
14

Load Balancing

Building a house comprises a large number of individual tasks such as digging a

hole, laying the foundations, putting up walls, installing windows, wiring, and pipes,

etc. Looking more closely, tasks consist of subtasks. For example, to put up a wall,

you have to lay a large number of bricks. If you want to build fast, many workers

have to cooperate. You have to plan which tasks can be done in parallel, what their

dependencies are, and what resources (qualified workers, raw material, tools, space,

. . .) are needed. It is often difficult to estimate in advance how long a certain task is

going to take. For example, raw materials may be delayed, a worker may fall ill, or

a subtask may never have been done before. Hence, plans have to be revised as new

information becomes available.

A parallel computation is quite similar to the construction site example above. When
designing a parallel algorithm, we identify tasks (often also called jobs) that can be
done in parallel. These tasks are assigned to PEs (workers) with possibly varying ca-
pabilities (qualifications of workers). The tasks may depend on each other, and they
may require further resources such as memory or communication channels. We may
or may not know how long a task is going to take (or what other resource require-
ments it has). Load balancing or scheduling is the process of assigning resources
to tasks in order to make the overall computation efficient. Since the parallel algo-
rithms in this book are fairly simple, we can usually get away with load-balancing
algorithms that are also fast and simple and do not have to deal with all complica-
tions of the general problem. Nevertheless, we need several kinds of nontrivial load
balancing techniques, which we describe in this chapter.

0 The photograph shows a construction site in Hong Kong (Ding Yuin Shan www.flickr.
com/photos/90461913@N00/5363967194/in/photostream/).

www.flickr.com/photos/90461913@N00/5363967194/in/photostream/
www.flickr.com/photos/90461913@N00/5363967194/in/photostream/

420 14 Load Balancing

14.1 Overview and Basic Assumptions

Except in Sect. 14.6, we assume identical PEs and a set of m independent tasks.
A justification for the independence assumption is that parallel algorithms often
take dependencies into account explicitly. They split their computation into multi-
ple phases so that the load balancer only has to deal with the independent tasks of a
single phase. Section 14.2 deals with the case where we (pretend to) know exactly
the work involved in each task. Then we can assign jobs very efficiently using pre-
fix sums. The following three sections deal with the case where the size of the jobs
is known only roughly or not at all. A straightforward solution is to choose a mas-

ter, treat the other PEs as workers and let the master assign the jobs to the workers;
see Sect. 14.3. However, this master–worker scheme does not scale well. When the
number of jobs is large, Sect. 14.4 shows that it is quite effective to simply distribute
the jobs randomly. Finally, Sect. 14.5 introduces a highly scalable dynamic load-
balancing algorithm that can deal with widely varying and completely unknown task
sizes provided that tasks can be split into subtasks when necessary. The idea is that
idle PEs steal work from randomly chosen busy PEs. If an idle PE wants to steal
work from a busy PE, the task at the busy PE is split into two subtasks, and the idle
PE takes over one of the subtasks.

14.1.1 Independent Tasks

Many of the algorithms described below can be understood and analyzed as assigning
m independent tasks to p PEs. Let t j denote the size (or execution time) of task
j ∈ [m]. We use the following notation in the discussion of the algorithms: the total
execution time T :=∑i ti, the maximum task size t̂ :=max j t j, the average task size
t :=T/m, and the load ℓi of PE i – the total size of the tasks assigned to PE i. The
goal is to minimize the maximum load ℓ̂ :=maxi ℓi (see also Sect. 12.2). Figure 14.1
illustrates these quantities.

t
t̂

ℓ̂ T

Fig. 14.1. An example of the quantities t, t̂, ℓ̂, and
T that characterize sets of independent tasks. The
large horizontal rectangles indicate PEs.

Table 14.1 compares the scalability of the load balancing algorithms presented
below for independent jobs in the distributed-memory model, assuming that jobs
are fully characterized by their ID number. We also ignore the cost for collecting
the result. Clearly, it is easier to balance the load if there is more total work to be
distributed. We want the algorithms to guarantee Tpar ≤ (1+ ε)T/p, i.e., optimal

14.1 Overview and Basic Assumptions 421

Table 14.1. Scalability of four load-balancing algorithms for independent tasks. The second
column shows the minimum required total work T = ∑ j t j for the algorithm to guarantee
Tpar ≤ (1+ ε)T/p. The startup overhead α is treated as a variable.

Algorithm Sect. T = Ω(· · ·) Remarks

prefix sum 14.2
p

ε
(t̂ +α log p) known task sizes

master–worker 14.3
p

ε
· α p

ε
· t̂

t
bundle size

√
mα

t̂

randomized static 14.4
p

ε
· log p

ε
· t̂ randomized

work stealing 14.5
p

ε
(t̂ +α log p) randomized

balance up to a factor 1+ ε . We list for each algorithm the minimum total work
required for this guarantee.

