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a b s t r a c t

In this paper, we provide polynomial bounds on the worst case bit-complexity of two
formulations of the continued fraction algorithm. In particular, for a square-free integer
polynomial of degree n with coefficients of bit-length L, we show that the bit-complexity
of Akritas’ formulation is Õ(n8L3), and the bit-complexity of a formulation by Akritas and
Strzeboński is Õ(n7L2); here Õ indicates that we are omitting logarithmic factors. The
analyses use a bound by Hong to compute the floor of the smallest positive root of a
polynomial, which is a crucial step in the continued fraction algorithm. We also propose
a modification of the latter formulation that achieves a bit-complexity of Õ(n5L2).

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental task in computer algebra is real root isolation, i.e., given a polynomial A(X) with real numbers as
coefficients, compute disjoint intervals with rational endpoints such that each contains exactly one real root of A(X), and
together they contain all the real roots of A(X). In this paper, we assume A(X) is square-free and has degree n. 1
The continued fraction algorithm2 for real root isolation, i.e., an algorithm which utilizes the continued fraction

expansion of the real roots of a polynomial for isolating them,was first proposed by Vincent [34]; see [8] for detailed historic
information of the algorithm. Vincent observed that if the polynomialA(X) is recursively transformed asAi+1(X) := XnAi(ai+
1/X), where A0(X) := A(X), a0 ∈ N≥0, and ai ∈ N>0, then eventually the polynomial has at most one sign variation in its
coefficients. Along with the Descartes’ rule of signs (see Proposition 2.1), we get an algorithm for real root isolation; see
Section 2 for the details. The quantity ai is the floor of some positive real root of the polynomial Ai(X). Different ways of
computing ai yield us different formulations of the continued fraction algorithm. Vincent computed ai by performing Taylor
shifts by one on Ai(X), but this leads to an exponential worst case running time. To overcome this drawback, Akritas [4]
suggested that to compute ai we should compute a lower bound b on the smallest positive root of Ai(X); if b ≥ 1 then
perform a Taylor shift on Ai(X) by b, instead of by one as done by Vincent, and repeat this until the root that has ai as its floor
is in the unit interval; for computing the lower bound, Akritas used Cauchy’s bound [5, p. 350]. The algorithm by Collins
and Akritas [11], though not a continued fraction algorithm, was also proposed to overcome the exponential drawback of
Vincent’s algorithm.
In practice, Akritas’ formulation of the continued fraction algorithm almost always outperforms the algorithm by Collins

and Akritas [31]. But what is interesting about the formulation is that, unlike the latter algorithm, it utilizes the distribution
of the real roots of the polynomial to isolate them; the advantage of this approach is evident (see [31, Tab. 1]) when we
isolate the real roots of Mignotte’s polynomials [22], where it is known that the approach of Collins and Akritas is not
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2 Recently [2] it has been called the Vincent–Akritas–Strzeboński method. However, for the purposes of complexity analysis we need to consider each
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efficient [15, Thm. 3.6]. Another advantage, shared by all formulations of the continued fraction algorithm, is that the rational
approximations computed to the real roots are their continued fraction expansion, which is the best approximation one can
expect for a given magnitude of the denominator of the fraction (see [18, Sec. 6]).
Despite these advantages, the known polynomial bounds on the worst case complexity of Akritas’ formulation of the

continued fraction algorithm have gaps in their proofs. Akritas has claimed an Õ(n5L3) bound on the worst case bit-
complexity of his formulation, using classical arithmetic for implementing Taylor shifts [20]; if we use asymptotically fast
Taylor shift [35, Thm. 2.4] then his bound can be improved to Õ(n4L2). His analysis, however, has two drawbacks: first,
he assumes the ideal Positive Lower Bound (PLB) function, i.e., a function that can determine whether a polynomial has
positive real roots, and if there are such roots then returns the floor of the smallest positive root of the polynomial; and
second, his analysis does not account for the increased coefficient size of Ai+1(X) after performing Taylor shift by b on
Ai(X). In practice, we never use the ideal PLB function because of its prohibitive cost (intuitively it is almost equivalent
to doing real root isolation). Instead we use functions that are based upon efficient upper bounds on positive roots of a
polynomial (e.g. [7,17,19,30]); to compute a lower bound on the smallest positive root of Ai(X), we compute an upper
bound on the positive roots of the polynomial XnAi(1/X) and take its inverse. Based upon such functions, a polynomial
bound on the worst case complexity of Akritas’ formulation of the continued fraction algorithm appears in [28, Chap. 3];
instead of the ideal PLB function the analysis in [28, Chap. 3] assumes a function that uses Zassenhaus’ bound [36, Lem. 6.5,
p. 147] for computing upper bounds on positive roots of a polynomial. Further improvement was obtained in [29] using a
bound by Hong [17] instead of Zassenhaus’ bound. Both the results, however, have a gap in their proofs. To understand the
gap, suppose that a1, . . . , a` are in N≥1 and we recursively define polynomials Bi(X) := Bi−1(X + ai), where B0(X) := A(X).
Then the analyses [28, Chap. 3] and [29] assume that the complexity of computing B`+1(X) is bounded by the complexity of
computing A(X +

∑`
i=1 ai); this is not true, because the bit-length of the former is bounded by O(log ‖A‖∞+ n

∑`
i=1 log ai),

whereas that of the latter is bounded by O(log ‖A‖∞ + n log
∑`
i=1 ai).

In this paper, we remedy this error, and also improve by a factor of n upon the worst case tree size derived in [29]. More
precisely, for a square-free integer polynomial of degree nwith L-bit coefficients, we derive in Section 3 a worst case bound
of Õ(n2L) on the tree size of Akritas’ formulation of the continued fraction algorithm using the bound by Hong [17] for
computing a lower bound on the smallest positive root. The worst case complexity of the formulation after compensating
for the above mentioned gap, however, is Õ(n8L3); this is derived in Section 4. The crucial component for bounding the size
of the recursion tree of the formulation, without assuming the ideal PLB function, is the tightness of the lower bounds on the
positive real roots of the polynomial; this is the subject that we treat in Section 2, where we also give the details of Akritas’
formulation of the continued fraction algorithm.
A recent formulation of the continued fraction algorithm by Akritas and Strzeboński [3] outperforms the earlier

formulation by Akritas. The former algorithm proceeds similarly to the latter algorithm, i.e., it computes a lower bound b on
the smallest positive root of the polynomial Ai(X), and if b ≥ 1 it computes Ai(b(X + 1)), instead of Ai(X + b). In Section 5,
we derive an Õ(n7L2) bound on the worst case complexity of this recent formulation. We further modify the formulation of
Akritas and Strzeboński to obtain a formulation that has a worst case complexity of Õ(n5L2), and thus matches the known
worst case complexity result, assuming classical arithmetic for implementing Taylor shifts [20], for the Collins and Akritas’
algorithm (see e.g., [9, Sec. 10.2], [15]). Under the same assumption on Taylor shifts, this result also matches the expected
complexity of Akritas’ formulation. Without the assumption, though, the expected complexity of Akritas’ formulation is
Õ(n3L) [31,32]; instead of the ideal PLB function, the analyses in both the references assume that the set of real algebraic
numbers of degree greater than or equal to three follows Gauss–Kuzmin’s distribution and Khinchin’s law [18, Chap. 3], i.e.,
in the continued fraction expansion of such real algebraic numbers the expected bit size of the partial quotients is a constant.
We begin with introducing some notation, borrowed from [36, Ch. 15], on the theory of continued fractions.

1.1. Notation

A continued fraction is a possibly infinite expression of the form

q0 +
p1

q1 +
p2

q2+
p3
q3+···

,

where pi ∈ N is the ith partial numerator and qi ∈ N is the ith partial denominator. For the ease of writing, we express it as
[q0,

p1
q1
,
p2
q2
,
p3
q3
. . . ]. If all the pi’s are one then the continued fraction is called an ordinary continued fraction (also called

simple continued fraction, or regular continued fraction); for convenience again, we express it as [q0, q1, q2, . . . ].
If Pi/Qi denotes the finite continued fraction [q0,

p1
q1
, . . . ,

pi
qi
] then we have the following recurrence

Pi = piPi−2 + qiPi−1 and Qi = piQi−2 + qiQi−1, (1)

where P−1 := 1, P0 := q0 and Q−1 := 0, Q0 := 1. Moreover, from [36, p. 463] we know that

|PiQi−1 − Pi−1Qi| = p1p2 . . . pi. (2)
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Furthermore, with the finite continued fraction [q0,
p1
q1
, . . . ,

pi
qi
]we can associate the Möbius transformation

M(X) :=
Pi−1 + PiX
Qi−1 + QiX

;

from (2) it is clear that the Möbius transformation associated with an ordinary continued fraction is unimodular. Let IM be
the interval with endpointsM(∞) = Pi/Qi andM(0) = Pi−1/Qi−1.
In the following sections, we use log to represent log2, and Õ(·)means that we are omitting logarithmic factors.

