Algorithmica (1997) 17: 183-198

Algorithmica

© 1997 Springer-Verlag New York Inc.

Maintaining Dynamic Sequences under Equality Tests
in Polylogarithmic Time*!

K. Mehlhorn? R. Sunda# and C. Uhrid

Abstract. We present a randomized and a deterministic data structure for maintaining a dynamic family of
sequences under equality tests of pairs of sequences and creations of new sequences by joining or splitting
existing sequences. Both data structures support equality t&3td)jriime. The randomized version supports

new sequence creations B(log? n) expected time whera is the length of the sequence created. The
deterministic solution supports sequence creatiofXlag n(log mlog* m+logn)) time for themth operation.

Key Words. Algorithms, Data structures, Derandomization, Randomization, Sequences.

1. Introduction. We present a data structure for maintaining dynamically a fagily

of sequences over a univetdelLets,, s, be sequenceg; € U for j =1, ..., n,and let

i be an integer, then the data structure supports the following operations on an initially
empty family of sequences:

Makesequenceg, a;): Creates the sequensg= a;.

Equal(s:, s2): Returns true if; = ;.

Concatenate§,, s, s3): Creates the sequense= s,5, without destroyings,; ands,.
Split(sy, S, S3, 1): Creates the two new sequensgs= a; ---& andsz = @41+ an
without destroyings; = a; - - - an.

We present two solutions: one randomized and one deterministic. The deterministic
solution is essentially a derandomization of the randomized solution. Table 1 lists the
time bounds for thenth operation in a sequence of operations. The incremental space
cost is given in Table 2. We useto denote the total length of all sequences involved in
themth operation.

We use the standard RAM model of computation. In particular, we assume that the
word sizew is at least log magn, m), that arithmetic on words of length takes constant
time, and that a random bitstring of lengttcan be chosen in constanttime. The problem
of maintaining dynamic sequences with equality test arises mainly in the implementation
of high-level programming languages like SETL, where sequences are supported as a
primitive data type and equality tests are allowed.

The best previous deterministic solution is due to Sundar and Tarjan [ST]. They
achieve constant time for the equality test and amortized @tgnlogm + log m) for

1 This work was supported by the ESPRIT Basic Research Actions Program, under Contract No. 7141 (Project
ALCOM II).

2 Max-Planck-Institut éit Informatik, Im Stadtwald, D-66123 Saadoken, Germany.

3 Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, India.

Received November 5, 1994; revised June 15, 1995. Communicated by B. Chazelle.

184 K. Mehlhorn, R. Sundar, and C. Uhrig

Table 1. Time bounds.

Operation Randomized Deterministic
Equal 1 1
Makesequence 1 lag
Concatenate O(log? n) O(logn(logmlog* m + logn))
Split O(log? n) O(logn(logmlog* m + logn))

an update operation. The amortized space required per upd2¢g/is). Our solution is
exponentially better. Pugh [P] and Pugh and Teitelbaum [PT] gave a randomized solution
for the special case oépetition-freesequences (i.ea; # a1 foralli, 1 <i <n). It

has logarithmic expected running time per operation.

We now give a brief account of our randomized solution. We compute for each
sequencs a unique signaturgig(s) in [0..mq]. This signature is used to perform equality
tests. The signature of a sequesce a;a,---a, with g £ g foralli,1 <i <n,
is computed as follows (the extension to general sequences is described in Section 3):
First, s is broken into blocks (subsequences) of length at least 2 and expected length
at most logn. Secondly, each block, sdy= & - - - g;, is replaced by a single integer
which is computed in a Horner-like scheme by means of a pairing fungiiae.,b is
replaced byp(a;, p(a@i+1, ..., P(@j-1, &))...). Afterward, the same rules are applied
to the shrunken sequence until the sequence has length 1. The depth of nesting in this
recursion iSO (logn). Randomization is used to break a sequence into blocks. For each
element of the sequence a random real number is chosen and blocks begin at local
minima. In this way blocks (except maybe the first) have length at least 2. Also the
expected length of the longest block@log n) (since the probability that a sequence
of k random real numbers is increasing or decreasing i$)2The update algorithms
only need to manipulate a constant number of blocks in each level of the recursion and
hence spend tim®(logn) in each level. Thé(log? n) time bound results.

In our deterministic solution we replace the randomized strategy for breaking a se-
quence into blocks by a deterministic one which we exhibit in Section 2. It is based
on an algorithm for three-coloring rooted trees (we consider a sequence to be a rooted
tree) by Goldberget al. [GPS], which is a generalization of the so-caltisterministic
coin-tossing techniquef Cole and Vishkin [CV]. We generate blocks of length at most
4 and decide for each indéxvhetherg; starts a new block by looking only &(log* m)
neighbors ofg;. The update algorithms have a recursion depti©dbgn). On each
level they have to manipulate a balanced tree of d€aibgn) spendingO (logn) time.
Furthermore, they have to handbylog* m) blocks spending (log m) time for each.

