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Abstract

In this article, we address the problem of defining scalable kernels on large graphs with
discrete node labels. Key to our approach is the Weisfeiler-Lehman test of isomorphism,
which allows us to compute a sequence of graphs which capture the topological and label
information of the original graph in a runtime which is linear in the number of edges. We
can apply existing graph kernels on this graph sequence and make them take into account
the structural information which they ignored before. We can also define new, efficient
graph kernels: In particular, a subtree kernel whose runtime is linear in the number of
edges in the input graphs and in the maximum height of the subtrees considered.
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Our experiments show that kernels based on the Weisfeiler-Lehman sequence of graphs
allow us to improve over state-of-the-art graph kernels both in terms of runtime and accu-
racy.

Keywords: Graph kernels, graph classification, similarity measures for graphs, Weisfeiler-
Lehman algorithm

1. Introduction

Graph-structured data is becoming more and more abundant: examples are social networks,
protein or gene regulation networks, chemical pathways and protein structures, or the grow-
ing body of research in program flow analysis. To analyze and understand this data, one
needs data analysis and machine learning methods that can handle large-scale graph data
sets. For instance, a typical problem of learning on graphs arises in chemoinformatics: In
this problem one is given a large set of chemical compounds, represented as node- and edge-
labeled graphs, that have a certain function (e.g., mutagenicity or toxicity) and another set
of molecules that do not have this function. The task then is to accurately predict whether
a new, previously unseen molecule will exhibit this function or not. A common assump-
tion made in this problem is that molecules with similar structure have similar functional
properties. The problem of measuring the similarity of graphs is therefore at the core of
learning on graphs.

There exist many graph similarity measures based on graph isomorphism or related
concepts such as subgraph isomorphism or the largest common subgraph. Possibly the
most natural measure of similarity of graphs is to check whether the graphs are topologically
identical, i.e., isomorphic. This gives rise to a binary similarity measure, which equals to 1 if
the graphs are isomorphic, and 0 otherwise. Despite the idea of checking graph isomorphism
being so intuitive, no efficient algorithms are known for it. The graph isomorphism problem
is in NP, but has been neither proven NP-complete nor found to be solved by a polynomial-
time algorithm (Garey and Johnson, 1979, Chapter 7).

Subgraph isomorphism checking is the analogue of graph isomorphism checking in a set-
ting in which the two graphs have different sizes. Unlike the graph isomorphism problem, the
problem of subgraph isomorphism has been proven to be NP-complete (Garey and Johnson,
1979, Section 3.2.1). A slightly less restrictive measure of similarity can be defined based
on the size of the largest common subgraph in two graphs, but unfortunately the problem
of finding the largest common subgraph of two graphs is NP-complete as well (Garey and
Johnson, 1979, Section 3.3).

Besides being computationally expensive or even intractable, similarity measures based
on graph isomorphism and its variants are too restrictive in the sense that graphs have to
be exactly identical or contain large identical subgraphs in order to be deemed similar by
these measures. More flexible similarity measures, based on inexact matching of graphs,
have been proposed in the literature. Graph comparison methods based on graph edit
distances (Bunke and Allermann, 1983; Neuhaus and Bunke, 2005) are expressive similarity
measures respecting the topology, as well as node and edge labels of graphs, but they
are hard to parameterize and involve solving NP-complete problems as intermediate steps.
Another type of graph similarity measures, optimal assignment kernels (Fröhlich et al.,
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2005), arise from finding the best match between substructures of graphs. However, these
kernels are not positive semidefinite in general (Vert, 2008).

Graph kernels have recently evolved into a rapidly developing branch of learning on
structured data. They respect and exploit graph topology, but restrict themselves to com-
paring substructures of graphs that are computable in polynomial time. Graph kernels
bridge the gap between graph-structured data and a large spectrum of machine learning
algorithms called kernel methods (Schölkopf and Smola, 2002), that include algorithms such
as support vector machines, kernel regression, or kernel PCA (see Hofmann et al. (2008)
for a recent review of kernel algorithms).

Informally, a kernel is a function of two objects that quantifies their similarity. Mathe-
matically, it corresponds to an inner product in a reproducing kernel Hilbert space (Schölkopf
and Smola, 2002). Graph kernels are instances of the family of so-called R-convolution ker-
nels by Haussler (1999). R-convolution is a generic way of defining kernels on discrete
compound objects by comparing all pairs of decompositions thereof. Therefore, a new type
of decomposition of a graph results in a new graph kernel.

Given a decomposition relation R that decomposes a graph into any of its subgraphs
and the remaining part of the graph, the associated R-convolution kernel will compare all
subgraphs in two graphs. However, this all subgraphs kernel is at least as hard to compute
as deciding if graphs are isomorphic (Gärtner et al., 2003). Therefore one usually restricts
graph kernels to compare only specific types of subgraphs that are computable in polynomial
runtime.

Review of graph kernels

Before we review graph kernels from the literature, we clarify our terminology. We define
a graph G as a triplet (V,E, `), where V is the set of vertices, E is the set of undirected
edges, and ` : V → Σ is a function that assigns labels from an alphabet Σ to nodes in the
graph1. The neighbourhood N (v) of a node v is the set of nodes to which v is connected
by an edge, that is N (v) = {v′|(v, v′) ∈ E}. For simplicity, we assume that every graph has
n nodes, m edges, and a maximum degree of d. The size of G is defined as the cardinality
of V .

A walk is a sequence of nodes in a graph, in which consecutive nodes are connected by an
edge. A path is a walk that consists of distinct nodes only. A (rooted) subtree is a subgraph
of a graph, which has no cycles, but a designated root node. A subtree of G can thus be seen
as a connected subset of distinct nodes of G with an underlying tree structure. The height
of a subtree is the maximum distance between the root and any other node in the subtree.
Just as the notion of walk is extending the notion of path by allowing nodes to be equal,
the notion of subtrees can be extended to subtree patterns (also called ‘tree-walks’ (Bach,
2008)), which can have nodes that are equal (see Figure 1). These repetitions of the same
node are then treated as distinct nodes, such that the pattern is still a cycle-free tree. Note
that all subtree kernels compare subtree patterns in two graphs, not (strict) subtrees.

