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Hash Tables and Associative Arrays

If you want to get a book from the central library of the Karlsruhe Institute of Tech-

nology (KIT), you have to order the book in advance. The library personnel fetch

the book from the stacks and deliver it to a room with 100 shelves. You find your

book on a shelf numbered with the last two digits of your library card. Why the last

digits and not the leading digits? Probably because this distributes the books more

evenly among the shelves. The library cards are numbered consecutively as students

register. The University of Karlsruhe, the predecessor of KIT, was founded in 1825.

Therefore, the students who enrolled at the same time are likely to have the same

leading digits in their card number, and only a few shelves would be in use if the

leading digits were used.

The subject of this chapter is the robust and efficient implementation of the above
“delivery shelf data structure”. In computer science, this data structure is known as
a hash1 table. Hash tables are one implementation of associative arrays, or dictio-

naries. The other implementation is the tree data structures which we shall study in
Chap. 7. An associative array is an array with a potentially infinite or at least very
large index set, out of which only a small number of indices are actually in use. For
example, the potential indices may be all strings, and the indices in use may be all
identifiers used in a particular C++ program. Or the potential indices may be all ways
of placing chess pieces on a chess board, and the indices in use may be the place-
ments required in the analysis of a particular game. Associative arrays are versatile
data structures. Compilers use them for their symbol table, which associates iden-
tifiers with information about them. Combinatorial search programs often use them
for detecting whether a situation has already been looked at. For example, chess pro-
grams have to deal with the fact that board positions can be reached by different
sequences of moves. However, each position needs to be evaluated only once. The
solution is to store positions in an associative array. One of the most widely used
implementations of the join operation in relational databases temporarily stores one

1 Photograph of the mincer above by Kku, Rainer Zenz (Wikipedia), License CC-by-SA 2.5.
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of the participating relations in an associative array. Scripting languages such as AWK
[8] and Perl [325] use associative arrays as their main data structure. In all of the
examples above, the associative array is usually implemented as a hash table. The
exercises in this section ask you to develop some further uses of associative arrays.

Formally, an associative array S stores a set of elements. Each element e has an
associated key key(e) ∈ Key. We assume keys to be unique, i.e., distinct elements
in S have distinct keys. Frequently, elements are key-value pairs, i.e., Element =
Key×Value. Associative arrays support the following operations:

• S.build({e1, . . . ,en}): S :={e1, . . . ,en}.
• S.insert(e : Element): If S contains no element with key key(e), S := S∪ {e}.

Otherwise, nothing is done.2

• S.remove(x : Key): if there is an e ∈ S with key(e) = x: S :=S \ {e}.
• S.find(x : Key): if there is an e ∈ S with key(e) = x, return e,

otherwise return ⊥.

If only operations build and find are used, the data structure is called static. Other-
wise, it is called a dynamic data structure. The operation build({e1, . . . ,en}) requires
that the keys of the elements e1 to en are pairwise distinct. If operation find(x) returns
a reference to an element it can also be updated subsequently by replacing the value
associated with key x. The operations find, insert, and remove essentially correspond
to reading from or writing to an array at an arbitrary position (random access). This
explains the name “associative array”.

In addition, we assume a mechanism that allows us to retrieve all elements in S.
Since this forall operation is usually easy to implement, we defer its discussion to
the exercises.

The set Key is the set of potential array indices, whereas the set {key(s) : e ∈ S}
comprises the indices in use at any particular time. Throughout this chapter, we use
n to denote the size of S, and N to denote the size of Key. In a typical application of
associative arrays, N is humongous and hence the use of an array of size N is out of
the question. We are aiming for solutions which use space O(n).

On a parallel machine, we also need atomic operations for finding and updating
a hash table element. Equally useful can be an operation insertOrUpdate that inserts
an element if it is not yet present and updates it otherwise. See Sect. 4.6 for more
details. We can also consider bulk operations – inserting, removing and updating
many elements in a batched fashion.

In the library example, Key is the set of all library card numbers, and the elements
are book orders. Another precomputer example is provided by an English-German
dictionary. The keys are English words, and an element is an English word together
with its German translations.

The basic idea behind the hash table implementation of associative arrays is sim-
ple. We use a hash function h to map the set Key of potential array indices to a small
range 0..m− 1 of integers. We also have an array t with index set 0..m− 1, the hash

2 An alternative implementation replaces the old element with key key(e) by e.
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table. In order to keep the space requirement low, we want m to be about the num-
ber of elements in S. The hash function associates with each element e a hash value

h(key(e)). In order to simplify the notation, we write h(e) instead of h(key(e)) for the
hash value of e. In the library example, h maps each library card number to its last
two digits. Ideally, we would like to store element e in the table entry t[h(e)]. If this
works, we obtain constant execution time3 for our three operations insert, remove,
and find.

Unfortunately, storing e in t[h(e)]will not always work, as several elements might
collide, i.e., map to the same table entry. The library example suggests a fix: Allow
several book orders to go to the same shelf. The entire shelf then has to be searched
to find a particular order. A generalization of this fix leads to hashing with chaining.
In each table entry, we store a set of elements and implement the set using singly
linked lists. Section 4.1 analyzes hashing with chaining using some rather optimistic
(and hence unrealistic) assumptions about the properties of the hash function. In this
model, we achieve constant expected time for all three dictionary operations.

In Sect. 4.2, we drop the unrealistic assumptions and construct hash functions that
come with good (probabilistic) performance guarantees. Our simple examples al-
ready show that finding good hash functions is nontrivial. For example, if we were to
apply the least-significant-digit idea from the library example to an English-German
dictionary, we might come up with a hash function based on the last four letters of
a word. But then we would have many collisions for words ending in “tion”, “able”,
etc.

We can simplify hash tables (but not their analysis) by returning to the original
idea of storing all elements in the table itself. When a newly inserted element e finds
the entry t[h(e)] occupied, it scans the table until a free entry is found. In the library
example, assume that shelves can hold exactly one book. The librarians would then
use adjacent shelves to store books that map to the same delivery shelf. Section 4.3
elaborates on this idea, which is known as hashing with open addressing and linear

probing. After comparing the two approaches in Sect. 4.4, we turn to parallel hashing
in Sect. 4.6. The main issue here is to avoid or mitigate the effects of multiple PEs
trying to access the same entry of the hash table.

Why are hash tables called hash tables? The dictionary defines “to hash” as “to
chop up, as of potatoes”. This is exactly what hash functions usually do. For example,
if keys are strings, the hash function may chop up the string into pieces of fixed size,
interpret each fixed-size piece as a number, and then compute a single number from
the sequence of numbers. A good hash function creates disorder and, in this way,
avoids collisions. A good hash function should distribute every subset of the key
space about evenly over the hash table. Hash tables are frequently used in time-
critical parts of computer programs.

3 Strictly speaking, we have to add additional terms for evaluating the hash function and for
moving elements around. To simplify the notation, we assume in this chapter that all of this
takes constant time.
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Exercise 4.1. Assume you are given a set M of pairs of integers. M defines a binary
relation RM . Use an associative array to check whether RM is symmetric. A relation
is symmetric if ∀(a,b) ∈M : (b,a) ∈M.

Exercise 4.2. Write a program that reads a text file and outputs the 100 most frequent
words in the text.

Exercise 4.3 (a billing system). Assume you have a large file consisting of triples
(transaction, price, customer ID). Explain how to compute the total payment due for
each customer. Your algorithm should run in linear time.

Exercise 4.4 (scanning a hash table). Show how to realize the forall operation for
hashing with chaining and for hashing with open addressing and linear probing. What
is the running time of your solution?

Exercise 4.5 ((database) hash join). Consider two relations R ⊆ A×B and Q ⊆
B×C with A 6=C. The (natural) join of R and Q is

R ⊲⊳ Q :={(a,b,c)⊆ A×B×C : (a,b) ∈ R∧ (b,c) ∈ Q} .

Give an algorithm for computing R ⊲⊳ Q in expected time O(|R|+ |Q|+ |R ⊲⊳ Q|)
assuming that elements of B can be hashed in constant time. Hint: The hash table
entries may have to store sets of elements.

4.1 Hashing with Chaining

Hashing with chaining maintains an array t of linear lists (see Fig. 4.1); the linear
list t[k] contains all elements e ∈ S with key(e) = k. The associative-array operations
are easy to implement. To find an element with key k, we scan through t[h(k)]. If an
element e with key(e) = k is encountered, we return it. Otherwise, we return ⊥. To
remove an element with key k, we scan through t[h(k)]. If an element e with key(e) =
k is encountered, we remove it and return. To insert an element e, we also scan
through the sequence t[h(k)]. If an element e′ with key(e′) = k is encountered, we
do nothing, otherwise, we add e to the sequence. The operation build({e1, . . . ,en})
is realized by n insert operations. Since the precondition of the operation guarantees
that the elements have distinct keys, there is no need to check whether there is already
an element with the same key and hence every element e can be inserted at the
beginning of the list t[h(e)]. Therefore, the running time is O(n).

The space consumption of the data structure is O(n+m). To remove, find or
insert an element with key k, we have to scan the sequence t[h(k)]. In the worst case,
for example, if find looks for an element that is not there, the entire list has to be
scanned. If we are unlucky, all elements are mapped to the same table entry and the
execution time is Θ(n). So, in the worst case, hashing with chaining is no better than
linear lists.

Are there hash functions that guarantee that all sequences are short? The answer
is clearly no. A hash function maps the set of keys to the range 0..m− 1, and hence
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Fig. 4.1. Hashing with chaining. We have a table t of sequences. This figure shows an example
where a set of words (short synonyms of “hash”) is stored using a hash function that maps the
last character to the integers 0..25. We see that this hash function is not very good.

for every hash function there is always a set of N/m keys that all map to the same
table entry. In most applications, n < N/m and hence hashing can always deteriorate
to linear search. We shall study three approaches to dealing with the worst-case. The
first approach is average-case analysis, where we average either over all possible
hash functions (Theorem 4.1) or over the possible inputs (Exercise 4.8). The second
approach is to use randomization, and to choose the hash function at random from
a collection of hash functions. This is equivalent to average case analysis where we
average over the possible hash functions. We shall study this approach in this section
and the next. The third approach is to change the algorithm. For example, we could
make the hash function depend on the set of keys in actual use. We shall investigate
this approach in Sect. 4.5 and shall show that it leads to good worst-case behavior.

