
FR
E

E
C

O
P

Y
3

Representing Sequences by Arrays and Linked Lists

Perhaps the world’s oldest data structures were the tabletsin cuneiform script1 used
more than 5 000 years ago by custodians in Sumerian temples. These custodians
kept lists of goods, and their quantities, owners, and buyers. The picture on the left
shows an example. This was possibly the first application of written language. The
operations performed on such lists have remained the same – adding entries, storing
them for later, searching entries and changing them, going through a list to compile
summaries, etc. The Peruvian quipu [137] that you see in the picture on the right
served a similar purpose in the Inca empire, using knots in colored strings arranged
sequentially on a master string. It is probably easier to maintain and use data on
tablets than to use knotted string, but one would not want to haul stone tablets over
Andean mountain trails. It is apparent that different representations make sense for
the same kind of data.

The abstract notion of a sequence, list, or table is very simple and is independent
of its representation in a computer. Mathematically, the only important property is
that the elements of a sequences= 〈e0, . . . ,en−1〉 are arranged in a linear order – in
contrast to the trees and graphs discussed in Chaps. 7 and 8, or the unordered hash
tables discussed in Chap. 4. There are two basic ways of referring to the elements of
a sequence.

One is to specify the index of an element. This is the way we usually think about
arrays, wheres[i] returns thei-th element of a sequences. Our pseudocode supports
static arrays. In astatic data structure, the size is known in advance, and the data
structure is not modifiable by insertions and deletions. In aboundeddata structure,
the maximal size is known in advance. In Sect. 3.2, we introduce dynamicor un-

1 The 4 600 year old tablet at the top left is a list of gifts to thehigh priestess of Adab (see
commons.wikimedia.org/wiki/Image:Sumerian_26th_c_Adab.jpg).

FR
E

E
C

O
P

Y
60 3 Representing Sequences by Arrays and Linked Lists

bounded arrays, which can grow and shrink as elements are inserted and removed.
The analysis of unbounded arrays introduces the concept ofamortized analysis.

The second way of referring to the elements of a sequence is relative to other
elements. For example, one could ask for the successor of an elemente, the prede-
cessor of an elemente′, or for the subsequence〈e, . . . ,e′〉 of elements betweene and
e′. Although relative access can be simulated using array indexing, we shall see in
Sect. 3.1 that a list-based representation of sequences is more flexible. In particular,
it becomes easier to insert or remove arbitrary pieces of a sequence.

Many algorithms use sequences in a quite limited way. Only the front and/or the
rear of the sequence are read and modified. Sequences that areused in this restricted
way are calledstacks, queues, anddeques. We discuss them in Sect. 3.4. In Sect. 3.5,
we summarize the findings of the chapter.

3.1 Linked Lists

In this section, we study the representation of sequences bylinked lists. In a doubly
linked list, each item points to its successor and to its predecessor. In a singly linked
list, each item points to its successor. We shall see that linked lists are easily modified
in many ways: we may insert or delete items or sublists, and wemay concatenate
lists. The drawback is that random access (the operator[·]) is not supported. We
study doubly linked lists in Sect. 3.1.1, and singly linked lists in Sect. 3.1.2. Singly
linked lists are more space-efficient, and somewhat faster,and should therefore be
preferred whenever their functionality suffices. A good wayto think of a linked list
is to imagine a chain, where one element is written on each link. Once we get hold
of one link of the chain, we can retrieve all elements.

3.1.1 Doubly Linked Lists

Figure 3.1 shows the basic building blocks of a linked list. Alist item stores an
element, and pointers to its successor and predecessor. We call a pointer to a list item
ahandle. This sounds simple enough, but pointers are so powerful that we can make
a big mess if we are not careful. What makes a consistent list data structure? We

Class Handle =Pointer to Item

Class Itemof Element // one link in a doubly linked list
e : Element
next: Handle // -

�
-

�
-

�
prev : Handle
invariant next→prev = prev→next = this

Fig. 3.1. The items of a doubly linked list.

FR
E

E
C

O
P

Y
3.1 Linked Lists 61

-

⊥
-

�

e1

· · ·
· · ·
�

en

�

-

Fig. 3.2. The representation of a sequence〈e1, . . . ,en〉 by a doubly linked list. There aren+1
items arranged in a ring, a special dummy itemh containing no element, and one item for
each element of the sequence. The item containingei is the successor of the item containing
ei−1 and the predecessor of the item containingei+1. The dummy item is between the item
containingen and the item containinge1

require that for each itemit, the successor of its predecessor is equal toit and the
predecessor of its successor is also equal toit.

A sequence ofnelements is represented by a ring ofn+1 items. There is a special
dummy itemh, which stores no element. The successorh1 of hstores the first element
of the sequence, the successor ofh1 stores the second element of the sequence, and
so on. The predecessor ofh stores the last element of the sequence; see Fig. 3.2.
The empty sequence is represented by a ring consisting only of h. Since there are no
elements in that sequence,h is its own successor and predecessor. Figure 3.4 defines
a representation of sequences by lists. An object of classList contains a single list
item h. The constructor of the class initializes the headerh to an item containing⊥
and having itself as successor and predecessor. In this way,the list is initialized to
the empty sequence.

We implement all basic list operations in terms of the singleoperationsplice
shown in Fig. 3.3.splicecuts out a sublist from one list and inserts it after some
target item. The sublist is specified by handlesa andb to its first and its last element,
respectively. In other words,b must be reachable froma by following zero or more
next pointers but without going through the dummy item. The target itemt can be
either in the same list or in a different list; in the former case, it must not be inside
the sublist starting ata and ending atb.

splicedoes not change the number of items in the system. We assume that there is
one special list,freeList, that keeps a supply of unused elements. When inserting new
elements into a list, we take the necessary items fromfreeList, and when removing
elements, we return the corresponding items tofreeList. The functioncheckFreeList
allocates memory for new items when necessary. We defer its implementation to
Exercise 3.3 and a short discussion in Sect. 3.6.