This paper is structured as follows. In Section 2 we give randomized and deterministic
rules for decomposing a sequence into blocks, in Section 3 we define a hierarchical

Table 2. Incremental space cost.

Randomized Deterministic

O(log? n) O(logn(logn + log* m))

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 185

representation of sequences based on the block decomposition, and in Section 4 we
show how to realize the various operations.

2. The Block Decomposition. We first give the randomized block decomposition. Let
U be a universe ansl=a; ---a, withg € U anda; # g, foralli, 1 <i <n-1.
Each elemend € U is assigned a random prioriprio(a) € [0, 1]. We represent these
priorities with sufficiently large finite precision that guarantees that all priorities are
distinct. In Section 4 we show that the expected number of bits in the representation of
a priority is small and that this will not affect the complexity of the operations.

An elementy of sis a local minimum of if it has a successor imand its priority is
a local minimum in the sequengeio(a;) - - - prio(a,) of priorities corresponding te.

RANDOMIZED MARKING RULE. Every local minimum is marked.

Then at every marked position (and at position 1) a block starts. It ends just before
the next marked position (the last block ends at positipn

We next give a deterministic construction to divide a sequence into suitable blocks.
As mentioned above, the underlying algorithm is essentially a sequential version of the
so-calledthree-coloring technique for rooted tree$ Goldberget al. [GPS] (which in
turn is a generalization of thdeterministic coin-tossing techniqoé Cole and Vishkin
[CV]) and can be considered as a constructive proof of the following lemma.

LEMMA 1. For every integer N there is a functiont f—1..N — 1]°9" N+11 . (0 1)
such that for every sequence-a-a, € [0..N — 1]* with g # a1 for all i with
1 <i < nthe sequenced--d, € {0, 1}* defined by d:= f (&_iog'n—6, - - ., &i44),
whered; = a; for all j with 1 < j < n andg; = —1 otherwisgsatisfies

1.d +dp<1lforl<i<n,
2.di+dy1+do+dz>1foralli,1<i <n-3,

i.e., among two adjacent;& there is at most on#&, and among four adjacentd there
is at least ondl.

The sequencd; - - - dy is used to decompose the sequeace - a, into blocks ac-
cording to the following rule: Start a new block at index 1 and at every indekwith
di = 1. Itis clear that no block has length exceeding 4 and that all but the first and last
block have length at least 2.

In the following subsection we review the three-coloring technique. Lemmas 2 and
3 are due to Goldberet al. [GPS] but Lemma 4 is new. In Section 2.2 we explain the
decomposition rule and show how one can derive Lemma 1 from the coloring algorithm.

2.1. The Three-coloring Algorithm Lets = a; - --a, with g € [0..N — 1] andg #
a.1. We consides as a linked list (which is a special form of rooted treek-8oloring
ofalistisanassignmeft: {as, ..., a} — {0, ..., k—1}. Avalid coloringis a coloring
such that no two adjacent elements have the same color.

186 K. Mehlhorn, R. Sundar, and C. Uhrig

Informally itis done as follows. We first compute a vallidg N7-coloring. Afterward
we replace the elements in the list by their colors, consider the set of colors to be the
new universe, and iterate the coloring procedure. Aftdog* N) iteration steps we get
a valid six-coloring which we then reduce by a different procedure to a three-coloring
(of course it is easy to compute a valid two-coloring for a list in ti@én), but for
our purpose the decisions have to be made “locally,” that means the color of an element
must not depend on more than a small neighborhood of the element). The details are as
follows:

Identify eacha; (and its color) with its binary representation (which Hésg N7
bits). The bits are numbered from zero and flie bit of the representation of a color
of elementy; is denoted byC; (j). The following procedure has as input the sequence
s = a; - --a, and computes a six-coloring far In each iteration every elemeat is
assigned a new color by concatenating the number of the bit, where the old cejor of
differs from the old color o§;_; and the value of this bit. We u€& to denote the color
of 8 andN¢ denotes the number of used colors.

1. Procedure Six-Colorga; - - - ay: sequence);

2. begin

3 Nc < N;

4, forall i € {1,..,n}do

5. Ci <~ gq;

6. od,

7. while Nc > 6do

8 C1 < C1(0);

9. forall i € {2,...,n}do

10. ji <= min{j|Ci(j) # Ci_1(])}
11. bi < Ci(ji);

12. Cl < 2ji +by;

13. od;

14. Nc < maxCili € {1,..,n}} + 1;
15. od;

16. end;

LEMMA 2. The procedure Six-Colors produces a valid six-coloring of a list-aa,
wherea € {0,.., N — 1} foralli, 1 <i < n,intime O(nlog* N).

