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1 Introduction

The number type leda real provides exact computation for a subset of real al-
gebraic numbers: Every integer is a leda real, and leda reals are closed under
the basic arithmetic operations +,−, ∗, / and k-th root operations. leda reals
guarantee correct results in all comparison operations. The number type is avail-
able as part of the leda C++ software library of efficient data types and al-
gorithms [12, 15]. leda reals provide user-friendly exact computation. All the
internals are hidden to the user. A user can use leda reals just like any built-in
number type.

The number type is successfully used to solve precision and robustness prob-
lems in geometric computing [2, 23]. It is particularly advantageous when used
in combination with the computational geometry algorithms library cgal.

2 Theory and practice in geometric computing

For the sake of better understanding underlying mathematical principles, theory
of algorithm design often makes simplifying assumptions. In practice of geomet-
ric computing such simplifying assumptions cause notorious problems, if they
don’t hold, see for example [7, 9, 13, 21, 26]. Besides the assumption of so-called
general position which excludes special cases in the input for an algorithm like
three points lying on a line, the most puzzling assumption the implementor of
a geometric algorithm is left to deal with is the assumption of exact arithmetic

over the reals. The ubiquitous model of computation in computational geometry
is the so-called real RAM. A real RAM can hold a single real number in each of
its storage locations and perform basic arithmetic operations +,−, ∗, /, compar-
ison between two real numbers, and k

√
and exp, log, if needed [18]. All these

operations are assumed to give the correct result at unit cost.
With standard floating-point arithmetic, the default substitution for the real

numbers in scientific computing, this assumption does not hold. Due to round-
ing and cancellation errors, the operations above might give incorrect results.
Implementations simply using floating-point arithmetic as a substitute for exact
real arithmetic typically “work” most of the time, but sometimes produce catas-
trophic errors, i.e., they crash, compute useless output, or even loop forever,
although the implemented algorithms are theoretically correct. Such behavior
can be observed also with currently available CAD-systems.



The root cause of such errors is that rounding errors in the computation lead
to incorrect values resulting in incorrect and contradictory decisions. For exam-
ple, a program using imprecise floating-point arithmetic might detect two dif-
ferent points of intersection between two non-identical straight lines. Of course,
such a situation can not arise in real geometry, so the algorithm is not designed
to handle such situations and it is not surprising that the program crashes.

Geometric computing goes beyond numerical computing, since it also has
a discrete combinatorial component. Whereas in numerical computing one can
often argue that the numerical results computed with floats are correct for some
(small) perturbation of the numerical values in the input, such reasoning is
intrinsically much harder in geometric computing. Computing the orientation of
three points p, q, and r in the plane corresponds to computing the sign of a 3×3
determinant. Even if the orientation computed using floating-point arithmetic
is not correct the three points can always be perturbed a little bit to points p′,
q′, and r′ such that the computed orientation is the orientation of p′, q′, and
r′. However, in a geometric program points p, q, and r are involved in many
orientation computations, and although for each single orientation computation
there is always a correcting perturbation of the points, it is not guaranteed at all
that there is a valid perturbation for all points making all computed orientation
computations correct. Now, deciding whether there is a set of points realizing
given orientation information is a hard problem. In fact, it is at least as hard as
deciding the existential theory over the reals [16].

There are two obvious approaches to close the gap between theory and prac-
tice of geometric computing with respect to precision problems. Either change
theory or change practice, i.e., take imprecision into account when designing a
geometric algorithm or compute “exactly”. The latter approach is known as the
“exact geometric computation paradigm” [27]. It assures that all decisions, i.e.,
all comparison operations, made in a program are correct and thereby assures
that a program behaves as its theoretical counterpart. leda reals are an ex-
tremely useful tool to implement an algorithm according to the exact geometric
computation paradigm. Redesigning algorithms such that imprecision is taken
into account, is considered not very attractive as the many algorithms developed
in theory so far under the real RAM model would get lost.