With these conventions in place, a large number of useful operations can be im-
plemented as one-line functions that all run in constant-time. Thanks to the power of
splice, we can even manipulate arbitrarily long sublists in constant-time. Figures 3.4
and 3.5 show many examples. In order to test whether a list is empty, we simply
check whetherh is its own successor. If a sequence is nonempty, its first and its last
element are the successor and predecessor, respectively, of h. In order to move an
item b to the positions after an itema′, we simply cut out the sublist starting and
ending atb and insert it aftera′. This is exactly whatsplice(b,b,a′) does. We move

FR
E

E
C

O
P

Y
62 3 Representing Sequences by Arrays and Linked Lists

// Remove〈a, . . . ,b〉 from its current list and insert it aftert
// . . . ,a′,a, . . . ,b,b′, . . .+ . . . ,t,t ′, . . . 7→ . . . ,a′,b′, . . .+ . . . ,t,a, . . . ,b,t ′, . . .
Procedure splice(a,b,t : Handle)

assert a and b belong to the same list, b is not before a, and t6∈ 〈a, . . . ,b〉
// cut out〈a, . . . ,b〉 a′ a b b′

· · · · · ·
-

�
-

�
-

�
-

�a′ :=a→ prev
b′ :=b→ next
a′ → next:=b′ //
b′ → prev:=a′ // · · · · · ·

R
�

-
�

-
�

-

Y

// insert〈a, . . . ,b〉 aftert
t ′ := t → next //

t a b t′

· · · · · ·
R

�
-

�
-

Y

b→ next:= t ′ //
a→ prev:= t // · · · · · ·

R
�

-
�

-
�

-

Y

t → next:=a //
t ′ → prev:=b // · · · · · ·

-
�

-
�

-
�

-
�

Fig. 3.3. Splicing lists.

Class List of Element
// Item h is the predecessor of the first element and the successor of the last element.

h =

(⊥
this
this

)

: Item // init to empty sequence
⊥

�
-

// Simple access functions
Function head() : Handle;return address of h // Pos. before any proper element

Function isEmpty: {0,1}; return h.next =this // 〈〉?
Function first : Handle;assert ¬isEmpty;return h.next
Function last : Handle;assert ¬isEmpty;return h.prev

// Moving elements around within a sequence.
// (〈. . . ,a,b,c. . . ,a′,c′, . . .〉) 7→ (〈. . . ,a,c. . . ,a′,b,c′, . . .〉)
Procedure moveAfter(b, a′ : Handle) splice(b,b,a′)
Procedure moveToFront(b : Handle) moveAfter(b,head)
Procedure moveToBack(b : Handle) moveAfter(b, last)

Fig. 3.4. Some constant-time operations on doubly linked lists.

an element to the first or last position of a sequence by movingit after the head
or after the last element, respectively. In order to delete an elementb, we move it to
freeList. To insert a new elemente, we take the first item offreeList, store the element
in it, and move it to the place of insertion.

FR
E

E
C

O
P

Y
3.1 Linked Lists 63

// Deleting and inserting elements.
// 〈. . . ,a,b,c, . . .〉 7→ 〈. . . ,a,c, . . .〉
Procedure remove(b : Handle) moveAfter(b, freeList.head)
Procedure popFront remove(first)
Procedure popBack remove(last)

// 〈. . . ,a,b, . . .〉 7→ 〈. . . ,a,e,b, . . .〉
Function insertAfter(x : Element; a: Handle) : Handle

checkFreeList // make surefreeListis nonempty. See also Exercise 3.3
a′ := f reeList. f irst // Obtain an itema′ to holdx,
moveAfter(a′,a) // put it at the right place.
a′ → e:=x // and fill it with the right content.
return a′

Function insertBefore(x : Element; b: Handle) : Handlereturn insertAfter(e, pred(b))
Procedure pushFront(x : Element) insertAfter(x, head)
Procedure pushBack(x : Element) insertAfter(x, last)

// Manipulations of entire lists
// (〈a, . . . ,b〉,〈c, . . . ,d〉) 7→ (〈a, . . . ,b,c, . . . ,d〉,〈〉)
Procedure concat(L′ : List)

splice(L′.first, L′.last, last)

// 〈a, . . . ,b〉 7→ 〈〉
Procedure makeEmpty

freeList.concat(this) //
-

⊥
-

� · · ·
· · ·
� �

- 7→
⊥

�
-

Fig. 3.5. More constant-time operations on doubly linked lists.

Exercise 3.1 (alternative list implementation). Discuss an alternative implementa-
tion of List that does not need the dummy itemh. Instead, this representation stores a
pointer to the first list item in the list object. The positionbefore the first list element
is encoded as a null pointer. The interface and the asymptotic execution times of all
operations should remain the same. Give at least one advantage and one disadvantage
of this implementation compared with the one given in the text.

The dummy item is also useful for other operations. For example, consider the
problem of finding the next occurrence of an elementx starting at an itemfrom. If x
is not present,headshould be returned. We use the dummy element as asentinel. A
sentinel is an element in a data structure that makes sure that some loop will termi-
nate. In the case of a list, we store the key we are looking for in the dummy element.
This ensures thatx is present in the list structure and hence a search for it willal-
ways terminate. The search will terminate in a proper list item or the dummy item,
depending on whetherx was present in the list originally. It is no longer necessary,
to test whether the end of the list has been reached. In this way, the trick of using the
dummy itemh as a sentinel saves one test in each iteration and significantly improves
the efficiency of the search:

FR
E

E
C

O
P

Y
64 3 Representing Sequences by Arrays and Linked Lists

Function findNext(x : Element; from: Handle) : Handle
h.e = x // Sentinel

-
x

-
� · · ·

· · ·
� �

-while from→ e 6= x do
from:= from→ next

return from

Exercise 3.2. Implement a procedureswapthat swaps two sublists in constant time,
i.e., sequences(〈. . . ,a′,a, . . . ,b,b′, . . .〉,〈. . . ,c′,c, . . . ,d,d′, . . .〉) are transformed into
(〈. . . ,a′,c, . . . ,d,b′, . . .〉,〈. . . ,c′,a, . . . ,b,d′, . . .〉). Is splicea special case ofswap?

Exercise 3.3 (memory management). Implement the functioncheckFreelistcalled
by insertAfter in Fig. 3.5. Since an individual call of the programming-language
primitive allocate for every single item might be too slow, your function shouldallo-
cate space for items in large batches. The worst-case execution time ofcheckFreeList
should be independent of the batch size. Hint: in addition tofreeList, use a small ar-
ray of free items.

Exercise 3.4. Give a constant-time implementation of an algorithm for rotating a
list to the right: 〈a, . . . ,b,c〉 7→ 〈c,a, . . . ,b〉. Generalize your algorithm to rotate
〈a, . . . ,b,c, . . . ,d〉 to 〈c, . . . ,d,a, . . . ,b〉 in constant time.

