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Generic Approaches to Optimization

A smuggler in the mountainous region of Profitania has n items in his cellar. If he

sells an item i across the border, he makes a profit pi. However, the smuggler’s trade

union only allows him to carry knapsacks with a maximum weight of M. If item i has

weight wi, which of the items should he pack into the knapsack to maximize the profit

from his next trip1?

This problem, usually called the knapsack problem, has numerous other applications,
many of which are described in the books [179, 206]. For example, an investment
bank might have an amount M of capital to invest and a set of possible investments.
Each investment i has an expected profit pi for an investment of cost wi. In this
chapter, we use the knapsack problem as an example to illustrate several generic
approaches to optimization. These approaches are quite flexible and can be adapted
to complicated situations that are ubiquitous in practical applications.

In the previous chapters we considered very efficient specific solutions for fre-
quently occurring simple problems such as finding shortest paths or minimum span-
ning trees. Now we look at generic solution methods that work for a much larger
range of applications. Of course, the generic methods do not usually achieve the
same efficiency as specific solutions. However, they save development time.

Formally, an instance I of an optimization problem can be described by a set
UI of potential solutions, a set LI of feasible solutions, and an objective function

fI with fI : LI → R. For simplicity, we will mainly drop the subscript I and write
U , L , and f . In a maximization problem, we are looking for a feasible solution
x∗ ∈L that maximizes the value of the objective function over all feasible solutions.
In a minimization problem, we are looking for a solution that minimizes the value of
the objective function. In a search problem, the objective function is irrelevant; the
task is to find any feasible solution x ∈L , if this set is not empty. Similarly, in an
existence problem, the objective function is irrelevant and the question is whether L

is nonempty.
For example, in the knapsack problem an instance I specifies the maximum

weight M, the number n of objects as well as profits and weights of these objects,
as vectors p = (p1, . . . , pn) and w = (w1, . . . ,wn). Figure 12.1 gives an example in-

1 The illustration above shows a 19th century American knapsack commons.wikimedia.
org/wiki/File:19th_century_knowledge_hiking_and_camping_

sheepskin_knapsack_sleeping_bag_rolled_up.jpg
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Fig. 12.1. The left part shows a knapsack instance with p = (10,20,15,20), w = (1,3,2,4),
and M = 5. The items are indicated by rectangles whose width and height correspond to the
weight and profit, respectively. The right part shows three solutions: the one computed by the
greedy algorithm in Sect. 12.2, an optimal solution computed by the dynamic programming
algorithm in Sect. 12.3, and the fractional solution of the linear relaxation (Sect. 12.1.2). The
optimal solution has weight 5 and profit 35.

stance. A potential solution for I is simply a vector x = (x1, . . . ,xn) with xi ∈ {0,1}.
Here xi = 1 indicates that item i is put into the knapsack and xi = 0 indicates that
item i is left out. Thus U = {0,1}n. A potential solution x is feasible if its total
weight does not exceed the capacity of the knapsack, i.e., if ∑1≤i≤n wixi ≤ M. The
dot product w · x is a convenient shorthand for ∑1≤i≤n wixi. We can then say that
L = {x ∈U : w · x≤M} is the set of feasible solutions, and f (x) = p · x is the ob-
jective function.

The distinction between minimization and maximization problems is not essen-
tial because setting f = − f converts a maximization problem into a minimization
problem and vice versa. We shall use maximization as our default simply because
our example problem is more naturally viewed as a maximization problem.2

In this chapter we shall present seven generic approaches to solving optimization
problems. We start out with black-box solvers that can be applied to any optimization
problem whose instances can be expressed in the problem specification language of
the solver. In such a case, the only task of the user is to formulate the given prob-
lem in the language of the black-box solver. Section 12.1 introduces this approach
using linear programming and integer linear programming as examples. The greedy

approach, which we have already met in Chap. 11, is reviewed in Sect. 12.2. The
approach of dynamic programming discussed in Sect. 12.3 is a more flexible way
to construct solutions. We can also systematically explore the entire set of poten-
tial solutions, as described in Sect. 12.4. Constraint programming, SAT solvers, and
ILP solvers are special cases of systematic search. Finally, we consider two very
flexible approaches to exploring only a subset of the solution space. Local search,
discussed in Sect. 12.5, modifies a single solution until it has the desired quality.
Evolutionary algorithms, described in Sect. 12.6, simulate a population of candidate
solutions. Most of the methods described above can be parallelized. We outline basic
approaches within each section.

2 Be aware that most of the literature uses minimization as the default.



12.1 Linear Programming – Use a Black-Box Solver 359

12.1 Linear Programming – Use a Black-Box Solver

The easiest way to solve an instance of an optimization problem is to write down a
specification of the space of feasible solutions and of the objective function and then
use an existing software package to find an optimal solution. Such software packages
are often called “black-box solvers” since the user only needs to know their interface
and not the methods used for finding an optimal solution. Of course, the question
is for which kinds of specification general solvers are available. In this section, we
introduce a particularly large class of problem instances for which such black-box
solvers are available. In Linear Programming one specifies the set of feasible solu-
tions as a set of vectors in Rm by linear inequalities and the objective function as
a linear function with values in R. There are software packages that solve such in-
stances, which can be termed “efficient” in a theoretical or in a practical sense. In
(Mixed) Integer Linear Programming (some or) all the components of the feasible
solutions are restricted to be integers. Black-box software packages are available for
this type of specification as well, which can solve such instances quickly in many
cases, although the algorithms are not guaranteed to run in polynomial time.

12.1.1 Linear Programming

Definition 12.1. A linear program3 (LP) with n variables and m constraints is an in-

stance of a maximization problem that is specified in the following way. The possible

solutions are vectors x = (x1, . . . ,xn) with real components x j, j ∈ 1..n, which are

called variables. The objective function is a linear function f of x, i.e., f : Rn → R

with f (x) = c · x, where c = (c1, . . . ,cn) is called the cost or profit vector4. The

variables are constrained by m linear constraints of the form ai · x ⊲⊳i bi, where

⊲⊳i∈ {≤,≥,=}, ai = (ai1, . . . ,ain) ∈ Rn, and bi ∈ R for i ∈ 1..m. The set of feasi-

ble solutions is given by

L =
{

x ∈ Rn : ∀i ∈ 1..m : ai · x ⊲⊳i bi and ∀ j ∈ 1..n : x j ≥ 0
}

.

Figure 12.2 shows a simple example. A classical application of linear programming
is the diet problem. A farmer wants to mix food for his cows. There are n different
kinds of food on the market, say, corn, soya, fish meal, . . . . One kilogram of food
j costs c j euros. There are m requirements for healthy nutrition. For example, the
cows should get enough calories, protein, vitamin C, and so on. One kilogram of
food j contains ai j percent of a cow’s daily requirement with respect to requirement
i. A solution to the following linear program gives a cost-optimal diet that satisfies
the health constraints: Let x j denote the amount (in kilogram) of food j used by the
farmer. The ith nutritional requirement is modeled by the inequality ∑ j ai jx j ≥ 100.
The cost of the diet is given by ∑ j c jx j. The goal is to minimize the cost of the diet.

3 The term “linear programming” stems from the 1940s [81] and has nothing to do with the
modern meaning of “program” as in “computer program”.

4 If all c j are positive, it is common to use the term “profit” in maximization problems and
“cost” in minimization problems.
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Fig. 12.2. A simple two-dimensional linear program in variables x and y, with three constraints
and the objective function “maximize x+4y”. The feasible region is shaded, and (x,y) = (2,6)
is the optimal solution. Its objective value is 26. The vertex (2,6) is optimal because the half-
plane described by x+4y≤ 26 contains the entire feasible region and has (2,6) in its boundary.

Exercise 12.1. How do you model supplies that are available only in limited
amounts, for example food produced by the farmer himself? Also, explain how to
specify additional constraints such as “no more than 0.01 mg cadmium contamina-
tion per cow per day”.

Can the knapsack problem be formulated as a linear program? Probably not. Each
item either goes into the knapsack as a whole or not at all. There is no possibility of
adding only a part of an item. In contrast, it is assumed in the diet problem that any
arbitrary amount of any food can be purchased, for example 3.7245 kg and not just
3 kg or 4 kg. Integer linear programs (see Sect. 12.1.2) are the suitable method for
formulating the knapsack problem.

We next connect linear programming to a problem that was studied earlier in
the book. We show how to formulate the single-source shortest-path problem with
nonnegative edge weights in the language of linear programming. Let G=(V,E) be a
directed graph, let s ∈V be the source node, and let c : E→ R≥0 be the cost function
on the edges of G. In the linear program that corresponds to this instance there is
a variable dv for each vertex v in G. The intention is that in an optimal solution dv

denotes the cost of the shortest path from s to v. Somewhat surprisingly, we formulate
the shortest path problem as a maximization problem. Consider

maximize ∑
v∈V

dv

subject to ds = 0,

dw ≤ dv + c(e) for all e = (v,w) ∈ E .

In order to gain intuition why this might be a suitable formulation, the reader should
recall the string model for the single-source shortest path problem that we discussed
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at the beginning of Chap. 10. In this model every node sits as far below the start
node s as possible, without any edge being overstretched. That is, for vertices v and
w that form an edge e = (v,w) and their distances dv and dw from s we must have
the relation dw ≤ dv + c(e). Maximizing the sum is a weak version of expressing the
goal that each dv should be as large as possible. We prove that solving the LP above
is equivalent to solving the given shortest-path instance.

Theorem 12.2. Let G = (V,E) be a directed graph, s ∈ V a designated vertex, and

c : E→ R≥0 a nonnegative cost function. If all vertices of G are reachable from s, the

shortest-path distances in G are the unique optimal solution to the linear program

above.

Proof. Let µ(v) be the distance from s to v. Then µ(v) ∈ R≥0, since edge costs
are nonnegative and all nodes are reachable from s, and hence no vertex can have
a distance −∞ or +∞ from s. We observe first that the choice dv := µ(v) for all v

satisfies the constraints of the LP. Indeed, µ(s) = 0 and µ(w) ≤ µ(v)+ c(e) for any
edge e = (v,w).

We next show that if (dv)v∈V satisfies all constraints of the LP above, then dv ≤
µ(v) for all v. Consider any v, and let 〈s = v0,v1, . . . ,vk = v〉 be a shortest path
from s to v. Then µ(v) = ∑0≤i<k c(vi,vi+1). We shall show by induction on j that
dv j
≤ ∑0≤i< j c(vi,vi+1), for j = 0, . . . ,k. For j = 0, this follows from ds = 0 by the

first constraint. For j > 0, we have

dv j
≤ dv j−1 + c(v j−1,v j)≤ ∑

0≤i< j−1

c(vi,vi+1)+ c(v j−1,v j) = ∑
0≤i< j

c(vi,vi+1),

where the first inequality follows from the second set of constraints of the LP and
the second inequality comes from the induction hypothesis.

