A FASTER APPROXIMATION ALGORITHM FOR THE STEINER PROBLEM IN GRAPHS *

Kurt MEHLHORN

Fachbereich 10 — Informatik, Universität des Saarlandes, D-6600 Saarbrücken, Fed. Rep. Germany

Communicated by T. Lengauer Received 27 July 1987 Revised 14 September 1987

We present a new implementation of the Kou, Markowsky and Berman algorithm for finding a Steiner tree for a connected, undirected distance graph with a specified subset S of the set of vertices V. The total distance of all edges of this Steiner tree is at most 2(1-1/l) times that of a Steiner minimal tree, where l is the minimum number of leaves in any Steiner minimal tree for the given graph. The algorithm runs in $O(|E| + |V| \log |V|)$ time in the worst case, where E is the set of all edges and V the set of all vertices in the graph.

Keywords: Steiner tree, approximation algorithm, graph algorithm

1. Introduction

Consider a connected, undirected distance graph G = (V, E, d) and a set $S \subseteq V$, where V is the set of vertices in G, E is the set of edges in G, and E is a distance function which maps E into the set of nonnegative numbers. A path in G is a sequence of vertices v_1, v_2, \ldots, v_k of V such that, for all $i, 1 \le i < k$, $(v_i, v_{i+1}) \in E$ is an edge of the graph. The length of a path is the sum of the distances of its edges. A tree subgraph $G_s = (V_s, E_s, d_s)$ of G with $S \subseteq V_s \subseteq V$,

$$E_{s} \subseteq \{(v_{1}, v_{2}) | (v_{1}, v_{2}) \in E, \{v_{1}, v_{2}\} \subseteq V_{s}\},\$$

and d_s equals d, restricted to E_s , is called a Steiner tree for G and S. Given a Steiner tree for G and S, $G_s = (V_s, E_s, d_s)$, $D(G_s)$ is defined as $\sum_{e \in E_s} d_s(e)$, and is called the total distance of G_s . A Steiner tree G_s for G and S is called a Steiner minimal tree if its total distance is minimal among all Steiner trees for G and S. This minimal distance is called $D_{\min}(G)$. Note that vertices in S

are required to be in any Steiner tree for G and S. On the other hand, vertices in V-S, which are traditionally called *Steiner vertices*, are not required to be in a Steiner tree, but may be used to achieve a small total distance. Steiner trees were first considered by Gilbert and Pollak [3].

The problem of finding a Steiner minimal tree for given G and S has been shown to be NP-complete, even for a restricted class of distance functions (cf. [2]). Therefore, we are interested in finding a Steiner tree with total distance close to the total distance of a Steiner minimal tree. Takahashi and Matsuyama [6] presented an algorithm for finding a Steiner tree G' with

$$D(G')/D_{\min}(G) \leq 2(1-1/|S|),$$

whereas Kou, Markowsky and Berman [4] described a procedure for finding a Steiner tree G'' with

$$D(G'')/D_{\min}(G) \leq 2(1-1/l),$$

and l is the minimum number of leaves in any Steiner minimal tree for G and S. The runtime of both algorithms is proportional to $|S| |V|^2$. Note that $l \le |S|$. More recently, Wu, Widmayer

^{*} This research was supported by the DFG, Sonderforschungsbereich 124.

and Wong [8] improved the running time to $O(|E|\log|V|)$ and later Widmayer [7] to $O(|E|+(|V|+\min\{|E|, |S|^2\})\log|V|)$. In this paper, we describe a further improvement and achieve running time $O(|V|\log|V|+|E|)$. Our solution is not only faster than the last two solutions mentioned but also simpler, because we reduce the question at hand to a shortest path and a minimum spanning tree calculation.

2. An algorithm for approximating a Steiner minimal tree

Let G = (V, E, d) be a given connected, undirected distance graph, and $S \subseteq V$ the set of vertices for which a Steiner tree is desired. Our algorithm is in line with Algorithm H in [4].

Algorithm H: Steiner Tree [4]

- 1. Construct the complete distance graph $G_1 = (V_1, E_1, d_1)$, where $V_1 = S$ and, for every $(v_i, v_j) \in E_1$, $d_1(v_i, v_j)$ is equal to the distance of a shortest path from v_i to v_j in G.
- **2.** Find a minimum spanning tree G_2 of G_1 .
- 3. Construct a subgraph G_3 of G by replacing each edge in G_2 by its corresponding shortest path in G. (If there are several shortest paths, pick an arbitrary one.)
- **4.** Find a minimum spanning tree G_4 of G_3 .
- 5. Construct a Steiner tree G_5 from G_4 by deleting edges in G_4 , if necessary, so that no leaves in G_5 are Steiner vertices.

