
10

Shortest Paths

distance
from M

0

5

11

13

15

17 17
18

19
20

R

O

Q

L

S

G

H
E

K

J

W

P

C

M

V

F

N

The problem of finding the shortest, quickest or cheapest path between two locations

is ubiquitous. You solve it daily. When you are in a location s and want to move to a

location t, you ask for the quickest path from s to t. The fire department may want to

compute the quickest routes from a fire station s to all locations in town – the single-

source all-destinations problem. Sometimes we may even want a complete distance

table from everywhere to everywhere – the all-pairs problem. In an old fashioned

road atlas, you will usually find an all-pairs distance table for the most important

cities.

Here is a route-planning algorithm that requires a city map (all roads are as-

sumed to be two-way roads) and a lot of dexterity but no computer. Lay thin threads

along the roads on the city map. Make a knot wherever roads meet, and at your

starting position. Now lift the starting knot until the entire net dangles below it. If

you have successfully avoided any tangles and the threads and your knots are thin

enough so that only tight threads hinder a knot from moving down, the tight threads

define the shortest paths. The illustration above shows a map of the campus of the

Karlsruhe Institute of Technology1 and illustrates the route-planning algorithm for

the source node M.

Route planning in road networks is one of the many applications of shortest-path
computations. Many other problems profit from shortest-path computations, once
an appropriate graph model is defined. For example, Ahuja et al. [9] mention such
diverse applications as planning flows in networks, planning urban housing, inven-
tory planning, DNA sequencing, the knapsack problem (see also Chap. 12), produc-
tion planning, telephone operator scheduling, vehicle fleet planning, approximating
piecewise linear functions, and allocating inspection effort on a production line.

1 © KIT, Institut für Photogrammetrie und Fernerkundung.

302 10 Shortest Paths

The most general formulation of the shortest-path problem considers a directed
graph G= (V,E) and a cost function c that maps edges to arbitrary real numbers. It is
fairly expensive to solve and many of the applications mentioned above do not need
the full generality. For example, roads always have positive length. So we are also
interested in various restrictions that allow simpler and more efficient algorithms:
nonnegative edge costs, integer edge costs, and acyclic graphs. Note that we have
already solved the very special case of unit edge costs in Sect. 9.1 – the breadth-first
search (BFS) tree rooted at node s is a concise representation of all shortest paths
from s. We begin in Sect. 10.1 with some basic concepts that lead to a generic ap-
proach to shortest-path algorithms. A systematic approach will help us to keep track
of the zoo of shortest-path algorithms. As our first example of a restricted but fast
and simple algorithm, we look at acyclic graphs in Sect. 10.2. In Sect. 10.3, we come
to the most widely used algorithm for shortest paths: Dijkstra’s algorithm for gen-
eral graphs with nonnegative edge costs. The efficiency of Dijkstra’s algorithm relies
heavily on efficient priority queues. In an introductory course or on first reading, Di-
jkstra’s algorithm might be a good place to stop. But there are many more interesting
things about shortest paths in the remainder of the chapter. We begin with an average-
case analysis of Dijkstra’s algorithm in Sect. 10.4 which indicates that priority queue
operations might dominate the execution time less than one might think based on
the worst-case analysis. In Sect. 10.5, we discuss monotone priority queues for in-

teger keys that take additional advantage of the properties of Dijkstra’s algorithm.
Combining this with average-case analysis leads even to a linear expected execution
time. Section 10.6 deals with arbitrary edge costs, and Sect. 10.7 treats the all-pairs
problem. We show that the all-pairs problem for general edge costs reduces to one
general single-source problem plus n single-source problems with nonnegative edge
costs. This reduction introduces the generally useful concept of node potentials. In
Sect. 10.8, we go back to our original question about a shortest path between two
specific nodes, in particular, in the context of road networks. Finally, we discuss
parallel shortest path algorithms in Sect. 10.9.

10.1 From Basic Concepts to a Generic Algorithm

We extend the cost function to paths in the natural way. The cost of a path is the sum
of the costs of its constituent edges, i.e., the cost of the path p = 〈e1,e2, . . . ,ek〉 is
equal to c(p) = ∑1≤i≤k c(ei). The empty path has cost 0.

For a pair s and v of nodes, we are interested in a shortest path from s to v. We
avoid the use of the definite article “the” here, since there may be more than one
shortest path. Does a shortest path always exist? Observe that the number of paths
from s to v may be infinite. For example, if r = pCq is a path from s to v containing
a cycle C, then we may go around the cycle an arbitrary number of times and still
have a path from s to v; see Fig. 10.1. More precisely, assume p is a path leading
from s to u, C is a path leading from u to u, and q is a path from u to v. Consider
the path r(i) = pCiq which first uses p to go from s to u, then goes around the cycle
i times, and finally follows q from u to v. The cost of r(i) is c(p)+ i · c(C)+ c(q). If

10.1 From Basic Concepts to a Generic Algorithm 303

C is a negative cycle, i.e., c(C) < 0, there is no shortest path from s to v, since the
set {c(p)+ c(q)− i · |c(C)| : i≥ 0} contains numbers smaller than any fixed number.
We shall show next that shortest paths exist if there are no negative cycles.

Lemma 10.1. If G contains no negative cycles and v is reachable from s, then a

shortest path P from s to v exists. Moreover, P can be chosen to be simple.

Proof. Let p0 be a shortest simple path from s to v. Note that there are only finitely
many simple paths from s to v. If p0 is not a shortest path from s to v, there is a shorter
path r from s to v. Then r is nonsimple. Since r is nonsimple we can, as in Fig. 10.1,
write r as pCq, where C is a cycle and pq is a simple path. Then c(p0)≤ c(pq) and
c(pq)+c(C) = c(r)< c(p0)≤ c(pq). So c(C)< 0 and we have shown the existence
of a negative cycle, a contradiction to the assumption of the lemma. Thus there can
be no path shorter than p0. ⊓⊔

...p ps sq q
C

v v

uu
C2

Fig. 10.1. A nonsimple path pCq from s to v.

Exercise 10.1. Strengthen the lemma above and show that if v is reachable from s,
then a shortest path from s to v exists if and only if there is no negative cycle that is
reachable from s and from which one can reach v.

For two nodes s and v, we define the shortest-path distance, or simply distance,
µ(s,v) from s to v as

µ(s,v) :=

+∞ if there is no path from s to v,

−∞ if there is a path from s to v,

but no shortest path from s to v,

c(a shortest path from s to v) otherwise.

Since we use s to denote the source vertex most of the time, we also use the shorthand
µ(v) :=µ(s,v). Observe that if v is reachable from s but there is no shortest path from
s to v, then there are paths of arbitrarily large negative cost. Thus it makes sense to
define µ(v) =−∞ in this case. Shortest paths have further nice properties, which we
state as exercises.

Exercise 10.2 (subpaths of shortest paths). Show that subpaths of shortest paths
are themselves shortest paths, i.e., if a path of the form pqr is a shortest path, then q

is also a shortest path.

304 10 Shortest Paths

Exercise 10.3 (shortest-path trees). Assume that all nodes are reachable from s and
that there are no negative cycles. Show that there is an n-node tree T rooted at s

such that all tree paths are shortest paths. Hint: Assume first that shortest paths are
unique and consider the subgraph T consisting of all shortest paths starting at s. Use
the preceding exercise to prove that T is a tree. Extend this result to the case where
shortest paths are not necessarily unique.

Exercise 10.4 (alternative definition). Show that

µ(s,v) = inf{c(p) : p is a path from s to v} ,

where the infimum of the empty set is +∞.

Our strategy for finding shortest paths from a source node s is a generaliza-
tion of the BFS algorithm shown in Fig. 9.2. We maintain two NodeArrays d and
parent. Here, d[v] contains our current knowledge about the distance from s to v, and
parent[v] stores the predecessor of v on the current shortest path to v. We usually
refer to d[v] as the tentative distance of v. Initially, d[s] = 0 and parent[s] = s. All
other nodes have tentative distance “infinity” and no parent.

The natural way to improve distance values is to propagate distance information
across edges. If there is a path from s to u of cost d[u], and e = (u,v) is an edge out
of u, then there is a path from s to v of cost d[u]+ c(e). If this cost is smaller than
the best previously known distance d[v], we update d and parent accordingly. This
process is called edge relaxation:

Procedure relax(e = (u,v) : Edge)
if d[u]+ c(e)< d[v] then d[v] :=d[u]+ c(e); parent[v] :=u

Arithmetic with ∞ is done in the natural way: a < ∞ and ∞+ a = ∞ for all reals a,
and ∞ 6< ∞.

Lemma 10.2. After any sequence of edge relaxations, if d[v] < ∞, then there is a

path of length d[v] from s to v.

Proof. We use induction on the number of edge relaxations. The claim is certainly
true before the first relaxation. The empty path is a path of length 0 from s to s,
and all other nodes have infinite distance. Consider next a relaxation of an edge
e = (u,v). If the relaxation does not change d[v], there is nothing to show. Otherwise,
d[u]+ c(e)< d[v] and hence d[u]< ∞. By the induction hypothesis, there is a path p

of length d[u] from s to u. Then pe is a path of length d[u]+ c(e) from s to v. ⊓⊔

The common strategy of the algorithms in this chapter is to relax edges until
either all shortest paths have been found or a negative cycle has been discovered. For
example, the (reversed) thick (solid and dashed) edges in Fig. 10.2 give us the parent

information obtained after a sufficient number of edge relaxations: Nodes f , g, i,
and h are reachable from s using these edges and have reached their respective µ(·)
values 2, −3, −1, and −3. Nodes b, j, and d form a negative-cost cycle reachable
from s so that their shortest-path cost is −∞. Node a is attached to this cycle, and

10.1 From Basic Concepts to a Generic Algorithm 305

42

0

0

0

0

5
2

2

−1

−1

−1 −2

−2

−2
−3

−3

+∞

−∞

−∞

−∞ −∞

a b d f g

hijk s

Fig. 10.2. A graph with source node s and shortest-path distances µ(v). Edge costs are shown
as edge labels, and the distances are shown inside the nodes. The thick solid edges indicate
shortest paths starting in s. The dashed edges and the light gray nodes belong to an infinite
collection of paths with arbitrary small negative costs. The thick dashed edges (d,b), (b, j),
and (j,d) form a negative cycle. The reversals of the thick solid and dashed edges indicate the
parent function after a sufficient number of iterations. Node k is not reachable from s.

thus µ(a) =−∞. The edge (a,d) proves that d and hence d, b, j, and a are reachable
from s, but this is not recorded in the parent information.