3 Verified computation with leda reals

In this section we describe how the leda reals assure correct comparisons. The
leda reals record computation history in an expression dag (i.e., a directed
acyclic graph) in order to allow for re-evaluation. The leaves of the dag are inte-
gers, and each internal node of the dag is labeled with a unary or binary operation
and points to the operands from which the subexpression was computed. Fig. 1
shows an example. Furthermore, during construction of the expression dag, the
leda reals already compute rough approximations. Here, one can maintain a
value and an error bound or, alternatively, use interval arithmetic.
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Fig. 1. Recorded computation history for the code fragment

leda real root two = sqrt(leda real (2));

leda real E = sqrt(9 + 4 * root two) - (1 + 2 * root two);

The actual work, however, is done in the comparison operations which are re-
duced to sign computations. Let E be the expression whose sign we are interested
in, and let ξ denote the value of the expression E. If, in a sign computation for
E, the current approximation ξ̃ is not sufficient to verify the sign, the expression
dag is used to re-compute better approximations. Approximations are computed
as leda bigfloats, a software floating-point number type that allows you to

choose the mantissa length. We compute approximations ξ̃ of ξ with increasing
quality until either the sign of ξ is equal to the sign of ξ̃ or until we can conclude
that ξ is zero. We use separation-bounds to check for zero. A separation bound
for an expression E is a number sepE such that

|ξ| < sepE ⇒ ξ = 0.

In the next section we prove such a separation bound for expressions. With each
approximation ξ̃ we compute an error bound ∆error ≥ |ξ − ξ̃|. If

|ξ − ξ̃| ≤ ∆error < |ξ̃|
we have sign(ξ̃) = sign(ξ). If, on the other hand,

|ξ̃| + ∆error < sepE

we know that ξ must be zero. Since the quality of the approximations increases
and hence ∆error decreases, we eventually get the correct sign. The sign compu-
tation is adaptive. The running time depends on how small the value |ξ| of E
is.



leda reals have been implemented as a C++-class by Christoph Burnikel [4].
Thanks to operator overloading, they can be used with the natural syntax, just
like any other (built-in) number type in C++.

4 Theoretical foundations

In this section we prove a separation bound that generalizes the bound proved
in [3] and is more general than what is needed for the current implementation
of leda reals. An algebraic number is called algebraic integer, if it is a root of
a monic1 polynomial with integral coefficients. It is well known that algebraic
integers form a ring containing the (rational) integers.

The following lemma is a straightforward generalization of Theorem 1 in [3].
It allows for algebraic integer instead of (rational) integer as basic operands.

Lemma 1. Let E be an expression with operations +,−, ∗, k
√

for integral k

where the operands are algebraic integers. Let ξ be the value of E and deg(ξ)
denote the algebraic degree of ξ. Let u(E) be defined inductively by the structure

of E by the rules shown in the table below.

E u(E)
algebraic integer γ Uγ

E1 ± E2 u(E1) + u(E2)
E1 · E2 u(E1) · u(E2)

k
√

E1
k

√
u(E1)

Here Uγ is chosen such that |̺| ≤ Uγ for all roots ̺ of monic P ∈ Z[X ] with

P (γ) = 0. We have (
u(E)deg(ξ)−1

)−1

≤ |ξ| ≤ u(E).

Algebraic integers are closed under the operations +,−, ∗ and k
√

. More
generally, if we have a monic polynomial whose coefficients are algebraic integers,
then the roots of this polynomial are algebraic integers again. We briefly prove
that there is PE(X) =

∏
(X − γℓ) ∈ Z[X ] with PE(ξ) = 0, such that for all roots

γℓ of PE(X):
|γℓ| ≤ u(E)

By the theorem of elementary symmetric functions, any polynomial which is
symmetric in z1, . . . , zn, can be written as a polynomial in the zis’ elementary
symmetric functions

σ1 = z1 + z2 + · · · + zn

σ2 = z1z2 + z1z3 + · · · + zn−1zn

...

σn = z1z2 · · · zn

1 a polynomial is called monic, if its leading coefficient is 1.



We prove the claim by structural induction. In the base case, the claim holds by
definition of an algebraic integer and u(E). Note the special case, that E is an
integer N . In this case, P (X) = X − N∈ Z[X ] and u(E) = |N |.
For the induction step we distinguish unary and binary operations.

