
11

Minimum Spanning Trees
a

b

c d

7

9

6
3

4

2

The atoll of Taka-Tuka-Land in the South Seas asks you for help.1 The people want

to connect their islands by ferry lines. Since money is scarce, the total cost of the

connections is to be minimized. It needs to be possible to travel between any two

islands; direct connections are not necessary. You are given a list of possible con-

nections together with their estimated costs. Which connections should be opened?

More generally, we want to solve the following problem. Consider a connected undi-
rected graph G = (V,E) with real edge costs c : E → R. A minimum spanning tree

(MST) of G is a set T ⊆ E of edges such that the graph (V,T) is a tree minimiz-
ing c(T) := ∑e∈T c(e). In our example, the nodes are islands, the edges are possible
ferry connections, and the costs are the costs of opening a connection. Throughout
this chapter, G denotes an undirected connected graph.

Minimum spanning trees are perhaps the simplest variant of an important family
of problems known as network design problems. Because MSTs are such a simple
concept, they also show up in many seemingly unrelated problems such as cluster-
ing, finding paths that minimize the maximum edge cost used, and finding approx-
imations for harder problems, for example the Steiner tree problem and the travel-
ing salesman tour problem. Sections 11.7 and 11.9 discuss this further. An equally
good reason to discuss MSTs in a textbook on algorithms is that there are simple,
elegant, and fast algorithms to find them. We shall derive two simple properties of
MSTs in Sect. 11.1. These properties form the basis of most MST algorithms. The
Jarník–Prim algorithm grows an MST starting from a single node and will be dis-
cussed in Sect. 11.2. Kruskal’s algorithm grows many trees in unrelated parts of the
graph at once and merges them into larger and larger trees. This will be discussed
in Sect. 11.3. An efficient implementation of the algorithm requires a data structure
for maintaining a partition of a set into subsets. Two operations have to be supported
by this data structure: “determine whether two elements are in the same subset” and
“join two subsets”. We shall discuss this union–find data structure in Sect. 11.4. It
has many applications besides the construction of minimum spanning trees. Sec-

1 The figure above was drawn by A. Blancani.

334 11 Minimum Spanning Trees

tions 11.5 and 11.6 discuss external-memory and parallel algorithms, respectively,
for minimum spanning trees.

Exercise 11.1. If the input graph is not connected, we may ask for a minimum span-

ning forest – a set of edges that defines an MST for each connected component of
G. Develop a way to find minimum spanning forests using a single call of an MST
routine. Do not find connected components first. Hint: Insert n− 1 additional edges.

Exercise 11.2 (spanning sets). A set T of edges spans a connected graph G if (V,T)
is connected. Is a minimum-cost spanning set of edges necessarily a tree? Is it a tree
if all edge costs are positive? For a cost function c : E→ R, let m = 1+maxe∈E |c(e)|
and define a cost function c′ by c′(e) =m+c(e). Show that a minimum-cost spanning
tree with respect to the cost function c is a minimum-cost spanning set of edges with
respect to the cost function c′ and vice versa.

Exercise 11.3. Reduce the problem of finding maximum-cost spanning trees to the
minimum-spanning-tree problem.

Exercise 11.4. Suppose you have a highly tuned library implementation of an MST
algorithm that you would like to reuse. However, this routine accepts only 32-bit
integer edge weights while your graph uses 64-bit floating-point values. Show how to
use the library routine provided that m < 232. Your preprocessing and postprocessing
may take time O(m logm).

11.1 Cut and Cycle Properties

We shall prove two simple lemmas which allow one to add edges to an MST and
to exclude edges from consideration for an MST. We need the concept of a cut in a
graph. A cut is a partition (S,V \S) of the node set V into two nonempty parts. A cut

u

u

v

v

u′ v′

e

e

e′

e′

ES

p p

Tu Tv

C

Fig. 11.1. Cut and cycle properties. The left part illustrates the proof of the cut property. Edge
e has minimum cost in the cut ES, and p is a path in the MST connecting the endpoints of e; p

must contain an edge in ES. The figure on the right illustrates the proof of the cycle property.
C is a cycle in G, e is an edge of C of maximum weight, and T is an MST containing e. Tu and
Tv are the components of T \e, and e′ is an edge in C connecting Tu and Tv.

11.1 Cut and Cycle Properties 335

determines the set ES = {{u,v} ∈ E : u ∈ S,v ∈V \ S} of edges that connect S with
V \ S. Figure 11.1 illustrates the proofs of the following lemmas.

Lemma 11.1 (cut property). Let (S,V \ S) be a cut and let e be a minimum cost

edge in ES. Consider a set T ′ of edges that is contained in some MST and contains

no edge from ES. Then T ′∪{e} is also contained in some MST. In particular, there

is an MST containing e.

Proof. Consider any MST T of G with T ′ ⊆ T . Let u ∈ S and v ∈ V \ S be the end-
points of e. Since T is a spanning tree, it contains a unique path p from u to v. Since
p connects u ∈ S with v ∈V \S, it must contain an edge e′ = {u′,v′} with u′ ∈ S and
v′ ∈ V \ S, i.e., e′ ∈ ES. Note that the case e′ = e is possible. Recall that we assume
e′ 6∈ T ′. Now, T ′′ :=(T \ {e′})∪{e} is also a spanning tree, because removal of e′

splits T into two subtrees, which are then joined together by e. Since c(e) ≤ c(e′),
we have c(T ′′)≤ c(T), and hence T ′′ is also an MST. Obviously, T ′∪{e} ⊆ T ′′.

The second claim is a special case of the first. Set T ′ = /0. ⊓⊔

Lemma 11.2 (cycle property). Consider any cycle C ⊆ E and an edge e ∈ C with

maximum cost among all edges of C. Then any MST of G′ = (V,E \ {e}) is also an

MST of G.

Proof. Note first that since the edge e that is removed is on a cycle in G, the graph
G′ is connected. Consider any MST T ′ of G′ and assume that it is not an MST of G.
Then there must be an MST T of G with c(T)< c(T ′). If e 6∈ T , T is a spanning tree
of G′ cheaper than T ′, a contradiction. So T contains e. Let e = {u,v}. Removing e

from T splits (V,T) into two subtrees (Vu,Tu) and (Vv,Tv) with u ∈ Vu and v ∈ Vv.
Since C is a cycle, there must be another edge e′ = {u′,v′} in C such that u′ ∈Vu and
v′ ∈ Vv. Replacing e by e′ in T yields a spanning tree T ′′ :=(T \ {e})∪{e′} which
does not contain e and for which c(T ′′) = c(T)−c(e)+c(e′)≤ c(T)< c(T ′). So T ′′

is a spanning tree of G′ cheaper than T ′, a contradiction. ⊓⊔

The cut property yields a simple greedy algorithm for finding an MST; see
Fig. 11.2. We initialize T to the empty set of edges. As long as T is not a span-
ning tree, let (S,V \S) be a cut such that ES and T are disjoint (S is the union of some
but not all connected components of (V,T)), and add a minimum-cost edge from ES

to T .

Function genericMST(V, E, c) : Set of Edge

T := /0
while |T |< n−1 do // T is extendible to an MST, but no spanning tree yet

let (S,V \S) be a cut such that T and ES are disjoint;

let e be a minimum-cost edge in ES;

T :=T ∪{e}; // enlarge T

return T

Fig. 11.2. A generic MST algorithm

336 11 Minimum Spanning Trees

Lemma 11.3. The generic MST algorithm is correct.

