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Representing Sequences by Arrays and Linked Lists

Perhaps the world’s oldest data structures were the tablets in cuneiform script used

more than 5000 years ago by custodians in Sumerian temples. These custodians kept

lists of goods, and their quantities, owners, and buyers. The picture on the left shows

an example.1 This was possibly the first application of written language. The op-

erations performed on such lists have remained the same – adding entries, storing

them for later, searching entries and changing them, going through a list to compile

summaries, etc. The Peruvian quipu [224] that you see in the picture on the right

served a similar purpose in the Inca empire, using knots in colored strings arranged

sequentially on a master string. It is probably easier to maintain and use data on

tablets than to use knotted string, but one would not want to haul stone tablets over

Andean mountain trails. It is apparent that different representations make sense for

the same kind of data.

The abstract notion of a sequence, list, or table is very simple and independent of its
representation in a computer. Mathematically, the only important property is that the
elements of a sequence s = 〈e0, . . . ,en−1〉 are arranged in a linear order – in contrast
to the trees and graphs discussed in Chaps. 7 and 8, or the unordered hash tables
discussed in Chap. 4. There are two basic ways of referring to the elements of a
sequence.

One is to specify the index of an element. This is the way we usually think about
arrays, where s[i] returns the ith element of a sequence s. Arrays are the basis of
many parallel algorithms. In Sect. 3.1 we explain some of the basic approaches. Our
pseudocode directly supports static arrays. In a static data structure, the size is known
in advance, and the data structure is not modifiable by insertions and deletions. In a
bounded data structure, the maximum size is known in advance. In Sect. 3.4, we

1 This 4600-year-old tablet contains a list of gifts to the high priestess of Adab (see
commons.wikimedia.org/wiki/Image:Sumerian_26th_c_Adab.jpg).

commons.wikimedia.org/wiki/Image:Sumerian_26th_c_Adab.jpg
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introduce dynamic or unbounded arrays, which can grow and shrink as elements are
inserted and removed. The analysis of unbounded arrays introduces the concept of
amortized analysis.

The second way of referring to the elements of a sequence is relative to other
elements. For example, one could ask for the successor of an element e, the prede-
cessor of an element e′, or the subsequence 〈e, . . . ,e′〉 of elements between e and
e′. Although relative access can be simulated using array indexing, we shall see in
Sect. 3.2 that a list-based representation of sequences is more flexible. In particular,
it becomes easier to insert or remove arbitrary pieces of a sequence. On the other
hand, parallel processing of linked lists is difficult. In Sect. 3.3 we get a glimpse how
to do it anyway.

Many algorithms use sequences in a quite limited way. Often only the front
and/or the rear of the sequence is read and modified. Sequences that are used in this
restricted way are called stacks, queues, and deques. We discuss them in Sects. 3.6
and 3.7. In Sect. 3.8, we summarize the findings of the chapter.

3.1 Processing Arrays in Parallel

Arrays are an important data structure for parallel processing, since we can easily
assign operations on different array elements to different PEs. Suppose we want to
assign the elements of an array a[0..n− 1] to p PEs numbered 0..p− 1. There are
many ways for distributing the elements over the PEs. Figure 3.1 gives examples.
Perhaps the most natural one – blocked assignment – assigns up to ⌈n/p⌉ consecutive
array elements to each PE, for example by mapping element a[i] to PE ⌊i/⌈n/p⌉⌋.
This works well if the amount of work required for the different array elements is
about the same. Moreover, this assignment is also cache-efficient. To simplify the
notation, let us now assume that p divides n.

Another natural assignment is round robin (also called cyclic) where PE i works
on array elements a[ j] with j mod p = i. This is less cache-efficient than blocked
assignment but may sometimes assign the work more uniformly.

Exercise 3.1. Since cyclic assignment is less cache-efficient than blocked assign-
ment, one also uses block cyclic assignment, where blocks of size B are cyclically
assigned to PEs. Work out formulae that specify which elements are assigned to each
PE (see Fig. 3.1 for an example).

0 0 0 1 1 1 2 2 2 2 3 3 3 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3

10

...a[0, ,15]

blocked

round robin / cyclic

block cyclic (B = 2)

Fig. 3.1. Simple assignments of 16 array elements a[0..15] to PEs 0..3
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In Chapter 14 we shall discuss more advanced ways to assign work (e.g., array
elements) to PEs in a load balanced way.

On a distributed-memory machine, we usually want to store an array element on
the same PE that processes it. This important principle is known as owner computes.
Hence, our logical array a will be stored in a distributed way – one piece of a is
stored on each PE. This distribution is also known as sharding or (horizontal) parti-

tioning. The distribution principle naturally transfers to more complex data structures
such as multidimensional arrays or graphs (see also Sect. 8.6). Note that the “owner
computes” principle can be applied to any approach to array partitioning – blocked,
cyclic, block cyclic, explicitly load-balanced, . . .

Let us look at a simple example. Suppose we want to double all elements of
a using blocked assignment. Suppose PE i of a distributed-memory machine stores
elements i · n/p..(i+ 1) · n/p− 1 in a local array a[0..n/p− 1]. Then then SPMD
pseudocode for this doubling task is

for i :=0 to n/p− 1 do a[i]∗=2

and this takes time O(n/p), requiring no communication.
Of course, parallel programming is less simple most of the time. In particular,

computations usually involve several array elements at once. In Sect. 2.10, we al-
ready discussed the task of summing all elements of an array. As another example,
suppose we have an array a[0..n+1] and want to compute the average of a[i−1], a[i],
and a[i+ 1] for i ∈ 1..n; the boundary values a[0] and a[n+ 1] are fixed and are not
changed.2 Such a computation is frequent in the approximate numerical solution of
partial differential equations. On a shared-memory machine, the task is quite simple.
This time we use explicit loop parallelism. We allocate a second array b and say

for i :=1 to n do‖ // use blocked assignment of loop iterations to PEs
b[i] :=(a[i− 1]+ a[i]+ a[i+1])/3.

On a distributed-memory machine, we need explicit communication to make sure
that all the required data is available. We want PE i to compute components i ·n/p+1
to (i+ 1) ·n/p of the result vector, as shown below for n = 8 and p = 2:

global view a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]
local view, PE 0 a[0]∗ a[1]∗ a[2]∗ a[3]∗ a[4]∗ a[5]
results computed by PE 0 b[1] b[2] b[3] b[4]
local view, PE 1 a[0] a[1]∗ a[2]∗ a[3]∗ a[4]∗ a[5]∗

results computed by PE 1 b[1] b[2] b[3] b[4]

We therefore allocate to each PE a local array a with n/p+ 2 cells, where a[0] and
a[n/p+1] play a special role. PE i can compute its part of the output if it has access
to elements i · n/p to (i+ 1)n/p+ 1 of the input array, i.e., some elements of the
input array must be stored in two local arrays as shown above. However, initially
each element of the input array is available on only one of the PEs. We assume

2 We are computing n values b[1] to b[n] and, for simplicity, want to stick to our convention
that p divides n. Therefore, we use an input array of size n+2.
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that initially the array is distributed over the PEs as follows. Elements 0 to n/p are
stored in PE 0, elements n/p+1 to 2n/p are stored in PE 1, . . . , elements i ·n/p+1
to (i+ 1) · n/p are stored in PE i, . . . , and elements (p− 1) · n/p+ 1 to n+ 1 are
stored in PE p− 1. In the figure above, the initial distribution of the array elements
is indicated by the symbol ∗.

As said above, PE i can compute its part of the output if it has access to elements
i · n/p to (i+ 1)n/p+ 1 of the input array. It does not have the first element, which
is stored only in PE i− 1, and it does not have the last element, which is stored only
in PE i+ 1. We are now ready for the SPMD pseudocode. In the first line, each PE i

sends its local element a[1] to the PE i− 1 and receives its local element a[n/p+ 1]
from PE i+1; in the second line each PE i sends its local element a[n/p] to PE i+1
and receives its local element a[0] from PE i− 1. The code exploits the convention
that communication with nonexistent PEs does nothing (see Sect. 2.4.2):3

send(iproc− 1,a[1 ]) ‖ receive(iproc + 1,a[n/p+ 1]) // *

send(iproc + 1,a[n/p]) ‖ receive(iproc− 1,a[0]) // **

for i :=1 to n/p do b[i] :=(a[i− 1]+ a[i]+ a[i+1])/3

The program takes 3n/p arithmetic operations and total communication effort 2(α +
β ) (exploiting the fact that our distributed-memory machine can send and receive in
parallel; see also Sect. 2.4.2). This is efficient in practice if the local computation is
large compared with two startup overheads. Below, we shall see that we can some-
times do better.

For the above pseudocode, it is important that the send and receive operations in
each line are actually executed in parallel. Suppose we were to replace the “ ‖ ” by
a “;” – sequential execution. Then all PEs would first send data to the left. However,
no PEs are ready to receive that data. Only PE 0 suceeds, as its send operation to PE
“−1” is interpreted as doing nothing. Subsequently, PE 0 is ready to receive from
PE 1. Only when this first message transfer is finished will PE 1 be ready to receive
from PE 2, and so on. Thus it would take time at least (p−1)α to complete line “*”.
A similar effect would happen in line “**”.

Exercise 3.2. Suppose a parallel send and receive operation is not available. How
can you change the above pseudocode fragment so that it executes in time O(α),
independent of p? Hint: Distinguish between PEs with odd and even number.

3.1.1 *Reducing Latencies by Tiling

Suppose we want to perform the above averaging operation T times (this is typical of
iterative numerical computations). The simple algorithm above would need 2T mes-
sage startups and hence time at least 2T α . For n/p≪ α/β , startup overheads would
thus dominate the running time. We can overcome this bottleneck by partitioning the

3 There has been considerable work on building parallel programming languages automating
the reasoning in this paragraph. For the example presented here, this is possible. However,
no such language has been very successful, since the situation is frequently more complex.
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PE 0 1 2 3 0

Fig. 3.2. Tiling of a rectangle of computations into diamond-shaped tiles for four PEs. One
PE handles the triangular tiles at the left and right borders. Left: Continuous drawing for
n→∞. Arrows indicate data dependencies between tiles. Thick lines separate tiles assigned to
different PEs. Right: The case n = 24 leads to tiles of width w = 24/4 = 6. The 12 gray cells
have to be communicated in order to perform the averaging operations in the tile above them.

averaging operations into more coarse-grained tasks. For this simple, regular compu-
tation, a geometrical interpretation is in order. The computations can be arranged as
an n×T matrix, where entry (i, t) stands for computing the tth value of element a[i].
This array is partitioned into tiles that depend only on the results of a small number
of other tiles in such a way that the dependencies form an acyclic graph – a task DAG,
as described in Sect. 14.6. In the given case, we can minimize the number of startups
by using diamond-shaped tiles. Figure 3.2 illustrates this situation (at the border of
the computation domain, the tiles have a triangular shape); in this figure, time grows
from the bottom to the top. The tiles have width w = n/p. The computation within
a tile depends on 2w cells from two tiles below, as indicated in the figure. Since one
of these tiles can be assigned to the same PE, only a single message containing the
state of w cells must be received by each tile. This happens 2T/w times. Overall, we
have 2T/w message startups and a communication volume of w ·2T/w = 2T . Com-
paring this with the naive algorithm with two startups in each averaging step and two
cells received, this reduces the startup overheads by a factor of n/p while keeping
the number of exchanged cell states constant.

