Set-Up

K-GESELLSCHAFT

set up non-certifying and certifying planarity demo. Let the non-certifying
demo run during introduction

Kurt Mehlhorn, MPI for Informatics and Saarland University .—p.1/29

Certifying Algorithms
Algorithms meet Software Engineering

Kurt Mehlhorn

MPI for Informatics and Saarland University
Saarbiicken
Germany

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.2/29

Outline of Talk

Part I. Certifying Algorithms: An Overview

Part Il: Current Projects

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.3/29

The Problem

X program Yy
for f

A user feeds X to the program, the program returnsy.
How can the user be sure that, indeed,
y=f(x)?

The user has no way to know.

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.4/29

Warning Examples

LEDA 2.0 planarity test was incorrect

Rhino3d (a CAD systems) fails to compute correct
Intersection of two cyclinders and two spheres

CPLEX (a linear programming solver) fails on benchmark problem
etamacro.

Mathematica 4.2 (a mathematics systems) fails to solve a small integer
linear program

In[1] := ConstrainedMin[x , {x==1,x==2}, {X}]
Out[1] = {2, {x->2}}

In[1] := ConstrainedMax| x , {x==1,x==2} , {x}]
ConstrainedMax::lpsub”: The problem is unbounded."
Out[2] = {Infinity, {x -> Indeterminate}}

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.5/29

The Proposal

Programs must justify (prove) their
answers In a way that iIs easily checked
by their users.

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.6/29

Certifying Algorithms

accept y
Certifying X ;
— -l Checker C
program for f y ;
W reject

A certifying program returns
the function value y and a certificate (withess) w

w proves y= f(X) even to a dummy

and there is a simple program C, the checker, that
verifies the validity of the proof.

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.7/29

Four Examples

Testing Bipartiteness
Maximum Matchings
Planarity Testing
Convex Hulls

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.8/29

Example |: Bipartite Graphs

Is a given graph G bipartite?

0 (4—5
' Two-coloring witnesses bipartiteness

@ Odd cycle witnesses non-
bipartiteness

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.9/29

Example |: Bipartite Graphs

Is a given graph G bipartite?

0 (4—5 o -
Two-coloring witnesses bipartiteness
> @ Odd cycle witnesses non-
bipartiteness
An Algorithm

construct a spanning tree of G

use it to color the vertices with colors red and blue

check for all non-tree edges: do endpoints have distinct colors?
If yes, the graph is bipartite and the coloring proves it

If no, declare the graph non-bipartite:

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.9/29

Example |: Bipartite Graphs

Is a given graph G bipartite?

0 (4—5 o -
Two-coloring witnesses bipartiteness
> @ Odd cycle witnesses non-
bipartiteness
An Algorithm

construct a spanning tree of G

use it to color the vertices with colors red and blue

check for all non-tree edges: do endpoints have distinct colors?
If yes, the graph is bipartite and the coloring proves it

if no, declare the graph non-bipartite: Let e= {u,Vv} be a non-tree edge
with equal colored endpoints
e together with the tree path from uto vis an odd cycle

tree path has even length since u and v have the same color

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.9/29

The coloring certifies that M is of maximum cardinality:
Each edge have either two red or at least one black endpoint.

Therefore, any matching can use at most one edge with two red
endpoints and at most four edges with a black endpoint.

The matching shown attains the lower bound.

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.10/29

Example lll: Planarity Testing

Given a graph G, decide whether it is planar

Tarjan (76): planarity can be tested in linear time

A story and a demo

Combinatorial planar embedding is a witness for planarity
Chiba et al (85): planar embedding of a planar G in linear time
Kuratowski subgraph is a witness for non-planarity

Hundack/M/N&aher (97): Kuratowski subgraph of non-planar G in linear
time LEDAbook, Chapter 9

Ks K33

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.11/29

Example IV: Convex Hulls

Given a simplicial, piecewise linear closed hyper-surface F in d-space decide
whether F is the surface of a convex polytope.

o~

FACT: F is convex iff it passes the following three tests [MNSSSS]

1. check local convexity at every ridge

2. 0= center of gravity of all vertices
check whether o is on the negative side of all facets

3. p = center of gravity of vertices of some facet f
check whether ray op intersects closure of facet different from f

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.12/29

Sufficiency of Test is a Non-Trivial Claim

ray for third test cannot be chosen arbitrarily, since in RY, d > 3, ray may
“escape” through lower-dimensional feature.