Let H be the set of all functions from Key to 0..m− 1. We assume that the hash
function h is chosen randomly4 from H and shall show that for any fixed set S of n

keys, the expected execution time of insert, remove, and find is O(1+ n/m). Why
do we prove a theorem based on unrealistic assumptions? It shows us what might be
possible. We shall later obtain the same time bounds with realistic assumptions.

Theorem 4.1. If n elements are stored in a hash table with m entries and a ran-

dom hash function is used, the expected execution time of insert, remove, and find is

O(1+ n/m).

Proof. The proof requires the probabilistic concepts of random variables, their ex-
pectation, and the linearity of expectations as described in Sect. A.3. Consider the ex-

4 This assumption is completely unrealistic. There are mN functions in H, and hence it re-
quires N logm bits to specify a function in H. This defeats the goal of reducing the space
requirement from N to n.
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ecution time of insert, remove, and find for a fixed key k. These operations need con-
stant time for evaluating the hash function and accessing the list t[h(k)] plus the time
for scanning the sequence t[h(k)]. Hence the expected execution time is O(1+E[X ]),
where the random variable X stands for the length of the sequence t[h(k)]. Let S be
the set of n elements stored in the hash table. For each e ∈ S, let Xe be the indicator

variable which tells us whether e hashes to the same location as k, i.e., Xe = 1 if
h(e) = h(k) and Xe = 0 otherwise. In shorthand, Xe = [h(e) = h(k)]. There are two
cases. If there is no entry in S with key k, then X = ∑e∈S Xe. If there is an entry e0

in S with key(e0) = k, then X = 1+∑e∈S\{e0}Xe. Using the linearity of expectations,
we obtain in the first case

E[X ] = E

[

∑
e∈S

Xe

]

= ∑
e∈S

E[Xe] = ∑
e∈S

prob(Xe = 1).

A random hash function maps e to all m table entries with the same probability,
independent of h(k). Hence, prob(Xe = 1) = 1/m and therefore E[X ] = n/m. In the
second case (key k occurs in S), we obtain analogously X ≤ 1+(n−1)/m≤ 1+n/m.
Thus, the expected execution time of insert, find, and remove is O(1+ n/m). ⊓⊔

We can achieve a linear space requirement and a constant expected execution time for
all three operations by guaranteeing that m=Θ(n) at all times. Adaptive reallocation,
as described for unbounded arrays in Sect. 3.4, is the appropriate technique.

Exercise 4.6 (unbounded hash tables). Explain how to guarantee m = Θ(n) in
hashing with chaining. You may assume the existence of a hash function h′ : Key→
N. Set h(k) = h′(k) mod m and use adaptive reallocation.

Exercise 4.7 (waste of space). In part, the waste of space in hashing with chaining is
due to empty table entries. Assuming a random hash function, compute the expected
number of empty table entries as a function of m and n. Hint: Define indicator random
variables Y0, . . . , Ym−1, where Yi = 1 if t[i] is empty.

Exercise 4.8 (average-case behavior). Assume that the hash function distributes
the set of potential keys evenly over the table, i.e., for each i, 0≤ i≤m−1, we have
|{k ∈ Key : h(k) = i}| ≤ ⌈N/m⌉. Assume also that a random set S of n keys is stored
in the table, i.e., S is a random subset of Key of size n. Show that for any table position
i, the expected number of elements in S that hash to i is at most ⌈N/m⌉ ·n/N ≈ n/m.

4.2 Universal Hashing

Theorem 4.1 is unsatisfactory, as it presupposes that the hash function is chosen
randomly from the set of all functions5 from keys to table positions. The class of
all such functions is much too big to be useful. We shall show in this section that

5 In the context of hashing, one usually talks about a class or a family of functions and
reserves the word “set” for the set of keys or elements stored in the table.
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the same performance can be obtained with much smaller classes of hash functions.
The families presented in this section are so small that a member can be specified in
constant space. Moreover, the functions are easy to evaluate.

Definition 4.2. Let c be a positive constant. A family H of functions from Key to

0..m− 1 is called c-universal if any two distinct keys collide with a probability of at

most c/m, i.e., for all x, y in Key with x 6= y,

|{h ∈H : h(x) = h(y)}| ≤ c

m
|H|.

In other words, for random h ∈ H,

prob(h(x) = h(y))≤ c

m
.

This definition has been formulated so as to guarantee that the proof of Theorem 4.1
continues to work.

Theorem 4.3. If n elements are stored in a hash table with m entries using hashing

with chaining and a random hash function from a c-universal family is used, the

expected execution time of insert, remove and find is O(1+ cn/m).

Proof. We can reuse the proof of Theorem 4.1 almost literally. Observe that we have
changed the probability space. We are now choosing the hash function h from a c-
universal class. Nevertheless, the wording of the argument does not basically change.
Consider the execution time of insert, remove, or find for a fixed key k. They need
constant time plus the time for scanning the sequence t[h(k)]. Hence the expected
execution time is O(1+E[X ]), where the random variable X stands for the length
of the sequence t[h(k)]. Let S be the set of n elements stored in the hash table. For
each e ∈ S, let Xe be the indicator variable which tells us whether e hashes to the
same location as k, i.e., Xe = 1 if h(e) = h(k) and Xe = 0 otherwise. In shorthand,
Xe = [h(e) = h(k)]. There are two cases. If there is no entry in S with key k, then
X = ∑e∈S Xe. If there is an entry e0 in S with key(e0) = k, then X = 1+∑e∈S\{e0}Xe.
Using the linearity of expectations, we obtain in the first case

E[X ] = E

[

∑
e∈S

Xe

]

= ∑
e∈S

E[Xe] = ∑
e∈S

prob(Xe = 1).

Since h is chosen uniformly from a c-universal class, we have prob(Xe = 1)≤ c/m,
and hence E[X ] = cn/m. In the second case (key k occurs in S), we obtain analogously
X ≤ 1+ c(n− 1)/m≤ 1+ cn/m. Thus, the expected execution time of insert, find,
and remove is O(1+ cn/m). ⊓⊔

It now remains to find c-universal families of hash functions that are easy to construct
and easy to evaluate. We shall describe a simple and quite practical 1-universal family
in detail and give further examples in the exercises. We assume that our keys are bit
strings of a certain fixed length; in the exercises, we discuss how the fixed-length
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assumption can be overcome. We also assume that the table size m is a prime number.
Why a prime number? Because arithmetic modulo a prime is particularly nice; in
particular, the set Zm = {0, . . . ,m− 1} of numbers modulo m forms a field.6 Let
w = ⌊logm⌋. We subdivide the keys into pieces of w bits each, say k pieces. We
interpret each piece as an integer in the range 0..2w− 1 and keys as k-tuples of such
integers. For a key x, we write x = (x1, . . . ,xk) to denote its partition into pieces.
Each xi lies in 0..2w−1. We can now define our class of hash functions. For each a=
(a1, . . . ,ak) ∈ {0..m− 1}k, we define a function ha from Key to 0..m− 1 as follows.
Let x = (x1, . . . ,xk) be a key and let a ·x = ∑k

i=1 aixi denote the scalar product (over
Z) of a and x. Then

ha(x) = a ·x mod m.

This is the scalar product of a and x over Zm. It is time for an example. Let m = 17
and k = 4. Then w = 4 and we view keys as 4-tuples of integers in the range 0..15,
for example x = (11,7,4,3). A hash function is specified by a 4-tuple of integers in
the range 0..16, for example a = (2,4,7,16). Then ha(x) = (2 ·11+4 ·7+7 ·4+16 ·
3) mod 17 = 7.

Theorem 4.4. Let m be a prime. Then

H · =
{

ha : a ∈ {0..m− 1}k
}

is a 1-universal family of hash functions.

In other words, the scalar product of the representation of a key as a tuple of numbers
in {0..m− 1} and a random vector modulo m defines a good hash function if the
product is computed modulo a prime number.

Proof. Consider two distinct keys x = (x1, . . . ,xk) and y = (y1, . . . ,yk). To determine
prob(ha(x) = ha(y)), we count the number of choices for a such that ha(x) = ha(y).
Choose an index j such that x j 6= y j. Then (x j − y j) 6≡ 0 (mod m), and hence any
equation of the form a j(x j− y j)≡ b (mod m), where b ∈ Zm, has a unique solution
for a j, namely a j ≡ (x j− y j)

−1b (mod m). Here (x j− y j)
−1 denotes the multiplica-

tive inverse7 of (x j− y j).
We claim that for each choice of the ai’s with i 6= j, there is exactly one choice

of a j such that ha(x) = ha(y). Indeed,

6 A field is a set with special elements 0 and 1 and with addition and multiplication oper-
ations. Addition and multiplication satisfy the usual laws known for the field of rational
numbers.

7 In a field, any element z 6= 0 has a unique multiplicative inverse, i.e., there is a unique
element z−1 such that z−1 · z = 1. For example, in Z7, we have 1−1 = 1, 2−1 = 4, 3−1 = 5,
4−1 = 2, and 5−1 = 3. Multiplicative inverses allow one to solve linear equations of the
form zx = b, where z 6= 0. The solution is x = z−1b.
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ha(x) = ha(y)⇔ ∑
1≤i≤k

aixi ≡ ∑
1≤i≤k

aiyi (mod m)

⇔ a j(x j− y j) ≡ ∑
i6= j

ai(yi− xi) (mod m)

⇔ a j ≡ (x j− y j)
−1 ∑

i6= j

ai(yi− xi) (mod m).

There are mk−1 ways to choose the ai with i 6= j, and for each such choice there is a
unique choice for a j. Since the total number of choices for a is mk, we obtain

prob(ha(x) = ha(y)) =
mk−1

mk
=

1
m

. ⊓⊔

Is it a serious restriction that table sizes need to be prime? At first glance, yes. We
certainly cannot burden users with the task of providing appropriate primes. Also,
when we grow or shrink an array adaptively, it is not clear how to find a prime in the
vicinity of the desired new table size. A closer look, however, shows that the problem
is easy to resolve.

Number theory tells us that primes are abundant. More precisely, it is an easy
consequence of the prime number theorem [138, p. 264] that for every fixed α > 1
and every sufficiently large m, the interval [m,αm] contains about (α − 1)m/ lnm

prime numbers. The easiest solution is then to precompute a table which contains,
for example, for each interval 2ℓ..2ℓ+1− 1, a prime number in this interval. Such
tables are also available on the internet.

