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1 Introduction

When I was asked to contribute to a volume dedicated to Thomas Ottmann’s sixtieth birthday,
I immediately agreed. I have known Thomas for more than 25 years, I like him, and I admire
his work and his abilities as a cyclist. Of course, when it came to start writing, I started to have
second thoughts. What should I write about? I could have taken one of my recent papers. But
that seemed inappropriate; none of them is single authored. It had to be more personal.

A sixtieth birthday is an occasion to look back, but it is also an occasion to look forward, and
this is what I plan to do. I describe what I consider a major challenge in algorithmics, and then
outline some venues of attack.

2 The Challenge

Algorithms are the heart of computer science. They make systems work. The theory of algo-
rithms, i.e., their design and their analysis, is a highly developed part of theoretical computer
science [OW96].

In comparison, algorithmic software is in its infancy. For many fundamental algorithmic
tasks no reliable implementations are available due to a lack of understanding of the principles
underlying reliable algorithmic software, see Section 3 for some examples. The challenge is

� to work out the principles underlying reliable algorithmic software and

� to create a comprehensive collection of reliable algorithmic software components.
�
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Problem CPLEX solution Exact Verification
Name C R NZ RelObjErr TC V Res TV
degen3 1504 1818 26230 6.91e-16 8.08 0 opt 8.79
etamacro 401 688 2489 1.50e-16 0.13 10 feas 1.11
fffff800 525 854 6235 0.00e+00 0.09 0 opt 4.41
pilot.we 737 2789 9218 2.93e-11 3.8 0 opt 1654.64
scsd6 148 1350 5666 0.00e+00 0.1 13 feas 0.52
scsd8 398 2750 11334 7.54e-16 0.48 0 opt 1.52

Table 1: Behavior of CPLEX for problems in the Netlib library. The first four columns give
the name of the instance, and the number of constraints, variables, and non-zeroes in the con-
straint matrix. The columns labeled RelObjErr, T, and Res give information about the solution
computed by CPLEX: the column labeled TC shows the time (in seconds) for solving the LP,
and the column labeled Res shows whether the basis (= a symbolic representation of a solution)
computed by CPLEX is optimal or not. An entry “feas” indicates that the computed basis is fea-
sible but not optimal. RelObjErr is the relative error in the objective value at the basis returned
by CPLEX. For example, for problem pilot.we CPLEX found the optimal basis and returned an
objective value with relative error 2.93e-11. The meaning of the remaining columns is explained
later in the text.

3 State of the Art

I give examples of basic algorithmic problems for which no truly reliable software is available.
Linear Programming is arguably one of the most useful algorithmic paradigms. It allows one

to formulate optimization problems over real-valued variables that have to obey a set of linear
inequalities.

maximize cT x subject to Ax
�

b

where x is a vector of n real variables, A is an m � n matrix with m � n, b is an m-vector, and c
is an n-vector. A large number of problems can be formulated as linear programs, e.g., shortest
paths, network flow, matchings, convex hull, . . . , and hence a linear programming solver is an
extremely useful algorithmic tool. There is no linear programming solver that is guaranteed
to solve large-scale linear programs to optimality. Every existing solver may return suboptimal
or infeasible solutions.1 For example, the current version of CPLEX does not find the optimal
solution for problems etamacro and scsd6 in the Netlib library, a popular collection of benchmark
problems; see Table 1.

Computer aided design systems manipulate 3-dimensional solids under boolean operations
(and other operations); see Figure 1 for an example. No existing system is guaranteed to compute
the correct result, not even for solids bounded by plane faces; see Table 2.

There are systems that solve large-scale problems on graphs and networks. These systems
are trustworthy because their authors are. They come with no formal guarantee.

1There are solvers that solve small problems to optimality.

2



Figure 1: The figure on the left shows a red and a blue solid and the figure on the right shows
their union.

System n α time output
ACIS 1000 1.0e-4 5 min correct
ACIS 1000 1.0e-6 30 sec incorrect answer

Rhino3D 200 1.0e-2 15sec correct
Rhino3D 400 1.0e-2 – CRASH

Table 2: Runs for the example of Figure 1. We used cylinders whose basis is a regular n-gon and
that were rotated by α degrees relative each other. ACIS and Rhino3D are popular commercial
CAD-engines.

The situation is even worse for parallel and distributed algorithms.