We have now shown that (µ(v))v∈V is a feasible solution, and that dv ≤ µ(v) for
all v for all feasible solutions (dv)v∈V . Since the objective of the LP is to maximize
the sum of the dv’s, we must have dv = µ(v) for all v in the optimal solution to the
LP. ⊓⊔

Exercise 12.2. Where does the proof above fail when not all nodes are reachable
from s or when there are negative edge costs? Does it still work in the absence of
negative cycles?

The proof that the LP above actually captures the given instance of the shortest-path
problem is nontrivial. When you formulate a problem instance as an LP, you should
always prove that the LP is indeed a correct description of the instance that you are
trying to solve.

Exercise 12.3. Let G = (V,E) be a directed graph and let s (“source”) and t (“sink”)
be two nodes. Let cap : E → R≥0 and c : E → R≥0 be nonnegative functions on the
edges of G. For an edge e, we call cap(e) and c(e) the capacity and cost, respectively,
of e. A flow is a function f : E → R≥0 with 0 ≤ f (e) ≤ cap(e) for all e and flow
conservation at all nodes except s and t, i.e., for all v 6= s, t, we have
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flow into v = ∑
e=(u,v)

f (e) = ∑
e=(v,w)

f (e) = flow out of v.

The value of the flow is the net flow out of s, i.e., ∑e=(s,v) f (e)−∑e=(u,s) f (e). The
maximum-flow problem asks for a flow of maximum value, given G, s, t, and cap.
Show that such an instance of the flow problem can be formulated as an LP.

If also c is given, the cost of a flow is ∑e f (e)c(e). The minimum-cost maximum-

flow problem asks for a maximum flow of minimum cost. Show how to formulate
instances of this problem as an LP.

Linear programs are of central importance because they combine expressive
power with efficient solution algorithms. For discussing efficiency, we have to ex-
plain how to measure the size of the input. The coefficients ai j, bi, and c j of the
linear inequalities and the objective function are assumed to be rational numbers.
The size of an LP is then specified by m, n, and L, where L is an upper bound on
the number of bits needed to write (in binary) the numerators and denominators of
these coefficients. We say an algorithm solves Linear Programming if, when pre-
sented with an arbitrary LP, it either (1) returns an optimal feasible solution or (2)
correctly asserts that there is no feasible solution or (3) correctly asserts that there
are feasible solutions with arbitrarily large values of the objective function.

Theorem 12.3. Linear programs can be solved in polynomial time [176, 180].

The two polynomial-time algorithms are the Ellipsoid method [180] and the inte-
rior point method [176]. A compact account of the interior point method can be
found in [221]. The worst-case running time of the best interior point algorithm is
O(max(m,n)7/2L). Fortunately, the worst case rarely arises. Most linear programs
can be solved relatively quickly by any one of several procedures. One, the simplex
algorithm, is briefly outlined in Sect. 12.5.1. For now, the reader should remember
two facts: First, many optimization problems can be formulated as linear programs,
and second, there are efficient LP solvers that can be used as black boxes. In fact,
although LP solvers are used on a routine basis, very few people in the world know
exactly how to implement a highly efficient LP solver.

The simplex algorithm is notoriously difficult to parallelize, since an efficient
implementation performs very little work in each step. The polynomial-time algo-
rithms perform fewer steps with more work in each step and have been parallelized
successfully in state-of-the-art LP solvers.

12.1.2 Integer Linear Programming

The expressive power of linear programming grows when some or all of the vari-
ables can be designated to be integral. Such variables can then take on only integer
values, and not arbitrary real values. If all variables are constrained to be integral,
the formulation of the problem is called an integer linear program (ILP). If some
but not all variables are constrained to be integral, the formulation is called a mixed

integer linear program (MILP). For example, our knapsack problem is tantamount
to the following 0 -1 integer linear program:
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maximize p · x

subject to
w · x≤M and x j ∈ {0,1} for j ∈ 1..n.

In a 0 -1 integer linear program, the variables are constrained to the values 0 and 1.

Exercise 12.4. Explain how to replace any ILP by a 0 -1 ILP, assuming that an upper
bound U on the value of any variable in the optimal solution is known. Hint: Replace
each variable of the original ILP by a set of O(logU) many 0 -1 variables.

Unfortunately, solving ILPs and MILPs is NP-hard. Indeed, even the knapsack prob-
lem is NP-hard. Nevertheless, ILPs can often be solved in practice using linear-
programming packages. In Sect. 12.4, we shall outline how this is done. When an
exact solution would be too time-consuming, linear programming can help to find
approximate solutions. The linear-program relaxation of an ILP is the LP obtained
by omitting the integrality constraints on the variables. For example, in the knapsack
problem we would replace the constraint x j ∈ {0,1} by the constraint x j ∈ [0,1].

An LP relaxation can be solved by an LP solver. In many cases, the solution
to the relaxation teaches us something about the underlying ILP. One observation
always holds true (for maximization problems): The objective value of the relaxation
is at least as large as the objective value of the underlying ILP. This claim is trivial,
because any feasible solution to the ILP is also a feasible solution to the relaxation.
The optimal solution to the LP relaxation will in general be fractional, i.e., variables
will take on rational values that are not integral. However, it might be the case that
only a few variables have nonintegral values. By appropriate rounding of fractional
variables to integer values, we can often obtain good integer feasible solutions.

We shall give an example. The linear relaxation of the knapsack problem is given
by

maximize p · x
subject to

w · x≤M and x j ∈ [0,1] for j ∈ 1..n.

This has a natural interpretation. It is no longer required to add items to the knapsack
as a whole; one can now take any fraction of an item. In our smuggling scenario,
the fractional knapsack problem corresponds to a situation involving divisible goods
such as liquids or powders.

The fractional knapsack problem is easy to solve in time O(n logn); there is no
need to use a general-purpose LP solver. We renumber (sort) the items by profit

density p j/w j such that
p1

w1
≥ p2

w2
≥ ·· · ≥ pn

wn
.

We find the smallest index ℓ such that ∑ℓ
j=1 w j > M (if there is no such index, we can

take all knapsack items). The item ℓ with fractional value xℓ is also called critical

item. Now we set
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x1 = · · ·= xℓ−1 = 1, xℓ =

(

M−
ℓ−1

∑
j=1

w j

)

/wℓ, and xℓ+1 = · · ·= xn = 0.

Figure 12.1 gives an example. The fractional solution above is the starting point for
many good algorithms for the knapsack problem. We shall see more of this later.

Exercise 12.5 (linear relaxation of the knapsack problem).

(a) Prove that the above routine computes an optimal solution. Hint: You may want
to use an exchange argument similar to the one used to prove the cut property of
minimum spanning trees in Sect. 11.1.

(b) Outline an algorithm that computes an optimal solution in linear expected time.
Hint: Use a variant of quickSelect, described in Sect. 5.8.

(c) Parallelize your algorithm from (b).

A solution to the fractional knapsack problem is easily converted to a feasible solu-
tion to the knapsack problem. We simply take the fractional solution and round the
sole fractional variable xℓ to 0. We call this algorithm roundDown.

Exercise 12.6. Formulate the following set-covering problem as an ILP. Given a set
M, subsets Mi ⊆ M for i ∈ 1..n with

⋃n
i=1 Mi = M, and a cost ci ∈ N for each Mi,

select F ⊆ 1..n such that
⋃

i∈F Mi = M and ∑i∈F ci is minimized.

Boolean formulae. These provide another powerful description language for search
and decision problems. Here, variables range over the Boolean values 1 and 0, and
the connectors ∧, ∨, and ¬ are used to build formulae. A Boolean formula is sat-

isfiable if there is an assignment of Boolean values to the variables such that the
formula evaluates to 1. As an example, we consider the pigeonhole principle: It is
impossible to pack n+ 1 items into n bins such that every bin contains at most one
item. This principle can be formulated as the statement that certain formulae are un-
satisfiable. Fix n. We have variables xi j for 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ n. So i ranges
over items and j ranges over bins. Variable xi j represents the statement “item i is in
bin j”. The constraint that every item must be put into (at least) one bin is formulated
as xi1∨·· · ∨ xin, for 1 ≤ i≤ n+ 1. The constraint that no bin should hold more than
one item is expressed by the subformulas ¬(∨1≤i<h≤n+1 xi j ∧ xh j), for 1 ≤ j ≤ n.
The conjunction of these n+m+ 1 formulae is unsatisfiable, since from a satisfying
assignment for the variables one could calculate a way of distributing the n+1 items
into the n bins, which does not exist. SAT solvers decide if a given Boolean for-
mula is satisfiable or not, and in the positive case calculate a satisfying assignment.
Although the satisfiability problem is NP-complete, there are now solvers that can
solve real-world instances that involve hundreds of thousands of variables.5

Exercise 12.7. Formulate the pigeonhole principle for n+ 1 items and n bins as an
integer linear program.

5 See www.satcompetition.org/.

www.satcompetition.org/
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SAT instances can be solved in parallel using the portfolio approach – run p SAT
solvers in parallel and (almost) independently. Two measures are needed to make
this successful. Diversification tries to make these SAT solvers to behave differently.
For example, we can randomize decisions and vary tuning parameters. Furthermore,
information “learned” during the search has to be exchanged in a judicious way.
The resulting speedups fluctuate wildly – between occasional slowdown and huge
superlinear speedup. This naturally leads to some debate about how effective this is.
However, several natural ways to average speedups seem to indicate that the portfolio
approach scales surprisingly well up to at least hundreds of PEs [28].

The portfolio approach can also be used for other systematic-search problems
(see also Sect. 12.4); for example for solving ILPs or for other logical inference
problems.

12.2 Greedy Algorithms – Never Look Back

The term greedy algorithm is used for a problem-solving strategy where the items
under consideration are inspected in some order, usually some carefully chosen or-
der. When an item is considered, a decision about this item is made; for example,
whether it is included into the solution. Decisions are never reversed. The algorithm
for the fractional knapsack problem given in the preceding section follows the greedy
strategy; we consider the items in decreasing order of profit density. The algorithms
for shortest paths in acyclic graphs and for the case of nonnegative edge weights in
Sects. 10.2 and 10.3 and those for minimum spanning trees in Chap. 11 also follow
the greedy strategy. For the single-source shortest-path problem with nonnegative
edge weights, we considered the edges in the order of the tentative distances of their
source nodes. For the latter two problems, the greedy approach led to an optimal
solution.

