
9

Graph Traversal

Suppose you are working in the traffic planning department of a town with a nice

medieval center.1 An unholy coalition of shop owners, who want more street-side

parking, and the Green Party, which wants to discourage car traffic altogether, has

decided to turn most streets into one-way streets. You want to avoid the worst by

checking whether the current plan maintains the minimum requirement that one can

still drive from every point in town to every other point.

In the language of graphs (see Sect. 2.12), the question is whether the directed graph
formed by the streets is strongly connected. The same problem comes up in other
applications. For example, in the case of a communication network with unidirec-
tional channels (e.g., radio transmitters), we want to know who can communicate
with whom. Bidirectional communication is possible within the strongly connected
components of the graph.

We shall present a simple, efficient algorithm for computing strongly connected
components (SCCs) in Sect. 9.3.2. Computing SCCs and many other fundamental
problems on graphs can be reduced to systematic graph exploration, inspecting each
edge exactly once. We shall present the two most important exploration strategies:
breadth-first search (BFS) in Sect. 9.1 and depth-first search (DFS) in Sect. 9.3. Both
strategies construct forests and partition the edges into four classes: Tree edges com-
prising the forest, forward edges running parallel to paths of tree edges, backward

edges running antiparallel to paths of tree edges, and cross edges. Cross edges are
all remaining edges; they connect two different subtrees in the forest. Figure 9.1
illustrates the classification of edges.

cross

backward

forward

tree
s

Fig. 9.1. Graph edges classified as tree edges, forward edges, backward edges, and cross edges.

1 The copper engraving above shows part of Frankfurt around 1628 (M. Merian).

272 9 Graph Traversal

BFS can be parallelized to some extent and is discussed in Sect. 9.2. In contrast,
DFS seems inherently difficult to parallelize. In Sect. 9.4, we therefore discuss only
the traversal of directed acyclic graphs (DAGs) – a problem where DFS is used as the
standard sequential solution. We also discuss several problems on undirected graphs,
where a conversion to a DAG is an important step towards a parallel algorithm.

9.1 Breadth-First Search

A simple way to explore all nodes reachable from some node s is breadth-first search

(BFS). BFS explores the graph (or, digraph) layer by layer. The starting node s forms
layer 0. The direct neighbors (or, respectively, successors) of s form layer 1. In gen-
eral, all nodes that are neighbors (or, successors) of a node in layer i but not neighbors
(or, successors) of nodes in layers 0 to i− 1 form layer i+ 1. Instead of saying that
node v belongs to layer i, we also say that v has depth i or distance i from s.

The algorithm in Fig. 9.3 takes a node s and constructs the BFS tree rooted at s.
This tree comprises exactly the nodes that are reachable from s. For each node v in
the tree, the algorithm records its distance d(v) from s, and the parent node parent(v)
from which v was first reached. The algorithm returns the pair (d,parent). Initially, s

has been reached and all other nodes store some special value⊥ to indicate that they
have not been reached yet. Also, the depth of s is 0. The main loop of the algorithm
builds the BFS tree layer by layer. We maintain two sets, Q and Q′; Q contains the
nodes in the current layer, and we construct the next layer in Q′. The inner loops
inspect all edges (u,v) leaving nodes u in the current layer, Q. Whenever v has no
parent pointer yet, we put it into the next layer, Q′, and set its parent pointer and
distance appropriately. Figure 9.2 gives an example of a BFS tree and the resulting
backward and cross edges.

BFS has the useful feature that its tree edges define paths from s that have a
minimum number of edges. For example, you could use such paths to find railway
connections that minimize the number of times you have to change trains or to find
paths in communication networks with a smallest number of hops. An actual path
from s to a node v can be found by following the parent references from v backwards.

31 2

T

F

B

C

0

s s

b

b

c

c

d
d

e

e

f

f

g

g

Fig. 9.2. BFS (left) and DFS (right) classify edges into tree (T), backward (B), cross(C), and
forward edges (F). BFS visits the nodes in the order s, b, c, d, e, f , g and partitions them into
layers {s}, {b,c,d}, {e, f }, and {g}. DFS visits the nodes in the order s, b, e, g, f , c, d.

9.1 Breadth-First Search 273

Function bfs(s : NodeId) : (NodeArray of 0..n)× (NodeArray of NodeId)
d = 〈∞, . . . ,∞〉 : NodeArray of 0..n // distance from root
parent = 〈⊥, . . . ,⊥〉 : NodeArray of NodeId

d[s] :=0
parent[s] := s // self-loop signals root
Q = 〈s〉 : Set of NodeId // current layer of BFS tree
Q′ = 〈〉 : Set of NodeId // next layer of BFS tree
for ℓ :=0 to ∞ while Q 6= 〈〉 do // explore layer by layer

invariant Q contains all nodes with distance ℓ from s

foreach u ∈ Q do

foreach (u,v) ∈ E do // scan edges out of u

if parent(v) =⊥ then // found an unexplored node
parent(v) := u // update BFS tree
d[v] := ℓ+1
Q′ :=Q′ ∪{v} // remember for next layer

(Q,Q′) :=(Q′,〈〉) // switch to next layer
return (d,parent) // the BFS tree is now {(v,w) : w ∈V,v = parent(w)}

Fig. 9.3. Breadth-first search starting at a node s

Exercise 9.1. Show that BFS will never classify an edge as forward, i.e., there are no
edges (u,v) with d(v)> d(u)+ 1.

Exercise 9.2. What can go wrong with our implementation of BFS if parent[s] is
initialized to ⊥ rather than s? Give an example of an erroneous computation.

Exercise 9.3. BFS trees are not necessarily unique. In particular, we have not speci-
fied the order in which nodes are removed from the current layer. Give the BFS tree
that is produced when d is removed before b when one performs a BFS from node s

in the graph in Fig. 9.2.

Exercise 9.4 (FIFO BFS). Explain how to implement BFS using a single FIFO
queue of nodes whose outgoing edges still have to be scanned. Prove that the re-
sulting algorithm and our two-queue algorithm compute exactly the same tree if the
two-queue algorithm traverses the queues in an appropriate order. Compare the FIFO
version of BFS with Dijkstra’s algorithm described in Sect. 10.3 and the Jarník–Prim
algorithm described in Sect. 11.2. What do they have in common? What are the main
differences?

Exercise 9.5 (graph representation for BFS). Give a more detailed description of
BFS. In particular, make explicit how to implement it using the adjacency array rep-
resentation described in Sect. 8.2. Your algorithm should run in time O(n+m).

Exercise 9.6 (BFS in undirected graphs). Assume the bidirected representation of
undirected graphs. Show that edges are traversed in at most one direction, i.e., only
the scanning of one of the directed versions (u,v) or (v,u) of an undirected edge
{u,v} can add a node to Q′. When does neither directed version add a node to Q′?

274 9 Graph Traversal

Exercise 9.7 (connected components). Explain how to modify BFS so that it com-
putes a spanning forest of an undirected graph in time O(m+ n). In addition, your
algorithm should select a representative node r for each connected component of the
graph and assign it to component[v] for each node v in the same component as r.
Hint: Scan all nodes s ∈V in an outer loop and start BFS from any node s that it still
unreached when it is scanned. Do not reset the parent array between different runs of
BFS. Note that isolated nodes are simply connected components of size 1.

Exercise 9.8 (transitive closure). The transitive closure G+ = (V,E+) of a graph
G = (V,E) has an edge (u,v)∈ E+ whenever there is a path of length 1 or more from
u to v in E . Design an algorithm for computing transitive closures. Hint: Run bfs(v)
for each node v to find all nodes reachable from v. Try to avoid a full reinitialization
of the arrays d and parent at the beginning of each call. What is the running time of
your algorithm?

9.2 Parallel Breadth-First Search

Here, we parallelize each iteration of the main loop of the BFS algorithm shown in
Fig. 9.3. We first describe the parallelization for the shared-memory model and as-
sume that it is sufficient to process the nodes in the current layer Q in parallel. Then
Sect. 9.2.3 outlines what has to be changed for the distributed-memory model. Sec-
tion 9.2.4 explains how to handle nodes with very high degree by also parallelizing
the loop over the edges out of a single node u.

9.2.1 Shared-Memory BFS

Suppose the current layer Q is represented as a global array. We run the loop over
Q in parallel. Several of the load-balancing algorithms presented in Chap. 14 can
be used. We describe the variant using prefix sums given in Sect. 14.2. Since the
work for a node is roughly proportional to its outdegree, we compute the pre-
fix sum over the outdegrees of the nodes in Q, i.e., for node Q[j], we compute
σ [j] :=∑k≤ j outdegree(Q[k]). Let mℓ :=σ [|Q|] be the total outdegree of the layer.
Node Q[j] is then assigned to PE ⌈σ [j]p/mℓ⌉. PE j finds the last node it has to
process using binary search in σ , searching for jmℓ/p.