An alternative way of understanding the scheme is as follows. The area of a
tile is essentially w2. Hence a PE can do work w2 after receiving a single message
containing w cells. In the naive scheme, it could do w work w after receiving two

messages containing two cells. Thus the ratio of work to message has improved by a
factor of w.

Exercise 3.3. Explain how to implement diamond tiling using only two local arrays
a0 and a1 of size 2n/p on each PE.

Real applications are more complex than the above simple example. Typically,
they iterate on one or several two-dimensional or three-dimensional arrays, and the
pattern of cells used for updating an array entry (the stencil) and the boundary con-
ditions may vary. Still, the tiling techniques described above can be generalized.
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3.2 Linked Lists

In this section, we study the representation of sequences by linked lists. In a doubly
linked list, each item points to its successor and to its predecessor. In a singly linked
list, each item points to its successor. We shall see that linked lists are easily modified
in many ways: We may insert or delete items or sublists, and we may concatenate
lists. The drawback is that random access (the operator [ · ]) is not supported. We
study doubly linked lists in Sect. 3.2.1, and singly linked lists in Sect. 3.2.3. Singly
linked lists are more space-efficient and somewhat faster, and should therefore be
preferred whenever their functionality suffices. A good way to think of a linked list
is to imagine a chain, where one element is written on each link. Once we get hold
of one link of the chain, we can retrieve all elements.

3.2.1 Doubly Linked Lists

Figure 3.3 shows the basic building blocks of a linked list. A list item stores an
element, and pointers to its successor and predecessor. We call a pointer to a list item
a handle. This sounds simple enough, but pointers are so powerful that we can make
a big mess if we are not careful. What makes a consistent list data structure? We
require that for each item it, the successor of its predecessor is equal to it and the
predecessor of its successor is also equal to it.

A sequence of n elements is represented by a ring of n+1 items. There is a special
dummy item h, which stores no element. The successor h1 of h stores the first element
of the sequence, the successor of h1 stores the second element of the sequence, and
so on. The predecessor of h stores the last element of the sequence; see Fig. 3.4.
The empty sequence is represented by a ring consisting only of h. Since there are no
elements in that sequence, h is its own successor and predecessor. Figure 3.5 defines
a representation of sequences by lists. An object of class List contains a single list
item h. The constructor of the class initializes the header h to an item containing ⊥
and having itself as successor and predecessor. In this way, the list is initialized to
the empty sequence.

We implement all basic list operations in terms of the single operation splice

shown in Fig. 3.6. This operation cuts out a sublist from one list and inserts it after
some target item. The sublist is specified by handles a and b to its first and its last

Class Handle = Pointer to Item

Class Item of Element // one link in a doubly linked list
e : Element

next : Handle //
✲

✛
✲

✛
✲

✛
prev : Handle

invariant next→prev = prev→next = this

Fig. 3.3. The items of a doubly linked list



3.2 Linked Lists 87

✲

⊥
✲

✛

e1

· · ·
· · ·
✛

en

✛

✲

Fig. 3.4. The representation of a sequence 〈e1, . . . ,en〉 by a doubly linked list. There are n+1
items arranged in a ring, a special dummy item h containing no element, and one item for
each element of the sequence. The item containing ei is the successor of the item containing
ei−1 and the predecessor of the item containing ei+1. The dummy item is between the item
containing en and the item containing e1.

Class List of Element

// Item h is the predecessor of the first element and the successor of the last element.

h =

( ⊥
this
this

)

: Item // init to empty sequence
⊥

✛
✲

// Simple access functions
Function head() : Handle; return address of h // Pos. before any proper element

Function isEmpty : {1,0}; return h.next = this // 〈〉?
Function first : Handle; assert ¬isEmpty; return h.next

Function last : Handle; assert ¬isEmpty; return h.prev

// Moving elements around within a sequence.
// 〈. . . ,a,b,c . . . ,a′,c′, . . .〉 7→ 〈. . . ,a,c . . . ,a′,b,c′, . . .〉
Procedure moveAfter(b, a′ : Handle) splice(b,b,a′)
Procedure moveToFront(b : Handle) moveAfter(b,head)
Procedure moveToBack(b : Handle) moveAfter(b, last)

Fig. 3.5. Some constant-time operations on doubly linked lists

element, respectively. In other words, b must be reachable from a by following zero
or more next-pointers but without going through the dummy item. The target item t

can be either in the same list or in a different list; in the former case, it must not be
inside the sublist starting at a and ending at b.

splice does not change the number of items in the system. We assume that there
is one special list, freeList, that keeps a supply of unused items. When inserting new
elements into a list, we take the necessary items from freeList, and when removing
elements, we return the corresponding items to freeList. The function checkFreeList

allocates memory for new items when necessary. We defer its implementation to
Exercise 3.6 and a short discussion in Sect. 3.9.

With these conventions in place, a large number of useful operations can be im-
plemented as one-line functions that all run in constant time. Thanks to the power of
splice, we can even manipulate arbitrarily long sublists in constant time. Figures 3.5
and 3.7 show many examples. In order to test whether a list is empty, we simply
check whether h is its own successor. If a sequence is nonempty, its first and its last
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// Remove 〈a, . . . ,b〉 from its current list and insert it after t

// . . . ,a′,a, . . . ,b,b′, . . .+ . . . , t, t ′, . . . 7→ . . . ,a′,b′, . . .+ . . . , t,a, . . . ,b, t ′, . . .
Procedure splice(a,b,t : Handle)

assert a and b belong to the same list, b is not before a, and t 6∈ 〈a, . . . ,b〉
// cut out 〈a, . . . ,b〉 a′ a b b′

· · · · · ·
✲

✛
✲

✛
✲

✛
✲

✛a′ :=a→ prev

b′ :=b→next

a′→next :=b′ //

b′→prev :=a′ // · · · · · ·
❘

✛
✲

✛
✲

✛
✲

❨

// insert 〈a, . . . ,b〉 after t

t ′ := t→next //

t a b t ′

· · · · · ·
❘

✛
✲

✛
✲

❨

b→next := t ′ //

a→prev := t // · · · · · ·
❘

✛
✲

✛
✲

✛
✲

❨

t→next :=a //

t ′→prev :=b // · · · · · ·
✲

✛
✲

✛
✲

✛
✲

✛

Fig. 3.6. Splicing lists

element are the successor and predecessor, respectively, of h. In order to move an
item b to the position after an item a′, we simply cut out the sublist starting and end-
ing at b and insert it after a′. This is exactly what splice(b,b,a′) does. We move an
element to the first or last position of a sequence by moving it after the head or after
the last element, respectively. In order to delete an element b, we move it to freeList.
To insert a new element e, we take the first item of freeList, store the element in it,
and move it to the place of insertion.

Exercise 3.4 (alternative list implementation). Discuss an alternative implementa-
tion of List that does not need the dummy item h. Instead, this representation stores a
pointer to the first list item in the list object. The position before the first list element
is encoded as a null pointer. The interface and the asymptotic execution times of all
operations should remain the same. Give at least one advantage and one disadvantage
of this implementation compared with the one given in the text.

The dummy item is also useful for other operations. For example, consider the prob-
lem of finding the next occurrence of an element x starting at an item from. If x is not
present, head should be returned. We use the dummy item as a sentinel. A sentinel is
an item in a data structure that makes sure that some loop will terminate. In the case
of a list, we store the key we are looking for in the dummy item. This ensures that
x is present in the list structure and hence a search for it will always terminate. The
search will terminate at a proper list item or the dummy item, depending on whether
x was present in the list originally. It is no longer necessary to test whether the end
of the list has been reached. In this way, the trick of using the dummy item h as a
sentinel saves one test in each iteration improves the efficiency of the search:
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Function findNext(x : Element; from : Handle) : Handle

h.e = x // Sentinel
✲

x
✲

✛ · · ·
· · ·
✛ ✛

✲while from→e 6= x do

from := from→next

return from

Exercise 3.5. Implement a procedure swap that swaps two sublists in constant time,
i.e., sequences (〈. . . ,a′,a, . . . ,b,b′, . . .〉,〈. . . ,c′,c, . . . ,d,d′, . . .〉) are transformed into
(〈. . . ,a′,c, . . . ,d,b′, . . .〉,〈. . . ,c′,a, . . . ,b,d′, . . .〉). Is splice a special case of swap?

Exercise 3.6 (memory management). Implement the function checkFreeList called
by insertAfter in Fig. 3.7. Since an individual call of the programming-language
primitive allocate for every single item might be slow, your function should allocate
space for items in large batches. The worst-case execution time of checkFreeList

should be independent of the batch size. Hint: In addition to freeList, use a small
array of free items.

Exercise 3.7. Give a constant-time implementation of an algorithm for rotating a
list to the right: 〈a, . . . ,b,c〉 7→ 〈c,a, . . . ,b〉. Generalize your algorithm to rotate
〈a, . . . ,b,c, . . . ,d〉 to 〈c, . . . ,d,a, . . . ,b〉 in constant time.

// Deleting and inserting elements.
// 〈. . . ,a,b,c, . . .〉 7→ 〈. . . ,a,c, . . .〉
Procedure remove(b : Handle) moveAfter(b, freeList.head)
Procedure popFront remove(first)
Procedure popBack remove(last)

// 〈. . . ,a,b, . . .〉 7→ 〈. . . ,a,e,b, . . .〉
Function insertAfter(x : Element; a : Handle) : Handle

checkFreeList // make sure freeList is nonempty. See also Exercise 3.6
a′ := freeList.first // Obtain an item a′ to hold x,
moveAfter(a′,a) // put it at the right place,
a′→e :=x // and fill it with the right content.
return a′

Function insertBefore(x : Element; b : Handle) : Handle return insertAfter(e, pred(b))

Procedure pushFront(x : Element) insertAfter(x, head)

Procedure pushBack(x : Element) insertAfter(x, last)

// Manipulations of entire lists
// (〈a, . . . ,b〉,〈c, . . . ,d〉) 7→ (〈a, . . . ,b,c, . . . ,d〉,〈〉)
Procedure concat(L′ : List)

splice(L′.first, L′.last, last)

// 〈a, . . . ,b〉 7→ 〈〉
Procedure makeEmpty

freeList.concat(this) //

✲
⊥

✲
✛ · · ·

· · ·
✛ ✛

✲ 7→
⊥

✛
✲

Fig. 3.7. More constant-time operations on doubly linked lists
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Exercise 3.8. findNext using sentinels is faster than an implementation that checks
for the end of the list in each iteration. But how much faster? What speed difference
do you predict for many searches in a short list with 100 elements, and in a long
list with 10 000 000 elements? Why is the relative speed difference dependent on the
size of the list?