2. Continued fraction algorithm

Given a polynomial A(X) = anXn + an−1Xn−1 + · · · + a0, ai ∈ R, let Var(A) represent the number of sign changes (from
positive to negative and vice versa) in the sequence (an, an−1, . . . , a0), after removing all zeros from it.
The first crucial component of the continued fraction algorithm is the Descartes’ rule of signs:

Proposition 2.1. Let A(X) be a polynomial with real coefficients. Then the number of positive real roots of A(X) counted with
multiplicities is smaller than Var(A) by a non-negative even number.

See [21] for a proof with careful historic references. Because Var(A) exceeds the number of positive roots by a non-negative
even number, the Descartes’ rule of signs yields the exact number of positive roots when Var(A) is 0 or 1.
The second crucial component is a procedure PLB(A) that takes as input a polynomial A(X) and returns a lower bound on

the smallest positive root of A(X), if such a root exists; our implementation of this procedure, however, will only guarantee
a weaker inequality, namely a lower bound on the smallest real part amongst all the roots of A(X) in the positive half plane.
Given these two components, the continued fraction algorithm for isolating the real roots of a square-free input

polynomial Ain(X) uses a recursive procedure CF(A,M) that takes as input a polynomial A(X) and a Möbius transformation
M(X) = pX+q

rX+s , where p, q, r, s ∈ N and ps− rq 6= 0. The interval IM associated with the transformationM(X) has endpoints
p/r and q/s. The relation among Ain(X), A(X) andM(X) is the following:

A(X) = (rX + s)nAin(M(X)). (3)

Given this relation, the procedure CF(A,M) returns a list of isolating intervals for the roots of Ain(X) in IM . To isolate all
the positive roots of Ain(X), initiate CF(A,M) with A(X) = Ain(X) and M(X) = X; to isolate the negative roots of Ain(X),
initiate CF(A,M) on A(X) := Ain(−X) andM(X) = X , and swap the endpoints of the intervals returnedwhile simultaneously
changing their sign.
The procedure CF(A,M) is as follows:

Procedure CF(A,M)
Input: A square-free polynomial A(X) ∈ R[X] and a
Möbius transformationM(X) satisfying (3).
Output: A list of isolating intervals for the roots
of Ain(X) in IM .
1. If A(0) = 0 then

Output the interval [M(0),M(0)].
A(X) := A(X)/X; return CF(A,M).

2. If Var(A) = 0 then return.
3. If Var(A) = 1 then

Output the interval IM and return.
4. b := PLB(A).
5. If b ≥ 1 then

A(X) := A(X + b),M(X) :=M(X + b).
6. AR(X) := A(1+ X) andMR(X) :=M(1+ X).
7. CF(AR,MR).
8. If Var(AR) < Var(A) then
9. AL(X) := (1+ X)nA

( 1
1+X

)
,

ML(X) :=M
( 1
1+X

)
.

10. If AL(0) = 0 then AL(X) := AL(X)/X .
11. CF(AL,ML).

Vincent’s formulation is obtained by removing lines 4 and 5 from the procedure CF, and hence it is not immediately
apparent if the formulation by Akritas is more efficient than Vincent’s.
We now give the details of the positive lower bound function used in the algorithm above.
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2.1. Lower bounds on positive roots

Given a polynomial A(X) =
∑n
i=0 aiX

i, a0 6= 0, one way to compute PLB(A) is to take the inverse of an upper bound on
the largest positive root of the polynomial

R(A)(X) := XnA(1/X).

To compute an upper bound we use the following bound by Hong [17]

H(A) := 2max
ai<0

min
aj>0,j>i

∣∣∣∣aiaj
∣∣∣∣1/(j−i) .

To be more precise, H(A) is an upper bound on the absolute positiveness of A(X), i.e., a bound such that the evaluation of
the polynomial and all its derivatives at any point larger than the bound is strictly positive; for univariate polynomials this
means the bound by Hong is an upper bound on PA, the maximum amongst the positive roots of the polynomial and its
derivatives. Moreover, Hong showed that (see [17, Thm. 5.3])

PA < H(A) ≤
2n
ln 2
PA.

But from repeated applications of Gauss–Lucas theorem [23, Thm. 2.2.1, p. 93] we know that all the roots of the derivatives
of A(X) are contained inside the convex hull of its roots, and hence if RA denotes the largest real part amongst all the roots
of A(X) in<(z) > 0 then it follows that

PA < H(A) ≤
2n
ln 2
RA. (4)

Clearly, H(A) cannot be always computed exactly using rational arithmetic. Instead, we use a procedure U(A), similar to
that suggested by Akritas [5, p. 350], which computes an upper bound on the positive roots of A(X) ∈ R[X].

Procedure U(A)
INPUT: An integer polynomial A(X) =

∑n
i=0 aix

i,
ai ∈ R, and an > 0.
OUTPUT: An upper bound on the positive real
roots of A(X).
1. q′ := −∞.
2. For ai < 0, 0 ≤ i ≤ n− 1, do:

q′′ :=∞.
For aj > 0, i < j ≤ n, do:

p := blog |ai|c −
⌊
log |aj|

⌋
− 1.

q′′ := min(q′′, bp/(j− i)c + 2).
q′ := max(q′, q′′).

3. Return 2q′+1.

Remark 2.2. If A(X) is an integer polynomial with coefficients of bit-length LA then the cost of computing U(A) is Õ(n2LA),
because themost expensive operation in the loop is computing the floor of the coefficients, which can be done inO(LA) time,
and the loop iterates n2 times.

We have the following relation between U(A) and H(A):

Lemma 2.3.
U(A)
4

< H(A) < U(A).

Suppose H(A) = 2|ai/aj|1/(j−i). Let p := blog |ai|c −
⌊
log |aj|

⌋
− 1, q = bp/(j− i)c and r := p − q · (j − i), 0 ≤ r < j − i.

Then we know that

2p <
∣∣∣∣aiaj
∣∣∣∣ < 2p+2.

Taking the (j− i)th root we get

2q <
∣∣∣∣aiaj
∣∣∣∣1/(j−i) < 2q+2,

because q ≤ p/(j − i) and (p + 2)/(j − i) = q + (r + 2)/(j − i) ≤ q + 2. But U(A) = 2q+3, and hence we get our desired
inequality.
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This lemma along with (4) yields us

PA < U(A) <
8n
ln 2
RA. (5)

For a polynomial A(X), A(0) 6= 0, define

PLB(A) :=
1

U(R(A))
. (6)

Clearly, PLB(A) is a lower bound on the smallest positive root of A(X), if it exists; otherwise, it is a lower bound on

κ(A) := min{<(z)|z ∈ C,<(z) > 0, A(z) = 0}, (7)

i.e. the smallest real part amongst all the roots of A(X) in the positive half plane. Moreover, we claim that

PLB(A) >
κ(A)
16n

. (8)

Suppose a+ib, a > 0, is a root ofA(X) such that the largest real part amongst all the roots ofR(A)(X) is<((a+ib)−1) = a
a2+|b|2

.
Then from (5) we know that

1
PLB(A)

<
8n
ln 2

a
a2 + |b|2

≤
8n
a ln 2

.

Thus

PLB(A) > a
ln 2
8n
≥ κ(A)

ln 2
8n

>
κ(A)
16n

.

The literature contains other bounds on the positive roots of a polynomial (such as [7,19,30]) that can be computedmore
efficiently compared to the bound by Hong. However, none of these bounds is known to satisfy an inequality similar to
(4): Hong [17, Thm. 5.3] has showed the impossibility of such a criterion for the bound by Kioustelidis [19], and the same
example could be used to show the impossibility for Ştefănescu’s bound [30]; we can also construct examples that imply
the same impossibility for the recent bounds by Akritas et al. [7]. 3 Because of these reasons, we use the bound by Hong in
our analysis. We did not use a recent bound by Akritas et al. [6], which also has an O(n2) algebraic complexity and is better
than Hong’s bound, because the improvement is only by a constant factor, and it will not improve our complexity results.
Moreover, in practice the superior quality of these two bounds compensates for their expensive computation, if not always
then at least for a substantial number of cases [6].
From now on, unless mentioned otherwise, by the continued fraction algorithm we mean the algorithm that uses the bound

by Hong for computing the PLB function.
Now that we have all the details of the algorithm, we face the question of its termination.

2.2. Termination

Consider the recursion tree of the procedure CF(A,M) initiated with A(X) = Ain(X) ∈ R[X] and M(X) = X , for a
square-free polynomial Ain(X). The right child of any node in this tree corresponds to the Taylor shift X → X + δ, δ ≥ 1,
and the left child of the node corresponds to the inversion transformation X → (X + 1)−1. A sequence of Taylor shifts
X → X0 + δ0, X0 → X1 + δ1, . . . , Xi−1 → Xi + δi followed by an inversion transformation X → (X + 1)−1 is the
same as the transformation X → q + (1 + X)−1, where q =

∑i
j=0 δj. Thus with each node in the recursion tree we

can associate an ordinary continued fraction [q0, q1, . . . , qm] = Pm/Qm, qi ∈ N, and hence the Möbius transformation
(PmX + Pm−1)/(QmX + Qm−1); note that the nodes on the rightmost path of the recursion tree are associated with the
ordinary continued fraction [q0], for some q0 ∈ N, and the Möbius transformation X + q0, because there are no inversion
transformations along the rightmost path. Based upon the Möbius transformation M(X) := (PmX + Pm−1)/(QmX + Qm−1)
associated with a node in the recursion tree, we can further associate the polynomial

AM(X) := (QmX + Qm−1)nAin(M(X)).