Several different graph kernels have been defined in machine learning which can be
categorized into three classes: graph kernels based on walks (Kashima et al., 2003; Gärtner

1. An extension of this definition and of our results to graphs with discrete edge labels is straightforward,
but omitted for clarity of presentation.
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Figure 1: A subtree pattern of height 2 rooted at the node 1. Note the repetitions of nodes
in the unfolded subtree pattern on the right.

et al., 2003) and paths (Borgwardt and Kriegel, 2005), graph kernels based on limited-size
subgraphs (Horvath et al., 2004; Shervashidze et al., 2009), and graph kernels based on
subtree patterns (Ramon and Gärtner, 2003; Mahé and Vert, 2009).

The first class, graph kernels on walks and paths, compute the number of matchings of
pairs of random walks (resp. paths) in two graphs. The standard formulation of the random
walk kernel, based on the direct product graph of two graphs, is computable in O(n6) for
a pair of graphs (Gärtner et al., 2003). However, the same problem can be stated in terms
of Kronecker products that can be exploited to bring down the runtime complexity to
O(n3) (Vishwanathan et al., 2010). For a computer vision application, Harchaoui and Bach
(2007) have proposed a dynamic programming-based approach to speed up the computation
of the random walk kernel, but at the cost of considering walks of fixed size. Suard et al.
(2005) and Vert et al. (2009) present other applications of random walk kernels in computer
vision. The shortest path kernel by Borgwardt and Kriegel (2005) counts pairs of shortest
paths having the same source and sink labels and the same length in two graphs. The
runtime of this kernel scales as O(n4).

The second class, graph kernels based on limited-size subgraphs, so-called graphlets,
represent graphs as counts of all types of subgraphs of size k ∈ {3, 4, 5}. There exist
efficient computation schemes for these kernels based on sampling or exploitation of the low
maximum degree of graphs (Shervashidze et al., 2009), but these apply to unlabeled graphs
only.

The first kernel from the third class, subtree kernels, was defined by Ramon and
Gärtner (2003). Intuitively, to compare graphs G and G′, this kernel iteratively compares
all matchings between neighbours of two nodes v from G and v′ from G′. In other words,
for all pairs of nodes v from G and v′ from G′, it counts all pairs of matching substructures
in subtree patterns rooted at v and v′. The runtime complexity of the subtree kernel for a
dataset of N graphs is O(N2n2h4d). For a detailed description of this kernel, see Section
3.2.2.

The subtree kernels in (Mahé and Vert, 2009) and (Bach, 2008) refine the Ramon-
Gärtner kernel for applications in chemoinformatics and hand-written digit recognition.
Both Mahé and Vert (2009) and Bach (2008) propose to consider α-ary subtrees with at
most α children per node. This restricts the set of matchings to matchings of up to α
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nodes, but the runtime complexity is still exponential in this parameter α, which both
papers describe as feasible on small graphs (with approximately twenty nodes on average)
with many distinct node labels.

It is a general limitation of all the aforementioned graph kernels that they scale poorly
to large, labeled graphs with more than 100 nodes: In the worst case, none of them scale
better than O(n3). The efficient comparison of large, labeled graphs remained an unsolved
challenge for almost a decade. We present a general definition of graph kernels that encom-
passes many previously known graph kernels, and instances of which are efficient to compute
for both unlabeled and discretely labeled graphs with thousands of nodes next. Moreover,
in terms of prediction accuracy in graph classification tasks its instances are competitive
with or outperform other state-of-the-art graph kernels.

The remainder of this article is structured as follows. In Section 2, we describe the
Weisfeiler-Lehman isomorphism test that our main contribution is based on. In Section 3,
we describe what we call the Weisfeiler-Lehman graphs and our proposed general graph
kernels based on them, followed by some examples. In Section 4, we compare these kernels
to each other, as well as to a set of five other state-of-the-art graph kernels. We report results
on kernel computation runtime and classification accuracy on graph benchmark datasets.

2. The Weisfeiler-Lehman test of isomorphism

Our graph kernels use concepts from the Weisfeiler-Lehman test of isomorphism (Weisfeiler
and Lehman, 1968), more specifically its 1-dimensional variant, also known as “naive ver-
tex refinement”. Assume we are given two graphs G and G′ and we would like to test
whether they are isomorphic. The 1-dimensional Weisfeiler-Lehman test proceeds in itera-
tions, which we index by i and which comprise the steps given in Algorithm 1.

The key idea of the algorithm is to augment the node labels by the sorted set of node
labels of neighbouring nodes, and compress these augmented labels into new, short labels.
These steps are then repeated until the node label sets of G and G′ differ, or the number
of iterations reaches n. See Figure 2, a-d, for an illustration of these steps (note however,
that the two graphs in the figure would directly be identified as non-isomorphic by the
Weisfeiler-Lehman test, as their label sets are already different in the beginning).

Sorting the set of multisets allows for a straightforward definition and implementation
of f for the compression of labels in step 4: one keeps a counter variable for f that records
the number of distinct strings that f has compressed before. f assigns the current value
of this counter to a string if an identical string has been compressed before, but when one
encounters a new string, one increments the counter by one and f assigns its value to the
new string. The sorted order of the set of multisets guarantees that all identical strings are
mapped to the same number, because they occur in a consecutive block. However, note
that the sorting of the set of multisets is not required for defining f . Any other injective
mapping will give equivalent results. The alphabet Σ has to be sufficiently large for f to
be injective. For two graphs, |Σ| = 2n suffices.

The Weisfeiler-Lehman algorithm terminates after step 4 of iteration i if {li(v)|v ∈ V } 6=
{li(v′)|v′ ∈ V ′}, that is, if the sets of newly created labels are not identical in G and G′. The

2. For unlabeled graphs, node labels M0(v) := l0(v) can be initialized with letters corresponding one to one
to node degrees | N (v)|.
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Algorithm 1 One iteration of the 1-dim. Weisfeiler-Lehman test of graph isomorphism

1: Multiset-label determination
• For i = 0, set Mi(v) := l0(v) = `(v). 2

• For i > 0, assign a multiset-label Mi(v) to each node v in G and G′ which consists
of the multiset {li−1(u)|u ∈ N (v)}.