The prefix sum method is our “gold standard” – a simple method that is hard to
improve upon if we know the task sizes. The other methods do not require task sizes
but are more expensive in most cases. Work stealing comes within a constant factor
of the gold standard in expectation. Randomized static load balancing behaves well
when the tasks are very fine-grained, i.e., t̂/ε ≪ α . Furthermore, randomized load
balancing is very simple and can sometimes be done without explicitly moving the
data. The master–worker scheme is the “ugly duckling” in this asymptotic compari-
son. It needs work quadratic in p, whereas the other methods only need work p log p

and there are additional factors that can be big for large values of α , 1/ε , or t̂/t. We
include the master–worker scheme because it is simple and very popular in practice.

*Exercise 14.1. Prove the bounds given in Table 14.1 using the results discussed in
Sections 14.2–14.5.

14.1.2 A Toy Example – Computing the Mandelbrot Set

We shall use a popular example from recreational mathematics as an example in
Sect.s 14.4 and 14.5. In part, the discussion is similar to that in the book [280] in-
cluding some of the images.

For every complex number c ∈ C, we define the sequence zc(m) : N → C as
zc(0) :=0 and zc(m+ 1) :=zc(m)2 + c. The Mandelbrot set M is then defined as

M :={c ∈ C : zc(m) is bounded} .

We want to know which points from a quadratic subset A =
{z0 + x+ iy : x,y ∈ [0,a0]} of the complex plane belong to M. We shall ap-
proximate this question in two respects. First, we sample n× n grid points from
this set (see Fig. 14.2): c(j,k) := z0 +(j+ ik)a0/n with j,k ∈ 0..n− 1. Second, we
consider only the first t̂ members of the sequence zc(j,k). We exploit the mathematical
fact that zc is unbounded if |zc(t)| > 2 for some t. Conversely, if |zc(t)| ≤ 2 for all
t ∈ 1..t̂, we assume that c ∈M. Figure 14.2 shows an approximation to M.

422 14 Load Balancing

��
��
��
��
���������������������������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

8

17

57

169

2 3

24

64

1

a0

a0

z0

Im
(c
)

Re(c)

Fig. 14.2. Left: The points of the complex plane considered by our algorithm, and how they
are numbered. Right: Approximation to the Mandelbrot set M.

There are quite sophisticated algorithms for computing the above approximation
(e.g., [250]). We shall consider only a very simple method. We have n× n inde-
pendent tasks. To simplify the description, we shall enumerate the tasks from 1 to
m = n2 as given in Fig. 14.2. The task for c(j,k) iterates through zc(j,k)(t) and stops
when this value becomes larger than 2 or when t = t̂. Note that we have no a priori
knowledge of how long a task will take.

14.1.3 Example – Parallel Breadth-First Search

An example, where we have a good estimate for the job size is parallel BFS in graphs
(Sect. 9.2.4). In each iteration of the BFS algorithm, each node in the queue Q repre-
sents a job whose execution time is (roughly) proportional to the degree of the node.
If some nodes have very high degree, we may have to design the implementation so
that jobs are splittable, i.e., multiple PEs cooperate in exploring the edges out of a
node.

14.2 Prefix Sums – Independent Tasks with Known Size

Suppose we have to assign m independent tasks with known sizes (execution times)
t j, 1 ≤ j ≤ m. We first assume that tasks can be split between PEs and later remove
this assumption. If tasks can be split, a simple idea works. We visualize task j as
an interval of length t j, arrange the intervals next to each other on a line segment of
length T = ∑i ti, and cut the line segment into pieces of equal length, one for each
PE. To get closer to an actual implementation, we assume from now on that the t j’s
are integers and that we want to split only at integer positions.

14.2 Prefix Sums – Independent Tasks with Known Size 423

Let s = ⌈T/p⌉. We view the line segment as consisting of T unit intervals
numbered starting at 1 and make PE i responsible for the unit intervals numbered
(i− 1) · s+ 1 to i · s. Task j corresponds to the unit intervals numbered Tj + 1 to
Tj + t j, where Tj = ∑k< j tk denotes the exclusive prefix sum up to task j. In this
way, PEs

⌊
Tj/s

⌋
+1 to

⌈
(Tj + t j)/s

⌉
are collectively responsible for task j. Note that

(i− 1)s+ 1 ≤ Tj + 1 iff i ≤ Tj/s+ 1 iff i ≤
⌊
Tj/s

⌋
+ 1, where the last “iff” uses the

fact that i is an integer. Similarly, i · s≥ Tj + t j iff i≥ (Tj + t j)/s iff i≥
⌈
(Tj + t j)/s

⌉
.

Exercise 14.2. Show that task j is split into at most
⌈
t j/s
⌉
+ 1 pieces.