To parallelize the loop over Q, we avoid contention on Q′ by splitting it into
local pieces – each PE works on a local array Q′ storing the nodes it enqueues. After
the loop finishes, these local pieces are copied to the global array Q for the next
iteration. Each PE copies its own piece. The starting addresses in Q can be computed
as a prefix sum over the piece sizes.

A further dependence between computations on different nodes is caused by mul-
tiple edges between nodes in the current layer and a node v in the next layer. If these
are processed at the same time by different PEs, there might be write contention for
d[v] and parent(v). In that case, v could also be inserted into Q′ multiple times.

9.2 Parallel Breadth-First Search 275

Let us first discuss a solution for CRCW-PRAMs with arbitrary semantics for
concurrent writes; see Sect. 2.4.1. First, note that in iteration ℓ of the main loop, all
competing threads will write the same value ℓ+ 1 to d[v]. Moreover, we do not care
which node u will successfully set parent(v) :=u. Finally, we can avoid duplicate en-
tries in Q′ by only inserting v into Q′ if parent(v) = u. The lockstep synchronization
of PRAMs will ensure that we read the right value here.

This PRAM algorithm yields the following bound.

Theorem 9.1. On an arbitrary-CRCW-PRAM, BFS from s can be implemented to

run in time

O

(
m+ n

p
+D · (∆ + log p)

)

,

where D is the largest BFS distance from s and ∆ is the maximum degree of a node.

Proof. Consider iteration ℓ of the main loop, working on nℓ nodes in Q with mℓ out-
going edges. The prefix sum for load balancing takes time O(nℓ/p+ log p). Each PE
will be assigned at most ⌈mℓ/p⌉+∆ edges. Each edge can be processed in constant
time. The prefix sum for finding positions in Q takes time O(log p). Copying Q′ to Q

takes time O(mℓ/p+∆). Summing over all iterations, we get the time bound

D

∑
ℓ=0

O

(
mℓ

p
+

nℓ

p
+∆ + log p

)

= O

(
m+ n

p
+D(∆ + log p)

)

. ⊓⊔

On an asynchronous shared-memory machine, a conservative solution is to use a
CAS instruction to set parent pointers. CAS(parent(v),⊥,u) could be used to make
sure that exactly one predecessor u of v succeeds in establishing itself as the parent
of v. Only when this CAS succeeds, are Q′ and d[v] subsequently updated. However,
this is one of the rare cases where we can avoid a CAS instruction despite write
conflicts. As long as the accesses to d[v] and parent(v) are atomic, the same discus-
sion as for the PRAM algorithm will ensure that we get consistent values. The only
complication that we cannot rule out is occasional duplicate entries in Q′. Figure 9.4
gives an example. This might incur additional work but does not render the computa-
tion incorrect. The only explicit synchronization we need is a barrier synchronization
(see Sect. 13.4.2) after incrementing ℓ+ 1 in the main loop.

9742
1 2 3 3

2 2 3 2

0
1
2
3
4

s

previous layer
current layer
next layer

node degrees

assigned PE
might end up in σ [j]

Q′[1], Q′[2] or both

goes to Q′[3]

Fig. 9.4. Computations for layer 3 during a shared-memory BFS. Nodes 1 to 4 of the current
layer are assigned to PEs ⌈2 ·3/9⌉ = 1, ⌈4 ·3/9⌉ = 2, ⌈7 ·4/9⌉ = 3, and ⌈9 ·3/9⌉ = 3 respec-
tively. Since nodes 3 and 4 are handled by the same PE, the second node on the next layer goes
to Q′[3]. Since nodes 1 and 2 are handled by distinct PEs, the first node on the next layer may
end up in Q′[1] or in Q′[2] or in both.

276 9 Graph Traversal

9.2.2 Shared-Memory BFS Implementation

Here, we implement the algorithm presented in Sect. 9.2.1 in C++11. Listing 9.1
introduces a static graph data structure implemented as an adjacency array and a
generic parallel prefix sum function. Listing 9.2 contains the shared-memory BFS
implementation.

Listing 9.1. Utility functions for C++ BFS implementation

1class Graph {

2int n;

3size_t m;

4std::vector<size_t> begin;

5std::vector<int> adj; // adjacency array representation

6public:

7vector<int>::const_iterator beginNeighbor(const int v) const {

8return adj.cbegin() + begin[v];

9}

10vector<int>::const_iterator endNeighbor(const int v) const {

11return adj.cbegin() + begin[v + 1];

12}

13int getN() const { return n; } // number of nodes

14size_t getM() const { return m; } // number of edges

15};

16template <class Iterator, class F, class B>

17void prefixSum(Iterator outBegin, Iterator outEnd, int iPE, int p,

18Iterator tmp, F f, B & barrier) {

19const size_t begin = (outEnd−outBegin)*iPE/p;

20const size_t end = (outEnd−outBegin)*(iPE+1)/p;

21size_t sum = 0, i = begin;

22for (; i != end ; ++i) *(outBegin + i) = (sum += f(i));

23*(tmp + iPE) = sum;

24barrier.wait(iPE, p);

25size_t a = 0;

26for(i=0; i< iPE; ++i) a += *(tmp + i);

27for(i=begin; i!=end; ++i) *(outBegin + i) += a;

28}//SPDX−License−Identifier: BSD−3−Clause; Copyright(c) 2018 Intel Corporation

Since we are targeting a moderate number of threads, we do not use the prefix
sum algorithm presented in Sect.13.3, whose asymptotic execution time is logarith-
mic in p, but a simpler code with linear execution time O(p+ n/p) but favorable
constant factors. The beginNeighbor function returns a pointer to the first edge out
of a node. The endNeighbor function returns a pointer to the first edge after the last
edge out of a node. For a node with no outgoing edge, both functions return the same
value. We do not provide graph initialization functions in this listing, as they are
trivial. The prefixSum function takes the output range specified by pointer iterators
outBegin and outEnd, the identifier of the PE (iPE), the total number of PEs p, the
pointer to a temporary array tmp, and a function object f . The use of a function object
allows user code to compute values on demand without requiring them to be stored

9.2 Parallel Breadth-First Search 277

in intermediate arrays. In lines 27–30 of Listing 9.2, we call prefixSum with a lambda
function (line 29) that computes the outdegree of a node.

We come to the details of prefixSum. In lines 19 and 20, the array boundaries for
iPE’s subrange are computed. Then the prefix sum within the local range is computed
in line 22. The total sum of the range is saved in the tmp array (line 23). A barrier
synchronization (Sect. 13.4.3) is executed in line 24 to ensure that the array tmp is
completely filled before the PE accumulates the total sums of the PEs with smaller
identifiers (lines 25 and 26) and adds the total aggregate to the local output items
(line 27).

Listing 9.2 shows the bulk of the implementation. The parallel BFS routine pBFS

accepts the total number of PEs p, the input graph g, the root of the BFS tree s, the
array of output distances d, and the parent array. In lines 6–13, we initialize the
arrays d, parent, Q, Qp, and sigma and/or preallocate space for them. These arrays
correspond to d, parent, Q, Q′, and σ in the abstract algorithm in Sect. 9.2.1. Qp is an
array of arrays storing the local Qp for each PE. The entries of Qp are padded to have
the size of a full cache line (line 2) in order to avoid false sharing; see Sect. B.3. The
atomic flag done and the barrier barrier are created and initialized in lines 14–15.
Then the C++ threads are created and started. Recall that the constructor of a thread
takes two arguments, a worker function passed as a function argument and a second
argument that is passed to the worker function by the thread; see App C. The call of
the constructor extends through lines 18–65. The worker function is defined in-place
(lines 19–65). The second parameter is the loop index i (line 65) so that iPE is set to
i in the i-th thread. The loop in line 66 waits until all worker threads are completed.

The body of the BFS worker function is given in lines 19–64. Before entering
the main loop over BFS levels l, each PE initializes its part of the output arrays d

and parent (lines 19–23). The PE which has the root s in its range initializes the
distance d and parent of s in line 24. The main loop extends over lines 26–63. It first
computes the prefix sum σ over outdegrees of the nodes in Q (lines 27–30). After the
thread barrier on the next line, the local array Qp is cleared. Then some memory is
preallocated for it to reduce future reallocations and copying on capacity overflows
(lines 32–34).

