
Set-Up

set up non-certifying and certifying planarity demo. Let the non-certifying
demo run during introduction

Kurt Mehlhorn, MPI for Informatics and Saarland University . – p.1/29

Certifying Algorithms
Algorithms meet Software Engineering

Kurt Mehlhorn

MPI for Informatics and Saarland University

Saarbr̈ucken

Germany

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.2/29

Outline of Talk

• Part I: Certifying Algorithms: An Overview

• Part II: Current Projects

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.3/29

The Problem

x yprogram
for f

• A user feeds x to the program, the program returns y.

• How can the user be sure that, indeed,

y = f (x)?

The user has no way to know.
Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.4/29

Warning Examples

• LEDA 2.0 planarity test was incorrect

•
Rhino3d (a CAD systems) fails to compute correct
intersection of two cyclinders and two spheres

s1

2

2s

c1

c

• CPLEX (a linear programming solver) fails on benchmark problem
etamacro.

• Mathematica 4.2 (a mathematics systems) fails to solve a small integer
linear program

In[1] := ConstrainedMin[x , {x==1,x==2} , {x}]
Out[1] = {2, {x->2}}

In[1] := ConstrainedMax[x , {x==1,x==2} , {x}]
ConstrainedMax::lpsub": The problem is unbounded."
Out[2] = {Infinity, {x -> Indeterminate}}

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.5/29

The Proposal

Programs must justify (prove) their

answers in a way that is easily checked

by their users.

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.6/29

Certifying Algorithms

Certifying

program for f
Checker C

x

x y

w

accept y

reject

• A certifying program returns

the function value y and a certificate (witness) w

• w proves y = f (x) even to a dummy

• and there is a simple program C, the checker, that

verifies the validity of the proof.
Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.7/29

Four Examples

Testing Bipartiteness

Maximum Matchings

Planarity Testing

Convex Hulls

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.8/29

Example I: Bipartite Graphs

0 1

23

4 5

6

• Is a given graph G bipartite?

• Two-coloring witnesses bipartiteness

• Odd cycle witnesses non-
bipartiteness

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.9/29

Example I: Bipartite Graphs

0 1

23

4 5

6

• Is a given graph G bipartite?

• Two-coloring witnesses bipartiteness

• Odd cycle witnesses non-
bipartiteness

An Algorithm

• construct a spanning tree of G

• use it to color the vertices with colors red and blue

• check for all non-tree edges: do endpoints have distinct colors?

• if yes, the graph is bipartite and the coloring proves it

• if no, declare the graph non-bipartite:

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.9/29

Example I: Bipartite Graphs

0 1

23

4 5

6

• Is a given graph G bipartite?

• Two-coloring witnesses bipartiteness

• Odd cycle witnesses non-
bipartiteness

An Algorithm

• construct a spanning tree of G

• use it to color the vertices with colors red and blue

• check for all non-tree edges: do endpoints have distinct colors?

• if yes, the graph is bipartite and the coloring proves it

• if no, declare the graph non-bipartite: Let e = {u,v} be a non-tree edge
with equal colored endpoints
• e together with the tree path from u to v is an odd cycle
• tree path has even length since u and v have the same color

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.9/29

Example II: Maximum Matchings

• A matching M is a set of edges no two of which share an endpoint

10

1

0

1

22

2

1

0

0

0

• The coloring certifies that M is of maximum cardinality:
• Each edge have either two red or at least one black endpoint.

• Therefore, any matching can use at most one edge with two red
endpoints and at most four edges with a black endpoint.

• The matching shown attains the lower bound.

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.10/29

Example III: Planarity Testing

• Given a graph G, decide whether it is planar

• Tarjan (76): planarity can be tested in linear time

• A story and a demo

• Combinatorial planar embedding is a witness for planarity

• Chiba et al (85): planar embedding of a planar G in linear time

• Kuratowski subgraph is a witness for non-planarity

• Hundack/M/Näher (97): Kuratowski subgraph of non-planar G in linear
time LEDAbook, Chapter 9

K5 K3,3

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.11/29

Example IV: Convex Hulls

Given a simplicial, piecewise linear closed hyper-surface F in d-space decide
whether F is the surface of a convex polytope.

o

p

FACT: F is convex iff it passes the following three tests [MNSSSS]

1. check local convexity at every ridge

2. o = center of gravity of all vertices

check whether o is on the negative side of all facets

3. p = center of gravity of vertices of some facet f

check whether ray −→op intersects closure of facet different from f

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.12/29

Sufficiency of Test is a Non-Trivial Claim

• ray for third test cannot be chosen arbitrarily, since in Rd , d ≥ 3, ray may
“escape” through lower-dimensional feature.

o

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.13/29

The Advantages of Certifying Algorithms

• Certifying algs can be tested on
• every input
• and not just on inputs for which the result is known.