If one does not want to use a table, the required prime numbers can also be
computed on the fly. We make use of the following statement (Ak), where k≥ 1 is an
integer:

The interval k3..(k+ 1)3 contains at least one prime. (Ak)

It is known that (Ak) holds for k≤ 8 ·107 and for k > ee15
. For “small” k, the statement

was established by computation; we shall tell you more about this computation in
Sect. 4.8. For “large” k, the statement was established by mathematical proof [69].
For “intermediate” k, the question of whether (Ak) holds is open. Fortunately, the
“small k” result suffices for our purposes. If we want to use a hash table of size
approximately m, we determine a k with k3 ≤ m ≤ (k+ 1)3 and then search for a
prime in the interval k3..(k+ 1)3. The search is guaranteed to succeed for m ≤ 64 ·
1021; it may succeed also for larger m.

How does this search work? We use a variant of the “sieve of Eratosthenes”
(cf. Exercise 2.5). Any nonprime number in the interval must have a divisor which
is at most

√

(k+ 1)3 = (k+ 1)3/2. We therefore iterate over the numbers from 2 to
⌊
(k+ 1)3/2

⌋
and, for each such j, remove its multiples in k3..(k+ 1)3. For each fixed

j, this takes time ((k+ 1)3− k3)/ j = O
(
k2/ j

)
. The total time required is
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∑
j≤(k+1)3/2

O

(
k2

j

)

= k2 ∑
j≤(k+1)3/2

O

(
1
j

)

= O
(

k2 ln
(
(k+ 1)3/2)

)

= O
(
k2 lnk

)
= o(m)

and hence is negligible compared with the cost of initializing a table of size m. The
second equality in the equation above uses the harmonic sum (A.13).

Exercise 4.9 (strings as keys). Adapt the class H · to strings of arbitrary length. As-
sume that each character requires eight bits (= a byte). You may assume that the table
size is at least m = 257. The time for evaluating a hash function should be propor-
tional to the length of the string being processed. Input strings may have arbitrary
lengths not known in advance. Hint: Use “lazy evaluation” for choosing the random
vector a, i.e., fix only the components that have already been in use and extend if nec-
essary. You may assume at first that strings do not start with the character 0 (whose
byte representation consists of eight 0’s); note that the strings x and 0x are differ-
ent but have the same hash value for every function ha. Once you have solved this
restricted case, show how to remove the restriction.

Exercise 4.10 (hashing using bit matrix multiplication). For this exercise, keys are
bit strings of length k, i.e., Key = {0,1}k, and the table size m is a power of two, say
m = 2w. Each w× k matrix M with entries in {0,1} defines a hash function hM. For
x ∈ {0,1}k, let hM(x) = Mx mod 2, i.e., hM(x) is a matrix–vector product computed
modulo 2. The resulting w-bit vector is interpreted as a number in 0..m− 1. Let

H lin =
{

hM : M ∈ {0,1}w×k
}

.

For M =
(

1 0 1 1

0 1 1 1

)

and x=(1,0,0,1)T , we have Mx mod 2=(0,1)T . This represents

the number 0 ·21+1 ·20 = 1. Note that multiplication modulo two is the logical AND
operation, and that addition modulo two is the XOR operation ⊕.

(a) Explain how hM(x) can be evaluated using k bit-parallel exclusive OR opera-
tions. Hint: The ones in x select columns of M. Add the selected columns.

(b) Explain how hM(x) can be evaluated using w bit-parallel AND operations and w

parity operations. Many machines provide an instruction parity(y) that returns 1
if the number of ones in y is odd, and 0 otherwise. Hint: Multiply each row of M

by x.
(c) We now want to show that H lin is 1-universal. (1) Show that for any two keys

x 6= y, any bit position j where x and y differ, and any choice of the columns Mi

of the matrix with i 6= j, there is exactly one choice of a column M j such that
hM(x) = hM(y). (2) Count the number of ways to choose k− 1 columns of M.
(3) Count the total number of ways to choose M. (4) Compute the probability
prob(hM(x) = hM(y)) for x 6= y if M is chosen randomly.
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*Exercise 4.11 (more on hashing using matrix multiplication). Let p be a prime
number and assume that Key is the set of k-tuples with elements in 0..p−1. Let w≥ 1
be an integer. Generalize the class H lin to a class of hash functions

H× =
{

hM : M ∈ {0..p− 1}w×k
}

that map keys to (0..p−1)w. The matrix multiplication is now performed modulo p.
Show that H× is 1-universal. Explain how H · is a special case of H×.

Exercise 4.12 (simple linear hash functions). Assume that Key ⊆ 0..p− 1 = Zp

for some prime number p. Assume also that m ≤ p, where m is the table size. For
a,b∈Zp, let h(a,b)(x) = ((ax+b) mod p) mod m. For example, if p = 97 and m = 8,
we have h(23,73)(2) = ((23 ·2+ 73) mod 97) mod 8 = 22 mod 8 = 6. Let

H∗ =
{

h(a,b) : a,b ∈ 0..p− 1
}

.

Show that this family is (⌈p/m⌉/(p/m))2-universal.

Exercise 4.13 (continuation of Exercise 4.12). Show that the following holds for
the class H∗ defined in the previous exercise. If x and y are distinct keys, i and j in
0..m− 1 are arbitrary, and h(a,b) is chosen randomly in H∗ then

prob(h(a,b)(x) = i and h(a,b)(y) = j)≤ c/m2

for some constant c.

Exercise 4.14 (a counterexample). Let Key = 0..p−1, and consider the set of hash
functions

Hfool =
{

h(a,b) : a,b ∈ 0..p− 1
}

with h(a,b)(x) = (ax+ b) mod m. Show that there is a set S of ⌈p/m⌉ keys such that
for any two keys x and y in S, all functions in Hfool map x and y to the same value.
Hint: Let S = {0,m,2m, . . . ,⌊p/m⌋m}.

Exercise 4.15 (table size 2ℓ). Let Key = 0..2k − 1. Show that the family of hash
functions

H≫ =
{

ha : 0 < a < 2k ∧ a is odd
}

with ha(x) = (ax mod 2k)div2k−ℓ is 2-universal. Note that the binary representation
of ax consists of at most 2k bits. The hash function select the first ℓ bits of the last k

bits. Hint: See [93].

Exercise 4.16 (tabulation hashing, [334]). Let m = 2w, and view keys as k + 1-
tuples, where the zeroth element is a w-bit number and the remaining elements are



128 4 Hash Tables and Associative Arrays

a-bit numbers for some small constant a. A hash function is defined by tables t1 to
tk, each having a size s = 2a and storing bit strings of length w. We then have

h⊕(t1,...,tk)((x0,x1, . . . ,xk)) = x0⊕
k
⊕

i=1

ti[xi],

i.e., xi selects an element in table ti, and then the bitwise exclusive OR of x0 and the
ti[xi] is formed. Show that

H⊕[] =
{

h(t1,...,tk) : ti ∈ {0..m− 1}s
}

is 1-universal.

4.3 Hashing with Linear Probing

Hashing methods are categorized as being either open or closed. Hashing with chain-
ing is categorized as an open hashing approach as it uses space outside the hash table
to store elements. In contrast, closed hashing schemes store all elements in the table,
but not necessarily at the table position given by the hash value. Closed schemes have
no need for secondary data structures such as linked lists; this comes at the expense
of more complex insertion and deletion algorithms. Closed hashing schemes are also
known under the name open addressing, the adjective “open” indicating that ele-
ments are not necessarily stored at their hash value. Similarly, hashing with chaining
is also referred to as closed addressing, the adjective “closed” indicating that el-
ements are stored at their hash value. This terminology is confusing, but standard.
Many ways of organizing closed hashing have been investigated [251]; see also [131,
Ch. 3.3]. We shall explore only the simplest scheme. It goes under the name of hash-

ing with linear probing and is based on the following principles. Unused entries are
filled with a special element ⊥. An element e is stored in the entry t[h(e)] or further
to the right. But we only go away from the index h(e) with good reason: If e is stored
in t[i] with i > h(e), then the positions h(e) to i− 1 are occupied by other elements.
This invariant is maintained by the implementations of the dictionary operations.

The implementations of insert and find are trivial. To insert an element e, we scan
the table linearly starting at t[h(e)], until either an entry storing an element e′ with
key(e′) = key(e) or a free entry is found. In the former case, we do nothing, in the
latter case, we store e in the free entry. Figure 4.2 gives an example. Similarly, to
find an element e, we scan the table, starting at t[h(e)], until that element is found.
The search is aborted when an empty table entry is encountered. So far, this sounds
easy enough, but we have to deal with one complication. What happens if we reach
the end of the table during an insertion? We discuss two solutions. A simple fix is
to allocate m′ additional table entries to the right of the largest index produced by
the hash function h. For “benign” hash functions, it should be sufficient to choose m′

much smaller than m in order to avoid table overflows. Alternatively, one may treat
the table as a cyclic array; see Exercise 4.17 and Sect. 3.6. This alternative is more
robust but slightly slower.
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Fig. 4.2. Hashing with linear probing. We have a table t with 13 entries storing synonyms
of “(to) hash”. The hash function maps the last character of the word to the integers 0..12 as
indicated above the table: a and n are mapped to 0, b and o are mapped to 1, and so on. First,
the words are inserted in alphabetical order. Then “clip” is removed. The figure shows the state
changes of the table. Gray areas show the range that is scanned between the state changes.

The implementation of remove is nontrivial. Simply overwriting the element with
⊥ does not suffice, as it may destroy the invariant. The following example illustrates
this point. Assume that h(x) = h(z) and h(y) = h(x)+1. Now, x, y, and z are inserted
in that order. Then z is stored at position h(x)+2. Assume that we next want to delete
y. Simply overwriting y with ⊥ is not a solution as it will make z inaccessible. There
are three solutions. First, we can disallow removals. Second, we can mark y but not
actually remove it. Searches are allowed to stop at ⊥, but not at marked elements.
The problem with this approach is that the number of nonempty cells (occupied
or marked) keeps increasing, so that searches eventually become slow. This can be
mitigated only by introducing the additional complication of periodic cleanup of the
table. A third and much better approach is to actively restore the invariant. Assume
that we want to remove the element at i. We overwrite it with⊥ leaving a “hole”. We
then scan the entries to the right of i to check for violations of the invariant. We set j

to i+1. If t[ j] =⊥, we are finished. Otherwise, let f be the element stored in t[ j]. If
h( f )> i, there is no hole between h( f ) and j and we increment j. If h( f )≤ i, leaving
the hole would violate the invariant for f , and f would not be found anymore. We
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therefore move f to t[i] and write ⊥ into t[ j]. In other words, we swap f and the
hole. We set the hole position i to its new position j and continue with j := j + 1.
Figure 4.2 gives an example.