What is a good sequence of edge relaxations? Let p = 〈e1, . . . ,ek〉 be a path from
s to v. If we relax the edges in the order e1 to ek, we have d[v] ≤ c(p) after the
sequence of relaxations. If p is a shortest path from s to v, then d[v] cannot drop
below c(p), by the preceding lemma, and hence d[v] = c(p) after the sequence of
relaxations.

Lemma 10.3 (correctness criterion). After performing a sequence R of edge re-

laxations, we have d[v] = µ(v) if, for some shortest path p = 〈e1,e2, . . . ,ek〉 from

s to v, p is a subsequence of R, i.e., there are indices t1 < t2 < · · · < tk such that

R[t1] = e1,R[t2] = e2, . . . ,R[tk] = ek. Moreover, the parent information defines a path

of length µ(v) from s to v.

Proof. The following is a schematic view of R and p. The first row indicates the
time. At time t1, the edge e1 is relaxed, at time t2, the edge e2 is relaxed, and so on:

1,2, . . . , t1, . . . , t2, , tk, . . .
R = 〈 . . . ,e1, . . . , e2, ,ek, . . .〉
p = 〈e1, e2, . . . ,ek〉

We have µ(v) = ∑1≤ j≤k c(e j). For i ∈ 1..k, let vi be the target node of ei, and we
define t0 = 0 and v0 = s. Then d[vi]≤∑1≤ j≤i c(e j) after time ti, as a simple induction
shows. This is clear for i = 0, since d[s] is initialized to 0 and d-values are only
decreased. After the relaxation of ei =R[ti] for i> 0, we have d[vi]≤ d[vi−1]+c(ei)≤
∑1≤ j≤i c(e j). Thus, after time tk, we have d[v] ≤ µ(v). Since d[v] cannot go below
µ(v), by Lemma 10.2, we have d[v] = µ(v) after time tk and hence after performing
all relaxations in R.

Let us prove next that the parent information traces out shortest paths. We shall
do so under the additional assumption that shortest paths are unique, and leave the
general case to the reader. After the relaxations in R, we have d[vi] = µ(vi) for 1 ≤

306 10 Shortest Paths

i ≤ k. So at some point in time, some operation relax(u,vi) sets d[vi] to µ(vi) and
parent[vi] to u. Note that this point of time may be before time ti; it cannot be after ti.
By the proof of Lemma 10.2, there is a path from s to vi of length µ(vi) ending in the
edge (u,vi). Since, by assumption, the shortest path from s to vi is unique, we must
have u = vi−1. So the relax operation sets parent[vi] to vi−1. Later relax operations
do not change this value since d[vi] is not decreased further. ⊓⊔

Exercise 10.5. Redo the second paragraph in the proof above, but without the as-
sumption that shortest paths are unique.

Exercise 10.6. Let S be the edges of G in some arbitrary order and let S(n−1) be
n− 1 copies of S. Show that µ(v) = d[v] for all nodes v with µ(v) 6= −∞ after the
relaxations S(n−1) have been performed.

In the following sections, we shall exhibit more efficient sequences of relaxations
for acyclic graphs and for graphs with nonnegative edge weights. We come back to
general graphs in Sect. 10.6.

10.2 Directed Acyclic Graphs

In a directed acyclic graph (DAG), there are no directed cycles and hence no negative
cycles. Moreover, we have learned in Sect. 9.3.1 that the nodes of a DAG can be
topologically sorted into a sequence 〈v1,v2, . . . ,vn〉 such that (vi,v j) ∈ E implies
i < j. A topological order can be computed in linear time O(m+ n) using depth-
first search. The nodes on any path in a DAG increase in topological order. Thus,
by Lemma 10.3, we can compute correct shortest-path distances if we first relax the
edges out of v1, then the edges out of v2, etc.; see Fig. 10.3 for an example. In this
way, each edge is relaxed only once. One may even ignore edges that emanate from
nodes before s in the topological order. Since every edge relaxation takes constant
time, we obtain a total execution time of O(m+ n).

Theorem 10.4. Shortest paths in acyclic graphs can be computed in time O(m+ n).

s

1
2

3

4
5

6

7
8

9

Fig. 10.3. Order of edge relaxations for the computation of the shortest paths from node s in a
DAG. The topological order of the nodes is given by their x-coordinates. There is no need to
relax the edges out of nodes “to the left of” s.

10.3 Nonnegative Edge Costs (Dijkstra’s Algorithm) 307

Exercise 10.7 (route planning for public transportation). Finding the quickest
routes in public transportation systems can be modeled as a shortest-path problem
for an acyclic graph. Consider a bus or train leaving a place p at time t and reaching
its next stop p′ at time t ′. This connection is viewed as an edge connecting nodes
(p, t) and (p′, t ′). Also, for each stop p and subsequent events (arrival and/or depar-
ture) at p, say at times t and t ′ with t < t ′, we have the waiting link from (p, t) to
(p, t ′). (a) Show that the graph obtained in this way is a DAG. (b) You need an ad-
ditional node that models your starting point in space and time. There should also
be one edge connecting it to the transportation network. What should this edge be?
(c) Suppose you have computed the shortest-path tree from your starting node to all
nodes in the public transportation graph reachable from it. How do you actually find
the route you are interested in? (d) Suppose there are minimum connection times at
some of the stops. How can you incorporate them into the model? (e) How do you
find the quickest connection with at most two intermediate stops?

Exercise 10.5. Instantiate the parallel DAG processing framework presented in
Sect. 9.4 to compute shortest paths in DAGs.

10.3 Nonnegative Edge Costs (Dijkstra’s Algorithm)

We now assume that all edge costs are nonnegative. Thus there are no negative cycles,
and shortest paths exist for all nodes reachable from s. We shall show that if the edges
are relaxed in a judicious order, every edge needs to be relaxed only once.

What is the right order? Along any shortest path, the shortest-path distances in-
crease (more precisely, do not decrease). This suggests that we should scan nodes (to
scan a node means to relax all edges out of the node) in order of increasing shortest-
path distance. Lemma 10.3 tells us that this relaxation order ensures the computation
of shortest paths, at least in the case where all edge costs are positive. Of course,
in the algorithm, we do not know the shortest-path distances; we only know the
tentative distances d[v]. Fortunately, for an unscanned node with smallest tentative
distance, the true and tentative distances agree. We shall prove this in Theorem 10.6.
We obtain the algorithm shown in Fig. 10.4. This algorithm is known as Dijkstra’s
shortest-path algorithm. Figure 10.5 shows an example run.

Dijkstra’s Algorithm

declare all nodes unscanned and initialize d and parent

while there is an unscanned node with tentative distance <+∞ do

u:= the unscanned node with smallest tentative distance
relax all edges (u,v) out of u and declare u scanned

us

scanned

Fig. 10.4. Dijkstra’s shortest-path algorithm for nonnegative edge weights

308 10 Shortest Paths

Operation Queue
insert(s) 〈(s,0)〉
deleteMin❀ (s,0) 〈〉

relax s
2→ a 〈(a,2)〉

relax s
10→ d 〈(a,2),(d,10)〉

deleteMin❀ (a,2) 〈(d,10)〉
relax a

3→ b 〈(b,5),(d,10)〉
deleteMin❀ (b,5) 〈(d,10)〉

relax b
2→ c 〈(c,7),(d,10)〉

relax b
1→ e 〈(e,6),(c,7),(d,10)〉

deleteMin❀ (e,6) 〈(c,7),(d,10)〉
relax e

9→ b 〈(c,7),(d,10)〉
relax e

8→ c 〈(c,7),(d,10)〉
relax e

0→ d 〈(d,6),(c,7)〉
deleteMin❀ (d,6) 〈(c,7)〉

relax d
4→ s 〈(c,7)〉

relax d
5→ b 〈(c,7)〉

deleteMin❀ (c,7) 〈〉

s

c

d e f0

6 6

8

52 7
ba

2

10

4

5 1 9

23

70
∞

Fig. 10.5. Example run of Dijkstra’s algorithm
on the graph given on the right. The bold edges
form the shortest-path tree, and the numbers in
bold indicate shortest-path distances. The table
on the left illustrates the execution. The queue

contains all pairs (v,d[v]) with v reached and
unscanned. A node is called reached if its ten-
tative distance is less than +∞. Initially, s is
reached and unscanned. The actions of the al-
gorithm are given in the first column. The sec-
ond column shows the state of the queue after
the action.

Note that Dijkstra’s algorithm, when applied to undirected graphs is basically the
thread-and-knot algorithm we saw in the introduction to this chapter. Suppose we put
all threads and knots on a table and then lift the starting node. The other knots will
leave the surface of the table in the order of their shortest-path distances.

Theorem 10.6. Dijkstra’s algorithm solves the single-source shortest-path problem

for graphs with nonnegative edge costs.

Proof. We proceed in two steps. In the first step, we show that all nodes reachable
from s are scanned. In the second step, we show that the tentative and true distances
agree when a node is scanned. In both steps, we argue by contradiction.

For the first step, assume the existence of a node v that is reachable from s, but
never scanned. Consider a path p = 〈s = v1,v2, . . . ,vk = v〉 from s to v, and let i be
smallest such that vi is not scanned. Then i > 1, since s is the first node scanned
(in the first iteration, s is the only node whose tentative distance is less than +∞).
By the definition of i, vi−1 is scanned. When vi−1 is scanned, the edge (vi−1,vi) is
relaxed. After this operation, we have d[vi]≤ d[vi−1]+c(vi−1,vi)< ∞. So vi must be
scanned at some point during the execution, since the only nodes that stay unscanned
are nodes u with d[u] = +∞ at termination.

For the second step, consider the first point in time t at which a node v is scanned
whose tentative distance d[v] at time t is larger than its true distance µ [v]. Consider
a shortest path p =〈s = v1,v2, . . . ,vk = v〉 from s to v, and let i be smallest such that
vi is not scanned before time t. Then i > 1, since s is the first node scanned and
µ(s) = 0 = d[s] when s is scanned. By the definition of i, vi−1 is scanned before time

10.3 Nonnegative Edge Costs (Dijkstra’s Algorithm) 309

t. Hence d[vi−1]≤ µ(vi−1) when vi−1 is scanned. By Lemma 10.2, we then even have
d[vi−1] = µ(vi−1), and d[vi−1] does not change anymore afterwards. After vi−1 has
been scanned, we always have d[vi] ≤ d[vi−1] + c(vi−1,vi) ≤ µ(vi−1) + c(vi−1,vi),
even if d[vi] should decrease. The last expression is at most c(〈v1,v2, . . . ,vi〉), which
in turn is at most c(p), since all edge costs are nonnegative. Since c(p) = µ(v)< d[v],
it follows that d[vi] < d[v]. Hence at time t the algorithm scans some node different
from v, a contradiction. ⊓⊔
Exercise 10.8. Let v1, v2, . . . be the order in which the nodes are scanned. Show that
µ(v1) ≤ µ(v2) ≤ . . ., i.e., the nodes are scanned in order of nondecreasing shortest-
path distance.