Each PE determines in lines 36–38 the range of nodes (from curQ to endQ− 1)
assigned to it using the upper_bound binary search function from the C++ standard
library. Edges (u,v) out of nodes belonging to the PE are traversed with two nested
for-loops in lines 39–51. If the PE does not see a valid parent identifier for node v,
then it updates its parent with u, the distance d with l, and adds u to the local Qp

array (lines 45–48).
After a barrier, the PE computes the position (outPos) in Q, where it subsequently

moves its local part of Qp (lines 52–54). To this end, it sums the sizes of the parts
of Qp with smaller identifiers. The last PE resizes Q and sigma to accommodate
|Q′| elements. If there is nothing left to be done, this is signaled using the done flag
(lines 55–59). After a further barrier, the local array Qp is copied to the global array
Q (line 61). A final barrier ensures that Q is in a consistent state before the next
iteration of the outermost loop is started.

278 9 Graph Traversal

Exercise 9.9. For each of the barrier synchronizations in Listing 9.2, give an example
of what could go wrong if this barrier were omitted.

Listing 9.2. Shared-memory BFS implementation in C++

1// pad to avoid false sharing

2typedef pair<vector<int>, char [64 − sizeof(vector<int>)] > PaddedVector;

3void pBFS(unsigned p, const Graph & g, const int s,

4vector<int> & d, vector<int> & parent)

5{

6d.resize(g.getN());

7parent.resize(g.getN());

8vector<int> Q;

9Q.reserve(g.getN());

10Q.push_back(s);

11vector<PaddedVector> Qp(p);

12vector<size_t> sigma(1), tmp(p);

13sigma.reserve(g.getN());

14atomic<bool> done(false);

15Barrier barrier(p);

16vector<thread> threads(p);

17for (unsigned i = 0; i < p; ++i)// go parallel

18threads[i] = thread([&](const unsigned iPE) { // worker function

19const size_t beginI = iPE*g.getN()/p;

20const size_t endI = (iPE + 1)*g.getN()/p;

21fill(d.begin() + beginI, d.begin() + endI,

22(numeric_limits<int>::max)());

23fill(parent.begin()+beginI, parent.begin()+endI,INVALID_NODE_ID);

24if(s >= beginI && s < endI) { d[s] = 0; parent[s] = s; }

25int l = 1;

26for(; !done; ++l) {

27prefixSum(sigma.begin(), sigma.end(), iPE, p, tmp.begin(),

28/* a lambda function */ [&] (int j)

29{ return g.endNeighbor(Q[j]) − g.beginNeighbor(Q[j]);},

30barrier);

31barrier.wait(iPE, p);

32Qp[iPE].first.clear();

33size_t ml = sigma.back();

34Qp[iPE].first.reserve(2*ml/p); // preallocate memory

35size_t curQ = upper_bound(sigma.cbegin(), sigma.cend(),

36iPE*ml/p) − sigma.cbegin();

37const size_t endQ = upper_bound(sigma.cbegin(), sigma.cend(),

38(iPE+1)*ml/p) − sigma.cbegin();

39for (; curQ != endQ; ++curQ) { // loop over nodes

40const int u = Q[curQ];

41auto vIter = g.beginNeighbor(u);

42auto vEnd = g.endNeighbor(u);

43for (; vIter != vEnd; ++vIter) { // loop over edges

9.2 Parallel Breadth-First Search 279

44const int v = *vIter; // target of current edge

45if(parent[v] == INVALID_NODE_ID) { // not visited yet

46parent[v] = u;

47d[v] = l;

48Qp[iPE].first.push_back(v); // queue for next layer

49}

50}

51}

52barrier.wait(iPE, p);

53size_t outPos = 0;

54for(int j=0; j < iPE; ++j) outPos += Qp[j].first.size();

55if(iPE == p−1) {

56Q.resize(outPos + Qp[iPE].first.size());

57sigma.resize(Q.size());

58if (Q.empty()) done = true;

59}

60barrier.wait(iPE, p);

61copy(Qp[iPE].first.cbegin(), Qp[iPE].first.cend(),

62Q.begin() + outPos);

63barrier.wait(iPE, p);

64}

65}, i);

66for (auto & t : threads) t.join();

67}//SPDX−License−Identifier: BSD−3−Clause; Copyright(c) 2018 Intel Corporation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 4 8 16 32 72 144

ab
so

lu
te

 s
p

ee
d

u
p

#threads

book
PBBS

Fig. 9.5. Speedup of parallel BFS implementations over sequential BFS for the grid graph.

280 9 Graph Traversal

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32 72 144

ab
so

lu
te

 s
p

ee
d

u
p

#threads

book
PBBS

Fig. 9.6. Speedup of parallel BFS implementations over sequential BFS for the R-MAT graph

We measured the speedup of this implementation on the four-socket machine
described in Appendix B and compared it with the implementation from the Prob-
lem Based Benchmark Suite (PBBS) [296]. Figures 9.5 and 9.6 show the speedup
as a function of the number of threads for two graphs with n = 107 nodes – a
three-dimensional grid and the R-MAT recursive matrix graph [63] with parame-
ters (.3, .1, .1, .5) (about 5n edges). Our implementation outperforms PBBS for the
grid instance. For the R-MAT instance2, our code is slightly better than PBBS for
up to 16 threads, but does not scale to the full number of 72 available cores and gets
even worse for 144 threads (using hyper-threading). The main difference between
the two implementations is that we use static load balancing based on prefix sums,
whereas PBBS uses the dynamic load balancing integrated into Cilk. This imple-
mentation difference may explain the performance difference. Static load balancing
has less overhead and hence works well on instances with small average queue size
such as the grid instance. Its layers are of size O(

√
n). The R-MAT graph has a much

smaller diameter and hence a larger average queue size.

9.2.3 Distributed-Memory BFS

Our design for BFS on distributed-memory machines is based on the “owner com-
putes” principle. We assign each node u of the graph to a PE u.p, which does the
work related to node u. If u is in the set Q of nodes to be scanned, PE u.p is respon-
sible for doing this. However, when scanning edge (u,v), PE i = u.p delegates this
to PE j = v.p since node v is the object actually affected. Hence, PE i sends the edge
(u,v) to PE j. Figure 9.7 gives pseudocode. Of course, an efficient algorithm will

2 The instance “local random” from [296] exhibited similar behavior.

9.2 Parallel Breadth-First Search 281

handle local edges (u,v) with u.p = v.p without explicit communication and it will
deliver the messages in bulk fashion – gathering all local messages destined for the
same PE in a message buffer and delivering this buffer as a whole or in large chunks.
For example, a library based on the BSP model can be used here.

Function dBFS(s : NodeId) : (NodeArray of 0..n) × (NodeArray of NodeId)

d = 〈∞, . . . ,∞〉 : NodeArray of 0 .. n // distance from root
parent = 〈⊥, . . . ,⊥〉 : NodeArray of NodeId

Q = 〈〉 : Set of NodeId // current layer of BFS tree
if s.p = iproc then d[s] :=0; parent[s] := s; Q := 〈s〉
for ℓ :=0 to ∞ while ∃i : Q@i 6= 〈〉 do // explore layer by layer

invariant Q contains all local nodes with distance ℓ from s

foreach u ∈ Q do

foreach (u,v) ∈ E do // scan edges out of u

post message (u,v) to PE v.p
deliver all messages

Q :={}
foreach received message (u,v) do

if parent(v) =⊥ then // found an unexplored node
parent(v) := u // update BFS tree
d[v] := ℓ+1
Q :=Q∪{v} // remember for next layer

return (d,parent) // the BFS tree is now {(v,w) : w ∈V,v = parent(w)}

Fig. 9.7. Distributed-memory BFS starting at a node s

0 1 2 3 45 6 7
0 2 1 0 10 0 0
2 6 3 5 33 4 2
2 6 9 9 53 4 2 40

28
4

0 1 2 3 45 6 7
1 2 2 3 22 1 1
2 3 5 3 2 2
2 6 9 9 53 4 2 40

233
14

3

total #edges
max #edges/PE max #cut edges/PE

layer
s s s

0 1 2 3 45 6 7
2 3 3 3 33 2 2
2 3 3 3 3 2 2
2 6 9 9 53 4 2 40

213
21

1 2 3PE 0

Fig. 9.8. Distributed-memory BFS with three different partitions. Left: four compact blocks
– bad load balance but low communication. Middle: scattered nodes – good load balance but
high communication. Right: eight scattered blocks of size two – a compromise. The light lines
indicate the partition of the graph into layers. The top row of numbers shows the number of
edges incident to the nodes of the current layer, the second row shows the maximum number
of edges that have to be handled by a single PE, and the third row shows the maximum number
of cut edges that have to be handled by a single PE. The column Σ contains the row sums.

282 9 Graph Traversal

Note that we are facing a trade-off between communication overhead and load
balance here. Using a graph partition with a small overall cut as proposed in Sect. 8.6
will result in a small overall communication volume. However, in graphs with high
locality, the BFS will initially run just on PE s.p, spreading only slowly over fur-
ther PEs. On the other hand, assigning nodes to random PEs will destroy locality,
but parallelism will spread very fast and the work will be well balanced. Perhaps
compromises are in order here – working with a partition with k≫ p pieces spread
randomly over the PEs. Figure 9.8 illustrates this trade-off.