Proof. The algorithm maintains the invariant that T is a subset of some minimum
spanning tree of G. The invariant is clearly true when T is initialized to the empty
set. When an edge is added to T , the invariant is maintained by the cut property
(Lemma 11.1). When T has reached size n− 1, it is a spanning tree contained in an
MST, so it is itself an MST. ⊓⊔

Different choices of the cut (S,V \ S) lead to different algorithms. We discuss three
approaches in detail in the following sections. For each approach, we need to explain
how to find a minimum-cost edge in the cut.

The cycle property also leads to a simple algorithm for finding an MST: Set E ′ to
the set of all edges. As long as E ′ is not a spanning tree, find a cycle in E and delete
an edge of maximum cost from T . No efficient implementation of this approach is
known however.

Exercise 11.5. Show that the MST is uniquely defined if all edge costs are different.
Show that in this case the MST does not change if each edge cost is replaced by its
rank among all edge costs.

*Exercise 11.6. We discuss how to check the cycle property for all non-tree edges.
Let T be any spanning tree. Construct a tree whose leaves correspond to the vertices
of the graph and whose inner nodes correspond to the edges of T . Start with a forest
consisting of n trees, one for each node of the graph. Then process the edges of T in
order of increasing cost. In order to process e = {u,v} create a new node labelled e

and make the roots of the trees containing u and v in the current forest the children
of the new node. See Fig. 11.3 for an example. Let C be the resulting tree.

(a) The lowest common ancestor lcaC(x,y) of two nodes x and y of C is the lowest
node (= maximum depth) having x and y as descendants. Show that for any two
nodes x and y of G, the edge associated with the node lcaC(x,y) of C is the
heaviest edge on the tree path in T connecting x and y.

(b) Show that T is an MST if for every non-tree edge e′ = {x,y}, we have c(e′) ≥
c(lcaC(x,y)). Remark: C can be preprocessed in time O(n) such that lca-queries
can be answered in constant time [40].

a b 4

c

d e
2

3

1 2

a c b d e

1

4

3

Fig. 11.3. A spanning tree T and the corresponding certification tree C. Observe that
c(lcaC(a,b)) = 3 is the cost of the most costly edge on the path connecting a and b in T .
Check that the analogous statement holds for any pair of nodes of T .

11.2 The Jarník–Prim Algorithm 337

11.2 The Jarník–Prim Algorithm

The Jarník–Prim (JP) algorithm [96, 164, 256] for MSTs is very similar to Dijkstra’s
algorithm for shortest paths.2 It grows a tree starting with an arbitrary source node. In
each iteration of the algorithm, the cheapest edge connecting a node in the tree with
a node outside the tree is added to the tree. The resulting spanning tree is returned. In
the notation of the generic algorithm, T is a tree and S is the set of nodes of the tree.
Initially, S = {s}, where s is an arbitrary node, and T = /0. Generally, T and S are the
edge and node sets of a tree, and ES is the set of edges having exactly one endpoint
in S. Let e be a cheapest such edge and assume u 6∈ S. Then u is added to S and e is
added to T .

The main challenge is to find this edge e efficiently. To this end, the algorithm
maintains a shortest edge between any node v ∈ V \ S and a node in S in a priority
queue Q. The key of v is the minimum cost of any edge connecting v to a node in S.
If there is no edge connecting v to S, the key is ∞. The smallest element in Q then
gives the desired edge and the node to be added to S.

Assume now that a node u is added to S. We inspect its incident edges {u,v}. If
v lies outside S and the edge is a better connection for v to S, the key value of v is
decreased accordingly. Figure 11.4 illustrates the operation of the JP algorithm, and
Fig. 11.5 shows the pseudocode. The code uses two auxiliary arrays d and parent,
where d[v] stores the cost of the shortest edge from v ∈ V \ S to a node in S and
parent[v] stores the endpoint in S of the corresponding edge. A value d[v] = ∞ means
that no connection to S is available. Exploiting our assumption that all edge weights
are positive, d[v] = 0 indicates that v ∈ S. Note that this convention for encoding
membership in S allows us to combine two necessary tests in the inner loop of the
pseudocode. Namely, an edge (u,v) only affects the priority queue if it connects S

and V \ S and improves the best connection found. Both conditions are true if and
only if c(e) < d[v]. The test “if w ∈ Q” can be implemented by comparing the old
value of d[w] with ∞.

b

c

b

c

b 7

4

26
9

7

4

2
9

7

4

26
9

3 c 3 3d d d
6

a aa
Fig. 11.4. A sequence of cuts (dotted lines)
corresponding to the steps carried out by the
Jarník–Prim algorithm with starting node a. The
edges (a,c), (c,b), and (b,d) are added to the
MST.

The only important difference from Dijkstra’s algorithm is that the priority queue
stores edge costs rather than path lengths. The analysis of Dijkstra’s algorithm carries
over to the JP algorithm, i.e., the use of a Fibonacci heap priority queue yields a
running time O(n logn+m).

2 Dijkstra also described this algorithm in his seminal 1959 paper on shortest paths [96].
Since Prim described the same algorithm two years earlier, it is usually named after him.
However, the algorithm actually goes back to a paper from 1930 by Jarník [164].

338 11 Minimum Spanning Trees

Function jpMST : Set of NodeId

d = 〈∞, . . . ,∞〉 : NodeArray[1..n] of R∪{∞} // d[v] is the distance of v from the tree
parent : NodeArray of Edge // (v,parent[v]) is shortest edge between S and v

Q : NodePQ // uses d[·] as priority
Q.insert(s) for some arbitrary s ∈V

while Q 6= /0 do

u :=Q.deleteMin

d[u] :=0 // d[u] = 0 encodes u ∈ S

foreach edge e = {u,v} ∈ E do

if c(e)< d[v] then // c(e)< d[v] implies d[v]> 0 and hence v 6∈ S

d[v] := c(e)
parent[v] :=u

if v ∈ Q then Q.decreaseKey(v) else Q.insert(v)
invariant ∀v ∈ Q : d[v] = min{c((u,v)) : (u,v) ∈ E ∧u ∈ S}

return {(v,parent[v]) : v ∈V \{s}}

Fig. 11.5. The Jarník–Prim MST algorithm. Positive edge costs are assumed.

Exercise 11.7. Dijkstra’s algorithm for shortest paths can use monotone priority
queues. Show that monotone priority queues do not suffice for the JP algorithm.

*Exercise 11.8 (average-case analysis of the JP algorithm). Assume that the edge
costs 1, . . . , m are assigned randomly to the edges of G. Show that the expected
number of decreaseKey operations performed by the JP algorithm is then bounded
by O(n log(m/n)). Hint: The analysis is very similar to the average-case analysis of
Dijkstra’s algorithm in Theorem 10.7.

11.3 Kruskal’s Algorithm

The JP algorithm is a good general-purpose MST algorithm. Nevertheless, we shall
now present an alternative algorithm, Kruskal’s algorithm [190]. It also has its merits.
In particular, it does not need a sophisticated graph representation, but works even
when the graph is represented by its sequence of edges. For sparse graphs with m =
O(n), its running time is competitive with the JP algorithm.3

Kruskal’s algorithm is also an instantiation of the generic algorithm. It grows a
forest, i.e., in contrast to the JP algorithm, it grows several trees. In any iteration
it adds the cheapest edge connecting two distinct components of the forest. In the
notation of the generic algorithm, T is the set of edges already selected. Initially, T

is the empty set. Let e be a cheapest edge connecting nodes in distinct subtrees of T .
We let (S,V −S) be any cut such that exactly one endpoint of e belongs to S. Then e

is the cheapest edge in ES. We add e to T .