Exercise 10.9 (checking of shortest-path distances (positive edge costs)). Assume
that all edge costs are positive, that all nodes are reachable from s, and that d is a node
array of nonnegative reals satisfying d[s] = 0 and d[v] = min(u,v)∈E d[u]+ c(u,v) for
v 6= s. Show that d[v] = µ(v) for all v. Does the claim still hold in the presence of
edges of cost 0?

Exercise 10.10 (checking of shortest-path distances (nonnegative edge costs)).

Assume that all edge costs are non-negative, that all nodes are reachable from s,
that parent encodes a tree rooted at s (for each node v, parent(v) is the parent of v

in this tree), and that d is a node array of nonnegative reals satisfying d[s] = 0 and
d[v] = d[parent(v)]+ c(parent(v),v) = min(u,v)∈E d[u]+ c(u,v) for v 6= s. Show that
d[v] = µ(v) for all v.

We now turn to the implementation of Dijkstra’s algorithm. We store all un-
scanned reached nodes in an addressable priority queue (see Sect. 6.2) using their
tentative-distance values as keys. Thus, we can extract the next node to be scanned
using the priority queue operation deleteMin. We need a variant of a priority queue
where the operation decreaseKey addresses queue items using nodes rather than han-
dles. Given an ordinary priority queue, such a NodePQ can be implemented using
an additional NodeArray translating nodes into handles. If the items of the priority
queue are objects, we may store them directly in a NodeArray. We obtain the algo-
rithm given in Fig. 10.6.

Next, we analyze its running time in terms of the running times for the queue
operations. Initializing the arrays d and parent and setting up a priority queue Q =
{s} takes time O(n). Checking for Q = /0 and loop control takes constant time per
iteration of the while loop, i.e., O(n) time in total. Every node reachable from s is
removed from the queue exactly once. Every reachable node is also inserted exactly
once. Thus we have at most n deleteMin and insert operations. Since each node is
scanned at most once, each edge is relaxed at most once, and hence there can be at
most m decreaseKey operations. We obtain a total execution time of

TDijkstra = O
(
n+m+m ·TdecreaseKey(n)+ n · (TdeleteMin(n)+Tinsert(n))

)
,

where TdeleteMin, Tinsert, and TdecreaseKey denote the execution times for deleteMin,
insert, and decreaseKey, respectively. Note that these execution times are a function
of the queue size |Q|= O(n).

310 10 Shortest Paths

Function Dijkstra(s : NodeId) : NodeArray×NodeArray // returns (d,parent)
d = 〈∞, . . . ,∞〉 : NodeArray of R∪{∞} // tentative distance from root
parent = 〈⊥, . . . ,⊥〉 : NodeArray of NodeId

parent[s] := s // self-loop signals root
Q : NodePQ // unscanned reached nodes
d[s] :=0; Q.insert(s)
while Q 6= /0 do

u :=Q.deleteMin // we have d[u] = µ(u)

foreach edge e = (u,v) ∈ E do
us

scanned
if d[u]+c(e)< d[v] then // relax

d[v] :=d[u]+c(e)
parent[v] :=u // update tree
if v ∈ Q then Q.decreaseKey(v,d[v])

else Q.insert(v)
vus

reached
return (d,parent)

Fig. 10.6. Pseudocode for Dijkstra’s algorithm

Exercise 10.11. Assume n−1≤m≤ n(n−1)/2. Design a graph and a nonnegative
cost function such that the relaxation of m− (n− 1) edges causes a decreaseKey

operation.

In his original 1959 paper, Dijkstra proposed the following implementation of
the priority queue: Maintain the number of reached unscanned nodes and two arrays
indexed by nodes – an array d storing the tentative distances and an array storing, for
each node, whether it is unreached or reached and unscanned or scanned. Then insert

and decreaseKey take time O(1). A deleteMin takes time O(n), since it has to scan
the arrays in order to find the minimum tentative distance of any reached unscanned
node. Thus the total running time becomes

TDijkstra59 = O
(
m+ n2) .

Much better priority queue implementations have been invented since Dijkstra’s
original paper. Using the binary heap and Fibonacci heap priority queues described
in Sect. 6.2, we obtain

TDijkstraBHeap = O((m+ n) logn)

and

TDijkstraFibonacci = O(m+ n logn) ,

respectively. Asymptotically, the Fibonacci heap implementation is superior except
for sparse graphs with m = O(n). In practice, Fibonacci heaps are usually not the

10.4 *Average-Case Analysis of Dijkstra’s Algorithm 311

fastest implementation, because they involve larger constant factors and the actual
number of decreaseKey operations tends to be much smaller than what the worst case
predicts. This experimental observation will be supported by theoretical analysis in
the next section.

10.4 *Average-Case Analysis of Dijkstra’s Algorithm

We shall show that the expected number of decreaseKey operations is O(n log(m/n)).
Our model of randomness is as follows. The graph G and the source node s are

arbitrary. Also, for each node v, we have an arbitrary multiset C(v) of indegree(v)
nonnegative real numbers. So far, everything is arbitrary. The randomness comes
now: We assume that, for each v, the costs in C(v) are assigned randomly to the
edges into v, i.e., our probability space consists of the ∏v∈V indegree(v)! possible
assignments of edge costs to edges. Each such assignment has the same probability.
We want to stress that this model is quite general. In particular, it covers the situation
where edge costs are drawn independently from a common distribution.

Theorem 10.7. Under the assumptions above, the expected number of decreaseKey

operations is O(n log(m/n)).

Proof. We present a proof due to Noshita [244].
We need to start with a technical remark before we can enter the proof proper.

For the analysis of the worst-case running time, it is irrelevant how nodes with the
same tentative distance are treated by the priority queue. Any node with smallest ten-
tative distance may be returned by the deleteMin operation. Indeed, the specification
of the deleteMin operation leaves it open which element of smallest key is returned.
For this proof, we need to be more specific and need to assume that nodes with equal
tentative distance are returned in some consistent order. The detailed requirements
will become clear in the proof. Consistency can, for example, be obtained by using
the keys (tentative distance, node name) under lexicographic ordering instead of sim-
ply the tentative distances. Then nodes with the same tentative distance are removed
in increasing order of node name.

Consider a particular node v 6= s and assume that the costs of all edges not end-
ing in v are already assigned. Only the assignment of the edge costs in C(v) is
open and will be determined randomly. We shall show that the expected number
of decreaseKey(v,∗) operations is bounded by ln(indegree(v)). We do so by relating
the number of decreaseKey operations to the number of left-to-right maxima in a
random sequence of length indegree(v) (see Sect. 2.11).

The main difficulty in the proof is dealing with the fact that the order in which
the edges into v are relaxed may depend on the assignment of the edge costs to these
edges. The crucial observation is that up to the time when v is scanned, this order is
fixed. Once v is scanned, the order may change. However, no further decreaseKey op-
erations occur once v is scanned. In order to formalize this observation, we consider
the execution of Dijkstra’s algorithm on G\ v (G without v and all edges incident to

312 10 Shortest Paths

v) and on G with the same assignment of costs to the edges not incident to v and an
arbitrary assignment of costs to the edges incident to v. Before v is scanned in the run
on G, exactly the same nodes are scanned in both executions and these scans are in
the same order. This holds because the tentative distance of v has no influence on the
other nodes before v is scanned. Also, the presence of v in the priority queue has no
influence on the results of deleteMin operations before v is scanned in the run on G.
This property is the consistency requirement. Of course, the time when v is scanned
depends on the assignment of edge costs to the edges into v.

Let u1, . . . ,uk, where k = indegree(v), be the source nodes of the edges into v in
the order in which they are scanned in a run of Dijkstra’s algorithm on G\ v and let
µ ′(ui) be the distance from s to ui in G \ v. Nodes ui that cannot be reached from
s in G \ v have infinite distance and come at the end of this ordering. According to
Exercise 10.8, we have µ(u1) ≤ µ(u2) ≤ . . . ≤ µ(uk). In the run on G, the edges
e1 = (u1,v), e2 = (u2,v), . . . , eℓ = (uℓ,v) are relaxed in that order until v is scanned;
ℓ is a random variable. We do not know in what order the remaining edges into v

are relaxed. However, none of them leads to a decreaseKey(v,∗) operation. We have
µ ′(ui) = µ(ui) for 1≤ i≤ ℓ. If ei causes a decreaseKey operation, then 1 < i≤ ℓ (the
relaxation of e1 causes an insert(v) operation) and

µ(ui)+ c(ei) = µ ′(ui)+ c(ei)< min
j<i

µ ′(u j)+ c(e j) = min
j<i

µ(u j)+ c(e j).

Since µ(u j)≤ µ(ui), this implies

c(ei)< min
j<i

c(e j),

i.e., only left-to-right minima of the sequence c(e1), . . . , c(ek) can cause decreaseKey

operations. Left-to-right minima are defined analogously to left-to-right maxima; see
Sect. 2.11. We conclude that the number of decreaseKey operations on v is bounded
by the number of left-to-right minima in the sequence c(e1), . . . , c(ek) minus 1; the
“−1” accounts for the fact that the first element in the sequence counts as a left-
to-right minimum but causes an insert and no decreaseKey. In Sect. 2.11, we have
shown that the expected number of left-to-right maxima in a permutation of size k

is bounded by Hk. The same bound holds for minima. Thus the expected number of
decreaseKey operations is bounded by Hk− 1, which in turn is bounded by lnk =
ln indegree(v).

By the linearity of expectations, we may sum this bound over all nodes to obtain
the following bound for the expected number of decreaseKey operations:

∑
v∈V

ln indegree(v)≤ n ln
m

n
,

where the last inequality follows from the concavity of the ln function (see (A.16)).
⊓⊔

We conclude that the expected running time is O(m+ n log(m/n) logn) with the bi-
nary heap implementation of priority queues. For sufficiently dense graphs (m >
n logn log logn), we obtain an execution time linear in the size of the input.

Exercise 10.12. Show that E[TDijkstraBHeap] = O(m) if m = Ω(n logn log logn).

10.5 Monotone Integer Priority Queues 313

10.5 Monotone Integer Priority Queues

Dijkstra’s algorithm scans nodes in order of nondecreasing distance values. Hence,
a monotone priority queue (see Chap. 6) suffices for its implementation. It is not
known whether monotonicity can be exploited in the case of general real edge costs.
However, for integer edge costs, significant savings are possible. We therefore as-
sume in this section that edge costs are integers in the range 0..C for some integer C,
which we assume to be known when the queue is initialized.