3.2.2 Maintaining the Size of a List

In our simple list data type, it is not possible to determine the length of a list in
constant time. This can be fixed by introducing a member variable size that is updated
whenever the number of elements changes. Operations that affect several lists now
need to know about the lists involved, even if low-level functions such as splice only
need handles to the items involved. For example, consider the following code for
moving an element a from a list L to the position after a′ in a list L′:

Procedure moveAfter(a, a′ : Handle; L, L′ : List)
splice(a,a,a′); L.size--; L′.size++

Maintaining the size of lists interferes with other list operations. When we move
elements as above, we need to know the sequences containing them and, more seri-
ously, operations that move sublists between lists cannot be implemented in constant
time anymore. The next exercise offers a compromise.

Exercise 3.9. Design a list data type that allows sublists to be moved between lists
in constant time and allows constant-time access to size whenever sublist operations
have not been used since the last access to the list size. When sublist operations have
been used, size is recomputed only when needed.

Exercise 3.10. Explain how the operations remove, insertAfter, and concat have to
be modified to keep track of the length of a List.

3.2.3 Singly Linked Lists

The two pointers per item of a doubly linked list make programming quite easy.
Singly linked lists are the lean sisters of doubly linked lists. We use SItem to refer
to an item in a singly linked list. SItems scrap the predecessor pointer and store only
a pointer to the successor. This makes singly linked lists more space-efficient and
often faster than their doubly linked brothers. The downside is that some operations
can no longer be performed in constant time or can no longer be supported in full
generality. For example, we can remove an SItem only if we know its predecessor.

We adopt the implementation approach used with doubly linked lists. SItems
form collections of cycles, and an SList has a dummy SItem h that precedes the first
proper element and is the successor of the last proper element. Many operations on
Lists can still be performed if we change the interface slightly. For example, the
following implementation of splice needs the predecessor of the first element of the
sublist to be moved:
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// (〈. . . ,a′,a, . . . ,b,b′ . . .〉,〈. . . , t, t ′, . . .〉) 7→ (〈. . . ,a′,b′ . . .〉,〈. . . , t,a, . . . ,b, t ′, . . .〉)

Procedure splice(a′,b,t : SHandle)
(

a′→next
t→next

b→next

)

:=

(
b→next
a′→next
t→next

)

//

a′ a b b′

✲
③

✲ · · · ✲
❥

✲

✲
✸

✲

t t ′

Similarly, findNext should return not the handle of the next SItem containing the
search key but its predecessor, so that it remains possible to remove the element
found. Consequently, findNext can only start searching at the item after the item
given to it. A useful addition to SList is a pointer to the last element because it allows
us to support pushBack in constant time.

Exercise 3.11. Implement classes SHandle, SItem, and SList for singly linked lists in
analogy to Handle, Item, and List. Show that the following functions can be imple-
mented to run in constant time. The operations head, first, last, isEmpty, popFront,
pushFront, pushBack, insertAfter, concat, and makeEmpty should have the same in-
terface as before. The operations moveAfter, moveToFront, moveToBack, remove,
popFront, and findNext need different interfaces.

We shall see several applications of singly linked lists in later chapters, for example
in hash tables in Sect. 4.1 and in mergesort in Sect. 5.3. We may also use singly
linked lists to implement free lists of memory managers – even for items in doubly
linked lists.

3.3 Processing Linked Lists in Parallel

Linked lists are harder than arrays to process in parallel. In particular, we cannot
easily split lists into equal-sized pieces of consecutive elements. The reason is that in
arrays, proximity in memory corresponds to proximity in the logical structure. More-
over, arrays support access by index. For linked lists, proximity in memory does not
correspond to proximity in the logical structure. The next-pointer of a list item may
point to an arbitrary position in memory. Moreover, lists do not support access by in-
dex, but only sequential access. The only list element accessible for a given element
is the next element, and hence linked lists seem to enfore sequential accessing. As a
global rule, it is wise to avoid lists in parallel computing. However, the situation is
not completely bleak. We shall see in this section how to convert a linked list into
an array. Somewhat surprisingly, this process, which is also known as list ranking, is
parallelizable. In the algorithms for list ranking, we shall exploit the fact that a par-
allel algorithm can start traversing the list simultaneously from many positions. The
challenge lies in coordinating the different traversals. List ranking plays an impor-
tant role in many theoretical PRAM algorithms, and parallel list-ranking algorithms
are a good showcase of important parallelization ideas such as doubling, contrac-
tion, multilevel algorithms, and using inefficient subroutines in an overall efficient
algorithm.
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3.3.1 *List Ranking by Doubling

We shall work with a singly linked list whose items are stored in an array L[0..n]
in any order except that a dummy item is stored in L[n]. The dummy item is the last
element of the list, and its next-pointer points to itself. We shall compute the distance
of each item to the dummy item. Having the distance, reordering is easy. Actually,
we shall solve a slightly more general problem. Items have an additional field rank.
The dummy item has initial rank 0. The initial rank values for the other items are
arbitrary; in the list-ranking task, the initial rank of all other items is 1. The task is

to compute for each item the sum of the rank values from the item to the dummy

item following the next-pointers; see Fig. 3.8(a) for an example. Our algorithm will

manipulate the next-pointers and rank values in such a way that this sum remains

invariant. At the end, the next-pointer of each item will point to the dummy item
directly, and rank will contain the desired value.

Exercise 3.12. Give a sequential algorithm that computes the ranks in time O(n).

We begin with an elegant and simple PRAM algorithm that repeatedly replaces the
next-pointers with the result of following two next-pointers and compensates by
adding the corresponding rank values:

Procedure doublingListRanking(L : Array [0..n] of Item)
for j :=1 to ⌈logn⌉ do

for i :=0 to n− 1 do‖ // Synchronize after each instruction!
L[i].rank+=L[i].next→ rank

L[i].next :=L[i].next→ next

The algorithm maintains the following invariant: Consider any list item L[i] and con-
sider the sublist of the original list starting at that item and ending just before the
item L[i].next. Then L[i].rank is the sum of the initial rank fields of the items in this
sublist. Moreover, after j iterations, each next-pointer either points to the dummy
item or jumps 2 j positions in the input sequence to the right. Se Fig. 3.8(a) for an
example.

Exercise 3.13. Prove this by induction.

Hence, after ⌈logn⌉ iterations the rank values contain the final result.
The doubling algorithm has span O(logn) and work O(n logn). Since a sequen-

tial algorithm for list ranking needs only time O(n), the efficiency of the doubling
algorithm is only O(1/ logn) even if we simulate several logical PEs on one phys-
ical PE. Still, the doubling algorithm is very interesting, since it demonstrates how
sequentially following n pointers can be emulated using only logn iterations of a
parallel algorithm. The parallel algorithm traverses the list simultaneously from all
locations and uses pointer doubling to halve the distance of each item to the last
item in each round. In the next section, we shall see how doubling can be used to
accelerate an efficient algorithm.
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Fig. 3.8. List-ranking algorithms. We have a list of eight items stored in an array L[0..7]. The
last item is stored in L[7] and points to itself. The next-pointers are shown as arrows. The
initial ranks are 1 for all items but the dummy item. The initial rank of the dummy item is 0.
The final ranks are shown in the last row. Note that the list element in position L[6] has a rank
of 5 because of the linking L[6]→ L[4]→ L[1]→ L[3]→ L[5]→ L[7].

Exercise 3.14. Give a PRAM algorithm with work O(n) and span O(1) that con-
verts an array of n singly-linked-list items into an array of doubly-linked-list items
representing the same sequence.

3.3.2 *A Multilevel Algorithm for List Ranking

The pointer-doubling algorithm works on all list items in each round. Since the num-
ber of rounds is logarithmic, its work is Θ(n logn). If we want an algorithm with
linear work, we cannot work on all list items in every iteration of the algorithm. The
independent-set removal algorithm is based on this idea. It first removes a constant
fraction of the list items and builds a list of the remaining items. It then recurses on
this contracted instance. Finally, it reinserts the removed items. In order to make the
first and last steps efficient, an independent set of items is removed in the first step.

The algorithm is a good example of a multilevel algorithm: Build a new, smaller
instance somehow representing the entire problem, solve the smaller problem re-
cursively, and build the overall solution from the solution of the smaller problem.
Multilevel algorithms are related to divide-and-conquer algorithms. One can view
multilevel algorithms as divide-and-conquer algorithms which make only a single
recursive call (e.g., see the quickselect algorithm in Sect. 5.8). The difference is a
matter of interpretation – in a multilevel algorithm, the contracted instance repre-
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sents the entire original input in some uniform way, whereas a divide-and-conquer
algorithms splits off a subproblem by removing irrelevant information.

Procedure isrListRanking(L : Array [0..n]of Item, B : N)

if n≤ B then doublingListRanking(L); return // base case
findIndependentSet(L) // which items stay?
exclusivePrefixSum(L,stay, index′) // enumerate staying elements
L’ : Array [0..L[n].index′] of Item // contracted instance
for i :=0 to n do‖ // build L′

if L[i].stay then // move L[i] to L′

i′ :=L[i].index′ // position in L′

r :=L[i].next // right neighbor
L′[i′] :=L[i] // copy
L′[i′].next :=addressof L′[ if r→ stay then r→ index′ else r→ next→ index′]
if ¬r→ stay then L′[i′].rank+= r→ rank // establish invariant for L′

isrListRanking(L′,B) // recurse
for i :=0 to n−1 do‖ if L[i].stay then L[i].rank :=L′[L[i].index′].rank // assemble
for i :=0 to n−1 do‖ if ¬L[i].stay then L[i].rank+=L[i].next→ rank // solution

Fig. 3.9. List ranking by independent-set removal (explicitly parallel)

Figure 3.9 gives pseudocode for the algorithm. The items now have additional
fields stay and index′. The Boolean stay indicates whether the item stays in the list
(stay = 1) or is to be removed (stay = 0). For the dummy item, we always have
stay = 1. For an element that stays, index′ is the position of the item in the con-
tracted instance. We shall explain in a moment how it is computed. The subroutine
findIndependentSet is responsible for finding a (large) independent set of list items
that can be removed (stay = 0). We never remove two adjacent elements. By requir-
ing that the predecessors and successors of removed elements must stay, we make it
easy to build the contracted instance and to reconstruct the overall solution. We defer
the description of findIndependentSet for now. The position of a staying element in
L′ can be computed by computing a prefix sum; we have L[ j].index′ = ∑

j−1
i=1 L[i].stay.

