Information Processing Letters 27 (1988) 125-128
North-Holland

25 March 1988

A FASTER APPROXIMATION ALGORITHM FOR THE STEINER PROBLEM IN GRAPHS *

Kurt MEHLHORN

Fachbereich 10— Informatik, Universitit des Saarlandes, D-6600 Saarbriicken, Fed. Rep. Germany

Communicated by T. Lengauer
Received 27 July 1987
Revised 14 September 1987

We present a new implementation of the Kou, Markowsky and Berman algorithm for finding a Steiner tree for a connected,
undirected distance graph with a specified subset S of the set of vertices V. The total distance of all edges of this Steiner tree is
at most 2(1 —1//) times that of a Steiner minimal tree, where / is the minimum number of leaves in any Steiner minimal tree
for the given graph. The algorithm runs in O(| £| + |V |log |V |) time in the worst case, where E is the set of all edges and V'

the set of all vertices in the graph.

Keywords: Steiner tree, approximation algorithm, graph algorithm

1. Introduction

Consider a connected, undirected distance
graph G = (V, E, d) and a set S C V, where V is
the set of vertices in G, E is the set of edges in G,
and d is a distance function which maps E into
the set of nonnegative numbers. A path in G is a
sequence of vertices vy, v,,..., v, of V such that,
forall i, 1<i<k, (v, v,,,) € E is an edge of the
graph. The length of a path is the sum of the
distances of its edges. A tree subgraph G,=
V,, E;, d,) of G with SC V,CV,

E,c {(vy, v)|(vy, 1) €E, {v), 0,} SV, },

and d, equals d, restricted to E,, is called a
Steiner tree for G and S. Given a Steiner tree for
G and S, G,=(V,, E,, d,), D(G,) is defined as
L.crd(e), and is called the total distance of G..
A Steiner tree G, for G and S is called a Steiner
minimal tree if its total distance is minimal among
all Steiner trees for G and S. This minimal dis-
tance is called D, (G). Note that vertices in S

* This research was supported by the DFG, Sonder-
forschungsbereich 124.

are required to be in any Steiner tree for G and S.
On the other hand, vertices in V' — S, which are
traditionally called Steiner vertices, are not re-
quired to be in a Steiner tree, but may be used to
achieve a small total distance. Steiner trees were
first considered by Gilbert and Pollak [3].

The problem of finding a Steiner minimal tree
for given G and S has been shown to be NP-com-
plete, even for a restricted class of distance func-
tions (cf. [2]). Therefore, we are interested in find-
ing a Steiner tree with total distance close to the
total distance of a Steiner minimal tree. Takahashi
and Matsuyama [6] presented an algorithm for
finding a Steiner tree G’ with

D(G")/Dyin(G) <2(1—-1/]S]),

whereas Kou, Markowsky and Berman [4] de-
scribed a procedure for finding a Steiner tree G
with

D(GN)/Dmin(G) < 2(1 - 1/[)’

and / is the minimum number of leaves in any
Steiner minimal tree for G and S. The runtime of

both algorithms is proportional to | S| |V | % Note
that /< |S|. More recently, Wu, Widmayer

0020-0190 /88 /$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland) 125

Volume 27, Number 3

and Wong [8] improved the running time to
O(| E|log|V|) and later Widmayer [7] to
O(|E|+(|V|+min{ |E|, |S|*}) log|V]). In
this paper, we describe a further improvement and
achieve running time O(|V | log|V |+ | E). Our
solution is not only faster than the last two solu-
tions mentioned but also simpler, because we re-
duce the question at hand to a shortest path and a
minimum spanning tree calculation.

2. An algorithm for approximating a Steiner
minimal tree

Let G=(V, E, d) be a given connected, undi-
rected distance graph, and S C V the set of vertices
for which a Steiner tree is desired. Our algorithm
is in line with Algorithm H in [4].

Algorithm H: Steiner Tree [4]

1. Construct the complete distance graph G, =
(Vy, E,, dy), where V, =25 and, for every
(v;, v)) € Ey, dy(v;, v)) is equal to the distance
of a shortest path from v, to v; in G.

. Find a minimum spanning tree G, of G,.

