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The Physarum Computer

Physarum, a slime
mold,
single cell, several
nuclei
builds evolving net-
works
Nakagaki, Yamada,
Tóth, Nature 2000

show video
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2008 Ig Nobel Prize

For achievements that first make people LAUGH
then make them THINK

COGNITIVE SCIENCE PRIZE: Toshiyuki Nakagaki, Ryo
Kobayashi, Atsushi Tero, Ágotá Tóth
for discovering that slime molds can solve puzzles.

REFERENCE: "Intelligence: Maze-Solving by an Amoeboid
Organism," Toshiyuki Nakagaki, Hiroyasu Yamada, and Ágota
Tóth, Nature, vol. 407, September 2000, p. 470.
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Mathematical Model (Tero et al.)
G = (V ,E) undirected graph

each edge e has a positive length Le (fixed) and a positive
diameter De(t) (dynamic)

send one unit of flow from s0 to s1 in an electrical network
where resistance of e equals

Re(t) = Le/De(t).

Qe(t) is flow across e at time t

Dynamics:

Ḋe(t) =
dDe(t)

dt
= |Qe(t)| − De(t).

1 and 3 links Tero et al., J. of Theoretical Biology, 553 – 564, 2007
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Mathematical Model II: The Node Potentials

electrical flows are driven by node potentials

Qe = De(pu − pv )/Le is flow on edge {u, v } from u to v

flow conservation gives n equations, one for each vertex u∑
e={ u,v }∈E

De(pu − pv )/Le = δu

δu = ±1 if u ∈ { s0, s1 } and δu = 0, otherwise

together with ps1 = 0, the above defines the pv ’s uniquely

can be computed by solving a linear system

Kurt Mehlhorn 5/25
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Computer Experiments (Discrete Time)

initialize potentials
while true do

update diameters: De(t + 1) = De(t) + ε(|Qe(t)| − De(t))
recompute potentials

end while

In simulations, the system converges (Miyaji/Ohnishi 07/08)
e on shortest s0-s1 path: De converges to 1

e not on shortest path: De converges to 0

Miyaji/Ohnishi ran simulations only on small graphs

We ran experiments on thousands of graphs of size up to 50,000
vertices and 200,000 edges. Confirmed their findings.
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The Questions

Does system convergence for all (!!!) initial
conditions?

How fast is the convergence?

Details of the convergence process?

Beyond shortest paths?

Inspiration for distributed algorithms?
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Convergence against Shortest Path

Theorem (Convergence)

Dynamics converge against shortest path, i.e.,

De → 1 for edges on shortest source-sink path and De → 0
otherwise.

this assumes that shortest path is unique; otherwise converge
against a flow of value 1 using only shortest source-sink paths

Miyaji/Onishi previously proved convergence for planar graphs
with source and sink on the same face
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Parallel Links (Miyaji/Ohnishi 07)

e1

s1

ek

s0 .
.

.

parallel links with lengths L1 < L2 < . . . < Lk

D1 → 1, D2, . . . ,Dk → 0

ps0 − ps1 → L1

but D2, . . . , Dk−1 do not necessarily converge monotonically
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What did Evolution Optimize?

Evolution optimized dynamics so as to achieve a global objective.
Which? (Lyapunov Function)

First idea: the energy of the flow
∑

e Qe∆e decreases over time

not true, even for parallel links

Theorem
For the case of parallel links:

∑
i QiLi ,

∑
i DiLi/

∑
i Di , and

(ps − pt )
∑

i DiLi decrease over time

computer experiment: the obvious generalizations (replace i by e
) to general graphs do not work
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A not so Obvious Generalization

e1

s1

ek

s0 .
.

.

∑
i DiLi∑

i Di
⇒

∑
e DeLe

value of min s0-s1 cut with cape = De
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What did Evolution Optimize?
Computer experiment:

V :=
∑

e DeLe

value of min s0-s1 cut with cape = De
decreases

Theorem (Lyapunov Function)

V +
(∑

e∈δ({ s0 }) De − 1
)2

decreases.

Derivative of V (essentially) satisfies

V̇ ≤ −c ·
∑

e

(De − |Qe|)2.

Proof is brute-force except for applications of min-cut-max-flow
and . . .
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Convergence against Shortest Path

Corollary (Convergence)

Dynamics converge against shortest path, i.e.,

De → 1 for edges on shortest s-t path and De → 0 otherwise.

this assumes that shortest path is unique; otherwise, . . .