In Sect. 13.3 it is explained how prefix sums can be computed using linear work and
logarithmic span.

But how can L′ represent the entire input? The idea is to define the input rank

values of L′ in a way such that for all staying elements the output rank value is the
same as for L. To this end, we first copy rank values from L to L′ and then add
the rank of the successor item in L whenever the successor item is removed. After
solving L′ recursively, it is easy to build the overall solutions. The items of L which
stayed in L′ can simply take their rank value from the corresponding item in L′. The
others add their input rank value to the rankvalue of their successor. Figure 3.8(b)
gives an example.

Let us now analyze isrListRanking when the independent set encompasses a con-
stant fraction of the elements. Assume αn elements stay, for some constant α < 1.
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Then we get the following recurrences for the work and span:

work(n) =

{

O(B logB) if n≤ B,

O(n+work(αn)) else,
span(n) =

{

O(logB) if n≤ B,

O(logn+ span(αn)) else.

Roughly, the work shrinks geometrically, so that we get linear work overall plus
O(B logB) for the base of the recursion. The span is basically the number of lev-

els of recursion times logn; the number of levels of recursion is
⌈

log1/α n/B
⌉

=

O(logn/B). More precisely, we can prove by induction that

work(n) = O(n+B logB) and span(n) = O
(

logB+ logn log
n

B

)

.

How should we choose the tuning parameter B? Choosing B as a constant yields
span(n) = Θ

(
log2 n

)
. The span gets smaller for larger values of B. However, if we

want linear work, B logB should be O(n). This suggests that we should use B =
Θ(n/ logn). We obtain

work(n) = O(n) and span(n) = O(logn loglogn) . (3.1)

Note that we are using an inefficient algorithm – doublingListRanking – to speed
up an efficient algorithm – isrListRanking. The overall algorithm remains efficient,
since we use the inefficient algorithm only when the problem size has been reduced
sufficiently to make the inefficiency irrelevant. This is a general principle that works
for many parallel algorithms. For example, in Sect. 5.2 we shall design fast, inef-
ficient sorting algorithms that can be used to accelerate the sample sort algorithm
described in Sect. 5.13 or the parallel selection algorithm in Sect. 5.9.

3.3.3 Computing an Independent Set

There is a very simple randomized algorithm for computing an independent set. For
each item I, we throw a coin. If the coin shows a head and the coin for the successor
I.next shows a tail, we put I into the independent set. We always throw a tail for the
dummy element. This algorithm has linear work and constant span on a PRAM. Note
that there is no need to explicitly check the predecessor I.prev: Either we throw a tail
for I.prev and we are fine, or I.prev sees that we threw a head for I and therefore
stays out of the independent set. Figure 3.8(b) gives an example. Note that L[3] does
not enter the independent set even though we threw a head (h) for it, because we also
threw a head for its successor L[5].

The probability that I goes to the independent set is 1
2 · (1− 1

2 ) =
1
4 except for the

predecessor of the dummy element, for which the probability is 1
2 .

Exercise 3.15. Show that using a biased coin does not help: The above probability is
never more than 1

4 .

Lemma 3.1. The expected size of the independent set is (n+ 1)/4.
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Proof. We define the indicator random variable Xi, i ∈ 0..n− 1, to be 1 if and only
if L[i] goes to the independent set. The size of the independent set is X :=∑n−1

i=0 Xi.
We have prob(Xi = 1) = 1

4 except for the predecessor of the dummy element, where
prob(Xi = 1) = 1

2 . Using the linearity of expectations we get

E[X ] = E

[
n−1

∑
i=0

Xi

]

=
n−1

∑
i=0

E[Xi] = (n− 1)
1
4
+

1
2
=

n+ 1
4

. ⊓⊔

Unfortunately, the analysis of isrListRanking assumes a deterministic algorithm for
computing independent sets. There are various ways to fix this problem – none of
them very elegant. One view is to ignore technicalities and simply hope that (3.1)
is a good approximation of the expected work and span of the algorithm. We shall
outline several ways to substantiate this hope. One way is to convert our Monte
Carlo algorithm for finding an independent set into a Las Vegas algorithm by actually
computing the size of the independent set and repeating until it is “large enough”. If
we choose the acceptance threshold right, we can prove that a constant number of
iterations is enough. Since counting needs logarithmic span, we do not have constant
span anymore. But this is no problem in the analysis of isrListRanking. However,
it is bad style to make an algorithm more expensive just because one is too lazy to
perform a tight analysis. We can use a similar argument to that in the analysis of
quickselect in Sect. 5.8 to also allow for recursion levels that do not shrink enough.
The only argument needed is a constant probability bound such as the following one.

*Exercise 3.16. Use Markov’s inequality (A.5) to prove that with probability at most
4
5 , more than 15

16 n items stay.

Unfortunately, the constant factor we get out of such an analysis is ridiculously pes-
simistic. We can do better by proving that the size of the independent set will be very
close to its expectation with high probability.

**Exercise 3.17. Use the bounded difference inequality given in [209] to show that
with probability 1−O(1/n), the independent set will have size n/4−o(n). Hint: First
show that the size of the independent set changes by at most two when we change
the outcome of a single coin throw.

*Exercise 3.18. A maximal independent set is one that cannot be enlarged by includ-
ing additional elements.

(a) Show that a maximal independent set of a list contains at least n/3 elements.
(b) Design a randomized parallel algorithm that computes a maximal independent

set. Hint: Repeatedly throw coins. Fix the result for the staying items and their
successors. Can you make this algorithm work efficiently?



3.4 Unbounded Arrays 97

3.4 Unbounded Arrays

Consider an array data structure that, besides the indexing operation [ · ], supports the
following operations pushBack, popBack, and size:

〈e0, . . . ,en−1〉.pushBack(e) = 〈e0, . . . ,en−1,e〉,
〈e0, . . . ,en−1〉.popBack = 〈e0, . . . ,en−2〉 (for n≥ 1),

size(〈e0, . . . ,en−1〉) = n.

Why are unbounded arrays important? Because in many situations we do not know in
advance how large an array should be. Here is a typical example: Suppose you want
to implement the Unix command sort for sorting the lines of a file. You decide
to read the file into an array of lines, sort the array internally, and finally output the
sorted array. With unbounded arrays, this is easy. With bounded arrays, you would
have to read the file twice: once to find the number of lines it contains, and once
again to actually load it into the array. The solution with unbounded arrays is clearly
more elegant, in particular if you can use an implementation provided by a library.
Also, there are situations where the input can be read only once.

We come now to the implementation of unbounded arrays. We emulate an un-
bounded array u with n elements by use of a dynamically allocated bounded array b

with w entries, where w ≥ n. The first n entries of b are used to store the elements
of u. The last w− n entries of b are unused. As long as w > n, pushBack simply
increments n and uses the first unused entry of b for the new element. When w = n,
the next pushBack allocates a new bounded array b′ that is larger by a constant factor
(say a factor of two). To reestablish the invariant that u is stored in b, the contents of
b are copied to the new array so that the old b can be deallocated. Finally, the pointer
defining b is redirected to the new array. Deleting the last element with popBack

is even easier, since there is no danger that b may become too small. However, we
might waste a lot of space if we allow b to be much larger than needed. The wasted
space can be kept small by shrinking b when n becomes too small. Figure 3.10 gives
the complete pseudocode for an unbounded-array class. Growing and shrinking are
performed using the same utility procedure reallocate. Our implementation uses con-
stants α and β , with β = 2 and α = 4. Whenever the current bounded array becomes
too small, we replace it by an array of β times the old size. Whenever the size of the
current array becomes α times as large as its used part, we replace it by an array of
size β n. The reasons for the choice of α and β will become clear later.

3.4.1 Amortized Analysis of Unbounded Arrays: The Global Argument

Our implementation of unbounded arrays follows the algorithm design principle
“make the common case fast”. Array access with the operator [ · ] is as fast as for
bounded arrays. Intuitively, pushBack and popBack should “usually” be fast – we
just have to update n. However, some insertions and deletions incur a cost of Θ(n).
We shall show that such expensive operations are rare and that any sequence of m

operations starting with an empty array can be executed in time O(m).
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Class UArray of Element

Constant β = 2 : R+ // growth factor
Constant α = 4 : R+ // worst-case memory blowup
w = 1 : N // allocated size
n = 0 : N // current size.
invariant n≤ w < αn or n = 0 and w≤ β
b : Array [0..w−1] of Element // b→ e0 · · · en−1

n
· · ·

w

Operator [i : N] : Element

assert 0≤ i < n

return b[i]

Function size : N return n

Procedure pushBack(e : Element) // Example for n = w = 4:
if n = w then // b→ 0 1 2 3

reallocate(βn) // b→ 0 1 2 3
b[n] := e // b→ 0 1 2 3 e

n++ // b→ 0 1 2 3 e

Procedure popBack // Example for n = 5, w = 16:
assert n > 0 // b→ 0 1 2 3 4
n-- // b→ 0 1 2 3 4
if αn≤ w∧n > 0 then // reduce waste of space

reallocate(βn) // b→ 0 1 2 3

Procedure reallocate(w′ : N) // Example for w = 4, w′ = 8:
w :=w′ // b→ 0 1 2 3

b′ :=allocate Array [0..w′−1] of Element // b′→
(b′[0], . . . ,b′[n−1]) :=(b[0], . . . ,b[n−1]) // b′→ 0 1 2 3

dispose b // b→ 0 1 2 3

b :=b′ // pointer assignment b→ 0 1 2 3

Fig. 3.10. Pseudocode for unbounded arrays

Lemma 3.2. Consider an unbounded array u that is initially empty. Any sequence

σ = 〈σ1, . . . ,σm〉 of pushBack or popBack operations on u is executed in time O(m).

Lemma 3.2 is a nontrivial statement. A small and innocent-looking change to the
program invalidates it.

Exercise 3.19. Your manager asks you to change the initialization of α to α = 2. He
argues that it is wasteful to shrink an array only when three-fourths of it are unused.
He proposes to shrink it when n≤w/2. Convince him that this is a bad idea by giving
a sequence of m pushBack and popBack operations that would need time Θ

(
m2
)

if
his proposal was implemented.