PrOOF First we show that the procedure computes a valid coloring. NoteCthiat
valid at the beginning, sinag # a; ;1 foralli, 1 <i < n— 1. Now suppos€ is valid
when we enter the while-loop (line 7). Consider two adjacent elensgratsda; 1 for
somei,1 <i < n.Inline 12, chooses some index such thaiCi ;1(j1) # Ci(j1)
andg chooses some indej such thatCi (j2) # Ci_1(j2). The new color ofy 13 is
2j1+Ci;1(j1) and the new color od; is 2j,+ C; (j2) (note that in line 12 we concatenate
the number of the least significant bit, where the old color differs from the old color of
a1 and the value of this bit). If; #], the new colors are different and we are done.

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 187

Otherwisej; = o butCi(j1) # Ci11(j1) by the definition ofj; and again the new colors
are different. Thus at the end of the loop the new coloring is also valid.

Now we give an upper bound on the number of iterations.LLet [log N7 and L
denote the number of bits in the longest representation of a colok&ferations of the
while-loop. We show that < [log* L] + 2, if [log“ L] > 2.

Fork =1 we havelL; < [logL7 + 1.

Now supposé__; < 2[log<"* L] + 2, [logt L] > 2 and thereforglog<* L] > 4.
Then

(1) Lk < MlogLg_1]1+1
) < flog2logt L)1 +1
(3 < Tlog“L] + 2.

Here (1) follows from the fact that in line 10 < [Lx_1] and (2) holds by the
induction hypothesis. After I6gN + 1 iterations we havélog“ L] = 1 and hence
Lx = 3. Then there are three possible values for the indexd two possible values
of the bitb;. Therefore, another iteration produces a valid six-coloring and, since each
iteration takes timéD(n), the time bound follows. O

We can easily compute a valid three-coloring by the following procedure, which
replaces each col@; € {3, 4, 5} of an elemeng; by the smallest color if0, 1, 2} not
being assigned to one of its neighbors.

1. ProcedureThree-Colorga; - - - a5: sequence);

2. begin
3. Six-Colors§; - - - ay);
4 Co <« o
5 Cn+1 < 0Q;
6. forc=3to5do
7 forall i € {1,...,n}do
8 if C; = cthen
9. Ci < min{{0, 1, 2} — {Ci_41, Ci1a}};
10. fi;
11. od;
12. od;
13. end,

LEmMMA 3. The procedure Three-Colors produces avalid three-coloring of ajist aa,
wherega e {0,...,N —1}foralli, 1 <i < nintime Qnlog* N).

PrOOF In line 3 the procedure computes a valid six-coloring. Then each of the three
iterations of the for-statement (line 6) removes one color and preserves the validity of

188 K. Mehlhorn, R. Sundar, and C. Uhrig

the coloring, since every list element whose color is replaced gets a new color different
from the (unchanged) colors of its two neighbors. Therefore, the three-coloring at the
end of the third iteration is still valid. The running time of lines 7-11 is obvio@{y)
and the time bound follows. O

2.2. The Decomposition Rule For any sequence; - - - a, we define the sequence
d; - - -dy in the following way. We first compute a valid three-coloring by the proce-
dureThree-Colorgresented above and then det= 1 iff the color ofa (which is now
considered to be an integer {8, 1, 2}) is a local maximum in the sequence of colors
andd; = 0 otherwise.

For technical reasons, we define the elementsithi < 1 ori > n to beempty
elements that have no influence on the computation (in Lemma 1 these elements are
written as—1).

LEMMA 4. Given a sequence;a- - ay, the values d---d, defined above have the
following properties

1. d +dy<1lforalli,1<i <n.
2. d+di1+do+dg>1foralli,l<i<n-3.
3. The value of donly depends on the subsequenceyg n—6 - - - 8j+4.

ProOF Property 1 follows from the fact that in a valid coloring any two colors of
consecutive elements are different and thus there are no neighboring local maxima.

For property 2 note that any sequence of four consecutive elements either contains
the color 2 which is always a local maximum or it contains the subsequence 010 where
1is a local maximum.

We prove property 3 in several steps. First, we prove by induction on the number of
iterations of the while-statement in the proced8me-Colorsthat for eachs; the color
of the valid six-coloring computed only depends on the subsequingg n—2- - - &.

More precisely, we argue that the color &f after thekth iteration depends on the
subsequencg _ - - - & . (Remember thadt < log* N + 2 (see Lemma 2).) However, this
is easy to see. Before the first iteration, the cologaf given bya; directly and does
not depend on another element. Now suppose that foriedch i < n, the color ofg
after the(k — 1)th iteration depends on the subsequeaceg,; - - - a. During the next
iteration each elemem with 1 < i < nis assigned a new color by concatenating the
binary string representation of the lowest index of the bit where the old color (its binary
representation) differs from the old coloraf 1, and the value of this bit. Therefore, the
new color ofg; only depends on its old col@; and the old coloC; _; of elementy; _;.
SinceC; depended oB; ;1 ---& andCj_; ona g - - - &_1, the new color depends on
a_x - - &, and the induction step is completed.