9.2.4 Handling High-Degree Nodes

We apply the general approach described on page 266. We use the same prefix sum
σ over outdegrees for load balancing as in Sect. 9.2.1. However, we use it to actually
distribute edges. The kth edge of node Q[i] gets the number σ [j− 1] + k. Edge i

will be processed by PE ⌈ip/mℓ⌉. This means that PE j performs binary search for
k j := jml/p in σ . So suppose σ [i] ≤ k j < σ [i+ 1]. Then PE j starts scanning edges
at edge k j−σ [i] of node i.

Exercise 9.10. Show that with the above modification of the algorithm, you can
sharpen Theorem 9.1 to obtain running time

O

(
m+ n

p
+D log p

)

.

9.3 Depth-First Search

You may view breadth-first search as a careful, conservative strategy for systematic
exploration that completely inspects known things before venturing into unexplored
territory. In this respect, depth-first search (DFS) is the exact opposite: Whenever it
finds a new node, it immediately continues to explore from it. It goes back to previ-
ously explored nodes only if it runs out of options to go forward. Although DFS leads
to unbalanced exploration trees compared with the orderly layers generated by BFS,
the combination of eager exploration with the perfect memory of a computer makes
DFS very useful. Figure 9.9 gives an algorithm template for DFS. We can derive spe-
cific algorithms from it by specifying the subroutines init, root, traverseTreeEdge,
traverseNonTreeEdge, and backtrack.

DFS uses node marks. Initially, all nodes are unmarked. Nodes are marked ac-

tive when they are discovered and their exploration begins. Once the exploration of
a node is completed, the mark is changed to completed and keeps this value until the
end of the execution. The main loop of DFS looks for unmarked nodes s and calls
DFS(s,s) to grow a tree rooted at s. The recursive call DFS(u,v) organizes the explo-
ration out of v. The argument (u,v) indicates that v was reached via the edge (u,v)
into v. For root nodes s, we use the “dummy” argument (s,s). We write DFS(∗,v) if
the specific nature of the incoming edge is irrelevant to the discussion at hand.

9.3 Depth-First Search 283

Depth-first search of a directed graph G = (V,E)
unmark all nodes
init

foreach s ∈V do

if s is not marked then

root(s) // Make s a root and grow
DFS(s,s) // a new DFS tree rooted at it.

Procedure DFS(u,v : NodeId) // Explore v coming from u.
mark v as active
foreach (v,w) ∈ E do

if w is marked then traverseNonTreeEdge(v,w) // w was reached before
else traverseTreeEdge(v,w) // w was not reached before

DFS(v,w)
backtrack(u,v) // Return from v along the incoming edge.
mark v as completed

Fig. 9.9. A template for depth-first search of a graph G = (V,E). We say that a call DFS(∗,v)
explores v. The exploration is complete when we return from this call.

The call DFS(∗,v) first marks v as active and then inspects all edges (v,w) out
of v. Assume now that we are exploring edge (v,w) with end node w. If w has been
seen before (w is marked as either active or completed), w is already a node of the
DFS forest. So (v,w) is not a tree edge, and hence we call traverseNonTreeEdge(v,w)
and make no recursive call of DFS. If w has not been seen before (w is unmarked),
(v,w) becomes a tree edge. We therefore call traverseTreeEdge(v,w) and make the
recursive call of DFS(v,w). When we return from this call, we explore the next edge
out of v. Once all edges out of v have been explored, the procedure backtrack(u,v)
is called, where (u,v) is the edge in the call DFS for v; it performs summarizing and
cleanup work. We then change the mark of v to “completed” and return.

At any point in time during the execution of DFS, there are a number of ac-
tive calls. More precisely, there are nodes v1,v2, . . . ,vk such that we are currently
exploring edges out of vk, and the active calls are DFS(v1,v1), DFS(v1,v2), . . . ,
DFS(vk−1,vk). In this situation, precisely the nodes v1 to vk are marked active and the
recursion stack contains the sequence 〈(v1,v1),(v1,v2), . . . ,(vk−1,vk)〉. More com-
pactly, we say that the recursion stack contains 〈v1, . . . ,vk〉. A node is called active
(or completed) if it is marked active (or completed, respectively). The node vk is
called the current node. We say that a node v has been reached when DFS(∗,v) has
already been called. So the reached nodes are the active and the completed nodes.

Exercise 9.11. Give a nonrecursive formulation of DFS. There are two natural real-
izations. One maintains the stack of active nodes and, for each active node, the set of
unexplored edges (it suffices to keep a pointer into the list or array of outgoing edges
of the active node). The other maintains a stack of all unexplored edges emanating
from active nodes. When a node is activated, all its outgoing edges are pushed onto
this stack.

284 9 Graph Traversal

9.3.1 DFS Numbering, Completion Times, and Topological Sorting

DFS has numerous applications. In this section, we use it to number the nodes in
two ways. As a by-product, we see how to detect cycles. We number the nodes in
the order in which they are reached (array dfsNum) and in the order in which they
are completed (array compNum). We have two counters, dfsPos and compPos, both
initialized to 1. When we encounter a new root or traverse a tree edge, we set the
dfsNum of the newly encountered node and increment dfsPos. When we backtrack
from a node, we set its compNum and increment compPos. We use the following
subroutines:

init: dfsPos = 1 : 1..n; compPos = 1 : 1..n
root(s): dfsNum[s] :=dfsPos++

traverseTreeEdge(v,w): dfsNum[w] :=dfsPos++

backtrack(u,v): compNum[v] :=compPos++

The ordering by dfsNum is so useful that we introduce a special notation ‘≺’
(pronounced “precedes”) for it. For any two nodes u and v, we define

u≺ v⇔ dfsNum[u]< dfsNum[v].

The numberings dfsNum and compNum encode important information about the
execution of DFS, as we shall show next. We shall first show that the DFS numbers
increase along any path of the DFS tree, and then show that the numberings together
classify the edges according to their type. They can also be used to encode the node
marks during the execution of DFS as follows. We use init to initialize dfsNum and
compNum with the all-zero vector. Then a node is unmarked if and only if its dfsNum

is equal to 0. It is active if and only if its dfsnum is positive and compNum is 0. The
node is completed if and only if its compNum is positive.

Lemma 9.2. The nodes on the DFS recursion stack are ordered with respect to ≺.

Proof. dfsPos is incremented after every assignment to dfsNum. Thus, when a node
v is made active by a call DFS(u,v) and is put on the top of the recursion stack, it has
just been assigned the largest dfsNum so far. ⊓⊔

dfsNums and compNums classify edges according to their type, as shown in Ta-
ble 9.1. The argument is as follows. We first observe that two calls of DFS are either
nested within each other, i.e., when the second call starts, the first is still active,
or disjoint, i.e., when the second starts, the first is already completed. If DFS(∗,w)
is nested in DFS(∗,v), the former call starts after the latter and finishes before it,
i.e., dfsNum[v] < dfsNum[w] and compNum[w] < compNum[v]. If DFS(∗,w) and
DFS(∗,v) are disjoint and the former call starts before the latter, it also ends before
the latter, i.e., dfsNum[w]< dfsNum[v] and compNum[w]< compNum[v].

Next we observe that the tree edges record the nesting structure of recursive calls.
When a tree edge (v,w) is explored within DFS(∗,v), the call DFS(v,w) is made and
hence is nested within DFS(∗,v). Thus w has a larger DFS number and a smaller
completion number than v. A forward edge (v,w) runs parallel to a path of tree edges

9.3 Depth-First Search 285

Table 9.1. The classification of an edge (v,w). The last column indicates the mark of w at the
time when the edge (v,w) is explored.

type dfsNum[v]< dfsNum[w] compNum[w]< compNum[v] Mark of w

tree Yes Yes unmarked
forward Yes Yes completed
backward No No active
cross No Yes completed

and hence w has a larger DFS number and a smaller completion number than v. We
can distinguish tree and forward edges by the mark of w at the time when the edge
(v,w) is inspected. If w is unmarked, the edge is a tree edge. If w is already marked,
the edge is a forward edge. In the case of a forward edge, w is marked as completed;
if w were active, it would be part of the recursion stack. Since v is the topmost node
of the recursion stack, this would imply dfsNum(w) < dfsNum(v), a contradiction.

A backward edge (v,w) runs antiparallel to a path of tree edges, and hence w has
a smaller DFS number and a larger completion number than v. Furthermore, when
the edge (v,w) is inspected, the call DFS(∗,v) is active and hence, by the nesting
structure, so is the call DFS(∗,w). Thus w is active when the edge (v,w) is inspected.