Usually, greedy algorithms yield only suboptimal solutions. Let us consider the
knapsack problem again. The greedy approach from above scans the items in order
of decreasing profit density and includes items that will still fit into the knapsack.
We shall give this algorithm the name greedy. Figures 12.1 and 12.3 give exam-
ples. Observe that greedy always gives solutions at least as good as roundDown
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Fig. 12.3. Two instances of the knapsack problem. Left: For p = (4,4,1), w = (2,2,1), and
M = 3, greedy performs better than roundDown. Right: For p = (1,M− 1) and w = (1,M),
both greedy and roundDown are far from optimal.
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gives. Once roundDown encounters an item that it cannot include, it stops. How-
ever, greedy keeps on looking and often succeeds in including additional items of
less weight. Although the example in Fig. 12.1 gives the same result for both greedy

and roundDown, the results generally are different. For example, consider the two
instances in Fig. 12.3. With profits p = (4,4,1), weights w = (2,2,1), and M = 3,
greedy includes the first and third items, yielding a profit of 5, whereas roundDown

includes just the first item and obtains only a profit of 4. Both algorithms may pro-
duce solutions that are far from optimal. For example, for any capacity M, consider
the two-item instance with profits p = (1,M − 1) and weights w = (1,M). Both
greedy and roundDown include only the first item, which has a profit density slightly
higher than that of the second item, but a very small absolute profit. In this case it
would be much better to include just the second item.

We can turn this observation into an algorithm, which we call round. This com-
putes two solutions: the solution xd proposed by roundDown and the solution xc

obtained by choosing exactly the critical item xℓ.6 It then returns the better of the
two.

We can give an interesting performance guarantee for algorithm round. It always
achieves at least 50% of the profit of the optimal solution. More generally, we say
that an algorithm achieves an approximation ratio of α if, for all inputs, its solution
is at most a factor α worse than the optimal solution.

Theorem 12.4. The algorithm round achieves an approximation ratio of 2.

Proof. Consider an instance p,w,x. Let x∗ denote any optimal solution, and let x f

be the optimal solution for the same input when fractional solutions are admitted.
Then p ·x∗ ≤ p ·x f . The value of the objective function is increased by including the
critical item, i.e., by setting xℓ = 1 in the fractional solution. We obtain

p · x∗ ≤ p · x f ≤ p · xd + p · xc ≤ 2max
{

p · xd, p · xc
}

,

and hence the profit achieved by algorithm round is at least half the optimum. ⊓⊔

There are many ways to refine algorithm round without sacrificing this approxima-
tion guarantee. We can replace xd by the greedy solution. We can similarly augment
xc with any greedy solution for a smaller instance where item j is removed and the
capacity is reduced by w j.

We now turn to another important class of optimization problems, called schedul-

ing problems. Consider the following scenario, known as the scheduling problem

for independent weighted jobs on identical machines. We are given m identical ma-
chines, on which we want to process n jobs; the execution of job j takes t j time units.
An assignment x : 1..n→ 1..m of jobs to machines is called a schedule. Thus the
load ℓ j assigned to machine j is ∑i : x(i)= j ti. The goal is to minimize the makespan

Lmax = max1≤ j≤m ℓ j of the schedule.

6 We assume here that “unreasonably large” items with wi > M have been removed from the
problem in a preprocessing step.
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This is a fundamental load-balancing problem for parallel processing and we
shall consider it further in Chap. 14. One application scenario is as follows. We have
a video game processor with several identical processor cores. The jobs are the tasks
executed in a video game such as audio processing, preparing graphics objects for the
image-processing unit, simulating physical effects, and simulating the intelligence
of the game. The makespan will then determine the required time between two time
steps of the game and hence the frame rate at which changes in the game can be
displayed. Users of a game expect a frame rate which guarantees pleasant viewing.

We give next a simple greedy algorithm for the problem above [136] that has the
additional property that it does not need to know the sizes of the jobs in advance. We
can even assume that the jobs are presented one after the other, and we assign them on
the basis of the knowledge we have so far. Algorithms with this property (“unknown
future”) are called online algorithms. When job i arrives, we assign it to the machine
with the smallest load. Formally, we compute the loads ℓ j = ∑h<i∧x(h)= j th of all
machines j and assign the new job to the least loaded machine, i.e., x(i) := ji, where
ji is such that ℓ ji = min1≤ j≤m ℓ j. This shortest-queue algorithm does not guarantee
optimal solutions, but always computes nearly optimal solutions.

Theorem 12.5. The list-scheduling algorithm ensures

Lmax ≤
1
m

n

∑
i=1

ti +
m− 1

m
max

1≤i≤n
ti.

Proof. In the schedule generated by the shortest-queue algorithm, some machine j∗

has a load Lmax. We focus on the last job i∗ that is assigned to machine j∗. When job
i∗ is assigned to j∗, all m machines have a load of at least Lmax− ti∗ , i.e.,

∑
i6=i∗

ti ≥ (Lmax− ti∗) ·m.

Solving this for Lmax yields

Lmax ≤
1
m

∑
i6=i∗

ti + ti∗ =
1
m

∑
i

ti +
m− 1

m
ti∗ ≤

1
m

n

∑
i=1

ti +
m− 1

m
max
1≤i≤n

ti. ⊓⊔

We next observe that 1
m ∑i ti/m and maxi ti are lower bounds on the makespan

of any schedule and hence also of the optimal schedule. We obtain the following
corollary.

Corollary 12.6. The approximation ratio of the shortest-queue algorithm is 2−1/m.

Proof. Let L1 =
1
m ∑i ti and L2 = maxi ti. The makespan L∗ of the optimal solution is

at least max(L1,L2). The makespan of the shortest-queue solution is bounded by

L1 +
m− 1

m
L2 ≤ L∗+

m− 1
m

L∗ =

(

2− 1
m

)

L∗. ⊓⊔
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The shortest-queue algorithm is not better than claimed above. Consider an instance
with n=m(m−1)+1, ti = 1 for i= 1, . . . ,n−1, and tn =m. The optimal solution has
a makespan L∗ = m, whereas the shortest-queue algorithm produces a solution with
a makespan Lmax = 2m− 1. The shortest-queue algorithm is an online algorithm.
It produces a solution which is at most a factor 2− 1/m worse than the solution
produced by an algorithm that knows the entire input. In such a situation, we say that
the online algorithm has a competitive ratio of α = 2− 1/m.

*Exercise 12.8. Show that the shortest-queue algorithm achieves an approximation
ratio of 4/3 if the jobs are sorted by decreasing size.

*Exercise 12.9 (bin packing). Suppose a smuggler has perishable goods in her cel-
lar. She has to hire enough porters to ship all items tonight. Develop a greedy algo-
rithm that tries to minimize the number of people she needs to hire, assuming that
each one can carry a weight M. Try to obtain an approximation ratio for your bin

packing algorithm.

Parallel Greedy Algorithms

In general, greedy algorithms are difficult to parallelize. However, we may be able
to exploit special properties of the application. When the priorities of the items can
be computed up front, we can order them using parallel sorting. Perhaps we can
even compute the decisions in parallel, for example using a prefix sum. This was the
case for the greedy knapsack algorithm, where the decision just depends on the total
weight of the preceding objects.

Sometimes at least a certain subset of items can be processed independently. We
saw an example in the parallel DAG traversal algorithm in Sect. 9.4 and for parallel
shortest paths in Sect. 10.9. If all else fails, we can also relax the ordering of the
objects, approximating a greedy algorithm. We have seen an example in Sect. 10.9
for the ∆ -stepping algorithm for shortest paths.

12.3 Dynamic Programming – Build It Piece by Piece

The first idea in dynamic programming is to expand a given problem instance into
a system of auxiliary instances, which are called subproblems. These subproblems
are then solved systematically. When solving a subproblem, one assumes that the
solutions for all its subproblems have been computed before. The second idea is
that for many optimization problems the following principle of optimality holds: An
optimal solution for a subproblem is composed of optimal solutions for some of its
subproblems. If a subproblem has several optimal solutions, it does not matter which
one is used. A recurring phenomenon is that there is a choice among the possible sets
of subproblems that are to be combined to obtain an optimal solution. An algorithm
that follows the principle of dynamic programming uses the optimality principle to
systematically build up a table of optimal solutions for all subproblems. Finally, an
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optimal solution for the original problem instance is constructed from the solutions
for the subproblems.

Again, we shall use the knapsack problem as an example. Consider an instance I,
consisting of weight vector w, profit vector c, and capacity M. For each i ∈ 0..n and
each C between 0 and M we define a subproblem, as follows: P(i,C) is the maximum
profit possible when only items 1 to i can be put in the knapsack and the total weight
is at most C. Our goal is to compute P(n,M). (We shall see below that solutions for
all these subproblems can be used for calculating an optimal selection.) We start with
trivial cases and work our way up. The trivial cases are “no items” and “total weight
0”. In both of these cases, the maximum profit is 0. So

P(0,C) = 0 for all C and P(i,0) = 0 for all i.

Consider next the case i > 0 and C > 0. In the solution that maximizes the profit, we
either use item i or do not use it. In the latter case, the maximum achievable profit is
P(i−1,C). In the former case, the maximum achievable profit is P(i−1,C−wi)+ pi,
since we obtain a profit of pi for item i and must use an optimal solution for the first
i− 1 items under the constraint that the total weight is at most C−wi. Of course,
the former alternative is only feasible if C≥wi. We summarize this discussion in the
following recurrence for P(i,C):

P(i,C) =







0, if i = 0 or C = 0,

max(P(i− 1,C),P(i− 1,C−wi)+ pi) if i≥ 1 and wi ≤C,

P(i− 1,C) if i≥ 1 and wi >C.

(12.1)

Exercise 12.10. Show that the case distinction for wi in the definition of P(i,C) can
be avoided by defining P(i,C) =−∞ for C < 0.

Using the above recurrence, we can compute P(n,M) by filling a table P with one
column for each possible capacity C and one row for each item set 1..i. Table 12.1
gives an example. There are many possible orders in which to fill out the table, for ex-
ample row by row. In order to construct an optimal solution for the original instance
from the table, we work our way backwards, starting with entry P(n,M) at the bot-
tom right-hand corner of the table. We set i = n and C = M. If P(i,C) = P(i− 1,C),
we set xi = 0 and continue to row i− 1 and column C. Otherwise, we set xi = 1.
We have P(i,C) = P(i− 1,C−wi)+ pi, and therefore we continue to row i− 1 and
column C−wi. We continue in this fashion until we arrive at row 0. At this point
(x1, . . . ,xn) is an optimal solution for the original knapsack instance.

Exercise 12.11. The dynamic programming algorithm for the knapsack problem, as
just described, needs to store a table containing Θ(nM) integers. Give a more space-
efficient solution that at any given time stores only a single bit in each table entry as
well as two full rows of table P. What information is stored in the bit? How is the
information in the bits used to construct a solution? Can you get down to storing the
bits and only one full row of the table? Hint: Exploit the freedom you have in the
order of filling in table values.
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Table 12.1. A dynamic-programming table for the knapsack instance with p=(10,20,15,20),
w = (1,3,2,4), and M = 5. Entries that are inspected when the optimal solution is constructed
are in boldface.