2: Sorting each multiset
• Sort elements in Mi(v) in ascending order and concatenate them into a string
si(v).
• Add li−1(v) as a prefix to si(v) and call the resulting string si(v).

3: Label compression
• Sort all of the strings si(v) for all v from G and G′ in ascending order.
• Map each string si(v) to a new compressed label, using a function f : Σ∗ → Σ

such that f(si(v)) = f(si(w)) if and only if si(v) = si(w).
4: Relabeling

• Set li(v) := f(si(v)) for all nodes in G and G′.

graphs are then not isomorphic. If the sets are identical after n iterations, it means that
either G and G′ are isomorphic, or the algorithm has not been able to determine that they
are not isomorphic (see Cai et al., 1992, for examples of graphs that cannot be distinguished
by this algorithm or its higher-dimensional variants). As a side note, we mention that the
1-dimensional Weisfeiler-Lehman algorithm has been shown to be a valid isomorphism test
for almost all graphs (Babai and Kucera, 1979).

Note that in Algorithm 1 we used the same node labeling functions `, l0, . . . , lh for both
G and G′ in order not to overload the notation. We will continue using this notation
throughout the paper and assume without loss of generality that the domain of these func-
tions `, l0, . . . , lh is the set of all nodes in our dataset of graphs, which corresponds to V ∪V ′
in the case of Algorithm 1.

Complexity The runtime complexity of the 1-dimensional Weisfeiler-Lehman algorithm
with h iterations is O(hm). Defining the multisets in step 1 for all nodes is an O(m)
operation. Sorting each multiset is an O(m) operation for all nodes. This efficiency can
be achieved by using Counting Sort, which is an instance of Bucket Sort, due to the lim-
ited range of the elements of the multiset. The elements of each multiset are a subset of
{f(si(v))|v ∈ V }. For a fixed i, the cardinality of this set is upper-bounded by n, which
means that we can sort all multisets in O(m) by the following procedure: We assign the
elements of all multisets to their corresponding buckets, recording which multiset they came
from. By reading through all buckets in ascending order, we can then extract the sorted
multisets for all nodes in a graph. The runtime is O(m) as there are O(m) elements in the
multisets of a graph in iteration i. Sorting the resulting strings is of time complexity O(m)
via Radix Sort (see Mehlhorn, 1984, Vol. 1, Section II.2.1). The label compression requires
one pass over all strings and their characters, that is O(m). Hence all these steps result in
a total runtime of O(hm) for h iterations.

Link with subtree patterns Note that the compressed labels li(v) correspond to subtree
patterns of height i rooted at v (see Figure 1 for an illustration of subtree patterns).
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3. The general Weisfeiler-Lehman kernels

In this section, we first define the Weisfeiler-Lehman graph sequence and the general graph
kernels based on them. We then present two instances of this kernel, the Weisfeiler-Lehman
subtree kernel (Section 3.2) and the Weisfeiler-Lehman shortest path kernel (Section 3.3).

3.1 The Weisfeiler-Lehman kernel framework

In each iteration i of the Weisfeiler-Lehman algorithm (see Algorithm 1), we get a new
labeling li(v) for all nodes v. Recall that this labeling is concordant in G and G′, meaning
that if nodes in G and G′ have identical multiset labels, and only in this case, they will
get identical new labels. Therefore, we can imagine one iteration of Weisfeiler-Lehman
relabeling as a function w((V,E, li)) = (V,E, li+1) that transforms all graphs in the same
manner. Note that w depends on the set of graphs that we consider.

Definition 1 Define the Weisfeiler-Lehman graph at height i of the graph G = (V,E, `) =
(V,E, l0) as the graph Gi = (V,E, li). We call the sequence of Weisfeiler-Lehman graphs

{G0, G1, . . . , Gh} = {(V,E, l0), (V,E, l1), . . . , (V,E, lh)},

where G0 = G and l0 = `, the Weisfeiler-Lehman sequence up to height h of G.

G0 is the original graph, G1 = w(G0) is the graph resulting from the first relabeling, and so
on. Note that neither V , nor E ever change in this sequence, but we define it as a sequence
of graphs rather than a sequence of labeling functions for the sake of clarity of definitions
that follow.

Definition 2 Let k be any kernel for graphs, that we will call the base kernel. Then the
Weisfeiler-Lehman kernel with h iterations with the base kernel k is defined as

k
(h)
WL(G,G′) = k(G0, G

′
0) + k(G1, G

′
1) + . . .+ k(Gh, G

′
h), (1)

where h is the number of Weisfeiler-Lehman iterations and {G0, . . . , Gh} and {G′0, . . . , G′h}
are the Weisfeiler-Lehman sequences of G and G′ respectively.

Theorem 3 Let the base kernel k be any positive semidefinite kernel on graphs. Then the

corresponding Weisfeiler-Lehman kernel k
(h)
WL is positive semidefinite.

Proof Let φ be the feature mapping corresponding to the kernel k:

k(Gi, G
′
i) = 〈φ(Gi), φ(G′i)〉.

We have

k(Gi, G
′
i) = k(wi(G), wi(G′)) = 〈φ(wi(G)), φ(wi(G′))〉.

Let us define the feature mapping ψ(G) as φ(wi(G)). Then we have

k(Gi, G
′
i) = 〈ψ(G), ψ(G′)〉,
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hence k is a kernel on G and G′ and k
(h)
WL is positive semidefinite as a sum of positive

semidefinite kernels.

This definition provides a framework for applying all graph kernels that take into account
discrete node labels to different levels of the node-labeling of graphs, from the original
labeling to more and more fine-grained labelings for growing h. This enriches the set of
extracted features. For example, while the shortest path kernel counts pairs of shortest
paths with the same distance between identically labeled source and sink nodes on the
original graphs, it will count pairs of shortest paths with the same distance between the
roots of identical subtree patterns of height 1 on Weisfeiler-Lehman graphs with h = 1.

For some base kernels one might be able to exploit the fact that the graph structure
does not change over the Weisfeiler-Lehman sequence to do some computations only once
instead of repeating it h times. One example of such a base kernel is the shortest path
kernel: As shortest paths in a graph G are the same as shortest paths in corresponding
Weisfeiler-Lehman graphs Gi, we can precompute them. One should bear in mind that for
graph kernels k that depend on the size of the alphabet of node labels, computing k(Gi, G

′
i)

will accordingly get increasingly expensive, or, in some cases, cheaper, as a function of
growing i.