Miyaji/Onishi previously proved convergence for planar graphs.
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V

t

Statespace = R^E 

V decreases and stays positive⇒ V̇ → 0

V̇ ≤ −c ·
∑

e(De − |Qe|)2

|De − |Qe|| goes to zero for all e

Qe = (De/Le)∆e and hence ∆e ≈ Le for Qe and t large

∆s0s1 converges to length of some source-sink path

∆s0s1 converges to length of shortest path

. . .
Kurt Mehlhorn 14/25
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Stable Topology (Miyaji/Ohnishi)

How fast is the convergence?

Definition: An edge e = (u, v) stabilizes if for all ε > 0 either
pu(T ) ≥ pv (T )− ε for all large T or

pv (T ) ≥ pu(T )− ε for all large T .

|pv (T )− pu(T )| ≤ ε for all large T .

slightly more general than Miyaji/Ohnishi

Definition: A network stabilizes if all edges stabilize

Kurt Mehlhorn 15/25
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A Path with Fixed Potential Difference

a b
v

assume pa and pb are fixed

L(P) length of path from a to b.

define f = (pa − pb)/L(P) and assume f < 1

then for all edges of p: D decays like exp((f − 1)t)

pv converges to pb + (pa − pb)dist(v ,b)/L(P)
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Stable Topology III

Theorem
If network stabilizes, network converges as defined next.

decompose undirected G into paths: P0 = shortest s-t path

for v ∈ P0: pv → dist(v , t) for e ∈ P0: De → 1
assume P0, . . . , Pi−1 are defined. Then

– Pi has endpoints a and b on P0 ∪ . . . ∪ Pi−1
– internal nodes and edges are fresh
– maximizes fi := (pa − pb)/L(Pi ) this is less than one
– for v ∈ Pi : pv → pb + (pa − pb)dist(v ,b)/L(Pi )

– for e ∈ Pi : De → 0, exponentially with rate fi − 1.
– direct edges in Pi in direction from from a to b
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Open Problems

Do networks stabilize?

If so, after what time?

More generally, how long does it take for the
dynamics to converge?

Kurt Mehlhorn 18/25
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Wheatstone Graph

s

t

L R

a

c

b

d

e

simplest graph where flow directions
are not clear

direction of flow on e ????

potentials evolve non-monotonically;
run NonMonotone

state space is cyclic; run
TwoChanges

Theorem
Wheatstone network stabilizes

Kurt Mehlhorn 19/25
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Wheatstone: Middle Edge Stabilizes

Ri = Li/Di = resistance of edge i .

xa = Ra/(Ra + Rc), similarly for b.

if xa < xb, direction of e is RL
if xa > xb, direction of e is LR

x∗a = La/(La + Lc), similarly for b. assume x∗a ≤ x∗b
– split [0,1] into S = [0, x∗a ), M = [x∗a , x∗b ] and L = [x∗b ,1]

– consider evolvement of (xa, xb)

– in S × S, both grow:
– in M ×M, xa decreases and xb grows
– in L× L, both shrink

Kurt Mehlhorn 20/25
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Wheatstone: Middle Edge Stabilizes

split [0,1] into

S = [0, x∗a )

M = [x∗a , x
∗
b ]

L = [x∗b ,1]

consider evolvement of
(xa, xb)

in S × S, both grow:

in M ×M, xa decreases
and xb grows

in L× L, both shrink

S

M

L

S M L

x_a

x_b

RL RL

RLLR

LR LR
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S

M

L

S M L

x_a

x_b

RL RL

RLLR

LR LR

RL

LR

what if system stays in S × S or
L× L?
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The Transportation Problem

undirected graph G = (V ,E)

b : V → R such that
∑

v bv = 0

v supplies flow bv if bv > 0

v extracts flow |bv | if bv < 0

find a cheapest flow where cost of sending x units across an
edge of length L is Lx

Dynamics of Physarum solves transportation problem.

De’s converge against a mincost solution of transportation
problem.
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Open Problems and Related Work

Open Problems
show: flow directions stabilize

show: convergence is exponential

Physarum apparently can do more, e.g., network design.
Prove it.

inspiration for the design of distributed algorithms

Related Work
Ito/Johansson/Nakagaki/Tero: Convergence Properties for the
Physarum Solver, January 28th, 2011, they change |Qe| into Qe
and prove convergence for all graphs
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Network Design: Science 2010
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Natural Computation

Humans and Animals are not Turing Machines

Part of their computational capabilities is based on their bodies

Other Models of Computation are Relevant

Suggestions for distributed algorithms

CS methods can help analyzing such systems, do not leave it
to physicists and biologists

Kurt Mehlhorn 25/25
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