• Certifying algorithms are reliable:
• Either give the correct answer
• or notice that they have erred

• Trustless computing
• There is no need to understand the program, understanding the

witness property and the checking program suffices.
• One may even keep the program secret and only publish the

checker

• Formal verification of witness property and checkers is feasible

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.14/29

Odds and Ends

• General techniques
• Linear programming duality

• Characterization theorems

• Program composition

• Probabilistic programs and checkers

• Reactive Systems (data structures)

• History: an ancient concept
• al-Kwarizmi: multiplication Euclid: gcd

• primal-dual algorithms in combinatorial optimization

• Blum et al.: Programs that check their work

• Mehlhorn and Näher make it design principle for LEDA

• Kratsch/McConnell/Mehlhorn/Spinrad (SODA 2003) coin name

• McConnell/M/Näher,Schweitzer (2010): 80 page survey
Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.15/29

The Message

• Certifying algorithms are much superior to

non-certifying algorithms.

• For complex algorithmic tasks only certifying

algorithms are satisfactory.

• Consequence: A change of how algorithms

are taught, researched and used.

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.16/29

Current Projects

• Universality

• Formal verification

• 3-connectivity of graphs

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.17/29

Universality

• Does every problem have a certifying algorithm? Can

every program be converted into a certifying one?

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.18/29

Universality

• Does every problem have a certifying algorithm? Can

every program be converted into a certifying one?

• I know 50+ certifying algorithms, see survey by

McConnell/M/Näher/Schweitzer (to appear in CS Review),

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.18/29

Universality

• Does every problem have a certifying algorithm? Can

every program be converted into a certifying one?

• I know 50+ certifying algorithms, see survey by

McConnell/M/Näher/Schweitzer (to appear in CS Review),

• many programs in LEDA are certifying,

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.18/29

Universality

• Does every problem have a certifying algorithm? Can

every program be converted into a certifying one?

• I know 50+ certifying algorithms, see survey by

McConnell/M/Näher/Schweitzer (to appear in CS Review),

• many programs in LEDA are certifying, and

• Thm: Every deterministic program can be made

certifying without asymptotic loss of efficiency

(at least in principle)

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.18/29

Does every Function have a Certifying Alg?

• Formalize the notion of a certifying algorithm

• Let P be a program and let f be the function computed by P

• A program Q is a certifying program for f if there is a

predicate W such that

1. W is a witness predicate for f :

• ∀x,y (∃w W (x,y,w)) iff (y = f (x)) .

• Given x, y, and w, it is trivial to decide if W (x,y,w) holds
• W (x,y,w) =⇒ (y = f (x)) has a trivial proof

2. On input x, Q computes a triple (x,y,w) with W (x,y,w).

3. The resource consumption (time, space) of Q on x is at

most a constant factor larger than the resource

consumption of P

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.19/29

Does every Function have a Certifying Alg?

• Formalize the notion of a certifying algorithm

• Theorem: Every deterministic program can be made certifying.

• Proof: witness = correctness proof in some formal system

• Construction is reassuring, but unnatural. The challenge is to find

natural certifying algs.

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.19/29

Verification: Why Formal Proofs

• why a formal proof for something that has been proved already?

• standard theorems can only be trusted if a fair number of people have
checked the proof, taught the result, . . .

• formal proofs are correct and complete (no hidden assumptions)

• are machine-checked (by a fairly simple program)

• add another layer of trust

• user has to understand even less; all that is needed is trust in the proof
checker

• allow to build large libraries of trusted algorithms

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.20/29

Verification I: Witness Property

• bipartite matching: a node cover C is a set of vertices such that every
edge has an endpoint in C.

Let M be a matching and C be a node cover. If |M| = |C|, then M has
maximum cardinality.

• map e ∈ M to its endpoint in C.

• mapping is well-defined, since C is a node cover

• mapping is injective, since M is a matching

• thus |M| ≤ |C|

• we have formalized the proof in Isabelle (a proof support system)

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.21/29

Verification II: The Checker

• Input for Checker: a graph G = (V,E), a subset M of the edges, a node
cover C.