Since a shortest path can consist of at most n− 1 edges, the shortest-path dis-
tances are at most (n− 1)C. The range of values in the queue at any one time is
even smaller. Let min be the last value deleted from the queue (0 before the first
deletion). Dijkstra’s algorithm maintains the invariant that all values in the queue are
contained in min..min+C. The invariant certainly holds after the first insertion. A
deleteMin may increase min. Since all values in the queue are bounded by C plus
the old value of min, this is certainly true for the new value of min. Edge relaxations
insert priorities of the form d[u]+ c(e) = min+ c(e) ∈ min..min+C.

10.5.1 Bucket Queues

A bucket queue is a circular array B of C + 1 doubly linked lists (see Figs. 10.7
and 3.12). We view the natural numbers as being wrapped around the circular array;
all integers of the form i+(C+ 1) j map to the index i. A node v ∈ Q with tentative
distance d[v] is stored in B[d[v] mod (C + 1)]. Since the priorities in the queue are
always in min..min+C, all nodes in a bucket have the same tentative distance value.

Initialization creates C + 1 empty lists. An insert(v) inserts v into B[d[v] mod
(C + 1)]. A decreaseKey(v) removes v from the list containing it and inserts v into
B[d[v] mod (C+ 1)]. Thus insert and decreaseKey take constant time if buckets are
implemented as doubly linked lists.

A deleteMin first looks at bucket B[min mod (C+ 1)]. If this bucket is empty, it
increments min and repeats. In this way, the total cost of all deleteMin operations
is O(n+ nC) = O(nC), since min is incremented at most nC times and at most n

elements are deleted from the queue. Plugging the operation costs for the bucket
queue implementation with integer edge costs in 0..C into our general bound for the
cost of Dijkstra’s algorithm, we obtain

TDijkstraBucket = O(m+ nC) .

*Exercise 10.13 (Dinic’s refinement of bucket queues [?]). Assume that the edge
costs are positive real numbers in [cmin,cmax]. Explain how to find shortest paths in
time O(m+ ncmax/cmin). Hint: Use buckets of width cmin. Show that all nodes in the
smallest nonempty bucket have d[v] = µ(v).

10.5.2 *Radix Heaps

Radix heaps [10] improve on the bucket queue implementation by using buckets of
different widths. Narrow buckets are used for tentative distances close to min, and

314 10 Shortest Paths

wide buckets are used for tentative distances far away from min. In this subsection,
we shall show how this approach leads to a version of Dijkstra’s algorithm with
running time

TDijkstraRadix = O(m+ n logC) .

Radix heaps exploit the binary representation of tentative distances. We need
the concept of the most significant distinguishing index of two numbers. This is the
largest index where the binary representations differ, i.e., for numbers a and b with
binary representations a=∑i≥0 αi2i and b=∑i≥0 βi2i, we define the most significant
distinguishing index msd(a,b) as the largest i with αi 6= βi, and let it be −1 if a = b.
If a < b, then a has a 0-bit in position i = msd(a,b) and b has a 1-bit.

A radix heap consists of an array of buckets B[−1], B[0], . . . , B[K], where K =
1+ ⌊logC⌋. The queue elements are distributed over the buckets according to the
following rule:

queue element v is stored in bucket B[i], where i = min(msd(min,d[v]),K).

We refer to this rule as the bucket queue invariant. Figure 10.7 gives an example.
We remark that if min has a 1-bit in position i ∈ 0..K− 1, the corresponding bucket
B[i] is empty. This holds since any d[v] with i = msd(min,d[v]) would have a 0-bit
in position i and hence be smaller than min. But all keys in the queue are at least as
large as min.

How can we compute i :=msd(a,b)? We first observe that for a 6= b, the bitwise
exclusive OR a⊕ b of a and b has its most significant 1 in position i and hence
represents an integer whose value is at least 2i and less than 2i+1. Thus msd(a,b) =

min

321

0
1

2
3

45
6

7

8
9

0

mod 10
bucket queue with C = 9

content =

4 = K

11101 11100 1111∗ 110∗∗ 10∗∗∗ ≥ 100000

a,29

a,29

b,30

b,30 c,30

c,30

d,31

d,31 e,33

e,33

f ,35

f ,35

g,36

g,36

〈(a,29),(b,30),(c,30),(d,31),(e,33),(f ,35),(g,36)〉 =
〈(a,11101),(b,11110),(c,11110),(d,11111),(e,100001),(f ,100011),(g,100100)〉

−1

binary radix heap

Fig. 10.7. Example of a bucket queue (upper part) and a radix heap (lower part). Since C = 9,
we have K = 1+⌊logC⌋= 4. The bit patterns in the buckets of the radix heap indicate the set
of keys they can accommodate.

10.5 Monotone Integer Priority Queues 315

⌊log(a⊕ b)⌋, since log(a⊕b) is a real number with its integer part equal to i and the
floor function extracts the integer part. Many processors support the computation of
msd by machine instructions.2 Alternatively, we can use lookup tables or yet other
solutions. From now on, we shall assume that msd can be evaluated in constant time.

Exercise 10.14. There is another way to describe the distribution of nodes over buck-
ets. Let min = ∑ j µ j2 j, let k be the smallest index greater than K with µk = 0, and
let Mi = ∑ j>i µ j2 j. B−1 contains all nodes v ∈ Q with d[v] = min, for 0 ≤ i < K,
Bi = /0 if µi = 1, and Bi =

{
v ∈Q : Mi + 2i ≤ d[x]< Mi + 2i+1− 1

}
if µi = 0, and

BK =
{

v ∈ Q : Mk + 2k ≤ d[x]
}

. Prove that this description is correct.

We turn now to the queue operations. Initialization, insert, and decreaseKey work
completely analogously to bucket queues. The only difference is that bucket indices
are computed using the bucket queue invariant.

A deleteMin first finds the minimum i such that B[i] is nonempty. If i = −1,
an arbitrary element in B[−1] is removed and returned. If i ≥ 0, the bucket B[i] is
scanned and min is set to the smallest tentative distance contained in the bucket.
Since min has changed, the bucket queue invariant needs to be restored. A crucial
observation for the efficiency of radix heaps is that only the nodes in bucket i are
affected. We shall discuss below how they are affected. Let us consider first the
buckets B[j] with j 6= i. The buckets B[j] with j < i are empty. If i = K, there are no
j’s with j > K. If i < j ≤ K, any key a in bucket B[j] will still have msd(a,min) = j,
because the old and new values of min agree at bit positions greater than i.

What happens to the elements in B[i]? Its elements are moved to the appro-
priate new bucket. Thus a deleteMin takes constant time if i = −1 and takes time
O(i+ |B[i]|) = O(K + |B[i]|) if i ≥ 0. Lemma 10.8 below shows that every node in
bucket B[i] is moved to a bucket with a smaller index. This observation allows us to
account for the cost of a deleteMin using amortized analysis. As our unit of cost (one
token), we shall use the time required to move one node between buckets.

We charge K + 1 tokens for the insert(v) operation and associate these K + 1
tokens with v. These tokens pay for the moves of v to lower-numbered buckets in
deleteMin operations. A node starts in some bucket j with j ≤ K, ends in bucket
−1, and in between never moves back to a higher-numbered bucket. Observe that a
decreaseKey(v) operation will also never move a node to a higher-numbered bucket.
Hence, the K + 1 tokens can pay for all the node moves of deleteMin operations.
The remaining cost of a deleteMin is O(K) for finding a nonempty bucket. With
amortized costs K + 1+O(1) = O(K) for an insert and O(1) for a decreaseKey, we
obtain a total execution time of O(m+ n · (K+K)) = O(m+ n logC) for Dijkstra’s
algorithm, as claimed.

It remains to prove that deleteMin operations move nodes to lower-numbered
buckets.

Lemma 10.8. Let i be the smallest index such that B[i] is nonempty, and assume

i≥ 0. Let min be the smallest element in B[i]. Then msd(min,x)< i for all x ∈ B[i].

2 ⊕ is a direct machine instruction, and ⌊logx⌋ is the exponent in the floating-point represen-
tation of x.

316 10 Shortest Paths

0

1

1

0i
0

1

1

0

1

0hj

α

α

α

α

α

α

β

β

x

case i < K case i = K

min

mino

Fig. 10.8. The structure of the keys relevant to the proof of Lemma 10.8. In the proof, it is
shown that β starts with j−K 0’s.

Proof. Observe first that the case x = min is easy, since msd(x,x) =−1 < i. For the
nontrivial case x 6= min, we distinguish the subcases i < K and i = K. Let mino be the
old value of min. Figure 10.8 shows the structure of the relevant keys.

Case i < K. The most significant distinguishing index of mino and any x ∈ B[i] is i,
i.e., mino has a 0 in bit position i, and all x∈ B[i] have a 1 in bit position i. They agree
in all positions with an index larger than i. Thus the most significant distinguishing
index for min and x is smaller than i.

Case i = K. Consider any x ∈ B[K]. Let j = msd(mino,min). Since min ∈ B[K], we
have j ≥ K. Let h = msd(min,x). We want to show that h < K. Let α comprise
the bits in positions larger than j in mino, and let A be the number obtained from
mino by setting the bits in positions 0 to j to 0. The binary representation of A is α
followed by j + 1. Since the jth bit of mino is 0 and that of min is 1 (j is the most
significant distinguishing index and min0 < min), we have mino < A+ 2 j ≤ min.
Also, x≤ mino +C < A+ 2 j +C≤ A+ 2 j + 2K. So

A+ 2 j ≤ min≤ x < A+ 2 j + 2K,

and hence the binary representations of min and x consist of α followed by a 1,
followed by j−K many 0’s, followed by some bit string of length K. Thus min and
x agree in all bits with index K or larger, and hence h < K.

In order to aid intuition, we give a second proof for the case i = K. We first
observe that the binary representation of min starts with α followed by a 1. We
next observe that x can be obtained from mino by adding some K-bit number. Since
min≤ x, the final carry in this addition must run into position j. Otherwise, the jth bit
of x would be 0 and hence x < min. Since mino has a 0 in position j, the carry stops
at position j. We conclude that the binary representation of x is equal to α followed
by a 1, followed by j−K many 0’s, followed by some K-bit string. Since min ≤ x,
the j−K many 0’s must also be present in the binary representation of min. ⊓⊔

*Exercise 10.15. Radix heaps can also be based on number representations with base
b for any b ≥ 2. In this situation we have buckets B[i, j] for i = −1,0,1, . . . ,K and
0 ≤ j ≤ b, where K = 1+ ⌊logC/ logb⌋. An unscanned reached node x is stored in
bucket B[i, j] if msd(min,d[x]) = i and the ith digit of d[x] is equal to j. We also
store, for each i, the number of nodes contained in the buckets ∪ jB[i, j]. Discuss

10.5 Monotone Integer Priority Queues 317

the implementation of the priority queue operations and show that a shortest-path
algorithm with running time O(m+ n(b+ logC/ logb)) results. What is the optimal
choice of b?

