1. Threading “hello world” example

#include <iostream>

#include <vector>

#include <thread>

#include <mutex>

using namespace std;

mutex m;

void worker(int iPE) {

m.lock();

cout << "Hello from thread "<< iPE << endl;

m.unlock();

}

int main() {

vector<thread> threads(thread::hardware_concurrency());

int i = 0;

for(auto & t: threads) t = thread(worker, i++);

for(auto & t: threads) t.join();

return 0;

}//SPDX−License−Identifier: BSD−3−Clause; Copyright(c) 2018 Intel Corporation

jumble the characters. To avoid this, we protect the access using an exclusive lock
(mutex) provided by C++11. The main thread waits for completion of every worker
thread by calling their join function.

Since spawning and joining threads are expensive operations involving operat-
ing system calls, it does not pay off to have a separate C++ thread for each small
work item. For robust multithreaded applications, it is advisable to create all re-
quired threads at once (a thread pool) and to pass the work to them as needed using
the load-balancing methods described in Chap. 14.

C.2 Locks

We introduced binary locks in Sect. 2.5. The corresponding C++11 class
is mutex (mutual exclusion lock). More advanced lock classes provide the
ability to allow timeouts (recursive_timed_mutex), to acquire a lock multi-
ple times (recursive_mutex), or to distinguish between readers and writers
(shared_timed_mutex). To make the usage of locks less error-prone, C++11 pro-
vides several helper classes. The class lock_guard acquires a C++11 mutex in its
constructor and automatically releases it in its destructor when the execution leaves
the scope where the guard was created. The function lock is passed multiple mutexes
and locks all of them in such a way that no deadlocks can occur.

C.4 Atomic Operations 457

C.3 Asynchronous Operations

The classes promise and future provide mechanisms for thread interaction that are
slightly higher-level than the basic locking mechanisms we use in this book. Roughly,
one thread can produce a value, whereas others can wait for this value to become
available. One useful variant of this method is an asynchronous function call that
returns a future object so that at a later point, a thread can wait for the function call
to be completed.

C.4 Atomic Operations

C++11 provides abstractions of atomic operations (Sect B.4) on shared-memory
parallel computers. These operations include atomic load and store, exchange,
strong and weak compare-and-exchange (equivalent to compare-and-swap (CAS);
see Sect B.4), fetch-and-add, fetch-and-substract, fetch-and-or, fetch-and-and, and
fetch-and-xor on C++ built-in integers and char types of length 8, 16, 32, and 64
bits. An atomic version of C++ bool exists too. atomic_flag is a Boolean variable
supporting atomic test_and_set and clear operations that can easily be used to im-
plement a simple spin lock.

C++11 atomic operations have (_explicit) versions that allow one to specify the
memory-ordering guarantee (Sect. B.3) around an atomic operation. Their range is
very rich, such that developers who are new to memory ordering should be very
careful when choosing relaxed guarantees. A wrong memory ordering is a latent bug
that is very hard to discover. The default and the safest memory-ordering type is
memory_order_seq_cst (sequential consistency), which is recommended for begin-
ners and is also relatively fast on common x86 architectures. This ordering provides
many guarantees: No reads or writes can be reordered, all writes in other threads
that access the same atomic variable are visible in the current thread, all writes in
the current thread are visible in other threads that access the same atomic variable
and writes that carry a dependency into the atomic variable become visible in other
threads that access the same atomic variable, all threads observe all modifications
in the same order. To enforce a required memory ordering between arbitrary oper-
ations (including nonatomic ones), C++ offers the atomic_thread_fence function.
The weaker atomic_signal_fence prevents only reordering of the operations by the
compiler but not by the processor. See also Sect. B.3.

The first versions of the C++11 compilers did not always implement the atomic
operations listed above using the fastest available CPU instruction. Sometimes the
heaviest and slowest CPU instruction was used. Therefore we recommend to use the
latest compiler version.

Although the set of atomic operations and types provided in the C++11 standard
is very rich, it still represents the lowest common denominator of the vendor-specific
processor capabilities. For example, the 128-bit CAS operation which was very use-
ful in Sect 4.6.3 is supported by the x86 architecture but is not part of the C++
standard.

458 C Support for Parallelism in C++

C.5 Useful Tools

OpenMP. This is a compiler extension for shared-memory parallel programming;
see also [64] and openmp.org. The basic idea behind OpenMP is that one anno-
tates a sequential program with compiler pragmas that help the compiler to paral-
lelize it. OpenMP supports SPMD programming, local (private) and global (shared)
variables, and parallel loops. OpenMP supports locking directly, but can also be used
together with other libraries. For example, one can use the class std :: mutex from the
C++-standard.