Let us look, finally, at a cross edge (v,w). Since (v,w) is not a tree, forward,
or backward edge, the calls DFS(∗,v) and DFS(∗,w) cannot be nested within each
other. Thus they are disjoint. So w is completed either before DFS(∗,v) starts or af-
ter it ends. The latter case is impossible, since, in this case, w would be unmarked
when the edge (v,w) was explored, and the edge would become a tree edge. So w

is completed before DFS(∗,v) starts and hence DFS(∗,w) starts and ends before
DFS(∗,v). Thus dfsNum[w]< dfsNum[v] and compNum[w]< compNum[v]. The fol-
lowing lemma summarizes this discussion.

Lemma 9.3. Table 9.1 shows the characterization of edge types in terms of dfsNum

and compNum and the mark of the endpoint at the time of the inspection of the edge.

Completion numbers have an interesting property for directed acyclic graphs.

Lemma 9.4. The following properties are equivalent:

(a) G is a DAG;

(b) DFS on G produces no backward edges;

(c) all edges of G go from larger to smaller completion numbers.

Proof. Backward edges run antiparallel to paths of tree edges and hence create cy-
cles. Thus DFS on an acyclic graph cannot create any backward edges. This shows
that (a) implies (b). All edges except backward edges run from larger to smaller
completion numbers, according to Table 9.1. This shows that (b) implies (c). Finally,
assume that all edges run from larger to smaller completion numbers. In this case the
graph is clearly acyclic. This shows that (b) implies (a). ⊓⊔

An order of the nodes of a DAG in which all edges go from earlier to later nodes is
called a topological sorting. By Lemma 9.4, the ordering by decreasing completion

286 9 Graph Traversal

number is a topological ordering. Many problems on DAGs can be solved efficiently
by iterating over the nodes in a topological order. For example, in Sect. 10.2 we shall
see a fast, simple algorithm for computing shortest paths in acyclic graphs.

Exercise 9.12. Modify DFS such that it labels the edges with their type.

Exercise 9.13 (topological sorting). Design a DFS-based algorithm that outputs the
nodes in topological order if G is a DAG. Otherwise, it should output a cycle.

Exercise 9.14. Design a BFS-based algorithm for topological sorting.

Exercise 9.15. In a DFS on an undirected graph, it is convenient to explore edges in
only one direction. When an undirected edge {v,w} is inspected for the first time,
say in the direction from v to w, it is “turned off” in the adjacency list of w and
not explored in the opposite direction. Show that DFS (with this modification) on an
undirected graph does not produce any cross edges or forward edges.

9.3.2 Strongly Connected Components

We now come back to the problem posed at the beginning of this chapter. Recall that
two nodes belong to the same strongly connected component (SCC) of a graph if and
only if they are reachable from each other. In undirected graphs, the relation “being
reachable” is symmetric, and hence strongly connected components are the same as
connected components. Exercise 9.7 outlines how to compute connected components
using BFS, and adapting this idea to DFS is equally simple. For directed graphs, the
situation is more interesting. Figure 9.10 shows a graph and its strongly connected
components. It also illustrates the concept of the shrunken graph Gs corresponding
to a directed graph G, which will turn out to be extremely useful for this section. The
nodes of Gs are the SCCs of G. If C and D are distinct SCCs of G, we have an edge
(C,D) in Gs if and only if there is an edge (u,v) in G with u ∈C and v ∈D.

aa bb

c

d e

e

f

g
i

i
h

c,d, f ,g,h

Fig. 9.10. A digraph G and the corresponding shrunken graph Gs. The SCCs of G have node
sets {a}, {b}, {c,d, f ,g,h}, {e}, and {i}.

9.3 Depth-First Search 287

Exercise 9.16. Show that the node sets of distinct SCCs are disjoint. Hint: Assume
that SCCs C and D have a common node v. Show that any node in C can reach any
node in D and vice versa.

Lemma 9.5. The shrunken graph Gs with respect to a digraph G is acyclic.

Proof. Assume otherwise, and let C1,C2, . . . ,Ck−1,Ck with Ck = C1 be a cycle in
Gs. Recall that the Ci’s are SCCs of G. By the definition of Gs, G contains an edge
(vi,wi+1) with vi ∈ Ci and wi+1 ∈ Ci+1 for 0 ≤ i < k. Define vk = v1. Since Ci is
strongly connected, G contains a path from wi+1 to vi+1, 0 ≤ i < k. Thus all the vi’s
belong to the same SCC, a contradiction. ⊓⊔

We shall show that the strongly connected components of a digraph G can be
computed using DFS in linear time O(n+m). More precisely, the algorithm outputs
an array component indexed by nodes such that component[v] = component[w] if and
only if v and w belong to the same SCC. Alternatively, it could output the node set
of each SCC.

The idea underlying the algorithm is simple. We imagine that the edges of G are
added one by one to an initially edgeless graph. We use Gc = (V,Ec) to denote the
current graph, and keep track of how the SCCs of Gc evolve as edges are added.
Initially, there are no edges and each node forms an SCC of its own. We use Gs

c to
denote the shrunken graph of Gc.

How do the SCCs of Gc and Gs
c change when we add an edge e to Gc? There are

three cases to consider. (1) Both endpoints of e belong to the same SCC of Gc. Then
the shrunken graph and the SCCs do not change. (2) e connects nodes in different
SCCs but does not close a cycle. The SCCs do not change, and an edge is added to
the shrunken graph. (3) e connects nodes in different SCCs and closes one or more
cycles. In this case, all SCCs lying on one of the newly formed cycles are merged
into a single SCC, and the shrunken graph changes accordingly.

In order to arrive at an efficient algorithm, we need to describe how we maintain
the SCCs as the graph evolves. If the edges are added in arbitrary order, no efficient
simple method is known. However, if we use DFS to explore the graph, an efficient
solution is fairly easy to obtain. Consider a depth-first search on G, let Ec be the set of
edges already explored by DFS, and let Gc = (V,Ec) be the current graph. Recall that
a node is either unmarked, active, or completed. We distinguish between three kinds
of SCCs of Gc: unreached, open, and closed. Unmarked nodes have indegree and out-
degree 0 in Gc and hence form SCCs consisting of a single node. The corresponding
node in the shrunken graph is isolated. We call these SCCs unreached. The other
SCCs consist of marked nodes only. We call an SCC consisting of marked nodes
open if it contains an active node, and closed if it contains only completed nodes.
We call a marked node “open” if it belongs to an open component and “closed” if
it belongs to a closed component. Observe that a closed node is always completed
and that an open node may be either active or completed. For every SCC, we call the
node with the smallest DFS number in the SCC the representative of the SCC. Fig-
ure 9.11 illustrates these concepts. We next state some important invariant properties
of Gc; see also Fig. 9.12:

288 9 Graph Traversal

a

a

b

b

c

d

e

e

f

g

h

cd

fgh

open nodes b c d f g h

representatives b c f

Fig. 9.11. A snapshot of DFS on the graph in Fig. 9.10 and the corresponding shrunken graph.
The first DFS was started at node a and a second DFS was started at node b, the current node is
g, and the recursion stack contains b, c, f , g. The edges (g, i) and (g,d) have not been explored
yet. Edges (h, f) and (d,c) are back edges, (e,a) is a cross edge, and all other edges are tree
edges. Finished nodes and closed components are shaded. There are closed components {a}
and {e} and open components {b}, {c,d}, and { f ,g,h}. The open components form a path in
the shrunken graph with the current node g belonging to the last component. The representa-
tives of the open components are the nodes b, c, and f , respectively. DFS has reached the open
nodes in the order b, c, d, f , g, h. The representatives partition the sequence of open nodes
into the SCCs of Gc.

current
node

open nodes ordered by their DFS number

S1 S2 Sk

r1 r2 rk

Fig. 9.12. The open SCCs are shown as ovals, and the current node is shown as a bold circle.
The tree path to the current node is indicated. It enters each component at its representative.
The horizontal line below represents the open nodes, ordered by dfsNum. Each open SCC
forms a contiguous subsequence, with its representative as its leftmost element.

(a) All edges in G (not just Gc) out of closed nodes lead to closed nodes. In our
example, the nodes a and e are closed.

(b) The tree path to the current node contains the representatives of all open com-
ponents. Let S1 to Sk be the open components as they are traversed by the tree
path to the current node. There is then a tree edge from a node in Si−1 to the
representative of Si, and this is the only edge in Gc into Si, 2≤ i≤ k. Also, there
is no edge from an S j to an Si with i < j. Finally, all nodes in S j are reachable

9.3 Depth-First Search 289

from the representative ri of Si for 1≤ i≤ j ≤ k. In short, the open components
form a path in the shrunken graph. In our example, the current node is g. The
tree path 〈b,c, f ,g〉 to the current node contains the open representatives b, c,
and f .