The analysis of linear probing is beyond the scope of this book. We only mention
that we need stronger properties of the hash function than guaranteed by universal
hash functions. See also Sect. 4.8.

Exercise 4.17 (cyclic linear probing). Implement a variant of linear probing where
the table size is m rather than m+m′. To avoid overflow at the right-hand end of
the array, make probing wrap around. (1) Adapt insert and remove by replacing
increments with i := i + 1 mod m. (2) Specify a predicate between(i, j,k), where
i, j,k ∈ 1..m− 1, that is true if and only if i is cyclically strictly between j and k.
(3) Reformulate the invariant using between. (4) Adapt remove. (5) Can one allow
the table to become completely full, i.e., store m elements? Consider a search for an
element that is not in the table.

Exercise 4.18 (unbounded linear probing). Implement unbounded hash tables us-
ing linear probing and universal hash functions. Pick a new hash function whenever
the table is reallocated. Let α , β , and γ denote constants with 1 < γ < β < α that
we are free to choose. Keep track of the number of stored elements n. Expand the
table to m = β n if n > m/γ . Shrink the table to m = β n if n < m/α . If you do not use
cyclic probing as in Exercise 4.17, set m′ = δm for some δ < 1 and choose a new
hash function (without changing m and m′) whenever the right-hand end of the table
overflows.

4.4 Chaining versus Linear Probing

We have seen two different approaches to hash tables, chaining and linear probing.
Which one is better? This question is beyond theoretical analysis, as the answer de-
pends on the intended use and many technical parameters. We shall therefore discuss
some qualitative issues and report on some experiments performed by us.

An advantage of chaining is referential integrity. Subsequent find operations for
the same element will return the same location in memory, and hence references to
the results of find operations can be established. In contrast, linear probing moves
elements during element removal and hence invalidates references to them.

An advantage of linear probing is that each table access touches a contiguous
piece of memory. The memory subsystems of modern processors are optimized for
this kind of access pattern, whereas they are quite slow at chasing pointers when
the data does not fit into cache memory. A disadvantage of linear probing is that
search times become high when the number of elements approaches the table size.
For chaining, the expected access time remains small. On the other hand, chaining
wastes space on pointers that linear probing could use for a larger table. A fair com-
parison must be based on space consumption and not just on table size.

We have implemented both approaches and performed extensive experiments.
The outcome was that both techniques performed almost equally well when they
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were given the same amount of memory. The differences were so small that details
of the implementation, compiler, operating system, and machine used could reverse
the picture. Hence we do not report exact figures.

However, we found chaining harder to implement. Only the optimizations dis-
cussed in Sect. 4.7 made it competitive with linear probing. Chaining is much slower
if the implementation is sloppy or memory management is not implemented well.

In Theorem 4.3, we showed that the combination of hashing with chaining and
c-universal classes of hash functions guarantees good expected behavior. A simi-
lar result does not hold for the combination of hashing with linear probing and c-
universal hash functions. For a guarantee of expected constant search time, linear
probing needs hash families with stronger randomness properties or the assumption
of full randomness. We come back to this point in Sect. 4.8.

4.5 *Perfect Hashing

The hashing schemes discussed so far guarantee only expected constant time for the
operations find, insert, and remove. This makes them unsuitable for real-time appli-
cations that require a worst-case guarantee. In this section, we shall study perfect

hashing, which guarantees constant worst-case time for find. To keep things simple,
we shall restrict ourselves to the static case, where we consider a fixed set S of n

elements. For simplicity, we identify elements and their keys, i.e., S = {x1, . . . ,xn} is
the set of keys occuring.

In this section, we use Hm to denote a family of c-universal hash functions with
range 0..m−1. In Exercise 4.12, it was shown that 2-universal classes exist for every
m. For h ∈ Hm, we use C(h) to denote the number of collisions produced by h, i.e.,
the number of (ordered) pairs of distinct keys in S which are mapped to the same
position:

C(h) = |{(x,y) : x,y ∈ S, x 6= y and h(x) = h(y)}|.
If h is chosen randomly in Hm, C is a random variable. As a first step, we derive a
bound on the expectation of C.

Lemma 4.5. E[C]≤ cn(n− 1)/m. Also, for at least half of the functions h ∈ Hm, we

have C(h)≤ 2cn(n− 1)/m.

Proof. We define n(n−1) indicator random variables Xi j(h). For i 6= j, let Xi j(h) = 1
if h(xi) = h(x j) and Xi j = 0 otherwise. Then C(h) = ∑i j Xi j(h), and hence

E[C] = E

[

∑
i j

Xi j

]

= ∑
i j

E[Xi j] = ∑
i j

prob(Xi j = 1)≤∑
i j

c/m = n(n− 1) · c/m,

where the second equality follows from the linearity of expectations (see (A.3)) and
the inequality follows from the universality of Hm. The second claim follows from
Markov’s inequality (A.5). ⊓⊔
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Fig. 4.3. Perfect hashing. The top-level
hash function h splits S into subsets B0, . . . ,
Bℓ, . . . . Let bℓ = |Bℓ| and mℓ = cbℓ(bℓ −
1)+1. The function hℓ maps Bℓ injectively
into a table of size mℓ. We arrange the sub-
tables into a single table. The subtable for
Bℓ then starts at position sℓ = m0 + . . .+
mℓ−1 and ends at position sℓ+mℓ−1.

If we are willing to work with a quadratic-size table, our problem is solved.

Lemma 4.6. If m ≥ cn(n− 1)+ 1, at least half of the functions h ∈ Hm operate in-

jectively on S.

Proof. By Lemma 4.5, we have C(h) < 2 for at least half of the functions in Hm.
Since C(h) is even (recall that it counts ordered pairs), C(h) < 2 implies C(h) = 0,
and so h operates injectively on S. ⊓⊔

So we fix a m with m≥ cn(n− 1)+ 1, choose a random h ∈ Hm, and check whether
or not it is injective on S. If not, we iterate until we have found an injective h. After
an average of two trials, we shall be successful.

In the remainder of this section, we show how to bring the table size down to
linear. The idea is to use a two-stage mapping of keys (see Fig. 4.3). The first stage
maps keys to buckets such that the sum of the squared bucket sizes is linear in n.
The second stage uses an amount of space for each bucket that is quadratic in the
number of elements contained in the bucket. For ℓ ∈ 0..m− 1 and h ∈ Hm, let Bh

ℓ be
the elements in S that are mapped to ℓ by h and let bh

ℓ be the cardinality of Bh
ℓ .

Lemma 4.7. For every h ∈ Hm, C(h) = ∑ℓ bh
ℓ(b

h
ℓ − 1).

Proof. For any ℓ, the keys in Bh
ℓ give rise to bh

ℓ(b
h
ℓ −1) ordered pairs of distinct keys

mapping to the same location. Summation over ℓ completes the proof. ⊓⊔

We are now ready for the construction of a perfect hash function. Let α be a constant,
which we shall fix later. We choose a hash function h ∈ H⌈αn⌉ to split S into subsets
Bℓ. Of course, we choose h to be in the good half of H⌈αn⌉, i.e., we choose h ∈H⌈αn⌉
with C(h) ≤ 2cn(n− 1)/⌈αn⌉ ≤ 2cn/α . For each ℓ, let Bℓ be the elements in S

mapped to ℓ and let bℓ = |Bℓ|.
Now consider any Bℓ. Let mℓ = cbℓ(bℓ− 1)+ 1. We choose a function hℓ ∈ Hmℓ

which maps Bℓ injectively into 0..mℓ− 1. At least half of the functions in Hmℓ
have

this property, by Lemma 4.6 applied to Bℓ. In other words, hℓ maps Bℓ injectively
into a table of size mℓ. We stack the various tables on top of each other to obtain
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one large table of size ∑ℓ mℓ. In this large table, the subtable for Bℓ starts at position
sℓ = m0 +m1 + . . .+mℓ−1. Then

ℓ :=h(x); return sℓ+ hℓ(x)

computes an injective function on S. The values of this function are bounded by

∑
ℓ

mℓ− 1≤ ⌈αn⌉+ c ·∑
ℓ

bℓ(bℓ− 1)− 1

≤ 1+αn+ c ·C(h)− 1

≤ αn+ c ·2cn/α

≤ (α + 2c2/α)n,

and hence we have constructed a perfect hash function that maps S into a linearly
sized range, namely 0..

⌊
(α + 2c2/α)n

⌋
. In the derivation above, the first inequality

uses the definition of the mℓ’s, the second inequality uses Lemma 4.7, and the third
inequality uses C(h)≤ 2cn/α . The choice α =

√
2c minimizes the size of the range.

For c = 1, the size of the range is 2
√

2n. Besides the table, we need space for storing
the representation of the hash function. This space is essentially determined by the
space needed for storing the parameters of the functions hℓ and the starting value sℓ
of the ℓth subtable, ℓ ∈ 0..⌈αn⌉− 1. We need to store three numbers for each ℓ and
hence the space needed for the representation of the function is linear. The expected
time for finding the function h is O(n) and the expected time for finding hℓ is O(bℓ).
Thus the total construction time is linear.

Theorem 4.8. For any set of n keys, a perfect hash function with range 0..⌊2
√

2n⌋
can be constructed in linear expected time. The space needed to store the function is

linear.

Constructions with smaller ranges are known. Also, it is possible to support inser-
tions and deletions.