• check M ⊆ E

• check M is a matching

• check C ⊆V

• check C is a node cover

• check |M| = |C|.

• we have written a C-program for the above and verified it in VCC (a
verification system for C-programs)

• the checker in LEDA checks only items 2, 4, and 5.

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.22/29

Triconnectivity

• C ⊆V is a cut set if G\C is not connected

Cut sets of size one, two, three: separation vertex, separation pair,
separation triple

• Triconnected graph = a graph with no separation pair.

• Linear Time Decision Algorithms: Hopcroft/Tarjan (73) and
Miller/Ramachandran (92)

algs return separation pair or state that graph is triconnected

Gutwenger/Mutzel (00): former alg misclassifies some non-triconnected
graphs, provide a correction

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.23/29

Contractible Edges

• Contraction of an edge xy: contract x and y into a single vertex and
remove parallel edges and self-loops

• If mindeg(G) ≥ 3 and G is not triconnected, then G/xy is not
triconnected

If G = Gn, Gn−1, . . . , G4 = K4, mindeg(Gi) ≥ 3 and Gi−1 is obtained
from Gi by a contraction, then G is triconnected.

• Tutte (61): Every triconnected graph contains a contractible edge, i.e,
an edge xy such that G/xy is triconnected.

• A certifying algorithm for triconnectivity returns a separation pair if input
graph is not triconnected

returns a contraction sequence if input graph is triconnected

• Open Problem: Is there a linear time certifying algorithm for
triconnectivity?

O(n2) is known; Jens M. Schmidt, STACS 2010
Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.24/29

Structural Results for Triconnected Graphs

• Tutte: at least one contractible edge

• Ando et al: Ω(n) contractible edges

• Elmasry/M/Schmidt (2010)

• every DFS tree contains at least one contractible edge
• there are DFS trees with exactly one contractible edge
• there are spanning trees with no contractible edge

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.25/29

Algorithmic Result

Linear-time Certifying Algorithm for Hamiltonian graphs (El-
masry/M/Schmidt (2010))

Hamiltonian Graph = Path + Chords

Why Hamiltonian Graphs:

• HT–algorithm is recursive; merge step is essentially
triconnectedness of Hamiltonian graphs.

• MR–alg is based on ear decomposition; in Hamiltonian
graph, ears are edges

4

3

1

6

7

5

Technique: DFS-tree is a path; dynamic data structure for testing whether a
tree edge is contractible

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.26/29

The Algorithm

• Data structure: O(1) test whether a tree edge is contractible;

• Tree edges are labelled “non-contractible” or “don’t know”

• The algorithm
• label all tree edges as don’t know;

• while graph has more than 4 vertices
• select a tree edge labelled don’t know and test it
• if contractible, contract and set label of two above and below to

don’t know

else label non-contractible

• 5·# of edges + # of edges labelled “don’t know” decreases in every
iteration

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.27/29

Open Problems

• Arrangements of Algebraic Curves
• numerical algs, symbolic algs, geometric algs

• 3-connectivity of graphs (recently solved by J. Schmidt)

• Formal proofs

• Boolean operations on polygons and polyhedra

• . . .

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.28/29

Summary

• Certifying algs have many advantages over standard algs:
• can be tested on every input
• are reliable
• can be relied on without knowing code
• are a way to trustless computing

• They exist: every deterministic alg has a certifying counterpart.

• They are non-trivial to find.

• Most programs in the LEDA system are certifying.

When you design your next algorithm,

make it certifying.

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms – p.29/29

	Set-Up
	Outline of Talk
	The Problem
	Warning Examples
	Large The Proposal
	Certifying Algorithms
	Four Examples
	Example I: Bipartite Graphs
	Example II: Maximum Matchings
	Example III: Planarity Testing
	Example IV: Convex Hulls
	Sufficiency of Test is a Non-Trivial Claim
	The Advantages of Certifying Algorithms
	Odds and Ends
	The Message
	Current Projects
	Universality
	Does every Function have a Certifying Alg?
	Verification: Why Formal Proofs
	Verification I: Witness Property
	Verification II: The Checker
	Triconnectivity
	Contractible Edges
	Structural Results for Triconnected Graphs
	Algorithmic Result
	The Algorithm
	Open Problems
	Summary