(c) Consider the nodes in the open components ordered by their DFS numbers. The
representatives partition the sequence into the open components. In our example,
the sequence of open nodes is 〈b,c,d, f ,g,h〉 and the representatives partition
this sequence into the open components {b}, {c,d}, and { f ,g,h}.

We shall show below that all three properties hold true generally, and not only for
our example. The three properties will be invariants of the algorithm to be developed.
The first invariant implies that the closed SCCs of Gc are actually SCCs of G, i.e., it
is justified to call them closed. This observation is so important that it deserves to be
stated as a lemma.

Lemma 9.6. A closed SCC of Gc is an SCC of G.

Proof. Let v be a closed vertex, let S be the SCC of G containing v, and let Sc be the
SCC of Gc containing v. We need to show that S = Sc. Since Gc is a subgraph of G,
we have Sc ⊆ S. So, it suffices to show that S⊆ Sc. Let w be any vertex in S. There is
then a cycle C in G passing through v and w. The invariant (a) implies that all vertices
of C are closed. Since closed vertices are completed, all edges out of them have been
explored. Thus C is contained in Gc, and hence w ∈ Sc. ⊓⊔

The invariants (b) and (c) suggest a simple method to represent the open SCCs of
Gc. We simply keep a sequence oNodes of all open nodes in increasing order of
DFS number, and the subsequence oReps of open representatives. In our example,
we have oNodes = 〈b,c,d, f ,g,h〉 and oReps = 〈b,c, f 〉. We shall see later that both
sequences are best kept as a stack (type Stack of NodeId).

Let us next see how the SCCs of Gc develop during DFS. We shall discuss the
various actions of DFS one by one and show that the invariants are maintained. We
shall also discuss how to update our representation of the open components.

When DFS starts, the invariants clearly hold: No node is marked, no edge has
been traversed, Gc is empty, and hence there are neither open nor closed components
yet. The sequences oNodes and oReps are empty.

Just before a new root is to be marked, i.e., the construction of a new DFS tree is
started, all marked nodes are completed and hence there cannot be any open compo-
nent. Therefore, both of the sequences oNodes and oReps are empty, and marking a
new root s produces the open component {s}. The invariants are clearly maintained.
We obtain the correct representation by adding s to both sequences.

If a tree edge e = (v,w) is traversed and hence w is marked as active, {w} be-
comes an open component on its own. All other open components are unchanged.
The invariant (a) is clearly maintained, since v is active and hence open. The old cur-
rent node is v and the new current node is w. The sequence of open components is
extended by {w}. The open representatives are the old open representatives plus the
node w. Thus the invariant (b) is maintained. Also, w becomes the open node with

290 9 Graph Traversal

current
nodev

w

ri rk

Si Sk

Fig. 9.13. The open SCCs are shown as ovals and their representatives as circles on the left
side of the oval. All representatives lie on the tree path to the current node v. The nontree edge
e = (v,w) ends in an open SCC Si with representative ri. There is a path from w to ri since w

belongs to the SCC with representative ri. Thus edge (v,w) merges Si to Sk into a single SCC.

the largest DFS number and hence oNodes and oReps are both extended by w. Thus
the invariant (c) is maintained.

Now suppose that a nontree edge e = (v,w) out of the current node v is explored.
If w is closed, the SCCs of Gc do not change when e is added to Gc, since, by
Lemma 9.6, the SCC of Gc containing w is already an SCC of G before e is traversed.
So, assume that w is open. Then w lies in some open SCC Si of Gc. We claim that
the SCCs Si to Sk are merged into a single component and all other components are
unchanged; see Fig. 9.13. Let ri be the representative of Si. We can then go from ri

to v along a tree path by invariant (b), then follow the edge (v,w), and finally return
to ri. The path from w to ri exists, since w and ri lie in the same SCC of Gc. We
conclude that any node in an S j with i≤ j ≤ k can be reached from ri and can reach
ri. Thus the SCCs Si to Sk become one SCC, and ri is their representative. The S j

with j < i are unaffected by the addition of the edge.
The invariant (c) tells us how to find ri, the representative of the component

containing w. The sequence oNodes is ordered by dfsNum, and the representative of
an SCC has the smallest dfsNum of any node in that component. Thus dfsNum[ri]≤
dfsNum[w] and dfsNum[w]< dfsNum[r j] for all j > i. It is therefore easy to update our
representation. We simply delete all representatives r with dfsNum[r] > dfsNum[w]
from oReps.

Finally, we need to consider completing a node v. When will this close an SCC?
Completion of v will close the the SCC containing it if and only if v was the only
remaining active node in the SCC. By invariant (b), all nodes in a component are tree
descendants of the representative of the component, and hence the representative of
a component is the last node to be completed in the component. In other words,
we close a component if and only if we complete its representative. Since oReps

is ordered by dfsNum, we close a component if and only if the last node of oReps

completes. So, assume that we complete a representative v. Then, by invariant (c),
the component Sk with representative v = rk consists of v and all nodes in oNodes

following v. Completing v closes Sk. By invariant (a), there is no edge out of Sk

into an open component. Thus invariant (a) holds after Sk is closed. If k = 1, the
exploration of the entire DFS tree is completed and invariants (b) and (c) clearly
hold. If k≥ 2, the new current node is the parent of v. By invariant (b), the parent of

9.3 Depth-First Search 291

v lies in Sk−1. Thus invariant (b) holds after Sk is closed. Invariant (c) holds after v is
removed from oReps, and v and all nodes following it are removed from oNodes.

init:

component : NodeArray of NodeId // SCC representatives
oReps = 〈〉 : Stack of NodeId // representatives of open SCCs
oNodes = 〈〉 : Stack of NodeId // all nodes in open SCCs

root(w) or traverseTreeEdge(v,w):
oReps.push(w) // new open
oNodes.push(w) // component

traverseNonTreeEdge(v,w):
if w ∈ oNodes then

while w≺ oReps.top do oReps.pop // collapse components on cycle

backtrack(u,v):
if v = oReps.top then

oReps.pop // close
repeat // component

w :=oNodes.pop

component[w] := v

until w = v

Fig. 9.14. An instantiation of the DFS template that computes strongly connected components
of a graph G = (V,E)

It is now easy to instantiate the DFS template. Figure 9.14 shows the pseudocode,
and Fig. 9.15 illustrates a complete run. We use an array component indexed by nodes
to record the result, and two stacks oReps and oNodes. When a new root is marked or
a tree edge is explored, a new open component consisting of a single node is created
by pushing this node onto both stacks. When a cycle of open components is created,
these components are merged by popping all representatives from oReps having a
larger DFS number than w. An SCC S is closed when its representative v finishes.
At that point, all nodes of S are stored above v in oNodes. The operation backtrack

therefore closes S by popping v from oReps, and by popping the nodes w ∈ S from
oNodes and setting their component to the representative v.

Note that the test w ∈ oNodes in traverseNonTreeEdge can be done in constant
time by storing information with each node that indicates whether the node is open.
This indicator is set when a node v is first marked, and reset when the component
of v is closed. We give implementation details in Sect. 9.5. Furthermore, the while-
loop and the repeat loop can make at most n iterations during the entire execution
of the algorithm, since each node is pushed onto the stacks exactly once. Hence, the
execution time of the algorithm is O(m+ n). We have the following theorem.

Theorem 9.7. The algorithm in Fig. 9.14 computes strongly connected components

in time O(m+ n).

292 9 Graph Traversal

open SCC

closed SCCnot inspected

inspected

not a representative
representative

unmarked active completed

traverse(c,a)

aa bb cc dd ee ff gg ii hh jj kk

traverse(e,g) traverse(e,h) traverse(h, i)

traverse(a,b) traverse(b,c)
traverse(i,e)

traverse(i, j) traverse(j,c) traverse(j,k)

traverse(d,e) traverse(e, f)
traverse(f ,g)

traverse(k,d)

root(a)

root(d)

backtrack(b,c) backtrack(a,b)

backtrack(a,a)

backtrack(j,k) backtrack(i, j) backtrack(h, i)
backtrack(e,h) backtrack(d,e)

backtrack(f ,g) backtrack(e, f) backtrack(d,d)

Fig. 9.15. An example of the development of open and closed SCCs during DFS. Unmarked
nodes are shown as empty circles, active nodes are shown in gray, and completed nodes are
shown in black. Nontraversed edges are shown in gray, and traversed edges are shown in
black. Open SCCs are shown as unfilled closed curves, and closed SCCs are shaded gray.
Representatives are shown as squares and nonrepresentatives are shown as circles. We start in
the situation shown at the upper left. We make a a root and traverse the edges (a,b) and (b,c).
This creates three open SSCs. The traversal of edge (c,a) merges these components into one.
Next, we backtrack to b and then to a, and finally complete a. At this point, the component
becomes closed. Exercise: Please complete the description.