Task-parallel programming. Since version 3.0, OpenMP has supported task-parallel
programming. However, in the first implementations, performance was not very
good. The Intel tools Cilk Plus3 and Threading Building Blocks (Intel TBB4) give
better performance using the work-stealing load balancer described in Sect. 14.5.
However, algorithms using task-parallel programming sometimes do not scale be-
yond one processor chip, since memory access locality is not very good.

Software libraries. Good software libraries considerably ease the life of a software
designer. A large variety of libraries is available for C++ and some of them exploit
parallelism. Often, using these parallelized libraries can be the key to parallelizing
an application. Important examples are libraries for linear algebra and parallel im-
plementations of the the C++ standard template library STL. Note that STL not only
supports classical algorithms like sorting, merging, selection, or random permuta-
tion, but also a comprehensive set of seemingly simple operations such as for_each.
If those are also parallelized (perhaps using dynamic load balancing) this blurs the
distinction between libraries and parallelization tools like OpenMP or task paral-
lel programming – we can express many parallel algorithms as a set of STL calls.
For example this has been done for a minimum spanning tree algorithm [245]. MC-
STL [297] is a good parallelization of the STL and is part of the GNU C++ distribu-
tion.

C.6 Memory Management

The C++memory allocation function (new) calls the underlying operating system al-
locator (e.g. malloc on Linux). The standard memory allocators are general-purpose
and are not optimized for maximum scalability. Typically, small-sized allocations
are serviced from a process-local heap protected by a per-process exclusive lock,
which leads to scalability bottlenecks. Larger allocations are requested directly from
the operating system which also involves locking of operating system memory struc-
tures responsible for bookkeeping (i.e., virtual memory page tables). Another issue
is that, for security reasons, all allocated memory has to be initialized by the op-
erating system before it can be given to an application. In Sect. 5.13, we saw an

3 www.cilkplus.org
4 www.threadingbuildingblocks.org

openmp.org
www.cilkplus.org
www.threadingbuildingblocks.org

C.7 Thread Scheduling 459

example where this initialization turned out to run sequentially – introducing a ma-
jor scalability roadblock in our sample sort implementation. Thus it can be much
faster to reuse memory rather than to allocate and deallocate it over and over again.
To facilitate such reuse, Intel Threading Building Blocks and Boost libraries provide
user-space memory pools that have standard allocation and deallocation interfaces
(see tbb :: memory_pool5 and boost :: pool6).

There are also libraries that replace the standard C++ allocators by more scal-
able implementations. The most known such allocators are Google’s Thread Caching
Malloc7 and the Intel TBB scalable memory allocator. They provide per-thread
heaps, avoiding global locks, and also automatically cache the memory in user pools
for reuse. The TBB allocators additionally provide explicit interfaces for specific
data structures that require scalable allocation. They also work with the C++ stan-
dard containers (vector, stack, etc.).

Sometimes there is a requirement to allocate memory on a boundary with a cer-
tain alignment. For example, the 16-byte CAS instruction of the x86 architecture re-
quires 16-byte alignment. Also, to prevent false sharing (Sect. B.3), a data structure
must begin at a fresh cache line. Common operating systems have custom alloca-
tors with support for alignment (posix_memalign on Linux and _aligned_malloc on
Windows). Intel TBB provides a scalable allocator (tbb :: cache_aligned_allocator)
which returns cache-line-aligned pieces of memory that can also be used with C++
containers.

As discussed in Sect. B.6, for performance reasons, the application might want
to have control of the memory placement on specific sockets. Most operating sys-
tems have libraries and interfaces that support such control: For example, libnuma

on Linux and VirtualAllocExNuma on Windows. See also the next section.

C.7 Thread Scheduling

By default, user threads have no guarantees about when and on what hardware
threads or cores they will be executed. The operating system is allowed to deschedule
and migrate them arbitrarily following some optimization goal (usually a heuristic).
During its execution, a thread can be migrated from one hardware thread to another.
In some cases thread migration can be very undesirable from a performance per-
spective: The migrated thread can no longer use its recently accessed cache lines
(its cache footprint), it now has higher latency for accessing memory allocated on
a different socket, etc. To prevent such migrations, the developer can pin a user
thread to a set of hardware threads using the pthread_setaffinity_np call on Linux
and SetThreadGroupAffinity on Windows.

On Linux, thread-pinning functions can be also used to control NUMA alloca-
tion. If a thread touches a virtual memory block which is not yet assigned to physical

5 software.intel.com/en-us/blogs/2011/12/19/

scalable-memory-pools-community-preview-feature
6 www.boost.org/doc/libs/1_48_0/libs/pool/doc/html/index.html
7 goog-perftools.sourceforge.net/doc/tcmalloc.html

software.intel.com/en-us/blogs/2011/12/19/scalable-memory-pools-community-preview-feature
software.intel.com/en-us/blogs/2011/12/19/scalable-memory-pools-community-preview-feature
www.boost.org/doc/libs/1_48_0/libs/pool/doc/html/index.html
goog-perftools.sourceforge.net/doc/tcmalloc.html

460 C Support for Parallelism in C++

memory (lazy memory allocation), the default policy for Linux is to try to allocate
the physical memory on the local socket.