Vincent had stated that if m is large enough then AM(X) will exhibit at most one sign variation. Uspensky [33, p. 298]
quantified this by showing the following: Let Ain(X) ∈ R[X] be a square-free polynomial of degree n and∆ be the smallest
distance between any pair of its roots; ifm is such that

Fm−1
∆

2
> 1 and Fm−1Fm∆ > 1+ ε−1n , (9)

3 This is work under progress of the author jointly with Prashant Batra, Institute for Computer Technology, Hamburg University of Technology, 21071
Hamburg, Germany (batra@tuhh.de).

batra@tuhh.de
batra@tuhh.de
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Fig. 1. The effect ofM−1(z) on the three circles.

where Fi is the ith Fibonacci number and εn := (1 + 1
n )

1
n−1 − 1, then AM(X) exhibits at most one sign variation. Ostrowski

[25] improved and simplified Uspensky’s criterion (9) to FmFm−1∆ ≥
√
3. Similar criterion were derived by Alesina and

Galuzzi [8, p. 246] and Yap [36, Thm. 14.5, p. 476]. However, it was Obreschkoff [24] who independently, and predating
all the criteria except that by Vincent, gave the most general partial converse to the Descartes’ rule of signs, which easily
yields the termination criteria given below; in fact, Alesina and Galuzzi derive their criterion from this lemma; the priority
amongst these criteria has been elucidated in [14, p. 17].
We next derive a termination criterion that depends on∆α , the shortest distance from a root α of A(X) to any other root

of A(X). To describe this result, following [15], we associate three open discs in the complex plane with an open interval
J = (c, d): the disc CJ is bounded by the circle that has centre (c + d)/2, and radius (d− c)/2; the disc C J is bounded by the
circle that has centre (c + d)/2+ i(

√
3/6)(d− c)/2, and passes through the endpoints of J; and the disc C J is bounded by

the circle that has centre (c + d)/2 − i(
√
3/6)(d − c)/2, and passes through the endpoints of J . In addition to these three

discs, again following [21], we also define the cone

C :=
{
a+ ib|a ≤ 0 and |b| ≤ |a|

√
3
}
.

We have the following key observation, which is implicit in Ostrowski’s proof and is also used by Alesina and Galuzzi
[8, p. 249]:

Lemma 2.4. Let a, b, c, d ∈ R>0, I be an interval with unordered endpoints a/c, b/d, and define the Möbius transformation
M(z) := (az+ b)/(cz+ d). Then M−1(z)maps the closed region (C∪ {±∞})− (C IM ∪ C IM ) bijectively on the cone C, and maps
the open disc CIM bijectively on the half plane<(z) > 0.

For the proof verify the correspondence shown in Fig. 1.
From Lemma 2.4 and from [21, Thm. 3.9] we obtain the following result.

Theorem 2.5. Let A(X) be a square-free polynomial of degree n, and M(X) := PmX+Pm−1
QmX+Qm−1

. If α is the only simple root of A(X) in

the interval IM and there are no other roots of A(X) in C IM ∪ C IM then Var(AM) = 1.

The above theorem corresponds to the two-circle theorem in [21]. The corresponding one-circle theorem, which again
is a direct consequence of Lemma 2.4 and [21, Thm. 3.9], is the following:

Theorem 2.6. Let A(X) be a square-free polynomial of degree n, and M(X) := PmX+Pm−1
QmX+Qm−1

. If CIM does not contain any roots then
Var(AM) = 0.

3. The size of the recursion tree

In this section we bound the number of nodes, #(T ), in the recursion tree T of the procedure described in Section 2
initiated with a square-free polynomial Ain(X) ∈ R[X] of degree n and the Möbius transformation X .
Consider the tree T ′ obtained from T by pruning all leaves. Clearly, #(T ′) = Θ(#(T )). Let u be a node in T ′ that has a right

child. Furthermore, let Au(X) be the polynomial associated with u, and AR(X) be the polynomial associated with its right
child. We partition the nodes u into three types:

(i) If Var(Au) = Var(AR) and the number of roots of Au(X) and AR(X) in the positive half-plane are equal then u is a type-0
node.
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Fig. 2. Geometric proof of Lemma 3.1.

(ii) If the number of roots of Au(X) in the positive half plane is strictly greater than the number of roots of AR(X) in the
same region, and the left child of u in T ′ is empty then u is a type-1 node. This means that the Taylor shift at u shifted a
set of non-real roots to the negative half plane, but the left child of u in T is a leaf; note that we may or may not loose
sign variations, i.e., Var(Au) ≥ Var(AR), because shifting a pair of complex conjugates does not always affect the sign
variations (see [14, Thm. 2.32]).

(iii) If the number of roots of Au(X) in the positive half plane is strictly greater than the number of roots of AR(X) in the same
region, and the left child of u in T ′ is not empty then u is a type-2 node. This means that the polynomial associated with
the left child of u has at least a pair of roots in the positive half plane; thus Var(Au) ≥ Var(AR)+ 2.

Since at every type-1 and type-2 node we split the set of roots, it follows that there are at most n such nodes in T ′. Thus,
bounding the number of Taylor shifts in T ′ reduces to bounding the number of type-0 nodes in it.
Let U denote the set of leaves, U1 the set of type-1 nodes, and U2 the set of type-2 nodes in T ′; note that the three sets are

mutually disjoint. For each node u ∈ U ∪ U1 ∪ U2, letMu denote the Möbius transformation associated with u and Iu := IMu .
We will further associate with u a unique pair (αu, βu) of roots of Ain(X).
Since the number of sign variations in the polynomial associated with every node in T ′ is at least two, from Theorem 2.5

it is clear that for all leaves u ∈ U the set C Iu ∪ C Iu contains a pair of roots. If CIu contains a pair of complex conjugates or
a pair of real roots then let (αu, βu) be this pair; in the former case we always choose αu to be above the real axis, and in
the latter case we always choose the roots to be a pair of neighbouring roots. However, if CIu does not contain a pair of roots
then Iu must contain a real root, let αu be this root, and C Iu ∪ C Iu − CIu must contain a pair of complex conjugates (βu, βu),
where βu is the non-real root above the real axis. Since in all the cases αu and βu are contained in C Iu ∪ C Iu , it follows that

|Iu| >

√
3
2
|αu − βu| >

|αu − βu|

2
. (10)

For every type-1 node u ∈ U1, we associate a pair of roots of Ain(X) as follows: if a pair of complex conjugates was
moved to the negative half plane when we were constructing the right child of a type-1 node then let (αu, βu) be this pair;
if, however, we moved only a real root to the negative half plane then let αu be this root and let βu be the root nearest to it
in C Iu ∪ C Iu . Moreover, the inequality (10) between the width of the interval and the pair of complex conjugates associated
with u still holds.
The pair of roots of Ain(X) associated with a type-2 node is the pair associated with the first leaf encountered in a depth

first traversal of the sub-tree rooted at the left child.
A possible problem with the above assignment is that a set of real roots {αu1 , . . . , αuk}, corresponding to the leaves

u1, . . . , uk in U , may be associated with the same non-real root β , i.e., βui = β , for all i = 1, . . . , k. However, we will show
that this can never occur in the recursion tree; this property was overlooked in [29], and will be required later to derive a
tight bound on the size of the recursion tree. The proof depends upon the following result [14, Lem. 3.16].

Lemma 3.1. Let b < c < d be such that d− c ≤ 3(c − b). Then for all a, b′ such that a < b′ ≤ b, (C (a,b′) ∪ C (a,b′)) ∩ (C (c,d) ∪
C (c,d)) = ∅.

Proof. The lemma follows if we prove that C (a,b′) ∩ C (c,d) = ∅; by symmetry the result holds for C (a,b′) and C (c,d).
Let d′ := c+3(c−b). Thus d′ ≥ d, and hence the result follows if we show that C (a,b′)∩C (c,d′) = ∅, because C (c,d) ⊆ C (c,d′).
Consult Fig. 2. The ray Bmakes an angle of π/3 with [b, d′], and the ray Rmakes an angle of π/6 with [b, d′]. Clearly, R

passes through the center o of C (c,d′), and intersects B, say at e.
For all a, b′, such that a < b′ ≤ b, C (a,b′) is contained in the shaded region. Moreover, C (c,d) ⊆ C (c,d′). Thus the lemma

follows if we show that B is a tangent to C (c,d′), or, equivalently, if the segment [d′, e] is a diameter of C (c,d′).
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Fig. 3. Possible options for the node z such that the left endpoint of its associated interval is distinct from the right endpoint of the interval associated with
wL . The squiggly path denotes a sequence of Taylor shifts.