Lemma 3.2 makes a statement about the amortized cost of pushBack and popBack

operations. Although single operations may be costly, the cost of a sequence of m
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operations is O(m). If we divide the total cost of the operations in σ by the number
of operations, we get a constant. We say that the amortized cost of each operation
is constant. Our usage of the term “amortized” is similar to its usage in everyday
language, but it avoids a common pitfall. “I am going to cycle to work every day from
now on, and hence it is justified to buy a luxury bike. The cost per ride will be very
small – the investment will be amortized.” Does this kind of reasoning sound familiar
to you? The bike is bought, it rains, and all good intentions are gone. The bike has
not been amortized. We shall, instead, insist that a large expenditure is justified by
savings in the past and not by expected savings in the future. Suppose your ultimate
goal is to go to work in a luxury car. However, you are not going to buy it on your
first day of work. Instead, you walk and put a certain amount of money per day into
a savings account. At some point, you will be able to buy a bicycle. You continue to
put money away. At some point later, you will be able to buy a small car, and even
later you can finally buy a luxury car. In this way, every expenditure can be paid for
by past savings, and all expenditures are amortized. Using the notion of amortized
costs, we can reformulate Lemma 3.2 more elegantly. The increased elegance also
allows better comparisons between data structures.

Corollary 3.3. Unbounded arrays implement the operation [ · ] in worst-case con-

stant time and the operations pushBack and popBack in amortized constant time.

To prove Lemma 3.2, we use the bank account or potential method. We associate an
account or potential with our data structure and force every pushBack and popBack

to put a certain amount into this account. Usually, we call our unit of currency a token.
The idea is that whenever a call of reallocate occurs, the balance in the account is
sufficiently high to pay for it. The details are as follows. A token can pay for moving
one element from b to b′. Note that element copying in the procedure reallocate

is the only operation that incurs a nonconstant cost in Fig. 3.10. More concretely,
reallocate is always called with w′ = 2n and thus has to copy n elements. Hence,
for each call of reallocate, we withdraw n tokens from the account. We charge two
tokens for each call of pushBack and one token for each call of popBack. We now
show that these charges guarantee that the balance of the account stays nonnegative
and hence suffice to cover the withdrawals made by reallocate.

The first call of reallocate occurs when there is already one element in the array
and a new element is to be inserted. The element already in the array has deposited
two tokens in the account, and this more than covers the one token withdrawn by
reallocate. The new element provides its tokens for the next call of reallocate.

After a call of reallocate, we have an array of w elements: n = w/2 slots are
occupied and w/2 are free. The next call of reallocate occurs when either n = w or
4n ≤ w. In the first case, at least w/2 elements have been added to the array since
the last call of reallocate, and each one of them has deposited two tokens. So we
have at least w tokens available and can cover the withdrawal made by the next call
of reallocate. In the second case, at least w/2−w/4 = w/4 elements have been
removed from the array since the last call of reallocate, and each one of them has
deposited one token. So we have at least w/4 tokens available. The call of reallocate
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needs at most w/4 tokens, and hence the cost of the call is covered. This completes
the proof of Lemma 3.2. ⊓⊔

Exercise 3.20. Redo the argument above for general values of α and β , and charge
β/(β − 1) tokens for each call of pushBack and β/(α − β ) tokens for each call
of popBack. Let n′ be such that w = β n′. Then, after a reallocate, n′ elements are
occupied and (β − 1)n′ = ((β − 1)/β )w are free. The next call of reallocate occurs
when either n = w or αn ≤ w. Argue that in both cases there are enough tokens.

Amortized analysis is an extremely versatile tool, and so we think that it is worth-
while to learn alternative proof methods4 for amortized analysis. We shall now give
two variants of the proof above.

Above, we charged two tokens for each pushBack and one token for each
popBack. Alternatively, we could charge three tokens for each pushBack and not
charge for popBack at all. The accounting is simple. The first two tokens pay for the
insertion as above, and the third token is used when the element is deleted.

Exercise 3.21 (continuation of Exercise 3.20). Show that a charge of β/(β − 1)+
β/(α − β ) tokens for each pushBack is enough. Determine values of α such that
β/(α−β )≤ 1/(β − 1) and such that β/(α−β )≤ β/(β − 1).

3.4.2 Amortized Analysis of Unbounded Arrays: The Local Argument

We now describe our second modification of the proof. Above, we used a global
argument in order to show that there are enough tokens in the account before each call
of reallocate. We now show how to replace the global argument by a local argument.
Recall that, immediately after a call of reallocate, we have an array of w elements,
out of which w/2 are filled and w/2 are free. We argue that at any time after the first
call of reallocate, the following token invariant holds:

the account contains at least max(2(n−w/2),w/2− n) tokens.

Observe that this number is always nonnegative. We use induction on the number of
operations executed. Immediately after the first reallocate, there is one token in the
account and the invariant requires none (n = w/2 = 1). A pushBack (ignoring the
potential call of reallocate) increases n by one and adds two tokens. So the invariant
is maintained. A popBack (again ignoring the potential call of reallocate) removes
one element and adds one token. So the invariant is again maintained. We next turn
to calls of reallocate. When a call of reallocate occurs, we have either n = w or
4n ≤ w. In the former case, the account contains at least n tokens, and n tokens are
required for the reallocation. In the latter case, the account contains at least w/4
tokens, and n are required. So, in either case, the number of tokens suffices. Also,
after the reallocation, n = w/2 and hence no tokens are required.

4 Some induction proofs become easier if they are formulated in terms of a smallest coun-
terexample. It is useful to know both methods. The situation is similar here.
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Exercise 3.22. Charge three tokens for a pushBack and no tokens for a popBack.
Argue that the account always contains at least n +max(2(n−w/2),w/2− n) =
max(3n−w,w/2) tokens.

Exercise 3.23 (popping many elements). Implement an operation popBack(k) that
removes the last k elements in amortized constant time. Of course, 0 < k ≤ n, but k

is arbitrary otherwise.

Exercise 3.24 (worst-case constant access time). Suppose, for a real-time applica-
tion, you need an unbounded array data structure with a worst-case constant execu-
tion time for all operations. Design such a data structure. Hint: In an initial solution,
support only [.] and pushBack. Store the elements in up to two arrays. Start moving
elements to a larger array well before the small array is completely exhausted. How
do you generalize this approach if popBack must also be supported?

Exercise 3.25 (implicitly growing arrays). Implement unbounded arrays where the
operation [ · ] accepts any positive index i as its argument. When i ≥ n, the array is
implicitly grown to size n= i+1. When n≥w, the array is reallocated as for UArray.
Initialize entries that have never been written with some default value ⊥.

Exercise 3.26 (sparse arrays). Implement bounded arrays with constant time for
allocating arrays and constant time for the operation [ · ]. All array elements should
be (implicitly) initialized to ⊥. You are not allowed to make any assumptions about
the contents of a freshly allocated array. Hint: Use an extra array of the same size,
and store the number t of array elements to which a value has already been assigned.
Therefore t = 0 initially. An array entry i to which a value has been assigned stores
that value and an index j, 1≤ j ≤ t, of the extra array, and i is stored in that index of
the extra array.

3.4.3 Amortized Analysis of Binary Counters

Amortized analysis is so important that it deserves a second introductory example.
We consider the amortized cost of incrementing a binary counter. The value n of the
counter is represented by a sequence . . .βi . . .β1β0 of binary digits, i.e., βi ∈ {0,1}
and n=∑i≥0 βi2i. The initial value is 0. Its representation is a string of 0’s. We define
the cost of incrementing the counter as 1 plus the number of trailing 1’s in the binary
representation, i.e., the transition

. . .01k→ . . .10k

has a cost k+ 1. What is the total cost of m increments? We shall show that the cost
is O(m). Again, we give a global argument first and then a local argument.

If the counter is incremented m times, its final value is m. The representation of
the number m requires L = 1+ ⌈logm⌉ bits. Among the numbers from 0 to m− 1,
there are at most 2L−k−1 numbers whose binary representation ends with a 0 followed
by k many 1’s. For each one of them, an increment costs 1+ k. Thus the total cost of
the m increments is bounded by
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∑
0≤k<L

(k+ 1)2L−k−1 = 2L ∑
1≤k≤L

k/2k ≤ 2L ∑
k≥1

k/2k = 2 ·2L ≤ 4m,

where the last equality uses (A.15). Hence, the amortized cost of an increment is
O(1).

The argument above is global, in the sense that it requires an estimate of the
number of representations ending in a 0 followed by k many 1’s. We now give a
local argument which does not need such a bound. We associate a bank account
with the counter. Its balance is the number of 1’s in the binary representation of the
counter. So, the balance is initially 0. Consider an increment of cost k+ 1. Before
the increment, the representation ends in a zero followed by k many 1’s, and after the
increment, the representation ends in a 1 followed by k many 0’s. So, the number of
1’s in the representation decreases by k− 1, i.e., the operation releases k− 1 tokens
from the account. The cost of the increment is k+ 1. We cover a cost of k− 1 with
the tokens released from the account, and charge a cost of two to the operation. Thus
the total cost of m operations is at most 2m.

3.5 *Amortized Analysis

We give here a general definition of amortized time bounds and amortized analysis.
We recommend that you should read this section quickly and come back to it when
needed. We consider an arbitrary data structure. The values of all program variables
comprise the state of the data structure; we use S to denote the set of states. In the
first example in the previous section, the state of our data structure is formed by the
values of n, w, and b. Let s0 be the initial state. In our example, we have n = 0, w = 1,
and b is an array of size 1 in the initial state. We have operations to transform the data
structure. In our example, we had the operations pushBack, popBack, and reallocate.
The application of an operation X in a state s transforms the data structure to a new
state s′ and has a cost TX(s). In our example, the cost of a pushBack or popBack is 1,
excluding the cost of the possible call to reallocate. The cost of a call reallocate(β n)
is Θ(n).

Let F be a sequence of operations 〈Op1, Op2, Op3, . . . , Opm〉. Starting at the
initial state s0, F takes us through a sequence of states to a final state sm:

s0
Op1−→ s1

Op2−→ s2
Op3−→ ·· · Opm−→ sm.

The cost T (F) of F is given by

T (F) = ∑
1≤i≤m

TOpi
(si−1).

A family of functions AX (s), one for each operation X , is called a family of amortized

time bounds if, for every sequence F of operations,

T (F)≤ A(F) := c+ ∑
1≤i≤m

AOpi
(si−1)
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for some constant c not depending on F , i.e., up to an additive constant, the total
actual execution time is bounded by the total amortized execution time.