To compute the assignment in parallel, we essentially have to compute the prefix
sums Tj. We can reduce this computation to local operations plus a prefix sum over
one value per PE. This global prefix sum is discussed in Sect. 13.3. We use Brent’s
principle (see Sect. 2.10). Suppose PE i is responsible for assigning tasks ai..bi. PE
i first locally calculates the local sum si :=∑ j∈ai..bi

t j. Then the global prefix sum
Si :=∑k<i sk is computed. In a second pass over the local data, PE i computes Tj =
Si +∑ai≤k< j tk for j ∈ ai..bi. Overall, this takes time O(α log p+maxi(bi− ai)) on
a distributed-memory machine. On top of that, we may need time to move the tasks
to the PEs they are assigned to. This depends on the size of the task descriptions,
of course. We can, however, exploit the fact that consecutive tasks are moved to
consecutive PEs.

Atomic Tasks. When tasks are nonsplittable, we face the scheduling problem already
discussed in Sect. 12.2. “Atomic” is a synonym for “nonsplittable”. While the basic
greedy algorithm is inherently sequential, we can obtain a scalable parallel algorithm
with similar performance guarantees by interpreting the prefix sums calculated for
the splittable case differently. We can simply assign all of task j to PE

⌊
Tj/s

⌋
+ 1

(see Fig. 14.3 for an example), i.e., instead of assigning the task to an interval of PEs
starting at PE

⌊
Tj/s

⌋
+ 1, we assign the entire task to this PE. This leads to good

splittable

2
4

rounded

1 8 15 22

2 5 9 2813 15 20 23 25

sizes
job

optimal

Tj

Fig. 14.3. Assigning 9 tasks to 4 PEs. We have T = 28 and s = 28/4 = 7. The yardstick on the
right indicates the job sizes. Three assignments are shown. Top: optimal, with ℓ̂ = 7. Middle:
using prefix sums assuming jobs can be split, ℓ̂= 7. Bottom: using prefix sums and rounding,
ℓ̂= 9. Note that the first three jobs are assigned to PE 1 since ⌊T3/s⌋+1 = ⌊5/7⌋+1 = 1.

424 14 Load Balancing

load balance when the task sizes are much smaller than the contingent s of each PE.
Indeed, prefix-sum-based assignment represents a two-approximation algorithm for
the problem of assigning tasks to identical PEs.

Exercise 14.3. Prove the above claim. Hint: Recall that ℓi denotes the load of PE i

and that ℓ̂= maxi ℓi and t̂ = max j t j. Show the following three facts and use them to
prove that the prefix-sum-based assignment is within a factor two of optimal:

(a) ℓ̂≤ s+ t̂ for the prefix-sum-based algorithm.
(b) ℓ̂≥ t̂ for any schedule of atomic tasks.
(c) ℓ̂≥ s for any schedule.
(d) If t̂ ≤ εs, the prefix-sum-based assignment is within a factor of 1+ ε of optimal.

14.3 The Master–Worker Scheme

One of the most widely used dynamic load-balancing algorithms uses a dedicated
master PE to deal out tasks to worker PEs. Initially, the master has all tasks, and all
workers are idle. An idle worker sends a work request to the master. The master waits
for requests and sends one task to the requesting PE. When all tasks have been sent,
the master informs requesting PEs about this. Figure 14.4 illustrates this scheme. The
master–worker scheme is easy to implement even with a rudimentary communication
infrastructure. This scheme may also be a good choice if the tasks are generated by
a sequential (legacy) algorithm or are read from a centralized I/O device. Another
advantage is that even without knowing the task sizes, good load balance is achieved
– disregarding the scheduling overhead, one will get the same balancing quality as
with the prefix-sum-based algorithm presented in the previous section.

Load balancing can be further improved if at least an estimate of the task sizes is
available. It is then a good idea to deal out large tasks first. Exercise 12.8 mentions
an approximation ratio of 4/3 in a similar situation.

Unsurprisingly, the main disadvantage of the master–worker scheme is that it
does not scale to large p. Unless the average task size is much larger than α p, the
startup overheads alone will already limit performance. If there is a large number

master

requests tasks

worker worker worker worker
Fig. 14.4. The master–
worker load-balancing
scheme

14.3 The Master–Worker Scheme 425

of small tasks, one can mitigate this effect by dealing out task bundles – multiple
tasks at a time. Unfortunately, this introduces a trade-off between load imbalance
and scheduling overhead. Let us analyze this for a fixed bundle size b and small task
descriptions. The master has to spend time ≥ αm/b on sending out task bundles.
The last bundle sent out might incur work bt̂. Hence the parallel execution time is
at least αm/b+ bt̂. Using calculus, we can determine the optimal bundle size as
b =

√

αm/t̂. Note that this consideration is only useful if we have a reasonable
estimate of α/t̂. A somewhat better but more complicated strategy is to change the
bundle size dynamically – beginning with a large bundle size and decreasing it as
the computation progresses. It can be argued that a near-optimal strategy is to try
constructing a bundle involving total work W/(pC)+Wmin where W is an estimate
of the total work not yet handed out and where C and Wmin are tuning parameters that
depend on the accuracy of the work estimation [29].