C =
0 1 2 3 4 5

i = 0 0 0 0 0 0 0
1 0 10 10 10 10 10
2 0 10 10 20 30 30
3 0 10 15 25 30 35

4 0 10 15 25 30 35

P(i−1,C)

P(i−1,C−wi)+ pi

dominated solution

Fig. 12.4. The step function C 7→ P(i−1,C) is drawn with a solid line, and the step function
C 7→ P(i−1,C−wi)+ pi with a dashed line. The function P(i,C) is the pointwise maximum
of these two functions. The solid step function is stored as the sequence of solid points. The
representation of the dashed step function is obtained by adding (wi, pi) to every solid point.
The representation of C 7→ P(i,C) is obtained by merging the two representations and deleting
all dominated elements.

We shall next describe an important improvement with respect to space con-
sumption and speed. Instead of computing P(i,C) for all i and all C, the Nemhauser–

Ullmann algorithm [36, 238] computes only Pareto-optimal solutions. A solution x

is Pareto-optimal if there is no solution that dominates it, i.e., has a greater profit
and no greater cost or the same profit and less cost. In other words, since P(i,C) is
an increasing function of C, only the pairs (C,P(i,C)) with P(i,C) > P(i,C− 1)
are needed for an optimal solution. We store these pairs in a list Li sorted by
the value of C. So L0 = 〈(0,0)〉, indicating that P(0,C) = 0 for all C ≥ 0, and
L1 = 〈(0,0),(w1, p1)〉, indicating that P(1,C) = 0 for 0 ≤C < w1 and P(1,C) = p1

for C ≥ w1.
How can we go from Li−1 to Li? The recurrence for P(i,C) paves the way; see

Fig. 12.4. We have the list representation Li−1 for the function C 7→ P(i− 1,C). We
obtain the representation L′i−1 for C 7→ P(i− 1,C−wi)+ pi by shifting every point
in Li−1 by (wi, pi). We merge Li−1 and L′i−1 into a single list by order of first compo-
nent and delete all elements that are dominated by another value, i.e., we delete all
elements that are preceded by an element with a higher second component, and, for
each fixed value of C, we keep only the element with the largest second component.
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Exercise 12.12. Give pseudocode for the above merge. Show that the merge can be
carried out in time O(|Li−1|). Conclude that the running time of the Nemhauser–
Ullmann algorithm is proportional to the number of all Pareto-optimal solutions pro-
duced in the course of the algorithm for all i taken together.

Both the basic dynamic-programming algorithm for the knapsack problem and
its improved (Nemhauser–Ullmann) version require Θ(nM) worst-case time. This is
quite good if M is not too large. Since the running time is polynomial in n and M, the
algorithm is called pseudo-polynomial. The “pseudo” means that it is not necessarily
polynomial in the input size measured in bits; however, it is polynomial in the natural
parameters n and M. There is, however, an important difference between the basic
and the refined approach. The basic approach has best-case running time Θ(nM).
The best case for the refined approach is O(n). The average-case complexity of
the refined algorithm is polynomial in n, independent of M. This holds even if the
averaging is done only over perturbations of an arbitrary instance by a small amount
of random noise. We refer the reader to [36] for details.

Exercise 12.13 (dynamic programming by profit). Assume an instance of the
knapsack problem is given. Explore the following alternative way of defining sub-
problems: Let W (i,P) be the smallest weight bound that makes it possible to achieve
a profit of at least P, using knapsack items 1..i. Obviously we have W (i,P) = 0 for
1≤ i≤ n and all P≤ 0. Let W (0,P) = ∞ for all P > 0.

(a) Show that W (i,P) = min{W (i− 1,P),W(i− 1,P− pi)+wi}, for 1 ≤ i ≤ n and
P≥ 0.

(b) Develop a table-based dynamic-programming algorithm using the above recur-
rence that computes optimal solutions for the given instance in time O(np∗),
where p∗ is the profit of an optimal solution. Hint: Assume first that p∗, or at
least a good upper bound for it, is known. Then explain how to achieve the goal
without this assumption.

Exercise 12.14 (making change). Suppose you have to program a vending machine
that should give exact change using a minimum number of coins.

(a) Develop an optimal greedy algorithm that works in the Euro zone with coins
worth 1, 2, 5, 10, 20, 50, 100, and 200 cents and in Canada with coins worth (1,)
5, 10, 25, (50,) 100, and 200 cents7.

(b) Show that this algorithm would not be optimal if there were also a 4 cent coin.
(c) Develop a dynamic-programming algorithm that gives optimal change for any

currency system.

Exercise 12.15 (chained matrix products). We want to compute the matrix product
M1M2 · · ·Mn, where Mi is a ki−1× ki matrix. Assume that a pairwise matrix product
is computed in the straightforward way using mks element multiplications to ob-
tain the product of an m× k matrix with a k× s matrix. Exploit the associativity

7 In Canada, the 50 cent coin is legal tender, but rarely used. Production of 1 cent coins was
discontinued in 2012.
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of matrix products to minimize the number of element multiplications needed. Use
dynamic programming to find an optimal evaluation order in time O(n3). For ex-
ample, the product of a 4× 5 matrix M1, a 5× 2 matrix M2, and a 2× 8 matrix M3

can be computed in two ways. Computing M1(M2M3) takes 5 · 2 · 8+ 4 · 5 · 8= 240
multiplications, whereas computing (M1M2)M3 takes only 4 · 5 · 2+ 4 · 2 · 8 = 104
multiplications.

Exercise 12.16 (edit distance). The edit distance (or Levenshtein distance) L(s, t)
between two strings s and t is the minimum number of character deletions, insertions,
and replacements (“editing steps”) one has to apply to s to produce the string t. For
example, L(graph,group) = 3 (delete h, replace a by o, insert u before p). Let
n be the length of s and m be the length of t. We define subproblems as follows:
d(i, j) = L(〈s1, . . . ,si〉,〈t1, . . . , t j〉), for 0≤ i≤ n, 0≤ j ≤ m. Show that

d(i, j) = min
{

d(i− 1, j)+ 1,d(i, j− 1)+ 1,d(i− 1, j−1)+ [si 6= t j]
}

,

where [si 6= t j] is 1 if si and t j are different and is 0 otherwise. Use these optimality
equations to formulate a dynamic-programming algorithm to calculate the edit dis-
tance of L(s, t). What is the running time? Explain how one subsequently finds an
optimal sequence of editing steps to transform s into t.

Exercise 12.17. Does the principle of optimality hold for minimum spanning trees?
Check the following three possibilities for definitions of subproblems: subsets of
nodes, arbitrary subsets of edges, and prefixes of the sorted sequence of edges.

Exercise 12.18 (constrained shortest path). Consider a directed graph G = (V,E)
where edges e ∈ E have a length ℓ(e) and a cost c(e). We want to find a path from
node s to node t that minimizes the total length subject to the constraint that the total
cost of the path is at most C. Show that subpaths from s′ to t ′ of optimal solutions are
not necessarily shortest paths from s′ to t ′.

Parallel Dynamic Programming

Roughly speaking, dynamic-programming algorithms spend most of their time filling
table entries. If several of these entries can be computed independently, this can be
done in parallel. For example, for the knapsack problem, (12.1) tells us that all entries
in row i depend only on row i− 1 and hence can be computed in parallel.

Exercise 12.19. Explain how to parallelize one step of the Nemhauser–Ullmann al-
gorithm for the knapsack problem using linear work and polylogarithmic time. Hint:
You can use parallel merging and prefix sums.

Sometimes, in order to expose parallelism, we need to fill the tables in an order
that we may not think of in the sequential algorithm. For example, when computing
the edit distance in Exercise 12.16, we get some parallelism if we fill the table d(·, ·)
along the diagonals, i.e., for fixed k, the entries d(i,k− i) are independent and depend
only on the preceding two diagonals.
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12.4 Systematic Search – When in Doubt, Use Brute Force

In many optimization problems, for each given instance I the universe U of possible
solutions is finite, so that we can in principle solve the optimization problem by
trying all possibilities.8Applying this idea in the naive way does not lead very far.
For many problems, the “search space” U grows rapidly with the input size |I|. But
we can frequently restrict the search to promising candidates, and then the concept
carries a lot further.

We shall explain the concept of systematic search using the knapsack problem
and a specific approach to systematic search known as branch-and-bound. In Exer-
cises 12.22 and 12.21, we outline systematic-search routines following a somewhat
different pattern.

Branch-and-bound can be used when (feasible) solutions can be represented as
vectors (or, more generally, sequences) whose components attain only finitely many
values. The set of all these vectors (the search space) is searched systematically.
Systematic search views the search space as a tree. Figure 12.5 gives pseudocode
for a systematic-search routine bbKnapsack for the knapsack problem. The tree rep-
resenting the search space is generated and traversed using a recursive procedure.
Fig. 12.6 shows a sample run. A tree node corresponds to a partial solution in which
some components have been fixed and the others are still free. Such a node can be
regarded as a subinstance. The root is the vector in which all components are free.
Branching is the elementary step in a systematic-search routine. The children of
some node, or subinstance, are generated by inserting all sensible values for some
free component of the partial solution. For each of the resulting new nodes the pro-
cedure is called recursively. Within the recursive call, the chosen value is fixed. In
case of bbKnapsack the potential solutions are vectors in {0,1}n, and in partial so-
lutions some of the components are fixed, which means that for some objects it has
been decided whether to include them or not. In principle an arbitrary component
can be chosen to be fixed next. The routine bbKnapsack fixes the components xi

one after another in order of decreasing profit density. When treating xi, it first tries
including item i by setting xi := 1, and then excluding it by setting xi := 0. In both
cases, components xi+1, . . . ,xn are treated by recursion. The assignment xi :=1 is not
feasible and is not considered if the total weight of the included objects exceeds M.
To organize this, a “remaining capacity” M′ is carried along, which is reduced by the
weight of any object when it is included. So the choice xi := 1 is left out if wi > M′.
With these definitions, after all variables have been set, in the nth level of the recur-
sion, bbKnapsack will have found a feasible solution. Indeed, without the bounding

rule, which is discussed below, the algorithm would systematically explore a tree of
partial solutions whose leaves correspond to all feasible solutions. Branching occurs
at nodes at which both subtrees corresponding to the choices xi := 0 and xi := 1 are
explored. Because of the order in which the components are fixed, the first feasible
solution encountered would be the solution found by the algorithm greedy.

8 The sentence “When in doubt, use brute force.” is attributed to Ken Thompson.
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Function bbKnapsack((p1, . . . , pn),(w1, . . . ,wn),M) : {0,1}n

assert p1/w1 ≥ p2/w2 ≥ ·· · ≥ pn/wn // assume input sorted by profit density
x̂ = heuristicKnapsack((p1, . . . , pn),(w1, . . . ,wn),M) : {0,1}n // best solution so far
x : {0,1}n // current partial solution (x1, . . . ,xn)
recurse(1,M,0)
return x̂

// recurse finds solutions assuming x1, . . . ,xi−1 are fixed, M′ = M−∑
j<i

x jw j, P = ∑
j<i

x j p j.

