R ing Sequences by Arraysand Linked Lists

shows an example. This wa
operations performed on suc
them for later, searching entrie
summaries, etc. The Peruvian quip
served a similar purpose in the Inca
sequentially on a master string. It i
tablets than to use knotted string, but
Andean mountain trails. It is apparent t
the same kind of data.

, gomgugh a list to compile
see in theu@ on the right
ots lared strings arranged

The abstract notion of a sequence, list, 0
of its representation in a computer. Mathemat
that the elements of a sequersce (ep,...,e, 1) are-arrs
contrast to the trees and graphs discussed in Chaps. 7
tables discussed in Chap. 4. There are two basic we
a sequence.

One is to specify the index of an element. This is the way We
arrays, wherali] returns the-th element of a sequenseOur pseudocod
static arrays. In astatic data structure, the size is known in advancefand the data
structure is not modifiable by insertions and deletions. hoandedda
the maximal size is known in advance. In Sect. 3.2, we intc

1 The 4600 year old tablet at the top left is a list of gifts to High priestess of Adab (see
conmons. wi ki nedi a. org/ wi ki /1 mage: Suneri an_26t h_c_Adab. j pg).

60 3 Representing Sequences by Arrays and Linked Lists

bounded arrayswhich can grow and shrink as elements are inserted and egnov
The analysis of unbounded arrays introduces the conceghoftized analysis

y of referring to the elements of a sequencdaidveeto other
le, one could ask for the successor déareete, the prede-
or for the subsequence, ..., €) of elements betweemand

rear of the
way are calledtackse
we summarize t|

anddequesWe discuss them in Sect. 3.4. In Sect. 3.5,
chapter.

3.1 Linked List

In this section, we stu ion of sequencéskad lists. In a doubly

linked list, each item po i and to its@cedsor. In a singly linked
list, each item points to its Il see theadifists are easily modified
in many ways: we may in
lists. The drawback is that ess (the opefdjois not supported. We

t fagtet,should therefore be
d wayhink of a linked list
n eagh @mce we get hold

linked lists are more space-effi
preferred whenever their functionalit
is to imagine a chain, where one el
of one link of the chain, we can retri

3.1.1 Doubly Linked Lists

Class Handle =Pointer to Item

Class Itemof Element
e: Element
next: Handle
prev: Handle
invariant next—prev = prev—next =this

Fig. 3.1. The items of a doubly linked list.

3.1 Linked Lists 61

= o] |

Fig. 3.2. The esentation of a sequerieg, .. .,en) by a doubly linked list. There ame+ 1
items arrange i
each element of the
g_1 and the p > e item containgng. The dummy item is between the item
containingen.a ini

require that for ¢ iteri ccessor of its predecessor is equdt tnd the
predecessor of its equal to

A sequence af ented by aringef 1 items. There is a special
dummy itemh, whic . The succesgaif h stores the first element
pktores the second element of the sequence, and
element of the sequence; see Fig. 3.2.
ing consisting dhlySince there are no
r and predecessor. Figure 3.4 defines
ject of dlestcontains a single list
jalizes the hedu&y an item containing
d pred . In thisthealist is initialized to

so on. The predecess
The empty sequence is
elements in that sequen
a representation of sequen
item h. The constructor of th
and having itself as successo
the empty sequence.

We implement all basic list oper,
shown in Fig. 3.3splicecuts out a
target item. The sublist is specified b
respectively. In other word$, must be r
next pointers but without going through the d
either in the same list or in a different list; in
the sublist starting a and ending ab.

of the singperationsplice
list and inserts it after some

elements into a list, we take the necessary items firee
elements, we return the corresponding itemeeList The
allocates memory for new items when necessary.
Exercise 3.3 and a short discussion in Sect. 3.6.
With these conventions in place, a large number of usefulaijoe
plemented as one-line functions that all run in constanetiThanks to th
splice we can even manipulate arbitrarily long sublists in comistane.
and 3.5 show many examples. In order to test whether a liginjst
check whetheh is its own successor. If a sequence is nonem
element are the successor and predecessor, respectivalyinoorder to move an
item b to the positions after an iter, we simply cut out the sublist starting and
ending atb and insert it aftes’. This is exactly whasplicgb,b,a’) does. We move