This definition is a very general formulation of the bank account method. We
start with a balance of c tokens and then execute the sequence of operations. If an
operation X is executed in state s, we deposit AX(s) tokens into the account and
also withdraw TX(s) tokens to pay for the execution of the operation. The functions
AX form a family of amortized time bounds if the balance of the account can never
become negative. In order to use the bank account method, one has to define the
functions AX and the constant c and then prove that the balance can never become
negative. The balance after the execution of a sequence F of operations is c+A(F)−
T (F).

There is always a trivial way to define a family of amortized time bounds,
namely AX(s) :=TX(s) for all s. The challenge is to find a family of simple functions
AX(s) (with small function values) that form a family of amortized time bounds.
In our example, the functions ApushBack(s) = 2, ApopBack(s) = 1, A[ · ](s) = 1, and
Areallocate(s) = 0 for all s form a family of amortized time bounds (with c = 0). In
order to prove that a set of functions is indeed a family of amortized time bounds,
one uses induction with a suitable invariant which bounds from below the balance of
the account after the execution of a sequence F of operations. For our example, the
invariant states that after the execution of a sequence F of operations leading to the
state (n,w), the balance is at least max(2(n−w/2),w/2− n).

Some readers may find it counterintuitive that the amortized cost of reallocate is
stated as 0. After a call of reallocate we have an array of size w, in which exactly
half of the slots are occupied. The other half is free, i.e., n = w/2. According to the
invariant, the balance of the account may be as low as 0 after the operation. The cost
of the operation is w/2, as this is the number of elements that have to be moved.
Before the call, we had either an array of w/2 slots, all of which were full (nbefore =
wbefore = w/2), or an array of 2w slots, a quarter of which were full (nbefore = w/2
and wbefore = 2w). In the former case, the balance before the operation is at least
2(nbefore−wbefore/2) = w/2. In the latter case, the balance before the operation is
at least wbefore/2− nbefore = w−w/2 = w/2. Thus, in either case, the cost of the
operation is w/2 and the balance of the account is at least w/2. We can therefore
completely pay for the cost of the operation out of the account and there is no need
to charge any amortized cost.

3.5.1 The Potential Method for Amortized Analysis

Here, we introduce a powerful general technique for obtaining amortized time
bounds: the potential method for amortized analysis. In Sect. 3.4.3, we analyzed
the binary counter by associating with each bit string (state of the data structure)
the number of 1-bits in the bit string (the potential of the state) and then using this
potential to compute the charges required for the counter operations. We now for-
malize and generalize this method. The essence of the method is a function pot

that associates a nonnegative potential with every state of the data structure, i.e.,
pot : S −→ R≥0. We call pot(s) the potential of the state s. It requires ingenuity to
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come up with an appropriate function pot. For an operation X that transforms a state
s into a state s′ and has cost TX(s), we define the amortized cost AX(s) as the sum of
the potential change and the actual cost, i.e., AX(s) = pot(s′)− pot(s)+TX(s). The
functions obtained in this way form a family of amortized time bounds.

Theorem 3.4 (potential method). Let S be the set of states of a data structure, let

s0 be the initial state, and let pot : S −→ R≥0 be a nonnegative function. For an

operation X and a state s with s
X−→ s′, we define

AX(s) = pot(s′)− pot(s)+TX(s).

The functions AX(s) are then a family of amortized time bounds with c = pot(s0).

Proof. A short computation suffices. Consider a sequence F = 〈Op1, . . . ,Opm〉 of
operations. We have

∑
1≤i≤m

AOpi
(si−1) = ∑

1≤i≤m

(pot(si)− pot(si−1)+TOpi
(si−1))

= pot(sm)− pot(s0)+ ∑
1≤i≤m

TOpi
(si−1)

≥ ∑
1≤i≤m

TOpi
(si−1)− pot(s0),

since pot(sm)≥ 0. Thus T (F)≤ A(F)+pot(s0) and the definition of amortized time
bounds is satisfied with c = pot(s0). Note that c is a constant independent of F . ⊓⊔

Let us formulate the analysis of unbounded arrays in the language above. The state
of an unbounded array is characterized by the values of n and w. Following Exer-
cise 3.22, the potential in state (n,w) is max(3n−w,w/2). The actual costs T of
pushBack and popBack are 1 and the actual cost of reallocate(β n) is n. The poten-
tial of the initial state (n,w) = (0,1) is 1/2. A pushBack increases n by 1 and hence
increases the potential by at most 3. Thus its amortized cost is bounded by 4. A
popBack decreases n by 1 and hence does not increase the potential. Its amortized
cost is therefore at most 1. The first reallocate occurs when the data structure is in
the state (n,w) = (1,1). The potential of this state is max(3− 1,1/2) = 2, and the
actual cost of the reallocate is 1. After the reallocate, the data structure is in the state
(n,w) = (1,2) and has a potential of max(3−2,1) = 1. Therefore the amortized cost
of the first reallocate is 1−2+1 = 0. Consider any other call of reallocate. We have
either n = w or 4n≤ w. In the former case, the potential before the reallocate is 2n,
the actual cost is n, and the new state is (n,2n) and has a potential of n. Thus the
amortized cost is n−2n+n= 0. In the latter case, the potential before the operation
is w/2, the actual cost is n, which is at most w/4, and the new state is (n,w/2) and
has a potential of w/4. Thus the amortized cost is at most w/4−w/2+w/4 = 0.
We conclude that the amortized costs of pushBack and popBack are O(1) and the
amortized cost of reallocate is 0 or less. Thus a sequence of m operations on an
unbounded array has cost O(m).
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Exercise 3.27 (amortized analysis of binary counters). Consider a nonnegative in-
teger c represented by an array of binary digits, and a sequence of m increment and
decrement operations. Initially, c = 0. This exercise continues the discussion at the
end of Sect. 3.4.

(a) What is the worst-case execution time of an increment or a decrement as a func-
tion of m? Assume that you can work with only one bit per step.

(b) Prove that the amortized cost of the increments is constant if there are no decre-
ments. Hint: Define the potential of c as the number of 1’s in the binary repre-
sentation of c.

(c) Give a sequence of m increment and decrement operations with cost Θ(m logm).
(d) Give a representation of counters such that you can achieve worst-case constant

time for increments and decrements.
(e) Allow each digit di to take values from {−1,0,1}. The value of the counter is

c = ∑i di2i. Show that in this redundant ternary number system, increments and
decrements have constant amortized cost. Is there an easy way to tell whether
the value of the counter is 0?

3.5.2 Universality of the Potential Method

We argue here that the potential-function technique is strong enough to obtain any
family of amortized time bounds.

Theorem 3.5. Let BX(s) be a family of amortized time bounds. Then there is a po-

tential function pot such that AX (s) ≤ BX(s) for all states s and all operations X,

where AX(s) is defined according to Theorem 3.4.

Proof. For a sequence F = 〈Op1, . . . ,Opm〉 of operations which generates the se-
quence s0, s1, . . . , sm from the start state s0, define B(F) = ∑1≤i≤m BOpi

(si−1). Let c

be a constant such that T (F)≤ B(F)+ c for any such sequence F .
For any state s, we define its potential pot(s) by

pot(s) = inf{B(F)+ c−T(F) : F is a sequence of operations with final state s} .

We need to write inf instead of min here, since there might be infinitely many se-
quences leading to s. We have pot(s) ≥ 0 for any s, since T (F) ≤ B(F)+ c for any
sequence F . Thus pot is a potential function, and the functions AX(s) defined accord-
ing to Theorem 3.4 form a family of amortized time bounds.

We need to show that AX(s) ≤ BX(s) for all X and s. Let ε > 0 be arbitrary. We
shall show that AX(s) ≤ BX(s) + ε . Since ε is arbitrary, this proves that AX(s) ≤
BX(s).

Fix ε > 0, let s be an arbitrary state, and let X be an operation. Let F be a sequence
with final state s and B(F)+ c−T (F) ≤ pot(s)+ ε . The operation X transforms s

into some state s′. Let F ′ be F followed by X , i.e.,

s0
F−→ s

X−→ s′.
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Then pot(s′) ≤ B(F ′)+ c−T(F ′) by the definition of pot(s′), pot(s) ≥ B(F)+ c−
T (F)− ε by the choice of F , B(F ′) = B(F) + BX (s) and T (F ′) = T (F) + TX (s)
since F ′ = F ◦X , and AX (s) = pot(s′)− pot(s)+ TX(s) by the definition of AX(s).
Combining these inequalities, we obtain

AX (s)≤ (B(F ′)+ c−T(F ′))− (B(F)+ c−T(F)− ε)+TX(s)

= (B(F ′)−B(F))− (T (F ′)−T(F)−TX(s))+ ε

= BX(s)+ ε . ⊓⊔

3.5.3 Amortization in Parallel Processing

Amortized solutions are also useful in parallel processing, but there is a potential pit-
fall that forces us to use them with more care. This is because local amortization may
have global consequences. For example, assume that each PE performs a pushBack

operation on a local unbounded array and that the PEs have to synchronize after the
pushBack. Then, if one of the PEs has to copy its array, all other PEs have to wait for
it, and the amortized analysis breaks down.

Exercise 3.28. Show that the following SPMD pseudocode takes time Ω(pn):

a : UArray of N // one on each PE!
for i :=1 to n do // synchronize after each iteration

if i > iproc then a.pushBack(i)

Hint: Investigate when different PEs perform expensive pushBacks.

In order to avoid this pitfall, either we should avoid synchronization to such an extent
that delays due to expensive events provably cannot lead to excessive waiting times,
or we should synchronize the PEs such that all expensive events happen on all PEs at
the same time. When amortization is used globally in the first place, we often want
a global trigger for rare expensive events and we then synchronize all PEs to work
collectively on them. Examples are epoch FIFO queues, described in Sect. 3.7, where
we use a probabilistic asynchronous trigger in order to avoid contention due to the
triggering mechanism, and the unbounded distributed-memory hash table described
in Sect. 4.6.1 where we use explicit synchronization and collective communication
in order to find the exact global size of the data structure.

3.6 Stacks and Queues

Sequences are often used in a rather limited way. Let us start with some examples
from precomputer days. Sometimes a clerk will work in the following way: The clerk
keeps a stack of unprocessed files on their desk. New files are placed on the top of
the stack. When the clerk processes the next file, she also takes it from the top of
the stack. The easy handling of this “data structure” justifies its use; of course, files
may stay in the stack for a long time. In the terminology of the preceding sections,
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a stack is a sequence that supports only the operations pushBack, popBack, last, and
isEmpty. We shall use the simplified names push, pop, and top for the three main
stack operations.

The behavior is different when people are standing in line waiting for service
at a post office: Customers join the line at one end and leave it at the other end.
Such sequences are called FIFO (first in, first out) queues or simply queues. In the
terminology of the List class, FIFO queues use only the operations first, pushBack,
popFront, and isEmpty.