The most time-consuming step in Algorithm H is step 1. It requires the solution of |S| single source shortest path problems and hence takes $O(|S|(|V|\log|V|+|E|))$ time using Fredman and Tarjan's [1] implementation of Dijkstra's algorithm. Wu, Widmayer and Wong [8] and later Widmayer [7] improved upon this by combining steps 1. and 2. into a single step. They achieved a time bound of $O(|E|\log|V|)$ and $O(|E|+(|V|+\min\{|E|,|S|^2\})\log|V|)$ respectively. We slightly refine their method, separate steps 1. and 2. again and achieve a running time of $O(|V|\log|V|+|E|)$. The details are as follows.

For every vertex $s \in S$ let N(s) be the set of vertices in V which are closer to s than to any other vertex in S. More precisely, we consider a partition $\{N(s); s \in S\}$ of V, i.e., $V = \bigcup_{s \in S} N(s)$ and $N(s) \cap N(t) = \emptyset$ for $s, t \in S$, $s \neq t$, with

$$v \in N(s) \implies d_1(v, s) \leqslant d_1(v, t)$$
 for all $t \in S$.

2.1. Remark. In the parlance of computational geometry we might call N(s) the Voronoi region of vertex s. If a vertex v has equal distance to several vertices in S, then it belongs to the Voronoi region of one of them.

Next, we consider the subgraph $G'_1 = (S, E'_1, d'_1)$ of G_1 defined by

$$E'_1 = \{(s, t); s, t \in S \text{ and there is an edge}$$

 $(u, v) \in E \text{ with } u \in N(s), v \in N(t)\}$

and

$$d_1'(s, t) = \min\{d_1(s, u) + d(u, v) + d_1(v, t); (u, v) \in E, u \in N(s), v \in N(t)\}.$$

Fig. 1 illustrates that d_1' is in general not the restriction of d_1 to the set E_1' . Nevertheless, a minimum spanning tree of G_1' is always a minimum spanning tree of G_1 , as the following lemma shows.

- **2.2. Lemma.** (a) There is a minimum spanning tree G_2 of G_1 which is a subgraph of G'_1 . Moreover, d_1 and d'_1 agree on the edges of this tree.
- (b) Every minimum spanning tree of G'_1 is a minimum spanning tree of G_1 .

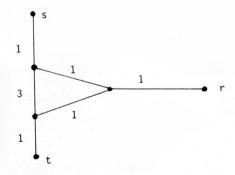


Fig. 1. $S = \{r, s, t\}, d_1(s, t) = 4, \text{ but } d'_1(s, t) = 5.$

Proof. (a) Let $G_2 = (S, E_2)$ be that minimum spanning tree which minimizes the quantity $a := |E_2 - E_1'|$ and among those trees the one which has minimal total distance with respect to d_1' . If a = 0 and d_1 and d_1' agree on the edges of G_2 , then we are done. Let us assume otherwise. Then either (case A) there is an edge $(s, t) \in E_2 - E_1'$ or (case B) $E_2 \subseteq E_1'$ and there is an edge $(s, t) \in E_2$ with $d_1'(s, t) > d_1(s, t)$. Let v_0, \ldots, v_k with $v_0 = s$ and $v_k = t$ be a shortest path from s to t in G. For each vertex v_i let $s(v_i)$ be such that $v_i \in N(s(v_i))$. Then, for every i either $s(v_i) = s(v_{i+1})$ or $(s(v_i), s(v_{i+1})) \in E_1'$. Also, in the latter case, we have

$$d_{1}(s(v_{i}), s(v_{i+1}))$$

$$\leq d'_{1}(s(v_{i}), s(v_{i+1}))$$

$$\leq d_{1}(s(v_{i}), v_{i}) + d(v_{i}, v_{i+1})$$

$$+ d_{1}(v_{i+1}, s(v_{i+1}))$$

$$\leq d_{1}(s, v_{i}) + d(v_{i}, v_{i+1}) + d_{1}(v_{i+1}, t)$$

$$= d_{1}(s, t)$$

$$(< d'_{1}(s, t) \text{ if case B applies}).$$

Here, the first two inequalities are obvious and the third inequality follows from $v_i \in N(s(v_i))$ and $v_{i+1} \in N(s(v_{i+1}))$. The last inequality is only valid if case B applies.