62 3 Representing Sequences by Arrays and Linked Lists

/I Remove(a, ..., b) from its current list and insert it after
I...da.. bba. . +.. tt . . . —. a0, ..+ . ta..,bt,. .

i : Handle)

g to the same list, b is not before a, agd4, ..., b)

a a b o]
R

Il insert(a,...,b)
t':=t — next

D e A e

t—next=a I . . =
t' — previ=b g =me g =

Class List of Element
/I ltemhis the predecessor of

1

h= (this) : ltem 1
this

/I Simple access functions

Function head) : Handle;return addr /I Pos. before any proper element

Function isEmpty: {0,1}; return h.next =this
Function first: Handle;assert —isEmpty;return b
Function last: Handle; assert —isEmpty;return

/I Moving elements around within a sequence.

I{...,abc....a,c,...))— ((...,ac...,a,bC,.
Procedure moveAfter(b, a: Handle) splicéb, b, a’)
Procedure moveToFronth : Handle) moveAftetb, head
Procedure moveToBadlb : Handle) moveAfteth, last)
Fig. 3.4. Some constant-time operations on doubly linke S.

an element to the first or last position of a sequence by mowiaf
or after the last element, respectively. In order to delatelamen
freeList To insert a new elemerf we take the firstitem dfeeList
in it, and move it to the place of insertion.

re the element

3.1 Linked Lists 63

/I Deleting and inserting elements.

nt; & Handle : Handle
/I make surdreeListis nonempty. See also Exercise 3.3
/I Obtain an iten®’ to holdx,
/I put it at the right place.
/I and fill it with the right content.

ndle : Handlereturn insertAfter(e, pred(b))

/I Manipulations of enti
II((a...,b),{c,...,d)) —
Procedure concafL’ : List)

splice(L first, L'.last, last)

MHa,...by—¢ NN e\
Procedure makeEmpty ._J ,_,[.}"-i-"*

freeList.concathis) e

Fig. 3.5. More constant-ti

Exercise 3.1 (alternativelist implemental lternative implementa-
tion of List that does not need the dummy itérr Sfepresentation stores a
pointer to the first list item in the list object. Tk iti e first list element
is encoded as a null pointer. The interface a gR@Ecution times of all

This ensures that is present in the list structure and hence a search for itakll
ways terminate. The search will terminate in a proper lestitor the i
depending on whetherwas present in the list originally. It is
to test whether the end of the list has been reached. In thisthwatrick of using the
dummy itemh as a sentinel saves one test in each iteration and signlfi¢aproves
the efficiency of the search:

64 3 Representing Sequences by Arrays and Linked Lists

Function findNex{x : Element; from Handlé) : Handle

h.e=x /I Sentinel ——
- (s)
}--—-.-:‘_> o —— - [—
. C_':_.___;‘__. ... 4__. <>
Exercise 3.2. a procedur@vapthat swaps two sublists in constant time,

b,b',...),{(..,c,c,...,d,d,...)) are transformed into
,a,...,b,d"|...)). Issplicea special case awap?

by insertAfterin ince, an individual call of the programmingdaage
primitive allocate ' em might be too slow, your function shoailid-

cate space foritemsii atches. The worst-case éxetinte ofcheckFreeList
should be indepe
ray of free items.

Exercise3.4. Give a ¢
list to the right: (a,...,
(a,...,b,c,...,d)to(c,...,

entation of an algorithm foratioty a
Generalize your algorithm to rotate
nt time.

faster than an implementation that check
ut how much fasiitrat speed difference

ith 100 elgsyand in a long list
with 10 000 000 elements, respective hy is the relatpeed difference depen-
dent on the size of the list?

Maintaining the Size of a List

e length of a list in
izethat is updated
whenever the number of elements changes! Operations faat séveral lists now
need to know about the lists involved, even if uch aspliceonly

need handles to the items involved. For exa ing code for

Procedure moveAftefa, & : Handle; L, L : List)
splicea,a,a); L.size-; L'.sizet+

Maintaining the size of lists interferes with other list opions.
elements as above, we need to know the sequences contdiamgnd,
ously, operations that move sublists between lists carmohplemente
time anymore. The next exercise offers a compromise.

constant

Exercise 3.6. Design a list data type that allows sublists to be moved betvlists
in constant time and allows constant-time accesszewhenever sublist operations
have not been used since the last access to the list size. $Mbbst operations have
been usedsizeis recomputed only when needed.