Consider the right-angled triangle with vertices e, b, d′ (6 d′eb = π/2). From elementary trigonometry it follows that the
vertical from e to the hypotenuse [b, d′]meets it at c . Now if we consider the triangle with vertices e, c , d′, we observe that
o is the midpoint of the edge [d′, e], and hence this edge is a diameter of C (c,d′). �

Theorem 3.2. Let u, v be two leaves in T ′, and Iu, Iv be the corresponding associated intervals. Then Iu and Iv do not share a
common endpoint if and only if (C Iu ∪ C Iu) ∩ (C Iv ∪ C Iv ) = ∅.

Proof. We will prove that if Iu and Iv do not share a common endpoint then C Iu ∩ C Iv = ∅; the argument for C Iu and C Iv
follows by symmetry. The proof that if Iu and Iv share a common endpoint then C Iu ∩ C Iv 6= ∅ is straightforward.
Suppose the ordinary continued fraction associatedwith the deepest common ancestorw of u and v is [q0, . . . , qi], where

i is an even number; if i is an odd number then the following argument still holds if we swap the endpoints of the intervals
mentioned below. Further suppose that u belongs to the tree rooted at the left child, and v to the tree rooted at the right child
of w; otherwise, we can exchange the roles of u and v in the following argument. Let B1 be the value returned by the PLB
function applied to the polynomial associated withw. Then the continued fraction associated with the left child,wL, ofw is
[q0, . . . , qi+B1, 1], andwith its right child,wR, is [q0, . . . , qi+B1+1]. If Pi := Pi−2+(qi+B1)Pi−1 andQi :=Qi−2+(qi+B1)Qi−1
then the interval associatedwithwL is IL := [Pi/Qi, (Pi+Pi−1)/(Qi+Qi−1)] andwithwR is [(Pi+Pi−1)/(Qi+Qi−1), Pi−1/Qi−1].
This scenario has been illustrated in Fig. 3.
If the left endpoint of Iv is not equal to (Pi + Pi−1)/(Qi + Qi−1) then in the tree rooted atwR there must be a node z with

the least depth such that the interval Iz associated with z has a left endpoint greater than (Pi + Pi−1)/(Qi + Qi−1), and such
that v is equal to, or a descendant of this node, i.e., Iv ⊆ Iz . There are two possibilities for z: first, it is the right child of wR;
and second, it is either the left child ofwR or a node obtained from it in a sequence (possibly empty) of Taylor shifts followed
by an inversion transformation. In both cases we claim that

Iz =
[
aPi + bPi−1
aQi + bQi−1

,
cPi + dPi−1
cQi + dQi−1

]
,

where a, b, c, d ∈ N are such that a < b, c < d, and ad − bc = 1; the case c = 0 corresponds to the right child of wR. We
show the claim for the second case; the proof for the first case can be shown similarly. Using the matrix representation (see
e.g., [36, p. 462]) of a Möbius transformation it follows that the transformation associated with z in the second case is[

Pi + Pi−1 Pi−1
Qi + Qi−1 Qi−1

] [
1 0
δ1 1

] [
1 1
1 0

] [
1 0
δ2 1

] [
1 1
1 0

] [
1
X

]
, (11)

where δ1 ≥ 0 is the amount of Taylor shift done atwR, and δ2 ≥ 0, is the total amount of Taylor shift done along the squiggly
path shown in Fig. 3. From this it follows that a = 2 + δ2, b = 1 + (1 + δ1)a, c = 1 + δ2, d = 1 + (1 + δ1)c , and
ad − bc = 1. Note that (11) does not represent the transformation associated with the left child of wR; nevertheless, from
the same argument it is clear that the associated transformation satisfies a = 1, b = 2+ δ1, c = 1, and d = 1+ δ1.
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Now we show that C Iz ∩ C IL = ∅. From Lemma 3.1 this follows if

|Iz | < 3
∣∣∣∣ aPi + bPi−1aQi + bQi−1

−
Pi + Pi−1
Qi + Qi−1

∣∣∣∣ ,
i.e., if

Qi + Qi−1 < 3(b− a)(cQi + dQi−1).

This certainly holds if c ≥ 1. If, however, c = 0 then a = d = 1, because ad− bc = 1, and b > 1, because otherwise the left
endpoint of J is (Pi + Pi−1)/(Qi + Qi−1). But even in this situation C Iz ∩ C IL = ∅, because

|IL| =
∣∣∣∣ PiQi − Pi + Pi−1Qi + Qi−1

∣∣∣∣ < 3 ∣∣∣∣ Pi + Pi−1Qi + Qi−1
−
Pi + bPi−1
Qi + bQi−1

∣∣∣∣ ,
since for b > 1, Qi + bQi−1 < 3(b− 1)Qi.
If the left endpoint of Iv is (Pi + Pi−1)/(Qi + Qi−1) then by assumption the right endpoint of Iu has to be smaller than

this. Thus in the tree rooted at wL there must be a node z whose associated interval Iz has a right endpoint smaller than
(Pi + Pi−1)/(Qi + Qi−1) and such that v is equal to, or a descendant of this node, i.e., Iv ⊆ J . Moreover, we can again show
that

Iz =
[
aPi + bPi−1
aQi + bQi−1

,
cPi + dPi−1
cQi + dQi−1

]
,

where a, b, c, d ∈ N are such that a > b, c > d, ad − bc = 1, and a, c ≥ 1. Again, from Lemma 3.1 we get C Iz ∩ C IL = ∅,
because

|Iz | ≤ 3
∣∣∣∣ cPi + dPi−1cQi + dQi−1

−
Pi + Pi−1
Qi + Qi−1

∣∣∣∣ . �

We next bound the number of nodes in the path terminating at the leaf u by bounding the number of inversion
transformations X → 1/(X + 1) and Taylor shifts X → X + b, b ≥ 1.

3.1. Bounding the inversion transformations

For a given leaf u ∈ U , let [q0, , . . . , qm] = Pm/Qm be the associated continued fraction. Then from (10) it follows that
|αu − βu| < 2(QmQm−1)−1. But from (1) we know that Qi is greater than the (i + 1)th Fibonacci number; this implies that
Qi ≥ φi, where φ = (1+

√
5)/2. Thus φ2m−1 ≤ 2|αu − βu|−1 and hence

m ≤
1
2
(1+ logφ 2− logφ |αu − βu|). (12)

This gives us an upper bound on the number of inversion transformations for one leaf u; summing it for all leaves gives us
the following bound on the total number of inversion transformations in T ′∑

u∈U

1
2
(1+ logφ 2− logφ |αu − βu|) ≤ 2n+

∑
u∈U

logφ(|αu − βu|)
−1. (13)

This bound is also derived in [31, Thm. 8], and improves upon Akritas’ bound [5] by a factor of n.

3.2. Bounding the Taylor shifts

The purpose of the Taylor shifts in the procedure CF(A,M) was to compute the floor of the smallest positive root of a
polynomial. Using property (8) of the PLB(A) function (defined in (6)) we will bound the number of Taylor shifts required to
compute the floor of the smallest positive root of some polynomial B(X) ∈ R[X].
We introduce the following notation for convenience: for any x ∈ R≥0 let

logm(x) := logmax(1, x).

Lemma 3.3. Let B1(X) ∈ R[X]. For i > 1 recursively define

Bi(X) := Bi−1(X + δi−1)

where

δi−1 :=

{
PLB(Bi−1)+ 1 if PLB(Bi−1) ≥ 1
1 otherwise.

Let α1 := κ(B1(X)) (see (7)), and a1 be any point in [0, α1]. Recursively define αi :=αi−1−δi−1 and ai := ai−1−δi−1. Then ai ≤ 1
if i = Ω(n+ nlogm a1).
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Proof. Let bi := PLB(Bi). Then from (8) we know that bi > αi/16n, because αi = κ(Bi). Let j be the index such that αi > 16n
for i < j. Then for i < jwe know that bi > 1. Thus

ai = ai−1 − bi−1 − 1 < ai−1 − bi−1 < ai−1 −
αi−1

16n
≤ ai−1

(
1−

1
16n

)
,

because ai ≤ αi, for all i. Thus recursively we obtain ai < a1(1 − 1
16n )

i−1. So aj ≤ 16n if j ≥ 2 + (log(16n) − log(16n −
1))−1logm a1. For i ≥ j we know that αi ≤ 16n, because αi is monotonically decreasing. Thus if i > j is such that
i − j ≥ 16n then ai ≤ 1. Combining this lower bound on i − j with the lower bound on j along with the observation
that (log(16n)− log(16n− 1))−1 = Θ(n)we get the result of the lemma. �

Based upon the above lemma we will bound the number of Taylor shifts from the root of T ′ to the leaf u, with the
associated continued fraction [q0, . . . , qm], by bounding the number of Taylor shifts that compose each qi, i = 0, . . . ,m.
Recall from the beginning of this section that for every leaf u ∈ U we had associated a pair (αu, βu) of roots of Ain(X); let
Mu(X) be the Möbius transformation and Iu the interval associated with u. Further define the following quantities:

Definition 3.4. For 0 ≤ i ≤ m let

(i) Mi(X) := [q0, . . . , qi, 1+ X] =
PiX+Pi−1+Pi
QiX+Qi−1+Qi

, and
(ii) Ai(X) := (QiX + Qi−1 + Qi)nAin(Mi(X)), i.e., the polynomial obtained by performing the ith inversion transformation
and on which we will perform a Taylor shift by the amount qi+1.