The more general deque (pronounced “deck”), or double-ended queue, allows
the operations first, last, pushFront, pushBack, popFront, popBack, and isEmpty; it
can also be observed at a post office when some not so nice individual jumps the line,
or when the clerk at the counter gives priority to a pregnant woman at the end of the
line. Figure 3.11 illustrates the access patterns of stacks, queues, and deques.

...

...

...

stack

FIFO queue

deque

popFront pushFront pushBack popBack

Fig. 3.11. Operations on stacks, queues, and double-ended queues (deques).

Exercise 3.29 (the Tower of Hanoi). In the great temple of Brahma in Benares,

on a brass plate under the dome that marks the center of the world, there are 64

disks of pure gold that the priests carry one at a time between three diamond needles

according to Brahma’s immutable law: No disk may be placed on a smaller disk. At

the beginning of the world, all 64 disks formed the Tower of Brahma on one needle.

Now, however, the process of transfer of the tower from one needle to another is in

mid-course. When the last disk is finally in place, once again forming the Tower of

Brahma but on a different needle, then the end of the world will come and all will

turn to dust [153].5

Describe the problem formally for any number k of disks. Write a program that
uses three stacks for the piles and produces a sequence of stack operations that trans-
forms the state (〈k, . . . ,1〉,〈〉,〈〉) into the state (〈〉,〈〉,〈k, . . . ,1〉).
Exercise 3.30. Explain how to implement a FIFO queue using two stacks so that
each FIFO operation takes amortized constant time.

5 In fact, this mathematical puzzle was invented by the French mathematician Édouard Lucas
in 1883.
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Class BoundedFIFO(n : N) of Element

b : Array [0..n] of Element

h = 0 : N // index of first element
t = 0 : N // index of first free entry

h

t0n

b

Function isEmpty : {1,0}; return h = t

Function first : Element; assert ¬isEmpty; return b[h]

Function size : N; return (t−h+n+1) mod (n+1)

Procedure pushBack(x : Element)
assert size< n

b[t] :=x

t :=(t +1) mod (n+1)

Procedure popFront assert ¬isEmpty; h :=(h+1) mod (n+1)

Fig. 3.12. An array-based bounded FIFO queue implementation

Why should we care about these specialized types of sequence if we already
know a list data structure which supports all of the operations above and more in con-
stant time? There are at least three reasons. First, programs become more readable
and are easier to debug if special usage patterns of data structures are made explicit.
Second, simple interfaces also allow a wider range of implementations. In particu-
lar, the simplicity of stacks and queues allows specialized implementations that are
more space-efficient than general Lists. We shall elaborate on this algorithmic aspect
in the remainder of this section. In particular, we shall strive for implementations
based on arrays rather than lists. Third, lists are not suited for external-memory use
because any access to a list item may cause an I/O operation. The sequential access
patterns of stacks and queues translate into good reuse of cache blocks when stacks
and queues are represented by arrays.

Bounded stacks, where we know the maximum size in advance, are readily im-
plemented with bounded arrays. For unbounded stacks, we can use unbounded ar-
rays. Stacks can also be represented by singly linked lists: The top of the stack corre-
sponds to the front of the list. FIFO queues are easy to realize with singly linked lists
with a pointer to the last element. However, deques cannot be represented efficiently
by singly linked lists.

We discuss next an implementation of bounded FIFO queues by use of arrays; see
Fig. 3.12. We view an array as a cyclic structure where entry 0 follows the last entry.
In other words, we have array indices 0 to n, and view the indices modulo n+ 1. We
maintain two indices h and t that delimit the range of valid queue entries; the queue
comprises the array elements indexed by h..t−1. The indices travel around the cycle
as elements are queued and dequeued. The cyclic semantics of the indices can be
implemented using arithmetic modulo the array size.6 We always leave at least one

6 On some machines, one might obtain a significant speedup by choosing the array size to be
a power of two and replacing mod by bit operations.
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entry of the array empty, because otherwise it would be difficult to distinguish a full
queue from an empty queue. The implementation is readily generalized to bounded
deques. Circular arrays also support the random access operator [ · ]:

Operator [i : N] : Element; return b[i+ h mod (n+ 1)]

Bounded queues and deques can be made unbounded using techniques similar to
those used for unbounded arrays in Sect. 3.4.

We have now seen the major techniques for implementing stacks, queues, and
deques. These techniques may be combined to obtain solutions that are particularly
suited for very large sequences or for external-memory computations.

Exercise 3.31 (lists of arrays). Here we aim to develop a simple data structure for
stacks, FIFO queues, and deques that combines all the advantages of lists and un-
bounded arrays and is more space-efficient than either lists or unbounded arrays.
Use a list (doubly linked for deques) where each item stores an array of K elements
for some large constant K. Implement such a data structure in your favorite program-
ming language. Compare the space consumption and execution time with those for
linked lists and unbounded arrays in the case of large stacks.

Exercise 3.32 (external-memory stacks and queues). Design a stack data struc-
ture that needs O(1/B) I/Os per operation in the I/O model described in Sect. 2.2. It
suffices to keep two blocks in internal memory. What can happen in a naive imple-
mentation with only one block in memory? Adapt your data structure to implement
FIFO queues, again using two blocks of internal buffer memory. Implement deques
using four buffer blocks.

3.7 Parallel Queue-Like Data Structures

All operations on stacks, queues, and deques concentrate on one or two logical po-
sitions. These positions constitute potential bottlenecks and thus can be problematic
for parallel processing. Hence, queue-like data structures should only be used with
great care. However, there are situations where we need them and where they can
even simplify parallelization. We shall discuss such situations in this section.

The straightforward implementation of queue-like data structures on a shared-
memory machine protects the data structure with a lock, which has to be acquired
before performing any operation. The lock serializes all operations on the queue.
Although it seems hard to avoid serialization in the worst case, for example for a
queue that alternates between being empty and being nonempty, it is undesirable for
parallel computing. Therefore there has been considerable work on better implemen-
tations [150] for special situations. What exactly can be done depends not only on the
structure (stack, queue, deque) but also on which PEs are allowed to perform which
operations. We shall now concentrate on FIFO queues as a concrete example. We
will therefore use the abbreviations push for pushFront and pop for popBack here.
Stacks are much less important for parallelization. At the end of this section, we shall
discuss an important special case of a deque.
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3.7.1 Single-Producer/Single-Consumer FIFO Queues

Let us call PEs allowed to push elements producers and PEs allowed to pop ele-
ments consumers. A very simple case of a shared-memory FIFO queue is a single-

producer/single-consumer FIFO queue (1/1-FIFO queue). This case is important
since 1/1-FIFOs queues can be used to decouple PEs dedicated to different func-
tions. This way, we can build a pipeline that processes a stream of tasks in several
stages, with one PE dedicated to each stage. For example, in the UNIX shell, the op-
erator “|” pipes data from one command to the next. In 1/1-FIFO queues, locks can
be completely avoided. We explain the FastForward queue [124], which is a variant
of the bounded circular array FIFO queue shown in Fig. 3.12. We assume that full

and empty queue entries can be distinguished. As a consequence, there is no need
to access h (head) and t (tail) to find out whether the queue is full or empty. The
code simplifies and the performance increases. Also, there is no need anymore for
an extra location to distinguish an empty from a full queue. However, we now need
to explicitly return error conditions, since there is no safe way to find out beforehand
whether an operation will be successful. We describe the operations.

Function push(x : Element) : {OK,FULL}
if ¬b[t].isEmpty then return FULL

b[t] :=x; t := t + 1 mod n; return OK

The function pop looks very similar except that it has to explicitly empty the entry
just popped:

Function pop(x : Element) : {OK,EMPTY}
if b[h].isEmpty then return EMPTY

x :=b[h]; b[h] :=EMPTY; h :=h+ 1 mod n; return OK

3.7.2 Relaxed FIFO Queues and Bulk Operations

More general FIFO queues allowing fully concurrent access are much more compli-
cated, and it is astonishing how much can go wrong (see [150]). The trouble comes
from making sure that the distributed execution is equivalent to a serial execution in
which each operation is atomically executed at some point in time between the start
and the end of the distributed execution. This behavior is not guaranteed by currently
available memory consistency models (see also Sect. B.3). Moreover, even achiev-
ing a global ordering does not mean that the order in which elements are processed
corresponds to the actual time when the operations are called – this would be almost
impossible to ensure, for fundamental physical reasons. We view these difficulties as
an indication that the semantics of a FIFO queue is unnecessarily strict. If the strict
FIFO property is not required, significant simplications are possible. The FIFO se-
mantics is violated when an element is pushed before another element but is popped
after it. Then the second element overtakes the first. Figure 3.13 shows an exam-
ple. We can quantify the degree of violation of the FIFO property by the number of
elements that can overtake another element or how long the time lapses can be.
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Fig. 3.13. Nine push operations (elements 1..9) and three pop operations on a batched FIFO
queue with B = 2 and two PEs. First PE 1 pushes 1, then PE 2 pushes 2 and 3, then PE 1
pushes 4, and PE 2 pushes 5. The elements 2 and 3 fill a block. This block is moved to the
global queue when PE 2 pushes 5. Next PE 1 pushes 6, and the block containing 1 and 4 is
moved to the global queue. The global queue now contains two blocks. When a pop is executed
and the PE has no block in its pop buffer, it fetches a buffer from the global queue. So when
PE 1 performs a pop, it fetches the block containing 2 and 3, and when PE 2 performs a pop,
it fetches the block containing 1 and 4. PE 1 then serves the pop operations from the block in
its pop buffer.

Once we accept a relaxed semantics, we can use it to reduce contention. For ex-
ample, we can process elements in batches, performing expensive access to shared
variables only occasionally for an entire batch of elements. Assume each PE main-
tains separate local push and pop buffers taking up to B elements. When a push buffer
is full, it is moved to a global FIFO queue F that takes batches of B elements. Sim-
ilarly, rather than popping individual elements, a PE pops an entire batch of size B

from F into its pop buffer and uses this to answer up to B single-element pops. The
advantage of this approach is that the cost and contention of accessing the global
queue are amortized over B elements. Assuming that elements are produced and
consumed continuously, incurring only constant delays between operations, our sim-
ple batched FIFO queue with B = Θ(p) allows at most O

(
p2
)

elements to overtake
another one. Figure 3.13 gives an example. Note that the first element pushed (1 on
PE 2) is popped after element 2. If the above assumptions are not fulfilled, things can
be much worse. For example, a PE might push an element x into an empty buffer,
and then will be delayed for a long time while all other PEs rapidly push and pop an
unbounded number of elements that all overtake x.
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3.7.3 Distributed-Memory FIFO Queues

On a distributed-memory machine, the message startup overhead is so big that even
for a 1/1-FIFO queue, bulk operations make sense. Indeed, 1/1-FIFO queues with
bulk operations have a semantics very similar to point-to-point message passing.
Most message-passing systems ensure that messages exchanged between a fixed pair
of PEs are exchanged in FIFO order – there is no overtaking. A more general FIFO
queue allowing arbitrary producers and consumers could be managed by a designated
PE f , which receives all push and pop requests. The order in which these requests are
received represents a natural global ordering. If the queue becomes large or if large
batches of elements are involved, PE f can delegate the communication and storage
of the actual queue content to further PEs. For example, it could just maintain a
global counter c, which assigns the cth enqueued batch to PE b := c mod p. A push

by a PE a would then involve three messages: a request from a to f , a reply from f

to a telling it the value of counter c, and a message from a to b delivering the actual
data. PE b would then maintain a local queue for the batches delivered to it. In order
to ensure the global ordering determined by PE f , PE b has to reorder incoming
messages according to their c-values. Since b can receive batches from any other PE,
there is no guarantee that the batches will arrive in the order in which they were sent.
Hence the necessity for reordering.