3.1 Linked Lists 65

Exercise 3.7. Explain how the operatiomemoveinsertAfter andconcathave to be
modified to keep,track of the length olLast.

Singly linked
to anitemin a_si
a pointer tg cessorAThis makes singly linked listsenspace-efficient and
often faster than th
can no longer be d in constant time or can no longeupported in full
generality. For e emovedtemonly if we know its predecessor.

form collections of has a dummysltem hthat precedes the first
proper element an f the last proper eteMany operations on
Lists can still be pe e change the interface sligtiyr example, the

following implementat
sublist to be moved:

I((....a,a,....b0...);
Proceduresplicgd,b,t: S
a — next b—n
t—next|:=(a—n

b — next t — next

sequentlyfindNextcan only start searching at
useful addition téSListis a pointer to the last e
pushBackn constant time.

item given to it. A
it allows us to stippor

analogy toHandlg Item, andList. Show that the follow
mented to run in constant time. The operatibesd first,
pushFront pushBackinsertAfter concat andmakeE :
terface as before. The operatiomoveAfter moveToFrontmo remove
popFront andfindNextneed different interfaces.

We shall see several applications of singly linked listatet chapter
ple in hash tables in Sect. 4.1 and in mergesort in Sect. e2ndy als
linked lists to implement free lists of memory managers -nefoe i
linked lists.

66 3 Representing Sequences by Arrays and Linked Lists
3.2 Unbounded Arrays

Consider an_arfay data structure that, besides the indepiegtion-], supports the
followingoperationgpushBackpopBack andsize

,€n,€),
-~ €n-1)

(€p...,en).pushBacke) =
(€, . ..,€n).popBack=
Size{ (eo, .., €-1)) = N.

Why are ufibounded arrays important? Because in many sitisatie do not know in
advance how large/an array should be. Here is a typical exampbpose you want
to implement theJnhix*eemmansior t for sorting the lines of a file. You decide
to read the file inte an array40flines, sort the array intdynahd finally output the
sorted array. With unbednded arrays, this is easy. With Hedrarrays, you would
have to read the filé twicei ence tQ)find the number of lines ittams, and once
again to actually loadiit into the array-

We come now to the implementation of unbounded arrays. Wdatenan un-
bounded array with n elements bywuSe afia dynamically allocated bounded drray
with w entries, wherav >"n. The'firstn entties ofb are used to store the elements
of u. The lastw — n entries{ofb aretunused.)As long as > n, pushBacksimply
increments and uses the first unused,entrytofor the new element. Whew = n,
the nextpushBaclallocates a new bounded artalythat is larger by a constant factor
(say a factor of two). To reestablish the invariantthh& stored inb, the contents of
b are copied to the new array so that thelplthn be'deallocated. Finally, the pointer
definingb is redirected to the new drray. Deletingthe last elemertt witpBack
is even easier, since there is no danger thatay become too small. However, we
might waste a lot of space if we allolto,be much larger than needed. The wasted
space can be kept small by shrinkingvheambecomesiteo small. Figure 3.6 gives
the complete pseudocode for an unbounded-afray classii@yand shrinking are
performed using the same utility procedwzallo€ate Our impleémentation uses con-
stantsa andf3, with § = 2 anda = 4. Wheneverthe current bounded array becomes
too small, we replace it by an array Bftimes thewold size. \Whenever the size of the
current array becomes times as large as its usedypaitge replage it by an array of
sizen. The reasons for the choice afand shall become clearlater.

(eo,
(e, .

3.2.1 Amortized Analysis of Unbounded Arrays. The'GlobaltArgument

Our implementation of unbounded arrays follows the alfponitdesign principle
“make the common case fast”. Array access Withis as fast as for bounded ar-
rays. Intuitively,pushBackandpopBackshould “usually” be fast — we just have to
updaten. However, some insertions and deletions incur a cosd of). Wegshail
show that such expensive operations are rare and that angrsegofm operations
starting with an empty array can be executed in tinfgg0

Lemma 3.1. Consider an unbounded array u that is initially empty. Angusnce
o = (01,...,0m) of pushBack or popBack operations on u is executed in @ma).