Exercise 3.5. findNextusing sentinels is faster than an implementation that checks
for the end of the list in each iteration. But how much faster?What speed difference
do you predict for many searches in a short list with 100 elements, and in a long list
with 10 000 000 elements, respectively? Why is the relative speed difference depen-
dent on the size of the list?

Maintaining the Size of a List

In our simple list data type, it is not possible to determine the length of a list in
constant time. This can be fixed by introducing a member variablesizethat is updated
whenever the number of elements changes. Operations that affect several lists now
need to know about the lists involved, even if low-level functions such asspliceonly
need handles to the items involved. For example, consider the following code for
moving an elementa from a listL to the position aftera′ in a list L′:

Procedure moveAfter(a, a′ : Handle; L, L′ : List)
splice(a,a,a′); L.size--; L′.size++

Maintaining the size of lists interferes with other list operations. When we move
elements as above, we need to know the sequences containing them and, more seri-
ously, operations that move sublists between lists cannot be implemented in constant
time anymore. The next exercise offers a compromise.

Exercise 3.6. Design a list data type that allows sublists to be moved between lists
in constant time and allows constant-time access tosizewhenever sublist operations
have not been used since the last access to the list size. Whensublist operations have
been used,sizeis recomputed only when needed.

FR
E

E
C

O
P

Y
3.1 Linked Lists 65

Exercise 3.7. Explain how the operationsremove, insertAfter, andconcathave to be
modified to keep track of the length of aList.

3.1.2 Singly Linked Lists

The two pointers per item of a doubly linked list make programming quite easy.
Singly linked lists are the lean sisters of doubly linked lists. We useSItemto refer
to an item in a singly linked list.SItems scrap the predecessor pointer and store only
a pointer to the successor. This makes singly linked lists more space-efficient and
often faster than their doubly linked brothers. The downside is that some operations
can no longer be performed in constant time or can no longer besupported in full
generality. For example, we can remove anSItemonly if we know its predecessor.

We adopt the implementation approach used with doubly linked lists. SItems
form collections of cycles, and anSListhas a dummySItem hthat precedes the first
proper element and is the successor of the last proper element. Many operations on
Lists can still be performed if we change the interface slightly.For example, the
following implementation ofspliceneeds thepredecessorof the first element of the
sublist to be moved:

// (〈. . . ,a′,a, . . . ,b,b′ . . .〉,〈. . . ,t,t ′, . . .〉) 7→ (〈. . . ,a′,b′ . . .〉,〈. . . ,t,a, . . . ,b,t ′, . . .〉)

Procedure splice(a′,b,t : SHandle)
(

a′ → next
t → next
b→ next

)

:=

(

b→ next
a′ → next
t → next

)

//

a′ a b b′

-
z

- · · · -
j

-

-
3

-

t t ′

Similarly, findNextshould not return the handle of theSItemwith the next hit
but its predecessor, so that it remains possible to remove the element found. Con-
sequently,findNextcan only start searching at the itemafter the item given to it. A
useful addition toSListis a pointer to the last element because it allows us to support
pushBackin constant time.

Exercise 3.8. Implement classesSHandle, SItem, andSListfor singly linked lists in
analogy toHandle, Item, andList. Show that the following functions can be imple-
mented to run in constant time. The operationshead, first, last, isEmpty, popFront,
pushFront, pushBack, insertAfter, concat, andmakeEmptyshould have the same in-
terface as before. The operationsmoveAfter, moveToFront, moveToBack, remove,
popFront, andfindNextneed different interfaces.

We shall see several applications of singly linked lists in later chapters, for exam-
ple in hash tables in Sect. 4.1 and in mergesort in Sect. 5.2. We may also use singly
linked lists to implement free lists of memory managers – even for items in doubly
linked lists.

FR
E

E
C

O
P

Y
66 3 Representing Sequences by Arrays and Linked Lists

3.2 Unbounded Arrays

Consider an array data structure that, besides the indexingoperation[·], supports the
following operationspushBack, popBack, andsize:

〈e0, . . . ,en〉.pushBack(e) = 〈e0, . . . ,en,e〉 ,

〈e0, . . . ,en〉.popBack= 〈e0, . . . ,en−1〉 ,

size(〈e0, . . . ,en−1〉) = n .

Why are unbounded arrays important? Because in many situations we do not know in
advance how large an array should be. Here is a typical example: suppose you want
to implement the Unix commandsort for sorting the lines of a file. You decide
to read the file into an array of lines, sort the array internally, and finally output the
sorted array. With unbounded arrays, this is easy. With bounded arrays, you would
have to read the file twice: once to find the number of lines it contains, and once
again to actually load it into the array.

We come now to the implementation of unbounded arrays. We emulate an un-
bounded arrayu with n elements by use of a dynamically allocated bounded arrayb
with w entries, wherew ≥ n. The firstn entries ofb are used to store the elements
of u. The lastw− n entries ofb are unused. As long asw > n, pushBacksimply
incrementsn and uses the first unused entry ofb for the new element. Whenw = n,
the nextpushBackallocates a new bounded arrayb′ that is larger by a constant factor
(say a factor of two). To reestablish the invariant thatu is stored inb, the contents of
b are copied to the new array so that the oldb can be deallocated. Finally, the pointer
definingb is redirected to the new array. Deleting the last element with popBack
is even easier, since there is no danger thatb may become too small. However, we
might waste a lot of space if we allowb to be much larger than needed. The wasted
space can be kept small by shrinkingb whenn becomes too small. Figure 3.6 gives
the complete pseudocode for an unbounded-array class. Growing and shrinking are
performed using the same utility procedurereallocate. Our implementation uses con-
stantsα andβ , with β = 2 andα = 4. Whenever the current bounded array becomes
too small, we replace it by an array ofβ times the old size. Whenever the size of the
current array becomesα times as large as its used part, we replace it by an array of
sizeβn. The reasons for the choice ofα andβ shall become clear later.

3.2.1 Amortized Analysis of Unbounded Arrays: The Global Argument

Our implementation of unbounded arrays follows the algorithm design principle
“make the common case fast”. Array access with[·] is as fast as for bounded ar-
rays. Intuitively,pushBackandpopBackshould “usually” be fast – we just have to
updaten. However, some insertions and deletions incur a cost ofΘ(n). We shall
show that such expensive operations are rare and that any sequence ofm operations
starting with an empty array can be executed in time O(m).

Lemma 3.1. Consider an unbounded array u that is initially empty. Any sequence
σ = 〈σ1, . . . ,σm〉 of pushBack or popBack operations on u is executed in timeO(m).