If the edge costs are random integers in the range 0..C, a small change to Di-
jkstra’s algorithm with radix heaps guarantees linear running time [129, 226]. For
every node v, let cin

min(v) denote the minimum cost of an incoming edge. We divide
Q into two parts, a set F which contains unscanned nodes whose tentative distance
is known to be equal to their exact distance from s (we shall see below how one
can learn this), and a part B which contains all other reached unscanned nodes. B is
organized as a radix heap. We also maintain a value min. We scan nodes as follows.

When F is nonempty, an arbitrary node in F is removed and the outgoing edges
are relaxed. When F is empty, the minimum node is selected from B and min is set
to its distance label. When a node is selected from B, the nodes in the first nonempty
bucket B[i] are redistributed if i ≥ 0. There is a small change in the redistribution
process. When a node v is to be moved, and d[v] ≤ min+ cin

min(v), we move v to F .
Observe that any future relaxation of an edge into v cannot decrease d[v], and hence
d[v] is known to be exact at this point.

We call this algorithm ALD (average-case linear Dijkstra). The algorithm ALD
is correct, since it is still true that d[v] = µ(v) when v is scanned. For nodes removed
from F , this was argued in the previous paragraph, and for nodes removed from B,
this follows from the fact that they have the smallest tentative distance among all
unscanned reached nodes.

Theorem 10.9. Let G be an arbitrary graph and let c be a random function from E

to 0..C. The algorithm ALD then solves the single-source problem in expected time

O(m+ n+ logC).

Proof. We still need to argue the bound on the running time. To do this, we mod-
ify the amortized analysis of plain radix heaps. Initialization of the heap takes time
O(K) = O(logC). Consider now an arbitrary node v and how it moves through the
buckets. It starts out in some bucket B[j] with j≤K. When it has just been moved to a
new bucket but not yet to F , d[v]≥min+cin

min(v)+1, and hence the index i of the new
bucket satisfies i ≥

⌊
log(cin

min(v)+ 1)
⌋
+ 1. Therefore, in order to pay for all moves

of node v between buckets, it suffices to charge K− (
⌊
log(cin

min(v)+ 1)
⌋
+ 1)+ 1 =

K−
⌊
log(cin

min(v)+ 1)
⌋

tokens to v. Summing over all nodes, we obtain a total pay-
ment of

∑
v

(

K−
⌊

log(cin
min(v)+ 1)

⌋)

= n+∑
v

(

K−
⌈

log(cin
min(v)+ 1)

⌉)

.

We need to estimate this sum. For each vertex, we have one incoming edge contribut-
ing to this sum. We therefore bound the sum from above if we sum over all edges,
i.e.,

∑
v

(

K−
⌈

log(cin
min(v)+ 1)

⌉)

≤∑
e

(K−⌈log(c(e)+ 1)⌉).

318 10 Shortest Paths

Now, K−⌈log(c(e)+ 1)⌉ is the number of leading 0’s in the binary representation of
c(e) when written as a K-bit number. Our edge costs are uniform random numbers
in 0..C, and K = 1+ ⌊logC⌋. Thus

prob(K−⌈log(c(e)+ 1)⌉ ≥ k)≤ |0..2
K−k− 1|

C+ 1
=

2K−k

C+ 1
≤ 2−(k−1).

The last inequality follows from C ≥ 2K−1. Using (A.2) and (A.15), we obtain for
each edge e

E[K−⌈log(c(e)+ 1)⌉] = ∑
k≥1

prob(K−⌈log(c(e)+ 1)⌉ ≥ k)≤ ∑
k≥1

2−(k−1) = 2.

By the linearity of expectations, we obtain further

E

[

∑
e

(K−⌈log(c(e)+ 1)⌉)
]

= ∑
e

E[K−⌈log(c(e)+ 1)⌉]≤∑
e

2 = 2m = O(m) .

Thus the total expected cost of the deleteMin operations is O(m+ n). The time for
all decreaseKey operations is O(m), and the time spent on all other operations is also
O(m+ n). ⊓⊔

Observe that the preceding proof does not require edge costs to be independent. It
suffices that the cost of each edge is chosen uniformly at random in 0..C. Theo-
rem 10.9 can be extended to real-valued edge costs.

**Exercise 10.16. Explain how to adapt the algorithm ALD to the case where c is
a random function from E to the real interval (0,1]. The expected time should be
O(m+ n). What assumptions do you need about the representation of edge costs and
about the machine instructions available? Hint: You may first want to solve Exer-
cise 10.13. The narrowest bucket should have a width of mine∈E c(e). Subsequent
buckets have geometrically growing widths.

10.6 Arbitrary Edge Costs (Bellman–Ford Algorithm)

For acyclic graphs and for nonnegative edge costs, we got away with m edge re-
laxations. For arbitrary edge costs, no such result is known. However, it is easy to
guarantee the correctness criterion of Lemma 10.3 using O(n ·m) edge relaxations:
the Bellman–Ford algorithm [38, 108] given in Fig. 10.9 performs n− 1 rounds. In
each round, it relaxes all edges. Since simple paths consist of at most n− 1 edges,
every shortest path is a subsequence of this sequence of relaxations. Thus, after the
relaxations are completed, we have d[v] = µ(v) for all v with −∞ < d[v] < ∞, by
Lemma 10.3. Moreover, parent encodes the shortest paths to these nodes. Nodes v

unreachable from s will still have d[v] = ∞, as desired.
It is not so obvious how to find the nodes w with µ(w) = −∞. The following

lemma characterizes these nodes.

10.6 Arbitrary Edge Costs (Bellman–Ford Algorithm) 319

Function BellmanFord(s : NodeId) : NodeArray×NodeArray

d = 〈∞, . . . ,∞〉 : NodeArray of R∪{−∞,∞} // distance from root
parent = 〈⊥, . . . ,⊥〉 : NodeArray of NodeId

d[s] :=0; parent[s] := s // self-loop signals root
for i :=1 to n−1 do

forall e ∈ E do relax(e) // round i

forall e = (u,v) ∈ E do // postprocessing
if d[u]+c(e)< d[v] then infect(v)

return (d,parent)

Procedure infect(v)
if d[v]>−∞ then

d[v] :=−∞

foreach (v,w) ∈ E do infect(w)

Fig. 10.9. The Bellman–Ford algorithm for shortest paths in arbitrary graphs

Lemma 10.10. After n− 1 rounds of edge relaxations, we have µ(w) = −∞ if and

only if there is an edge e = (u,v) with d[u]+ c(e) < d[v] such that w is reachable

from v.

Proof. If d[u]+ c(e)< d[v], then d[u]< ∞ and hence u and v are reachable from s.
A further relaxation of e would further decrease d[v] and hence µ(v) < d[v]. Since
µ(v) = d[v] also for all nodes v with µ(v) > −∞, we must have µ(v) = −∞. Then
µ(w) =−∞ for any node reachable from v.

Assume conversely that µ(w) = −∞. Then there is a cycle C = 〈v0,v1, . . . ,vk〉
with vk = v0 of negative cost that is reachable from s and from which w can be
reached. Since C can be reached from s, we have d[vi] < ∞ for all i. We claim
that there must be at least one i, with d[vi] + c(vi,vi+1) < d[vi+1]. Assume oth-
erwise, i.e., d[vi] + c(vi,vi+1) ≥ d[vi+1] for 0 ≤ i < k. Summing over all i yields
∑0≤i<k d[vi]+∑0≤i<k c(vi,vi+1)≥∑0≤i<k d[vi+1]. Since v0 = vk, the two summations
over tentative distances are equal and we conclude that c(C) =∑0≤i<k c(vi,vi+1)≥ 0,
a contradiction to the fact that C is a cycle of negative cost. ⊓⊔

The pseudocode implements the lemma using a recursive function infect(v). For any
edge e= (u,v) with d[u]+c(e)< d[v], it sets the d-value of v and all nodes reachable
from it to −∞. If infect reaches a node w that already has d[w] = −∞, it breaks
the recursion because previous executions of infect have already explored all nodes
reachable from w.

Exercise 10.17. Show that the postprocessing runs in time O(m). Hint: Relate infect

to DFS.

Exercise 10.18. Someone proposes an alternative postprocessing algorithm: Set d[v]
to−∞ for all nodes v for which following parents does not lead to s. Give an example
where this method overlooks a node with µ(v) =−∞.

320 10 Shortest Paths

Exercise 10.19 (arbitrage). Consider a set of currencies C with an exchange rate
of ri j between currencies i and j (you obtain ri j units of currency j for one unit of
currency i). A currency arbitrage is possible if there is a sequence of elementary
currency exchange actions (transactions) that starts with one unit of a currency and
ends with more than one unit of the same currency. (a) Show how to find out whether
a matrix of exchange rates admits currency arbitrage. Hint: log(xy)= logx+ logy. (b)
Refine your algorithm so that it outputs a sequence of exchange steps that maximizes
the average profit per transaction.

Section 10.11 outlines further refinements of the Bellman–Ford algorithm that are
necessary for good performance in practice.

10.7 All-Pairs Shortest Paths and Node Potentials

The all-pairs problem is tantamount to n single-source problems and hence can be
solved in time O

(
n2m

)
. A considerable improvement is possible. We shall show

that it suffices to solve one general single-source problem plus n single-source
problems with nonnegative edge costs. In this way, we obtain a running time of
O(nm+ n(m+ n logn)) = O

(
nm+ n2 logn

)
. We need the concept of node potentials.

A (node) potential function assigns a number pot(v) to each node v. For an edge
e = (v,w), we define its reduced cost c̄(e) as

c̄(e) = pot(v)+ c(e)− pot(w).

Lemma 10.11. Let p and q be paths from v to w. Then c̄(p)= pot(v)+c(p)−pot(w)
and c̄(p) ≤ c̄(q) if and only if c(p) ≤ c(q). In particular, the shortest paths with

respect to c̄ are the same as those with respect to c.