3.2 Unbounded Arrays 67

Class UArray of EIement
/I growth factor
/I worst case memory blowup
/I allocated size
/I current size.

n w
II'b—{ €] [En-1 =
return b[T]
Function size:
Procedure pushB : Element /I Example fom=w = 4
if n=wthen //b—40

reallocate 3n) Il b—[0]1]2]3 .
binj:=e //b—>|0|1|2|3|e i i i
n++ /' b—{0]1]2[3]e] | | i

Procedure popBack I Examplefom 5w 16:
assert n>0 b—[o]1]2[3]4] | RN
n- - 1455555522255
if an<wAn>0then /I reduce waste of space

reallocate 3n) IMb—{o]a]2[3] i i i}

Procedurereallocatgw’ : IN) /I Example fow =4,w = 8:
wi=w Il b —[0]1]2]3]

b’ :=allocate Array [0..w — 1] of Element

([0]7"-7b/[n_1])' ([0]7 [n 1])
dispose b
b:=b /I pointe

program invalidates it.

Exercise 3.9. Your manager asks you to change the initializatiomr
argues that it is wasteful to shrink an array only when tHoaeeth
He proposes to shrink it when< w/2. Convince him that this is a bad idea by glvmg
a sequence ah pushBaclandpopBackoperations that would need tin@(n?) if
his proposal was implemented.

68 3 Representing Sequences by Arrays and Linked Lists

Lemma 3.1 makes a statement about the amortized cpssbBaclandpopBack
operations. Although single operations may be costly, tis¢ af a sequence aofiop-
erations is e divide the total cost of the operationsdnby the number of
operati constant. We say thataimortized cosbf each operation is
. f the term “amortized” is similar taugage in everyday lan-
guage, but itavoids a common pitfall. “I am going to cycle torlwvevery day from
now on, and ce itisfjustified to buy a luxury bike. The castnde will be very
small — the inve be amortized.” Does this kind @isoning sound famil-
iar to you?

has not be shall instead insist that a laqueneliture is justified by
savings in the pas by expected savings in the fubugpose your ultimate
goal is to go to i ar. However, you are not gdimdpuy it on your

first day of work and put a certain amoumhohey per day into

a savings account. i u will be able to buy add&eyyou continue to
put money away. i you will be able to buy alear, and even
later you can finally car. In this way, every exgiture can be paid for

by past savings, and

To prove Lemma 3.1, we u
ciate anaccountor potentialwith our d force evgryshBackand
popBackto put a certain amount int ually, we caflunit of cur-
rency atoken The idea is that whenever a call efallocateoccurs, the balance in
the account is sufficiently high to pay fQRi
pay for moving one element frotmto b'.
durereallocateis the only operation that incurs
concretelyreallocateis always called withw' =
Hence, for each call okallocate we withdrawn

potentialmethod. We asso-

account. We charge

two tokens for each call gfushBaclkand one toke pbpBackWe now
show that these charges suffice to cover the wit AL ate
The first call ofreallocateoccurs when there is one elg dy in the array

reallocate The new element provides its tokens for the next cat€
After a call of reallocate we have an array ofv elementsn = w/2
occupied andv/2 are free. The next call eallocateoccurs when eith

have at leastv tokens available and can cover the withdrawal made by theaadix
of reallocate In the second case, at leagt2 —w/4 = w/4 elements have been
removed from the array since the last callreéllocate and each one of them has
deposited one token. So we have at legst tokens available. The call edallocate

3.2 Unbounded Arrays 69

needs at most/4 tokens, and hence the cost of the call is covered. This cetagpl
the proof of Lemma 3.1. O

Exerci : the argument above for general valuea @ind 3, and charge

B/(each call opushBackand 3/(a — [3) tokens for each call
of popBack uch thatv = Bn’. Then, after aeallocate n' elements are
occupied an (B—1)/B)w are free. The next call akallocateoccurs
when eithen =w g <w. Argue that in both cases there are enough tokens.

extremely versatile tool, and sehivek that it is worth-

popBack Alterna
chargepopBackat
insertion as above,

arge three tokens for eacishBackand not
is simple. The first two tokens pay Far t
is used when the elamdeleted.