E1
±∗ E2:

By induction hypothesis we have

PE1
(X) =

n∏

i=1

(X − αi) =

n∑

s=0

asX
s∈ Z[X ],

PE2
(X) =

m∏

j=1

(X − βj) =

m∑

t=0

btX
t∈ Z[X ].

By the theorem of elementary symmetric functions, the polynomial

PE(X) :=

n∏

i=1

m∏

j=1

(X − (αi

±∗ βj))

has integral coefficients. Furthermore, we have |αi

±∗ βj | ≤ u(E1)
+∗ u(E2) by

induction hypothesis and definition of u.

E = k
√

E1:
By induction hypothesis, we have

PE1
(X) =

n∏

i=1

(X − αi) =

n∑

s=0

asX
s∈ Z[X ].

Then

PE(X) = PE1
(Xk) =

k∏

j=1

n∏

i=1

(X − ζj

(k)
k
√

αi)∈ Z[X ]

where ζ(k) is a primitive k-th root of unity. We have |ζj

(k)
k
√

αi| = | k
√

αi| ≤
| k

√
u(E1)| by induction hypothesis. Thus, |ζj

(k)
k
√

αi| ≤ u(E) by definition of u.

To complete the proof of Lemma 1, let ξ 6= 0 and ME(X) be the minimal
polynomial of ξ.
Since ME(X) divides PE(X) =

∏
(X − γℓ), we have

ME(X) =

deg(ξ)∏

t=1

(X − γℓt
) ∈ Z[X ].

W.l.o.g. ξ = γℓ1 . Since all coefficients are integral, we have
∣∣∣
∏deg(ξ)

t=1 γℓt

∣∣∣ ≥ 1.

Hence
(∏deg(ξ)

t=2 |γℓt
|
)−1

≤ |ξ| and
(
u(E)deg(ξ)−1

)−1 ≤ |ξ|. �



Lemma 2. Let E be an expression with operations +,−, ∗, /, k
√

for integral k
where the operands are roots of univariate polynomials with integral coefficients.

Let ξ be the value of E and deg(ξ) denote the algebraic degree of ξ. Let u(E)
and l(E) be defined inductively by the structure of E by the rules shown in the

table below. Let K(E) be the product of the indices of the radical operations in E.

Furthermore, let D(E) be the product of the degree of the polynomials defining

the operands.

u(E) l(E)
algebraic number α Uα Lα

E1 ± E2 u(E1) · l(E2) + l(E1) · u(E2) l(E1) · l(E2)
E1 · E2 u(E1) · u(E2) l(E1) · l(E2)
E1/E2 u(E1) · l(E2) l(E1) · u(E2)

k
√

E1
k

√
u(E1)

k

√
l(E1)

Here P =
∑d

i=0 aiX
i ∈ Z[X ] with P (α) = 0, not necessarily monic, Lα = ad

and Uα such that |̺| ≤ Uα/ad for all roots ̺ of P . Then we have

(
l(E)u(E)K(E)2D(E)2−1

)−1

≤ |ξ| ≤ u(E)l(E)K(E)2D(E)2−1

Lemma 2 follows by Lemma 1, if we postpone division operations, i.e. re-
place an expression by a quotient of two division-free expressions whose val-
ues are algebraic integers. The size of the numerator is bounded by u, while l
bounds the size of the denominator of this quotient. Note that if α is a root of
P =

∑d
i=0 aiX

i ∈ Z[X ], then γ = adα is an algebraic integer. γ is a root of

ad−1
d P (X/ad). So we can replace α by γ

ad

.
There is no need to compute the l- and u-values exactly. It suffices to compute

upper bounds on these values in order to derive separation bounds. The current
implementation of leda reals computes such upper bounds logarithmically. We
plan to extend the implementation of leda reals to include algebraic integer
operands as discussed above.

5 Geometric applications

Exact computation with radicals is frequently required in geometric computa-
tions involving distances. Fig. 2 shows a Voronoi diagram of line segments, com-
puted with an algorithm that uses leda reals [23]. In contrast to a previous
implementation, the new program never crashes due to rounding errors.