By its definition IMi , i.e. the interval associated withMi(X), for 0 ≤ i ≤ m, contains Iu and hence it follows from (10) that for
0 ≤ i ≤ m

(QiQi−1)−1 ≥
|αu − βu|

2
. (14)

We now bound the number of Taylor shifts required by the algorithm to compute qi+1. Suppose the scenario is as shown
in Fig. 4, i.e., while computing qi+1 we have one type-2 nodew1 with the associated continued fraction [q0, . . . , qi, qw1 ] and
one type-1 node u1 with the associated continued fraction [q0, . . . , qi, qu1 ] = Pu1/Qu1 ; the squiggly paths represent the
type-0 nodes in between.
As illustrated in Fig. 4, the number of Taylor shifts needed to compute qi+1 can be broken into three parts: first, the

number of Taylor shifts required to reach w1; second, the number of Taylor shifts required to go from w1 to u1; and third,
the number of Taylor shifts needed from u1. From Lemma 3.3 we know that the first quantity is O(n log qw1), the second
quantity is O(n log(qu1 − qw1)) = O(n log qu1), and the third is O(n log(qi+1 − qw1 − qu1)) = O(n log qi+1).
Consider the bound O(n log qw1). Recall that with every type-2 node there is a unique pair of roots associated; suppose

the pair (αv, βv) associated withw1 corresponds to the leaf v ∈ U . As shown in Fig. 4, it is clear that the partial denominator
qw1 is smaller than the (i + 1)th partial denominator qv appearing in the continued fraction associated with v. Thus
O(n log qw1) = O(n log qv). Also recall that with every type-1 node we had associated a unique pair of roots; say (αu1 , βu1)
is the pair associated with u1. We know that the width of the interval associated with u1 satisfies 2(QiQu1)

−1 > |αu1 − βu1 |.
Since Qu1 > qu1 we get O(n log qu1) = O(n log |αu1 − βu1 |

−1).
The above argument holds in general, i.e., while constructing Ai+1(X) from Ai(X) suppose u1, u2, . . . , uk, k ≥ 0, are the

type-1 nodes,w1, w2, . . . , w`, ` ≥ 0, are the type-2 nodes, and all the remaining nodes are of type-0. Let (αuj , βuj) represent
the pair associated with the type-1 node uj, and (αvj , βvj), vj ∈ U , represent the pair associated with the type-2 node wj;
further define qvj as the (i+ 1)th partial denominator appearing in the continued fraction associated with vj. Then the total
number of Taylor shifts needed to compute Ai+1(X) from Ai(X) is bounded by

O

(
n

k∑
j=1

log |αuj − βuj |
−1
+ n

∑̀
j=1

log qvj + n log qi+1

)
. (15)

If we sum this bound for i = 1, . . . ,m, and then for all u ∈ U we get an upper bound on the total number of Taylor shifts in
the tree T ′. We consider this summation in three separate parts corresponding to the three terms appearing in (15).

(i) The summation over i = 1, . . . ,m, and over all u ∈ U , of the first summation term in (15) amounts to summing over
all the type-1 nodes appearing in the tree, and hence is bounded by

∑
u′∈U1

O(n log |αu′ − βu′ |−1).
(ii) Let us consider the summation

∑m
i=1 log qi; we will later consider the bound for q0 for all u ∈ U , i.e., a bound on

the length of the rightmost path. We express this summation in terms of the distance |αu − βu|. We know that
Qm = qmQm−1 + Qm−2; thus Qm ≥ qmQm−1, and recursively we get that Qm ≥

∏m
j=1 qj. Along with (14) we

have
m∑
i=1

log qi = O(log |αu − βu|−1). (16)
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Fig. 4. Taylor shifts between the ith and (i+ 1)th inversion transformations.

(iii) Consider the second summation in (15). Each term in the summation is the (i + 1)th partial denominator in the
continued fraction associated with the leaf vj. But if we consider the bound in (16) for the leaf vj then we account
for the term log qvj . Thus the summation of (16) over all u ∈ U bounds the number of Taylor shifts associated with all
the type-2 nodes in the tree T ′.

We have accounted for all the shifts in the tree, except for the shifts along the rightmost path in T ′. Let qu0 be the 0th
partial numerator in the continued fraction associated with leaf u. Then from Lemma 3.3 it follows that the length of the
rightmost path is O(n

∑
u∈U log q

u
0). Since each q

u
0 is smaller than the largest absolute value amongst all the roots of Ain(X),

which instead is bounded by M(Ain)/|lead(Ain)|, where M(Ain) is the Mahler measure of Ain(X) and lead(Ain) is its leading
coefficient [36, Sec. 6.6, Sec. 4.5], we have the following result.

Lemma 3.5. The total number of Taylor shifts in the tree T ′ is bounded by

O

(
n
∑
u∈U∪U1

log |αu − βu|−1 + n2 log
M(Ain)
|lead(Ain)|

)
.

Asymptotically this bound dominates the bound in (13) on the total number of inversion transformations in the tree
T ′ and hence is also a bound on #(T ′), the size of the tree T ′. Moreover, recall from the beginning of this section that the
number of nodes in the recursion tree T of the continued fraction algorithm isΘ(#(T ′)), so the abovebound applies to#(T ) as
well.

3.3. Worst case size of the tree

In order to derive a worst case bound on the size of the tree T , from the bound given in Lemma 3.5, we need to derive an
upper bound on

∑
u∈U∪U1

log |αu − βu|−1. For this purpose we resort to the Davenport–Mahler bound:
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Proposition 3.6. Let A(X) = an
∏n
i=1(X − αi) be a square-free complex polynomial of degree n. Let G = (V , E) be a directed

graph whose vertices {v1, . . . , vk} are a subset of the roots of A(X) such that

(i) If (vi, vj) ∈ E then |vi| ≤ |vj|.
(ii) G is acyclic.
(iii) The in-degree of any node is at most 1.

If exactly m of the nodes have in-degree 1, then∏
(vi,vj)∈E

|vi − vj| ≥
√
|discr(A)| ·M(A)−(n−1) · (n/

√
3)−m · n−n/2.

See [9, Prop. 10.23] for a proof. A special case of this proposition is the following:
Remark 3.7. Let A(X) be square-free integer polynomial of degree n and integer coefficients of bit-length L. Let sep(A) be
the minimum distance between two distinct roots of A(X). Then

sep(A) ≥ 2−nL(n+ 1)−n · (n/
√
3).

The bound is not the sharpest (cf. [27]), but is sufficient for asymptotic analysis.
Consider the graph G whose edge set consists of the pairs (αu, βu), u ∈ U ∪ U1. We will show that the edges in G can

be reordered to satisfy the conditions of Proposition 3.6. First of all, for any u ∈ U ∪ U1 we can reorder the pair (αu, βu)
to ensure that |αu| ≤ |βu| without affecting the summation in Lemma 3.5. However, we might have a situation where two
nodes u, u′ ∈ U∪U1with the associated pairs of roots (αu, βu) and (αu′ , βu′) (resp.) are such thatβu = βu′ ; fromTheorem3.2
it is clear that this can occur if and only if the intervals associated with u and u′ share a common endpoint; moreover, in this
case, βu is a non-real root. In this situation we can always re-assign βu′ :=βu. Nowwe are sure that all the vertices in G have
in-degree at most one. Applying Proposition 3.6 to Gwe obtain∑

u∈U∪U1

log |αu − βu|−1 = O(n logM(Ain)+ n log n− log|discr(Ain)|), (17)

where M(Ain) is the Mahler measure of Ain(X) and discr(Ain) is its discriminant (see [36, Sec. 6.6, Sec. 4.5], [23, Sec. 1.5,
Sec. 2.1]). Based upon this bound, we have the following result.
Theorem 3.8. The number of nodes in the recursion tree of the procedure CF applied to a square-free polynomial Ain(X) ∈ R[X]
of degree n is

O(n2 logM(Ain)+ n2 log n− n log|discr(Ain)| − n2 log |lead(Ain)|).
Proof. The result follows easily if we apply the bound in (17) to the bound in Lemma 3.5. �

We next give a specialization of the above theorem for integer polynomials.
Corollary 3.9. The number of nodes in the recursion tree of the procedure CF applied to a square-free polynomial Ain(X) of degree
n with integer coefficients of bit-length L is Õ(n2L).
Proof. From Landau’s inequality (e.g., [36, Lem. 4.14(i)]) and the estimate ‖Ain‖2 ≤

√
n+ 1‖Ain‖∞ we get that

M(Ain) ≤ ‖Ain‖2 ≤
√
n+ 1‖Ain‖∞ < 2L

√
n+ 1.