**Exercise 14.4. Investigate whether using this strategy can improve the scalabil-
ity of the master–worker scheme in shown in Table 14.1 so that the factor 1/ε2 is
replaced by 1

ε log 1
ε .

A more sophisticated approach to making the master–worker scheme more scal-
able is to make it hierarchical – an overall master deals out task bundles to sub-
masters, which deal out smaller bundles to subsubmasters, etc. Unfortunately, this
destroys the main advantage of the basic scheme – its simplicity. In particular, we
get tuning parameters that are harder to control. When you are in the situation that a
basic scheme does not work well. Thinking about clean new strategies is often better
than making the basic scheme more and more complicated. For example, one could
consider the relaxed FIFO queue described in Sect. 3.7.2 as a truly scalable means
of producing and consuming tasks.

Shared-Memory Master–Worker. If the tasks are stored in an array t[1..m], a simple
version of the master–worker scheme can be implemented without an explicit PE for
the master. We simply use a shared counter to indicate the next task to be delegated.
This also has limited scalability for large p, but the constant factors are much better
than in the distributed-memory case.

The Mandelbrot Example. Dealing out individual tasks is not very scalable here, in
particular, if most of the area under consideration is not in the Mandelbrot set M.
In that case, most of the iterations may terminate after a small number of iterations.
Bundling multiple tasks is easy in the sense that we can describe them succinctly as
a range of task numbers, which we can easily convert into the starting number z.

Exercise 14.5. Develop a formula c(i) that computes the parameter c of the sequence
zc from a task number i.

Furthermore, we can derive an upper bound on the execution time of a task from
the maximum iteration count t̂. However, estimating the size of k tasks as taking kt̂

iterations may grossly overestimate the actual execution time, whereas using more
aggressive bounds may be wrong when all tasks in a bundle correspond to members
of M. We conclude that using the master–worker scheme with many PEs can cause
major headaches even for trivial applications.

426 14 Load Balancing

14.4 (Randomized) Static Load Balancing

A very simple and seemingly bad way to do load balancing is to simply assign a
similar number of jobs to each PE without even considering their size. Figure 14.5
illustrates three different such static assignment strategies, which we shall now dis-
cuss for the Mandelbrot example. The most naive way to implement this idea is to
map n/p consecutively numbered tasks to each PE or, even simpler, to assign a fixed
number of rows to each PE. This makes displaying the results easy but looking at
Fig. 14.2, one can see that this is a bad idea – some rows have many more elements
of M than others, leading to bad load balance. A slightly more sophisticated approach
is round-robin scheduling – task j is mapped to PE j mod p. For the Mandelbrot ex-
ample, this is likely to work well. However, we get no performance guarantee in
general. Indeed, for every fixed way to map tasks to PEs, there will be distributions
of task sizes that lead to bad load balance.

Once more, randomization allows us to solve this problem. One can show that,
for arbitrary distributions of task sizes, a random assignment of tasks to PEs leads to
good load balance with high probability if certain conditions are met.

Theorem 14.1 ([267, 268]). Suppose m independent tasks of size t1, . . . , tm are

mapped to random PEs. Let t̂ :=max j t j and T :=∑ j t j. Then the expected maxi-

mum load E[ℓ̂] of a PE is no worse than for the case where we randomly map ⌈T/t̂⌉
tasks of size t̂. In particular, for any constant ε > 0,

E[ℓ̂]≤ (1+ ε)
T

p
if

T

t̂
≥ c

ε2 p log p for some appropriate constant c.

This is a very good bound if t̂ is not too much larger than the average task size and if
we can live with a large value of the imbalance ε . Decreasing the imbalance requires
increasing the input size as 1/ε2.

One strength of randomized static load balancing is that a random distribution of
the input is often enough to enforce a random distribution of the work in every phase

of a computation. For example, consider the distributed-memory BFS discussed in
Sect. 9.2.3. By assigning the nodes to random PEs, we ensure good expected load
balance in every layer of the BFS algorithm which considers a sufficiently large
number of edges, namely Ω(∆ p log p), where ∆ is the maximum degree of the graph.

=PE 0 =PE 1 =PE 2 =PE 3processed by:

Fig. 14.5. Block decomposition (left), round-robin (middle), and random decomposition
(right) of a two-dimensional range

14.5 Work Stealing 427

14.4.1 *Using Pseudorandom Permutations to Avoid Communication

In some situations, randomized static load balancing can be implemented essentially
without communication (beyond broadcasting a description of the input). Consider
the Mandelbrot example. Initially, we broadcast the parameters n, z0, and a0 describ-
ing the input. From these parameters and a task index j ∈ 1..n we can reconstruct the
tasks without communication. Hence, each PE needs only to know the indices of the
tasks mapped to it. At first glance, this requires computing a (pseudo)random map-
ping f : 1..n→ 1..p and communicating every i to PE f (i). We can avoid the commu-
nication by using a (pseudo)random permutation π : 1..n→ 1..n rather than a random
function and making PE i responsible for tasks π(j) for j ∈ (i−1)⌈n/p⌉+1..i⌈n/p⌉.
Effectively, this means that tasks are mapped using the inverse permutation π−1 of
π . Since the inverse of a random permutation is also random, this means that the
jobs are mapped using a random permutation rather than a random mapping. This is
not the same. For example, a random permutation maps at most ⌈n/p⌉ tasks to each
PE, whereas a random mapping will, in general, allocate tasks less evenly. It can be
shown that such a random-permutation mapping is at least as good as a plain random
mapping [169, 267].