Exercise 3.11 (continu
B/(a —B) tokens for e

B/(a-B)<1/(B-1)an

gh. Determine values af such that
—1), respectively.

re enolighds in the account
ace the global argument by a
llocate we have an array
ce. We argue that at any

local argument. Recall that, immedia
of w elements, out of whickv/2 are fill

Observe that this number is always nonnegat guzn the number of
operations. Immediately after the fingtallocate the kehiin the account
and the invariant requires none pishBackncreases by one two tokens
So the invariant is maintained WOpBackremoves onee ent and adds one token.

tokens are reqwred for the reallocation. In the latter cds® account contains at
leastw/4 tokens, andh are required. So, in either case, the number of tgkens ssiffice

Argue that the account contains always at leastmax(2(n—w/2),w/2 —n) =
max(3n— w,w/2) tokens.

70 3 Representing Sequences by Arrays and Linked Lists

Exercise 3.13 (popping many elements). Implement an operatiopopBackk) that
removes the lagt.elements in amortized constant time independekt of

ounded array data structure withniadt-caseconstant execu-
ns. Design such a data structuist:ldtore the elements in
up to two arrays. moving elements to a larger array meftbre a small array is

ing arrays). Implement unbounded arrays where the
e index. Whein> n, the array is implicitly grown to
e array is reallocated as foArray. Initialize entries

operation|i] allows g
sizen=i+1. Whe

Exercise 3.16 (spar . ent bounded arrays with constant time for
allocating arrays a i r the operafiprAll array elements should
be (implicitly) initiali . You are not allowed to make any assumptions about

the contents of a fres
and store the numbéof

Hint: use an extray of the same size,
hich a value has already been assigned.

that value and an indej 1 <
the extra array.

In order to demonstrate that our tec
other applications, we shall now giv

izatlais are also useful for
second example. \&k &b the amortized
ounter is represented by a
sequence.. 3 ... B1f of binary digits, i.e.5; i>0B 2'. The initial

' ¢fie cost of incrementing

the counter as one plus the number of trailin
the transition
01— .

are at most 2% numbers whose binary representation ends with a
by k ones. For each one of them, an increment cost&.1Thus the total
mincrements is bounded by

(k+1)2-k1=2t k/2k<2-§ k/2k=2.2
O§Z<L 1§Z§L kgl

where the last equality uses (A.14). Hence, the amortizetl @oan increment is
0(1).

3.3 *Amortized Analysis 71

The argument above is global, in the sense that it requiressémate of the
number of representations ending in a zero followed byes. We now give a local
argument whi oes not need such a bound. We associate aabaolnt with
nce is the number of ones in the bingsesentation of the
e is initially zero. Consider an imenet of cosk+ 1. Before
resentation ends in a zero followekl byes, and after the
tation ends in a one followel byl zeros. So the number
ion decreasekbyl, i.e., the operation releasks- 1
1e cost of the incremehtfisl. We cover a cost df— 1
the account, and charge a casb dbt the operation.
ions is at most2

by the toke
Thus the total cos

section quickly andbedmack to it when
cture. The vafusbprogram variables
enote the set of states. In the first
r data streict formed by the values

comprise the state of the d
example in the previous se

bis an array of size one in theniti . ave operatiortransform the data
structure. In our example, we h
The application of an operatiofin a
states' and has a codi (s). In our ex
excluding the cost of the possible cal
isO(n).

LetF be a sequence of operatioDg,
statesy, F takes us through a sequence of stat

the data structure to a new
faushBaclor popBacks 1,
ost of a calleallocatd 3n)

The cosfT (F) of F is given by

T(F)= Top (S-1) -

1<i<n

A family of functionsAx (s), one for each operatioX, is called gamily of amortized
time boundsf, for every sequencE of operations,

T(F)<AF)i=c+ 3 Aop(s 1)

1<i<n

for some constant not depending orifr, i.e., up to an additive constant, the total
actual execution time is bounded by the total amortized @@t time.