Next we argue that for eaah the color computed by the proceddreree-Colorsonly
depends on the subsequeBggog n—5 - - - & +3. This again can be seen by induction on
the number of iterations of the procedure. Before the firstiteration, each@alepends
on the subsequeneg_jog- n—2 - - - & (as shown above). In each iteration the new color
of an element depends on the old colors of its two neighbors. Since there are only three
iterations, the color o in the six-coloring depends on the six-coloring of the elements

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 189

& _3- - - 843 and therefore on the elemeftS oy n—5 - - - & +3. TO complete the proof for
property 3 note that the value dfis set in dependence on the col@s, Ci, andC;i
and therefore of the subsequerggog N—6 - - - 844 O

PrROOF OFLEMMA 1. Now note that by the definition of tgk’s the existence of the
functions as demanded in Lemma 1 is proven. O

DETERMINISTIC MARKING RULE. Every position with d; = 1 is marked.

As mentioned before, we now decompose the sequence into blocks by starting a new
block at position 1 and at every marked position.

3. A Hierarchical Representation of Sequences. As mentioned in the Introduction
we implement efficient equality tests by assigning unique signatures to sequences. In
this section we explain how this is done and how sequences are represented. A signature
is a small integer. More precisely, afteroperations there is no signature exceedirig
Since we maintain a hierarchy of sequences, i.e., signatures are also assigned to blocks
and subsequences of shrunken sequences, we need mone sigaratures.

Each sequence can be uniquely written a&'ll -..an with & # a4 for all i,
1 <i < n, and alll; being positive integers, Wheaé' denotes a subsequencelof
repetitions of the elemerg;. Informally, a signature is assigned to a sequesice
a'l1 -.-a in the following way. Each elemers; € U gets a signature (this will be
done by the functiorsig(s)). In order to eliminate repetitions, to each povmér(for
1 <i < n)asignature is assigned. Afterward we compute a block decomposition of the
sequenceig(a'f) i sig(a,'y) according to the methods introduced in Section 2. Note that
all neighboring elements in this sequence are different. Then for each block a signature
is computed by repeated application of a pairing function, i.e., pairs of signatures are
encoded by a new signature. The resulting sequence is denosdibk(s). Afterward
the whole procedure is applied shrink(s), the sequence of block encodings (instead
of the original sequence), and this is repeated until the original sequence is reduced to a
single integer, its signature. We now give the details.

Let Sbe the current set of signatured= [0..maxsig]. Each element irs encodes
either an element dfl or a pair inS x Sor a power inS x N, i.e., Sis the disjoint
unionS, U Sp U Sg and there are injections §; — U, p: S» — {(a,b); a,b € Sand
a#blandr: Sg — {(a,i);ae Sandi € N,i > 2}. The inverse functions, p, andr
are maintained as dictionaries (in the randomized case based on dynamic perfect hashing
and in the deterministic case based on balanced binary trees). In the randomized scheme
every elemens € Sthat encodes a power also has a random real priprigyfs) € [0, 1]
associated with it. For each suslwe only store a finite approximation pfio(s); the
approximations are long enough to be pairwise distinct. They are chosen in a piecemeal
fashion, i.e., whenever two priorities need to be compared and are found to be equal they
are extended by a random word. Lemma 9 shows that only approximations of logarithmic
length are needed on average.

We now give a constructive definition of the signatwsig(s) of a sequence =

190 K. Mehlhorn, R. Sundar, and C. Uhrig

a'11 e aT'] with g # a1 foralli,1 <i < nandn > 1. The functionsshrink(s) and
sig(s) which are used in this definition are defined afterward.

The functionsig is defined recursively. In all cases marked(sy, maxsigis incre-
mented and the corresponding functionir{ the definition ofsig, andu and p in the
definition ofsig) is extended.

sig(ay) if n=1and;=1,
sig(s) = r—1((as, 1)) if n=11;>1, and(ay, 1) € ranger),
98 = maxsig+ 1 if n=1 1;>1 and(as,li) ¢ ranger), (x)

sig(shrink(s)) if n>1

Next we define the functioshrink(s). Letn > 1, then the functiomlpow(s) (elimi-
nate powers) is defined by

elpow(s) = sig(a}) - - - sig(aly),

i.e., every power is replaced by its signature (which is defined above). We ddnomiés)

by g1---0, whereg, = sig(ai") foralli, 1 <i < n. Note thatg; # g1 for all i,

1 <i < n. Therefore, we can apply the block decomposition introduced in Section 2.
Now let by - - - b denote the block decomposition efpow(s), i.e., eachb; for all i,

1 <i <Kk, is ablock. Then we defirghrink(s) by

shrink(s) = sig(by) - - - sig(bx).

Now note that ifsigis defined for all sequencas= a; - - - a, with a; # a1 for all
i,1<i <n(ie.scontains no powers), thesig is completely defined.

a1 if n=1anda; €S,
ul(a) if n=1, a €U,
anda; € rangg(u),
maxsig+ 1 if n=1 a €U,
— anda; ¢ rangeu), (%)
SIS = 1 p-1((STg(ay). STg(an)) if n=2and
(sig(ay), sig(az)) € range(p),
maxsigt 1 if n=2and(sig(@a), sig(@y))
- _ ¢ range(p), ()
sig(as, sig(ay, .. ., Sig(@n—1, an) - - -)) if n>2

In order to show the correctness of the operation Egualf) we have to prove
LEMMA 5. Lets,s € F.Theng =% < sig(s) = sig(s).