D

The Message Passing Interface (MPI)

MPI1 is a software library for message passing in clusters. It is the de facto stan-
dard for high-performance computing. It was initially developed for Fortran and C
in 1994. This lineage still shows in the function interfaces – the handling of data
types is rather low-level. On the other hand, MPI offers a quite complete set of col-
lective communication operations (see Sect D.3) that are missing from most alter-
natives. MPI is the result of a standardization process that is a careful compromise
between performance, portability, and generality. Most of the functionality needed
in this book is already in the MPI-1 standard. Therefore this is also the focus of this
appendix. MPI-2, from 1997, adds high-performance I/O and one-sided communica-
tion – a way to get some of the functionality one uses in shared-memory programs,
albeit with some performance overhead. MPI-3, from 2012, adds nonblocking col-
lective operations.

D.1 “Hello World” and What Is an MPI Program?

An MPI program is an ordinary “sequential” (Fortran), C, or C++ program that in-
cludes mpi.h and calls the MPI functions declared there. This program is executed
in parallel on all PEs of our parallel machine, i.e., MPI programs follow the SPMD
approach to parallel programming. Listing D.1 shows a minimalistic example.

The call MPI_Init initializes the library. In particular, it initializes a global
variable MPI_COMM_WORLD that stores a communicator object describing
the set of PEs available to the program. The procedures MPI_Comm_size and
MPI_Comm_rank extract the total number of PEs p and the PE number (from
0..p− 1). Communicators are also passed to all MPI functions to define the context
of the communication. In particular, it is possible to define communicators spanning
only a subset of the PEs in MPI_COMM_WORLD. In our simple example, each
PE outputs p and its processor number i. The overall output of our program is not

1 www.mpi-forum.org

www.mpi-forum.org

462 D The Message Passing Interface (MPI)

uniquely defined. The characters or lines of output coming from different PEs may
be jumbled or the output may be written to one file for each PE.

Listing D.1. MPI hello world example

#include <iostream>

#include <mpi.h>

int main(int argc, char** argv)

{ int p, i;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Comm_rank(MPI_COMM_WORLD, &i);

std::cout << "PE " << i << " out of " << p << std::endl;

MPI_Finalize();

}

In MPI terminology, a PE is called a process and, indeed, an MPI process often
corresponds to a process in the host operating system. Whether each node of the
cluster runs one or several processes depends on how the MPI program is launched.
One important option is one process per core (or hardware thread) of the node. This is
convenient because then MPI takes care of all the parallelism. At the other extreme,
we might have only one process per node. In order to exploit the actual parallelism
of the machine, the node should then run a multithreaded shared-memory parallel
program. In that case it is advisable that, at any time, only a single thread per node
makes MPI calls.2 If the multithreaded and message-passing parts of the program
work well together, this option may lead to better performance at the price of a more
complicated program. The middle ground may also make sense. For example, one
could run one MPI process on each socket, thus explicitly taking NUMA effects into
account.

To actually start our example program, the simplest case is when it runs on the
cores of a single machine. For example, under Linux with OpenMPI v3.0.0 (www.
open-mpi.org/) one would compile the program with the command line

mpic++ example.cpp -o example

where mpic++ is a script that calls the GNU compiler with appropriate parameters.
To then run the program using four processes one uses another script

mpirun -np 4 example

On a supercomputer, starting the program is a bit more complicated. One typically
writes a configuration file describing which program to call, how many nodes should
be used and how many processes run on each node. Then one passes this configa-
ration file to a job scheduler that allocates the appropriate ressources and starts the
program on all nodes.

2 If MPI calls are made concurrently, some MPI implementations do not work at all and
others have performance problems.

www.open-mpi.org/
www.open-mpi.org/

D.2 Point-to-Point Communication 463

D.2 Point-to-Point Communication

Supposing message m is an array of k integers, our pseudocode operation send(i,m)
can be translated into the MPI call

MPI_Send(&m,k,MPI_INT, i, t,MPI_COMM_WORLD)

where the integer t is a message tag that helps the receiver to distinguish different
types of messages. The destination PE i is a rank within the global communica-
tor MPI_COMM_WORLD. Other communicators can also be used which can en-
code subsets of PEs – for example the rows and columns in Sect. 5.2. Further data
types can be used by replacing the constant MPI_INT by another predefined constant
such as MPI_CHAR/SHORT/LONG/FLOAT/DOUBLE. User-defined data types
are also possible.