Procedure recurse(i,M′,P : N)
u :=P+upperBound((pi, . . . , pn),(wi, . . . ,wn),M

′)
if u > p · x̂ then // possibly better solution than x̂

if i > n then x̂ :=x

else // branch on variable xi

if wi ≤M′ then xi :=1; recurse(i+1,M′−wi,P+ pi)
if u > p · x̂ then xi :=0; recurse(i+1,M′,P)

Fig. 12.5. A branch-and-bound algorithm for the knapsack problem. An initial feasible so-
lution is constructed by the function heuristicKnapsack using some heuristic algorithm. The
function upperBound computes an upper bound for the possible profit.

Bounding is a method for pruning subtrees that cannot contain better solutions
than those already known. A branch-and-bound algorithm keeps the best feasible so-
lution found so far in a global variable, in our case the variable x̂; this solution is
often called the incumbent solution. It is initialized to a trivial solution or one de-
termined by a heuristic routine. At all times, the value p · x̂ provides a lower bound
on the value of the objective function that can be obtained. Whenever a partial solu-
tion x is processed, this lower bound is complemented by an upper bound u for the
value of the objective function obtainable by extending x to a full feasible solution.
In our example, the upper bound could be the the sum of the profit of the partial so-
lution and the profit for the fractional knapsack problem with items i..n and capacity
M′ = M−∑ j<i x jw j . Branch-and-bound stops expanding the current branch of the
search tree when u ≤ p · x̂, i.e., when there is no hope of finding a better solution in
the subtree rooted at the current node.

Exercise 12.20. Explain how to implement the function upperBound in Fig. 12.5 so
that it runs in time O(logn). Hint: Precompute the prefix sums ∑ j≤i wi and ∑ j≤i pi,
for 1≤ i≤ n, and use binary search.

Exercise 12.21 (constraint programming and the eight-queens problem). Con-
sider a chessboard. The task is to place eight queens on the board so that they do
not attack each other, i.e., no two queens should be placed in the same row, column,
diagonal, or antidiagonal. So each row contains exactly one queen. Let xi be the po-
sition of the queen in row i. Then xi ∈ 1..8. The solution must satisfy the following
constraints: xi 6= x j, i+ xi 6= j + x j, and xi− i 6= x j− j for 1 ≤ i < j ≤ 8. What do
these conditions express? Show that they are sufficient. A systematic search can use
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Fig. 12.6. The part of the search space explored by bbKnapsack for a knapsack instance with
p = (10,24,14,24), w = (1,3,2,4), and M = 5 is processed. As initial solution we use the
empty x̂ = (0,0,0,0) with profit 0. The function upperBound is computed by rounding down
the optimal value of the objective function for the fractional knapsack problem. The nodes
of the search tree contain the components x1 · · ·xi−1 fixed so far and the upper bound u. Left
subtrees are explored first; they correspond to setting xi :=1. There are two for not exploring
the subtrees of a nonleaf node: Either there is not enough capacity left for the choice xi :=1
(indicated by “C”) or it turns out that a feasible solution with a profit at least as large as the
upper bound is already known (indicated by “B”, the recursive call does not have an effect).

the following optimization: When a variable xi is fixed at some value, this excludes
some values for variables that are still free. Modify the systematic search so that it
keeps track of the values that are still available for free variables. Stop exploration
as soon as there is a free variable that has no value available to it anymore. This
technique of eliminating values is basic to constraint programming.

Exercise 12.22 (the 15-puzzle).

The 15-puzzle is a popular sliding-block puzzle. Fifteen square tiles marked with
numbers 1, 2, . . . , 15, sit in a 4×4 frame. This leaves one “hole”. For an example see
the top of the figure on the left. You are supposed to move the tiles into the right order,
by performing moves. A move is defined as the action of interchanging a square and
the hole in the array of tiles. Design an algorithm that finds a shortest sequence
of moves from a given starting configuration to the ordered configuration shown at
the bottom of the figure on the left. Assume that there is a solution. Use iterative

deepening depth-first search [188]: Try all one-move sequences first, then all two-
move sequences, and so on. This should work for the simpler 8-puzzle, with eight
tiles in a 3×3 frame. For the 15-puzzle, use the following optimizations: Never undo
the immediately preceding move. Use the number of moves that would be needed
if all pieces could move freely to their target position as a lower bound, and stop
exploring a subtree if this bound proves that the current search depth is too small.
Decide beforehand whether the number of moves is odd or even. Implement your
algorithm to run in constant time per move tried.
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12.4.1 Solving Integer Linear Programs

In Sect. 12.1.2, we have seen how to formulate the knapsack problem as a 0 -1 ILP.
We shall now indicate how the branch-and-bound procedure developed for the knap-
sack problem can be applied to any 0 -1 ILP. Recall that in a 0 -1 ILP the values of
the variables are constrained to 0 and 1. Our discussion will be brief, and we refer the
reader to a textbook on integer linear programming [239, 286] for more information.

The main change is that the function upperBound now solves a general linear
program that has variables xi, . . . , xn with range [0,1]. The constraints for this LP
come from the input ILP, with the variables x1 to xi−1 replaced by their values. In the
remainder of this section, we shall simply refer to this linear program as “the LP”.

If the LP has a feasible solution, upperBound returns the optimal value for the
LP. If the LP has no feasible solution, upperBound returns−∞ so that the ILP solver
will stop exploring this branch of the search space. We shall next describe several
generalizations of the basic branch-and-bound procedure that sometimes lead to con-
siderable improvements:

Branch selection. We may pick any unfixed variable x j for branching. In particular,
we can make the choice depend on the solution of the LP. A commonly used rule is
to branch on a variable whose fractional value in the LP is closest to 1/2.

Order of search tree traversal. In the knapsack example, the search tree was tra-
versed depth-first, and the 1-branch was tried first. In general, we are free to choose
any order of tree traversal. There are at least two considerations influencing the
choice of strategy. If no good feasible solution is known, it is good to use a depth-
first strategy so that complete solutions are explored quickly. Otherwise, it is better
to use a best-first strategy that explores those search tree nodes that are most likely to
contain good solutions. Search tree nodes are kept in a priority queue, and the next
node to be explored is the most promising node in the queue. The priority could be
the upper bound returned by the LP. However, since the LP is expensive to evaluate,
one sometimes settles for an approximation.

Finding solutions. We may be lucky in that the solution of the LP turns out to assign
integer values to all variables. In this case there is no need for further branching.
Application-specific heuristics can additionally help to find good solutions quickly.

Branch-and-cut. When an ILP solver branches too often, the size of the search tree
explodes and it becomes too expensive to find an optimal solution. One way to avoid
branching is to add constraints to the linear program that cut away solutions with
fractional values for the variables without changing the solutions with integer values.

12.4.2 *Parallel Systematic Search

Systematic search is time-consuming and hence parallelization is desirable. Since
the search procedure tries many solution options, there is considerable potential for
parallelization. However, there are also challenges:
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• The computations can be very fine-grained. This means that we may not be able
to afford communication or other PE interactions for every individual computa-
tion.

• It is difficult to predict the total execution time involved in a subtree of the search.
Hence, load balancing has to be dynamic.

• The computations are not completely independent. For example, in Fig. 12.5,
when a new best solution is found, this may prune subtrees currently being ex-
plored by other PEs. Hence, this information has to be disseminated quickly.
This also implies that parallel processing may explore more candidates than the
sequential code does.

We first outline how to parallelize the branch-and-bound framework for ILP pre-
sented in Sect. 12.4.1 on a shared-memory system. Then we describe in more detail a
distributed-memory parallelization of the branch-and-bound solver for the knapsack
problem shown in Fig. 12.5. The basic idea is simple. When branching on a variable
x, we can spawn several tasks – one for each value tried. This gives only very limited
parallelism for a single variable, but by recursively applying the same idea to the
spawned tasks, we quickly get a large set of tasks that can all be executed in parallel.
An attractive way to manage the tasks is to use a bulk parallel priority queue (see
Sect. 6.4). We may want to mix this with a depth-first strategy – occasionally, a task
switches to depth-first search in order to obtain concrete solutions. The best solution
value found so far should be a global variable that can be used to prune tasks that
cannot possibly yield an improvement.

For the knapsack solver in Fig. 12.5, this best-first approach will not work well –
even creating a task already costs time Ω(n), whereas we have seen in Exercise 12.20
that exploring a single node in the depth-first search approach can be done in log-
arithmic time. On the other hand, strict depth-first search is inherently sequential.
The work-stealing approach described in Sect. 14.5 offers a way out. Working on
a problem sequentially means depth-first exploration using backtracking. Splitting
a problem means splitting off a part of the explored tree. This is made possible by
managing the stack for backtracking explicitly so that splitting amounts to manipu-
lating entries of the stack. A simple and effective splitting strategy is to search the
stack top-down for the first item i where the branch xi = 0 has not been tried yet. One
of the resulting parts is the old stack, except that the branch xi = 0 is now marked
as already tried. The split-off part is a stack which copies the old stack for positions
1..i and initializes the search to explore the corresponding subtree with xi = 0. Since
each split sets one xi to 0, the splitting depth from Sect. 14.5 can become at most n.
If the search really requires work exponential in n, this means that the splitting depth
is only logarithmic in the work to be done.

In order to do bounding effectively, the value p · x̂ has to be globally known. On
a shared-memory machine we simply would use a global variable that is atomically
updated whenever a larger value is found. On a distributed-memory machine, we
need to emulate that approach in a scalable way. This is possible by embedding a
spanning tree of bounded degree (e.g., maximum degree 3) and diameter O(log p)
into the processor network. A PE that finds or receives an improved value forwards
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it to those neighbors in the tree which may not have seen that value.9 This approach
ensures that a new bound spreads over all PEs in time O(log p) without causing
significant contention anywhere.
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Fig. 12.7. Speedup as function of sequential execution time for 256 random instances with
p = 1024, n = 2000, wi ∈ [0.01,1.01], pi ∈ [wi + 0.125, ], and M = ∑i wi/2. See [267] for
more details.

What speedup can we expect from this parallel knapsack searcher? When we use
it just to validate an already known optimal solution x̂, the analysis in Sect. 14.5 with
a splitting depth and communication cost of O(n) yields O

(
Tseq/p+ n2

)
, i.e., linear

speedup for sufficiently difficult instances. For finding a solution, no such analysis
is known. One might expect that the efficiency would be somewhat lower than for
validating a solution since the delay in propagating new bounds will cause superflu-
ous computations. However, superlinear speedup over the Algorithm in Fig. 12.5 for
particular instances is also possible: Some PE might find the optimal solution very
early, causing parts of the search space of the sequential algorithm to be pruned. Fig-
ure 12.7 shows speedups for 256 random difficult instances on 1024 PEs (on a rather
slow machine even for the mid-1990s). As is to be expected, for instances solved
quickly by the sequential solver, little speedup is obtained. However, for the most
difficult instances, considerable superlinear speedup is observed. The sum of the se-
quential execution times is 1410 times larger than the sum of the parallel execution
times, i.e., in some sense, the overall speedup is superlinear. This is surprising but
not uncommon in parallel exploration of search spaces. Parallel search is more robust

9 A similar, somewhat more complicated mechanism involving rooted trees is described in
[171, 267].
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than sequential search, since the sequential exploration of the search space might get
bogged down in a large fruitless part of the search space.