3 Kruskal’s algorithm can be improved so that we get a very good algorithm for denser graphs
also [245]. This filterKruskal algorithm needs average time O(m+n log n log(m/n)).

11.3 Kruskal’s Algorithm 339

Function kruskalMST(V, E, c) : Set of Edge

T := /0
invariant T is a subforest of an MST

foreach (u,v) ∈ E in ascending order of cost do

if u and v are in different subtrees of T then

T :=T ∪{(u,v)} // join two subtrees
return T

Fig. 11.6. Kruskal’s MST algorithm

c

b

c

b

c

b

c

b 7

4

26
9

3

7

4

26
9

3

7

4

26
9

3

7

4

26
9

3 d d d d

aa aa

Fig. 11.7. In this example, Kruskal’s algorithm first proves that (b,d) and (b,c) are MST
edges using the cut property. Then (c,d) is excluded because it is the heaviest edge in the
cycle 〈b,c,d〉, and, finally, (a,c) completes the MST.

How can we find the cheapest edge connecting two components of (V,T)? A first
approach would be to first filter out the edges connecting two components and then
to find the cheapest such edge. It is much simpler to combine both tasks. We iterate
over the edges of G in order of increasing cost. When an edge is considered and
its endpoints are in the same component of the current forest, the edge is discarded
(filtering step), if its endpoints belong to distinct components, it is added to the forest
(selection step). Figure 11.6 gives the pseudocode and Fig. 11.7 gives an example.

In an implementation of Kruskal’s algorithm, we have to find out whether an edge
connects two components of (V,T). In the next section, we shall see that this can be
done so efficiently that the main cost factor is sorting the edges. This takes time
O(m logm) if we use an efficient comparison-based sorting algorithm. The constant
factor involved is rather small, so that for m = O(n) we can hope to do better than
the O(m+ n logn) JP algorithm.

Exercise 11.9 (streaming MST). Suppose the edges of a graph are presented to
you only once (for example over a network connection) and you do not have enough
memory to store all of them. The edges do not necessarily arrive in sorted order.

(a) Outline an algorithm that nevertheless computes an MST using space O(n).
(*b) Refine your algorithm to run in time O(m logn). Hint: Process batches of O(n)

edges (or use the dynamic tree data structure described by Sleator and Tarjan
[299]).

340 11 Minimum Spanning Trees

11.4 The Union–Find Data Structure

A partition of a set M is a collection M1, . . . , Mk of subsets of M with the property that
the subsets are disjoint and cover M, i.e., Mi∩M j = /0 for i 6= j and M =M1∪·· ·∪Mk.
The subsets Mi are called the blocks of the partition. For example, in Kruskal’s algo-
rithm, the forest T partitions V . The blocks of the partition are the connected com-
ponents of (V,T). Some components may be trivial and consist of a single isolated
node. Initially, all blocks are trivial. Kruskal’s algorithm performs two operations
on the partition: testing whether two elements are in the same subset (subtree) and
joining two subsets into one (inserting an edge into T).

The union–find data structure maintains a partition of the set 1..n and supports
these two operations. Initially, each element is a block on its own. Each block has
a representative. This is an element of the block; it is determined by the data struc-
ture and not by the user. The function find(i) returns the representative of the block
containing i. Thus, testing whether two elements are in the same block amounts to
comparing their respective representatives. An operation union(r,s) applied to rep-
resentatives of different blocks joins these blocks into a single block. The new block
has r or s as its representative.

Exercise 11.10 (union versus link). In some other books union allows arbitrary pa-
rameters from 1..n and our restricted operation is called link. Explain how this gen-
eralized union operation can be implemented using link and find.

To implement Kruskal’s algorithm using the union–find data structure, we refine
the procedure shown in Fig. 11.6. Initially, the constructor of the class UnionFind

initializes each node to represent its own block. The if statement is replaced by

r := find(u); s :=find(v);
if r 6= s then T :=T ∪{{u,v}}; union(r,s);

The union–find data structure is simple to implement as follows. Each block is
represented as a rooted tree4, with the root being the representative of the block. Each
element stores its parent in this tree (stored in an array parent). A root of such a tree
has itself as a parent (a self-loop).

The implementation of both operations is simple. We shall first describe unop-
timized versions and later discuss optimizations that lead to the pseudocode shown
in Fig. 11.8. For find(i), we follow parent pointers starting at i until we encounter a
self-loop. The self-loop is located at the representative of i, which we return. The im-
plementation of union(r,s) is equally simple. We simply make one representative the
child of the other. The root of the resulting tree is the representative of the combined
block. What we have described so far yields a correct but inefficient union–find data
structure. The parent references could form long chains that are traversed again and
again during find operations. In the worst case, each operation may take linear time
Ω(n).

4 Note that this tree may have a structure very different from the corresponding subtree in
Kruskal’s algorithm.

11.4 The Union–Find Data Structure 341

Class UnionFind(n : N) // Maintain a partition of 1..n

parent = 〈1,2, . . . ,n〉 : Array [1..n] of 1..n ...
1 2 n

rank = 〈0, . . . ,0〉 : Array [1..n] of 0.. logn // rank of representatives

Function find(i : 1..n) : 1..n
if parent[i] = i then return i

else i′ :=find(parent[i]) // path compression
parent[i]

i

i′

parent[i] := i′

return i′

Procedure union(r,s : 1..n)
assert r and s are representatives of different blocks
if rank[r]< rank[s] then parent[r] := s

else

2 3

3

3

2 2
r

rr

rs s

ss

parent[s] := r

if rank[r] = rank[s] then rank[r]++

Fig. 11.8. An efficient union–find data structure that maintains a partition of the set {1, . . . ,n}

Exercise 11.11. Give an example of an n-node graph with O(n) edges where a naive
implementation of the union–find data structure as described so far would lead to
quadratic execution time for Kruskal’s algorithm.

Therefore, Fig. 11.8 introduces two optimizations. The first optimization leads to
a limit on the maximum depth of the trees representing blocks. Every representa-
tive stores a nonnegative integer, which we call its rank. Initially, every element is a
representative and has rank 0. When the union operation is applied to two represen-
tatives with different rank, we make the representative of smaller rank a child of the
representative of larger rank. When the two representatives have the same rank, the
choice of the parent is arbitrary; however, we increase the rank of the new root. We
refer to the first optimization as union by rank.

Exercise 11.12. Assume that no find operations are called. Show that in this case,
the rank of a representative is the height of the tree rooted at it.

The second optimization is called path compression. This ensures that a chain of par-
ent references is never traversed twice. Rather, all nodes visited during an operation
find(i) redirect their parent pointers directly to the representative of i. In Fig. 11.8,
we have formulated this rule as a recursive procedure. This procedure first traverses
the path from i to its representative and then uses the recursion stack to traverse the
path back to i. While the recursion stack is being unwound, the parent pointers are
redirected. Alternatively, one can traverse the path twice in the forward direction.
In the first traversal, one finds the representative, and in the second traversal, one
redirects the parent pointers.