There are several variants of send operations – Send/Ssend/Isend/Issend/Bsend.
When the ordinary send returns, the message buffer m can be reused (and overwrit-
ten) without affecting the delivery of the message. Ssend guarantees in addition that
the receiver has begun to actually receive the message. The nonblocking or immediate

operations Isend and Issend are a little more complicated. They have an additional re-
turn parameter that returns a request object. Their buffer can only be reused when an
additional (blocking) operation waiting for the request to finish has been called. The
advantage of nonblocking operations is that they return immediately. Thus, several
communications can be initiated together. One can also use this feature to overlap
communication and internal work. Function MPI_Bsend also returns immediately
and guarantees that the message buffer can be immediately removed. The disad-
vantage of this convenience is that the user has to supply additional buffer memory
(using the operation MPI_Buffer_attach) and that this causes additional copy opera-
tions, which incur some overhead.

A receive operation matching the above call is

MPI_Recv(&m,k,MPI_INT, j, t,MPI_COMM_WORLD,&status)

where j either specifies the PE from which the caller expects to receive a mes-
sage or is equal to MPI_ANY_SOURCE. In the latter case, a message from any
sender can be received. Similarly, t specifies the expected tag or MPI_ANY_TAG.
The parameter k specifies the allocated length of the message buffer. This buffer
may be longer then the message actually received. The actual length of the re-
ceived message can be read from the status variable (which has type MPI_Status)
using the operation MPI_Get_count. A status object has fields status.MPI_TAG and
status.MPI_SOURCE that tell the tag and sender, respectively, of the received mes-
sage. Sometimes the receiver does not have a useful upper bound on the length of
the message to be received. In that case, the operation MPI_Probe can be called first
which delivers a status that tells the message length (and its tag and source PE).
There is also a nonblocking receive operations MPI_Irecv.

Finally, there is an operation MPI_Sendrecv that corresponds to our pseudocode
operations send(· · ·) ‖ receive(· · ·).

464 D The Message Passing Interface (MPI)

To work with the nonblocking operations Isend and Irecv, one additionally needs
operations MPI_Wait/Waitany/Waitall and MPI_Test/Testany/Testall. These oper-
ations are passed the request objects returned by Isend and Irecv. The wait operations
block until the specified requests have finished. The test operations do not block, and
thus allow us to perform computations while communication operations are executed
in the background.

D.3 Collective Communication

Table D.1. Collective communication operations in MPI.

Our name MPI name See also Sect.
broadcast MPI_Bcast 13.1
reduce MPI_Reduce 13.2
all-reduce MPI_Allreduce 13.2
prefix sum MPI_Scan 13.3
barrier MPI_Barrier 13.4.2
gather MPI_Gather(v) 13.5
all-gather MPI_Allgather(v) 13.5
scatter MPI_Scatter(v) 13.5
all-to-all MPI_Alltoall(v) 13.6

MPI supports all the collective communication operations discussed in Chap. 13.
Starting with MPI 3.0, this includes the asynchronous ones presented in Sect. 13.7.
We view this as a major strength of MPI in particular in comparison with other
frameworks for parallel processing. However, one should not assume that all MPI im-
plementations implement all collective operations efficiently. Careful profiling and
occasional manual reimplementations of the required operations are therefore im-
portant for achieving good performance in practice. Table D.1 summarizes the avail-
able collective operations. The collective operations with irregular message size have
names ending with v. These expect the receiver of a message to specify the length of
that message. This often implies that the message lengths have to be transferred in a
separate operation.

An example call for a collective operation is

MPI_Reduce(&c, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD)

which will perform a sum-reduction of the values of the local variable c. The second
to last parameter specifies that the overall result will be stored in the variable sum

at PE 0. MPI supports a number of further predefined reduction operations besides
MPI_SUM. User-defined operations are also possible.

E

List of Commercial Products, Trademarks and

Software Licenses

The following list includes the names of commercial products and trademarks men-
tioned in the book.

• Microsoft® Windows® (Windows)
• Oracle® Java®

• IBM® RS/6000®

• IBM® Power®

• IBM® POWER8®

• IBM® Blue Gene®/Q
• Intel® Core™

• Intel® Xeon®

• Intel® Pentium®

• Intel® Threading Building Blocks (Intel TBB)
• Intel® Cilk™ Plus
• Intel® VTune™ Amplifier
• Intel® Processor Trace (Intel PT)
• Intel® Transactional Synchronization Extensions (Intel TSX)
• Wikipedia®

• OpenMP®

The listings in the book are distributed under the Open Source BSD-3-Clause
license.

E.1 BSD 3-Clause License

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

466 E List of Commercial Products, Trademarks and Software Licenses

• Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