Exercise 4.19 (dynamization). We outline a scheme for “dynamization” of perfect
hashing, i.e., a method that supports insertions and deletions and guarantees constant
access time. Consider a fixed S of size n and choose h ∈ Hm, where m = 2⌈αn⌉.
For each ℓ, let mℓ = ⌈2cbℓ(bℓ− 1)⌉, i.e., all mℓ’s are chosen to be twice as large as
in the static scheme. Construct a perfect hash function as above. Insertion of a new
x is handled as follows. Assume that h maps x onto ℓ. Increment bℓ. If hℓ is not
injective on Bℓ∪{x} and mℓ ≥ ⌈cbℓ(bℓ− 1)⌉, we choose a new hℓ. Repeat until the
hash function is injective. Once mℓ < ⌈cbℓ(bℓ− 1)⌉, we allocate a new table for Bℓ

of size mℓ = ⌈2cbℓ(bℓ− 1)⌉. We also keep track of n = |S| and C(h). Once n exceeds
m/α , we set m = 2⌈αn⌉, choose a new function h for the first level, and move S to
a new table of size m. If n ≤ m/α but C(h) exceeds 2cn/α , we keep m fixed and
choose a new first-level function h. We move S to a new table of size m. Work out
the details of the algorithm and of the analysis. Hint: See [94].
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4.6 Parallel Hashing

A shared hash table is a powerful way for multiple PEs to share information in a fine-
grained way. However, a shared hash table raises a number of nontrivial issues with
respect to correctness, debugging, and performance. What happens when several PEs
want to access the same element or the same position in the table? Let us first define
what we want to happen, i.e., the programming interface of a shared hash table.

The operation build has the same meaning as before, except that each PE might
contribute to the initial table content.

Insertions are as before. When several PEs attempt to insert an element with the
same key concurrently, only one of those elements will be inserted. The application
program should not make any assumptions about which of these concurrent opera-
tions succeeds. Similarly, when several PEs attempt to remove an element, it will be
removed only once.

The operation find(x) is almost as before. It returns⊥ if x is not part of the table.
Otherwise, rather than a reference, it should return a copy of the value currently
stored with key x.8 On a shared-memory machine, many concurrent read accesses to
the same element should be possible without performance penalty.

Concurrent updates have to be performed atomically in order to avoid chaos.
In many situations, the value written depends on the previously stored value v′. We
therefore encapsulate this behavior in an atomic update operation update(x,v, f ) that
is passed not only a value v but also a function f : Value× Value→ Value. This
update function stores the value f (v′,v). For example, in order to increment a counter
associated with key x, one could call update(x,1,+). Sometimes we also need a
combined operation insertOrUpdate. If an element with the given key x is not in the
table yet, then the key value pair (x,v) is inserted. Otherwise, if (x,v′) is already in
the table, then v′ is replaced by f (v′,v).

An important alternative to a shared hash table is the use of local hash tables.
Additional code will then be needed to coordinate the PEs. This is often more ef-
ficient than a shared hash table, and may be easier to debug because the PEs work
independently most of the time.

Let us consider both approaches for a concrete example. Suppose we have a
multiset M of objects and want to count how often each element of M occurs. The
following sequential pseudocode builds a hash table T that contains the counts of all
elements of M:

Class Entry(key : Element, val : N)
T : HashTable of Entry

forall m ∈M do e :=T.find(m); if e =⊥ then T.insert((m,1)) else e.val++

A simple parallelization in shared memory is to make T a shared hash table and
to make the loop a parallel loop. The only complication is that the sequential code

8 Returning a reference – with the implication that the element could be updated using this
reference – would put the responsibility of ensuring consistent updates on the user. This
would be a source of hard to trace errors.
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contains a find operation, a conditional insertion, and a possible write access. Our
concurrent operation insertOrUpdate nicely covers what we actually want. We can
simply write

forall m ∈M do‖ T.insertOrUpdate(m,1,+)

When several PEs call this operation concurrently with the same key, this will be
translated into several atomic increment operations (see also Sect. 2.4.1). If key m

was not present before, one of the concurrent calls will initialize the counter to 1 and
the others will perform atomic increment operations.

Having avoided possible correctness pitfalls, there is still a potential performance
problem. Suppose most elements of M in our example have the same key. Then the
above parallel loop would perform a huge number of atomic increment operations on
a single table entry. As already discussed in Sect. 2.4.1, this leads to high contention
and consequently low performance.

We next discuss the use of local hash tables. In our example, each element of
M will then be counted in some local table. At the end, we need additional code to
merge the local tables into a global table. If the number of elements in M is much
larger than p times the number of different keys occuring, then this merging opera-
tion will have negligible cost and we shall get good parallel performance. Note that
this covers, in particular, the high-contention case, where the shared table was bad.
A potential performance problem arises when the number of different keys is large.
Not only will merging then be expensive, but the total memory footprint of the par-
allel program may also be up to p times larger than that of the sequential program.
Thus, it might happen that the sequential program runs in cache while the parallel
program makes many random accesses to main memory. In such a situation, just fill-
ing the local tables may take longer than solving the overall problem sequentially.
There are more sophisticated algorithms for such aggregation problems that interpo-
late between hashing-based and sorting-based algorithms (e.g., [233]). We refer our
readers to the literature for a detailed discussion.

4.6.1 Distributed-Memory Hashing

We start with the obvious way of realizing a distributed hash table. Each processor
is made responsible for a fraction 1/p of the table and handles all requests to this
part of the table. More precisely, we distribute the hash table t[0..m− 1] to p PEs by
assigning the part t[i ·m/p..(i+ 1) ·m/p] to PE i ∈ 0..p− 1. The operation find(x)
is translated into a find request message to PE h(x)divm/p. Each PE provides a
hash table server thread which processes requests affecting its part. The operations
insert, remove, and update are handled analogously. This approach works for any
representation of the local part, for example hashing with chaining or hashing with
linear probing. In the latter case, wraparound for collision resolution should be local,
i.e., within the part itself, to avoid unnecessary communication. Each PE knows the
hash function and hence can evaluate it efficiently.

The distributed hash table just outlined is simple and elegant but leads to fine-
grained messages. On most machines, sending messages is much more expensive
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than hash table accesses to local memory. Furthermore, in the worst case, there could
be considerable contention due to many accesses to the same entry of the hash table.
We shall next describe a scheme that overcomes these shortcomings by using glob-
ally synchronized processing of batches of operations. It provides high performance
for large batches even in the presence of contention, and also simplifies unbounded
hash tables.

Each PE has a local batch O containing up to o operations. The batches are com-
bined as follows. Each PE first sorts its O by the ID of the PE responsible for handling
an operation. This can be done in time O(o+ p) using bucket sort (see Sect. 5.10).
On average, we expect a PE to access at most o/p distinct locations in any other PE.
In parallel computing, the maximum bucket size is important. It will be part of the
analysis to show that the probability that some PE accesses more than 2o/p distinct
locations in some other PE is small.

There is another problem that we have to deal with. If a PE accesses the same
location many times, this may lead to buckets with many more than 2o/p operations.
Buckets whose size “significantly” exceeds the expected bucket size o/p might con-
tain many operations addressing the same key.9 Therefore, after bucket sorting, the
operations in each bucket are inserted into a temporary local hash table in order to
condense them: An element inserted/removed/searched several times needs only to
be inserted/removed/searched once. We assume here that update operations to the
same location can be combined into a single update operation. For example, several
counter increment operations can be combined into a single add operation.

Using an all-to-all data exchange (see Sect. 13.6), the condensed operations are
delivered to the responsible PEs. Each PE then performs the received operations on
its local part. The results of the find operations are returned to their initiators using a
further all-to-all operation. Figure 4.4 gives an example.

Theorem 4.9. Assuming o = Ω(p log p) and that the hash function behaves like a

truly random hash function, a batch of hash table operations can be performed in

expected time O(Tall→all(o/p)), where Tall→all(x) is the execution time for a regular

all-to-all data exchange with messages of size at most x (see Sect. 13.6).

Proof. Recall our assumption that we resolve all locally duplicated keys by first
building local hash tables. Preparing the messages to be delivered takes time O(o), as
explained above. Since Tall→all(o/p)≥ p ·(o/p) ·β = Ω(o), the O(o) term is covered
by the bound stated in the theorem.

Each PE sends a message to every other PE. More precisely, the message sent
by PE i to PE j contains all operations originating from PE i to elements stored in
PE j. We have to show that the expected maximum message size is O(o/p). Since
duplicate keys have been resolved, at most o keys originate from any processor. Since
we assume a random hash function, these keys behave like balls thrown uniformly

9 There are several ways here to define what “significantly” means. For the analysis, we as-
sume that all common keys will be condensed. In practice, this step is often completely
skipped. The truth for a robust but practically efficient solution lies somewhere in the mid-
dle. A simple threshold such as e2 ·o/p should be a good compromise.
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at random into p bins. Hence, we can employ the Chernoff tail bound (A.7): The
probability that a message is larger than twice its expectation o/p is bounded by

(
e1

22

)o/p

=
( e

4

)o/p

.

This probability is bounded by 1/p3 if o ≥ 3log(4/e) · p log p = Θ(p log p). In this
situation, the probability that any of the p2 buckets (p buckets in each PE) is larger
then 2o/p is at most p2/p3 = 1/p. Furthermore, no bucket can be larger then o.
Combining both bounds we obtain an upper bound of
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on the expectation of the maximum bucket size.
A similar argument can be used to bound the expected number of operations

any PE has to execute locally – only with probability at most 1/p will any message
contain more than 2o/p operations and, even in the worst case, the total number
of received operations cannot exceed p · o. Hence, the expected work on any PE is
bounded by
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Fig. 4.4. Counting letters on three PEs using a distributed hash table. PE 1 is responsible for
the key range a..h, PE 2 for the range i..p, and PE 3 for the range q..r. Each PE first processes
its part of the text and prepares appropriate messages. For example, the text of PE 1 contains
three occurrences of the character o and hence PE 1 prepares the message “o3” to be sent to
PE 2. After the messages are delivered, each PE updates its part. The local hash tables have
buckets of size 2.



138 4 Hash Tables and Associative Arrays

To summarize, we have expected time O(o) = O(Tall→all(o/p)) for local prepro-
cessing and final processing and time O(Tall→all(o/p)) for message exchange when
o≥ 3log(4/e) · p log p. For smaller values of o∈Θ(p log p), the running time cannot
be larger, and remains in O(Tall→all(log p)) = O(Tall→all(o/p)). ⊓⊔

*Exercise 4.20. Redo the proof of Theorem 4.9 for the case where an all-to-all data
exchange with variable message sizes is used (see Sect. 13.6.3). Show that in this
case time O

(
T ∗all→all(o)

)
is already achieved when o = Ω(p).