Many algorithmic libraries exist, e.g., Maple and Mathematica for symbolic computation,
STL for data structures, LEDA for data structures, graph and network algorithms, and computa-
tional geometry, CGAL for computational geometry, ACIS for computer aided design, LAPACK
for linear algebra problems, MATLAB for numerical computation and visualization, CPLEX and
Xpress for optimization, and ILOG solvers for constraint solving. None of the implementations
in any of these systems comes with a formal guarantee of correctness. Moreover, for problems
such as linear programming and boolean operations on solids the existing implementations are
known to be incorrect.

Given that algorithms (and frequently in the form of implementations from these libraries)
form the core of any software system, we are facing a major challenge: Develop a theory for
reliable algorithmic software and construct reliable algorithmic components based on it.
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4 Approaches

I discuss some approaches for addressing the challenge. I hope to demonstrate that viable roads
of attack exist. I do not claim and, in fact, do not believe that the approaches outlined are
sufficient for solving the challenge.

4.1 Program Verification

Formal program verification is the obvious approach. However, there are several obstacles to
applying it. I mention just two: (1) the non-trivial mathematics underlying the algorithms must
be formalized, and (2) verification must be applicable to languages in which algorithmicists want
to formulate their algorithms. In particular, we would need a formal semantics for languages like
C++.In view of these obstacles, the direct applicability of program verification is doubtful, but
see Section 4.5 below.

4.2 The Exact Computation Paradigm

Algorithms are frequently designed for ideal machines that are assumed to be able to calculate
with real numbers in the sense of mathematics. However, real machines offer only crude ap-
proximations, namely fixed precision integers and floating point numbers. Arbitrary-precision
integers and floating point systems go beyond, but are still approximate.

The exact computation paradigm goes a step further. It aims to exploit the fact that computa-
tions with algebraic numbers can be performed exactly. There are symbolic [Yap99, VG99] and
numerical methods [BFM � 01] to discover, for example, that
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In principle, the computations required in computational geometry, computer aided design, and
for a large class of optimization problems stay within the algebraic numbers and hence can
be solved by the exact computation paradigm. The caveat is that the cost of exact algebraic
computation is enormous, so enormous, in fact, that the approach was considered to be doomed
to failure until recently.

Significant progress has been made in the last years. The geometry in LEDA [LED] and
CGAL [CGA] follows the exact computation paradigm, but these systems deal only with lin-
ear objects. CORE [KLPY99] and LEDA [BFM � 01] offer (reasonably) efficient computa-
tion with algebraic numbers that can be represented as expressions involving radicals, and ES-
OLID [KCF � 02] takes a step towards exact boundary evaluation of curved solids. Exact boolean
operations on 2-dimensional curved objects of low degree are now feasible; see Figure 2. How-
ever, the problem is much harder in 3D.

One of the earliest paper on the exact computation paradigm was co-authored by Thomas
Ottmann; see [OTU87].
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Figure 2: The figure on the left shows a red and a blue polygon with curved boundaries and the
figure on the right shows their union. The computation takes about 1 minute for input polygons
with 1000 vertices, see [BEH � 02] for details.

The recent progress makes it plausible (this might be wishful thinking on my side) to build
a CAD-system that is exact and efficient at the same time. I consider the construction of such a
system the litmus test for the exact computation paradigm.

4.3 Program Result Checking

Instead of ensuring that a program computes the correct answer for any input (= verification), one
may also try to verify that it computed the correct answer for a given input. The latter approach
is called program result checking [BK89, WB97, BW96].

In its pure form, a checker for a program computing a function f takes an instance x and an
output y, and returns true if y � f � x 
 . Of course, this is usually a simpler algorithmic task than
computing f � x 
 .

We give an example: The multiplication problem is to compute the product y � x1 � x2 of two
given numbers x1 and x2. A (probabilistic) checker for the multiplication problem gets x1, x2, and
y, chooses a random prime p and verifies that � x1 mod p 
 � � x1 mod p 
 mod p � y mod p. If the
equality holds, it returns true, otherwise it returns false. By repeating the test with independently
chosen primes, the error probability can be made arbitrarily small. Some readers were taught this
check (with p � 9) by their math teachers.

4.4 Certifying Algorithms

A looser version of program result checking is provided by certifying algorithms [SM90, MNS � 96,
KMMS02]. Such algorithms return additional output (frequently called a witness) that simplifies
the verification of the result. More precisely, a certifying program for a function f returns on
input x a value y, the alleged value f � x 
 , and additional information I that makes it easy to check
that y � f � x 
 . By “easy to verify” we mean two things. Firstly, there must be a simple program
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C (a checking program) that given x, y, and I checks2 whether indeed y � f � x 
 . The program C
should be so simple that its correctness is “obvious”. Secondly, the running time of C on inputs x,
y, and I should be no larger than the time required to compute f � x 
 from scratch. This guarantees
that the checking program C can be used without severe penalty in running time.