Parametric search [14] is a very nice technique to derive algorithms for solving
certain optimization problems from algorithms for related decision problems [20].
Parametric search can be applied if the problem can be phrased as an optimiza-
tion problem parameterized by a real-valued parameter r where the goal is to
compute a unique optimal value r∗ for a given input parameterized by r. The
related decision problem is to decide whether a given concrete r0 is at least as
large as r∗. Parametric search simulates the decision problem for the unknown



(a) (b)

Fig. 2. Two geometric problems involving square roots: (a) Voronoi diagram of line
segments, (b) arrangement of circles [8].The points shown are intersection points and
points of vertical tangency.

r∗ and computes r∗ during the simulation. Applying the parametric search tech-
nique involves solving the decision problem for zeros of functions in r that arise
during the parameterized simulation. In almost all geometric applications, these
functions are polynomials in r. Schwerdt et al. [24] provide, to the best of our
knowledge, the first actual implementation of parametric search for the problem
of computing the point in time where a set of points moving with constant veloc-
ity has minimum diameter. It uses leda reals to exactly solve decision problems
for roots of polynomials of degree 2.

In combination with the cgal framework [5, 6, 17] for geometric computa-
tion, the number type leda real is particularly fruitful. The geometry kernels of
cgal, a computational geometry algorithms library, are ready to use leda reals.
cgal provides kernels with Cartesian coordinate representation as well as a ker-
nel based on homogeneous coordinates. Both are parameterized with the number
type used for coordinates and arithmetic. The use of an exact number type yields
an exact kernel. Using leda reals with the cgal kernels yields easy-to-write,
correct and still reasonably efficient geometric programs. Fig. 2 (b) shows an
arrangement of circles computed with the cgal arrangement algorithm using
leda reals as number type.

Fig. 3 (a) shows a basic geometric problem that is challenging in terms of
precision because of degenerate configurations. The task is to compute the ex-
treme points among the intersection points of a set of line segments. A point is
called extreme with respect to a set of points P , if it is a corner point of the
convex hull of P . Extreme point computation involves orientation computation
for point triples. In our example, the difficulty in terms of precision is caused
by the fact that by construction there are many collinear points. Using cgal



with pure floating point computation often leads to reporting incorrect extreme
points. Note that in these cases there is no perturbation of the input such that
the reported set of extreme points is correct for the perturbed input, unless you
give up straightness of the input segments. If you want to compute a Delaunay
triangulation of the intersection points, see Fig. 3 (b), the situation is even worse:
Using double as number type, the cgal algorithm often complains about viola-
tion of invariants and stops. Of course, using leda reals, we get correct results
for both problems.

(a) (b)

Fig. 3. Extreme point computation (a) and Delaunay triangulation (b) for intersection
points of random line segments with double coordinates. Points incorrectly classified
as extreme by floating-point computation with double precision are encircled.

leda reals are reasonably efficient in geometric computing whenever the ex-
pressions defining the algebraic numbers do have bounded size. In these cases
the use of leda reals slows down the computation by a constant factor. How-
ever, exact computation has its costs. In our experience, the slow down factor
with respect to pure floating-point computation is between 5 and 20. For chal-
lenging problem instances it might be even more. However, here we compare
apples and oranges. While the float based algorithm produces catastrophic er-
rors sometimes, the leda real based algorithm always gives a correct result.
The comparison of running times is with respect to those cases only, where we
get a result with both number types. If we would compare the time it takes a
program to compute the correct result, a leda real-based program would be
“much faster”, because it computes the correct result in finite time whereas the
float-based program never reaches this goal. For further discussion on running
times with leda reals we refer the interested reader to [2] and [22].



leda reals are not a panacea. If there are algebraic numbers involved whose
expressions do not have bounded size, the use of leda reals might not lead to
satisfactory solutions anymore.

6 Conclusions

leda reals offer a convenient and (reasonably) efficient way of computing with
expressions involving roots. For geometric computing, leda reals are especially
useful in combination with the cgal kernels.

A number type with similar functionality is available as part of the CORE-
package developed at NYU [10]. The work presented in this paper is furthermore
related to algebra systems and algebra toolkits like those presented in [11] and
[19].
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