Moreover, |discr(Ain)|, |lead(Ain)| ≥ 1, because Ain(X) is square-free and its coefficients are integers. �

How good is this bound? The answer depends upon the tightness of the bounds derived on the number of inversion
transformations and Taylor shifts. The bound derived on the former, in (13), is perhaps the best one can expect, considering
that the same bound holds for real root isolation using Sturm’s method [12,13] and for Collins and Akritas’ algorithm [15,
16]. The best possible scenario for the number of Taylor shifts is based upon the ideal PLB function, which we recall is a
function that can determine whether a polynomial has positive real roots, and if there are such roots then returns the floor
of the smallest positive root of the polynomial.
Lemma 3.10. For a square-free polynomial of degree n and integer coefficients of bit-length L, the number of Taylor shifts in the
recursion tree of the procedure CF using the ideal PLB function is Õ(nL).
Proof. Recall the definition of the polynomials Ai(X) from Definition 3.4. Notice that in the process of constructing Ai+1(X)
from Ai(X), each Taylor shift using the bound provided by the ideal PLB function ensures that there is a set of real roots of
Ai(X) in the unit interval. Thus each Taylor shift on Ai(X) either partitions its positive real roots, or is immediately followed
by an inversion transformation if all the real roots are contained in a unit interval. Thus the total number of Taylor shifts in
the recursion tree is less than sum of the degree n and the number of inversion transformations in the tree. In the worst case
this sum is bounded by Õ(nL). �

Remark 3.11. Combining the arguments presented in Section 3.2 and the arguments in [28, Chap. 3], we can show an Õ(n3L)
bound on the recursion tree size of procedure CF, where we use Zassenhaus’ bound [36, Lem. 6.5, p. 147] for computing the
PLB function. If, however, in the arguments in [28, Chap. 3] we use Roth’s theorem [26] instead of Liouville’s inequality then
the bound can be reduced by a factor of n.
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4. The Bit-complexity

In this section we derive the bit-complexity of the continued fraction algorithm for a square-free integer polynomial
Ain(X) such that ‖Ain‖∞ < 2L. To do this we will bound the worst case complexity at any node in the recursion tree, and
multiply it with the bound in Corollary 3.9.
Recall from the beginning of Section 3 the definitions of the set U , and of the pair (αu, βu) for any u ∈ U . Let

[q0, . . . , qm+1] = Pm+1/Qm+1, Ai(X) be defined as in Definition 3.4, and ‖Ai‖∞ < 2Li .
To construct Ai+1(X) from Ai(X) we need to construct a sequence of polynomials Bj(X), 1 ≤ j ≤ `, such that

B1(X) := Ai(X); for j > 1, Bj(X) := Bj−1(X + δj−1), where δj is defined as in Lemma 3.3; and Ai+1(X) := (X + 1)nB`(δ` +
1/(X + 1)). Moreover, qi+1 =

∑`
j=1 δj. The two most important operations in computing Bj(X) from Bj−1(X) are computing

PLB(Bj−1) and the Taylor shift by δj. We only focus on the latter operation, because if we use the classical Taylor shifts then
its complexity dominates the cost of computing PLB(Bj−1).
In order to compute Bj(X) from Bj−1(X), we first perform a Taylor shift by PLB(Bj−1), and then by one. If we use classical

Taylor shifts [20,35] thenwe requireO(n2) additions andmultiplications on integers of bit-lengthO(bj−1+n log δj−1), where
bj−1 is the bit-length of the coefficients of Bj−1(X). Recall from Section 2.1 that the value returned by PLB(Bj−1) is a power
of two, and hence all the multiplications in the implementation of Taylor shift are replaced by simple bit-shift operations.
Thus the cost of computing Bj−1(X + PLB(Bj−1)) is bounded by O(n2(bj−1 + n log δj−1)). Recursively, we can show that
bj−1 = O(Li + n(log δ1 + · · · + log δj−2)). In particular, the cost of computing Ai+1(X) from B`(X) is bounded by

O

(
n2
(
Li + n

∑̀
j=1

log δj

))
= O(n2(Li + n` log qi+1)).

Let us write `i to denote `. Then the worst case complexity of computing Ai+1(X) is bounded by

O

(
n2
(
L+ n

m∑
i=1

`i log qi+1

))
= O

(
n2
(
L+ n

(
m∑
i=1

`i

)(
m∑
i=1

log qi+1

)))
.

From (16) and Remark 3.7, we know that
∑m
i=1 log qi+1 = Õ(nL); and from Corollary 3.9, that

∑m
i=1 `i = Õ(n

2L). Thus the
worst case complexity at a node is bounded by Õ(n6L2); at the leaves the worst case complexity is Õ(n7L2), because qm+1
does not satisfy (16), but from from [28, p. 158] we know that bm+1 = Õ(n2L); however, the number of leaves is at most
O(n), but the number of remaining nodes in the recursion tree is Õ(n2L). Thus we have the following result.

Theorem 4.1. Let A(X) be a square-free integer polynomial of degree n with integer coefficients of bit-length L. Then the bit-
complexity of isolating all the real roots of A(X) using the procedure CF, where we use classical Taylor shift, is Õ(n8L3).

Note that we cannot use asymptotically fast Taylor shifts [35, Thm. 2.4] to improve this bound, because then its
complexity is dominated by the cost of computing the bound by Hong.

5. Continued fraction algorithm with scaling

The results in the previous section show that even though shifting by PLB in step five of the procedure CF(A,M) brings
down the worst case running time to polynomial, it does not yield an impressive bound. Another way to perform a Taylor
shit by an amount b ≥ 1 is to scale the variable in the polynomial by b and then do a Taylor shift by one. So we can replace
line five of procedure CF(A,M)with the following:

5. If b ≥ 1 then
A(X) := A(b(X + 1)),M(X) :=M(b(X + 1)).

Let CFS(A,M) be the modified procedure; it was first proposed in [3].
To analyse this modification, we have to understand the nature of theMöbius transformations associatedwith each node

in the recursion tree of the formulation. As was the case earlier, the transformation associated with the root of the tree is X .
Now supposewe perform a scaling by some amount b0 followed by a Taylor shift by one. Then the associated transformation
is b0+b0X . If we follow this by a scaling by b1 and a Taylor shift by one then the associated transformation is b0+b0b1+b0b1X .
If the next transformation is an inversion transformation then the associated transformation is b0 + b0b1 +

b0b1
1+X . Thus we

see that the continued fraction associated with a node of the tree is of the form[
q0,
p1
q1
,
p2
q2
, . . . ,

pm
qm

]
,

i.e., the continued fraction is no longer guaranteed to be an ordinary continued fraction. Moreover, an important property of
this continued fraction, which can be deduced from the explanation above, is that

qi ≥ pi+1. (18)

The termination criteria, namely Theorems 2.5 and 2.6, still hold.
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Let T be the recursion tree of the procedure CFS(Ain,M), where Ain(X) ∈ R[X] is a square-free polynomial of degree n
and M(X) is the identity Möbius transformation. Our aim is to bound the size #(T ) of T . We proceed similar to Section 3.
In particular, let T ′ denote the tree obtained by pruning all the leaves of T . We again characterize the set of nodes of T ′ as
type-0, type-1 and type-2 nodes; let U denote the set of leaves, U1 the set of type-1 nodes, and U2 the set of type-2 nodes.
For each u ∈ U we can associate a pair of roots (αu, βu) of Ain(X) as was done earlier; the argument below does not require
associating any pair of roots with type-1 and type-2 nodes. However, for the same reasons given earlier, we have to prove
that Theorem 3.2 still holds for T ′.

Theorem 5.1. Let u, v be two leaves in T ′, and Iu, Iv be the corresponding associated intervals. Then Iu and Iv do not share a
common endpoint if and only if (C Iu ∪ C Iu) ∩ (C Iv ∪ C Iv ) = ∅.