In sequential hashing, theorems that have been proved for random hash func-
tions can frequently be transferred to universal hash functions. This is not true for
parallel hashing. Theorem 4.9 does not transfer if we replace random hash functions
by universal hash functions. We need stronger properties of the hash function em-
ployed in order to prove that it is unlikely that any message will become too long.
The tabulation hash function in Exercise 4.16 can be shown to have the required
properties [258].

To make the hash table unbounded, we determine the maximum number of el-
ements nmax in any local table using an all-reduce operation (see Sect. 13.2). We
choose the local table size based on nmax. This way, decisions about resizing the
table are made identically on all PEs.

Exercise 4.21 (MapReduce programming model). [86] A widely used pattern for
processing large data sets is as follows: Consider the (key) sets K and K′ and the
value sets V and V ′. The input is a set of key-value pairs P ⊆ K ×V . There are
two-user defined functions, map : K×V → 2K′×V ′ and reduce : K′×V ′∗→ K′×V ′,
where V ′∗ denotes the set of sequences consisting of elements of V ′. The resulting
MapReduce computation first maps each pair (k,v) ∈ P to a new set of key-value
pairs. Consider the union P′ ⊆ K′×V ′ of all these sets. Now, pairs in P′ with the
same key are collected together, i.e.,

P′′ :=
{
(k′,s) ∈ K′×V ′∗ : s =

〈
v′ : (k′,v′) ∈ P′

〉
∧|s|> 0

}
.

Finally, the reduce function is applied to each element of P′′.
Assuming that the elements of P and P′′ are distributed over the PEs of a

distributed-memory parallel computer, mapping and reducing are local computa-
tions. However, the collection step requires communication. Explain how you can
implement it using batched distributed hashing. Analyze its performance. Under
what circumstances is a speedup Ω(p) possible?

Explain how the billing system discussed in Exercise 4.3 can be viewed as an
instantiation of the MapReduce pattern.

4.6.2 Shared-Memory Hashing

The distributed-memory hash table from Sect. 4.6.1 is readily transformed into a
shared-memory setting: The hash table is split into p pieces of equal size, with one
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PE responsible for all operations on one of the pieces. This approach works effi-
ciently only for large batches of operations. Moreover, the need for synchronization
reduces flexibility.

We shall next work out how a single hash table can be accessed concurrently and
asynchronously. We start with fast, simple, and more specialized solutions, going to
more general solutions in several steps. This approach reflects the fact that concurrent
hash tables exhibit a trade-off between simplicity and efficiency on the one side and
generality on the other side.10

Only finds. The most simple case is that only (read-only) find operations are pro-
cessed asynchronously. In this case, we can simply adopt the sequential implemen-
tation of the operation find – parallel executions of several calls do not interfere with
each other. However, before processing a batch of update/insert/remove operations,
all PEs need to synchronize. In particular, while a batch is being processed, no thread
can execute find operations.

The above data structure also allows concurrent asynchronous update operations
under the following circumstances: Updates have to be performed in an atomic way,
for example using a CAS instruction, and find operations also have to read the up-
dateable part of an element atomically.

Exercise 4.22. Work out an example where a find operation returns an inconsistent
value when an update operation modifies a table entry in several steps.

Insertions. Similarly, we can support concurrent asynchronous insertions of an el-
ement e using atomic operations on table entries. We shall discuss this for hashing
with linear probing (see also [303, 205]). The operation looks for a free table entry i

as in sequential linear probing and attempts to write e. This write operation has to be
done atomically, for example using a CAS instruction. Without atomic writing, con-
current find operations could return inconsistent, partially constructed table entries.
If the CAS instruction fails because another concurrent insert got there first, the in-
sertion operation continues to look for a free entry starting at position i. Entry i has to
be reinspected, since another PE might have inserted an element with the same key
as e, in which case the operation is terminated immediately. Note that reinspecting
the same position cannot lead to an infinite loop, since the succeeding CAS will fill
the position and our implementation never reverts a filled entry to free.

Unbounded Hash Tables. How about adaptive growing? In the sequential case, we
simply remarked that this can be handled as with unbounded arrays – reallocation
and copying of the table content. In the concurrent case the same approach works,
but is quite difficult to implement correctly – we have to make sure that all PEs
switch from one version of the table to the next in a consistent fashion. We are only
aware of a single paper showing that this can be done efficiently [205].

10 An interesting related paper by Shun and Blelloch [294] achieves a good compromise be-
tween simplicity and generality by requiring global synchronizations between phases with
different operation mixes.
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Removals. We can support removals by marking the corresponding table entry as
deleted. This requires that find operations read the entire table entry atomically. In
Sect. 4.3 we have already pointed out that removal by marking has considerable dis-
advantages over properly removing the element, since we can never free any space.
Hence, for most uses of deletion, we should also have a mechanism for growing the
table or cleaning it up (see [205] for details).

Performance Analysis. Let us now analyze the performance of the above asyn-
chronous data structure and compare it with batched hashing (see Sect. 4.6.1). The
asynchronous implementation works well as long as the application does not access
particular keys very frequently. In this situation, we have low contention for memory
accesses and we get constant expected execution time for all supported operations.
For such workloads, the asynchronous implementation is more flexible than the dis-
tributed one and will often be faster. The situation is different when particular keys
are used very often. The most problematic operations here are updates, since they
actually modify the elements. This leads to massive write contention. Here, the dis-
tributed implementation has big advantages, since it resolves the contention locally.
For example, when all PEs update the same element Θ(p log p) times, this takes ex-
pected time O(p log p) in the distributed implementation by Theorem 4.9, whereas
the asynchronous implementation needs time Ω

(
p2 log p

)
. The situation is less se-

vere for find operations since modern shared-memory machines accelerate concur-
rent reading via caching. The aCRQW-PRAM model introduced in Sect. 2.4.1 re-
flects this difference by predicting constant expected running time for find even in
the case of high contention. The situation is somewhere in between for insertions
and removals. Concurrent execution of p operations affecting the same key is guar-
anteed to make only a single modification to the memory. However, if all these oper-
ations are executed at the same time, all PEs might initiate a write instruction. In the
aCRQW-PRAM model, this would take time Θ(p). However, concurrent attempts
to insert the same element multiple times will be fast if the element was originally
inserted sufficiently long ago.

Shared-Memory Hashing with Chaining. In hashing with chaining, we can lock in-
dividual buckets to allow for full support of insert, remove and update, including
support for complex objects that cannot be written atomically. However, even find

operations then have to lock the bucket they want to access. What sounds like a
triviality at first glance can be a severe performance bottleneck. In particular, when
many find operations address the same table entry, we could have a lot of contention
for writing the lock variable, even though we actually only want to read the value
(which, by itself, is fast in the aCRQW-PRAM-model).

Exercise 4.23 (parallel join). Consider two relations R ⊆ A×B and Q ⊆ (B×C).
Refine your algorithm obtained in Exercise 4.5 for computing

R ⊲⊳ Q = {(a,b,c)⊆ A×B×C : (a,b) ∈ R∧ (b,c) ∈ Q}

to work on an aCREW PRAM. Each PE should perform only O(|Q|/p) find opera-
tions and O(|R|/p) insertOrUpdate operations. Now assume that each value of B ap-



4.6 Parallel Hashing 141

pears only once in R. Show how to achieve running time O((|R|+ |Q|+ |R ⊲⊳ Q|)/p).
Discuss what can go wrong if this assumption is lifted.

4.6.3 Implementation of Shared-Memory Hashing

We now discuss an implementation of shared-memory linear probing. We aim for
simplicity and efficiency rather than generality and portability. Since linear probing
requires atomic operations, there is a strong dependency on the processor instruction
set and also on its level of support by the compiler (see also Sects. B.4 and C.4). We
give an implementation of a hash table supporting atomic insert, update, and find for
the Linux gcc compiler on the x86 architecture, which supports 16-byte atomic CAS
and 8-byte atomic loads. If the key and the data fit together into 8 bytes, a similar
implementation would work for a wider range of architectures. We could support
longer key or data fields by introducing additional indirections – the table entries
would then contain pointers to the actual data. Transactional synchronization instruc-
tions (i.e., the Intel Transactional Synchronization Extensions (Intel TSX) described
in Sect. B.5) can provide larger atomic transactions but often require a fallback im-
plementation based on ordinary atomic instructions. We come back to this point at
the end of this section. We assume that the key and the data of an element require
8 bytes each, that an empty table entry is indicated by a special key value (in our
case the largest representable key), and that a find returns an element. If the find is
unsuccessful, the key of the element returned is the special key value. Under these
assumptions, we can work with 16-byte reads implemented as two atomic 8-byte
reads. Consider the possible cases for the execution of a find operation:

• Table entry t[i] is empty: The first 8-byte read copies the special key into the
element to be returned. It is irrelevant what the second 8-byte read copies into
the element returned; it may copy data that was written by an insert that started
after the find, but completed before it. In any case, the returned element has a
key indicating an empty table entry. The find operation returns an outdated but
consistent result.

• Table entry t[i] contains a nonempty element: The first 8-byte read copies a valid
key and the second 8-byte read copies the latest value written by an update before
the second read. A valid element is returned, because updates do not change the
key. Recall that there are no deletions.

With this reasoning, we can use a single movups x86 instruction on 16-byte
data that issues two 8-byte loads which are guaranteed to be atomic if the data is
8-byte aligned. On most compilers, this instruction can be generated by calling the
_mm_loadu_ps intrinsic.