Exercise 11.13. Describe a nonrecursive implementation of find.

342 11 Minimum Spanning Trees

Theorem 11.4. Union by rank ensures that the depth of no tree exceeds logn.

Proof. Without path compression, the rank of a representative is equal to the height
of the tree rooted at it. Path compression does not increase heights and does not
change the ranks of roots. It therefore suffices to prove that ranks are bounded by
logn. We shall show inductively that a tree whose root has rank k contains at least 2k

elements. This is certainly true for k = 0. The rank of a root grows from k− 1 to k

when it receives a child of rank k−1. Thus, by the induction hypothesis, the root had
at least 2k−1 descendants before the union operation, and it receives a child which
also had at least 2k−1 descendants. So the root has at least 2k descendants after the
union operation. ⊓⊔

Union by rank and path compression make the union–find data structure “breath-
takingly” efficient – the amortized cost of any operation is almost constant.

Theorem 11.5. The union–find data structure of Fig. 11.8 performs m find and n−1
union operations in time O(mα(m,n)). Here,

α(m,n) = min{i≥ 1 : A(i,⌈m/n⌉)≥ logn} ,

where

A(1, j) = 2 j for j ≥ 1,

A(i,1) = A(i− 1,2) for i≥ 2,

A(i, j) = A(i− 1,A(i, j− 1)) for i≥ 2 and j ≥ 2.

You will probably find the formulae overwhelming. The function5 A grows extremely
rapidly. We have A(1, j) = 2 j, A(2,1) = A(1,2) = 22 = 4, A(2,2) = A(1,A(2,1)) =

24 = 16, A(2,3) = A(1,A(2,2)) = 216, A(2,4) = 2216
, A(2,5) = 22216

, A(3,1) =
A(2,2) = 16, A(3,2) = A(2,A(3,1)) = A(2,16), and so on.

Exercise 11.14. Estimate A(5,1).

For all practical n, we have α(m,n)≤ 5, and union–find with union by rank and path
compression essentially guarantees constant amortized cost per operation.

The proof of Theorem 11.5 is beyond the scope of this introductory text. We refer
the reader to [290, 306]. Here, we prove a slightly weaker result that is equally useful
for all practical purposes. In order to be able to state the result, we first define the
numbers Tk, k ≥ 0: T0 = 1, and Tk = 2Tk−1 for k ≥ 1. The first terms of this rapidly
growing sequence of numbers are:

k 0 1 2 3 4 5 . . . k

Tk 1 2 4 = 22 16 = 222
65536 = 2222

265536 = 22222

. . . 22·
··2

of height k.

5 The usage of the letter A is a reference to the logician Ackermann [4], who first studied a
variant of this function in the late 1920s.

11.4 The Union–Find Data Structure 343

Note that Tk = A(2,k− 1) for k ≥ 2 and that Tk is a “tower of twos” of height k.
For x > 0, we define log∗ x as min{k : Tk ≥ x}. This is also the smallest non-

negative integer k such that log(k) x := log(log(. . . log(x) . . .)) (taking the logarithm
k times) is less than or equal to 1. The function log∗ x grows extremely slowly. For
example, for all x < 265536, we have log∗ x≤ 5.

Theorem 11.6. The union–find data structure with path compression and union by

rank completes m find operations and n− 1 union operations in O((m+ n) log∗ n)
time.

Proof. (This proof is based on [155].) Consider an arbitrary sequence of n−1 union

and m find operations starting with the initialization of the set 1..n. Since union op-
erations take constant time, we can concentrate the analysis on the find operations.

The rank of a root can grow while the sequence of operations is being executed.
Once a node ceases to be a root, its rank no longer changes. In fact, its rank is no
longer important for the execution of the algorithm. However, we shall use it in the
analysis. We refer to the rank of a node v at the end of the execution as its final rank

fr(v). If v ever becomes a child, its final rank is the rank at the time when it first
became a child. We make the following observations:

(a) Along paths defined by parent pointers, the values of fr strictly increase.
(b) When a node v obtains its final rank h, its subtree has as least 2h nodes.
(c) There are at most n/2h nodes with fr value h.

Proof of the observations: (a) This is an invariant of the data structure. Initially,
there are no (non-self-loop) edges at all. When v becomes a child of u during a
union operation, we have fr(v) = rank(v) < rank(u) right after the operation. Also
rank(u) ≤ fr(u). The path compression in find operations shortcuts paths which can
only increase the difference between fr-values. (b) is already implied by our proof
of Theorem 11.4. Note that a node may lose descendants by path compresssion.
However, this happens only when the node is no longer a root. (c) For a fixed fr

value h and any node v with fr(v) = h, let Mv denote the set of children of v just
before the moment when v becomes the child of some other node (or at the end of
the execution, when v never becomes a child). We prove that the sets Mv are disjoint
(this implies observation (c) since, according to (b), each Mv has at least 2h elements
and since there are only n nodes overall). Assume otherwise; say, node w belongs to
Mv1 and Mv2 for distinct nodes v1 and v2 with final rank equal to h. Then they cannot
both be roots at the end of the execution. Say, v1 becomes a child of some node u

at some point. Then fr(u) > h by (a). By subsequent union operations, w can obtain
further ancestors. However, by (a), these ancestors all have fr values larger than h.
Hence, w can never become a descendant of another node with fr value h.

We partition the nodes with positive final rank into rank groups G0,G1, Rank
group Gk contains all nodes v with Tk−1 < fr(v)≤ Tk (defining T−1 := 0). For exam-
ple, G4 contains all nodes with final ranks between 17 and 65536. Since, by Theo-
rem 11.4, ranks can never exceed logn, it becomes apparent that only rank groups
up to G4 will be nonempty for practical values of n. Formally, for a node v ∈ Gk

344 11 Minimum Spanning Trees

with k > 0, Tk−1 < fr(v) ≤ logn. Hence, Tk = 2Tk−1 < 2logn = n, or, equivalently,
k < log∗ n. Thus, there are at most log∗ n nonempty rank groups.

We are now ready for an amortized analysis of the cost of find operations. For an
operation find(v), we charge r units of cost, where r is the number of nodes on the
path 〈v = v1, . . . ,vr−1,vr = s〉 from v to its representative s. Note that the cost of the
operation, including setting new parent pointers, is Θ(r) and hence we are covering
the asymptotic cost. We distribute these r cost units as follows. We charge one unit
to each node on the path with the following exceptions: Nodes v1, vr−1, vr, and the
nodes vi whose parent is in a higher rank group are not charged. Note that the final
rank of all nodes except maybe v1 is positive and that all but nodes vr−1 and vr get
a new parent by path compression. Since, by observation (a), the fr values strictly
increase along the path and since there are at most log∗ n nonempty rank groups, the
number of exceptions is 3+ log∗ n = O(log∗ n). We charge the exceptions directly to
the find operation. In this way, each find is charged O(log∗ n) for a total of O(m log∗ n)
for all all find operations.

Now we have to take care of the costs charged to nodes. Consider a node v be-
longing to rank group Gk. When v is charged during a find operation, v has a parent
u (also belonging to Gk) that is not the root s. Hence, v gets s as a new parent by path
compression. By observation (a), fr(u) < fr(s), i.e., whenever node v is charged, it
gets a new parent with a larger final rank. Since the ranks in group Gk are bounded
by Tk, v is charged at most Tk times. Once its parent is in a higher rank group, v is
never charged again. Therefore, the overall cost charged to v is at most Tk, and the
total cost charged to nodes in rank group Gk is at most |Gk| ·Tk.