72 3 Representing Sequences by Arrays and Linked Lists

There is always a trivial way to define a family of amortizeohdi bounds,
namelyAx(s) :=Tx(s) for all s. The challenge is to find a family of simple func-
a family of amortized time bounds. In our examphe, func-
opBacKS) = A (s) = O(1) andArealiocate(S) = O for all sform

ime bounds.

pot: S— Rxo. s) the potential of the stats or the balance of the
savings accoun structure is in the salierequires ingenuity to

come up with ania i ipot. For an operatioX that transforms a state
sinto a states’ and efine the amortized co&k(s) as the sum of

the potential chan st, A (s) = pot(s') — pot(s) + Tx(s). The

The functions A(s) are then a family

Proof. A short computation suffices
operations. We have

Y Aop(s 1)=

1<i<n 1<i<n

— pot(s,) — pot(so

= > Top(s-1)-

1<i<n
sincepot(sy) > 0. ThusT (F) < A(F) + pot(sp). O

Let us formulate the analysis of unbounded arrays in th boye. The
state of an unbounded array is characterized by the valuasaofiw. F
Exercise 3.12, the potential in stdtew) is max3n—w,w/2). The actual
pushBaclandpopBackare 1 and the actual costi@fallocatg Sn) isn. T
of the initial state(n,w) = (0,1) is 1/2. A pushBackincreases
increases the potential by at most 3. Thus its amortizedis nded by 4. A
popBackdecreases by 1 and hence does not increase the potential. Its amortized
cost is therefore at most 1. The firsallocateoccurs when the data structure is in
the state(n,w) = (1,1). The potential of this state is mgk—1,1/2) = 2, and the

3.3 *Amortized Analysis 73

actual cost of theeallocateis 1. After thereallocate the data structure is in the
state(n,w) = (1,2) and has a potential méX— 2,1) = 1. Therefore the amortized

i ocateis 1— 2+ 1= 0. Consider any other call oéallocate We

< w. In the former case, the potential before thallocate

i, and the new state {®,2n) and has a potential Thus the
amortized c@st i +n=0. In the latter case, the potential before the operation

and has a potenti@/4. s the amortized cost is at mogtd —w/2+w/4 = 0.
We concludestha ized costspafshBackandpopBackare 1) and the
amortized
unbounded array

decrement operati
end of Sect. 3.2.

sentation ot.
(c) Give a sequence ofiincre
(d) Give a representation of co
time for increments and decrem
(e) Allow each digitd; to take value
c=Y;di2". Show that in thisedun
decrements have constant amort
the value of the counter is zero?

3.3.2 Universality of Potential Method

We argue here that the potential-function tect
family of amortized time bounds.

Theorem 3.4. Let Bx(s) be a family of amortized timg
tential function pot such thatsAs) < Bx(s) for all sta
where A(s) is defined according to Theorem 3.3.

Proof. Letcbe such thal (F) < B(F) +c for any sequence of operatio
at the initial state. For any stasewe define its potentiglot(s) by

pot(s) = inf{B(F) +c—T(F) : F is a sequence of operations

We need to write inf instead of min, since there might be itélgimany sequences
leading tos. We havepot(s) > 0 for anys, sinceT (F) < B(F) +cfor any sequenck.
Thuspot is a potential function, and the functioAs (s) form a family of amortized

74 3 Representing Sequences by Arrays and Linked Lists

time bounds. We need to show thag(s) < Bx(s) for all X ands. Let & > 0 be
arbitrary. We shall show tha#x (s) < Bx(s) + €. Sinceg is arbitrary, this proves that

SOLSLS’.

T(F’) by the definition ofpot(s), pot(s) > B(F) +c—
B(F') = B(F) +Bx(s) and T(F’) = T(F) + Tx(9)
pot(s') — pot(s) + Tx(s) by the definition ofAx(s).

way. Let uswitirisome examples
lerk will work in théofming way: the clerk
ew files are placed on theftop

the stack. The easy handling of this
may stay in the stack for a long tim
a stack is a sequence that supports

ogy of pineceding sections,
ackpopBack andlast.
he three stack operations.