PROOF It is easy to see that eashe Sencodes a unique sequenceliti by simply
running the encoding process backward. O

We next explain how sequences are stored. As abom;lei'f ... al letelpow(s) =
sig(a'll) . sig(ajqn), letb; - - - b be the sequence of blocks elipow(s), and finally let
shrink(s) = sig(by) - - - sig(by).

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 191

Then we represent a sequersday a list of sequences= (tg- - - T2t) Wheretg = s
and for alli, 1 < i < t, 15_1 = elpowty_2) andty; = shrink(zy_2). Note that
t = O(logn) in both schemes, since blocks (except maybe the first and the last) have
length at least 2 in both schemes.
In order to support the operations we store egchs a balanced binary trég in
such a way that the symmetric traversallpfyields r;. Each node contains:

An elementa of ;.

The size of the subtree rootedwat

The length of the block correspondingaan ;_;.

The sum of the lengths of the blocks corresponding to the elements stored in the
subtree rooted at.

The mark of the elementif j is odd.

Section 4 explains how this information is used. E&dk maintained as a linked
list of the roots of the tree§;. 7 is maintained as a linked list of the heads of these
lists. In the randomized solution the dictionaries are implemented by dynamic perfect
hashing (see [DKM]) and in the deterministic solution they are maintained as balanced
binary trees. The operations are performed persistently such that none of the sequences
is destroyed (see [DSST] for the details).

4. The Operations. The operation€Equal and Makesequencare identical in both
cases (randomized and deterministic).

Lets, s, be sequences. Thémuaks;, s;) can be implemented by returnitigie if
sig(s1) = sig(s,) andfalseotherwise. This obviously needs tinax(1).

Fora € U, Makesequencs, a) creates a single node binary tree represergiag
sig(a). Therefore it retrievesig(a) by evaluatingi(a) if a € rangegu); otherwise, a new
signature is assigned ands extended.

This requiresO(logm) time in the deterministic an®(1) time in the randomized
case.

The operation€oncatenatandSplitare more difficult to realize, but the basic idea
is simple. When we concatenagands; all but theO(1) last blocks ofs; and all but
some few first blocks @ (log* m) for the deterministic and (1) for the randomized
case) ofs, will also be blocks ofs;s, since the fact whether an element starts a new
block depends only on a small neighborhood of the element (of@iz&g* m) in the
deterministic and) (1) in the randomized case).

4.1. The Randomized Update OperationdVe first discuss the operati@oncatenate

The input is the hierarchical representations of sequescesds, and we need to
compute the hierarchical representatiorspt= s;5,. The following lemma paves the
way. It states that if we join the suitable trees of the hierarchical representatisps of
ands; to perform the concatenation, then for each tree only a small neighborhood of the
concatenation position differs from the correct tree for the hierarchical representation of
sz (a corresponding statement holds for the reverse operation split). Therefore, for each
tree of$; only a small middle part has to be recomputed.

192 K. Mehlhorn, R. Sundar, and C. Uhrig

LEMMA 6. Letg = a;---a&, S = a41---ay, and § = 55, be sequences and let
j = 0be an integerLet shrink(ss) = ¢c;--- ¢, i.e, c1...G is the result of applying
the shrink operation j timesand let i be such that;cencodes the subsequence of s
containing a. Then

1. ¢1---Gi_s is a prefix of shrink(sy) and|shrink! (s;)| < i + 5.
2. Ciya4...C is asuffix of shrink(sy) and|shrink ()| <r —i + 7.

PROOF We use induction ofj.

For j = 0 there is nothing to prove sinahrink(s) = s foralli, 1 <i < 3. So
assume that the claim holds for sorpe- 0. We establish the claim fgr+- 1.

We denoteshrinld*l(s@)_by c; - -- ¢, wherec], encodes the subsequencespton-
taininga andelpow(shrink (s3)) by g; - - - gk, whereg, encodes the subsequencespf
containinga . By the induction hypothesis we hasgérink/(s;) = ¢;---G_se1--- €,
andshrink (s;) = f1--- fqGi1a--- ¢ with p, g < 10. Then the subsequence encoded
by 01 --- 0,6 is a proper prefix of that encoded by- - - ¢,_s and the subsequence of
Oz45 - - - Ok is a proper suffix of thatencoded by, 4 - - - ;. Since the marks are influenced
by at most one predecessor and one successor (by the definition of “local minimum”),
the marks of the sequencgs: - - 9,7 andg,,s - - - g« are identical to those of the cor-
responding elements iglpowshrink! (s;)) andelpow(shrink (s;)). Since every block
has size at least 2 it follows that the subsequefcg- - - ¢, ; encodes the subsequence
of eIpOV\(shrinkj (s3)) containingg,—7 - - - 9z16. Thusc; - - - ¢,_s exclusively depends on
C1 - - - Gi_s and therefore is a prefix shrink t1(s)) andc;,_, - - - ¢, exclusively depends
oNGi4- - - ¢ and therefore is a suffix mrinkj“(sg). _