For an even simpler approach to parallel systematic search that does not explic-
itly split the search space, refer to the discussion of portfolio-based SAT solvers
(Page 365).

12.5 Local Search – Think Globally, Act Locally

The optimization algorithms we have seen so far are applicable only in special cir-
cumstances. Dynamic programming needs a special structure of the problem and
may require a lot of space and time. Systematic search is usually too slow for large
inputs. Greedy algorithms are fast but often yield only low-quality solutions. Local

search is a widely applicable iterative procedure. It starts with some feasible solution
and then moves from feasible solution to feasible solution by local modifications.
Figure 12.8 gives the basic framework. We shall refine it later.

Local search maintains a current feasible solution x and the best solution x̂ seen
so far. In each step, local search moves from the current solution to a neighboring
solution. What are neighboring solutions? Any solution that can be obtained from
the current solution by making small changes to it. For example, in the case of the
knapsack problem, we might remove up to two items from the knapsack and replace
them by up to two other items. The precise definition of the neighborhood depends on
the application and the algorithm designer. We use N (x) to denote the neighborhood

of x. The second important design decision is which solution is chosen from the
neighborhood. Finally, some heuristic decides when the search should stop.

In the rest of this section, we shall tell you more about local search.

12.5.1 Hill Climbing

Hill climbing is the greedy version of local search. It moves only to neighbors that
are better than the currently best solution. This restriction further simplifies the local
search. The variables x̂ and x are the same, and we stop when there are no improved
solutions in the neighborhood N . The only nontrivial aspect of hill climbing is the
choice of the neighborhood. We shall give two examples where hill climbing works
quite well, followed by an example where it fails badly.

find some feasible solution x ∈L

x̂ :=x // x̂ is best solution found so far
while not satisfied with x̂ do

x:=some heuristically chosen element from N (x)∩L

if f (x)> f (x̂) then x̂ :=x

Fig. 12.8. Local search
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Our first example is the traveling salesman problem de-
scribed in Sect. 11.7.2. Given an undirected graph and a dis-
tance function on the edges satisfying the triangle inequality,
the goal is to find a shortest tour that visits all nodes of the
graph. We define the neighbors of a tour as follows. Let (u,v)
and (w,y) be two edges of the tour, i.e., the tour has the form
(u,v), p,(w,y),q, where p is a path from v to w and q is a
path from y to u. We remove these two edges from the tour,
and replace them by the edges (u,w) and (v,y). The new tour
first traverses (u,w), then uses the reversal of p back to v,
then uses (v,y), and finally traverses q back to u; see the Fig-
ure on the right for an illustration. This move is known as
a 2-exchange, and a tour that cannot be improved by a 2-
exchange is said to be 2-optimal. In many instances of the
traveling salesman problem, 2-optimal tours come quite close to optimal tours.

Exercise 12.23. Describe a scheme where three edges are removed and replaced by
new edges.

An interesting example of hill climbing with a clever choice of the neighborhood
function is the simplex algorithm for linear programming (see Sect. 12.1). This is
the most widely used algorithm for linear programming. The set of feasible solu-
tions L of a linear program is defined by a set of linear equalities and inequalities
ai · x ⊲⊳ bi, 1≤ i≤ m. The points satisfying a linear equality ai · x = bi form a hyper-

plane in Rn, and the points satisfying a linear inequality ai ·x≤ bi or ai ·x≥ bi form a
half-space. Hyperplanes are the n-dimensional analogues of planes and half-spaces
are the analogues of half-planes. The set of feasible solutions is an intersection of
m half-spaces and hyperplanes and forms a convex polytope. We have already seen
an example in two-dimensional space in Fig. 12.2. Figure 12.9 shows an example

(0,0,0) (1,0,0)

(1,0,1)

(1,1,1)

Fig. 12.9. The three-dimensional unit cube is defined by the inequalities x≥ 0, x≤ 1, y≥ 0,
y≤ 1, z≥ 0, and z≤ 1. At the vertices (1,1,1) and (1,0,1), three inequalities are tight, and on
the edge connecting these vertices, the inequalities x≤ 1 and z≤ 1 are tight. For the objective
“maximize x + y+ z”, the simplex algorithm starting at (0,0,0) may move along the path
indicated by the arrows. The vertex (1,1,1) is optimal, since the half-space x+ y + z ≤ 3
contains the entire feasible region and has (1,1,1) in its boundary.
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in three-dimensional space. Convex polytopes are the n-dimensional analogues of
convex polygons. In the interior of the polytope, all inequalities are strict (= satisfied
with inequality); on the boundary, some inequalities are tight (= satisfied with equal-
ity). The vertices and edges of the polytope are particularly important parts of the
boundary. We shall now sketch how the simplex algorithm works. We assume that
there are no equality constraints. Observe that an equality constraint c can be solved
for any one of its variables; this variable can then be removed by substituting into the
other equalities and inequalities. Afterwards, the constraint c is redundant and can
be dropped.

The simplex algorithm starts at an arbitrary vertex of the feasible region. In each
step, it moves to a neighboring vertex, i.e., a vertex reachable via an edge, with a
larger objective value. If there is more than one such neighbor, a common strategy is
to move to the neighbor with the largest objective value. If there is no neighbor with
a larger objective value, the algorithm stops. At this point, the algorithm has found

the vertex with the maximum objective value. In the examples in Figs. 12.2 and 12.9,
the captions argue why this is true. The general argument is as follows. Let x∗ be
the vertex at which the simplex algorithm stops. The feasible region is contained in
a cone with apex x∗ and spanned by the edges incident to x∗. All these edges go
to vertices with smaller objective values and hence the entire cone is contained in
the half-space {x : c · x≤ c · x∗}. Thus no feasible point can have an objective value
larger than x∗. We have described the simplex algorithm as a walk on the boundary
of a convex polytope, i.e., in geometric language. It can be described equivalently
using the language of linear algebra. Actual implementations use the linear-algebra
description.

In the case of linear programming, hill climbing leads to an optimal solution. In
general, however, hill climbing will not find an optimal solution. In fact, it will not
even find a near-optimal solution. Consider the following example. Our task is to
find the highest point on earth, i.e., Mount Everest. A feasible solution is any point
on earth. The local neighborhood of a point is any point within a distance of 10 km.
So the algorithm would start at some point on earth, then go to the highest point
within a distance of 10 km, then go again to the highest point within a distance of
10 km, and so on. If one were to start from the second author’s home (altitude 206
meters), the first step would lead to an altitude of 350 m, and there the algorithm
would stop, because there is no higher hill within 10 km of that point. There are very
few places in the world where the algorithm would continue for long, and even fewer
places where it would find Mount Everest.

Why does hill climbing work so nicely for linear programming, but fail to find
Mount Everest? The reason is that the earth has many local optima, hills that are the
highest point within a range of 10 km. In contrast, a linear program has only one local
optimum (which then, of course, is also a global optimum). For a problem with many
local optima, we should expect any generic method to have difficulties. Observe that
increasing the size of the neighborhoods in the search for Mount Everest does not
really solve the problem, except if the neighborhoods are made to cover the entire
earth. But finding the optimum in a neighborhood is then as hard as the full problem.
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12.5.2 Simulated Annealing – Learning from Nature

If we want to ban the bane of local optima in local search, we must find a way to
escape from them. This means that we sometimes have to accept moves that de-
crease the objective value. What could “sometimes” mean in this context? We have
contradictory goals. On the one hand, we must be willing to take many downhill
steps so that we can escape from wide local optima. On the other hand, we must be
sufficiently target-oriented in order to find a global optimum at the end of a long, nar-
row ridge. A very popular and successful approach to reconciling these contradictory
goals is simulated annealing; see Fig. 12.10. This works in phases that are controlled
by a parameter T , called the temperature of the process. We shall explain below
why the language of physics is used in the description of simulated annealing. In
each phase, a number of moves are made. In each move, a neighbor x′ ∈N (x)∩L

is chosen uniformly at random, and the move from x to x′ is made with a certain
probability. This probability is 1 if x′ improves upon x. It is less than 1 if the move
is to an inferior solution. The trick is to make the probability depend on T . If T is
large, we make the move to an inferior solution relatively likely; if T is close to 0,
we make such a move relatively unlikely. The hope is that, in this way, the process
zeroes in on a region containing a good local optimum in phases of high tempera-
ture and then actually finds a near-optimal solution in the phases of low temperature.
The exact choice of the transition probability in the case where x′ is an inferior so-
lution is given by exp(( f (x′)− f (x))/T ). Observe that T is in the denominator and
that f (x′)− f (x) is negative. So the probability decreases with T and also with the
absolute loss in objective value.

find some feasible solution x ∈L

T :=some positive value // initial temperature of the system
while T is still sufficiently large do

perform a number of steps of the following form
pick x′ from N (x)∩L uniformly at random

with probability min(1,exp( f (x′)− f (x)
T ) do x := x′

decrease T // make moves to inferior solutions less likely

Fig. 12.10. Simulated annealing

liquidglass
shock cool anneal

crystal

Fig. 12.11. Annealing versus shock cooling
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Why is the language of physics used, and why this apparently strange choice of
transition probabilities? Simulated annealing is inspired by the physical process of
annealing, which can be used to minimize10 the global energy of a physical system.
For example, consider a pot of molten silica (SiO2); see Fig. 12.11. If we cool it very
quickly, we obtain a glass – an amorphous substance in which every molecule is in
a local minimum of energy. This process of shock cooling has a certain similarity to
hill climbing. Every molecule simply drops into a state of locally minimum energy;
in hill climbing, we accept a local modification of the state if it leads to a smaller
value of the objective function. However, a glass is not a state of global minimum
energy. A state of much lower energy is reached by a quartz crystal, in which all
molecules are arranged in a regular way. This state can be reached (or approximated)
by cooling the melt very slowly. This process is called annealing. How can it be
that molecules arrange themselves into a perfect shape over a distance of billions
of molecular diameters although they feel only local forces extending over a few
molecular diameters?

Qualitatively, the explanation is that local energy minima have enough time to
dissolve in favor of globally more efficient structures. For example, assume that a
cluster of a dozen molecules approaches a small perfect crystal that already consists
of thousands of molecules. Then, with enough time, the cluster will dissolve and
its molecules can attach to the crystal. Here is a more formal description of this
process, which can be shown to hold for a reasonable model of the system: If cooling
is sufficiently slow, the system reaches thermal equilibrium at every temperature.
Equilibrium at temperature T means that a state x of the system with energy Ex is
assumed with probability

exp(−Ex/T )

∑y∈L exp(−Ey/T )
,

where T is the temperature of the system and L is the set of states of the system.
This energy distribution is called the Boltzmann distribution. When T decreases, the
probability of states with minimum energy grows. In fact, in the limit T → 0, the
probability of states with minimum energy approaches 1.