Exercise 9.17 (certificates). Let G be a strongly connected graph and let s be a node
of G. Show how to construct two trees rooted at s. The first tree proves that all nodes
can be reached from s, and the second tree proves that s can be reached from all
nodes. Can you modify the SCC algorithm so that it constructs both trees?

Exercise 9.18 (2-edge-connected components). An undirected graph is 2-edge-
connected if its edges can be oriented so that the graph becomes strongly connected.
The 2-edge-connected components are the maximal 2-edge-connected subgraphs;
see Fig. 9.16. Modify the SCC algorithm shown in Fig. 9.14 so that it computes 2-

9.3 Depth-First Search 293

0

1

2

3

4
5

Fig. 9.16. The graph has two 2-
edge-connected components, namely
{0,1,2,3,4} and {5}. The graph
has three biconnected components,
namely the subgraphs spanned by the
sets {0,1,2}, {1,3,4}, and {2,5}. The
vertices 1 and 2 are articulation points.

edge-connected components. Hint: Use the fact that DFS of an undirected graph does
not produce either forward or cross edges (Exercise 9.15).

Exercise 9.19 (biconnected components). An articulation point in an undirected
graph is a node whose removal disconnects the graph. An undirected graph without
an articulation point is called biconnected. Two trivial cases are a single node and
two nodes connected by an edge. Show that a graph with more than two nodes is
biconnected if and only if every pair of distinct nodes is connected by two node-
disjoint paths; see Fig. 9.16. A biconnected component (BCC) of an undirected graph
is a maximal biconnected subgraph. Biconnected components are pairwise edge-
disjoint. They may share nodes. The nodes that belong to more than one BCC are
precisely the articulation points. Design an algorithm that computes the biconnected
components of an undirected graph using a single pass of DFS. Hint: Adapt the
strongly-connected-components algorithm. Define the representative of a BCC as
the node with the second smallest dfsNum in the BCC. Prove that a BCC consists of
the parent of the representative and all tree descendants of the representative that can
be reached without passing through another representative. Modify backtrack. When
you return from a representative v, output v, all nodes above v in oNodes, and the
parent of v.

*Exercise 9.20 (open ear decomposition of biconnected graphs). An open ear de-
composition of a graph is a sequence of paths P0, . . . , Pk with the following prop-
erties: P0 is a simple cycle and each Pi is a path whose endpoints lie on one of the
preceding paths, whose endpoints are distinct, and which is internally disjoint from
the preceding paths.

(a) Show: If a graph has an open ear decomposition, it is biconnected.
(b) Show: Every biconnected graph has an open ear decomposition. Hint: Consider

a DFS on a biconnected graph. Decompose G into a set of paths P0,P1, . . . as
follows. First consider any back edge (u,s) ending in the root s of the DFS tree.
The first path P0 consists of the back edge (u,s) plus the tree path from s to u. To
construct Pi, choose a back edge (u,v) where v lies on Vi−1 :=∪ j<iPi and then
trace back tree edges from u until a node in Vi−1 is encountered. In what order
should one consider the back edges so that an open ear decomposition results?

294 9 Graph Traversal

9.4 Parallel Traversal of DAGs

In this section we describe a simple parallel algorithm for traversing the nodes of
directed acyclic graphs (DAGs) in topological order. This immediately yields an al-
gorithm for topological sorting but also serves as an algorithm template for other
graph problems, including maximal independent sets and graph coloring. Indeed, the
template can be viewed as a way to parallelize a class of greedy graph algorithms.

We have already seen a sequential algorithm for topological sorting in Sect. 2.12
and Exercise 8.3. We maintain the current indegree of each node and initialize a set
with the nodes of indegree 0. Repeatedly, we remove all nodes in the set and their
outgoing edges from the graph and add the nodes whose indegree becomes 0 to the
set. This algorithm performs D+ 1 iterations, where D is the length of the longest
path in the network. Each iteration can be parallelized. We describe the distributed-
memory version of the algorithm. Figure 9.17 gives pseudocode. As in parallel BFS
(Sect. 9.2.3), we maintain a local array Q of local nodes that are ready to be pro-
cessed. For DAG traversal, this means that they have indegree 0. Each PE iterates
through the nodes u in its part of Q and sends messages to the PEs responsible for
handling the nodes v reached by the edges out of u. Using prefix sums over the size
of Q on each PE, we can assign unique numbers to the nodes which overall form a
topological sorting3 of the nodes of V . After all messages have been delivered, the
incoming messages are processed. For topological sorting, the only thing that needs
to be done for a message (u,v) is to decrement the indegree counter δ−[v], and, if it
has dropped to 0, to put v into Q.

Our DAG traversal algorithm can be generalized into an algorithm template
whose main abstraction is sending messages along edges. More concretely, we get
basic subroutines for initialization, sending messages, receiving a message, and pro-
cessing the last message to a node. This is quite elegant because it completely ab-
stracts from the parallel machine architecture used. Indeed, the basic approach was
originally invented for external-memory graph algorithms, where it is known as time
forward processing [72]. Using external-memory priority queues (see also Sect. 6.3)
for message delivery, time forward processing yields algorithms with sorting com-
plexity. The parallel complexity of the algorithm is a more complicated issue. To
keep matters simple, we just consider a simple case in an exercise.

Exercise 9.21. Let ∆ denote the maximum degree and D the length of the longest
path in a DAG. Explain how to do topological sorting in time

O

(
m+ n

p
+D(∆ + logn)

)

on a CRCW-PRAM model that allows fetch-and-decrement in constant time.

3 Note that in each iteration, we process nodes that have the same length of the longest path
from a source node of the graph. Thus there can be no edges between them. Hence, the
relative numbering of these nodes is arbitrary.

9.4 Parallel Traversal of DAGs 295

Function traverseDAG // let V denote the set of local nodes.
δ− = 〈indegree(v) : v ∈V 〉 : NodeArray of N0
topOrder : NodeArray of N

Q =
〈
v ∈V : δ−[v] = 0

〉
: Set of NodeId // and further initializations

for (pos:=0; ∑i |Q|@i > 0;) // explore layer by layer
offset :=pos+∑i<iproc

|Q|@i // offset for local PE numbers using prefix sums
foreach u ∈ Q do

topOrder[u] :=++offset

foreach (u,v) ∈ E do post message (u,v) to PE v.p
pos+=∑i |Q|@i // advance to next layer
deliver all messages

Q :={}
foreach received message (u,v) do // process message

if --δ−[v] = 0 then // process last message to v

Q :=Q∪{v} // remember for next layer
return topOrder

Fig. 9.17. Topological sorting using SPMD distributed-memory traversal of DAGs

We now give instantiations of the parallel DAG traversal template for two addi-
tional basic problems on undirected graphs – maximal independent sets and graph
coloring. Another example (shortest paths) can be found in Sect. 10.2. The basic trick
is to convert the undirected graph to a DAG by choosing an ordering of the nodes and
then to convert an undirected edge {u,v} to the directed edge (min(u,v),max(u,v)).
In some cases it is a good idea to choose a random ordering of the nodes, since this
keeps the longest path length D short, at least for graphs with small node degrees.

Lemma 9.8. The DAG G′ resulting from an undirected graph G with maximum de-

gree ∆ and a random ordering of the nodes has expected maximum path length

D = O(∆ + logn).

Proof. There are fewer than n∆ ℓ simple paths of length ℓ in G; there are n choices
for the first node of the path and at most ∆ choices for each subsequent node. The
probability that any particular one of these paths becomes a path in the DAG is 1/ℓ!.
Hence, the probability that there is any path of length ℓ in G′ is at most

pℓ = n
∆ ℓ

ℓ!
≤ n

(
∆e

ℓ

)ℓ

.

This estimate uses (A.9). We show that this probability is small for ℓ=Ω(∆ + logn).
First note that (∆e/ℓ)ℓ decreases with growing ℓ for ℓ≥ ∆ . This holds since

d

dℓ
ln

(
∆e

ℓ

)ℓ

=
d

dℓ
(ℓ(ln(∆e)− lnℓ)) = ln(∆e)− lnℓ− 1 = ln∆ − lnℓ.

For ℓ≥ ℓ0 = 5max(∆ , ln n), we obtain

296 9 Graph Traversal

(
ℓ

∆e

)ℓ

≥
(

ℓ0

∆e

)ℓ0

≥
(

5∆

∆e

)5 lnn

≥
(

5
e

)5 lnn

= elnn ln(5
e)

5

= n3.047....