Let elpowshrink (s;)) be denoted byg;---0g,-60; - g, and shrink*1(s)
by ¢ ---¢_s€ - -€,. Note that the sequence/_,---c encodes a sequence
Oz—x - 0z-6 - g, and the sequena; - - - €, encodes a sequenge x - - - §z—69; - - - 9y
wherey < p+1.9,« - - - 9,—7 iS encoded by at most four elements (tsgn, - - - ¢/, _, =
€ - €).0z-60; - - - 9, is encoded by at moty +1)/2] = [(p+2)/2] elements. Since
p <10,p’ <4+ 6 =10. A similar argument shows thgt < 10 and we are done]

Lemma 6 tells us that all but a small middle part‘sm‘rinkj (s3) can be copied
from shrink! (s;) or shrink! (s,). The proof of Lemma 6 also gives the recipe for com-
puting the missing part frorshrink (s;), shrink (s;), and elpow(shrink ~1(s3)): Let
elpow(shrink ~1(s3)) = g: - - - gk and letg, be the element encoding the subsequence of
s3 containinga . The marks of the elementg - - - 9,7 andgz.6 - - - gk are identical to
the corresponding marks &lpow(shrink ~*(s;)) andelpowshrink ~(s;)). We com-
pute new marks for the elemengs ¢ - - - g,5. Afterward we can computhrink' (sg) by
computing the middle pad_4 - - - ¢i;.3 and copying the other parts froshrink! (s;) and
shrink! (s;). The split operations on the corresponding trees can easily be performed
in O(logn) each: we know the length of those subsequenceshdhk’fl(sl)_ and
shrink“l(.sg), for which we want to copy the encoding subsequenceshdhk! (s;)
andshrink (). Note that in every nodein the treesTg i s,y aNdThiink s, the length
of the block corresponding to(resp. to its element) as well as the sum of the lengths of
the blocks corresponding to the nodes in the subtree rootedratstored. Therefore, it
suffices to visit a single path to split the tree.

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 193

Now the computation of the hierarchical representagionf s; is easy to understand.
Generally, all operations are performed persistently. This is essentially done by copying
all nodes that are to be changed and then changing these copies. The details of this
technique can be seen in [DSST].

In the following,s; = a1 ---&, S = &41- - - @y, lets be any sequencejpow(s) =
01 - - - Ok, andTs is the balanced binary tree fer

ProcedureRanConcatenafs;, s, S3: sequence);

1. ComputeTg, by joining T, and T, .
2. ComputeTeipows; BY joining Teipows;) and Tepows,) (in the case that

a = a1 recompute the corresponding elemenelpfow(ss)).

3. Lets = g3, letzbe such thag, encodes the subsequencegafontaining

a and lets; be an empty list.

4. while |s| > 1do

(a) Appends andelpow(s) at the end of the lisE;.

(b) Choose (or retrieve) the priorities of the subsequepce- - - g, 4
of g(s) and compute the marks of,—6- - Jz+4 IN Telpows)
accordingly.

(c) Assignshrink(s) to s, whereshrink(s) is computed as indicated
above.

(d) ComputeTs. If |s| > 1, then comput&eipows) and update.

5. Appends at the end o8;.

The complexity of the operatidRanConcatenatis given by

LEMMA 7. ARanConcatenate operation requires expected tirilegdn) and expected
space Qlog? n).

PROOFE Lines 1 and 2 require tim®(logn). Lines 4(c) and 4(d) can also be done in
O(logn) by use of the informations stored in the nodes of the trees (see Section B). Let
be the number of bits of precision needed to represent a random priority so that all of the
random priorities will be distinct and lét= [L /w] be the maximal number of memory
words needed to represent a priority. Then line 4(b) needs@ithe In line 4(c) we have
to recompute the signatures©f 1) blocks. Let be the maximal length of a block .
Thenline 4(c) needs tim@(l) to retrieve or create the signatures. Note that priorities are
only assigned to those signatures being elements of a sequendgeee line 4(b)). Line
4(d) again needs tim@®(logn). Thus we spend tim®(logn + | +) per level of the
hierarchy. Since there a@(log n) recursion steps we need tifiglogn(logn+1 +1)).

Now we want to compute the expected size of the largest block.

LEMMA 8. EJI] < 2logn + 2.

ProOOF Let !’ be the length of the longest subsequence of increasing priorities in a
sequences. Since every block of is a sequence of elements of increasing priorities
followed by a sequence of elements of decreasing priorities it followsshat< 2E[l'].

194 K. Mehlhorn, R. Sundar, and C. Uhrig
We estimateE[l’]. Suppose that = a; - - - ax and letj andt be positive integers.