Although random permutations can be generated in parallel [269], this also re-
quires communication. However, there are simple algorithms for computing pseudo-

random permutations directly. Feistel permutations [236] are one possible approach.
Assume for simplicity that

√
n is an integer1 and represent j as j = ja + jb

√
n. Now

consider the mapping

πk((ja, jb)) = (jb, ja + fk(jb) mod
√

n),

where fk : 1..
√

n→ 1..
√

n is a hash function.

Exercise 14.6. Prove that πk is a permutation.

It is known that a permutation π(x) = π1(π2(π3(π4(x)))) built by chaining four Feis-
tel permutations is “pseudorandom” even in a cryptographic sense if the fk’s are
sufficiently random. The same holds if the innermost and outermost permutations
are replaced by even simpler permutations [236]. This approach allows us to de-
rive a pseudorandom permutation of 1..n from a small number of hash functions
fk : 1..

√
n→ 1..

√
n. When

√
n = O(n/p), it is even feasible to use tables of random

numbers to implement fk.

14.5 Work Stealing

The load-balancing algorithms we have seen so far are simple but leave a lot to be
desired. prefix-sum-based scheduling works only when we know the task sizes. The

1 For general n, we can round n up to the next square number and generate corresponding
empty jobs.

428 14 Load Balancing

master–worker scheme suffers from its centralized design and the fact that task bun-
dles may commit too much work to a single PE. Randomized static load balancing
is not dynamic at all.

We now present a simple, fully distributed dynamic load-balancing algorithm
that avoids these shortcomings and, in consequence, guarantees much better per-
formance. This approach can even handle dependent jobs and fluctuating resource
availability [20]. However, to keep things simple and understandable, we describe
the approach for independent computations and refer the reader to the literature and
Sect. 14.6 for more.

14.5.1 Tree-Shaped Computations

We use a simple but rather abstract model of the application – tree-shaped compu-

tations [272]. Initially, all the work is subsumed in a root task Jroot. We can perform
two basic operations on a task – working on it sequentially, and splitting it. When
sequential processing finishes a task, we are left with an empty task J /0. Splitting
replaces a task by two tasks representing the work of the parent task. Very little is
assumed about the outcome of a task split, in particular, the two subproblems may
have different sizes. One subproblem may even be empty. In that case, the parent task
is atomic, i.e., unsplittable. Initially, the root task resides on PE 1. The computation
terminates when all remaining tasks are empty. Figure 14.6 illustrates the concept.
A tree-shaped computation can be represented by a binary tree. Each node of this
tree consists of some (possibly zero) sequential computation, followed by a split (for
internal nodes) or by a transition to an empty task (for leaves).

subproblem
atomic empty

sequentially
work l

Send
Proc. 1022

split

..

.

..

. Split

initial situation

request

response

termination

Fig. 14.6. Tree-shaped computations

Tree-shaped computations subsume many applications. For example, when ap-
plied to the independent job model, we obtain a fully distributed multilevel general-
ization of the master–worker scheme where every PE is both a master and a worker.
We can also handle applications such as the tree exploration described in Sect. 12.4.2
for the knapsack problem, where we do not have a fixed set of jobs up front.

14.5 Work Stealing 429

In order to analyze the performance of a load-balancing algorithm for tree-shaped
computations, we need to model the cost of splitting and moving tasks. We also need
some way to measure the performance of the splitting operation. This performance is
expressed by a bound tatomic on the size of an atomic task and by the splitting depth

h, which is the maximum number of subsequent splits needed to arrive at an atomic
task. In other words, h is a bound on the height of the task tree, disregarding splits of
atomic tasks.

Example: Independent tasks. These can be translated into tree-shaped computa-
tions as follows: Let the range a..b represent the task of processing the (atomic)
tasks numbered a to b. Then the root problem is Jroot = 1..m. Splitting a..b yields
a..⌊(a+ b)/2⌋ and ⌊(a+ b)/2⌋+ 1..b. Atomic tasks have size at most tatomic = t̂,
and the splitting depth is h = ⌈logm⌉.

14.5.2 The Randomized Work-Stealing Algorithm

We now describe a simple and efficient load-balancing algorithm for tree-shaped
computations. This algorithm maintains the invariant that each PE works on exactly
one task. Initially, this means that PE 1 works on the root task Jroot while all other
PEs have an empty task J /0.