Next, remove the edge (s, t) from the spanning tree. This splits the tree into two connected components. Thus, there must be an i such that $s(v_i)$ and $s(v_{i+1})$ are in different components.

Consider the tree

$$G_2' = (S, E_2 - \{(s, t)\} \cup (s(v_i), s(v_{i+1}))).$$

 G_2' is clearly a spanning tree. Moreover, in case A, G_2' uses one more edge in E_1' than G_2 and has cost no larger than G_2 and, in case B, G_2' also uses only edges in E_1' and has with respect to d_1' a total distance strictly smaller than G_2 . In either case, we derived a contradiction to the choice of G_2 .

(b) Let G'_2 be a minimum spanning tree of G'_1 and let G_2 be a minimum spanning tree of G_1 . By part (a) of the lemma we may assume that G_2 uses

only edges in E'_1 and that d_1 and d'_1 agree on the edges of G_2 . Thus,

$$d_1(G_2') \leq d_1'(G_2') \leq d_1'(G_2) = d_1(G_2) \leq d_1(G_2').$$

Here, the first inequality holds since $d_1(s, t) \le d'_1(s, t)$ for all edges (s, t), the second inequality holds since G'_2 is a minimum spanning tree of G'_1 , the equality holds by our assumption on G_2 , and the third inequality holds since G_2 is a minimum spanning tree of G_1 . We conclude that G'_2 is a minimum spanning tree of G_2 . \square

We infer from this lemma that we may replace step 1. of Algorithm H by

1'. Construct the auxiliary graph $G'_1 = (S, E'_1, d'_1)$ where E'_1 and d'_1 are defined as above.

We discuss the implementation next. The graph G'_1 has only O(|E|) edges and hence step 2. can be carried out in $O(|S| \log |S| + |E|)$ time (cf. [1]). The same amount of time certainly suffices for steps 3., 4., and 5. It remains to describe an efficient implementation of step 1.

We can compute the partition $\{N(s); s \in S\}$ by adjoining an auxiliary vertex s_0 and edges (s_0, s) , $s \in S$, of length 0 to G and then performing a single source shortest path computation with source s_0 . This takes $O(|V| \log |V| + |E|)$ time and yields for every vertex v the vertex $s(v) \in S$ with $v \in N(s(v))$ and the distance $d_1(v, s(v))$.

Next we go through all the edges (u, v) in E and generate the triples $(s(u), s(v), d_1(s(u), u) + d(u, v) + d_1(v, s(v)))$. We sort these triples by bucket sort according to the first two components (cf. [5, Section II.2.1]) and then select for each edge of G'_1 the minimum cost. All of this takes O(|E|) time.

We summarize our discussion in the following theorem.

2.3. Theorem. For a connected, undirected distance graph G = (V, E, d) and a set of vertices $S \subseteq V$, a Steiner tree G_s for G and S with total distance at most 2(1-1/l) times that of a Steiner minimal tree for G and S can be computed in time $O(|V| \log |V| + |E|)$.

3. Conclusion

We presented a fast approximation algorithm for Steiner trees. Our algorithm is simpler than the algorithms by Wu, Widmayer and Wong [8] and Widmayer [7] since we reduce the Steiner tree approximation problem to a single source shortest path problem and a minimum spanning tree problem. Thus, any advances on those problems have direct implications for the Steiner tree problem.

References

[1] M.L. Fredman and R.E. Tarjan, Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms (IEEE, 1984) 338-346.

- [2] M.R. Garey and D.S. Johnson, *Computers and Intractability* (Freeman, San Fransisco, CA, 1979).
- [3] E.N. Gilbert and H.U. Pollak, Steiner minimal trees, SIAM J. Appl. Math. 16 (1) (1968) 1-29.
- [4] L. Kou, G. Markowsky and L. Berman, A fast algorithm for Steiner trees, Acta Informatica 15 (1981) 141-145.
- [5] K. Mehlhorn, Data Structures and Efficient Algorithms (Springer, Berlin, 1984).
- [6] H. Takahashi and A. Matsuyama, An approximate solution for the Steiner problem in graphs, Math. Jap. 24 (1980) 573-577
- [7] P. Widmayer, A fast approximation algorithm for Steiner's problems in graphs, *Graph-Theoretic Concepts in Computer Science*, WG 86, Lecture Notes in Computer Science, Vol. 246 (Springer, Berlin, 1986) 17-28.
- [8] Y.F. Wu, P. Widmayer and C.K. Wong, A faster approximation algorithm for the Steiner problem in graphs, Acta Informatica 23 (1986) 223–229.