3. Construct a subgraph G; of G by replacing
each edge in G, by its corresponding shortest
path in G. (If there are several shortest paths,
pick an arbitrary one.)

. Find a minimum spanning tree G, of G;.

5. Construct a Steiner tree G5 from G, by deleting

edges in G,, if necessary, so that no leaves in Gy
are Steiner vertices.

N

&

The most time-consuming step in Algorithm H
is step 1. It requires the solution of |S| single
source shortest path problems and hence takes
O(|S|(|V | log|V|+|E]|)) time using Fredman
and Tarjan’s [1] implementation of Dijkstra’s al-
gorithm. Wu, Widmayer and Wong [8] and later
Widmayer [7] improved upon this by combining
steps 1. and 2. into a single step. They achieved a
time bound of O(|E|log|V|) and O(|E|+
(|V|+min{ |E|, |S|?}) log|V|) respectively.
We slightly refine their method, separate steps 1.
and 2. again and achieve a running time of
O(|V | log|V |+ |E]|). The details are as follows.

126

INFORMATION PROCESSING LETTERS

25 March 1988

For every vertex s € S let N(s) be the set of
vertices in V' which are closer to s than to any
other vertex in S. More precisely, we consider a
partition { N(s);s€ S} of V,ie, V=U;csN(s)
and N(s)NN(t)=4# for s, t€S, s # ¢, with

veN(s) = dy(v,s)<d(v,t) forall zeS.

2.1. Remark. In the parlance of computational
geometry we might call N(s) the Voronoi region
of vertex s. If a vertex v has equal distance to
several vertices in S, then it belongs to the Voronoi
region of one of them.

Next, we consider the subgraph G| = (S, E7,
d)) of G, defined by

E{={(s, 1); s, t €S and there is an edge
(u, v) €E with ue N(s), ve N(1)}
and
dy(s, t)=min{d,(s, u) +d(u, v) +d(v, t);
(u, v)€E, ue N(s), veN(1)}.

Fig. 1 illustrates that d{ is in general not the
restriction of d, to the set E|. Nevertheless, a
minimum spanning tree of G is always a mini-
mum spanning tree of G,, as the following lemma
shows.

2.2. Lemma. (a) There is a minimum spanning tree
G, of G, which is a subgraph of G|. Moreover, d,
and d| agree on the edges of this tree.

(b) Every minimum spanning tree of G| is a
minimum spanning tree of G.

Fig. 1. S={r, s, t}, dy(s, t) =4, but d{(s, 1) =5.

Volume 27, Number 3

Proof. (a) Let G,=(S, E,) be that minimum
spanning tree which minimizes the quantity a =
E, — E]| and among those trees the one which
has minimal total distance with respect to d;. If
a=0 and d, and d| agree on the edges of G,,
then we are done. Let us assume otherwise. Then
either (case A) there is an edge (s, t) € E, — E{ or
(case B) E, C E| and there is an edge (s, 1) € E,
with d|(s, t)>d,(s, t). Let vy,..., v, with vy =5
and v, =t be a shortest path from s to ¢ in G. For
each vertex v, let s(v;) be such that v, € N(s(v;)).
Then, for every i either s(v;) = s(v,,,) or
(s(v,), s(v;,1)) € E{. Also, in the latter case, we
have

di(s(v), 5(v;11))
<d{(s(v;), 5(v;11))
<dy(s(v;), v;) +d(v;, vi11)
+dy (041, 5(0141))
<d (s, v,) +d(v;, ;1) +d1 (V41 1)
=d(s, t)

(<d/(s, t) if case B applies).

Here, the first two inequalities are obvious and
the third inequality follows from v; € N(s(v;)) and
0,41 € N(s(v;,,)). The last inequality is only valid
if case B applies.

Next, remove the edge (s, ¢) from the spanning
tree. This splits the tree into two connected com-
ponents. Thus, there must be an i such that s(v,)
and s(v,,,) are in different components.

Consider the tree

G5 = (8, By {(s, D} U (s(0), 5(021))-

G, is clearly a spanning tree. Moreover, in case A,
G; uses one more edge in E{ than G, and has
cost no larger than G, and, in case B, G, also uses
only edges in E, and has with respect to d| a
total distance strictly smaller than G,. In either
case, we derived a contradiction to the choice of
G,.