FR
E

E
C

O
P

Y
3.2 Unbounded Arrays 67

Class UArray of Element
Constant β = 2 :R+ // growth factor
Constant α = 4 :R+ // worst case memory blowup
w = 1 :N // allocated size
n = 0 :N // current size.
invariant n≤ w < αn or n= 0 and w≤ β
b : Array [0..w−1] of Element // b→ e0 · · · en−1

n
· · ·

w

Operator [i :N] : Element
assert 0≤ i < n
return b[i]

Function size:N return n

Procedure pushBack(e : Element) // Example forn = w = 4:
if n = w then // b→ 0 1 2 3

reallocate(βn) // b→ 0 1 2 3
b[n] :=e // b→ 0 1 2 3 e
n++ // b→ 0 1 2 3 e

Procedure popBack // Example forn = 5, w = 16:
assert n > 0 // b→ 0 1 2 3 4
n-- // b→ 0 1 2 3 4
if αn≤ w∧n > 0 then // reduce waste of space

reallocate(βn) // b→ 0 1 2 3

Procedure reallocate(w′ : N) // Example forw = 4, w′ = 8:
w:=w′ // b→ 0 1 2 3

b′ :=allocate Array [0..w′−1] of Element // b′ →
(b′[0], . . . ,b′[n−1]) :=(b[0], . . . ,b[n−1]) // b′ → 0 1 2 3

dispose b // b→ 0 1 2 3

b:=b′ // pointer assignmentb→ 0 1 2 3

Fig. 3.6. Pseudocode for unbounded arrays

Lemma 3.1 is a nontrivial statement. A small and innocent-looking change to the
program invalidates it.

Exercise 3.9. Your manager asks you to change the initialization ofα to α = 2. He
argues that it is wasteful to shrink an array only when three-fourths of it are unused.
He proposes to shrink it whenn≤w/2. Convince him that this is a bad idea by giving
a sequence ofm pushBackandpopBackoperations that would need timeΘ

(

m2
)

if
his proposal was implemented.

FR
E

E
C

O
P

Y
68 3 Representing Sequences by Arrays and Linked Lists

Lemma 3.1 makes a statement about the amortized cost ofpushBackandpopBack
operations. Although single operations may be costly, the cost of a sequence ofmop-
erations is O(m). If we divide the total cost of the operations inσ by the number of
operations, we get a constant. We say that theamortized costof each operation is
constant. Our usage of the term “amortized” is similar to itsusage in everyday lan-
guage, but it avoids a common pitfall. “I am going to cycle to work every day from
now on, and hence it is justified to buy a luxury bike. The cost per ride will be very
small – the investment will be amortized.” Does this kind of reasoning sound famil-
iar to you? The bike is bought, it rains, and all good intentions are gone. The bike
has not been amortized. We shall instead insist that a large expenditure is justified by
savings in the past and not by expected savings in the future.Suppose your ultimate
goal is to go to work in a luxury car. However, you are not goingto buy it on your
first day of work. Instead, you walk and put a certain amount ofmoney per day into
a savings account. At some point, you will be able to buy a bicycle. You continue to
put money away. At some point later, you will be able to buy a small car, and even
later you can finally buy a luxury car. In this way, every expenditure can be paid for
by past savings, and all expenditures are amortized. Using the notion of amortized
costs, we can reformulate Lemma 3.1 more elegantly. The increased elegance also
allows better comparisons between data structures.

Corollary 3.2. Unbounded arrays implement the operation[·] in worst-case constant
time and the operations pushBack and popBack in amortized constant time.

To prove Lemma 3.1, we use thebank accountor potentialmethod. We asso-
ciate anaccountor potentialwith our data structure and force everypushBackand
popBackto put a certain amount into this account. Usually, we call our unit of cur-
rency atoken. The idea is that whenever a call ofreallocateoccurs, the balance in
the account is sufficiently high to pay for it. The details areas follows. A token can
pay for moving one element fromb to b′. Note that element copying in the proce-
durereallocateis the only operation that incurs a nonconstant cost in Fig. 3.6. More
concretely,reallocateis always called withw′ = 2n and thus has to copyn elements.
Hence, for each call ofreallocate, we withdrawn tokens from the account. We charge
two tokens for each call ofpushBackand one token for each call ofpopBack. We now
show that these charges suffice to cover the withdrawals madeby reallocate.

The first call ofreallocateoccurs when there is one element already in the array
and a new element is to be inserted. The element already in thearray has deposited
two tokens in the account, and this more than covers the one token withdrawn by
reallocate. The new element provides its tokens for the next call ofreallocate.

After a call of reallocate, we have an array ofw elements:n = w/2 slots are
occupied andw/2 are free. The next call ofreallocateoccurs when eithern = w or
4n ≤ w. In the first case, at leastw/2 elements have been added to the array since
the last call ofreallocate, and each one of them has deposited two tokens. So we
have at leastw tokens available and can cover the withdrawal made by the next call
of reallocate. In the second case, at leastw/2−w/4 = w/4 elements have been
removed from the array since the last call ofreallocate, and each one of them has
deposited one token. So we have at leastw/4 tokens available. The call ofreallocate

FR
E

E
C

O
P

Y
3.2 Unbounded Arrays 69

needs at mostw/4 tokens, and hence the cost of the call is covered. This completes
the proof of Lemma 3.1. ⊓⊔

Exercise 3.10. Redo the argument above for general values ofα andβ , and charge
β/(β − 1) tokens for each call ofpushBackand β/(α − β) tokens for each call
of popBack. Let n′ be such thatw = βn′. Then, after areallocate, n′ elements are
occupied and(β −1)n′ = ((β −1)/β)w are free. The next call ofreallocateoccurs
when eithern = w or αn≤ w. Argue that in both cases there are enough tokens.

Amortized analysis is an extremely versatile tool, and so wethink that it is worth-
while to know some alternative proof methods. We shall now give two variants of the
proof above.

Above, we charged two tokens for eachpushBackand one token for each
popBack. Alternatively, we could charge three tokens for eachpushBackand not
chargepopBackat all. The accounting is simple. The first two tokens pay for the
insertion as above, and the third token is used when the element is deleted.

Exercise 3.11 (continuation of Exercise 3.10). Show that a charge ofβ/(β −1)+
β/(α − β) tokens for eachpushBackis enough. Determine values ofα such that
β/(α −β) ≤ 1/(β −1) andβ/(α −β)≤ β/(β −1), respectively.