3.7.4 *The Epoch FIFO Queue

We discuss here a scalable, fully distributed relaxed FIFO queue called the epoch
FIFO queue. We achieve scalability by using efficient distributed mechanisms, such
as prefix sums (Sect. 13.3) and work stealing (Sect. 14.5), for global control. Pushs
are done in epochs and the guarantee is that all elements pushed in one epoch are
popped before all elements pushed in later epochs. Each PE maintains a local push
buffer taking all of the elements it pushes during the current epoch. When an epoch
ends, all elements pushed during this epoch are moved to a single global array, which
is pushed as one big batch into a global queue Q. We discuss below how the length of
an epoch is determined. Long epochs reduce the amount of communication required,
and short epochs guarantee a smaller violation of the FIFO property. Note that the
length of an epoch bounds the number of elements that can overtake any element.

Exercise 3.33. Explain how the elements can be moved efficiently using prefix sums.

All elements from a batch are popped before switching to the next batch. Assign-
ing the elements from a particular batch to the PEs is a special case of the loop-
scheduling problem discussed in Sect. 14.5, in which a subinterval of the current
batch is assigned to each PE. When this local interval is exhausted, it can steal pieces
of intervals from other PEs. It can be shown that this can be done in expected time
O(log p+B/p) for a batch of size B using randomized work stealing. This is work-
efficient if we ensure that the average batch size is Ω(p log p). Since shorter batches
guarantee a smaller violation of the FIFO property, our goal is to have batch sizes
Θ(p log p).
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The easiest way to control the batch size is to maintain a global counter c which
counts the number of push operations performed in the current epoch. Keeping an
exact count is a source of contention. Fortunately, it suffices to keep an approximate
count. To avoid contention, c is only incremented with probability Θ(1/p) when a
push is performed. When c exceeds a limit ℓ= Ω(log p), the next epoch is triggered.
In this way, an epoch contains Θ(pℓ) = Θ(p log p) pushes with high probability.
Since the work per epoch is O(p log p), the amortized cost per operation is constant.

The epoch length bounds the number of elements that can overtake any ele-
ment. Thus only O(p log p) elements can overtake any element – much less than
the Θ

(
p2
)

overtaking elements for simple batched FIFO queues, and independent of
additional assumptions about delays between operations. The disadvantage of epoch
FIFO queues is that they require global synchronization of all PEs in order to col-
lectively perform the operations needed for switching from one epoch to the next
one.7

Epoch FIFO queues can also be implemented efficiently on distributed memory.
The global counter c is maintained by PE 0, to which all increment requests are
sent. Since PE 0 receives only a logarithmic number of requests per epoch, it does
not constitute a bottleneck. PE 0 notifies the other PEs about the end of an epoch
using an asynchronous broadcast (see Sect. 13.1). To avoid moving elements around,
each entry of the global queue Q is split into p pieces – one for each PE holding
the elements pushed by that PE. These elements also constitute the initial interval
assigned to the PE. Possible imbalances will then be equalized during work stealing.

3.7.5 Deques for Work Stealing

A variant of deques which is important for the work-stealing load balancers described
in Sect. 14.5 has a single PE that uses the deque like a stack (pushBack, popBack),
and any number of PEs that are allowed to do popFronts. A lock-free implementation
is given in [20] that exploits the special set of operations and additional properties of
the application.

3.8 Lists versus Arrays

Table 3.1 summarizes the findings of this chapter. Arrays are better at indexed ac-
cess, whereas linked lists have their strength in manipulations of sequences at ar-
bitrary positions. Both of these approaches realize the operations needed for stacks
and queues efficiently. However, arrays are more cache-efficient here, whereas lists
provide worst-case performance guarantees.

Singly linked lists can compete with doubly linked lists in most but not all re-
spects. The only advantage of cyclic arrays over unbounded arrays is that they can
implement pushFront and popFront efficiently.

7 In a more sophisticated variant of the epoch FIFO queue, this work could also be done in
the background without working threads noticing, by using Θ(p) additional server threads
which are triggered by the end of an epoch or the exhaustion of the elements in the batch.
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Table 3.1. Running times of operations on sequences with n elements. The entries have an
implicit O(·) around them. List stands for doubly linked lists, SList stands for singly linked
lists, UArray stands for unbounded arrays, and CArray stands for circular arrays.

Operation List SList UArray CArray Explanation of “∗”
[ · ] n n 1 1
size 1∗ 1∗ 1 1 Not with interlist splice

first 1 1 1 1
last 1 1 1 1
insert 1 1∗ n n insertAfter only
remove 1 1∗ n n removeAfter only
pushBack 1 1 1∗ 1∗ Amortized
pushFront 1 1 n 1∗ Amortized
popBack 1 n 1∗ 1∗ Amortized
popFront 1 1 n 1∗ Amortized
concat 1 1 n n

splice 1 1 n n

findNext, . . . n n n∗ n∗ Cache-efficient

Space efficiency is also a nontrivial issue. Linked lists are very compact if the
elements are much larger than the pointers. For small Element types, arrays are usu-
ally more compact because there is no overhead for pointers. This is certainly true
if the sizes of the arrays are known in advance so that bounded arrays can be used.
Unbounded arrays have a trade-off between space efficiency and copying overhead
during reallocation.

3.9 Implementation Notes

Every decent programming language supports bounded arrays. In addition, un-
bounded arrays, lists, stacks, queues, and deques are provided in libraries that are
available for the major imperative languages. Nevertheless, you will often have to
implement list-like data structures yourself, for example when your objects are mem-
bers of several linked lists. In such implementations, memory management is often
a major challenge.

3.9.1 C++

The class vector〈Element〉 in the STL realizes unbounded arrays. However, most
implementations never shrink the array. There is functionality for manually setting
the allocated size. Usually, you will give some initial estimate of the sequence size n

when the vector is constructed. This can save you many grow operations. Often, you
also know when the array will stop changing size, and you can then force w= n. With
these refinements, there is little reason to use the built-in C-style arrays. An added
benefit of vectors is that they are automatically destroyed when the variable goes out
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of scope. Furthermore, during debugging, you may switch to implementations with
bound checking.

There are some additional issues that you may want to address if you need very
high performance for arrays that grow or shrink a lot. During reallocation, vector has
to move array elements using the copy constructor of Element. In most cases, a call
to the low-level byte copy operation memcpy would be much faster. Another low-
level optimization is to implement reallocate using the standard C function realloc.
The memory manager might be able to avoid copying the data entirely.

A stumbling block with unbounded arrays is that pointers to array elements be-
come invalid when the array is reallocated. You should make sure that the array does
not change size while such pointers are being used. If reallocations cannot be ruled
out, you can use array indices rather than pointers.

The STL and LEDA [194] offer doubly linked lists in the class list〈Element〉,
and singly linked lists in the class slist〈Element〉. Their memory management uses
free lists for all objects of (roughly) the same size, rather than only for objects of the
same class.

If you need to implement a list-like data structure, note that the operator new can
be redefined for each class. The standard library class allocator offers an interface
that allows you to use your own memory management while cooperating with the
memory managers of other classes.

The STL provides the classes stack〈Element〉 and deque〈Element〉 for stacks and
double-ended queues, respectively. Deques also allow constant-time indexed access
using the operator [ · ]. LEDA offers the classes stack〈Element〉 and queue〈Element〉
for unbounded stacks, and FIFO queues implemented via linked lists. It also offers
bounded variants that are implemented as arrays.

Iterators are a central concept of the STL; they implement our abstract view of
sequences independent of the particular representation.

3.9.2 Java

Since version 6 of Java, the util package provides ArrayList for unbounded arrays and
LinkedList for doubly linked lists. There is a Deque interface, with implementations
by use of ArrayDeque and LinkedList. A Stack is implemented as an extension to
Vector.

Many book on Java proudly announce that Java has no pointers, so you might
wonder how to implement linked lists. The solution is that object references in Java
are essentially pointers. In a sense, Java has only pointers, because members of non-
simple type are always references, and are never stored in the parent object itself.

Explicit memory management is optional in Java, since it provides garbage col-
lection of all objects that are not referenced anymore.
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3.10 Historical Notes and Further Findings

All of the algorithms described in this chapter are “folklore”, i.e., they have been
around for a long time and nobody claims to be their inventor. Indeed, we have seen
that many of the underlying concepts predate computers.

Amortization is as old as the analysis of algorithms. The bank account and poten-

tial methods were introduced at the beginning of the 1980s by Brown, Huddlestone,
Mehlhorn, Sleator, and Tarjan [57, 158, 299, 300]. The overview article [308] popu-
larized the term amortized analysis, and Theorem 3.5 first appeared in [213].

There is an array-like data structure that supports indexed access in constant time
and arbitrary element insertion and deletion in amortized time O(

√
n). The trick is

relatively simple. The array is split into subarrays of size n′ = Θ(
√

n). Only the last
subarray may contain fewer elements. The subarrays are maintained as cyclic arrays,
as described in Sect. 3.6. Element i can be found in entry i mod n′ of subarray ⌊i/n′⌋.
A new element is inserted into its subarray in time O(

√
n). To repair the invariant that

subarrays have the same size, the last element of this subarray is inserted as the first
element of the next subarray in constant time. This process of shifting the extra ele-
ment is repeated O(n/n′) = O(

√
n) times until the last subarray is reached. Deletion

works similarly. Occasionally, one has to start a new last subarray or change n′ and
reallocate everything. The amortized cost of these additional operations can be kept
small. With some additional modifications, all deque operations can be performed in
constant time. We refer the reader to [177] for more sophisticated implementations
of deques and an implementation study.