The class MyElement below encapsulates an element data type, including most
architecture-specific issues. Here, we use 64-bit integers for both key and data.
Empty table entries are encoded as the largest representable key. Other represen-
tations are possible as long as the public methods are implemented in an atomic way.
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1class MyElement

2{

3public:

4typedef long long int Key; //64-bit key

5typedef long long int Data; //64-bit data or a pointer

6private:

7Key key;

8Data data;

9template <class T> T & asWord() { // a helper cast

10return *reinterpret_cast<T *> (this);

11}

12template <class T> const T & asWord() const {

13return *reinterpret_cast<const T *> (this);

14}

15public:

16MyElement() {}

17MyElement(const Key & k, const Data & d):key(k),data(d){}

18Key getKey() const { return key; }

19static MyElement getEmptyValue() {

20return MyElement(numeric_limits<Key>::max(), 0);

21}

22bool isEmpty() const {

23return key == numeric_limits<Key>::max();

24}

25bool CAS(MyElement & expected, const MyElement & desired) {

26return __sync_bool_compare_and_swap_16(&asWord<__int128>(),

27expected.asWord<__int128>(), desired.asWord<__int128>());

28}

29MyElement(const MyElement & e) {

30asWord<__m128i>() = _mm_loadu_si128((__m128i*)&e);

31}

32MyElement & operator = (const MyElement & e) {

33asWord<__m128i>() = _mm_loadu_si128((__m128i*)&e);

34return *this;

35}

36void update(const MyElement & e) { data = e.data; }

37};//SPDX-License-Identifier: BSD-3-Clause; Copyright(c) 2018 Intel Corporation

Given the class MyElement above, the implementation of the hash table is
mostly straightforward. The constructor allocates the table array using the instruc-
tion _aligned_malloc available in Linux11 in order to have table entries start at
multiples of 16. This is required in order to use the 16-byte x86 CAS instructions.
The hash function is taken from the C++standard library. To upper-bound the lookup
time for densely populated tables, we limit the maximum length of the scan to a large
enough maxDist. If a scan reaches this limit, the table needs to be enlarged to avoid
bad performance. We implement cycling probing (Sect. 4.3) and avoid modulo oper-
ations by using only powers of two for the table capacity. If the table capacity m is

11 In Windows, one would use memalign.
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equal to 2ℓ, x mod 2ℓ = x∧ (2l− 1), where ∧ is a bitwise AND operation, which is
much faster than a general modulo operation.

1template <class Element>

2class HashTable

3{

4typedef typename Element::Key Key;

5size_t h(const Key & k) const { return hash(k) & mask; }

6enum { maxDist = 100 };

7public:

8HashTable(size_t logSize = 24) : mask((1ULL << logSize) -1){

9t = (Element *)_aligned_malloc((mask + 1)*sizeof(Element), 16);

10if (t == NULL) std::bad_alloc();

11std::fill(t, t + mask + 1, Element::getEmptyValue());

12}

13virtual ~HashTable() { if (t) _aligned_free(t); }

14bool insert(const Element & e) {

15const Key k = e.getKey();

16const size_t H = h(k), end = H + maxDist;

17for (size_t i = H; i < end; ++i) {

18/* copy the element guaranteeing that a concurrent update

19of the source will not result in an inconsistent state */

20Element current(t[i&mask]);

21if (current.getKey() == k) return false; // key already exists

22if (current.isEmpty()) { // found free space

23if (t[i&mask].CAS(current, e)) return true;

24// potentially collided with another insert

25--i; // need to reinspect position i;

26}

27}

28throw bad_alloc(); // no space found for the element

29return false;

30}

31Element find(const Key & k) {

32const size_t H = h(k), end = H + maxDist;

33for (size_t i = H; i < end; ++i) {

34const Element e(t[i&mask]);

35if (e.isEmpty() || (e.getKey() == k)) return e;

36}

37return Element::getEmptyValue();

38}

39private:

40Element * t;

41std::hash<Key> hash;

42const size_t mask;

43};//SPDX-License-Identifier: BSD-3-Clause; Copyright(c) 2018 Intel Corporation

We implement a powerful update function insertOrUpdate that inserts an element
e if the key of e is not already present in the table. Otherwise, it updates the existing
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table entry using a function f (c,e) of the old element c and the new element e. This
function guarantees an atomic update of the element.

1template <class F>

2bool insertOrUpdate(const Element & e, F f = F()) {

3const Key k = e.getKey();

4const size_t H = h(k), end = H + maxDist;

5for (size_t i = H; i < end; ++i) {

6Element current(t[i&mask]);

7if (current.getKey() == k) { // key already exists

8while (!t[i&mask].atomicUpdate(current, e, f)) {

9// potentially collided with another update

10current = t[i&mask]; // need to reinspect position i

11}

12return false;

13}

14if (current.isEmpty()) { // found free space

15if (t[i&mask].CAS(current, e)) return true;

16// potentially collided with another insert

17--i; // need to reinspect position i

18}

19}

20}

21throw bad_alloc(); // no space found for the element

22return false;

23}

24template <class F>

25bool MyElement::atomicUpdate(MyElement & expected,

26const MyElement & desired, F f) {

27return __sync_bool_compare_and_swap(&data,

28expected.data, f(expected, desired).data);

29}//SPDX-License-Identifier: BSD-3-Clause; Copyright(c) 2018 Intel Corporation

The update function object f can be also specified using the C++11 lambda nota-
tion. The software design allows us to take advantage of specialized update function
objects for insert-or-increment and insert-or-decrement that use more efficient fetch-
and-increment/fetch-and-decrement processor instructions instead of general CAS
instructions. Additionally, overwriting the data for existing keys can be specialized
without using the heavy CAS instruction.

1struct Overwrite {};

2struct Increment {};

3struct Decrement {};

4// atomic update by overwriting

5bool atomicUpdate(MyElement & expected,

6const MyElement & desired, Overwrite f) {

7update(desired);

8return true;

9}
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10// atomic update by increment

11bool atomicUpdate(MyElement & expected,

12const MyElement & desired, Increment f) {

13__sync_fetch_and_add(&data, 1);

14return true;

15}

16// atomic update by decrement

17bool atomicUpdate(MyElement & expected,

18const MyElement & desired, Decrement f) {

19__sync_fetch_and_sub(&data, 1);

20return true;

21}//SPDX-License-Identifier: BSD-3-Clause; Copyright(c) 2018 Intel Corporation

We finally give an implementation of insertOrUpdate that wraps a simpler se-
quential code into a memory (Intel TSX) transaction (see Sect. B.5). If the transac-
tion fails, the version using an atomic CAS operation is used as a fallback.

1bool insertOrUpdateTSX(const Element & e, F f = F()) {

2if(_xbegin() == _XBEGIN_STARTED) // successful transaction start

3{

4const Key k = e.getKey();

5const size_t H = h(k), end = H + maxDist;

6for (size_t i = H; i < end; ++i) {

7Element & current = t[i&mask];

8if (current.getKey() == k) { //key already exists

9current.update(e,f);

10_xend();

11return true;

12}

13if (current.isEmpty()) { //found free space

14current = e;

15_xend();

16return true;

17}

18}_xend();

19//no space found for the element, use a table with a larger capacity

20throw bad_alloc();

21}

22// transaction fall-back using CAS

23return insertOrUpdate(e,f);

24}//SPDX-License-Identifier: BSD-3-Clause; Copyright(c) 2018 Intel Corporation

4.6.4 Experiments

We conducted a series of experiments to evaluate the scalability of the implemen-
tation using the machine described in Appendix B. We compared our implementa-
tion with two hash table implementations from the Intel Threading Building Blocks
(TBB) Library, both based on chaining with buckets. We used a table with a capacity
of 228 elements which was initially populated with 226 elements.
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Fig. 4.5. Throughput (million operations/second) of concurrent hash table implementations.
The horizontal axis indicates the number of threads, and the vertical axis indicates the through-
put. Higher is better.

To demonstrate the effects of contention, we conducted the following simple
experiment. The measurement performed 228 queries with c% operations using a
particular “hot” key value and (100− c)% operations using a random key. The op-
erations were distributed over p threads. Figure 4.5 shows the resulting performance
for a read-only workload (find operations) and write-only workload (increment op-
erations). Our implementation used insertOrUpdate specialized to a fetch-and-add
operation. The Intel TBB hash map returns an accessor object as a result of the insert
operation, which locks the existing element. We performed the increment operation
under this lock. For the find operation on the TBB hash map, we used the const acces-
sor, which implies a read lock. The TBB unordered map returns iterators (pointers)
to the elements in the hash table without any implicit locks. To implement the update
function, we had to use an atomic fetch-and-add instruction on the data referenced
by the returned iterator.

Without contention, the read-only workload is easy for all three implementations.
However, the book implementation is more than twice as fast as the TBB implemen-
tations. Since hyper-threading hides memory latencies, we observed a significant
speedup when using 144 threads on the 72-core machine.

When there is read contention, the TBB hash maps do not scale well, because of
the contention on bucket and element read locks (the locks have to perform atomic
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writes to change their internal state). The book implementation, in contrast, profits
from read contention, since it does not modify any locks or data and the hot element
can be held in the L1-cache.

For write-only workloads without contention, the book implementation demon-
strates very good scaling, whereas the TBB implementations show only a relative
speedup of 6 using all cores. Both TBB implementations suffer from contended
atomic operations in their internal structures.

With write contention, the scaling reduces, being dependent on the speed of the
contended atomic increment. We also tried to use generic 8-byte CAS on the data part
of the element instead of an atomic fetch-and-add instruction. This resulted in worse
scaling. This experiment confirms that the specialized hardware implementation is
preferable when applicable.

Our work on this book motivated us to write a scientific paper on hash tables
[205]. This paper describes several generalizations of the data structure described
above, in particular, how automatic adaptive growing and shrinking of the table can
be implemented. There is also an extensive comparison with other concurrent hash
tables.

4.7 Implementation Notes

Although hashing is an algorithmically simple concept, a clean, efficient, and robust
implementation can be surprisingly difficult. Less surprisingly, the hash functions
used are an important issue. Most applications seem to use simple, very fast hash
functions based on exclusive OR, shifting, and table lookup rather than universal
hash functions; see, for example, www.burtleburtle.net/bob/hash/doobs.
html, github.com/aappleby/smhasher/wiki/SMHasher, cyan4973.github.
io/xxHash/, github.com/minio/highwayhash. Although these functions seem
to work well in practice, we believe that the universal families of hash functions de-
scribed in Sect. 4.2 are competitive. The Wikipedia pages on “Universal hashing”
and “List of hash functions” mention universal hash functions also.

Unfortunately, there is no implementation study covering all of the fastest fami-
lies. Thorup [311] implemented a fast 1-universal family with additional properties.
We suggest using the family H⊕[] considered in Exercise 4.16 for integer keys, and
the functions in Exercise 4.9 for strings. It might be possible to implement the latter
function to run particularly fast using the SIMD instructions of modern processors
that allow the parallel execution of several operations.