The same mathematics works for abstract systems corresponding to a maximiza-
tion problem. We identify the cost function f with the energy of the system, and a
feasible solution with the state of the system. It can be shown that the system ap-
proaches a Boltzmann distribution for a quite general class of neighborhoods and the
following rules for choosing the next state:

pick x′ from N (x)∩L uniformly at random;
with probability min

(
1,exp(( f (x′)− f (x))/T )

)
do x := x′.

The physical analogy gives some idea of why simulated annealing might work,11

but it does not provide an implementable algorithm. We have to get rid of two in-
finities: For every temperature, we wait infinitely long to reach equilibrium, and we
do that for infinitely many temperatures. Simulated-annealing algorithms therefore

10 Note that we are talking about minimization now.
11 Note that we have written “might work” and not “works”.
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have to decide on a cooling schedule, i.e., how the temperature T should be varied
over time. A simple schedule chooses a starting temperature T0 that is supposed to
be just large enough that all neighbors are accepted. Furthermore, for a given prob-
lem instance, there is a fixed number N of iterations to be used at each temperature.
The idea is that N should be as small as possible but still allow the system to get
close to equilibrium. After every N iterations, T is decreased by multiplying it by a
constant α less than 1. Typically, α is between 0.8 and 0.99. When T has become so
small that moves to inferior solutions have become highly unlikely (this is the case
when T is comparable to the smallest difference in objective value between any two
feasible solutions), T is finally set to 0, i.e., the annealing process concludes with a
hill-climbing search.

Better performance can be obtained with dynamic schedules. For example, the
initial temperature can be determined by starting with a low temperature and in-
creasing it quickly until the fraction of transitions accepted approaches 1. Dynamic
schedules base their decision about how much T should be lowered on the actu-
ally observed variation in f (x) during the local search. If the temperature change is
tiny compared with the variation, it has too little effect. If the change is too close
to or even larger than the variation observed, there is a danger that the system will
be forced prematurely into a local optimum. The number of steps to be made until
the temperature is lowered can be made dependent on the actual number of moves
accepted. Furthermore, one can use a simplified statistical model of the process to
estimate when the system is approaching equilibrium. The details of dynamic sched-
ules are beyond the scope of this exposition. Readers are referred to [1] for more
details on simulated annealing.

Exercise 12.24. Design a simulated-annealing algorithm for the knapsack problem.
The local neighborhood of a feasible solution is all solutions that can be obtained by
removing up to two elements and then adding up to two elements.

12.5.2.1 Graph Coloring

We shall now exemplify simulated annealing using the graph-coloring problem

already mentioned in Sect. 2.13. Recall that we are given an undirected graph
G = (V,E) and are looking for an assignment c : V → 1..k such that no two adja-
cent nodes are given the same color, i.e., c(u) 6= c(v) for all edges {u,v} ∈ E . There
is always a solution with k = |V | colors; we simply give each node its own color.
The goal is to minimize k. There are many applications of graph coloring and related
problems. The most “classical” one is map coloring – the nodes are countries and
edges indicate that countries have a common border, and thus those countries should
not be rendered in the same color. A famous theorem of graph theory states that all
maps (i.e., planar graphs) can be colored with at most four colors [264]. Sudoku
puzzles are a well-known instance of the graph-coloring problem, where the player
is asked to complete a partial coloring of the graph shown in Fig. 12.12 with the
digits 1..9. We shall present two simulated-annealing approaches to graph coloring;
many more have been tried.
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Fig. 12.12. The figure on the left shows a partial coloring of the graph underlying sudoku
puzzles. The bold straight-line segments indicate cliques consisting of all nodes touched by
the line. The figure on the right shows a step of Kempe chain annealing using colors 1 and 2
and a node v.

Kempe chain annealing. The obvious objective function for graph coloring is the
number of colors used. However, this choice of objective function is too simplistic in
a local-search framework, since a typical local move will not change the number of
colors used. We need an objective function that rewards local changes that are “on a
good way” towards using fewer colors. One such function is the sum of the squared
sizes of the color classes. Formally, let Ci = {v ∈V : c(v) = i} be the set of nodes
that are colored i. Then

f (c) = ∑
i

|Ci|2.

This objective function is to be maximized. Observe that the objective function in-
creases when a large color class is enlarged further at the cost of a small color class.
Thus local improvements will eventually empty some color classes, i.e., the number
of colors decreases.

Having settled the objective function, we come to the definition of a local change
or a neighborhood. A trivial definition is as follows: A local change consists in re-
coloring a single vertex; it can be given any color not used on one of its neighbors.
Kempe chain annealing uses a more liberal definition of “local recoloring”. Alfred
Bray Kempe (1849–1922) was one of the early investigators of the four-color prob-
lem; he invented Kempe chains in his futile attempts at a proof. Suppose that we
want to change the color c(v) of node v from i to j. In order to maintain feasibil-
ity, we have to change some other node colors too: Node v might be connected to
nodes currently colored j. So we color these nodes with color i. These nodes might,
in turn, be connected to other nodes of color j, and so on. More formally, consider
the node-induced subgraph H of G which contains all nodes with colors i and j. The
connected component of H that contains v is the Kempe chain K we are interested
in. We maintain feasibility by swapping colors i and j in K. Figure 12.12 gives an
example. Kempe chain annealing starts with any feasible coloring.
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*Exercise 12.25. Use Kempe chains to prove that any planar graph G can be colored
with five colors. Hint: Use the fact that a planar graph is guaranteed to have a node
of degree five or less. Let v be any such node. Remove it from G, and color G− v

recursively. Put v back in. If at most four different colors are used on the neighbors of
v, there is a free color for v. So assume otherwise. Assume, without loss of generality,
that the neighbors of v are colored with colors 1 to 5 in clockwise order. Consider
the subgraph of nodes colored 1 and 3. If the neighbors of v with colors 1 and 3 are
in distinct connected components of this subgraph, a Kempe chain can be used to
recolor the node colored 1 with color 3. If they are in the same component, consider
the subgraph of nodes colored 2 and 4. Argue that the neighbors of v with colors 2
and 4 must be in distinct components of this subgraph.

The penalty function approach. A generally useful idea for local search is to relax
some of the constraints on feasible solutions in order to make the search more flex-
ible and to ease the discovery of a starting solution. Observe that we have assumed
so far that we somehow have a feasible solution available to us. However, in some
situations, finding any feasible solution is already a hard problem; the eight-queens
problem of Exercise 12.21 is an example. In order to obtain a feasible solution at the
end of the process, the objective function is modified to penalize infeasible solutions.
The constraints are effectively moved into the objective function.

In the graph-coloring example, we now also allow illegal colorings, i.e., colorings
in which neighboring nodes may have the same color. An initial solution is generated
by guessing the number of colors needed and coloring the nodes randomly. A neigh-
bor of the current coloring c is generated by picking a random color j and a random
node v colored j, i.e., c(v) = j. Then, a random new color for node v is chosen from
all the colors already in use plus one fresh, previously unused color.

As above, let Ci be the set of nodes colored i and let Ei = E ∩ (Ci×Ci) be the set
of edges connecting two nodes in Ci. The objective is to minimize

f (c) = 2∑
i

|Ci| · |Ei|−∑
i

|Ci|2.

The first term penalizes illegal edges; each illegal edge connecting two nodes of
color i contributes the size of the ith color class. The second term favors large color
classes, as we have already seen above. The objective function does not necessarily
have its global minimum at an optimal coloring. However, local minima are legal
colorings. Hence, the penalty version of simulated annealing is guaranteed to find a
legal coloring even if it starts with an illegal coloring.

Exercise 12.26. Show that the objective function above has its local minima at legal
colorings. Hint: Consider the change in f (c) if one end of a legally colored edge is
recolored with a fresh color. Prove that the objective function above does not neces-
sarily have its global optimum at a solution using the minimum number of colors.

Experimental results. Johnson et al. [168] performed a detailed study of algorithms
for graph coloring, with particular emphasis on simulated annealing. We shall briefly



12.5 Local Search – Think Globally, Act Locally 387

0
0 1

1
r

Fig. 12.13. Left: a random graph with 10
nodes and p = 0.5. The edges chosen are
drawn solid, and the edges rejected are
drawn dashed. Right: a random geometric
graph with 10 nodes and range r = 0.27.

report on their findings and then draw some conclusions. Most of their experiments
were performed on random graphs in the Gn,p model or on random geometric graphs.

In the Gn,p model, where p is a parameter in [0,1], an undirected random graph
with n nodes is built by adding each of the n(n− 1)/2 candidate edges with prob-
ability p. The random choices are independent for distinct edges. In this way, the
expected degree of every node is p(n− 1) and the expected number of edges is
pn(n− 1)/2. For random graphs with 1000 nodes and edge probability 0.5, Kempe
chain annealing produced very good colorings, given enough time. However, a so-
phisticated and expensive greedy algorithm, XRLF, produced even better solutions
in less time. For very dense random graphs with p = 0.9, Kempe chain annealing
performed better than XRLF. For sparser random graphs with edge probability 0.1,
penalty function annealing outperformed Kempe chain annealing and could some-
times compete with XRLF.

Another interesting class of random inputs is random geometric graphs. Here,
we choose n random, uniformly distributed points in the unit square [0,1]× [0,1].
These points represent the nodes of the graph. We connect two points by an edge
if their Euclidean distance is less than or equal to some given range r. Figure 12.13
gives an example. Such instances are frequently used to model situations where the
nodes represent radio transmitters and colors represent frequency bands. Nodes that
lie within a distance r from one another must not use the same frequency, to avoid
interference. For this model, Kempe chain annealing performed well, but was out-
performed by a third annealing strategy, called fixed-K annealing.

What should we learn from this? The relative performance of the simulated-
annealing approaches depends strongly on the class of inputs and the available com-
puting time. Moreover, it is impossible to make predictions about their performance
on any given instance class on the basis of experience from other instance classes.
So, be warned. Simulated annealing is a heuristic and, as for any other heuristic, you
should not make claims about its performance on an instance class before you have
tested it extensively on that class.

12.5.3 More on Local Search

We close our treatment of local search with a discussion of three refinements that can
be used to modify or replace the approaches presented so far.

Threshold Acceptance. There seems to be nothing magic about the particular form
of the acceptance rule used in simulated annealing. For example, a simpler yet also
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successful rule uses the parameter T as a threshold. New states with a value f (x)
below the threshold are accepted, whereas others are not.