Note that it is possible to put nonnegative real weights αi on k(Gi, G
′
i), i = {0, 1, . . . , h},

to obtain a more general definition of the Weisfeiler-Lehman kernel:

k
(h)
WL(G,G′) = α0k(G0, G

′
0) + α1k(G1, G

′
1) + . . .+ αhk(Gh, G

′
h).

In this case, k
(h)
WL will still be positive semidefinite, as a positive linear combination of

positive semidefinite kernels.

Note on computing Weisfeiler-Lehman kernels in practice In the inductive learn-
ing setting, we compute the kernel on the training set of graphs. For any test graph that we
subsequently need to classify, we have to map it to the feature space spanned by original and
compressed labels occurred in the training set. For this purpose, we will need to maintain
record of the data structures that hold the mappings li(v) := f(si(v)) for each iteration i
and each distinct si(v). This requires O(Nmh) memory in the worst case.

In contrast, in the transductive setting, where the test set is already known, we can
compute the kernel matrix on the whole dataset (training and test set) without having to
keep the mappings mentioned above.

3.2 The Weisfeiler-Lehman subtree kernel

In this section we present the Weisfeiler-Lehman subtree kernel (Shervashidze and Borg-
wardt, 2009), which is a natural instance of Definition 2.

Definition 4 Let G and G′ be graphs. Define Σi ⊆ Σ as the set of letters that occur as
node labels at least once in G or G′ at the end of the i-th iteration of the Weisfeiler-Lehman
algorithm. Let Σ0 be the set of original node labels of G and G′. Assume all Σi are pairwise
disjoint. Without loss of generality, assume that every Σi = {σi1, . . . , σi|Σi|} is ordered.
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Define a map ci : {G,G′}×Σi → N such that ci(G, σij) is the number of occurrences of the
letter σij in the graph G.

The Weisfeiler-Lehman subtree kernel on two graphs G and G′ with h iterations is
defined as:

k
(h)
WLsubtree(G,G

′) = 〈φ(h)
WLsubtree(G), φ

(h)
WLsubtree(G

′)〉, (2)

where

φ
(h)
WLsubtree(G) = (c0(G, σ01), . . . , c0(G, σ0|Σ0|), . . . , ch(G, σh1), . . . , ch(G, σh|Σh|)),

and

φ
(h)
WLsubtree(G

′) = (c0(G′, σ01), . . . , c0(G′, σ0|Σ0|), . . . , ch(G′, σh1), . . . , ch(G′, σh|Σh|)).

That is, the Weisfeiler-Lehman subtree kernel counts common original and compressed
labels in two graphs. See Figure 2 for an illustration.

Theorem 5 The Weisfeiler-Lehman subtree kernel on a pair of graphs G and G′ can be
computed in time O(hm).

Proof This follows directly from the definition of the Weisfeiler-Lehman subtree kernel
and the runtime complexity of the Weisfeiler-Lehman test, as described in Section 2.

The following theorem shows that (2) is indeed a special case of the general Weisfeiler-
Lehman kernel (1).

Theorem 6 Let the base kernel k be a function counting pairs of matching node labels in
two graphs:

k(G,G′) =
∑
v∈V

∑
v′∈V ′

δ(`(v), `(v′)),

where δ is the Dirac kernel, that is, it is 1 when its arguments are equal and 0 otherwise.

Then k
(h)
WL(G,G′) = k

(h)
WLsubtree(G,G

′) for all G,G′.

Proof It is easy to notice that for each i ∈ {0, 1, . . . , h} we have

∑
v∈V

∑
v′∈V ′

δ(li(v), l′i(v
′)) =

|Σi|∑
j=1

ci(G, σij)ci(G
′, σij).

Adding up these sums for all i ∈ {0, 1, . . . , h} gives us k
(h)
WL(G,G′) = k

(h)
WLsubtree(G,G

′).

9



Shervashidze, Schweitzer, van Leeuwen, Mehlhorn, Borgwardt

1

34

2

1

5

1

34

5

2

2

1,4

3,2454,1135

2,35

1,4

5,234

1,4

3,2454,1235

5,234

2,3

2,45

1st iteration
Result of steps  1 and 2: multiset-label determination and sortingGiven labeled graphs G and G’

2,35

6

7

8

10

11

12

4,1135

1,4

5,234

3,245

4,1235

2,3

2,45 139

1st iteration
Result of step 3: label compression

13 13

6 6 6 7

8 9

11 1210 10

1st iteration
Result of step 4: relabeling

End of  the 1st iteration
Feature vector representations of G and G’

φ          (G) = (2, 1, 1, 1, 1, 2, 0, 1, 0, 1, 1, 0, 1)(1)

WLsubtree

φ          (G’) = (

Counts of
original

node labels
 

1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1

Counts of
compressed
node labels

 

)(1)

WLsubtree

a b

c d

e

k          (G,G’)=<  φ           (G), φ         (G’)                   >=11.
(1)

WLsubtree
(1) (1)

WLsubtree WLsubtree

G’G

G’G G’G

Figure 2: Illustration of the computation of the Weisfeiler-Lehman subtree kernel with h =
1 for two graphs. Here {1, 2, . . . , 13} ∈ Σ are considered as letters. Note that
compressed labels denote subtree patterns: For instance, if a node has label 8,
this means that there is a subtree pattern of height 1 rooted at this node, where
the root has label 2 and its neighbours have labels 3 and 5.

3.2.1 Performing the Weisfeiler-Lehman subtree kernel on many graphs

To compute the Weisfeiler-Lehman subtree kernel on N graphs, we propose Algorithm 2,
which improves over the naive, N2-fold application of the kernel from Definition 4. We now
process all N graphs simultaneously and conduct the steps given in Algorithm 2 on each
graph G in each of h iterations.
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Algorithm 2 One iteration of the Weisfeiler-Lehman subtree kernel computation on N graphs

1: Multiset-label determination
• Assign a multiset-label Mi(v) to each node v in G which consists of the multiset
{li−1(u)|u ∈ N (v)}.