The final ranks of the nodes in Gk are Tk−1 + 1, . . . ,Tk. By observation (3), there
are at most n/2h nodes of final rank h. Therefore,

|Gk| ≤ ∑
Tk−1<h≤Tk

n

2h
<

n

2Tk−1
=

n

Tk

,

by the definition of Tk. Equivalently, |Gk| ·Tk < n, i.e., the total cost charged to rank
group k is at most n. Since there are at most log∗ n nonempty rank groups, the total
charge to all nodes is at most n log∗ n.

Adding the charges of the find operations and the nodes, we get O(m log∗ n)+
n log∗ n = O((n+m) log∗ n). ⊓⊔

11.5 *External Memory

The MST problem is one of the very few graph problems that are known to have
an efficient external-memory algorithm. We shall give a simple, elegant algorithm
that exemplifies many interesting techniques that are also useful for other external-
memory algorithms and for computing MSTs in other models of computation. Our
algorithm is a composition of techniques that we have already seen: external sorting,
priority queues, and internal union–find. More details can be found in [90].

11.5 *External Memory 345

11.5.1 A Semiexternal Kruskal Algorithm

We begin with an easy case. Suppose we have enough internal memory to store the
union–find data structure of Sect. 11.4 for n nodes. This is enough to implement
Kruskal’s algorithm in the external-memory model. We first sort the edges using the
external-memory sorting algorithm described in Sect. 5.12. Then we scan the edges
in order of increasing weight, and process them as described by Kruskal’s algorithm.
If an edge connects two subtrees, it is an MST edge and can be output; otherwise, it
is discarded. External-memory graph algorithms that require Θ(n) internal memory
are called semiexternal algorithms.

11.5.2 Edge Contraction

If the graph has too many nodes for the semiexternal algorithm of the preceding
subsection, we can try to reduce the number of nodes. This can be done using edge

contraction. Suppose we know that e = (u,v) is an MST edge, for example because e

is the least-weight edge incident to v. We add e to the output, and need to remember
that u and v are already connected in the MST under construction. Above, we used
the union–find data structure to record this fact; now we use edge contraction to
encode the information into the graph itself. We identify u and v and replace them
by a single node. For simplicity, we again call this node u. In other words, we delete
v and relink all edges incident to v to u, i.e., any edge (v,w) now becomes an edge
(u,w). Figure 11.9 gives an example. In order to keep track of the origin of relinked
edges, we associate an additional attribute with each edge that indicates its original

endpoints. With this additional information, the MST of the contracted graph is easily
translated back to the original graph. We simply replace each edge by its original.

We now have a blueprint for an external MST algorithm: Repeatedly find MST
edges and contract them. Once the number of nodes is small enough, switch to a
semiexternal algorithm. The following subsection gives a particularly simple imple-
mentation of this idea.

11.5.3 Sibeyn’s Algorithm

Suppose V = 1..n. Consider the following simple strategy for reducing the number
of nodes from n to n′ [90]:

for current :=1 to n− n′ do

find the lightest edge incident to current and contract it

Figure 11.9 gives an example, with n = 4 and n′ = 2. The strategy looks decep-
tively simple. We need to discuss how we find the cheapest edge incident to current

and how we relink the other edges incident to it, i.e., how we inform its neighbors
that they are receiving additional incident edges. We can use a priority queue for both
purposes. For each edge e = {u,v}, we store the item

(min(u,v),max(u,v),weight of e,origin of e)

346 11 Minimum Spanning Trees

in the priority queue. The ordering is lexicographic by the first and third components,
i.e., edges are ordered first by the lower-numbered endpoint and then according to
weight. The algorithm operates in phases. In each phase, we process all edges inci-
dent to the current node, i.e., a phase begins when the first edge incident to current

is selected from the queue and ends when the last such edge is selected. The edges
incident to current are selected from the queue in increasing order of weight. Let
(current,relinkTo,∗,{u0,v0}) be the lightest edge (= first edge delivered by the queue
in the phase) incident to current. We add its original {u0,v0} to the MST. Consider
any other edge (current,z,c,

{
u′0,v

′
0

}
) incident to current. If z = RelinkTo, we dis-

card the edge because relinking would turn it into a self-loop. If z 6= RelinkTo, we
add (min(z,RelinkTo),max(z,RelinkTo),c,

{
u′0,v

′
0

}
) to the queue.

output relink

was

...

output

relinkwas
c c

b

c

3

9

2
4

7
7

4

26
9

3

b 7

4

2
9

3

b
c

7 3

4 9d d d

d

a a
(a,b)

(a
,b
)

(a,d)

(a,d)

(a,c)

(b,c)

(c,b)

(c,d)

(c,d)

(d,b)

Fig. 11.9. An execution of Sibeyn’s algorithm with n′ = 2. The edge (c,a,6) is the cheapest
edge incident to a. We add it to the MST and merge a into c. The edge (a,b,7) becomes an
edge (c,b,7) and (a,d,9) becomes (c,d,9). In the new graph, (d,b,2) is the cheapest edge
incident to b. We add it to the spanning tree and merge b into d. The edges (b,c,3) and
(b,c,7) become (d,c,3) and (d,c,7), respectively. The resulting graph has two nodes that are
connected by four parallel edges of weights 3, 4, 7, and 9.

Function sibeynMST(V, E, c) : Set of Edge

let π be a random permutation of 1..n
Q: priority queue // Order: min node, then min edge weight

foreach e = (u,v) ∈ E do

Q.insert(min{π(u),π(v)} ,max{π(u),π(v)} ,c(e),(u,v))
current := 0 // we are just before processing node 1
loop

(u,v,c,{u0,v0}) :=minQ // next edge
if current 6= u then // new node

if u = n−n′+1 then break loop // node reduction completed
Q.deleteMin

output (u0,v0) // the original endpoints define an MST edge
(current,relinkTo) :=(u,v) // prepare for relinking remaining u-edges

else if v 6= relinkTo then

Q.insert((min{v,relinkTo} ,max{v,relinkTo} ,c,{u0,v0}) // relink

S := sort(Q) // sort by increasing edge weight
apply semiexternal Kruskal to S

Fig. 11.10. Sibeyn’s MST algorithm

11.5 *External Memory 347

Exercise 11.15. Let T be the partial MST just before the edges incident to current

are inspected. Characterize the content of the queue, i.e., which edges {u0,v0} have
a representative in the queue and what is this representative? Hint: Show that every
component of (V,T) contains exactly one node v with v≥ current. Call this node the
representative of the component and use rep(u0) to denote the representative of the
component containing u0; then {u0,v0} is represented by {rep(u0),rep(v0)} if the
two representatives are distinct and is not represented otherwise.

Figure 11.10 gives the details. For reasons that will become clear in the analy-
sis, we renumber the nodes randomly before starting the algorithm, i.e., we chose
a random permutation of the integers 1 to n and rename node v as π(v). For any
edge e = {u,v} we store (min{π(u),π(v)} ,max{π(u),π(v)} ,c(e),e)) in the queue.
The main loop stops when the number of nodes is reduced to n′. We complete the
construction of the MST by sorting the remaining edges and then running the semiex-
ternal Kruskal algorithm on them.