£ NS
~
/ "| \ S

SE
\

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.13/29

The Advantages of Certifying Algorithms (.~

Certifying algs can be tested on
every input
and not just on inputs for which the result is known.

Certifying algorithms are reliable:
Either give the correct answer
or notice that they have erred

Trustless computing

There is no need to understand the program, understanding the
witness property and the checking program suffices.

One may even keep the program secret and only publish the
checker

Formal verification of withess property and checkers is feasible

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.14/29

Odds and Ends

General technigues
Linear programming duality

Characterization theorems
Program composition

Probabilistic programs and checkers

Reactive Systems (data structures)

History: an ancient concept
al-Kwarizmi: multiplication Euclid: gcd
primal-dual algorithms in combinatorial optimization
Blum et al.: Programs that check their work
Mehlhorn and Naher make it design principle for LEDA
Kratsch/McConnell/Mehlhorn/Spinrad (SODA 2003) coin name
McConnell/M/Naher,Schweitzer (2010): 80 page survey

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.15/29

The Message

Certifying algorithms are much superior to
non-certifying algorithms.

For complex algorithmic tasks only certifying
algorithms are satisfactory.

Consequence: A change of how algorithms
are taught, researched and used.

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.16/29

Current Projects

Universality
Formal verification

3-connectivity of graphs

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.17/29

Universality

Does every problem have a certifying algorithm? Can
every program be converted into a certifying one?

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.18/29

Universality

Does every problem have a certifying algorithm? Can
every program be converted into a certifying one?

| know 50+ certifying algorithms, see survey by
McConnell/M/Naher/Schweitzer (to appear in CS Review),

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.18/29

Universality

Does every problem have a certifying algorithm? Can
every program be converted into a certifying one?

| know 50+ certifying algorithms, see survey by
McConnell/M/Naher/Schweitzer (to appear in CS Review),

many programs in LEDA are certifying,

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.18/29

Universality

Does every problem have a certifying algorithm? Can
every program be converted into a certifying one?

| know 50+ certifying algorithms, see survey by
McConnell/M/Naher/Schweitzer (to appear in CS Review),

many programs in LEDA are certifying, and

Thm: Every deterministic program can be made
certifying without asymptotic loss of efficiency
(at least in principle)

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.18/29

Does every Function have a Certifying Alg? (.

Formalize the notion of a certifying algorithm

Let P be a program and let f be the function computed by P

A program Q is a certifying program for f if there is a
predicate W such that

1. W is a witness predicate for f:
X,y (GwW(xy,w)) iff (y= f(X)).
Given X, y, and w, it is trivial to decide if W(X,y,w) holds
W(x,y,w) = (y= f(x)) has a trivial proof

2. On input X, Q computes a triple (x,y,w) with W(X,y,w).

3. The resource consumption (time, space) of Q on X is at

most a constant factor larger than the resource
consumption of P

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.19/29

Does every Function have a Certifying Alg? (.

Formalize the notion of a certifying algorithm
Theorem: Every deterministic program can be made certifying.
Proof: withess = correctness proof in some formal system

Construction is reassuring, but unnatural. The challenge is to find
natural certifying algs.

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.19/29

Verification: Why Formal Proofs

why a formal proof for something that has been proved already?

standard theorems can only be trusted if a fair number of people have
checked the proof, taught the result, ...

formal proofs are correct and complete (no hidden assumptions)
are machine-checked (by a fairly simple program)
add another layer of trust

user has to understand even less; all that is needed is trust in the proof
checker

allow to build large libraries of trusted algorithms

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.20/29

Verification |: Witness Property

bipartite matching: a node cover C is a set of vertices such that every
edge has an endpoint in C.

Let M be a matching and C be a node cover. If M| = |C|, then M has
maximum cardinality.

map e € M to its endpoint in C.

mapping is well-defined, since C is a node cover
mapping is injective, since M is a matching

thus M| < |C]

we have formalized the proof in Isabelle (a proof support system)

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.21/29

Verification Il: The Checker

Input for Checker: a graph G = (V,E), a subset M of the edges, a node
cover C.

check M C E

check M is a matching
check CCV

check C is a node cover
check M| = |C|.

we have written a C-program for the above and verified it in VCC (a
verification system for C-programs)

the checker in LEDA checks only items 2, 4, and 5.