2: Sorting each multiset
• Sort elements in Mi(v) in ascending order and concatenate them into a string
si(v).
• Add li−1(v) as a prefix to si(v).

3: Label compression
• Map each string si(v) to a compressed label using a hash function f : Σ∗ → Σ

such that f(si(v)) = f(si(w)) if and only if si(v) = si(w).
4: Relabeling

• Set li(v) := f(si(v)) for all nodes in G.

As before, Σ is assumed to be sufficiently large to allow f to be injective. In the case of
N graphs and h iterations, a Σ of size Nn(h+ 1) suffices.

One way of implementing f is to sort all neighbourhood strings using Radix Sort, as
done in step 4 in Algorithm 1. The resulting complexity of this step would be linear
in the sum of the size of the current alphabet and the total length of strings, that is
O(Nn + Nm) = O(Nm). An alternative implementation of f would be by means of a
perfect hash function.

Theorem 7 For N graphs, the Weisfeiler-Lehman subtree kernel with h iterations on all
pairs of these graphs can be computed in O(Nhm+N2hn).

Proof Naive application of the kernel from Definition 4 for computing an N × N kernel
matrix would require a runtime of O(N2hm). One can improve upon this runtime complex-

ity by computing φ
(h)
WLsubtree explicitly for each graph and only then taking pairwise inner

products.
Step 1, the multiset-label determination, still requires O(Nm). Step 2, the sorting of

the elements in each multiset, can be done via a joint Bucket Sort (Counting Sort) of all
strings, requiring O(Nn+Nm) time.

The effort of computing φ
(h)
WLsubtree on all N graphs in h iterations is then O(Nhm),

assuming that m > n. To get all pairwise kernel values, we have to multiply all feature
vectors, which requires a runtime of O(N2hn), as each graph G has at most hn non-zero

entries in φ
(h)
WLsubtree(G). In Section 4.1, we empirically show that the first term Nhm dom-

inates the overall runtime in practice.

While our Weisfeiler-Lehman subtree kernel matches neighbourhoods of nodes in a graph
exactly, one could also think of other strategies of comparing node neighbourhoods, and
still retain the favourable runtime of our graph kernel. In research that was published in
parallel to ours, Hido and Kashima (2009) present such an alternative kernel based on node
neighbourhoods which uses hash functions and logical operations on bit-representations of
node labels and which also scales linearly in the number of edges.

11
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3.2.2 The Ramon-Gärtner subtree kernel

Description The first subtree kernel on graphs was defined by Ramon and Gärtner
(2003). The Ramon-Gärtner subtree kernel with subtree height h compares all pairs of
nodes from graphs G = (V,E, `) and G′ = (V ′, E′, `) by iteratively comparing their neigh-
bourhoods:

k
(h)
RG(G,G′) =

∑
v∈V

∑
v′∈V ′

kRG,h(v, v′), (3)

where

kRG,h(v, v′) =

{
δ(`(v), `(v′)), if h = 0

λvλv′δ(`(v), `(v′))
∑

R∈M(v,v′)

∏
(w,w′)∈R kRG,h−1(w,w′), if h > 0,

(4)

δ is an indicator function that equals 1 if its arguments are equal, 0 otherwise, λv and λv′

are weights associated with nodes v and v′, and

M(v, v′) = {R ⊆ N (v)×N (v′)|(∀(u, u′), (w,w′) ∈ R : u = w ⇔ u′ = w′)

∧(∀(u, u′) ∈ R : `(u) = `(u′))}. (5)

Said differently,M(v, v′) is the set of exact matchings of subsets of the neighbourhoods
of v and v′. Each element R of M(v, v′) is a set of pairs of nodes from the neighbourhoods
of v ∈ V and v′ ∈ V ′ such that nodes in each pair have identical labels and no node is
contained in more than one pair. Thus, intuitively, kRG iteratively considers all matchings
M(v, v′) between neighbours of two identically labeled nodes v from G and v′ from G′.
Taking the parameters λv and λv′ equal to a single parameter λ results in weighting each
pattern by λ raised to the power of the number of nodes in the pattern.

Complexity The runtime complexity of the subtree kernel for a pair of graphs isO(n2h4d),
including a comparison of all pairs of nodes (n2), and a pairwise comparison of all matchings
in their neighbourhoods in O(4d), which is repeated in h iterations. h is a multiplicative
factor, not an exponent, since one can implement the subtree kernel via dynamic program-
ming, starting with k1 and computing kh from kh−1. For a dataset of N graphs, the resulting
runtime complexity is then in O(N2n2h4d).

3.2.3 Link to the Weisfeiler-Lehman subtree kernel

The Weisfeiler-Lehman subtree kernel can be defined in a recursive fashion which elucidates
its relation to the Ramon-Gärtner kernel.

Theorem 8 The kernel k
(h)
rec defined as

k(h)
rec(G,G

′) =

h∑
i=0

∑
v∈V

∑
v′∈V ′

krec,i(v, v
′), (6)

12
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where

krec,i(v, v
′) =


δ(`(v), `(v′)), if i = 0

δ(`(v), `(v′))krec,i−1(v, v′) maxR∈M(v,v′)

∏
(w,w′)∈R krec,i−1(w,w′), if i > 0 and

M 6= ∅
0, if i > 0 and
M = ∅,

(7)

δ is the indicator function again, and

M(v, v′) = {R ⊆ N (v)×N (v′)| |R| = | N (v)| = | N (v′)|
∧(∀(u, u′), (w,w′) ∈ R : u = w ⇔ u′ = w′) ∧ (∀(u, u′) ∈ R : `(u) = `(u′))}, (8)

is equivalent to the Weisfeiler-Lehman subtree kernel k
(h)
WLsubtree.

In other words,M(v, v′) is the set of exact matchings of the neighbourhoods of v and v′.
It is nonempty only in the case where the neighbourhoods of v and v′ have exactly the same
size and the multisets of labels of their neighbours {`(u)|u ∈ N (v)} and {`(u′)|u′ ∈ N (v′)}
are identical.