Theorem 11.7. Let sort(x) denote the I/O complexity of sorting x items. The expected

number of I/O steps needed by the algorithm sibeynMST is O(sort(m ln(n/n′))).

Proof. From Sect. 6.3, we know that an external-memory priority queue can execute
K queue operations using O(sort(K)) I/Os. Also, the semiexternal Kruskal step re-
quires O(sort(m)) I/Os. Hence, it suffices to count the number of operations in the
reduction phases. Besides the m insertions during initialization, the number of queue
operations is proportional to the sum of the degrees of the nodes encountered. Let
the random variable Xi denote the degree of node i when it is processed. When i is
processed, the contracted graph has n− i+ 1 remaining nodes and at most m edges.
Hence the average degree of each remaining node is at most 2m/(n− i+ 1). Owing
to the random permutation of the nodes, each remaining node has the same proba-
bility of being removed next. Hence, E[Xi] coincides with the average degree. By the
linearity of expectations, we have E[∑1≤i≤n−n′ Xi] = ∑1≤i≤n−n′ E[Xi]. We obtain

E

[

∑
1≤i≤n−n′

Xi

]

= ∑
1≤i≤n−n′

E[Xi]≤ ∑
1≤i≤n−n′

2m

n− i+ 1

= 2m

(

∑
1≤i≤n

1
i
− ∑

1≤i≤n′

1
i

)

= 2m(Hn−Hn′)

= 2m(lnn− lnn′)+O(1) = 2m ln
n

n′
+O(1) ,

where Hn :=∑1≤i≤n 1/i = lnn+Θ(1) is the nth harmonic number (see (A.13)). ⊓⊔
Note that we could do without switching to the semiexternal Kruskal algorithm.
However, then the logarithmic factor in the I/O complexity would become lnn rather
than ln(n/n′) and the practical performance would be much worse. Observe that
n′ = Θ(M) is a large number, say 108. For n = 1012, lnn is three times ln(n/n′).

Exercise 11.16. For any n, give a graph with n nodes and O(n) edges where Sibeyn’s
algorithm without random renumbering would need Ω

(
n2
)

relink operations.

348 11 Minimum Spanning Trees

11.6 *Parallel Algorithms

The MST algorithms presented in the preceding sections add one edge after an-
other to the MST and thus do not directly yield parallel algorithms. We need an
algorithm that indentifies many MST edges at once. Borůvka’s algorithm [51, 240]
does just that. Interestingly, going back to 1926, it is also the oldest MST algo-
rithm. For simplicity, let us assume that all edges have different weights. The algo-
rithm is a recursive multilevel algorithm similar to the list-ranking algorithm pre-
sented in Sect. 3.3.2. Borůvka’s algorithm applies the cut property to the simple cuts
{v} ,V \ {v} for all v ∈ V , i.e., it finds the lightest edge incident to each node. Note
that these edges cannot contain a cycle as the heaviest edge on the cycle is not the
lightest edge incident to either endpoint. These edges are added to the MST and then
contracted (see also Sect. 11.5.2). Recursively finding the MST of the contracted
graph completes the MST.

It is relatively easy to see how to implement this algorithm sequentially such that
each level of recursion takes linear time. We can also easily show that there are at
most logn such levels: Each node finds one MST edge (recall that we assume the
graph to be connected). Each new MST edge is found at most twice (once from each
of its endpoints). Hence, at least n/2 distinct MST edges are identified. Contracting
them at least halves the number of nodes.

An attractive feature of Borůvka’s algorithm is that finding the new MST edges
in each level of recursion is easy to parallelize. The contraction step is more com-
plicated to parallelize, though. The difficulty is that we are not contracting single,
unrelated edges but, instead, that the edges to be contracted form a graph. More con-
cretely, consider the directed graph H = (V,C), where (u,v) ∈C if {u,v} ∈ E is the
lightest edge incident to u. All nodes in H have outdegree 1. If you follow a path in
H, the visited edges have nonincreasing weights. Since we assume the edge weights
of G to be unique, this can only mean that any path in H ends in a cycle u ⇋ v of
length two, where the two edges of H, (u,v) and (v,u) represent the same edge {u,v}
of G. In other words, the components of H are “almost” rooted trees, except that
there are two nodes pointing to each other instead of a single root. The most difficult
step of our parallel algorithm is to transform these pseudotrees to rooted stars, i.e.,
rooted trees where all nodes point directly to the root.

The first, easy substep is to convert a pseudotree to a rooted tree. Assuming any
ordering on the nodes, consider a cycle u ⇋ v with u < v. We designate u as the root
of the tree by replacing (u,v) by the self-loop (u,u).

Next, we have to “flatten” these trees. The pseudocode in Fig. 11.11 uses the
doubling algorithm tha we have already seen for list ranking in Sect. 3.3.6 The while-
loop executing the doubling algorithm will perform logL iterations where L < n is
the longest path in H.

The resulting rooted trees are easy to contract. An edge e = {u,v} in the input
graph is transformed into an edge {u.R,v.R} in the contracted graph. The weight re-
mains the same. The endpoints of an edge in the input graph are seperately stored

6 A work-efficient variant, using ideas similar to the independent-set algorithm for list rank-
ing, is also possible [229].

11.6 *Parallel Algorithms 349

so that they can be used for outputting the result. Some of the edges defined above
are not required for the contracted graph: Those connecting nodes in the same com-
ponent of H are not needed at all. Among parallel edges, only the lightest has to be
kept. This can, for example, be achieved by inserting all edges into a hash table us-
ing their endpoints as keys. Then, within each bucket of the hash table, a minimum
reduction is performed. Figure 11.12 gives an example.

// Input: edges are triples ({u,v} ,c,{u,v}) where c is the weight
// Output: triples ({u,v} ,c,{u′,v′}) where u′, v′ are the original endpoints
Function boruvkaMST(V, E) : Set of Edge

if |V |= 1 then return /0 // base case
foreach u ∈V do‖ // find lightest incident edges

u.e :=min{({u,v} ,c,o) : {u,v} ∈ E} // minimum c; also in parallel
u.R:= other end of u.e // define pseudotrees – u.R is the sole successor of u

T :={u.e : u ∈V} // remember MST edges
foreach u ∈V do‖ // pseudotrees→ rooted trees

if u.R = v∧ v.R = u∧u < v then u.R :=u

while ∃u : u.R 6= u.R.R do // trees→ stars
foreach u ∈V do‖

if u.R 6= u.R.R then u.R :=u.R.R // doubling
// contract
V ′ :={u ∈V : u.R = u} // roots
E ′ :={({u.R,v.R} ,c,o) : ({u,v} ,c,o) ∈ E ∧u.R 6= v.R} // intertree edges
optional: among parallel edges in (V ′,E ′), remove all but the lightest ones

return T ∪boruvkaMST(V ′,E ′)

Fig. 11.11. Loop-parallel CREW-PRAM pseudocode for Borůvka’s MST algorithm

53 5

79
2

5

4
3

79

pseudotrees rooted trees rooted stars contracted

7
2

5 2

4
3

5

9

1

3

79
2

5 2

4
3

1 1 2

3 2

1

parent referenceMST edge

Fig. 11.12. One level of recursion of Borůvka’s algorithm.