Proof. We proceed similarly to Theorem 3.2. Let w be the deepest common ancestor of u and v, [q0, p1q1 , . . . ,
pi
qi
, pi+1] be

the continued fraction associated with w, where i is an even number, and B1 be the value returned by the PLB function
applied to the polynomial associated withw. Define P ′i−1 := B1pi+1Pi−1, Q

′

i−1 := B1pi+1Qi−1, Pi := piPi−2 + qiPi−1 + P
′

i−1, and
Qi := piQi−2 + qiQi−1 + Q ′i−1. Then the interval IL associated with the left child wL of w is [Pi/Qi, (Pi + P

′

i−1)/(Qi + Q
′

i−1)]
and with the right child wR of w is [(Pi + P ′i−1)/(Qi + Q

′

i−1), P
′

i−1/Q
′

i−1]. The scenario is the same as in Fig. 3 with Pi−1, Qi−1
replaced by P ′i−1, Q

′

i−1 respectively.
Again, if the left endpoint of Iv is not equal to (Pi+ P ′i−1)/(Qi+Q

′

i−1) then in the tree rooted atwR there must be a node z
with the least depth such that the interval Iz associated with z has a left endpoint greater than (Pi + P ′i−1)/(Qi + Q

′

i−1), and
such that v is equal to, or a descendant of this node, i.e., Iv ⊆ Iz . There are two cases to consider for z: first, it is the right
child of wR; and second, it is either the left child of wR or a node obtained from it in a sequence (possibly empty) of Taylor
shifts and scalings, followed by an inversion transformation. In both cases we claim that

Iz =
[
aPi + bPi−1
aQi + bQi−1

,
cPi + dPi−1
cQi + dQi−1

]
,

where a, b, c, d ∈ N are such that a < b, c < d, and ad− bc ≥ 1 is the total amount of scaling done on the path to z.
We have to consider sub-cases of the second case. First assume that there was no scaling at wR, i.e., the PLB function

applied to the polynomial associated with wR returned zero; in this sub-case z cannot be the left child of wR. Then the
Möbius transformation associated with z is[

Pi + P ′i−1 P ′i−1
Qi + Q ′i−1 Q ′i−1

] [
1 1
1 0

] [
1 0
δ1 δ1

]
. . .

[
1 0
δk δk

] [
1 1
1 0

] [
1
X

]
, (19)

where δ1, . . . , δk ≥ 1 are the scalings done along the squiggly path shown in Fig. 3; note that δj = 1 just means a Taylor
shift by one. In this case a = 1+

∑k
j=1 δ1 . . . δj+δ1 . . . δk, b = 1+a, c = 1+

∑k
j=1 δ1 . . . δj, d = 1+c and ad−bc = δ1 . . . δk.

However, (19) does not represent the transformation when there are no scalings and Taylor shifts, i.e., the sub-case when z
is the left child of the left child ofwR. That transformation is[

Pi + P ′i−1 P ′i−1
Qi + Q ′i−1 Q ′i−1

] [
1 1
1 0

] [
1 1
1 0

] [
1
X

]
;

in this case a = 2, b = 3, c = 1, and d = 2. If our assumption was wrong, i.e., there was a non-zero scaling δ ≥ 1 done atwR
then the transformation associated with its left child, which is our z now, satisfies a = 1, b = 2δ + 1, c = 1, and d = δ + 1.
In all the three sub-cases, it can be easily shown that

|Iz | < 3
∣∣∣∣ aPi + bP ′i−1aQi + bQ ′i−1

−
Pi + P ′i−1
Qi + Q ′i−1

∣∣∣∣ ,
i.e., |ad− bc|(Qi+Q ′i−1) < 3(b− a)(cQi+ dQ

′

i−1). This argument works if c 6= 0. If that is not the case, which is the situation
when z is the right child ofwR, then, if δ ≥ 1 is the value returned by PLB function atwR, the transformation associated with
its right child satisfies a = 1, b = 2(δ + 1), c = 0, and d = δ. In this case we can show

|IL| =
∣∣∣∣ PiQi − Pi + P

′

i−1

Qi + Q ′i−1

∣∣∣∣ < 3 ∣∣∣∣ Pi + P ′i−1Qi + Q ′i−1
−
Pi + bP ′i−1
Qi + bQ ′i−1

∣∣∣∣ ,
i.e., Qi + bQ ′i−1 < 3(b− 1)Qi.
The argument when the left endpoint of Iv is (Pi + P ′i−1)/(Qi + Q

′

i−1) can be done similarly. �
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5.1. Bounding the inversion transformations

The argument in Section 3.1 breaks down now, because the width of the interval associated with the transformation
(PmX + Pm−1)/(QmX + Qm−1) is (p1p2 . . . pm)/(QmQm−1). To have a similar argument we need to derive an upper bound on
(p1p2 . . . pm)/(QmQm−1). We can show a trivial upper bound of one, but it is not tight enough for carrying our argument.
However,

Qm = pmQm−2 + qmQm−1 ≥ qmQm−1 ≥
m∏
i=1

qi ≥
m∏
i=1

pi+1, (20)

where the last inequality follows from (18).
Now we bound the number of inversion transformations needed along a path to a leaf u ∈ U with the associated

continued fraction [q0,
p1
q1
, . . . ,

pm
qm
] = Pm/Qm. From (10) it follows that

|αu − βu| < 2
∣∣∣∣ PmQm − Pm−1Qm−1

∣∣∣∣ = 2p1p2 . . . pmQmQm−1
≤
2
Qm
, (21)

where the last step follows from (20). Since Qm ≥ φm, where φ = (1+
√
5)/2, we get

m ≤ logφ 2|αu − βu|
−1
; (22)

comparing with (12) we observe that wemight havemore inversion transformations now. Summing this for all leaves gives
us the following bound on the total number of inversion transformations in T ′∑

u∈U

(2+ logφ |αu − βu|
−1) ≤ 2n+

∑
u∈U

logφ |αu − βu|
−1. (23)

5.2. Bounding the scalings and Taylor shifts

As was the case earlier, the purpose of scalings and Taylor shifts is to compute the floor of the smallest positive root of a
polynomial. Using property (8) we will see that scaling the polynomial reduces the number of Taylor shifts required for our
purpose. The key lemma is the following.

Lemma 5.2. Let B1(X) ∈ R[X]. For i > 1 recursively define

Bi(X) :=
{
Bi−1(PLB(Bi−1)(X + 1)) if PLB(Bi−1) ≥ 2
Bi−1(X + 1) otherwise.

Let αi := κ(Bi(X)). Then the number of scalings and Taylor shifts needed to yield αi ≤ 1 are bounded by O(log n) and O(n)
respectively.

Proof. Let bi := PLB(Bi). Suppose α1 ≥ 16n then from (8) we know that b1 ≥ α1
16n ≥ 1. In this case, α2 :=

α1
b1
− 2 < 16n.

Starting from α2 we either perform a scaling by at least 2, and hence they are bounded by log 16n, or a Taylor shift by at least
one, which are hence bounded by 16n. �

Remark 5.3. The purport of the above lemma and (22) is that we decrease the number of Taylor shifts done between
consecutive inversion transformations, but this comes at the expense of increasing the number of inversion transformations.
However, this is not a drawback, because each inversion transformation decreases the width of the associated interval by at
least half.

Based upon this lemma we will bound the number of scalings and Taylor shifts to a leaf u of T ′. Let [q0,
p1
q1
, . . . ,

pm
qm
] be the

continued fraction associated with u, and Mu(X), Iu be the corresponding Möbius transformation and interval associated
with u. Further, let Ai(X) be the polynomial obtained after doing i inversion transformations along the path to u.
Again consider the situation shown in Fig. 4, i.e., while constructing qi and pi+1 we have one type-2 node w1 and one

type-1 node u1. From Lemma 5.2 we get that the number of scalings and Taylor shifts needed to reach w1, from w1 to u1,
and from u1 is bounded by O(log n) and O(n) respectively. In general, if we have ki type-1 node, and `i type-2 nodes then the
total number of scalings needed to construct Ai+1(X) from Ai(X) is bounded by O(log n(ki + `i + 1)), and the total number
of Taylor shifts needed for the same purpose is bounded by O(n(ki + `i + 1)). Summing this over i = 1, . . . ,mwe get that
the number of scalings along the path to u is bounded by O(

∑m
i=1(ki + `i) log n + m log n) and the number of Taylor shifts

along the path to u is bounded by O(
∑m
i=1 n(ki + `i)+ nm). Summing these two bounds over all the leaves in T

′, along with
(23) and the observation that the total number of type-1 and type-2 nodes in the tree are O(n), we get the following result.
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Lemma 5.4. The number of scalings in the tree T ′ is bounded by

O

(
n log n+ log n

∑
u∈U

log |αu − βu|−1
)

and the number of Taylor shifts is bounded by

O

(
n2 + n

∑
u∈U

log |αu − βu|−1
)
.

Clearly, this bound applies to #(T ′), and hence to #(T ).
If we consider the graph whose edge set are the pairs (αu, βu), u ∈ U , and reorder the edges as was done in Section 3.3

then from Proposition 3.6 and Theorem 5.1 we get the following result.

Theorem 5.5. Let Ain(X) ∈ R[X] be a square-free polynomial of degree n. Then in the recursion tree of the procedure CFS applied
to Ain(X), the number of nodes at which scalings are performed is

O([n logM(Ain)+ n log n− log|discr(Ain)| − n log |lead(Ain)|] log n),

and the number of nodes at which Taylor shifts are performed is

O(n2 logM(Ain)+ n2 log n− n log|discr(Ain)| − n2 log |lead(Ain)|).

For the special case of integer polynomials we get:

Corollary 5.6. Let Ain(X) be a square-free polynomial of degree n with integer coefficients of bit-length L. Then in the recursion
tree of the procedure CFS applied to Ain(X), the number of nodes at which scalings are performed is Õ(nL), and the number of
nodes at which Taylor shifts are performed is Õ(n2L).