Exercise 14.7. Work out the details of an optional fast initialization for the work-
stealing algorithm that first broadcasts Jroot and then locally splits it ⌊log p⌋ or ⌈log p⌉
times, each time throwing away either the first or the second subproblem. Afterwards,
the locally present tasks should still represent the entire computation.

After initialization, a busy PE (one working on a nonempty task) works on it sequen-
tially. An idle PE i, i.e., one with an empty task, sends a work request to another,
random PE and waits for a reply. This is repeated until PE i receives a nonempty
task. A PE receiving a work request splits its local task, keeps one part, and sends
the other part to the requesting PE. Idle PEs or PEs working on an atomic task may
not actually call the general splitting routine and also need not send a full-blown task
description. Rather, they can simply respond with a rejection. However, we prefer
to interpret this rejection as a compact representation of an empty task in order to
underline the simplicity of the algorithm.

We still need to discuss one issue – how can we make a PE working sequentially
respond to requests? On a distributed-memory machine, one solution is to periodi-
cally check for incoming messages during sequential work. On a shared-memory ma-
chine, the task description could be a concurrent data structure that allows concurrent
splitting and sequential work. For example, our “packaging” of independent tasks
into tree-shaped computations could implement the required operations by simple
atomic updates of the range a..b of unprocessed tasks. Working sequentially means,
most of the time, working on task a− 1. When this task is finished, a is atomically
incremented. Work stealing atomically updates a to ⌊(a+ b)/2⌋+ 1. The same ap-
proach can also be used on a distributed-memory machine if, on each node, we keep
a separate thread for handling incoming messages.

430 14 Load Balancing

We shall not give a complete analysis of the asynchronous work-stealing algo-
rithm described above, but instead analyze a related synchronous algorithm. Never-
theless, this analysis still illuminates the essential ideas behind the general analysis.
We consider a random shift algorithm. This algorithm works in synchronized rounds

of duration ∆ , large enough to allow sending a request, splitting a subproblem, and
sending one piece back to the requestor. A PE i that is idle at the beginning of a round
sends a request to PE (i+k mod p)+1, where k ∈ 1..p−1 is a uniformly distributed
random value that is the same on all PEs. The receiving PE answers this request by
splitting its local subproblem and sending one of the pieces to the requesting PE.
Note that each PE receives at most one request per round, since all PEs use the same
k. We make the further simplifying assumption that busy PEs that do not receive a
request in a round are in no way delayed by the load-balancing process. In other
words, in a round an unfinished nonatomic task is either split or completed, or its un-
finished work is reduced by ∆ . If the task is split, the unfinished work is distributed
over the two subtasks. An atomic task is either finished in a round or its unfinished
work is reduced by ∆ . The task tree has depth h and hence at most 2h leaves. Each
leaf stands for an atomic task, and atomic tasks require at most work tatomic.

Theorem 14.2. For2 h ≥ log p and any constant d > 0, the random shift algorithm

has an execution time bounded by

Tseq

p
+(3ch+ 3)∆ + tatomic =

Tseq

p
+O(tatomic + h∆)

with probability at least 1− p−d. Here, c = 2+ 2(d+ 1) ln2.

Proof. Let

k =

⌈
Tseq

p∆
+ 3ch

⌉

+ 1. (14.1)

We shall show that, with probability at least 1− p−d, all unfinished tasks are atomic
after k rounds. Assume this is the case. Then the parallel execution time is at most
k∆ + ⌈tatomic/∆⌉∆ ≤ (k+ 1)∆ + tatomic.

Suppose there are mi idle PEs at the beginning of round i. Each idle PE issues
a split request, and each such request may hinder a PE that is working on a task.
Moreover, up to mi+1 PEs may become idle during that period and hence not do the
full amount ∆ of work. We conclude that in round i, at least p−2mi−mi+1 PEs do ∆
units of useful sequential work each. Let M :=∑1≤i≤k mi. Since the useful sequential
work accounted for in this way cannot be more than the sequential execution time,
we obtain

Tseq ≥
k−1

∑
i=1

(p− 2mi−mi+1)∆ ≥ (k− 1)p∆ − 3∆M.

Thus
2 Note that the case h< log p is not interesting, since the number of nontrivial tasks generated

is at most 2h and hence some PEs will always stay idle.

14.5 Work Stealing 431

k ≤ 1+
Tseq + 3∆M

p∆
. (14.2)

In combination with (14.1), we obtain M ≥ chp.
Consider any nonempty task t after round k. Let the random variable Xi ∈ {0,1}

express the event that the ancestor of t was split in round i. Then t is the result of
X :=∑i Xi splits. If X ≥ h, t is atomic. We have prob(Xi = 1) = mi/(p− 1) since in
round i, mi split requests are issued and for each split request there is one choice of
k that will lead to a split of the ancestor of t. Thus E[X] = ∑i mi/(p− 1)≥M/p.