Proof. The second and the third claim follow from the first. For the first claim, let
p = 〈e0, . . . ,ek−1〉, where ei = (vi,vi+1), v = v0, and w = vk. Then

c̄(p) =
k−1

∑
i=0

c̄(ei) = ∑
0≤i<k

(pot(vi)+ c(ei)− pot(vi+1))

= pot(v0)+ ∑
0≤i<k

c(ei)− pot(vk) = pot(v0)+ c(p)− pot(vk). ⊓⊔

Exercise 10.20. Node potentials can be used to generate graphs with negative edge
costs but no negative cycles: Generate a (random) graph, assign to every edge e a
(random) nonnegative cost c(e), assign to every node v a (random) potential pot(v),
and set the cost of e = (u,v) to c̄(e) = pot(u)+ c(e)− pot(v). Show that this rule
does not generate negative cycles.

Lemma 10.12. Assume that G has no negative cycles and that all nodes can be

reached from s. Let pot(v) = µ(v) for v ∈V. With these node potentials, the reduced

edge costs are nonnegative.

10.7 All-Pairs Shortest Paths and Node Potentials 321

All-Pairs Shortest Paths in the Absence of Negative Cycles

add a new node s and zero-length edges (s,v) for all v // no new cycles, time O(m)
compute µ(v) for all v with Bellman–Ford // time O(nm)
set pot(v) = µ(v) and compute reduced costs c̄(e) for e ∈ E // time O(m)
forall nodes x do // time O(n(m+n log n))

use Dijkstra’s algorithm to compute the reduced shortest-path distances µ̄(x,v)
using source x and the reduced edge costs c̄

// translate distances back to original cost function // time O(m)
forall e = (v,w) ∈V ×V do µ(v,w) := µ̄(v,w)+pot(w)−pot(v) // use Lemma 10.11

Fig. 10.10. Algorithm for all-pairs shortest paths in the absence of negative cycles

Proof. Since all nodes are reachable from s and since there are no negative cycles,
µ(v)∈R for all v. Thus the reduced costs are well defined. Consider an arbitrary edge
e= (v,w). We have µ(v)+c(e)≥ µ(w), and thus c̄(e) = µ(v)+c(e)−µ(w)≥ 0. ⊓⊔

Theorem 10.13. The all-pairs shortest-path problem for a graph without negative

cycles can be solved in time O
(
nm+ n2 logn

)
.

Proof. The algorithm is shown in Fig. 10.10. We add an auxiliary node s and zero-
cost edges (s,v) for all nodes of the graph. This does not create negative cycles
and does not change µ(v,w) for any of the existing nodes. Then we solve the single-
source problem for the source s, and set pot(v) = µ(v) for all v. Next we compute the
reduced costs and then solve the single-source problem for each node x by means of
Dijkstra’s algorithm. Finally, we translate the computed distances back to the original
cost function. The computation of the potentials takes time O(nm), and the n shortest-
path calculations take time O(n(m+ n logn)). The preprocessing and postprocessing
take linear time O(n+m). ⊓⊔

The assumption that G has no negative cycles can be removed [219].

Exercise 10.21. The diameter D of a graph G is defined as the largest distance be-
tween any two of its nodes. We can easily compute it using an all-pairs computation.
Now we want to consider ways to approximate the diameter of a strongly connected
graph using a constant number of single-source computations. (a) For any starting
node s, let D′(s) :=maxu∈V µ(s,u) be the maximum distance from s to any node
u. Show that D′(s) ≤ D ≤ 2D′(s) for undirected graphs. Also, show that no such
relation holds for directed graphs. Let D′′(s) :=maxu∈V µ(u,s) be the maximum dis-
tance from any node u to s. Show that max(D′(s),D′′(s)) ≤ D ≤ D′(s)+D′′(s) for
both undirected and directed graphs. (b) How should a graph be represented to sup-
port shortest-path computations for source nodes s as well as target node s? (c) Can
you improve the approximation by considering more than one node s?

322 10 Shortest Paths

10.8 Shortest-Path Queries

We are often interested in the shortest path from a specific source node s to a spe-
cific target node t; route planning in a traffic network is one such scenario. We shall
explain some techniques for solving such shortest-path queries efficiently and argue
for their usefulness for the route-planning application. Edge costs are assumed to be
nonnegative in this section.

We start with a technique called early stopping. We run Dijkstra’s algorithm to
find shortest paths starting at s. We stop the search as soon as t is removed from
the priority queue, because at this point in time the shortest path to t is known. This
helps except in the unfortunate case where t is the node farthest from s. On average,
assuming that every target node is equally likely, early stopping saves a factor of
two in scanned nodes. In practical route planning, early stopping saves much more
because modern car navigation systems have a map of an entire continent but are
mostly used for distances of up to a few hundred kilometers.

Another simple and general heuristic is bidirectional search, from s forward and
from t backward until the search frontiers meet. More precisely, we run two copies
of Dijkstra’s algorithm side by side, one starting from s and one starting from t (and
running on the reversed graph). The two copies have their own queues, say Qs and
Qt , respectively. We grow the search regions at about the same speed, for example
by removing a node from Qs if minQs ≤minQt and a node from Qt otherwise.

It is tempting to stop the search once the first node u has been removed from
both queues, and to claim that µ(t) = µ(s,u)+ µ(u, t). Observe that execution of
Dijkstra’s algorithm on the reversed graph with a starting node t determines µ(u, t).
This is not quite correct, but almost so.

Exercise 10.22. Give an example where u is not on the shortest path from s to t.

However, we have collected enough information once some node u has been re-
moved from both queues. Let ds and dt denote the tentative distances at the time of
termination in the runs with source s and source t, respectively. We show that µ(t)<
µ(s,u)+ µ(u, t) implies the existence of a node v ∈ Qs with µ(t) = ds[v]+ dt [v].

Let p = 〈s = v0, . . . ,vi,vi+1, . . . ,vk = t〉 be a shortest path from s to t. Let i be the
largest index such that vi has been removed from Qs. Then ds[vi+1] = µ(s,vi+1) and
vi+1 ∈Qs when the search stops. Also, µ(s,u)≤ µ(s,vi+1), since u has already been
removed from Qs, but vi+1 has not. Next, observe that

µ(s,vi+1)+ µ(vi+1, t) = c(p)< µ(s,u)+ µ(u, t),

since p is a shortest path from s to t. By subtracting µ(s,vi+1), we obtain

µ(vi+1, t)< µ(s,u)− µ(s,vi+1)+ µ(u, t)≤ µ(u, t)

and hence, since u has been scanned from t, vi+1 must also have been scanned from
t, i.e., dt [vi+1] = µ(vi+1, t) when the search stops. So we can determine the shortest
distance from s to t by inspecting not only the first node removed from both queues,

10.8 Shortest-Path Queries 323

but also all nodes in, say, Qs. We iterate over all such nodes v and determine the
minimum value of ds[v]+ dt [v].

Dijkstra’s algorithm scans nodes in order of increasing distance from the source.
In other words, it grows a disk centered at the source node. The disk is defined
by the shortest-path metric in the graph. In the route-planning application for a road
network, we may also consider geometric disks centered on the source and argue that
shortest-path disks and geometric disks are about the same. We can then estimate the
speedup obtained by bidirectional search using the following heuristic argument: A
disk of a certain diameter has twice the area of two disks of half the diameter. We
could thus hope that bidirectional search will save a factor of two compared with
unidirectional search.

Exercise 10.23 (bidirectional search). (a) Consider bidirectional search in a grid
graph with unit edge weights. How much does it save compared with unidirec-
tional search? (b) Give an example where bidirectional search in a real road network
takes longer than unidirectional search. Hint: Consider a densely inhabited city with
sparsely populated surroundings. (c) Design a strategy for switching between for-
ward (starting in s) and backward (starting in t) search such that bidirectional search
will never inspect more than twice as many nodes as unidirectional search. (*d) Try
to find a family of graphs where bidirectional search visits exponentially fewer nodes
on average than does unidirectional search. Hint: Consider random graphs or hyper-
cubes.

We shall next describe several techniques that are more complex and less gener-
ally applicable. However, if they are applicable, they usually result in larger savings.
These techniques mimic human behavior in route planning. The most effective vari-
ants of these speedup techniques are based on storing preprocessed information that
depends on the graph but not on the source and target nodes. Note that with extreme
preprocessing (compute the complete distance table using an all-pairs shortest-path
computation), queries can answered very fast (time O(path length)). The drawback
is that the distance table needs space Θ

(
n2
)
. Running Dijkstra’s algorithm for every

query needs no extra space, but is slow. We shall discuss compromises between these
extremes.

10.8.1 Goal-Directed Search

The idea is to bias the search space such that Dijkstra’s algorithm does not grow a
disk but a region protruding towards the target; see Fig. 10.11. Assume we know
a function f : V → R that estimates the distance to the target, i.e., f (v) estimates
µ(v, t) for all nodes v. We use the estimates to modify the distance function. For each
e = (u,v), let3 c̄(e) = c(e)+ f (v)− f (u). We run Dijkstra’s algorithm with the mod-
ified distance function (assuming for the moment that it is nonnegative). We know

3 In Sect. 10.7, we added the potential of the source and subtracted the potential of the target.
We do exactly the opposite now. The reason for changing the sign convention is that in
Lemma 10.12, we used µ(s,v) as the node potential. Now, f estimates µ(v, t).

324 10 Shortest Paths

ss tt

Fig. 10.11. The standard Dijkstra search grows a circular region centered on the source; goal-
directed search grows a region protruding towards the target.

already (Lemma 10.11) that node potentials do not change shortest paths, and hence
correctness is preserved. Tentative distances are related via d̄[v] = d[v]+ f (v)− f (s).
An alternative view of this modification is that we run Dijkstra’s algorithm with the
original distance function but remove the node with smallest value d[v]+ f (v) from
the queue. The algorithm just described is known as A∗-search. In this context, f is
frequently called the heuristic or the heuristic distance estimate.

Before we state requirements on the estimate f , let us see one specific example
that illustrates the potential usefulness of heuristic information. Assume, in a thought
experiment, that f (v) = µ(v, t). Then c̄(e) = c(e)+µ(v, t)−µ(u, t) and hence edges
on a shortest path from s to t have a modified cost equal to 0. Thus any node ever
removed from the queue has a modified tentative distance equal to 0. Consider any
node that does not lie on a shortest path from s to t. Any shortest path from s to such
a node must contain an edge e = (u,v) such that u lies on a shortest path from s to
t but e does not. Then µ(v, t)+ c(e) > µ(u, t) and hence c̄(e) > 0. Thus nodes not
on a shortest path from s to t have positive tentative distance, and hence Dijkstra’s
algorithm followsonly shortest paths, without looking left or right.