3.2.2 Amortized Analysis of Unbounded Arrays: The Local Argument

We now describe our second modification of the proof. In the argument above, we
used a global argument in order to show that there are enough tokens in the account
before each call ofreallocate. We now show how to replace the global argument by a
local argument. Recall that, immediately after a call ofreallocate, we have an array
of w elements, out of whichw/2 are filled andw/2 are free. We argue that at any
time after the first call ofreallocate, the following token invariant holds:

the account contains at least max(2(n−w/2),w/2−n) tokens.

Observe that this number is always nonnegative. We use induction on the number of
operations. Immediately after the firstreallocate, there is one token in the account
and the invariant requires none. ApushBackincreasesn by one and adds two tokens.
So the invariant is maintained. ApopBackremoves one element and adds one token.
So the invariant is again maintained. When a call ofreallocateoccurs, we have either
n = w or 4n ≤ w. In the former case, the account contains at leastn tokens, andn
tokens are required for the reallocation. In the latter case, the account contains at
leastw/4 tokens, andn are required. So, in either case, the number of tokens suffices.
Also, after the reallocation,n = w/2 and hence no tokens are required.

Exercise 3.12. Charge three tokens for apushBackand no tokens for apopBack.
Argue that the account contains always at leastn+ max(2(n−w/2),w/2− n) =
max(3n−w,w/2) tokens.

FR
E

E
C

O
P

Y
70 3 Representing Sequences by Arrays and Linked Lists

Exercise 3.13 (popping many elements). Implement an operationpopBack(k) that
removes the lastk elements in amortized constant time independent ofk.

Exercise 3.14 (worst-case constant access time). Suppose, for a real-time applica-
tion, you need an unbounded array data structure with aworst-caseconstant execu-
tion time for all operations. Design such a data structure. Hint: store the elements in
up to two arrays. Start moving elements to a larger array wellbefore a small array is
completely exhausted.

Exercise 3.15 (implicitly growing arrays). Implement unbounded arrays where the
operation[i] allows any positive index. Wheni ≥ n, the array is implicitly grown to
sizen = i +1. Whenn≥ w, the array is reallocated as forUArray. Initialize entries
that have never been written with some default value⊥.

Exercise 3.16 (sparse arrays). Implement bounded arrays with constant time for
allocating arrays and constant time for the operation[·]. All array elements should
be (implicitly) initialized to⊥. You are not allowed to make any assumptions about
the contents of a freshly allocated array. Hint: use an extraarray of the same size,
and store the numbert of array elements to which a value has already been assigned.
Thereforet = 0 initially. An array entryi to which a value has been assigned stores
that value and an indexj, 1≤ j ≤ t, of the extra array, andi is stored in that index of
the extra array.

3.2.3 Amortized Analysis of Binary Counters

In order to demonstrate that our techniques for amortized analysis are also useful for
other applications, we shall now give a second example. We look at the amortized
cost of incrementing a binary counter. The valuen of the counter is represented by a
sequence. . .βi . . .β1β0 of binary digits, i.e.,βi ∈ {0,1} andn = ∑i≥0 βi2i . The initial
value is zero. Its representation is a string of zeros. We define the cost of incrementing
the counter as one plus the number of trailing ones in the binary representation, i.e.,
the transition

. . .01k → . . .10k

has a costk+1. What is the total cost ofm increments? We shall show that the cost
is O(m). Again, we give a global argument first and then a local argument.

If the counter is incrementedm times, the final value ism. The representation of
the numberm requiresL = 1+ ⌈logm⌉ bits. Among the numbers 0 tom−1, there
are at most 2L−k−1 numbers whose binary representation ends with a zero followed
by k ones. For each one of them, an increment costs 1+k. Thus the total cost of the
m increments is bounded by

∑
0≤k<L

(k+1)2L−k−1 = 2L ∑
1≤k≤L

k/2k ≤ 2L ∑
k≥1

k/2k = 2 ·2L ≤ 4m ,

where the last equality uses (A.14). Hence, the amortized cost of an increment is
O(1).

FR
E

E
C

O
P

Y
3.3 *Amortized Analysis 71

The argument above is global, in the sense that it requires anestimate of the
number of representations ending in a zero followed byk ones. We now give a local
argument which does not need such a bound. We associate a bankaccount with
the counter. Its balance is the number of ones in the binary representation of the
counter. So the balance is initially zero. Consider an increment of costk+1. Before
the increment, the representation ends in a zero followed byk ones, and after the
increment, the representation ends in a one followed byk−1 zeros. So the number
of ones in the representation decreases byk− 1, i.e., the operation releasesk− 1
tokens from the account. The cost of the increment isk+1. We cover a cost ofk−1
by the tokens released from the account, and charge a cost of two for the operation.
Thus the total cost ofm operations is at most 2m.

3.3 *Amortized Analysis

We give here a general definition of amortized time bounds andamortized analysis.
We recommend that one should read this section quickly and come back to it when
needed. We consider an arbitrary data structure. The valuesof all program variables
comprise the state of the data structure; we useSto denote the set of states. In the first
example in the previous section, the state of our data structure is formed by the values
of n, w, andb. Let s0 be the initial state. In our example, we haven = 0, w = 1, and
b is an array of size one in the initial state. We have operations to transform the data
structure. In our example, we had the operationspushBack, popBack, andreallocate.
The application of an operationX in a states transforms the data structure to a new
states′ and has a costTX(s). In our example, the cost of apushBackor popBackis 1,
excluding the cost of the possible call toreallocate. The cost of a callreallocate(βn)
is Θ(n).

Let F be a sequence of operationsOp1, Op2, Op3, . . . ,Opn. Starting at the initial
states0, F takes us through a sequence of states to a final statesn:

s0
Op1−→ s1

Op2−→ s2
Op3−→ ·· · Opn−→ sn .

The costT(F) of F is given by

T(F) = ∑
1≤i≤n

TOpi
(si−1) .

A family of functionsAX(s), one for each operationX, is called afamily of amortized
time boundsif, for every sequenceF of operations,

T(F) ≤ A(F) := c+ ∑
1≤i≤n

AOpi
(si−1)

for some constantc not depending onF , i.e., up to an additive constant, the total
actual execution time is bounded by the total amortized execution time.