Pr{[prio(aj) < prio(aj+1) < --- < prio(@j4i-1)] = 1/t!

and so
Pr{3j : prio(a)) < prio(@j;1) < --- < prio(@jt—1)] < k/t!
Hence,
k
E[I'] < flogkl+ > k/t!
t=[logk]+1
< [logkl +1
and
E[l] < 2[logk] + 2 < 2[log|s|] + 2. O

Note that the expected number of signatures (and therefore the incremental space
cost) produced by Eoncatenat®peration is logn. Furthermore, sinca is bounded
by 2™, the expected value ofiaxsigis at mostm?®.

Next we compute the expected number of bits for the prioritiesnileé the number
of sequences in the family and Ietio be the set of priorities. Note that on each level of
Concatenatat most 10 priorities are chosen (line 6). Since there are legels anch
is bounded by 2 there are at most 1 priorities assigned.

LEMMA 9. E[L] < 40flogm] + 11.

PrROOF Letagrbe ashorthand for“Some two prioritipgo, andprio,, whereprio,, prio, €
Prio, agree in the firsk bits.” Then

Pr[agr] < |Prio|?/2¢+1,

and hence

o0
E[L] < 2flog|Prio[T+ > [Prio]?/2** < 2[log Prio|] + 1.
k=2[log|Prio|1+1

Since|Prio| < 10m? it follows that

E[L] < 40logm+ 11 O

Thus the expected number of bits needed to represent priorities is small enough to
be represented i@ (1) words of memoryl(is a constant) and the complexity of the
operations is not affected by more than a constant. It follows that each recursion step
takes expected tim®(logn) and the lemma is proven. O

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 195

Now we turn to the split operation. Lef = a;---a,, = a;---&, andsg =
aj+1---ap. Lemma 6 also suggests how to compsteink (s;) and shrink! (sz) if
shrink (sy), elpow(shrink ~(s,)), andelpow(shrink ~1(s3)) are given: Leshrink (s;)
be denoted byc; - - - ¢k where c, encodes the subsequence spfcontaininga, let
elpowshrink ~*(s,)) be denoted by, - - - g, and letelpow(shrink ~*(s3)) be denoted
byhy---hq. Then choose priorities for the elemeggs.i, - - - gp andhy - - - hiz; compute
the marks foig,_13- - - gp andh; - - - hy3. Lemma 6 guarantees that now all the informa-
tion required to computehrink (s,) is availablec; - - - ¢,_s is a prefix ofshrink (s,),
Cz4- - - Ck is a suffix ofshrink (s3), and the missing parts can easily be computed.

In the followings ands’ denote sequenceslpow(s) = 0; - - - §p, andelpow(s’) =
hy---hg.

ProcedureRanSplifs;, s,, S3: sequencei;: integer);

1. ComputeTs,, Ts;, Telpows,)» aNdTelpowsy)-
2. Lets=s,, ' = 3, and let$; ands; be empty lists.
3. while |s| > 1do
(a) Choose the priorities of the sequerggi,- - - gp if necessary;
compute the marks ofl,—13-- - gp iN Telpows according to the
randomized marking rule.
(b) Appends andelpow(s) at the end of the lis,.
(c) Lets = shrink(s), whereshrink(s) is computed as indicated above.
(d) ComputeTs; if |s| > 1 computeTeipows)-
4, while |[s'| > 1do
(@) Choose the priorities of the sequelhge- - hy, if necessary; com-
pute the marks di - - - h13in Tepows) according to the randomized
marking rule.
(b) Appends’ andelpow(s’) at the end of the lis$;.
(c) Lets' = shrink(s’), whereshrink(s") is computed as explained
above.
(d) ComputeTy; if |s'| > 1 computeTeipows)-
5. Appends at the end o8, ands’ at the end o08;.

The complexity of theéSplit operation is given by

LEMMA 10. A RanSplit operation requires expected tim@a®? n) and expected space
O(log? n).

The proof is analogous to that of Lemma 7.

4.2. The Deterministic Update OperationsThe deterministic operations are essen-
tially implemented in the same way as the randomized operations. As pointed out above,
the main difference is the computation of the block decomposition. The analogous lemma
to Lemma 6 is the following:

196 K. Mehlhorn, R. Sundar, and C. Uhrig

LEMMA 11. Lets =a;---a, S = a41--- a8, and § = 515, be sequences and let
j = 0be an integerLet shrink(sz) = ¢;---¢ and leti be such that;cencodes the
subsequence of sontaining &. Then

1. ¢;---Gi_gis a prefix of shrink(sy) and |shrink (s))| < i + 7.
2. Citlog' mi+10- - - G is @ suffix of shrink(s,) and|shrink (s,)| <r —i + log* m® + 11.