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.22/29

Triconnectivity

C CVisacutset if G\ Cis not connected

Cut sets of size one, two, three: separation vertex, separation pair,
separation triple

Triconnected graph = a graph with no separation pair.

Linear Time Decision Algorithms: Hopcroft/Tarjan (73) and
Miller/Ramachandran (92)
algs return separation pair or state that graph is triconnected

Gutwenger/Mutzel (00): former alg misclassifies some non-triconnected
graphs, provide a correction

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.23/29

Contractible Edges

Contraction of an edge xy: contract X and y into a single vertex and
remove parallel edges and self-loops

If mindeg(G) > 3 and G is not triconnected, then G/xy is not
triconnected

IfG=Gyp, Gh1, ..., Ga =Ky, mindeg(G;j) > 3and G;_1 is obtained
from G; by a contraction, then G is triconnected.

Tutte (61): Every triconnected graph contains a contractible edge, i.e,
an edge xy such that G/xy is triconnected.

A certifying algorithm for triconnectivity returns a separation pair if input
graph is not triconnected

returns a contraction sequence if input graph is triconnected

Open Problem: Is there a linear time certifying algorithm for
triconnectivity?

O(n?) is known; Jens M. Schmidt, STACS 2010

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.24/29

Structural Results for Triconnected Graphs (-

Tutte: at least one contractible edge
Ando et al: Q(n) contractible edges
Elmasry/M/Schmidt (2010)

every DFS tree contains at least one contractible edge
there are DFS trees with exactly one contractible edge
there are spanning trees with no contractible edge

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.25/29

Algorithmic Result

Linear-time Certifying Algorithm for Hamiltonian graphs (El-
masry/M/Schmidt (2010))

Hamiltonian Graph = Path + Chords

>~ oo oo ~N

Why Hamiltonian Graphs:

HT-algorithm is recursive; merge step is essentially
triconnectedness of Hamiltonian graphs.

MR-alg Is based on ear decomposition; in Hamiltonian
graph, ears are edges 1

Technique: DFS-tree is a path; dynamic data structure for testing whether a
tree edge is contractible

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.26/29

The Algorithm

Data structure: O(1) test whether a tree edge is contractible;
Tree edges are labelled “non-contractible” or “don’t know”

The algorithm
label all tree edges as don’t know;

while graph has more than 4 vertices

select a tree edge labelled don’t know and test it
If contractible, contract and set label of two above and below to
don’'t know

else label non-contractible

S-# of edges + # of edges labelled “don’t know” decreases in every
iteration

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.27/29

Open Problems

Arrangements of Algebraic Curves
numerical algs, symbolic algs, geometric algs

3-connectivity of graphs (recently solved by J. Schmidt)

Formal proofs

Boolean operations on polygons and polyhedra

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.28/29

Summary

Certifying algs have many advantages over standard algs:
can be tested on every input
are reliable
can be relied on without knowing code
are a way to trustless computing

They exist: every deterministic alg has a certifying counterpart.
They are non-trivial to find.

Most programs in the LEDA system are certifying.

When you design your next algorithm,
make It certifying.

Kurt Mehlhorn, MPI for Informatics and Saarland University Certifying Algorithms — p.29/29

	Set-Up
	Outline of Talk
	The Problem
	Warning Examples
	Large The Proposal
	Certifying Algorithms
	Four Examples
	Example I: Bipartite Graphs
	Example II: Maximum Matchings
	Example III: Planarity Testing
	Example IV: Convex Hulls
	Sufficiency of Test is a Non-Trivial Claim
	The Advantages of Certifying Algorithms
	Odds and Ends
	The Message
	Current Projects
	Universality
	Does every Function have a Certifying Alg?
	Verification: Why Formal Proofs
	Verification I: Witness Property
	Verification II: The Checker
	Triconnectivity
	Contractible Edges
	Structural Results for Triconnected Graphs
	Algorithmic Result
	The Algorithm
	Open Problems
	Summary