The behavior is different when people stang
office: customers join the line at one end and
are calledFIFO (first in, first out) queuesr si
theList class, FIFO queues use only the ope

stack
Oo0--ad
FIFO queue
— OO0 =
deque

C—D — OO0 &=

popFront pushFront pushBack popBar

Fig. 3.7. Operations on stacks, queues, and double-ended queues$iieq

3.4 Stacks and Queues 75

The more generalequgpronounced “deck”), odouble-ended queuellows the
operationdirst, last, pushFronf pushBackpopFront andpopBackand can also be
office when some not so nice individual gutig line, or when
ter gives priority to a pregnant womathatend of the line.
he access patterns of stacks, guand deques.

of Hanoi). In the great temple of Brahma in Benares,
on a brass plate 1e dome that marks the center of thiwibere are 64
disks of pure goéle iests carry one at a time betwkese diamond needles
according table law: no disk may be placedsmaller disk. At
the beginning of thg
Now, however, t
mid-course. W
Brahma but on a
turn to dust[93].2

Describe the pr
uses three stacks for i d produces a sequencelobptrations that trans-
form the state (k, 0,0, (k,...,1)).

nsfer of the tower from orelleego another is in
finally in place, once agaiming the Tower of

Exercise 3.19. Explain ho
each FIFO operation takes

Why should we care abo
know a list data structure which
stant time? There are at least three
and are easier to debug if special u
Second, simple interfaces also allo

ersgt@bove and more in con-
redranome more readable
atasts are made explicit.
of implewtions. In particu-
ialimgulementations that are

e patterns
wider ran

more space-efficient than geneladts. We s
in the remainder of this section. In particular
based on arrays rather than lists. Third, lists
because any access to a list item may cause a
patterns to stacks and queues translate into g
and queues are represented by arrays.

Bounded stacks, where we know the maximal size in
mented with bounded arrays. For unbounded stac !
Stacks can also be represented by singly linked lists: tlnef[m
to the front of the list. FIFO queues are easy to realize witglg
a pointer to the last element. However, deques cannot besepted effi
singly linked lists.

We discuss next an implementation of bounded FIFO queu
Fig. 3.8. We view an array as a cyclic structure where entry gl .
In other words, we have array indices Oitcand view the indices modulo+ 1. We

implementations
ernal-memory use
reefuential access

2 |n fact, this mathematical puzzle was invented by the Fremathematician Edouard Lucas
in 1883.

76 3 Representing Sequences by Arrays and Linked Lists

Class BoundedFIFO(n N) of Element
b: Array [0..n| of Element
h=0:

/I index of first element
/I index of first free entry

1}; returnh=t
t misEmpty;return blh]
—h+n+1) mod (n+1)

assert size< n
b[t] :=x

maintain two indice$ an
comprises the array elem
as elements are queued al

nge of valid queue entries; the queue
The indices travel around the cycle
d. The cyclic semantius ioflices can be
implemented using arithmeti the array Si¥ée always leave at least one
entry of the array empty, because otherwisesi uld be diffto distinguish a full
queue from an empty queue. The im i
deques. Circular arrays also suppor

Exercise 3.20 (lists of arrays). Here we aim to dev
stacks, FIFO queues, and deques that combines all the
bounded arrays and is more space-efficient than e

for some large constait. Implement such a data structure in you
ming language. Compare the space consumption and exectintienvith
linked lists and unbounded arrays in the case of large stacks

Exercise 3.21 (external-memory stacks and queues). Design a -
ture that needs @/B) I/Os per operation in the I/O model described in Sect. 2.2. It

3 On some machines, one might obtain significant speedupsdnsitiy the array size to be
a power of two and replacingiod by bit operations.

3.5 Lists Versus Arrays 77

suffices to keep two blocks in internal memory. What can happea naive imple-
mentation with only one block in memory? Adapt your datacttice to implement

Table 3.1 e findings of this chapter. Arraydetter at indexed ac-
cess, whereas li ave their strength in manijpmstof sequences at ar-
bitrary positions. ese approaches realize theatipems needed for stacks
and queues effici g arrays are more cacheaetffinere, whereas lists

ly linked listsSListstands for singly linked
lists, UArray stands for un ray stands for circular arrays

size 1*

first 1 1
last 1 1
insert 1 IF
remove 1 I
pushBack 1 1
pushFront 1 1
popBack 1 n
popFront 1 1
concat 1 1
splice 1 1
findNext... n n

spects. The only advantage of cyclic arrays over u
implementpushFrontandpopFrontefficiently.