We give some examples.

Consider a program that takes an m � n matrix A and an m vector b and is supposed to
determine whether the linear system A � x � b has a solution. As stated, the program is supposed
to return a boolean value indicating whether the system is solvable or not. This program is not
certifying. In order to make it certifying, we extend the interface. On input A and b the program
returns either

� “the system is solvable” and a vector x such that A � x � b or

� “the system is unsolvable” and a vector c such that cT A � 0 and cT � b �� 0. Observe that
such a vector c certifies that the system is unsolvable. Assume otherwise, say Ax0 � b
for some x0. Multiplying this equation with c from the left, gives cT Ax0 � cT b and hence
0 �� 0. Gaussian elimination is easily modified to compute the vector c in the case of an
unsolvable system.

The certifying program is easy to check. If it answers “the system is solvable”, we check that
A � x � b and if it answers “the system is unsolvable” we check that cT A � 0 and cT � b �� 0. Thus
the check amounts to a matrix-vector and a vector-vector product which are fast and also easy to
program.

The second example id primal-dual algorithms for problems that can be formulated as linear
programs. Consider the problem of finding a maximum cardinality matching M in a bipartite
graph G ��� V � E 
 . A matching M is a set of edges no two of which share an endpoint. A node
cover C is a set of nodes such that every edge of G is incident to some node in C. Since edges in
a matching do not share endpoints, �M � � �C � for any matching M and any node cover C. It can
be shown [CCPS98] that for every maximum-cardinality matching M there is a node cover C of
the same cardinality. A certifying algorithm for the matching problem in bipartite graphs returns
a matching M and a node cover C with �M �����C � .

The third example is planarity testing. The task is to decide whether a graph G is planar.
A witness of planarity is a planar embedding and a witness of non-planarity is a Kuratowski
subgraph, see [MN99, Chapter 8] for details. It was known since the early 70s that planarity of a
graph can be tested in linear time [LEC67, HT74]. Linear time algorithms to compute witnesses
for planarity [CNAO85] and non-planarity [MN99, Section 8.7] were found much later.

For any algorithmic problem, we may ask the question whether a certifying algorithm exists
for it. Short witnesses that can be checked in polynomial time can only exist for problems in
NP � co-NP. This holds for decision problems and optimization problems.

2Of course, if y �� f � x � then there should be no I such that the triple � x � y � I � passes checking.
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4.5 Verification of Checkers

We postulated in the preceding section that the task of verifying a triple � x � y � I 
 should be so
simple that the correctness of the program implementing the checker is “obvious”. In fact, formal
verification of checkers is probably a feasible task for program verification. Observe, that the
verification problem is simplified in many ways: (1) the mathematics required for verifying the
checker is usually much simpler than that underlying the algorithm for finding solutions and
witnesses, (2) the checkers are simple programs, and (3) algorithmicists may be willing to code
the checkers in languages that ease verification, e.g., in a functional language.

For a correct program, verification of the checker is as good as verification of the program
itself.

4.6 Cooperation of Verification and Checking

Consider the following example3: a sorting routine working on a set S

(a) must not change S and

(b) must produce a sorted output.

The first property is hard to check (provably as hard as sorting), but usually trivial to prove, e.g.,
if the sorting algorithm uses a swap-subroutine to exchange items. The second property is easy
to check by a linear scan over the output, but hard to prove (if the sorting algorithm is complex).
A combination of verification and checking provides a simple solution for both parts.

4.7 A Posteriori Analysis

Despite the approaches outlined in the preceding sections, there will be many situations where
we have to be content with inexact algorithms. It is likely always to be true that exact and verified
methods are significantly less efficient than inexact methods.

In this realm, the question of a posteriori analysis arises. Given an instance of the problem
and a solution, we may want to analyze the quality of the solution. As an example, consider the
problem of finding the roots of a univariate polynomial f � x 
 of degree n. Given approximate
solutions x1, . . . , xn, compute the quantities [Smi70]

σi � f � xi 

∏ j �� i � xi 	 x j 
 for 1

�
i
�

n �

Let Γi be the disk in the complex plane centered at xi with radius n �σi � . Then the union of the
disks contains all roots of f . Moreover, a connected component consisting of k disks contains
exactly k roots of f . The disks Γi give a posteriori analysis of the quality of root estimates and
the σi are easily computed with controlled error using multi-precision floating point arithmetic.