Tabu Lists. Local-search algorithms sometimes return to the same suboptimal so-
lution again and again – they cycle. For example, simulated annealing might have
reached the top of a steep hill. Randomization will steer the search away from the
optimum, but the state may remain on the hill for a long time. Tabu search steers
the search away from local optima by keeping a tabu list of “solution elements” that
should be “avoided” in new solutions for the time being. For example, in graph col-
oring, a search step could change the color of a node v from i to j and then store the
tuple (v, i) in the tabu list to indicate that color i is forbidden for v as long as (v, i) is
in the tabu list. Usually, this tabu condition is not applied if an improved solution is
obtained by coloring node v with color i. Tabu lists are so successful that they can
be used as the core technique of an independent variant of local search called tabu

search.

Restarts. The typical behavior of a well-tuned local-search algorithm is that it moves
to an area with good feasible solutions and then explores this area, trying to find
better and better local optima. However, it might be that there are other, faraway
areas with much better solutions. The search for Mount Everest illustrates this point.
If we start in Australia, the best we can hope for is to end up at Mount Kosciuszko
(altitude 2229 m), a solution far from optimal. It therefore makes sense to run the
algorithm multiple times with different random starting solutions because it is likely
that different starting points will explore different areas of good solutions. Starting
the search for Mount Everest at multiple locations and in all continents will certainly
lead to a better solution than just starting in Australia. Even if these restarts do not
improve the average performance of the algorithm, they may make it more robust in
the sense that it will be less likely to produce grossly suboptimal solutions.

12.5.4 Parallel Local Search

Local search is difficult to parallelize since, by definition, it performs one step af-
ter another. Of course, we can parallelize the operations in one step, for example by
evaluating several members in the neighborhood N (x) in parallel. In Kempe chain
annealing, several processors might explore different Kempe chains starting from
different nodes. We can also try to perform more work in each step to reduce the
number of steps, for example by using a larger neighborhood. We can also perform
several independent local searches and then take the best result. In some sense, this
is a parallelization of the restart strategy described in Sect. 12.5.3. A successful par-
allelization of a local search strategy might use parallelism on multiple levels. For
example a few threads on each processor chip could evaluate an objective function
in parallel, several of these thread groups working on different members of a large
neighborhood, and multiple nodes of a distributed-memory machine work on inde-
pendent local searches. However, for more scalable solutions, one should consider
more advanced interactions between parallel solvers such as in the evolutionary al-
gorithms described next.



12.6 Evolutionary Algorithms 389

12.6 Evolutionary Algorithms

Living beings are ingeniously adaptive to their environment, and master the problems
encountered in their daily life with great ease. Can we somehow use the principles of
life to develop good algorithms? The theory of evolution tells us that the mechanisms
leading to this performance are mutation, recombination, and survival of the fittest.
What could an evolutionary approach mean for optimization problems?

The genome describing an individual corresponds to the description of a feasible
solution. We can also interpret infeasible solutions as dead or ill individuals. In na-
ture, it is important that there is a sufficiently large population of genomes; otherwise,
recombination deteriorates to incest, and survival of the fittest cannot demonstrate its
benefits. So, instead of one solution as in local search, we now work with a pool of
feasible solutions.

The individuals in a population produce offspring. Because resources are lim-
ited, individuals better adapted to the environment are more likely to survive and to
produce more offspring. In analogy, feasible solutions are evaluated using a fitness
function f , and fitter solutions are more likely to survive and to produce offspring.
Evolutionary algorithms usually work with a solution pool of limited size, say N.
Survival of the fittest can then be implemented as keeping only the N best solutions.

Even in bacteria, which reproduce by cell division, no offspring is identical to
its parent. The reason is mutation. When a genome is copied, small errors happen.
Although mutations usually have an adverse effect on fitness, some also improve
fitness. Local changes in a solution are the analogy of mutations.

An even more important ingredient in evolution is recombination. Offspring con-
tain genetic information from both parents. The importance of recombination is easy
to understand if one considers how rare useful mutations are. Therefore it takes much
longer to obtain an individual with two new useful mutations than it takes to combine
two individuals with two different useful mutations.

We now have all the ingredients needed for a generic evolutionary algorithm; see
Fig. 12.14. As with the other approaches presented in this chapter, many details need
to be filled in before one can obtain an algorithm for a specific problem. The algo-
rithm starts by creating an initial population of size N. This process should involve
randomness, but it is also useful to use heuristics that produce good initial solutions.

Create an initial population population =
{

x1, . . . ,xN
}

while not finished do

if matingStep then

select individuals x1, x2 with high fitness and produce x′ :=mate(x1,x2)

else select an individual x1 with high fitness and produce x′ = mutate(x1)

population :=population∪{x′}
population :={x ∈ population : x is sufficiently fit}

Fig. 12.14. A generic evolutionary algorithm
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Fig. 12.15. Mating using crossover (left) and by stitching together pieces of a graph coloring
(right).

In the loop, it is first decided whether an offspring should be produced by mu-
tation or by recombination. This is a probabilistic decision. Then, one or two indi-
viduals are chosen for reproduction. To put selection pressure on the population, it is
important to base reproductive success on the fitness of the individuals. However, it is
usually not desirable to draw a hard line and use only the fittest individuals, because
this might lead to too uniform a population and hence incest. For example, one can
instead choose reproduction candidates randomly, giving a higher selection probabil-
ity to fitter individuals. An important design decision is how to fix these probabilities.
One choice is to sort the individuals by fitness and then to define the reproduction
probability as some decreasing function of rank. This indirect approach has the ad-
vantage that it is independent of the objective function f and the absolute fitness
differences between individuals, which are likely to decrease during the course of
evolution.

The most critical operation is mate, which produces new offspring from two an-
cestors. The “canonical” mating operation is called crossover. Here, individuals are
assumed to be represented by a string of n bits. An integer k is chosen. The new
individual takes its first k bits from one parent and its last n− k bits from the other
parent. Figure 12.15 shows this procedure. Alternatively, one may choose k random
positions from the first parent and the remaining bits from the other parent. For our
knapsack example, crossover is a quite natural choice. Each bit decides whether the
corresponding item is in the knapsack or not. In other cases, crossover is less natural
or would require a very careful encoding. For example, for graph coloring, it would
seem more natural to cut the graph into two pieces such that only a few edges are
cut. Now one piece inherits its colors from the first parent, and the other piece inher-
its its colors from the other parent. Some of the edges running between the pieces
might now connect nodes with the same color. This could be repaired using some
heuristic, for example choosing the smallest legal color for miscolored nodes in the
part corresponding to the first parent. Figure 12.15 gives an example.

Mutations are realized as in local search. In fact, local search is nothing but an
evolutionary algorithm with population size 1.
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The simplest way to limit the size of the population is to keep it fixed by remov-
ing the least fit individual in each iteration. Other approaches that provide room for
different “ecological niches” can also be used. For example, for the knapsack prob-
lem, one could keep all Pareto-optimal solutions. The evolutionary algorithm would
then resemble the optimized dynamic-programming algorithm.

12.6.1 Parallel Evolutionary Algorithms

In principle, evolutionary algorithms are easy to parallelize [14]. We simply perform
multiple mating and mutation steps in parallel. This may imply that we have to work
with a larger population than in a sequential algorithm. Rather than using a single
large population, it then makes sense to work with multiple subpopulations. Each PE
(or group of PEs) generally works on the local subpopulation. Subpopulations not
only reduce communication and synchronization overhead but may also allow better
solution quality. This is an effect also observed in nature – multiple subpopulations,
for example on different islands, lead to higher biological diversity. This was already
observed by Charles Darwin [82].

To avoid “incest”, fit individuals are occasionally exchanged between the sub-
populations. For example, each subpopulation can occasionally send one of its fittest
individuals (or a mutation thereof) to a random other subpopulation. This approach
guarantees a good balance between communication overhead and spreading of good
solutions. It has been used very successfully for graph partitioning [276].

12.7 Implementation Notes

We have seen several generic approaches to optimization that are applicable to a
wide variety of problems. When you face a new application, you are therefore likely
to have a choice from among more approaches than you can realistically implement.
In a commercial environment, you may have to home in on a single approach quickly.
Here are some rules of thumb that may help:

• Study the problem, relate it to problems you are familiar with, and search for it
on the web.

• Look for approaches that have worked on related problems.
• Consider black-box solvers.
• If the problem instances are small, systematic search or dynamic programming

may allow you to find optimal solutions.
• If none of the above looks promising, implement a simple prototype solver using

a greedy approach or some other simple, fast heuristic; the prototype will help
you to understand the problem and might be useful as a component of a more
sophisticated algorithm.

• Develop a local-search algorithm. Focus on a good representation of solutions
and how to incorporate application-specific knowledge into the searcher. If you
have a promising idea for a mating operator, you can also consider evolutionary
algorithms. Use randomization and restarts to make the results more robust.
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There are many implementations of linear-programming solvers. Since a good
implementation is very complicated, you should definitely use one of these packages
except in very special circumstances. The Wikipedia page “Linear programming”
is a good starting point. Some systems for linear programming also support integer
linear programming.

There are also many frameworks that simplify the implementation of local-search
or evolutionary algorithms. Since these algorithms are fairly simple, the use of these
frameworks is not as widespread as for linear programming. Nevertheless, the imple-
mentations available might have nontrivial built-in algorithms for dynamic setting of
search parameters, and they might support parallel processing. The Wikipedia page
“Evolutionary algorithm” contains pointers.

12.8 Historical Notes and Further Findings

We have only scratched the surface of (integer) linear programming. Implement-
ing solvers, clever modeling of problems, and handling huge input instances have
led to thousands of scientific papers. In the late 1940s, Dantzig invented the sim-
plex algorithm [81]. Although this algorithm works well in practice, some of its
variants take exponential time in the worst case. It is a well-known open problem
whether some variant runs in polynomial time in the worst case. It is known, though,
that even slightly perturbing the coefficients of the constraints leads to polynomial
expected execution time [301]. Sometimes, even problem instances with an expo-
nential number of constraints or variables can be solved efficiently. The trick is to
handle explicitly only those constraints that may be violated and those variables that
may be nonzero in an optimal solution. This works if we can efficiently find vio-
lated constraints or possibly nonzero variables and if the total number of constraints
and variables generated remains small. Khachiyan [180] and Karmarkar [176] found
polynomial-time algorithms for linear programming. There are many good textbooks
on linear programming (e.g., [44, 98, 122, 239, 286, 320]).

Another interesting black-box solver is constraint programming [149, 203]. We
hinted at the technique in Exercise 12.21. Here, we are again dealing with vari-
ables and constraints. However, now the variables come from discrete sets (usu-
ally small finite sets). Constraints come in a much wider variety. There are equali-
ties and inequalities, possibly involving arithmetic expressions, but also higher-level
constraints. For example, allDifferent(x1, . . . ,xk) requires that x1, . . . ,xk all receive
different values. Constraint programs are solved using a cleverly pruned systematic
search. Constraint programming is more flexible than linear programming, but re-
stricted to smaller problem instances. Wikipedia is a good starting point for learning
more about constraint programming.