Hence, for ℓ≥ ℓ0, pℓ ≤ n ·1/n3.047... = n−2.047.... We can now bound the expectation
of D, namely,

E[D]≤ ℓ0− 1+ ∑
ℓ0≤ℓ≤n

pℓℓ≤ ℓ0− 1+ n ·n−2.047...≤ ℓ0− 1+ 1= ℓ0,

where the last inequality holds for sufficiently large n. ⊓⊔

Figure 9.18 gives an example. Note that the undirected graph on the left has a
diameter of 8; the longest path is from node 4 to node b and has eight edges. In
constrast, the longest path in the DAG obtained by randomly numbering the nodes is
fairly short – only three edges.

edges

layer

9 70

24

15

68

0 1 2 3

3

7
2

9

3

4

0
1

5

6
8

d

b

a

c

be

d

c

f

a

e

f

Fig. 9.18. An undirected graph with 16 nodes with randomly assigned node IDs. The DAG
resulting from this node ordering (0 < 1 < .. . < 9 < a < .. . < f) has longest path length
D = 3. The shapes of the boxes around the nodes on the right hand side indicate their color
when the DAG is used to color the nodes; see Sect. 9.4.2.

9.4.1 Maximal Independent Sets

An independent set I ⊆ V of an undirected graph G = (V,E) is a set of nodes with
no edges between them, i.e., E ∩

(
I
2

)
= /0. Independent sets are an important concept

in graph theory and are immediately relevant to parallel processing since several PEs
can concurrently update the vertices of an independent set while being sure that the
neighbors of the nodes in I will not change.

The following instantiation of the DAG traversal template yields an independent
set I. We represent I by an array I of Boolean values and initialize it to 1 everywhere.
At the end, I[v] is true if and only if v is in the independent set. The only information
we need to pass along an edge (u,v) is whether u is in I. A node v remains in I

only if there is no edge (u,v) with u ∈ I. The following pseudocode summarizes this
instantiation:

9.4 Parallel Traversal of DAGs 297

init: I = 〈1, . . . ,1〉 : NodeArray of {0,1}
message sent for edge (u,v): I[u]

on receiving message x to v: I[v] := I[v]∧ x

In the example graph in Fig. 9.18, nodes 0, 1, 2, 4, 5, and 7 are processed first and
are all put into the independent set. Nodes 3, 6, 9, b, d, and e in layer 1, and nodes 8,
c, and f in layers 2 and 3 receive messages from these nodes and hence stay out of
the independent set. However, node a in layer 2 becomes part of the independent set
since it receives no message – all its neighbors stay out of the independent set.

9.4.2 Graph Coloring

Recall, that graph coloring asks for colors to be assigned to nodes such that no two
neighboring nodes have the same color; see also Sect. 12.5.2.1. A greedy heuristic
for this task is only slightly more complicated than the one for computing a maximal
independent set. We encode colors as positive integers. Nodes send their color along
outgoing edges. Each node chooses the smallest color that is not already taken by one
of its predecessors in the DAG. The following pseudocode shows how to implement
the heuristic efficiently. Each node v pushes received messages onto a stack S[v].
Note that this is possible in constant time per incoming edge. When all messages
have been received, we find the smallest color not in the stack S[v] in time O(|S[v]|).
We do this using an auxiliary array used, recording the colors in S[v]. Since S[v] can
contain very large colors but we are guaranteed to find a free color in 1..|S[v]|+ 1, it
suffices to record colors less than or equal to |S[v]|+ 1:

init:c : NodeArray of N; S : NodeArray of Stack of N

foreach v ∈ Q do c[v] := 1

message sent for edge (u,v): c[v]

on receiving message x to v: S[v].push(x)

postprocess messages to v: used = 〈0, . . . ,0〉 : Array[1..|S[v]|+ 1] of {0,1}
while S[v] 6= /0 do x :=S.pop; if x≤ |used| then used[x] :=1
c[v] :=min{i ∈ 1..|used| : ¬used[i]}

Figure 9.18 gives an example. Nodes 0, 1, 2, 4, 5, and 7 have indegree 0 in the DAG
and thus set their color to 1. The nodes in the subsequent layer, 3, 6, 9, b, d, and e

receive only messages that color 1 is taken. Hence, color 2 is the first free color for
all of them. Node a receives messages only from nodes 3, 6, and 9, which all have
color 2. Hence, color 1 is the first free color for node a. In contrast, node 8 receives
color 1 from node 0 and color 2 from node 6. Hence, its first free color is 3. Finally,
nodes c and f receive colors 1 and 3, so that their first free color is 2.

Exercise 9.22. Show that this heuristic ensures that ∆ + 1 colors suffice where ∆ is
the maximum degree of the graph.

298 9 Graph Traversal

9.5 Implementation Notes

BFS is usually implemented by keeping unexplored nodes (with depths d and d+1)
in a FIFO queue. We chose a formulation using two separate sets for nodes at depth
d and at depth d + 1 mainly because it allows a simple loop invariant that makes
correctness immediately evident. However, our formulation might also turn out to be
somewhat more efficient. If Q and Q′ are organized as stacks, we shall have fewer
cache faults than with a queue, in particular if the nodes of a layer do not quite fit
into the cache. Memory management becomes very simple and efficient when just a
single array a of n nodes is allocated for both of the stacks Q and Q′. One stack grows
from a[1] to the right, and the other grows from a[n] to the left. When the algorithm
switches to the next layer, the two memory areas switch their roles.

Our SCC algorithm needs to store four kinds of information for each node v: an
indication of whether v is marked, an indication of whether v is open, something like
a DFS number in order to implement “≺”, and, for closed nodes, the NodeId of the
representative of its component. The array component suffices to keep this informa-
tion. For example, if NodeIds are integers in 1..n, component[v] = 0 could indicate
an unmarked node. Negative numbers can indicate negated DFS numbers, so that
u≺ v if and only if component[u]> component[v]. This works because “≺” is never
applied to closed nodes. Finally, the test w ∈ oNodes becomes component[v] < 0.
With these simplifications in place, additional tuning is possible. We make oReps

store component numbers of representatives rather than their IDs, and save an ac-
cess to component[oReps.top]. Finally, the array component should be stored with
the node data as a single array of records. The effect of these optimizations on the
performance of our SCC algorithm is discussed in [218].

9.5.1 C++

LEDA [194] has implementations for topological sorting, reachability from a node
(DFS), DFS numbering, BFS, strongly connected components, biconnected compo-
nents, and transitive closure. BFS, DFS, topological sorting, and strongly connected
components are also available in a very flexible implementation that separates rep-
resentation and implementation, supports incremental execution, and allows various
other adaptations.

The Boost graph library [50] and the LEMON graph library [200] use the visitor

concept to support graph traversal. A visitor class has user-definable methods that
are called at event points during the execution of a graph traversal algorithm. For
example, the DFS visitor defines event points similar to the operations init, root,
traverse∗, and backtrack used in our DFS template; there are more event points in
Boost and LEMON.

9.5.2 Java

The JGraphT [166] library supports DFS in a very flexible way, not very much differ-
ent from the visitor concept described for Boost and LEMON. There are also more
specialized algorithms, for example for biconnected components.

9.6 Historical Notes and Further Findings 299

9.6 Historical Notes and Further Findings

BFS and DFS were known before the age of computers. Tarjan [305] discovered the
power of DFS and provided linear-time algorithms for many basic problems related
to graphs, in particular biconnected and strongly connected components. Our SCC
algorithm was invented by Cheriyan and Mehlhorn [70] and later rediscovered by
Gabow [118]. Yet another linear-time SCC algorithm is that due to Kosaraju and
Sharir [292]. It is very simple, but needs two passes of DFS. DFS can be used to
solve many other graph problems in linear time, for example ear decomposition,
planarity testing, planar embeddings, and triconnected components.

It may seem that problems solvable by graph traversal are so simple that little
further research is needed on them. However, the bad news is that graph traversal
itself is very difficult on advanced models of computation. In particular, DFS is a
nightmare for both parallel processing [263] and memory hierarchies [214, 228].
Therefore alternative ways to solve seemingly simple problems are an interesting
area of research. For example, in Sect. 11.9 we describe an approach to constructing
minimum spanning trees using edge contraction that also works for finding con-
nected components. Furthermore, the problem of finding biconnected components
can be reduced to finding connected components [309]. The DFS-based algorithms
for biconnected components and strongly connected components are almost iden-
tical. But this analogy completely disappears for advanced models of computation.
Thus, parallel algorithms for strongly connected components remain an area of inten-
sive (and sometimes frustrating) research (e.g., [104, 154]). More generally, it seems
that problems for undirected graphs (such as finding biconnected components) are
easier to solve than analogous problems for directed graphs (such as finding strongly
connected components).

Parallel BFS has become a very popular benchmark for graph processing; see
graph500.org/. Amazing performance values have been achieved by exploiting
rather special properties of the benchmark graphs. In particular, most of the work is
done in a very small number of layers.

graph500.org/