Proof We prove this theorem by induction over h. Induction initialisation h = 0:

k
(0)
WLsubtree = 〈φ(0)

WLsubtree(G), φ
(0)
WLsubtree(G)〉 =

|Σ0|∑
j=1

c0(G, σ0j)c0(G′, σ0j) = (9)

=
∑
v∈V

∑
v′∈V ′

δ(`(v), `(v′)) = k(0)
rec, (10)

where Σ0 is the initial alphabet of node labels and c0(G, σ0j) is the number of occurrences

of the letter σ0j as a node label in G. The equality follows from the definitions of k
(h)
rec and

k
(h)
WLsubtree.

Induction step h→ h+ 1: Assume that k
(h)
WLsubtree = k

(h)
rec. Then

k(h+1)
rec =

∑
v∈V

∑
v′∈V ′

krec,h+1(v, v′) +

h∑
i=0

∑
v∈V

∑
v′∈V ′

krec,i(v, v
′) = (11)

=

|Σh+1|∑
j=1

ch+1(G, σh+1,j)ch+1(G′, σh+1,j) + k
(h)
WLsubtree = k

(h+1)
WLsubtree, (12)

where the equality of (11) and (12) follows from the fact that kh+1,rec(v, v
′) = 1 if and only

if the labels and neigbourhoods of v and v′ are identical, that is, if f(sh+1(v)) = f(sh+1(v′)).

Theorem 8 highlights the following differences between the Weisfeiler-Lehman and the
Ramon-Gärtner subtree kernels: In Equation (6), Weisfeiler-Lehman considers all subtrees
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up to height h, whereas the Ramon-Gärtner kernel looks at subtrees of exactly height h.
In Equations (7) and (8), the Weisfeiler-Lehman subtree kernel checks whether the neigh-
bourhoods of v and v′ match exactly, while the Ramon-Gärtner kernel considers all pairs of
matching subsets of the neighbourhoods of v and v′ in Equation (5). In our experiments,
we examine the empirical differences between these two kernels in terms of runtime and
prediction accuracy on classification benchmark datasets (see Section 4.2).

3.3 The Weisfeiler-Lehman shortest path kernel

Another example of the general Weisfeiler-Lehman subtree kernels that we consider is the
Weisfeiler-Lehman shortest path kernel. Here we take the base kernel to be a node-labeled
shortest path kernel (Borgwardt and Kriegel, 2005) to derive a new instance of the general
Weisfeiler-Lehman kernel.

In the particular case of graphs with unweighted edges, let us consider the base kernel
kSP of the form kSP (G,G′) = 〈φSP (G), φSP (G′)〉, where φSP (G) (resp. φSP (G′)) is a vector
whose components are numbers of occurrences of triplets of the form (a, b, p) in G (resp.
G′), where a, b ∈ Σ are ordered start and end node labels of a shortest path and p ∈ N0 is
the shortest path length.

According to (1), we have

k
(h)
WLshortest path = kSP (G0, G

′
0) + kSP (G1, G

′
1) + . . .+ kSP (Gh, G

′
h). (13)

Note on computational complexity Computing shortest paths between all pairs of
nodes in a graph can be done in O(n3) using the Floyd-Warshall algorithm. Consequently,
for N graphs, the complexity is of O(Nn3). This step does not have to be repeated for
every Weisfeiler-Lehman iteration, as the topology of a graph does not change across the
Weisfeiler-Lehman sequence. In case edges are not weighted, shortest paths are determined
in terms of geodesic distance and path lengths are integers. Denote the number of distinct
shortest path lengths occurring in the dataset of graphs as P .

Let us first consider the Dirac (δ) kernel on the shortest path lengths, which means
that the similarity of two paths in two graphs equals 1 if they have exactly the same length
and identically labeled start and end nodes and 0 otherwise. Then, in iteration i of the
Weisfeiler-Lehman relabeling, we can bound the number of features, triplets (a, b, p) where
a, b ∈ |Σi| are ordered start and end node labels and p ∈ N0 the shortest path length, by
|Σi|(|Σi|+1)

2 P . It is easy to notice by looking at the Algorithm 1 that for each i ∈ {0, . . . , h−1},
|Σi| ≤ |Σi+1|. Therefore, if we compute the shortest path kernel by first explicitly computing
φSP (G) for each G in the dataset, the computation will get increasingly expensive in each
iteration i of the Weisfeiler-Lehman relabeling.

However, in a more general case where we do not assume that edges are unweighted and
use any kernel kl (not necessarily the Dirac kernel) on shortest path lengths, or the alphabet
size gets prohibitively large, computing the feature map explicitly might not be possible or
reasonable any more. In this case, the runtime of computing kSP (Gi, G

′
i) will not depend

on i any more. It will scale as O(n4) for each pair of graphs as we have to compare all pairs
of the O(n2) shortest path lengths, and O(N2n4) for the whole dataset.
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Figure 3: Runtime in seconds for kernel matrix computation on synthetic graphs using the
pairwise (red, dashed) and the global (green, solid) computation schemes for the
Weisfeiler-Lehman subtree kernel (Default values: dataset size N = 10, graph
size n = 100, subtree height h = 4, graph density c = 0.4).

3.4 Other Weisfeiler-Lehman kernels

In a similar fashion, we can plug other base graph kernels into our Weisfeiler-Lehman graph
kernel framework. As node labels are the only aspect that differentiate Weisfeiler-Lehman
graphs at different resolutions (determined by the number of iterations), a clear requirement
that the base kernel has to satisfy for the Weisfeiler-Lehman kernel to make sense is to
exploit the labels on nodes. A non-exhaustive list of possible base kernels not mentioned
in previous sections includes the labeled version of the graphlet kernel (Shervashidze et al.,
2009), the random walk kernel (Gärtner et al., 2003; Vishwanathan et al., 2010), and the
subtree kernel by Ramon and Gärtner (2003).

4. Experiments

In this section, we first empirically study the runtime behaviour of the Weisfeiler-Lehman
subtree kernel on synthetic graphs (Section 4.1). Next, we compare the Weisfeiler-Lehman
subtree kernel and the Weisfeiler-Lehman shortest path kernel to state-of-the-art graph ker-
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nels in terms of kernel computation runtime and classification accuracy on graph benchmark
datasets (Section 4.2).