FR
E

E
C

O
P

Y
72 3 Representing Sequences by Arrays and Linked Lists

There is always a trivial way to define a family of amortized time bounds,
namelyAX(s) := TX(s) for all s. The challenge is to find a family of simple func-
tionsAX(s) that form a family of amortized time bounds. In our example, the func-
tionsApushBack(s) = ApopBack(s) = A[·](s) = O(1) andAreallocate(s) = 0 for all s form
a family of amortized time bounds.

3.3.1 The Potential or Bank Account Method for Amortized Analysis

We now formalize the technique used in the previous section.We have a function
pot that associates a nonnegative potential with every state ofthe data structure, i.e.,
pot : S−→ R≥0. We call pot(s) the potential of the states, or the balance of the
savings account when the data structure is in the states. It requires ingenuity to
come up with an appropriate functionpot. For an operationX that transforms a state
s into a states′ and has costTX(s), we define the amortized costAX(s) as the sum of
the potential change and the actual cost, i.e.,AX(s) = pot(s′)−pot(s)+ TX(s). The
functions obtained in this way form a family of amortized time bounds.

Theorem 3.3 (potential method). Let S be the set of states of a data structure, let
s0 be the initial state, and let pot: S−→ R≥0 be a nonnegative function. For an

operation X and a state s with s
X−→ s′, we define

AX(s) = pot(s′)−pot(s)+TX(s).

The functions AX(s) are then a family of amortized time bounds.

Proof. A short computation suffices. Consider a sequenceF = 〈Op1, . . . ,Opn〉 of
operations. We have

∑
1≤i≤n

AOpi (si−1) = ∑
1≤i≤n

(pot(si)−pot(si−1)+TOpi (si−1))

= pot(sn)−pot(s0)+ ∑
1≤i≤n

TOpi
(si−1)

≥ ∑
1≤i≤n

TOpi
(si−1)−pot(s0),

sincepot(sn) ≥ 0. ThusT(F) ≤ A(F)+pot(s0). ⊓⊔

Let us formulate the analysis of unbounded arrays in the language above. The
state of an unbounded array is characterized by the values ofn andw. Following
Exercise 3.12, the potential in state(n,w) is max(3n−w,w/2). The actual costsT of
pushBackandpopBackare 1 and the actual cost ofreallocate(βn) is n. The potential
of the initial state(n,w) = (0,1) is 1/2. A pushBackincreasesn by 1 and hence
increases the potential by at most 3. Thus its amortized costis bounded by 4. A
popBackdecreasesn by 1 and hence does not increase the potential. Its amortized
cost is therefore at most 1. The firstreallocateoccurs when the data structure is in
the state(n,w) = (1,1). The potential of this state is max(3− 1,1/2) = 2, and the

FR
E

E
C

O
P

Y
3.3 *Amortized Analysis 73

actual cost of thereallocate is 1. After thereallocate, the data structure is in the
state(n,w) = (1,2) and has a potential max(3−2,1) = 1. Therefore the amortized
cost of the firstreallocateis 1−2+1= 0. Consider any other call ofreallocate. We
have eithern = w or 4n≤ w. In the former case, the potential before thereallocate
is 2n, the actual cost isn, and the new state is(n,2n) and has a potentialn. Thus the
amortized cost isn−2n+n= 0. In the latter case, the potential before the operation
is w/2, the actual cost isn, which is at mostw/4, and the new state is(n,w/2)
and has a potentialw/4. Thus the amortized cost is at mostw/4−w/2+ w/4 = 0.
We conclude that the amortized costs ofpushBackandpopBackare O(1) and the
amortized cost ofreallocateis zero or less. Thus a sequence ofm operations on an
unbounded array has cost O(m).

Exercise 3.17 (amortized analysis of binary counters). Consider a nonnegative in-
tegerc represented by an array of binary digits, and a sequence ofm increment and
decrement operations. Initially,c = 0. This exercise continues the discussion at the
end of Sect. 3.2.

(a) What is the worst-case execution time of an increment or adecrement as a func-
tion of m? Assume that you can work with only one bit per step.

(b) Prove that the amortized cost of the increments is constant if there are no decre-
ments. Hint: define the potential ofc as the number of ones in the binary repre-
sentation ofc.

(c) Give a sequence ofm increment and decrement operations with costΘ(mlogm).
(d) Give a representation of counters such that you can achieve worst-case constant

time for increments and decrements.
(e) Allow each digitdi to take values from{−1,0,1}. The value of the counter is

c = ∑i di2i. Show that in thisredundant ternarynumber system, increments and
decrements have constant amortized cost. Is there an easy way to tell whether
the value of the counter is zero?

3.3.2 Universality of Potential Method

We argue here that the potential-function technique is strong enough to obtain any
family of amortized time bounds.

Theorem 3.4. Let BX(s) be a family of amortized time bounds. There is then a po-
tential function pot such that AX(s) ≤ BX(s) for all states s and all operations X,
where AX(s) is defined according to Theorem 3.3.

Proof. Let c be such thatT(F)≤ B(F)+c for any sequence of operationsF starting
at the initial state. For any states, we define its potentialpot(s) by

pot(s) = inf {B(F)+c−T(F) : F is a sequence of operations with final states} .

We need to write inf instead of min, since there might be infinitely many sequences
leading tos. We havepot(s)≥ 0 for anys, sinceT(F)≤B(F)+c for any sequenceF .
Thuspot is a potential function, and the functionsAX(s) form a family of amortized

FR
E

E
C

O
P

Y
74 3 Representing Sequences by Arrays and Linked Lists

time bounds. We need to show thatAX(s) ≤ BX(s) for all X and s. Let ε > 0 be
arbitrary. We shall show thatAX(s) ≤ BX(s)+ ε. Sinceε is arbitrary, this proves that
AX(s) ≤ BX(s).

Let F be a sequence with final states andB(F)+c−T(F) ≤ pot(s)+ ε. Let F ′

beF followed byX, i.e.,

s0
F−→ s

X−→ s′ .

Thenpot(s′) ≤ B(F ′)+ c−T(F ′) by the definition ofpot(s′), pot(s) ≥ B(F)+ c−
T(F)− ε by the choice ofF, B(F ′) = B(F) + BX(s) and T(F ′) = T(F) + TX(s)
sinceF ′ = F ◦X, andAX(s) = pot(s′)− pot(s)+ TX(s) by the definition ofAX(s).
Combining these inequalities, we obtain

AX(s) ≤ (B(F ′)+c−T(F ′))− (B(F)+c−T(F)− ε)+TX(s)

= (B(F ′)−B(F))− (T(F ′)−T(F)−TX(s))+ ε
= BX(s)+ ε . ⊓⊔

3.4 Stacks and Queues

Sequences are often used in a rather limited way. Let us startwith some examples
from precomputer days. Sometimes a clerk will work in the following way: the clerk
keeps astackof unprocessed files on her desk. New files are placed on the topof
the stack. When the clerk processes the next file, she also takes it from the top of
the stack. The easy handling of this “data structure” justifies its use; of course, files
may stay in the stack for a long time. In the terminology of thepreceding sections,
a stack is a sequence that supports only the operationspushBack, popBack, andlast.
We shall use the simplified namespush, pop, andtop for the three stack operations.