The function f must have certain properties to be useful. First, we want the
modified distances to be nonnegative. So, we need c(e)+ f (v) ≥ f (u) for all edges
e = (u,v). In other words, our estimate of the distance from u should be at most our
estimate of the distance from v plus the cost of going from u to v. This property
is called consistency of estimates. It has an interesting consequence. Consider any
path p = 〈v = v0,v1, . . . ,vk = t〉 from a node v to t. Adding the consistency relation
f (vi)+ c((vi−1,vi)) ≥ f (vi−1) for all edges of the paths yields f (t)+ c(p) ≥ f (v).
Thus c(p)≥ f (v)− f (t) and, further, µ(v, t)≥ f (v)− f (t). We may assume without
loss of generality that f (t) = 0; otherwise, we simply subtract f (t) from all f -values.
Then f (v) is a lower bound for µ(v, t).

It is still true that we can stop the search when t is removed from the queue?
Consider the point in time when t is removed from the queue, and let p be any path
from s to t. If all edges of p have been relaxed at termination, d[t]≤ c(p). If not all
edges of p have been relaxed at termination, there is a node v on p that is contained
in the queue at termination. Then d[t]+ f (t)≤ d[v]+ f (v), since t was removed from
the queue but v was not, and hence

d[t] = d[t]+ f (t)≤ d[v]+ f (v)≤ d[v]+ µ(v, t)≤ c(p).

In either case, we have d[t] ≤ c(p), and hence the shortest distance from s to t is
known as soon as t is removed from the queue.

10.8 Shortest-Path Queries 325

What is a good heuristic function for route planning in a road network? Route
planners often give a choice between shortest and fastest connections. In the case
of shortest paths, a feasible lower bound f (v) is the straight-line distance between v

and t. Speedups by a factor of roughly four are reported in the literature. For fastest
paths, we may use the geometric distance divided by the speed assumed for the best
kind of road. This estimate is extremely optimistic, since targets are frequently in the
center of a town, and hence no good speedups have been reported. More sophisticated
methods for computing lower bounds are known which are based on preprocessing;
we refer the reader to [130] for a thorough discussion.

10.8.2 Hierarchy

Road networks are structured into a hierarchy of roads, for example residential roads,
urban roads, highways of different categories, and motorways. Roads of higher sta-
tus typically support higher average speeds and are therefore to be preferred for a
long-distance journey. A typical fastest path for a long distance journey first changes
to roads of higher and higher status and then travels on a road of highest status
for most of the journey until it descends again towards the target. Early industrial
route planners used this observation as a heuristic acceleration technique. However,
this approach sacrifices optimality. The second author frequently drives from Saar-
brücken to Bonn. The fastest route uses the motorway for most of the journey but
descends to a road of lower status for about 10 kilometers near the middle of the
route. The reason is that one has to switch motorways and the two legs of motorway
form an acute angle. It is then better to take a shortcut on a route of lesser status in
the official hierarchy of German roads. Thus, for fastest-path planning, the shortcut
road should be in the top-level of the hierarchy. Such misclassification can be fixed
manually. However, manually classifying the importance of roads is expensive and
error-prone.

An algorithmic classification is called for. Several algorithmic approaches have
been developed in the last two decades which have not only achieved better and
better performance but also, eventually, have become simpler and simpler. We refer
our readers to [30] for an overview. We discuss two approaches, an early one and a
recent one.

The early approach [275] is quite intuitive. We call a road level one if there is a
shortest path between some source and some target that includes that road outside
(!!!) the initial and final segments of, say, 10 kilometers. The level-one roads form
the level-one network. The level-one network will contain vertices of degree 2. For
example, if a slow road forms a three-way junction with a fast road, it is likely that the
two legs of the fast road belong to the level-one network, but the slow road does not.
Nodes of degree 2 may be removed by replacing the two incident edges by a single
edge passing over that node of degree 2. Once the simplified level-one network is
constructed, the same strategy is used to form the level-two network. And so on.

We next describe contraction hierarchies (CHs) [123], which are less intuitive,
but very effective (up to four orders of magnitude faster than Dijkstra’s algorithm)

326 10 Shortest Paths

and yet fairly easy to implement (a basic implementation is possible with a few
hundred lines of code).

Suppose for now that the nodes are already ordered by increasing importance. We
describe below how this is done. The idea is that nodes that lie on many shortest paths
are late in the ordering and nodes that are intermediate nodes of only a few shortest
paths are early in the ordering. CH preprocessing goes through n− 1 steps of node

contraction – removing one node after another until only the most important node is
left. CHs maintain the invariant that the shortest-path distances between the remain-
ing nodes are preserved in each step. This is achieved by inserting shortcut edges.
Suppose node v is to be removed but the path 〈u,v,w〉 is a shortest path. Then insert-
ing a shortcut edge (u,w) with weight c(u,v)+ c(v,w) preserves the shortest-path
distance between u and w and hence all shortest-path distances. Deciding whether
〈u,v,w〉 is a shortest path amounts to a local shortest-path search from u, looking
for witness paths showing that the shortcut (u,w) is not needed. We can also speed
up preprocessing by stopping the witness search early – if in doubt, simply insert a
shortcut. For the removal of v, it suffices to inspect all pairs of edges entering and
leaving v and to insert a shortcut if they form a shortest path. CHs are effective on
road networks since, with a good node ordering, few shortcuts are needed.

b

a

c

d

s

t

order of removal

Fig. 10.12. The path 〈s,a,b,c,d, t〉 is a shortest path from s to t. The
nodes are removed in the order a, b, t, s, d, c. When a is removed,
the shortcut (s,b) is added. When b is removed, the shortcut (s,c)
is added. When s and t are removed, no shortcut edges relevant to
the shortest path from s to t are added. When d is removed, there is
no shortcut edge (c, t) added since t is no longer part of the graph at
this point in time. All solid and dashed edges are part of the graph
H. The path 〈s,c,d, t〉 is a shortest path from s to t in H. It consists
of the up-path 〈s,c〉 followed by the down-path 〈c,d, t〉. Expansion
of 〈s,c〉 first yields 〈s,b,c〉 and then 〈s,a,b,c〉.

The result of preprocessing is the original graph plus the shortcuts inserted dur-
ing contraction. We call this graph H; see Fig. 10.12 for an example. The crucial
property of H is that, for arbitrary s and t, it contains a shortest path P from s to t

that is an up–down path. We call an edge (u,v) upward if u is removed before v and
downward otherwise. An up–down path consists of a first segment containing only
upward edges and a second segment containing only downward edges. The existence
of such a path is easily seen. Let 〈. . . ,u,v,w, . . .〉 be a shortest path in H such that v

was removed before u and w. Then the short-cut (u,w) was introduced when v was
removed and 〈. . . ,u,w, . . .〉 is also a path in H. Continuing in this way, we obtain an
up–down path. The up–down property leads to a very simple and fast query algo-
rithm. We do bidirectional search in H using a modification of Dijkstra’s algorithm
where forward search considers only upward edges and backward search considers
only downward edges. The computed path contains shortcuts that have to be ex-
panded. To support unpacking in time linear in the output size, it suffices to store the

10.8 Shortest-Path Queries 327

midpoints of shortcuts with every shortcut, i.e., the node that was contracted when
the shortcut was inserted. Expanding then becomes a recursive procedure, with edges
in the input graph as the base case.

We still need to discuss the order of removal. Of course, if the ordering is bad, we
will need a huge number of shortcuts, resulting in large space requirements and slow
queries. Many heuristics for node ordering have been considered. Even simple ones
yield reasonable performance. These heuristics compute the ordering online by iden-
tifying unimportant nodes in the remaining graph to be contracted next. To compute
the importance of v, a contraction of v is simulated. In particular, it is determined
how many shortcuts would be inserted. This number and other statistics gathered
during the simulated contraction are condensed into a score. Nodes with low score
are contracted first.

We close with a comparison of CHs with the heuristic based on the official hier-
archy of roads. The official hierarchy consists of not more than 10 layers. Rather than
using a small, manually defined set of layers, CHs use n different layers. This means
that CHs can exploit the hierarchy inherent in the input in a much more fine-grained
way. The CH query algorithm is also much more aggressive than the heuristic algo-
rithm – it switches to a higher layer in every step. CHs can afford this aggressiveness
since shortcuts repair any “error” made in defining the hierarchy.

10.8.3 Transit Node Routing

Another observation from daily life can be used to obtain very fast query times. When
you drive to somewhere “far away”, you will leave your start location via one of only
a few “important” road junctions. For example, the second author lives in Scheidt,

Fig. 10.13. Finding the optimal travel time between two points (the flags) somewhere be-
tween Saarbrücken and Karlsruhe amounts to retrieving the 2× 4 access nodes (diamonds),
performing 16 table lookups between all pairs of access nodes, and checking that the two disks
defining the locality filter do not overlap. The small squares indicate further transit nodes.

328 10 Shortest Paths

a small village near Saarbrücken. For trips to the south-east to north-east, he enters
the motorway system in Sankt Ingbert. For trips to the south, he enters the system
at Grossblittersdorf, and so on. So all shortest paths from his home to distances far
away go through a small number of transit nodes. Moreover, these transit nodes are
the same for the entire population of Scheidt. As a consequence, the total number
of transit nodes for all locations in Germany (or Europe, for that matter) is small.
Figure 10.13 gives another example.

The notion of a transit node can be made precise and algorithmic; see [31]. In
their scheme, about

√
n of the most important road junctions are selected as transit

nodes. Here, n is the number of nodes in the road network (a few million for the
German network). The algorithmic strategy is now as follows:

(a) Select the set A of transit nodes.
(b) Compute the complete distance table between the nodes in A.
(c) For each node v, determine its transit nodes Av conntecting v to the long-distance

network. The sets Av are typically small, usually no more than a handful of
elements.

(d) For each node v, compute the distances to the nodes in Av.

Shortest-path distances between faraway nodes can then be computed as

µ(s, t) = min
u∈As

min
v∈At

µ(s,u)+ µ(u,v)+ µ(v, t). (10.1)

In this way, shortest-path queries are reduced to a small number of table lookups.
This can be more than 1 000 000 times faster than Dijkstra’s algorithm. Unfortu-
nately, (10.1) does not work for “local” shortest paths that do not touch any transit
node. Therefore, a full implementation of transit node routing needs additionally to
define a locality filter that detects local paths and a routine for finding the local paths.
This local algorithm could, for example, use CHs, the labeling method, or further lay-
ers of local transit node routing. The precomputation of the distance tables can also
use all methods discussed in the preceding sections; see [183, 3, 21] for details.

10.9 Parallel Shortest Paths

Different shortest-path computations (Dijkstra, Bellman–Ford, contraction hierar-
chies, all-pairs) pose different challenges for parallelization. We progress from the
easy to the difficult.