4.1 Runtime behaviour of Weisfeiler-Lehman subtree kernel

Methods We empirically compared the runtime behaviour of our two variants of the
Weisfeiler-Lehman subtree (WL) kernel. The first variant computes kernel values pairwise
in O(N2hm). The second variant computes the kernel values in O(Nhm + N2hn) on the
dataset simultaneously. We will refer to the former variant as the “pairwise” WL, and the
latter as “global” WL.

Experimental setup We assessed the behaviour on randomly generated graphs with
respect to four parameters: dataset size N , graph size n, subtree height h and graph
density c. The density of an undirected graph of n nodes without self-loops is defined as the
number of its edges divided by n(n − 1)/2, the maximal number of edges. We kept 3 out
of 4 parameters fixed at their default values and varied the fourth parameter. The default
values we used were 10 for N , 100 for n, 4 for h and 0.4 for the graph density c. In more
detail, we varied N in range {10, 100, 1000}, n in {100, 200, . . . , 1000}, h in {2, 4, 8} and c
in {0.1, 0.2, . . . , 0.9}.

For each individual experiment, we generated N graphs with n nodes, and inserted edges
randomly until the number of edges reached bcn(n−1)/2c. We then computed the pairwise
and the global WL kernel on these synthetic graphs. We report CPU runtimes in seconds
in Figure 3, as measured in Matlab R2008a on an Apple MacPro with 3.0GHz Intel 8-Core
with 16GB RAM.

Results Empirically, we observe that the pairwise kernel scales quadratically with dataset
size N . Interestingly, the global kernel scales linearly with N for the considered range of
N . The N2 sparse vector multiplications that have to be performed for kernel computation
with global WL do not dominate runtime here. This result on synthetic data indicates that
the global WL kernel has attractive scalability properties for large datasets.

When varying the number of nodes n per graph, we observe that the runtime of both
WL kernels scales quadratically with n, and the global WL is much faster than the pairwise
WL for large graphs. This agrees with the fact that our kernels scale linearly with the
number of edges per graph, m, which is 0.4n(n−1)

2 in this experiment.

We observe a different picture for the height h of the subtree patterns. The runtime of
both kernels grows linearly with h, but the global WL is more efficient in terms of runtime.

Varying the graph density c, both methods show again a linearly increasing runtime,
although the runtime of the global WL kernel is much lower than the runtime of the pairwise
WL.

Across all different graph properties, the global WL kernel from Section 3.2.1 requires
less runtime than the pairwise WL kernel from Section 3.2. Hence the global WL kernel
is the variant of our Weisfeiler-Lehman subtree kernel that we use on the following graph
classification tasks.
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4.2 Graph classification

We compared the performance of the WL subtree kernel and the WL shortest path kernel to
several other state-of-the-art graph kernels in terms of runtime and classification accuracy
on graph benchmark datasets.

Datasets We employed the following datasets in our experiments: MUTAG, NCI1, NCI109,
ENZYMES and D&D. MUTAG (Debnath et al., 1991) is a dataset of 188 mutagenic aro-
matic and heteroaromatic nitro compounds labeled according to whether or not they have
a mutagenic effect on the Gram-negative bacterium Salmonella typhimurium. We also
conducted experiments on two balanced subsets of NCI1 and NCI109, which classify com-
pounds based on whether or not they are active in an anti-cancer screen (Wale and Karypis
(2006) and http://pubchem.ncbi.nlm.nih.gov). ENZYMES is a dataset of protein ter-
tiary structures obtained from (Borgwardt et al., 2005) consisting of 600 enzymes from the
BRENDA enzyme database (Schomburg et al., 2004). In this case the task is to correctly
assign each enzyme to one of the 6 EC top level classes. D&D is a dataset of 1178 protein
structures (Dobson and Doig, 2003). Each protein is represented by a graph, in which the
nodes are amino acids and two nodes are connected by an edge if they are less than 6
Ångstroms apart. Note that nodes are labeled in all datasets. The prediction task is to
classify the protein structures into enzymes and non-enzymes.

Experimental setup On these datasets, we compared our Weisfeiler-Lehman subtree
and Weisfeiler-Lehman shortest path kernels to the Ramon-Gärtner kernel (λ = 1), as well
as to several state-of-the-art graph kernels for large graphs. Due to the large number of
graph kernels in the literature, we could not compare to every single graph kernel, but to
representative instances of the major families of graph kernels.

From the family of kernels based on walks, we compared our new kernels to the fast
geometric random walk kernel by Vishwanathan et al. (2010) that counts common labeled
walks, and to the p-random walk kernel that compares random walks up to length p in two
graphs (a special case of random walk kernels (Kashima et al., 2003; Gärtner et al., 2003)).

From the family of kernels based on limited-size subgraphs, we chose an extension of the
graphlet kernel by Shervashidze et al. (2009) that counts common induced labeled connected
subgraphs of size 3.

From the family of kernels based on paths, we compared to the shortest path kernel
by Borgwardt and Kriegel (2005) that counts pairs of labeled nodes with identical shortest
path length.

Note that whenever possible, we used fast computation schemes based on explicitly
computing the feature map (similar to that in Algorithm 2) before taking the inner product,
in order to speed up kernel computation. In particular, we used this technique for computing
shortest path and graphlet kernels. For connected 3-node graphlet kernels it is rather
intuitive to imagine the explicit feature map: First, we have only 4 types of different
graphlets with 3 nodes. Second, for each type of graphlet we can determine the number of
possible labelings of the three nodes as a function of the size of the node label alphabet.
In the case of shortest paths, the explicit feature map may or may not exist. In our case,
as edges were not weighted, we used the number of edges in a path as a measure of its
length. In addition, we used the Dirac kernel on shortest path distances. This allowed us
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to explicitly compute the feature map corresponding to the shortest path kernel for each
graph.

We performed 10-fold cross-validation of C-Support Vector Machine Classification using
LIBSVM (Chang and Lin, 2001), using 9 folds for training and 1 for testing. All parameters
of the SVM were optimised on the training dataset only. To exclude random effects of fold
assignments, we repeated the whole experiment 10 times. We report average prediction
accuracies and standard deviations in Tables 1 and 2.