The behavior is different when people stand in line waiting for service at a post
office: customers join the line at one end and leave it at the other end. Such sequences
are calledFIFO (first in, first out) queuesor simply queues. In the terminology of
theList class, FIFO queues use only the operationsfirst, pushBack, andpopFront.

...
stack

...
FIFO queue

...

pushBack popBackpushFrontpopFront

deque

Fig. 3.7. Operations on stacks, queues, and double-ended queues (deques)

FR
E

E
C

O
P

Y
3.4 Stacks and Queues 75

The more generaldeque(pronounced “deck”), ordouble-ended queue, allows the
operationsfirst, last, pushFront, pushBack, popFront, andpopBackand can also be
observed at a post office when some not so nice individual jumps the line, or when
the clerk at the counter gives priority to a pregnant woman atthe end of the line.
Figure 3.7 illustrates the access patterns of stacks, queues, and deques.

Exercise 3.18 (the Tower of Hanoi). In the great temple of Brahma in Benares,
on a brass plate under the dome that marks the center of the world, there are 64
disks of pure gold that the priests carry one at a time betweenthree diamond needles
according to Brahma’s immutable law: no disk may be placed ona smaller disk. At
the beginning of the world, all 64 disks formed the Tower of Brahma on one needle.
Now, however, the process of transfer of the tower from one needle to another is in
mid-course. When the last disk is finally in place, once againforming the Tower of
Brahma but on a different needle, then the end of the world will come and all will
turn to dust, [93].2

Describe the problem formally for any numberk of disks. Write a program that
uses three stacks for the piles and produces a sequence of stack operations that trans-
form the state(〈k, . . . ,1〉,〈〉,〈〉) into the state(〈〉,〈〉,〈k, . . . ,1〉).

Exercise 3.19. Explain how to implement a FIFO queue using two stacks so that
each FIFO operation takes amortized constant time.

Why should we care about these specialized types of sequenceif we already
know a list data structure which supports all of the operations above and more in con-
stant time? There are at least three reasons. First, programs become more readable
and are easier to debug if special usage patterns of data structures are made explicit.
Second, simple interfaces also allow a wider range of implementations. In particu-
lar, the simplicity of stacks and queues allows specializedimplementations that are
more space-efficient than generalLists. We shall elaborate on this algorithmic aspect
in the remainder of this section. In particular, we shall strive for implementations
based on arrays rather than lists. Third, lists are not suited for external-memory use
because any access to a list item may cause an I/O operation. The sequential access
patterns to stacks and queues translate into good reuse of cache blocks when stacks
and queues are represented by arrays.

Bounded stacks, where we know the maximal size in advance, are readily imple-
mented with bounded arrays. For unbounded stacks, we can useunbounded arrays.
Stacks can also be represented by singly linked lists: the top of the stack corresponds
to the front of the list. FIFO queues are easy to realize with singly linked lists with
a pointer to the last element. However, deques cannot be represented efficiently by
singly linked lists.

We discuss next an implementation of bounded FIFO queues by use of arrays; see
Fig. 3.8. We view an array as a cyclic structure where entry zero follows the last entry.
In other words, we have array indices 0 ton, and view the indices modulon+1. We

2 In fact, this mathematical puzzle was invented by the Frenchmathematician Edouard Lucas
in 1883.

FR
E

E
C

O
P

Y
76 3 Representing Sequences by Arrays and Linked Lists

Class BoundedFIFO(n: N) of Element
b : Array [0..n] of Element
h = 0 :N // index of first element
t = 0 :N // index of first free entry

h

t0n

b

Function isEmpty: {0,1}; return h = t

Function first : Element;assert ¬isEmpty;return b[h]

Function size: N; return (t −h+n+1) mod (n+1)

Procedure pushBack(x : Element)
assert size< n
b[t] :=x
t :=(t +1) mod (n+1)

Procedure popFrontassert ¬isEmpty; h:=(h+1) mod (n+1)

Fig. 3.8. An array-based bounded FIFO queue implementation.

maintain two indicesh andt that delimit the range of valid queue entries; the queue
comprises the array elements indexed byh..t−1. The indices travel around the cycle
as elements are queued and dequeued. The cyclic semantics ofthe indices can be
implemented using arithmetics modulo the array size.3 We always leave at least one
entry of the array empty, because otherwise it would be difficult to distinguish a full
queue from an empty queue. The implementation is readily generalized to bounded
deques. Circular arrays also support the random access operator[·]:

Operator [i : N] : Element;return b[i +h mod n]

Bounded queues and deques can be made unbounded using techniques similar to
those used for unbounded arrays in Sect. 3.2.

We have now seen the major techniques for implementing stacks, queues, and
deques. These techniques may be combined to obtain solutions that are particularly
suited for very large sequences or for external-memory computations.

Exercise 3.20 (lists of arrays). Here we aim to develop a simple data structure for
stacks, FIFO queues, and deques that combines all the advantages of lists and un-
bounded arrays and is more space-efficient than either listsor unbounded arrays.
Use a list (doubly linked for deques) where each item stores an array ofK elements
for some large constantK. Implement such a data structure in your favorite program-
ming language. Compare the space consumption and executiontime with those for
linked lists and unbounded arrays in the case of large stacks.

Exercise 3.21 (external-memory stacks and queues). Design a stack data struc-
ture that needs O(1/B) I/Os per operation in the I/O model described in Sect. 2.2. It

3 On some machines, one might obtain significant speedups by choosing the array size to be
a power of two and replacingmod by bit operations.

FR
E

E
C

O
P

Y
3.5 Lists Versus Arrays 77

suffices to keep two blocks in internal memory. What can happen in a naive imple-
mentation with only one block in memory? Adapt your data structure to implement
FIFO queues, again using two blocks of internal buffer memory. Implement deques
using four buffer blocks.