Are there analogous examples in the realm of combinatorial computing. Clearly, in the area
of approximation algorithms, one frequently computes a priori bounds. The nice feature of the
example above is that the approximate solution plays essential part in estimating its quality.

3The author does not recall where he learned about this example.
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4.8 Test and Repair

Sometimes we can even do better than just a posteriori analysis. We might be able to take the
approximate solution returned by an inexact algorithm as the starting point for an exact algorithm.

Consider the linear programming problem

maximize cT x subject to Ax � b � x � 0

where x is a vector of n real variables, A is an m � n matrix, m � n, b is an m-vector, and c is
an n-vector. For simplicity, we assume A to have rank m. It is well known that one can restrict
consideration to basic solutions. A basic solution is defined by an m � m non-singular sub-matrix
B of A and is equal to � xB � xN 
 where the xB are the variables corresponding to the columns in
B, xB � B  1b and xN � 0. A basic solution is primal feasible if xB � 0, and is dual feasible if
cT

B 	 cT
NA  1

B AN
�

0. It is optimal if it is primal and dual feasible.
For medium-scale linear programs, we succeeded in checking (exactly !!!) in reasonable time

whether a given basis is primal or dual feasible [DFK � 02]. This suggests the following approach.
Use an inexact LP solver to determine an “optimal” basis B. Check the basis for primal and/or
dual feasibility. If so, declare it optimal. If not and the basis is X-feasible (X !#" primal,dual $ ),
use an exact X-simplex algorithm starting at B to find the true optimum. If B is neither primal nor
dual feasible, I do not really know how to proceed; one can first use the primal simplex method
to find the optimum of the subproblem defined by the satisfied constraints and then use the dual
simplex method to add the remaining constraints, but this is not really satisfactory. The hope is
that the inexact method find a basis B that is close enough to the optimum, so that even a slow
exact algorithm can find it. Table 1 supports this hope. The last column shows the time required
to check whether the basis returned by CPLEX is optimal, and if not, to obtain the optimal basis
from it. Column V shows the number of constraints violated by the basis returned by CPLEX.

The general question for optimization problems is the following. Design (exact) algorithms
that start from a given solution x0 towards an optimal solution. The running time should depend
on some natural distance measure between the given and the optimal solution.

5 Conclusion

Reliability (trustworthiness) is a desirable feature of humans and also programs. I love to use
TEXand one of the reasons is that it never crashes. Many users of LEDA tell me that the reliability
of its programs is important to them and that they do not really care about the speed.

The strive for reliability poses many hard and relevant scientific questions. Part of the answers
can be found within combinatorial algorithmics, but for many of them we have to reach out and
make contact with other areas of computer science: numerical analysis, computer algebra, and
even semantics and program verification.
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and D. Weber. Certifying and repairing solutions to large LPs, How good are LP-
solvers? to appear in SODA 2003, www.mpi-sb.mpg.de/ mehlhorn/ftp/LPExactShort.ps,
2002.

[HT74] J.E. Hopcroft and R.E. Tarjan. Efficient planarity testing. Journal of the ACM,
21:549–568, 1974.

[KCF � 02] J. Keyser, T. Culver, M. Foskey, S. Krishnan, and D. Manocha. ESOLID: A system
for exact boundary evaluation. In 7th ACM Symposium on Solid Modelling and
Applications, pages 23–34, 2002.

[KLPY99] V. Karamcheti, C. Li, I. Pechtchanski, and Chee Yap. A core library for robust
numeric and geometric computation. In Proceedings of the 15th Annual ACM Sym-
posium on Computational Geometry, pages 351–359, Miami, Florida, 1999.

[KMMS02] D. Kratsch, R. McConnell, K. Mehlhorn, and J.P. Spinrad. Certifying algorithms
for recognizing interval graphs and permutation graphs. SODA 2003 to appear,
www.mpi-sb.mpg.de/ mehlhorn/ftp/intervalgraph.ps, 2002.

9



[LEC67] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs.
In P. Rosenstiehl, editor, Theory of Graphs, International Symposium, Rome, pages
215–232, 1967.

[LED] LEDA (Library of Efficient Data Types and Algorithms). www.algorithmic-
solutions.com.
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