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We present a new implementation of the Kou, Markowsky and Berman algorithm for finding a Steiner tree for a connected,
undirected distance graph with a specified subset S of the set of vertices V. The total distance of all edges of this Steiner tree is
at most 2(1 —1//) times that of a Steiner minimal tree, where / is the minimum number of leaves in any Steiner minimal tree
for the given graph. The algorithm runs in O(| £| + |V |log |V |) time in the worst case, where E is the set of all edges and V'

the set of all vertices in the graph.
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1. Introduction

Consider a connected, undirected distance
graph G = (V, E, d) and a set S C V, where V is
the set of vertices in G, E is the set of edges in G,
and d is a distance function which maps E into
the set of nonnegative numbers. A path in G is a
sequence of vertices vy, v,,..., v, of V such that,
forall i, 1<i<k, (v, v,,,) € E is an edge of the
graph. The length of a path is the sum of the
distances of its edges. A tree subgraph G,=
V,, E;, d,) of G with SC V,CV,

E,c {(vy, v)|(vy, 1) €E, {v), 0,} SV, },

and d, equals d, restricted to E,, is called a
Steiner tree for G and S. Given a Steiner tree for
G and S, G,=(V,, E,, d,), D(G,) is defined as
L.crd(e), and is called the total distance of G..
A Steiner tree G, for G and S is called a Steiner
minimal tree if its total distance is minimal among
all Steiner trees for G and S. This minimal dis-
tance is called D, (G). Note that vertices in S

* This research was supported by the DFG, Sonder-
forschungsbereich 124.

are required to be in any Steiner tree for G and S.
On the other hand, vertices in V' — S, which are
traditionally called Steiner vertices, are not re-
quired to be in a Steiner tree, but may be used to
achieve a small total distance. Steiner trees were
first considered by Gilbert and Pollak [3].

The problem of finding a Steiner minimal tree
for given G and S has been shown to be NP-com-
plete, even for a restricted class of distance func-
tions (cf. [2]). Therefore, we are interested in find-
ing a Steiner tree with total distance close to the
total distance of a Steiner minimal tree. Takahashi
and Matsuyama [6] presented an algorithm for
finding a Steiner tree G’ with

D(G")/Dyin(G) <2(1—-1/]S]),

whereas Kou, Markowsky and Berman [4] de-
scribed a procedure for finding a Steiner tree G
with

D(GN)/Dmin(G) < 2(1 - 1/[)’

and / is the minimum number of leaves in any
Steiner minimal tree for G and S. The runtime of

both algorithms is proportional to | S| |V | % Note
that /< |S|. More recently, Wu, Widmayer
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and Wong [8] improved the running time to
O(| E|log|V|) and later Widmayer [7] to
O(|E|+(|V|+min{ |E|, |S|*}) log|V]). In
this paper, we describe a further improvement and
achieve running time O( |V | log|V |+ | E ). Our
solution is not only faster than the last two solu-
tions mentioned but also simpler, because we re-
duce the question at hand to a shortest path and a
minimum spanning tree calculation.

2. An algorithm for approximating a Steiner
minimal tree

Let G=(V, E, d) be a given connected, undi-
rected distance graph, and S C V the set of vertices
for which a Steiner tree is desired. Our algorithm
is in line with Algorithm H in [4].

Algorithm H: Steiner Tree [4]

1. Construct the complete distance graph G, =
(Vy, E,, dy), where V, =25 and, for every
(v;, v)) € Ey, dy(v;, v)) is equal to the distance
of a shortest path from v, to v; in G.

. Find a minimum spanning tree G, of G,.

3. Construct a subgraph G; of G by replacing
each edge in G, by its corresponding shortest
path in G. (If there are several shortest paths,
pick an arbitrary one.)

. Find a minimum spanning tree G, of G;.

5. Construct a Steiner tree G5 from G, by deleting

edges in G,, if necessary, so that no leaves in Gy
are Steiner vertices.

N

&

The most time-consuming step in Algorithm H
is step 1. It requires the solution of |S| single
source shortest path problems and hence takes
O(|S|(|V | log|V|+|E]|)) time using Fredman
and Tarjan’s [1] implementation of Dijkstra’s al-
gorithm. Wu, Widmayer and Wong [8] and later
Widmayer [7] improved upon this by combining
steps 1. and 2. into a single step. They achieved a
time bound of O(|E|log|V|) and O(|E|+
(|V|+min{ |E|, |S|?}) log|V|) respectively.
We slightly refine their method, separate steps 1.
and 2. again and achieve a running time of
O(|V | log|V |+ |E]|). The details are as follows.
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For every vertex s € S let N(s) be the set of
vertices in V' which are closer to s than to any
other vertex in S. More precisely, we consider a
partition { N(s);s€ S} of V,ie, V=U;csN(s)
and N(s)NN(t)=4# for s, t€S, s # ¢, with

veN(s) = dy(v,s)<d(v,t) forall zeS.

2.1. Remark. In the parlance of computational
geometry we might call N(s) the Voronoi region
of vertex s. If a vertex v has equal distance to
several vertices in S, then it belongs to the Voronoi
region of one of them.