5.3. The bit-complexity

Weproceed similar to Section 4, i.e., let Ain(X) be a square-free integer polynomial such that ‖Ain‖∞ < 2L. Wewill bound
the worst case complexity of a node in the recursion tree of the procedure CFS applied to Ain(X).
Recall the definition of the tree T ′ and the set U of its leaves from the starting of this section. Let u ∈ U be a leaf in T ′

with the associated continued fraction [q0,
p1
q1
, . . . ,

pm+1
qm+1
]. Further, let ‖Ai‖∞ < 2Li , where Ai(X) is the polynomial obtained

after doing i inversion transformations along the path to u.
In order to construct Ai+1(X) from Ai(X) we need to construct a sequence of polynomials Bj(X), 1 ≤ j ≤ `, such

that B1(X) := Ai(X) and Bj(X) is constructed from Bj−1(X) as in Lemma 5.2. Suppose in constructing this sequence, we
do si scalings by amounts δ1, . . . , δsi ≥ 2, and ti Taylor shifts by one. Since each scaling by δj is followed by a Taylor
shift by one, the bit-length increases by O(n(1 + log δj)). Recall from Section 2.1 that the δj’s are all powers of two
and hence a scaling by δj is a simple bit-shift operation. Thus the bit-length of the polynomial B`(X) is bounded by
O(Li+ n

∑si
j=1 log δj+ n(si+ ti)), and hence the worst case complexity of computing Ai(X) from B`(X) using classical Taylor

shifts is bounded by O(n2(Li + n
∑si
j=1 log δj + n(si + ti))). Note that

∏si
j=1 δj = pi+1. Thus the worst case complexity of

computing Ai+1(X) from Ai(X) is bounded by

O(n2(Li + n log pi+1 + n(si + ti))).

Summing this for i = 1, . . . ,mwe get that it is bounded by

O

(
n2
(
L+ n log

m∏
i=1

pi+1 + n
m∑
i=1

(si + ti)

))
. (24)

The summation in the last term is a bound on the total number of Taylor shifts and scalings along the path in the tree to the
leaf u, which we know from Corollary 5.6 is bounded by Õ(n2L). Along with (20), we get that the worst case complexity of
computing Ai+1(X) is bounded by

Õ(n2(L+ n logQm + n3L)).

But from (21) we know that Qm ≤ 2p1 . . . pmQ−1m−1|αu − βu|
−1, and from (20) that Qm−1 ≥

∏m−1
i=1 pi+1. Thus Qm ≤

2q0|αu − βu|−1. Note that q0 is bounded by the length of the rightmost path of the tree, which we know is bounded by
the absolute value of the largest root of Ain(X); from Cauchy’s bound [5, p. 350] we know that the latter quantity is O(L).
Along with Remark 3.7, we get that the worst case complexity of any node in the recursion tree is bounded by Õ(n5L). Now
we apply Corollary 5.6, and obtain our second main result.

Theorem 5.7. Let A(X) be a square-free integer polynomial of degree n with integer coefficients of bit-length L. Then the bit-
complexity of isolating all the real roots of A(X) using the procedure CFS, where we use classical Taylor shifts, is Õ(n7L2).
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5.4. A modification of CFS

As compared to the result in Lemma 3.10, the extra factor n in Corollary 5.6 appears because of the bound on the number
of Taylor shifts by one in Lemma 5.2. This instead occurs when the value returned by PLB(A) is at most one. One way to
remedy this is to replace line five of the procedure CFS(A,M)with the following:

5. If b := PLB(A) > 1 then
A(X) := A(b(X + 1)),M(X) :=M(b(X + 1)).

else
A(X) := A(2X),M(X) :=M(2X).

Let MCFS(A,M) be the modified procedure. We claim that the size of the recursion tree for this formulation is Õ(nL).
The continued fraction associatedwith a node in the recursion tree of the formulation is still of the form [q0,

p1
q1
, . . . ,

pm
qm
];

however, instead of (18), now it satisfies

2qi ≥ pi+1. (25)

To see this, suppose that we have already done (i − 1) inversion transformations and are going to construct qi and pi+1;
initially, i.e., just after the (i − 1)th inversion transformation, both are one. Now, to construct them we perform scalings
and Taylor shifts until we do an inversion transformation. Each scaling is followed by a Taylor shift by one, except possibly
the scaling just before performing the ith inversion transformation; until that point the scenario is the same as for (18) and
hence qi ≥ pi+1; however, if the last scaling was by two and we did not do a Taylor shift by one subsequently then pi+1 has
been doubled and qi remains unchanged; but clearly, 2qi ≥ pi+1.
Let T be the recursion tree of the procedure MCFS initiated on the square-free polynomial Ain(X) and the Möbius

transformation X . Construct the tree T ′, as was described in Section 3, from T . The termination criteria, Theorem 2.5 and
Theorem 2.6, still hold and T ′ satisfies Theorem 5.1.
Now, we proceed to bound the number of inversion transformations in T ′. The argument in Section 5.1 fails, because the

inequality (20) no longer holds. Instead we have the following result.

Lemma 5.8. Let [q0, p1q1 ,
p2
q2
, . . . ,

pm
qm
] be a continued fraction satisfying (25). Then

QmQm−1 ≥ (3/2)m
m∏
i=1

pi.

Proof. Assume thatm = 2k; a similar argument holds whenm is odd. From (1) we know that

Q2k
p2k
= Q2k−2 +

q2k
p2k
(p2k−1Q2k−3 + q2k−1Q2k−2) ≥ Q2k−2

(
1+

q2k
p2k
q2k−1

)
≥
3
2
Q2k−2,

because of (25) and since q2k ≥ 1. Thus recursively we get Q2k ≥ (3/2)k
∏k
i=1 p2i. We can similarly show that Q2k−1 ≥

(3/2)k
∏k
i=1 p2i−1. Multiplying these two inequalities yields us the desired result. �

From this result it is clear that (23) holds with some constant multiplicative factor.
The number of scalings and Taylor shifts are now bounded by O(log n); this is clear from Lemma 5.2, and the observation

that now each Taylor shift by one is preceded by a scaling by at least two. Based upon these results and following the
arguments in Section 5.2, we get the following results.

Theorem 5.9. The number of nodes in the recursion tree of the procedureMCFS applied to a square-free polynomial Ain(X) ∈ R[X]
of degree n is bounded by

O([n logM(Ain)+ n log n− log|discr(Ain)| − n log |lead(Ain)|] log n).

For the special case of integer polynomials we get:

Corollary 5.10. The number of nodes in the recursion tree of the procedure MCFS applied to a square-free polynomial of degree
n with integer coefficients of bit-length L is bounded by Õ(nL).

And finally from the arguments in Section 5.3 we have:

Theorem 5.11. Let A(X) be a square-free integer polynomial of degree n with integer coefficients of bit-length L. Then the bit-
complexity of isolating all the real roots of A(X) using the procedure MCFS, where we use classical Taylor shifts, is Õ(n5L2).
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6. Conclusion

Wehave derived bounds on theworst case complexity of three different formulations of the continued fraction algorithm.
The key step in deriving these bounds is to bound the number of Taylor shifts done in the recursion tree of the algorithm.
For the formulation by Akritas and the formulation by Akritas and Strzeboński, this bound is Õ(n2L). The latter formulation,
though, has a bias towards performing more inversion transformations, which substantiates its efficiency in practice; also,
the introduction of scaling the polynomial, instead of directly doing a Taylor shift, reduces the worst case bit-complexity of
this formulation by a factor of Õ(nL). Nevertheless, the additional factor of n in Corollary 5.6 prevents us from achieving the
same complexity as that for Collins and Akritas’ algorithm, which we know (e.g., see [15, Thm. 4.1]) is Õ(n5L2), assuming we
use classical Taylor shifts. To close this gap,we proposed a furthermodification to the formulation of Akritas and Strzeboński.
Though this formulation seems promising in theory, its performance in practice has not been tested (unlike the other two
formulations). We surmise that the practical behaviour of this formulation is similar to Collins and Akritas’ algorithm,
because it has a greater bias towards performing more inversion transformations, which guarantee that the width of the
associated interval goes down by at least half.
Another approach to close this complexity gap (instead ofmodifying the algorithm) is to use an almost ideal PLB function,

i.e., that satisfies a tighter inequality than (4), which is satisfied by the bound by Hong. For instance, using Aberth’s method
[1,10] to approximate the roots of the polynomial to some absolute precision while only using floating-point arithmetic.
One may also try to show that the bounds in Corollaries 3.9 and 5.6 on the size of the recursion tree are essentially tight.

Thismight be done by trying to construct a degree n polynomialwith integer coefficients of bit-length L such that it has a pair
of real roots α, β , whose separation is the worst case separation bound, and the continued fraction separating them is of the
form [q0, . . . , qm] where qi = n, for i = 0, . . . ,m, and m = Ω(nL/ log n); thus we can verify that

∏m
i=1 qi = O(|α − β|

−1).
This would ensure that in the worst case the length of the path from the root of the recursion tree to the node separating
α and β is nm = Ω(n2L/ log n). Though we have failed to construct such an example, this attempt suggests that bounds in
the two corollaries may be tight.
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