We want to use Chernoff bounds (see Sect. A.3) to bound the probability that X

is less than h. For this, we require that the Xi’s are independent. They are not, because
mi and hence the probability that Xi is equal to 1 depend on the preceding rounds.
However, for any fixed choice of the mi’s, the Xi’s are independent (they depend only
on the random shift values). Hence, we may apply Chernoff bounds if we afterwards
take the worst case over the choices of mi’s. We shall see that only the sum of the
mi’s is relevant and hence we are fine.

Let ε = 1− 1/c. Then (1− ε)E[X] ≥ 1/c ·M/p ≥ h, and hence the probability

that X is fewer than h is at most γ := e−(1−1/c)2ch/2. The probability that any task is
split less than h times is then bounded by 2hγ . Recall that there are at most 2h leaf
tasks. We show that 2hγ ≤ p−d for our choice of c. For this it suffices to have (take
natural logarithms on both sides)

−h ln2+
1
2

(

1− 1
c

)2

ch≥ d ln p.

Since h ≥ log p = (ln p)/ ln2, this holds true for the choice c = 2+ 2(d + 1) ln2.
Namely,

1
2

(

1− 1
c

)2

ch≥ 1
2
(c− 2)h≥ (d + 1)h ln2≥ d ln p+ h ln2. ⊓⊔

Let us apply the result to allocating m independent tasks in order to establish the entry
in Table 14.1. We have h = ⌈logm⌉, tatomic = t̂ and ∆ = O(α). Thus, Theorem 14.2
yields a parallel execution time T/p+O(t̂ +α logm). If m=Ω

(
p2
)
, the term T/p=

tm/p asymptotically dominates the term α logm. Then

T

p
+O(t̂)≤ (1+ ε)

T

p
⇔ O(t̂)≤ ε

T

p
⇔ T = Ω(pt̂/ε) .

If m = O
(

p2
)
, we have logm = O(log p) and hence

T

p
+O(t̂ +α log p)≤ (1+ ε)

T

p
⇔ T = Ω

(p

ε
(t̂ +α log p)

)

.

14.5.3 Termination Detection

The randomized work-stealing algorithm as described above does not detect when
all PEs have become idle – they will simply keep sending work requests in vain.

432 14 Load Balancing

One solution is that a PE i receiving a task t is responsible for reporting back to the
PE from which t was received when all the work in t has been performed. In order
to do this, PE i has to keep track of how many subtasks have been split away from
t. Only when termination responses for all these subtasks have been received and
the remaining work has been performed sequentially, can PE i send the termination
response for t. Ultimately, PE 1 will receive termination responses for the subtasks
split away from Jroot. At this point it can broadcast a termination signal to all PEs.
The overhead for this protocol does not affect the asymptotic cost of load balancing
– the termination responses mirror the pieces of work sent. The final broadcast adds
a latency O(α log p). This termination detection protocol can also be used to perform
final result calculations.

*Double Counting Termination Detection. Even faster termination detection is pos-
sible if we adapt a general purpose termination detection protocol suitable for asyn-
chronous message exchange. Mattern [208] describes such a method. We count the
number of received and completed tasks locally. On PE 1, we initially set the receive
counter to 1 for the root problem. All other counters are initially 0. We repeatedly
run an asynchronous reduction algorithm to determine the global sums of these two
counters (see also Sect. 13.7). The corresponding messages are sent when a PE is idle
and has received the messages from its children in the reduction tree. If the global
sums of sent and completed subproblems are equal and the next cycle yields exactly
the same global sums, then the system has globally terminated. If we replace the
linear-latency summation algorithms given in [208] with our logarithmic algorithms,
we get overall latency O(log p) for the termination detection.

14.5.4 Further Examples: BFS and Branch-and-Bound

We discuss two further examples here.

Breadth-First Search. On a shared-memory machine, we can use work stealing as
a load balancer in each iteration of BFS.3 The simple variant in Sect. 9.2.1 that
parallelizes over the nodes in the queue could view each node in the queue as an
independent job. We get h = ⌈logn⌉ and tatomic proportional to the maximum node
degree.

The algorithm for handling high-degree nodes in Sect. 9.2.4 could be adapted for
work stealing by making tasks splittable even when they only work on a single node.
In principle, an atomic task could simply represent the operations performed on a
single edge. This might be too fine-grained, though, since there is some overhead
for reserving an edge for sequential processing. We can amortize this overhead by
always assigning a bundle of k edges to a PE. Theorem 14.2 tells us that this has little
effect on the load-balancing quality as long as k = O(logn).

3 On distributed memory, global work stealing would require more communication than we
can afford. We could use randomized static load balancing to assign graph nodes to com-
pute nodes. Cores within a compute node could use work stealing as described here.