*Exercise 11.17. Refine the pseudocode in Fig. 11.11. Make explicit how the re-
cursive instance can work with consecutive integers for node identifiers. Hint: see
Sect. 3.3.2. Also, work out how to identify parallel edges in parallel (use hashing or
sorting) and how to balance load even when nodes can have very high degree. Each
level of recursion should work in expected time O(m/p+ log p).

350 11 Minimum Spanning Trees

On a PRAM, Borůvka’s algorithm can be implemented to run in polylogarithmic
time.

Theorem 11.8. On a CRCW-PRAM, the algorithm in Fig. 11.11 can be implemented

to run in expected time

O

(
m

p
logn+ log2 n

)

.

Proof. We analyze the algorithm without removal of parallel edges. There are at
most logn levels of recursion since the number of nodes is at least halved in each
level.

In each level, at most m edges are processed. Analogously to the BFS algorithm
in Sect. 9.2.4, we can assign PEs to nodes using prefix sums such that each PE works
on O(m/p) edges. Using local minimum reductions, we can then compute the locally
lightest edges. All this takes time O(m/p+ log p) per level of recursion.

Transforming pseudotrees to rooted trees is possible in constant time. The while-
loop for the doubling algorithm executes at most logn iterations. In recursion level
i, there are at most k = n/2i nodes left. Performing one doubling step takes time
O(⌈k/p⌉). Hence, the total time for the while-loops is bounded by

logn

∑
i=1

O

(⌈
n

p2i

⌉

logn

)

= O

(
n

p
logn+ log2 n

)

.

Building the recursive instances in adjacency array representation can be done
using expected linear work and logarithmic time; see Sect. 8.6.1.

Overall we get expected time

O

(
m+ n

p
logn+ log2 n

)

= O

(
m

p
logn+ log2 n

)

.

For the last simplification, we exploit the fact that the graph is connected and hence
m≥ n− 1. ⊓⊔

The optional removal of superfluous parallel edges can be implemented using bulk
operations on a hash table where the endpoints of the edge form the key. The asymp-
totic work needed is comparable to that for Kruskal’s algorithm.

Exercise 11.18 (graphs staying sparse under edge contractions). We say that a
class of graphs stays sparse under edge contractions if there is a constant C such that
for every graph G = (V,E) in the class and every graph G′ = (V ′,E ′) that can be
obtained from G by edge contractions (and keeping only one copy of a set of paral-
lel edges), we have |E ′| ≤ C · |V ′|. The class of planar graphs is sparse under edge
contractions. Show that the running time of the parallel MST algorithm improves to
O
(
m/p+ log2 n

)
for such graphs. Hint: Replace the sentence “In each level, at most

m edges are processed” by “In level i of the recursion, there are at most n/2i nodes
and hence Cn/2i edges left”. Removal of parallel edges now becomes essential. Use
the result of Exercise 11.17.

11.7 Applications 351

11.7 Applications

The MST problem is useful in attacking many other graph problems. We shall discuss
the Steiner tree problem and the traveling salesman problem.

11.7.1 The Steiner Tree Problem

We are given a nonnegatively weighted undirected graph G = (V,E) and a set S of
nodes. The goal is to find a minimum-cost subset T of the edges that connects the
nodes in S. Such a T is called a minimum Steiner tree. It is a tree connecting a set
U with S ⊆ U ⊆ V . The challenge is to choose U so as to minimize the cost of
the tree. The minimum-spanning-tree problem is the special case where S consists
of all nodes. The Steiner tree problem arises naturally in our introductory example.
Assume that some of the islands in Taka-Tuka-Land are uninhabited. The goal is
to connect all the inhabited islands. The optimal solution may have some of the
uninhabited islands in the solution.

The Steiner tree problem is NP-complete (see Sect. 2.13). We shall show how to
construct a solution which is within a factor of two of the optimum. We construct an
auxiliary complete graph H with node set S: For any pair u and v of nodes in S, the
cost of the edge {u,v} in H is their shortest-path distance in G. Let TA be an MST
of H and let cH be its cost. Replacing every edge of TA by the path it represents in
G yields a subgraph of G connecting all the nodes in S. The resulting subgraph of
G has cost cH and may contain parallel edges and cycles. We remove parallel edges
and delete edges from cycles until the remaining subgraph is cycle-free. The cost of
the resulting Steiner tree is at most cH .

Theorem 11.9. The algorithm above constructs a Steiner tree which has at most

twice the cost of an optimal Steiner tree.

Proof. Let cH be the cost of the MST in H. Recall that H is the complete graph on
the node set S and that the cost of any edge {u,v} of H is the cost of a shortest path
connecting u and v in G. The algorithm constructs a Steiner tree for S of cost at most
cH . We show that cH ≤ 2c(Topt), where Topt is a minimum Steiner tree for S in G. To
this end, it suffices to show that the auxiliary graph H has a spanning tree of cost at
most 2c(Topt). Fig. 11.13 indicates how to construct such a spanning tree. “Walking
once around the Steiner tree” defines a cycle C in G of cost c(C) = 2c(Topt); observe
that every edge in Topt occurs exactly twice in this cycle. Deleting the nodes outside
S in this cycle gives us a cycle in H. The cost of this cycle in H is at most 2c(Topt),
because edge costs in H are shortest-path distances in G. More precisely, consider
subpaths P= 〈s, . . . , t〉 of C whose endpoints s and t are in S and whose interior nodes
are outside S. The cost of the edge {s, t} of H is the shortest-path distance between
s and t in G and hence at most the cost of the path P in G. We have now shown the
existence of a cycle through all nodes of H of cost at most 2c(Topt). Removing any
edge of this cycle gives us a spanning tree of H. ⊓⊔

352 11 Minimum Spanning Trees

node in S

node in V \S

edge of Topt

a b

c

v

w x

yz

Fig. 11.13. “Once around the tree”. The tree Topt shown is a minimum Steiner tree for S =
{v,w,x,y,z}. It also contains the nodes a, b, and c in V \ S. Walking once around the tree
yields the cycle 〈v,a,b,c,w,c,x,c,b,y,b,a,z,a,v〉 in G, of cost 2c(Topt). Removal of the nodes
outside S yields the cycle 〈v,w,x,y,z,v〉 in the auxiliary graph H. The cost of this cycle is at
most 2c(Topt). Removal of any edge of the cycle yields a spanning tree of the auxiliary graph.

Exercise 11.19. Improve the above bound to 2(1− 1/|S|) times the optimum.

The algorithm can be implemented to run in time O(m+ n logn) [212]. Algorithms
with better approximation ratios exist [265].

Exercise 11.20. Outline an implementation of the algorithm above and analyze its
running time. Aim for running time O(|S|(m+ n logn)).

11.7.2 Traveling Salesman Tours

The traveling salesman problem is one of the most intensively studied optimiza-
tion problems [18, 193, 317]: Given an undirected complete graph on a node set
V with edge weights c(e), the goal is to find the minimum-weight simple cycle
passing through all nodes (also called a tour). This is the path a traveling sales-
man would want to take if his goal was to visit all nodes of the graph exactly once.
We assume in this section that the edge weights satisfy the triangle inequality, i.e.,
c(u,v)+c(v,w)≥ c(u,w) for all nodes u, v, and w. An important consequence of this
assumption is that nonsimple cycles cannot lead to better tours than simple cycles, as
dropping repeated nodes from a cycle does not increase its weight. There is a simple
relation between the cost of MSTs and that of travaling salesman tours.