Hashing with chaining uses only very specialized operations on sequences, for
which singly linked lists are ideally suited. Since we are dealing with many short
lists, some deviations from the implementation scheme described in Sect. 3.2 are
in order. In particular, it would be wasteful to store a dummy item with each list.
Instead, one should use a single, shared dummy item to mark the ends of all lists. This
item can then be used as a sentinel element for find and remove, as in the function
findNext in Sect. 3.2.1. This trick not only saves space, but also makes it likely that
the dummy item will reside in the cache memory.

www.burtleburtle.net/bob/hash/doobs.html
www.burtleburtle.net/bob/hash/doobs.html
github.com/aappleby/smhasher/wiki/SMHasher
cyan4973.github.io/xxHash/
cyan4973.github.io/xxHash/
github.com/minio/highwayhash
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With respect to the first element of the lists, there are two alternatives. One can
either use a table of pointers and store the first element outside the table, or store
the first element of each list directly in the table. We refer to these alternatives as
slim tables and fat tables, respectively. Fat tables are usually faster and more space-
efficient. Slim tables are superior when the elements are very large. In comparison, a
slim table wastes the space occupied by m pointers and a fat table wastes the space of
the unoccupied table positions (see Exercise 4.7). Slim tables also have the advantage
of referential integrity even when tables are reallocated. We have already observed
this complication for unbounded arrays in Sect. 3.9.

Comparing the space consumption of hashing with chaining and hashing with
linear probing is even more subtle than what is outlined in Sect. 4.4. On the one
hand, linked lists burden the memory management with many small pieces of allo-
cated memory; see Sect. 3.2.1 for a discussion of memory management for linked
lists. On the other hand, the slim table implementations of unbounded hash tables
based on chaining can avoid occupying two tables during reallocation by use of the
following method. First, concatenate all lists into a single list L. Deallocate the old
table. Only then, allocate the new table. Finally, scan L, moving the elements to the
new table. For fat tables and for hashing with linear probing, the use of two tables
during reallocation seems necessary at first sight. However, even for them reallo-
cation can be avoided. The results are hash tables that never consume significantly
more space than what is needed anyway just to store the elements [204].

Exercise 4.24. Implement hashing with chaining and hashing with linear probing
on your own machine using your favorite programming language. Compare their
performance experimentally. Also, compare your implementations with hash tables
available in software libraries. Use elements of size 8 bytes.

Exercise 4.25 (large elements). Repeat the above measurements with element sizes
of 32 and 128. Also, add an implementation of slim chaining, where table entries
store only pointers to the first list element.

Exercise 4.26 (large keys). Discuss the impact of large keys on the relative merits
of chaining versus linear probing. Which variant will profit? Why?

Exercise 4.27. Implement a hash table data type for very large tables stored on disk.
Should you use chaining or linear probing? Why?

4.7.1 C++

The C++ standard library did not define a hash table data type until 2011. The new
standard, C++11 introduced, such a data type. It offers several variants that are all re-
alized by hashing with chaining: unordered_set, unordered_map, unordered_multiset,
and unordered_multimap. Here “set” stands for the kind of interface used in this
chapter, whereas a “map” is an associative array indexed by keys. The prefix “multi”
indicates that multiple elements with the same key are allowed. Hash functions are
implemented as function objects, i.e., the class hash<T> overloads the operator “()”
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so that an object can be used like a function. This approach allows the hash function
to store internal state such as random coefficients.

Unfortunately, the current implementations of these data structures are in many
situations considerably slower than what is possible. For example, consider the case
of bounded tables with small elements and suppose that space is not too much at a
premium. Here, a specialized implementation of linear probing can be several times
faster than library implementations that pay a high price for generality.

LEDA [194] offers several hashing-based implementations of associative arrays.
The class h_array〈Key,T〉 offers associative arrays for storing objects of type T with
keys of type Key. This class requires a user-defined hash function int Hash(Key&)
that returns an integer value which is then mapped to a table index by LEDA. The
implementation uses hashing with chaining and adapts the table size to the number
of elements stored. The class map is similar but uses a built-in hash function.

Exercise 4.28 (associative arrays). Implement a C++ class for associative arrays.
The implementation should offer the operator[] for any index type that supports a
hash function. Overload the assignment operator such that the assignment H[x] = · · ·
works as expected if x is the key of a new element.

Concurrent hash tables. Our implementations [205] are available at github.
com/TooBiased and provide good scalability in many situations. More general
functionality is provided by the concurrent hash table in the Intel TBB library. How-
ever, the price paid for this generality is quite high, for this and other implementa-
tions. Currently, one should use such libraries only if the hash table accesses do not
consume a significant fraction of the overall work [205].

4.7.2 Java

The class java.util.HashMap implements unbounded hash tables using the func-
tion hashCode as a hash function. The function hashCode must be defined for
the objects stored in the hash table. A concurrent hash table is available as
java.util.concurrent.ConcurrentHashMap. The caveat about performance mentioned
in the preceding paragraph also applies to this implementation [205].

4.8 Historical Notes and Further Findings

Hashing with chaining and hashing with linear probing were used as early as the
1950s [251]. The analysis of hashing began soon after. In the 1960s and 1970s,
average-case analysis in the spirit of Theorem 4.1 and Exercise 4.8 prevailed. Vari-
ous schemes for random sets of keys or random hash functions were analyzed. An
early survey paper was written by Morris [231]. The book [184] contains a wealth of
material. For example, it analyzes linear probing assuming random hash functions.
Let n denote the number of elements stored, let m denote the size of the table and set
α = n/m. The expected number Tfail of table accesses for an unsuccessful search and
the number Tsuccess for a successful search are about

github.com/TooBiased
github.com/TooBiased
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Tfail ≈
1
2

(
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1
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)

and Tsuccess ≈
1
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1

1−α

)

,

respectively. Note that these numbers become very large when n approaches m, i.e.,
it is not a good idea to fill a linear-probing table almost completely.

Universal hash functions were introduced by Carter and Wegman [61]. The orig-
inal paper proved Theorem 4.3 and introduced the universal classes discussed in
Exercise 4.12. More on universal hashing can be found in [15].

In Sect. 4.2, we described a method for finding a prime number in an interval
k3..(k+ 1)3. Of course, the method will only be successful if the interval actually

contains a prime, i.e., the statement (Ak) holds. For k > eek
[69] the statement has

been proven. If the Riemann Hypothesis, one of the most famous, yet unproven con-
jectures in number theory, is true, (Ak) holds for all k≥ 1 [60]. For the application to
hashing, the range k≤ 8 ·107 is more than sufficient: (Ak) holds for all such k. On the
internet, one can find tables of primes and also tables of gaps between primes. The
web page primes.utm.edu/notes/GapsTable.html lists largest gaps be-
tween primes for the range up to 4 ·1017. One can conclude from this table that (Ak)
holds for k ≤ 3000. It is also known [261] that, for all primes p > 11 · 109, the dis-
tance from p to the next larger prime is at most p/(2.8 ·107). A simple computation
shows that this implies (Ak) for all k between 3000 and 8.4 ·107.

The sieve of Eratosthenes is, by far, not the most efficient method of finding
primes, and should only be used for finding primes that are less than a few billion.
A better method of finding larger primes is based on the fact that primes are quite
abundant. Say we want to find a prime in the vicinity of a given number m. We
repeatedly choose a random number from the interval [m,2m] (in this interval, there
will be Ω(m/ lnm) primes) and test whether the number is a prime using an efficient
randomized primality test [138, p. 254]. Such an algorithm will require storage space
O(log p) and even a naive implementation will run in expected time O

(
(log p)3

)
.

With such an algorithm, one can find primes with thousands of decimal digits.
Perfect hashing was a black art until Fredman, Komlós, and Szemeredi [113]

introduced the construction shown in Theorem 4.8. Dynamization is due to Dietz-
felbinger et al. [94]. Cuckoo hashing [247] is an alternative approach to dynamic
perfect hashing, where each element can be stored in two [247] or more [109] places
of a table. If these places consist of buckets with several slots, we obtain a highly
space efficient data structure [95, 204].

A minimal perfect hash function bijectively maps a set S⊆ 0..U−1 to the range
0..n−1, where n= |S|. The goal is to find a function that can be evaluated in constant
time and requires little space for its representation – Ω(n) bits is a lower bound. For
a few years now, there have been practicable schemes that achieve this bound [37,
52, 234]. One variant assumes three truly random hash functions12 hi : 0..U − 1→
im/3..(i+1)m/3−1 for i ∈ 0..2 and m = αn, where α ≈ 1.23n. In a first step, called

12 Actually implementing such hash functions would require Ω(n logn) bits. However, this
problem can be circumvented by first splitting S into many small buckets. We can then use
the same set of fully random hash functions for all the buckets [95].

primes.utm.edu/notes/GapsTable.html
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the mapping step, one searches for an injective function p : S→ 0..m− 1 such that
p(x) ∈ {h0(x),h1(x),h2(x)} for all x ∈ S. It can be shown that such a p can be found
in linear time with high probability. Next one determines a function g : 0..m− 1→
{0,1,2} such that

p(x) = hi(x), where i = g(h0(x))⊕ g(h1(x))⊕ g(h2(x)) mod 3 for all x ∈ S.

The function g is not hard to find by a greedy algorithm. It is stored as a table of
O(n) bits. In a second step, called the ranking step, the set 0..m is mapped to 0..n−1
via a function rank(i) = |{k ∈ S : p(k)≤ i}|. Then h(x) = rank(p(x)) is an injective
function from S to 0..n−1. The task of computing a representation of rank that uses
only O(n) bits and can be evaluated in constant time is a standard problem in the
field of succinct data structures [237].

Universal hashing bounds the probability of any two keys colliding. A more gen-
eral notion is k-way independence, where k is a positive integer. A family H of hash
functions is k-way c-independent, where c≥ 1 is a constant, if for any k distinct keys
x1 to xk, and any k hash values a1 to ak, prob(h(x1) = a1∧·· ·∧h(xk) = ak)≤ c/mk.
The polynomials of degree at most k−1 with random coefficients in a prime field Zp

and evaluated in Zp are a simple k-way 1-independent family of hash functions [61]
(see Exercise 4.13 for the case k = 2).

The combination of linear probing with simple universal classes such as H∗

and H≫ may lead to nonconstant insertion and search time [246, 248]. Only 5-
independent classes guarantee constant insertion and search time [246]. Also, tab-
ulation hashing [334] (Exercise 4.16 with w = 0) makes linear probing provably
efficient [258].

Cryptographic hash functions need stronger properties than what we need for
hash tables. Roughly, for a value x, it should be difficult to come up with a value x′

such that h(x′) = h(x).