Next, we consider the subgraph G| = (S, E7,
d)) of G, defined by

E{={(s, 1); s, t €S and there is an edge
(u, v) €E with ue N(s), ve N(1)}
and
dy(s, t)=min{d,(s, u) +d(u, v) +d(v, t);
(u, v)€E, ue N(s), veN(1)}.

Fig. 1 illustrates that d{ is in general not the
restriction of d, to the set E|. Nevertheless, a
minimum spanning tree of G is always a mini-
mum spanning tree of G,, as the following lemma
shows.

2.2. Lemma. (a) There is a minimum spanning tree
G, of G, which is a subgraph of G|. Moreover, d,
and d| agree on the edges of this tree.

(b) Every minimum spanning tree of G| is a
minimum spanning tree of G.

Fig. 1. S={r, s, t}, dy(s, t) =4, but d{(s, 1) =5.
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Proof. (a) Let G,=(S, E,) be that minimum
spanning tree which minimizes the quantity a =
E, — E]| and among those trees the one which
has minimal total distance with respect to d;. If
a=0 and d, and d| agree on the edges of G,,
then we are done. Let us assume otherwise. Then
either (case A) there is an edge (s, t) € E, — E{ or
(case B) E, C E| and there is an edge (s, 1) € E,
with d|(s, t)>d,(s, t). Let vy,..., v, with vy =5
and v, =t be a shortest path from s to ¢ in G. For
each vertex v, let s(v;) be such that v, € N(s(v;)).
Then, for every i either s(v;) = s(v,,,) or
(s(v,), s(v;,1)) € E{. Also, in the latter case, we
have

di(s(v), 5(v;11))
<d{(s(v;), 5(v;11))
<dy(s(v;), v;) +d(v;, vi11)
+dy (041, 5(0141))
<d (s, v,) +d(v;, ;1) +d1 (V41 1)
=d(s, t)

(<d/(s, t) if case B applies).

Here, the first two inequalities are obvious and
the third inequality follows from v; € N(s(v;)) and
0,41 € N(s(v;,,)). The last inequality is only valid
if case B applies.

Next, remove the edge (s, ¢) from the spanning
tree. This splits the tree into two connected com-
ponents. Thus, there must be an i such that s(v,)
and s(v,,,) are in different components.

Consider the tree

G5 = (8, By {(s, D} U (s(0), 5(021))-

G, is clearly a spanning tree. Moreover, in case A,
G; uses one more edge in E{ than G, and has
cost no larger than G, and, in case B, G, also uses
only edges in E, and has with respect to d| a
total distance strictly smaller than G,. In either
case, we derived a contradiction to the choice of
G,.

(b) Let G5 be a minimum spanning tree of G}
and let G, be a minimum spanning tree of G,. By
part (a) of the lemma we may assume that G, uses
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only edges in E; and that d, and d, agree on the
edges of G,. Thus,

d,(Gy) <d|(G;) <d{(G,) =d,(G,) <d,(Gy).

Here, the first inequality holds since d,(s, 1) <
d{(s, t) for all edges (s, ), the second inequality
holds since G5 is a minimum spanning tree of G,
the equality holds by our assumption on G,, and
the third inequality holds since G, is a minimum
spanning tree of G,. We conclude that G, is a
minimum spanning tree of G,. 0O

We infer from this lemma that we may replace
step 1. of Algorithm H by

1’. Construct the auxiliary graph G| = (S, E{, d{)
where E| and d are defined as above.

We discuss the implementation next. The graph
G1 has only O(| E|) edges and hence step 2. can
be carried out in O(|S| log|S|+|E|) time (cf.
[1]). The same amount of time certainly suffices
for steps 3., 4., and 5. It remains to describe an
efficient implementation of step 1.

We can compute the partition { N(s);s€ S}
by adjoining an auxiliary vertex s, and edges
(59, §), s €S, of length 0 to G and then perfor-
ming a single source shortest path computation
with source s,. This takes O(|V | log |V |+ | E|)
time and yields for every vertex v the vertex
s(v) € S with v &€ N(s(v)) and the distance
d,(v, s(v)).

Next we go through all the edges (u, v) in E
and generate the triples (s(u), s(v), d,(s(u), u) +
d(u, v)+dy(v, s(v))). We sort these triples by
bucket sort according to the first two components
(cf. [5, Section 11.2.1]) and then select for each
edge of G| the minimum cost. All of this takes
O(| E|) time.

We summarize our discussion in the following
theorem.

2.3. Theorem. For a connected, undirected distance
graph G=(V, E, d) and a set of vertices SCV,
a Steiner tree G, for G and S with total distance
at most 2(1 —1/1) times that of a Steiner mini-
mal tree for G and S can be computed in time
O(|V | log|V|+|EJ).
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3. Conclusion

We presented a fast approximation algorithm
for Steiner trees. Our algorithm is simpler than the
algorithms by Wu, Widmayer and Wong [8] and
Widmayer [7] since we reduce the Steiner tree
approximation problem to a single source shortest
path problem and a minimum spanning tree prob-
lem. Thus, any advances on those problems have
direct implications for the Steiner tree problem.
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