We chose h for our Weisfeiler-Lehman subtree kernel by cross-validation on the training
dataset for h ∈ {1, . . . , 10}, which means that we computed 10 different WL kernel matrices
in each experiment. We reported the total runtime of these computations (not the average
per kernel matrix). It is worth mentioning that rather small values of h, such as 1, 2, or 3,
systematically gave the best results for all datasets used.

Proceeding in the same fashion as in the case of the Weisfeiler-Lehman subtree kernel,
we computed the Ramon-Gärtner subtree and Weisfeiler-Lehman shortest path kernels for
h ∈ {1, 2, 3} and the p-random walk kernel for p ∈ {1, . . . , 10}. We computed the random
walk kernel for λ chosen from the set {10−2, 10−3, . . . , 10−6} for smaller datasets and did
not observe a large variation in the resulting accuracy. For this reason and because of the
relatively high runtime needed to compute this kernel on larger datasets (see Table 2), we
set λ as the largest power of 10 smaller than the inverse of the squared maximum degree in
the dataset.

Results In terms of runtime, the Weisfeiler-Lehman subtree kernel could easily scale up
even to graphs with thousands of nodes. On D&D, subtree-patterns of height up to 10 were
computed in 11 minutes, while no other comparison method could handle this dataset in
less than half an hour. The shortest path kernel and the WL shortest path kernel were com-
petitive to the WL subtree kernel on smaller graphs (MUTAG, NCI1, NCI109, ENZYMES),
but on D&D their runtime degenerated to more than 23 hours for the shortest path kernel
and to more than a year for the WL shortest path kernel. The Ramon and Gärtner kernel
was computable on MUTAG in approximately 40 minutes, but it finished computation in
more than a month on ENZYMES and the computation took even longer time on larger
datasets. The random walk kernel was competitive on MUTAG and ENZYMES in terms
of runtime, but took more than a week on each of the NCI datasets more than a month
on D&D. The graphlet kernel was faster than our WL kernel on MUTAG and the NCI
datasets, and about a factor of 3 slower on D&D. However, this efficiency came at a price,
as the kernel based on size-3 graphlets turned out to lead to poor accuracy levels on four
datasets.

On NCI1, NCI109 and ENZYMES, the Weisfeiler-Lehman shortest path kernel reached
the highest accuracy. On all three datasets, the Weisfeiler-Lehman subtree kernel yielded
the second best result. While on NCI1 and NCI109 this second best result is close to the
best result, on ENZYMES the WL shortest path kernel dramatically improved over the
WL subtree kernel. On D&D the shortest path and graphlet kernels yielded similarly good
results, while on NCI1 and NCI109 the Weisfeiler-Lehman subtree kernel improved by more
than 8% the best accuracy attained by other methods. On MUTAG, the WL kernels reached
the third and the fourth best accuracy levels among all methods considered. The labeled
size-3 graphlet kernel achieved low accuracy levels, except on D&D. The random walk and
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Method/Dataset MUTAG NCI1 NCI109 ENZYMES D & D

WL subtree 82.05 (±0.36) 82.19 (± 0.18) 82.46 (±0.24) 46.42 (±1.35) 79.78 (±0.36)

WL shortest path 83.78 (±1.46) 84.55 (±0.36) 83.53 (±0.30) 59.05 (±1.05) 79.43 (±0.55)

Ramon & Gärtner 85.72 (±0.49) 61.86 (±0.27) 61.67 (±0.21) 13.35 (±0.87) 57.27 (±0.07)

p-random walk 79.19 (±1.09) 58.66 (±0.28) 58.36 (±0.94) 27.67 (±0.95) 66.64 (±0.83)

Random walk 80.72 (±0.38) 64.34 (±0.27) 63.51 (± 0.18) 21.68 (±0.94) 71.70 (±0.47)

Graphlet count 75.61 (±0.49) 66.00 (±0.07) 66.59 (±0.08) 32.7 (±1.20) 78.59 (±0.12)

Shortest path 87.28 (±0.55) 73.47 (±0.11) 73.07 (±0.11) 41.68 (±1.79) 78.45 (±0.26)

Table 1: Prediction accuracy (± standard deviation) on graph classification benchmark
datasets

Dataset MUTAG NCI1 NCI109 ENZYMES D & D

Maximum # nodes 28 111 111 126 5748

Average # nodes 17.93 29.87 29.68 32.63 284.32

# labels 7 37 38 3 82

Number of graphs 188 4110 4127 600 1178

WL subtree 6” 7’20” 7’21” 20” 11’

WL shortest path 1.5” 2’20” 2’23” 1’3” 484 days

Ramon & Gärtner 40’6” 81 days 80.5 days 38 days 103 days

p-random walk 4’42” 4.5 days 5 days 10’ 4 days

Random walk 12” 8.5 days 9 days 12’19” 48 days

Graphlet count 3” 1’27” 1’27” 25” 30’21”

Shortest path 2” 4’38” 4’39” 5” 23h 17’2”

Table 2: CPU runtime for kernel computation on graph classification benchmark datasets

the p-random walk kernels, as well as the Ramon-Gärtner kernel, were less competitive to
kernels that performed the best on datasets other than MUTAG.

To summarize, the WL subtree kernel turned out to be competitive in terms of runtime
on all smaller datasets, fastest on the large protein dataset, and its accuracy levels were
competitive on all datasets. The WL shortest path kernel achieved the highest accuracy
level on three out of five datasets, and was competitive on the remaining datasets.

5. Conclusions

We have defined a general framework for constructing graph kernels on graphs with unla-
beled or discretely labeled nodes. Instances of our framework include a fast subtree kernel
that combines scalability with the ability to deal with node labels. Our kernels are compet-
itive in terms of accuracy with state-of-the-art kernels on several classification benchmark
datasets, even reaching the highest accuracy level on four out of five datasets. Moreover,
in terms of runtime on large graphs, instances of our kernel outperform other kernels, even
the efficient computation schemes for random walk kernels (Vishwanathan et al., 2010) and
graphlet kernels (Shervashidze et al., 2009) that were recently developed.
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Our new kernels open the door to applications of graph kernels on large graphs in
bioinformatics, for instance, protein function prediction via detailed graph models of protein
structure on the amino acid level, or on gene networks for phenotype prediction. An exciting
algorithmic question for further studies will be to consider kernels on graphs with continuous
or high-dimensional node labels and their efficient computation.
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