14.6 Handling Dependencies 433

Branch-and-Bound for the Knapsack Problem. Let n be the number of items. The
algorithm backtracks through a binary tree of depth n that enumerates all solutions
that cannot be excluded using upper and lower bounds (see Sect. 12.4.2). A task is
a subtree of this tree. By always splitting off the highest unexplored subtree of a
task, we obtain a splitting depth of n. For describing a split off at level k of the tree,
it suffices to transfer a bit vector of length k indicating which decisions have been
made up to level k.

14.6 Handling Dependencies

A quite general way to specify a parallel computation is to view it as a directed
acyclic graph (DAG) G = (V,E). Tasks are nodes of this graph and edges express
dependencies, i.e., an edge (u,v) indicates that v can only be executed after u has
been completed. As before, let tv denote the execution time of task v. This is a natural
generalization of our model of independent tasks considered in Sect. 14.1.1 and also
in Sect. 12.2. We have already seen task DAGs for integer multiplication (Fig. 1.5)
and for tiled computation on arrays (Fig. 3.2). Even disregarding data flow between
the tasks, it is already an interesting question how one should assign the tasks to
the PEs. It is NP-hard to find a schedule that minimizes the parallel execution time
(the makespan). On the other hand, any “reasonable” scheduling algorithm achieves
a two-approximation.

In order to explain this statement in more detail, we need to introduce some ter-
minology. A schedule x assigns each task j to a PE p j ∈ 1..p and specifies a starting
time s j ≥ 0. A schedule is feasible if the task execution times on any particular pro-
cessor do not overlap (i.e., ∀i, j : pi = p j⇒ s j 6∈ [si,si + ti)) and no task starts before
it is ready for execution (i.e., ∀ j : ∀(i, j) ∈ E : s j ≥ si + ti). The makespan is the last
finishing time, max j(s j + t j), of a job. We are looking for a schedule with minimum

3

1

2

1

2

PE

PE

0 5 10

a·b

a·b

a·b

a0·b1

a0·b1

a0·b1

a0·b0

a0·b0

a0·b0

a1·b0

a1·b0

a1·b0
a1·b1

a1·b1

a1·b1

+0

+0

+0

+1

+1

+1

+2

+2
+2

Fig. 14.7. Two optimal schedules for the recursive multiplication algorithm of Sect. 1.4 for
two-digit numbers. One schedule is for two PEs and the other for three PEs. It is assumed that
a recursive call and an addition/shift cost 2 units of time while a multiplication costs 3 units.
The thick edges indicate the critical paths (of length 11). A schedule drawn as above with one
line per PE is also known as a Gantt chart.

434 14 Load Balancing

makespan. A trivial lower bound for the makespan is the average work ∑ j t j/p. An-
other lower bound is the length ∑ j∈P t j of any path P in G. The critical path length

is the maximum such length over all paths in G. Figure 14.7 gives an example.

Theorem 14.3. Consider any schedule that never leaves a PE idle when a task is

ready for execution. Then its makespan is at most the average work plus the critical

path length. This is a two-approximation of the optimal schedule.

Proof. Let G = (V,E) be the scheduling problem and let T denote the makespan
of the schedule. Partition [0,T] into (at most 2|V |) intervals I1, . . . , Ik such that jobs
start or finish only at the beginning or end of an interval. Call an interval busy if all p

processors are active during that interval and call it idle otherwise. Then T is the total
length of the busy intervals plus the total length of the idle intervals. The total length
of the busy intervals is at most ∑ j t j. Now consider any path P through G and any
idle interval. Since the schedule leaves no ready job idle, some job from P must be
executing during the interval or all jobs on P must have finished before the interval.
Thus the length of P is bounded by the total length of the idle intervals.

Since both the average work and the critical path length are lower bounds for the
makespan, their sum must be a two-approximation of the makespan. ⊓⊔

A more careful analysis yields an approximation ratio of 2− 1/p. Improving upon
this seems difficult. The only known better bounds increase the constant factor in
the 1/p term [120]. We view this as a good reason to stick to the simple schedules
characterized above. In particular, Theorem 14.3 applies even when the execution
times are unknown and G unfolds with the computation. We only have to make sure
that idle PEs find ready jobs efficiently. All the load-balancing algorithms described
in this section can be adapted for this purpose.

Master–Worker. The master is informed about finished tasks. When a task becomes
ready, it is inserted into the queue of tasks that can be handed out to idle PEs.

Randomized static. Each PE executes the ready jobs assigned to it.

Work stealing. Multithreaded computations [20] define a computation DAG implic-
itly by spawning tasks and waiting for them to finish. It can be shown that random-
ized work stealing leads to asymptotically optimal execution time. Compared with
our result for tree-shaped computations, this is a more general result but also a con-
stant factor worse with respect to the T/p term. Also, in practice, we might observe
this constant factor because a multithreaded computation needs to generate the entire
computation graph whereas tree-shaped computations only split work when this is
actually needed.