3.5 Lists Versus Arrays

Table 3.1 summarizes the findings of this chapter. Arrays arebetter at indexed ac-
cess, whereas linked lists have their strength in manipulations of sequences at ar-
bitrary positions. Both of these approaches realize the operations needed for stacks
and queues efficiently. However, arrays are more cache-efficient here, whereas lists
provide worst-case performance guarantees.

Table 3.1. Running times of operations on sequences withn elements. The entries have an
implicit O(·) around them.List stands for doubly linked lists,SListstands for singly linked
lists,UArray stands for unbounded arrays, andCArray stands for circular arrays

Operation List SList UArray CArrayExplanation of “∗”
[·] n n 1 1
size 1∗ 1∗ 1 1 Not with interlistsplice
first 1 1 1 1
last 1 1 1 1
insert 1 1∗ n n insertAfteronly
remove 1 1∗ n n removeAfteronly
pushBack 1 1 1∗ 1∗ Amortized
pushFront 1 1 n 1∗ Amortized
popBack 1 n 1∗ 1∗ Amortized
popFront 1 1 n 1∗ Amortized
concat 1 1 n n
splice 1 1 n n
findNext,. . . n n n∗ n∗ Cache-efficient

Singly linked lists can compete with doubly linked lists in most but not all re-
spects. The only advantage of cyclic arrays over unbounded arrays is that they can
implementpushFrontandpopFrontefficiently.

Space efficiency is also a nontrivial issue. Linked lists arevery compact if the
elements are much larger than the pointers. For smallElementtypes, arrays are usu-
ally more compact because there is no overhead for pointers.This is certainly true
if the sizes of the arrays are known in advance so that boundedarrays can be used.
Unbounded arrays have a trade-off between space efficiency and copying overhead
during reallocation.

FR
E

E
C

O
P

Y
78 3 Representing Sequences by Arrays and Linked Lists

3.6 Implementation Notes

Every decent programming language supports bounded arrays. In addition, un-
bounded arrays, lists, stacks, queues, and deques are provided in libraries that are
available for the major imperative languages. Nevertheless, you will often have to
implement listlike data structures yourself, for example when your objects are mem-
bers of several linked lists. In such implementations, memory management is often
a major challenge.

3.6.1 C++

The classvector〈Element〉 in the STL realizes unbounded arrays. However, most
implementations never shrink the array. There is functionality for manually setting
the allocated size. Usually, you will give some initial estimate for the sequence sizen
when thevectoris constructed. This can save you many grow operations. Often, you
also know when the array will stop changing size, and you can then forcew= n. With
these refinements, there is little reason to use the built-inC-style arrays. An added
benefit ofvectors is that they are automatically destroyed when the variablegoes out
of scope. Furthermore, during debugging, you may switch to implementations with
bound checking.

There are some additional issues that you might want to address if you need very
high performance for arrays that grow or shrink a lot. Duringreallocation,vectorhas
to move array elements using the copy constructor ofElement. In most cases, a call
to the low-level byte copy operationmemcpywould be much faster. Another low-
level optimization is to implementreallocateusing the standardC function realloc.
The memory manager might be able to avoid copying the data entirely.

A stumbling block with unbounded arrays is that pointers to array elements be-
come invalid when the array is reallocated. You should make sure that the array does
not change size while such pointers are being used. If reallocations cannot be ruled
out, you can use array indices rather than pointers.

The STL and LEDA [118] offer doubly linked lists in the classlist〈Element〉,
and singly linked lists in the classslist〈Element〉. Their memory management uses
free lists for all objects of (roughly) the same size, ratherthan only for objects of the
same class.

If you need to implement a listlike data structure, note thatthe operatornewcan
be redefined for each class. The standard library classallocator offers an interface
that allows you to use your own memory management while cooperating with the
memory managers of other classes.

The STL provides the classesstack〈Element〉 and deque〈Element〉 for stacks
and double-ended queues, respectively.Deques also allow constant-time indexed ac-
cess using[·]. LEDA offers the classesstack〈Element〉 andqueue〈Element〉 for un-
bounded stacks, and FIFO queues implemented via linked lists. It also offers bounded
variants that are implemented as arrays.

Iterators are a central concept of the STL; they implement our abstract view of
sequences independent of the particular representation.

FR
E

E
C

O
P

Y
3.7 Historical Notes and Further Findings 79

3.6.2 Java

Theutil package of the Java 6 platform providesArrayList for unbounded arrays and
LinkedListfor doubly linked lists. There is aDequeinterface, with implementations
by use ofArrayDequeandLinkedList. A Stackis implemented as an extension to
Vector.

Many Java books proudly announce that Java has no pointers sothat you might
wonder how to implement linked lists. The solution is that object references in Java
are essentially pointers. In a sense, Java hasonlypointers, because members of non-
simple type are always references, and are never stored in the parent object itself.

Explicit memory management is optional in Java, since it provides garbage col-
lections of all objects that are not referenced any more.

3.7 Historical Notes and Further Findings

All of the algorithms described in this chapter are “folklore”, i.e., they have been
around for a long time and nobody claims to be their inventor.Indeed, we have seen
that many of the underlying concepts predate computers.

Amortization is as old as the analysis of algorithms. Thebank accountandpo-
tential methods were introduced at the beginning of the 1980s by R. E.Brown, S.
Huddlestone, K. Mehlhorn, D. D. Sleator, and R. E. Tarjan [32, 95, 182, 183]. The
overview article [188] popularized the termamortized analysis, and Theorem 3.4
first appeared in [127].

There is an arraylike data structure that supports indexed access in constant time
and arbitrary element insertion and deletion in amortized time O(

√
n). The trick is

relatively simple. The array is split into subarrays of sizen′ = Θ(
√

n). Only the last
subarray may contain fewer elements. The subarrays are maintained as cyclic arrays,
as described in Sect. 3.4. Elementi can be found in entryi mod n′ of subarray⌊i/n′⌋.
A new element is inserted into its subarray in time O(

√
n). To repair the invariant that

subarrays have the same size, the last element of this subarray is inserted as the first
element of the next subarray in constant time. This process of shifting the extra ele-
ment is repeated O(n/n′) = O(

√
n) times until the last subarray is reached. Deletion

works similarly. Occasionally, one has to start a new last subarray or changen′ and
reallocate everything. The amortized cost of these additional operations can be kept
small. With some additional modifications, all deque operations can be performed in
constant time. We refer the reader to [107] for more sophisticated implementations
of deques and an implementation study.

FR
E

E
C

O
P

Y