Theorem 11.10. Let Copt and CMST be the costs of an optimal tour and of an MST,

respectively. Then

CMST ≤Copt ≤ 2CMST.

Proof. Let C be an optimal tour. Deleting any edge from C yields a spanning tree.
Thus CMST ≤ Copt. Conversely, let T be an MST. Walking once around the tree as
shown in Fig. 11.13 gives us a cycle of cost at most 2CMST, passing through all nodes.
It may visit nodes several times. Deleting an extra visit to a node does not increase
the cost, owing to the triangle inequality. More precisely, replacing the cycle edges
(u,v) and (v,w), where v is a node visited more than once, by (u,w) does not increase
the cost. ⊓⊔

11.8 Implementation Notes 353

In the remainder of this section, we shall briefly outline a technique for improving
the lower bound of Theorem 11.10. We need two additional concepts: 1-trees and
node potentials. Let G′ be obtained from G by deleting node 1 and the edges incident
to it. A minimum 1-tree consists of the two cheapest edges incident to node 1 and an
MST of G′. Since deleting the two edges incident to node 1 from a tour C yields a
spanning tree of G′, we have C1 ≤Copt, where C1 is the minimum cost of a 1-tree. A
node potential is any real-valued function π defined on the nodes of G. We have also
used node potentials in Sect. 10.7. A node potential π yields a modified cost function
cπ defined as

cπ(u,v) = c(u,v)+π(v)+π(u)

for any pair u and v of nodes. For any tour C, the costs under c and cπ differ by
2Sπ :=2∑v π(v), since a tour uses exactly two edges incident to any node. Let Tπ be
a minimum 1-tree with respect to cπ . Then

cπ(Tπ)≤ cπ(Copt) = c(Copt)+ 2Sπ ,

and hence
c(Copt)≥max

π
(cπ(Tπ)− 2Sπ) .

This lower bound is known as the Held–Karp lower bound [146, 147]. The maxi-
mum is over all node potential functions π . It is hard to compute the lower bound
exactly. However, there are fast iterative algorithms for approximating it. The idea is
as follows, and we refer the reader to the original papers for details. Assume we have
a potential function π and the optimal 1-tree Tπ with respect to it. If all nodes of Tπ

have degree two, we have a traveling salesman tour and stop. Otherwise, we make
the edges incident to nodes of degree larger than two a little more expensive and the
edges incident to nodes of degree 1 a little cheaper. This can be done by modifying
the node potential of v as follows. We define a new node potential π ′ by

π ′(v) = π(v)+ ε · (deg(v,Tπ)− 2),

where ε is a parameter which goes to 0 with increasing iteration number, and
deg(v,Tπ) is the degree of v in Tπ . We next compute an optimal 1-tree with respect
to π ′ and hope that it will yield a better lower bound.

11.8 Implementation Notes

The minimum-spanning-tree algorithms discussed in this chapter are so fast that the
running time is usually dominated by the time required to generate the graphs and ap-
propriate representations. The JP algorithm works well for all m and n if an adjacency
array representation (see Sect. 8.2) of the graph is available. Pairing heaps [230] are
a robust choice for the priority queue. Kruskal’s algorithm may be faster for sparse
graphs, in particular if only a list or array of edges is available or if we know how to
sort the edges very efficiently.

354 11 Minimum Spanning Trees

The union–find data structure can be implemented more space-efficiently by ex-
ploiting the observation that only representatives need a rank, whereas only nonrep-
resentatives need a parent. We can therefore omit the array rank in Fig. 11.6. Instead,
a root of rank g stores the value n+1+g in parent. Thus, instead of two arrays, only
one array with values in the range 1..n+ 1+ ⌈logn⌉ is needed. This is particularly
useful for the semiexternal algorithm [90].

11.8.1 C++

LEDA [194] uses Kruskal’s algorithm for computing MSTs. The union–find data
structure is called partition in LEDA. The Boost graph library [50] and LEMON
graph library [200] give choices of algorithms for computing MSTs. They also pro-
vide the union–find data structure.

11.8.2 Java

The JGraphT [166] library gives a choice between Kruskal’s and the JP algorithm. It
also provides the union–find data structure.

11.9 Historical Notes and Further Findings

There is a randomized linear-time MST algorithm that uses phases of Borůvka’s
algorithm to reduce the number of nodes [175, 182]. The second building block
of this algorithm reduces the number of edges to about 2n: We sample O(m/2)
edges randomly, find an MST T ′ of the sample, and remove edges e ∈ E that are
the heaviest edge in a cycle in e∪ T ′. The last step is difficult to implement ef-
ficiently. But, at least for rather dense graphs, this approach can yield a practical
improvement [178]. An adaptation for the external-memory model [2] saves a factor
ln(n/n′) in the asymptotic I/O complexity compared with Sibeyn’s algorithm but is
impractical for currently interesting values of n owing to its much larger constant
factor in the O-notation.

The theoretically best deterministic MST algorithm [65, 253] has the interesting
property that it has optimal worst-case complexity, although it is not known exactly
what this complexity is. Hence, if you were to come up with a completely different
deterministic MST algorithm and prove that your algorithm runs in linear time, then
we would know that the old algorithm also runs in linear time.

There has been a lot of work on parallel MST algorithms. In particular, the linear-
work algorithm [175] can be parallelized [76, 141]. Bader and Cong [26] achieved
speedup in practice using a hybrid of Borůvka’s algorithm and Prim’s algorithm
which starts growing trees from multiple source nodes in parallel. Zhou [333] gave
an efficient shared-memory implementation of Borůvka’s algorithm by exploiting
the priority update principle [295]. The filterKruskal algorithm mentioned above
can also be partially parallelized [245]. When a graph is partitioned into blocks, it

11.9 Historical Notes and Further Findings 355

suffices to consider the cut edges and the MST edges of the blocks. Wassenberg et
al. developed a parallel version of Kruskal’s algorithm for image segmentation based
on this observation [326].

Minimum spanning trees define a single path between any pair of nodes. Interest-
ingly, this path is a bottleneck shortest path [9, Application 13.3], i.e., it minimizes
the maximum edge cost for all paths connecting the nodes in the original graph.
Hence, finding an MST amounts to solving the all-pairs bottleneck-shortest-path
problem in much less time than that for solving the all-pairs shortest-path problem.

A related and even more frequently used application is clustering based on the
MST [9, Application 13.5]: By dropping k− 1 edges from the MST, it can be split
into k subtrees. The nodes in a subtree T ′ are far away from the other nodes in the
sense that all paths to nodes in other subtrees use edges that are at least as heavy as
the edges used to cut T ′ out of the MST.

Many applications lead to MST problems on complete graphs. Frequently, these
graphs have a compact description, for example if the nodes represent points in the
plane and the edge costs are Euclidean distances (these MSTs are called Euclidean
minimum spanning trees). In these situations, it is an important concern whether one
can rule out most of the edges as too heavy without actually looking at them. This
is the case for Euclidean MSTs. It can be shown that Euclidean MSTs are contained
in the Delaunay triangulation [85] of the point set. This triangulation has linear size
and can be computed in time O(n logn). This leads to an algorithm of the same time
complexity for Euclidean MSTs.

We have discussed the application of MSTs to the Steiner tree and the traveling
salesman problem. We refer the reader to the books [9, 18, 189, 193, 322] for more
information about these and related problems.