Computing all-pairs shortest paths is embarrassingly parallel for p ≤ n, just as-
sign n/p starting nodes to each PE. We only need to be careful about space consump-
tion. We only want to replicate the distance array of the shortest-path tree currently
computed and we should use a priority queue implementation that only consumes
space proportional to the actual queue size rather than Θ(n).

The basic Bellman–Ford algorithm allows for a lot of fine-grained parallelism.
All the edge relaxations in an iteration can be performed in parallel. We do not even
have to use CAS instructions, as long as write operations are atomic. Suppose two

10.9 Parallel Shortest Paths 329

PEs try to update d[v] to x and y, respectively, where x < y. The bad case is when x is
written first and then overwritten by the worse value y. The overall algorithm will re-
main correct, since the value x will be tried again in the next iteration. Hence, as long
as the bad case happens rarely, we pay only a small performance penalty. Moreover,
in many situations distances decrease only rarely (see also Sect. 10.4). Therefore
contention is much lower than in other situations. This priority update principle is
also useful in many other shared memory algorithms [295]. Unfortunately, the opti-
mizations discussed in Sect. 10.11 are more difficult to parallelize.

Many of the preprocessing techniques discussed in Sect. 10.8 can be parallelized.
We outline an approach for contraction hierarchies [181, 323]. The algorithm com-
putes a score for each node of how attractive it is to contract the node. Then it con-
tracts in parallel all nodes which are less important than all nodes reachable within
BFS distance 2. Distance 2 is necessary in order to avoid concurrent updates of ad-
jacency lists when inserting shortcuts. Parallelizing over many CH queries is also
easy. This even works on distributed memory machines where each PE knows only
about a small part of the road network [181]: One stores important nodes redun-
dantly such that the search spaces of the forward and the backward search can be
computed locally. Then the forward search space is sent to the PE responsible for the
backward search, which intersects the two search spaces yielding the result. In [181],
preprocessing was also parallelized for distributed memory. The graph is partitioned
as explained in Sect. 8.6.2, but the approach is generalized to store a halo of order
ℓ locally: Suppose v is in some local block B according to the partition. Then it is
ensured that every node within BFS distance ℓ is stored locally. This way, the local
searches done during contraction can be done locally. The halo is adapted after every
iteration in order to take newly inserted shortcut edges into account.

4

23

0 1

2

5

4

23

0 1

2

5

6

3
3

3
3

4

23

0 1

2

5

3

36

4

23

0 1

2

5

3

3

3
3

3
3

4

23

0 1

2

4

3

3 44

4

23

0 1

2

3

3

4

44

3
3

3
3

4

23

0 1

2

4

3

3 44

4

23

0 1

2

3

3

4

44

3
3

3
3

4

23

0 1

4

23

0 1

3
3

3
3

0..1

6
4

2..3 4..5 4..50..1

Fig. 10.14. Example execution of ∆ -stepping with ∆ = 2 (top) and ∆ = ∞ (Bellman–Ford,
bottom). Edges have unit weight unless a different value is explicitly given. Thick edges de-
note the current approximation to the shortest-path tree. Bold squares indicate nodes currently
being scanned. Note that Bellman–Ford scans 11 nodes overall, whereas 2-stepping scans only
9 nodes. The range a..b given in the top row indicates the bucket currently being scanned.

330 10 Shortest Paths

Unfortunately, the “bread-and-butter” shortest-path problem with a single source
and nonnegative edge weights is not easy to parallelize. We may get a little bit of
parallelism by scanning all nodes with smallest distance value (minQ) in parallel.
This can be generalized slightly by observing that a node v also has its final distance
value if d[v] ≤ minQ+min(u,v)∈E c(u,v) [80]. If we exploit more parallelism, for
example using a parallel priority queue, it might happen that we now scan nodes v

with d[v] > µ(v). We compensate for this “mistake” by rescanning nodes that are
reinserted into the priority queue. This preserves correctness albeit with an increase
in the work done.

We can develop this idea further. Once we abandon the nice properties of Dijk-
stra’s algorithm, it makes sense to switch to an approximate priority queue that has
less overhead. A simple way to do this is to use a bucket priority queue where key
x is mapped to bucket ⌊x/∆⌋, where ∆ is a tuning parameter. This queue is a slight
generalization of the simple integer bucket queue from Sect. 10.5.1. The idea behind
the ∆ -stepping algorithm is to achieve parallelism by scanning in parallel all nodes
in the first nonempty bucket of the bucket queue. This algorithm can be shown to
be work efficient at least for random edge weights. Adding further measures, that
involve different treatments of edges with weight < ∆ , one can obtain the following
bound.

Theorem 10.14 ([227]). 1/d-stepping with random edge weights from [0,1] runs in

time

O

(
n+m

p
+ dL logn+ log2 n

)

on a CRCW-PRAM, where d is the maximum degree and L is the largest shortest-path

distance from the starting node.

∆ -stepping can also be viewed as a generalization of both the Bellman–Ford algo-
rithm and Dijkstra’s algorithm. For ∆ ≤ min{e ∈ E : c(e)}, we get Dijkstra’s algo-
rithm, and for ∆ ≥max{e ∈ E : c(e)}, we get the Bellman–Ford algorithm.

Implementing a basic variant of ∆ -stepping in parallel is a slight generalization
of the parallel BFS described in Sect. 9.2. We now describe the distributed memory
version in more detail. Each PE i maintains a local bucket priority queue Q storing
reached but unscanned nodes assigned to PE i. One iteration of the main loop first
finds the first bucket j that is nonempty on some PE. All PEs then work in parallel
on Q[j]. For a node u ∈ Q[j] and an outgoing edge e = (u,v), a relaxation request
(v,d[u]+ c(e)) is sent to the PE responsible for node v. The iteration is finished by
processing incoming requests. For a request (v,c), if d[v]> c, d[v] is set to c and the
queue is updated accordingly, i.e., if v is already in Q, a decreaseKey is performed
and otherwise an insertion. Note that in ∆ -stepping, a node may be reinserted after it
has been scanned. Figure 10.14 gives an example.

10.10 Implementation Notes

Shortest-path algorithms work over the set of extended reals R∪{+∞,−∞}. We may
ignore−∞, since it is needed only in the presence of negative cycles and, even there,

10.11 Historical Notes and Further Findings 331

it is needed only for the output; see Sect. 10.6. We can also get rid of +∞ by noting
that parent(v) = ⊥ if and only if d[v] = +∞, i.e., when parent(v) = ⊥, we assume
that d[v] = +∞ and ignore the number stored in d[v].

A refined implementation of the Bellman–Ford algorithm [217, 307] explicitly
maintains a current approximation T to the shortest-path tree. Nodes still to be
scanned in the current iteration of the main loop are stored in a set Q. Consider
the relaxation of an edge e = (u,v) that reduces d[v]. All descendants of v in T will
subsequently receive a new d-value. Hence, there is no reason to scan these nodes
with their current d-values and one may remove them from Q and T . Furthermore,
negative cycles can be detected by checking whether v is an ancestor of u in T .

Implementations of contraction hierarchies are available at github.com under
RoutingKit/RoutingKit and Project-OSRM/osrm-backend.

10.10.1 C++

LEDA [194] has a special priority queue class node_pq that implements priority
queues of graph nodes. Both LEDA and the Boost graph library [50] have imple-
mentations of the Dijkstra and Bellman–Ford algorithms and of the algorithms for
acyclic graphs and the all-pairs problem. There is a graph iterator based on Dijkstra’s
algorithm that allows more flexible control of the search process. For example, one
can use it to search until a given set of target nodes has been found. LEDA also pro-
vides a function that verifies the correctness of distance functions (see Exercise 10.9).

The Boost graph library [50] and the LEMON graph library [200] use the visitor

concept to support graph traversal. A visitor class has user-definable methods that
are called at event points during the execution of a graph traversal algorithm. For
example, the DFS visitor defines event points similar to the operations init, root,
traverse∗, and backtrack used in our DFS template; there are more event points in
Boost and LEMON.

10.10.2 Java

The JGraphT [166] library supports DFS in a very flexible way, not very much differ-
ent from the visitor concept described for Boost and LEMON. There are also more
specialized algorithms, for example for biconnected components.

10.11 Historical Notes and Further Findings

Dijkstra [96], Bellman [38], and Ford [108] found their algorithms in the 1950s.
The original version of Dijkstra’s algorithm had a running time O

(
m+ n2

)
and there

is a long history of improvements. Most of these improvements result from better
data structures for priority queues. We have discussed binary heaps [331], Fibonacci
heaps [115], bucket heaps [92], and radix heaps [10]. Experimental comparisons can
be found in [71, 217]. For integer keys, radix heaps are not the end of the story. The

github.com
RoutingKit/RoutingKit
Project-OSRM/osrm-backend

332 10 Shortest Paths

best theoretical result is O(m+ n loglogn) time [312]. For undirected graphs, linear
time can be achieved [310]. The latter algorithm still scans nodes one after the other,
but not in the same order as in Dijkstra’s algorithm.

Meyer [226] gave the first shortest-path algorithm with linear average-case run-
ning time. The algorithm ALD was found by Goldberg [129].

Integrality of edge costs is also of use when negative edge costs are allowed.
If all edge costs are integers greater than −N, a scaling algorithm achieves a time
O(m
√

n logN) [128].
In Sect. 10.8, we outlined a small number of speedup techniques for route plan-

ning. Many other techniques exist. In particular, we have not done justice to ad-
vanced goal-directed techniques, combinations of different techniques, etc. A re-
cent overview can be found in [30]. Theoretical performance guarantees beyond
Dijkstra’s algorithm are more difficult to achieve. Positive results exist for special
families of graphs such as planar graphs and when approximate shortest paths suf-
fice [103, 312, 314].

There is a generalization of the shortest-path problem that considers several cost
functions at once. For example, your grandfather may want to know the fastest route
for visiting you but he only wants routes where he does not need to refuel his car,
or you may want to know the fastest route subject to the condition that the road toll
does not exceed a certain limit. Constrained shortest-path problems are discussed
in [143, 222].

Shortest paths can also be computed in geometric settings. In particular, there
is an interesting connection to optics. Different materials have different refractive
indices, which are related to the speed of light in the material. Astonishingly, the
laws of optics dictate that a ray of light always travels along a quickest path.

Exercise 10.24. An ordered semigroup is a set S together with an associative and
commutative operation +, a neutral element 0, and a linear ordering ≤ such that for
all x, y, and z, x ≤ y implies x+ z ≤ y+ z. Which of the algorithms in this chapter
work when the edge weights are from an ordered semigroup? Which of them work
under the additional assumption that 0≤ x for all x?