(b) Let G5 be a minimum spanning tree of G}
and let G, be a minimum spanning tree of G,. By
part (a) of the lemma we may assume that G, uses

INFORMATION PROCESSING LETTERS

25 March 1988

only edges in E; and that d, and d, agree on the
edges of G,. Thus,

d,(Gy) <d|(G;) <d{(G,) =d,(G,) <d,(Gy).

Here, the first inequality holds since d,(s, 1) <
d{(s, t) for all edges (s,), the second inequality
holds since G5 is a minimum spanning tree of G,
the equality holds by our assumption on G,, and
the third inequality holds since G, is a minimum
spanning tree of G,. We conclude that G, is a
minimum spanning tree of G,. 0O

We infer from this lemma that we may replace
step 1. of Algorithm H by

1’. Construct the auxiliary graph G| = (S, E{, d{)
where E| and d are defined as above.

We discuss the implementation next. The graph
G1 has only O(| E|) edges and hence step 2. can
be carried out in O(|S| log|S|+|E|) time (cf.
[1]). The same amount of time certainly suffices
for steps 3., 4., and 5. It remains to describe an
efficient implementation of step 1.

We can compute the partition { N(s);s€ S}
by adjoining an auxiliary vertex s, and edges
(59, §), s €S, of length 0 to G and then perfor-
ming a single source shortest path computation
with source s,. This takes O(|V | log |V |+ | E|)
time and yields for every vertex v the vertex
s(v) € S with v &€ N(s(v)) and the distance
d,(v, s(v)).

Next we go through all the edges (u, v) in E
and generate the triples (s(u), s(v), d,(s(u), u) +
d(u, v)+dy(v, s(v))). We sort these triples by
bucket sort according to the first two components
(cf. [5, Section 11.2.1]) and then select for each
edge of G| the minimum cost. All of this takes
O(| E|) time.

We summarize our discussion in the following
theorem.

2.3. Theorem. For a connected, undirected distance
graph G=(V, E, d) and a set of vertices SCV,
a Steiner tree G, for G and S with total distance
at most 2(1 —1/1) times that of a Steiner mini-
mal tree for G and S can be computed in time
O(|V | log|V|+|EJ).

127

Volume 27, Number 3
3. Conclusion

We presented a fast approximation algorithm
for Steiner trees. Our algorithm is simpler than the
algorithms by Wu, Widmayer and Wong [8] and
Widmayer [7] since we reduce the Steiner tree
approximation problem to a single source shortest
path problem and a minimum spanning tree prob-
lem. Thus, any advances on those problems have
direct implications for the Steiner tree problem.

References
(1) M.L. Fredman and R.E. Tarjan, Fibonacci Heaps and Their

Uses in Improved Network Optimization Algorithms (IEEE,
1984) 338-346.

128

INFORMATION PROCESSING LETTERS

25 March 1988

[2] M.R. Garey and D.S. Johnson, Computers and Intractability
(Freeman, San Fransisco, CA, 1979).

[3] E.N. Gilbert and H.U. Pollak, Steiner minimal trees, SIAM
J. Appl. Math. 16 (1) (1968) 1-29.

[4] L. Kou, G. Markowsky and L. Berman, A fast algorithm
for Steiner trees, Acta Informatica 15 (1981) 141-145.

[5] K. Mehlhorn, Data Structures and Efficient Algorithms
(Springer, Berlin, 1984).

[6] H. Takahashi and A. Matsuyama, An approximate solution
for the Steiner problem in graphs, Math. Jap. 24 (1980)
573-577.

[7] P. Widmayer, A fast approximation algorithm for Steiner’s
problems in graphs, Graph-Theoretic Concepts in Computer
Science, WG 86, Lecture Notes in Computer Science, Vol.
246 (Springer, Berlin, 1986) 17-28.

[8] Y.F. Wu, P. Widmayer and C.K. Wong, A faster approxi-
mation algorithm for the Steiner problem in graphs, Acta
Informatica 23 (1986) 223-229.