Space efficiency is also a nontrivial issue. Linked lists\ag/ comp
elements are much larger than the pointers. For sElathentypes, arrays are usu-
ally more compact because there is no overhead for poirfars.is ce

Unbounded arrays have a trade-off between space efficient
during reallocation.

78 3 Representing Sequences by Arrays and Linked Lists

3.6 Implementation Notes

Every decentfprogramming language supports bounded armayaddition, un-
boundedgdarrays, lists, stacks, queues, and deques arelguawi libraries that are
available fon the major imperative languages. Nevertiselgsu will often have to
implement listlike data structures yourself, for examplew your objects are mem-
bers of severallinkeddiSts. In such implementations, mgmoanagement is often
a major challenget

3.6.1 C++

The classvectorElement in the®STL realizes unbounded arrays. However, most
implementations never shfink the\array. There is funcligntor manually setting
the allocated size. Us@ially; you will give some initial esite for the sequence siae
when thevectoris constructeds This €an save you many grow operationsnQftai
also know when the artay will'stop changing size, and youlsan forcewv = n. With
these refinements, there is little reasohto use the bullt-style arrays. An added
benefit ofvectos is that they are alitomatically destroyed when the vargds out

of scope. Furthermore, during debugging; you may switcimplémentations with
bound checking.

There are some additionalissues‘that you might want to addfrgou need very
high performance for arrays thatgrow or shrink a lot. Durieagllocationyectorhas
to move array elements using the copysconstructdloment In most cases, a call
to the low-level byte copy operatiangmcpywould Be much faster. Another low-
level optimization is to implemeneallocateusing the standar@ functionrealloc.
The memory manager might be able'te avoid copying the datebnt

A stumbling block with unbounded@stays is that pointersrtayaelements be-
come invalid when the array is reallocated. You should“make that the array does
not change size while such pointers are being used. If illins cannot be ruled
out, you can use array indices rather than painters.

The STL and LEDA [118] offer doubly linked lists in the clakst(Element,
and singly linked lists in the clasgist(Elemen}.Bheir memory management uses
free lists for all objects of (roughly) the same size;“rathen onlydfor ebjects of the
same class.

If you need to implement a listlike data structuregfote thatoperatonewcan
be redefined for each class. The standard library dlssatoroffers an interface
that allows you to use your own memory management while“aabpg with the
memory managers of other classes.

The STL provides the classasackElement and dequéElement for stacks
and double-ended queues, respectiveBgues also allow constant-time indexed ac-
cess using:]. LEDA offers the classestack Element andqueugElement forun-
bounded stacks, and FIFO queues implemented via linkadllisiso offers bounded
variants that are implemented as arrays.

Iterators are a central concept of the STL; they implementadstract view of
sequences independent of the particular representation.

3.7 Historical Notes and Further Findings 79

3.6.2 Java

the Java 6 platform providesayList for unbounded arrays and
linked lists. There is Bequeinterface, with implementations
and LinkedList A Stackis implemented as an extension to

erences, and are never stored jpaiient object itself.
ment is optional in Java, since ivjoles garbage col-
lections of all obje F referenced any more.

All of the algorithms
around for a long time
that many of the underlyin

Amortization is as old i Igorithms. Blaek accounandpo-
tential methods were introd beginning of the 1980s by Br&wn, S.
Huddlestone, K. Mehlhorn, D.
overview article [188] populari
first appearedin [127].

There is an arraylike data struct indezeelss in constant time
and arbitrary element insertion and tizee tO(/n). The trick is
relatively simple. The array is split int barrays of gize- ©(/n). Only the last
subarray may contain fewer elements. aireed as cyclic arrays,
as described in Sect. 3.4. Elemeoan be found i of subarrayi/n'|.

A new elementis inserted into its subarray in ir the invariant that
subarrays have the same size, the last elemen serted as the first

Y 3ifting the extra ele-
ment is repeated @/n’) = O(y/n) times until the 13 issfeached. Deletion
works similarly. Occasionally, one has to start a new labg or change’ and
reallocate everything. The amortized cost of these aa@ erations ean be kept
small. With some additional modifications, all deque
constant time. We refer the reader to [107] for more soptasd
of deques and an implementation study.

apter are “follddyri.e., they have been
o be their invertateed, we have seen

entations