The proofis completely analogous to that of Lemma 6. The computatisimrivfk(ss)
is done as follows: we denotdpov(shrink“l(%)) by g1 --- gk andg; is the element
encoding the subsequencesptontaininga . The marks of the elemengs - - - g, 13and
Oz+210g me+17 * - - Ok @re identical to the corresponding markeipow(shrink ~Y(sy))and
elpov(shrinkj’l(sg)). To compute new marks for the elemeqtsiz- - - 9,1210g m3+16
we run the algorithnThree-Colorson the subsequen@_iog ms—18- - * 9z+2 log m*+20
since at most these elements have influence on the missing marks. Afterward we can
computeshrink! (sz) by computing the middle pai_7 - - - Gi tiog* m3+10 and copying the
other parts fronshrink! (s;) andshrinkl (s,). Now it is easy to formulate the procedure
DetConcatenate

Inthe following lets; = a; - -- &, = a41- - - &y, letsbe any sequencelpow(s) =
O1- - - Ok andTs is the balanced binary tree fer

Procedure DetConcatenats(, s, S3 : sequence);

1. ComputeTg, by joining T, andTs, .
2. ComputeTeipows;) bY joining Teipows,) and Tepows,) (in the case that
a = a1 recompute the corresponding elemeneélpiow(ss)).
3. Lets = s3, let z be such thag, encodes the subsequence containing
a, and lets; be an empty list.
4. while |s| > 1do
(a) Appends andelpow(s) at the end of the lis$;.
(b) RunThree-Colorég, jog: ms—18- - - 9z+210g' m*+20) @and change the
marks ofg;_12. . . Gz210g me+16 @ccordingly.
(c) Assignshrink(s) tos, whereshrink(s) is computed as indicated
above.
(d) ComputeTs. If |s| > 1, then computdeipas(s) @and update.
5. Appends at the end of;.

The complexity of the operatioDetConcatenatés given by

LEMMA 12. A DetConcatenate operation requires timgl@n(logmlog* m+logn))
and space @ogn(logn + log* m)).

PrROOF First note that on every level of the hierarchical representation we create at
mostO(log* m) new signatures and cofy(logn) nodes by performing persistent tree
operations. Thereby, the space bound follows as well as therfaxsig< m?, since

logn is bounded byn.

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 197

Furthermore, lines 1 and 2 require tindalogn). Computing the new marks (line
4(b)) needs timeé ((log* m)?) (we perform log m? iterations on a sequence of length
about 2 log m*; see Lemma 3). Note that we only have to redecompose a subsequence
of length O(log* m) in line 4(b). For the remaining parts of the sequence we use the
information (and the subtrees) of the hierarchical representatiossaids,. Thus,
when computinghrink(s) (line 4(c)) we need tim@® (log mlog* m) to retrieve or create
the signatures (tim®(logm) per dictionary lookup). The building of the trees in line
4(d) is done by split and join operations and needs t@wgn). Thus we spend time
O(logmlog* m + logn) per level of the hierarchy. Since there &¢logn) recursion
steps the lemma follows. O

In the following s ands’ denote sequenceslpows) = ¢ - - - gp, andelpows’) =
hi...hg.

ProcedureDetSplitls;, S, S3: sequence;: integer);

1. Comput€Tls,, T, Telpows,) and Teipowss)-
2. Lets=s,, ' = 3, and lets;, $3 be empty lists.
3. while |s| > 1do
(a) RunThree-Colorégp_iog-ms—26- - - 9p) and change the marks of
Op—20- - - Op IN Teppows) accordingly.
(b) Appends andelpow(s) at the end of the lisf,.
(c) Lets <« shrink(s), whereshrink(s) is computed as indicated
above.
(d) ComputeTs; if |s| > 1 computeTeipows)-
4. while |[s'| > 1do
(@) RunThree-Colorgh; - - - hzjog me+30) and change the marks of
h1 - - N3jog: m3426 IN Telpows) accordingly.
(b) Appends’ andelpow(s’) at the end of the lis$;.
(c) Lets <« shrink(s’), whereshrink(s") is computed as indicated
above.
(d) ComputeTy; if |s'| > 1 computeTeipows)-
5. Appends at the end o8, ands’ at the end o&:.

The complexity of théDetSplitoperation is given by

LEMMA 13. A DetSplit operation requires time @gn(logmlog* m + logn)) and
space @logn(logn + log* m)).

The proof is analogous to that of Lemma 12.

References

[CV] R.Coleand U. Vishkin. Deterministic coin tossing with applications to optimal parallel list ranking.
Inform. and Contro| 70:32-53, 1986.

198 K. Mehlhorn, R. Sundar, and C. Uhrig

[DKM*] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heyde, H. Rohnert, and R. E. Tarjan.
Dynamic perfect hashing: Upper and lower bouriéiec. 2%th IEEE FOCSpp. 524-531, 1988.
[DSST] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persistent.
J. Comput System Sci38:86-124, 1989.
[GPS] A. V. Goldberg, S. A. Plotkin, and G. E. Shannon Parallel symmetry-breaking in sparse graphs.
SIAM J Discrete Math, 1(4):434-446, 1988.
[P] W. Pugh. Incremental computation and the incremental evaluation of functional programming.
Ph.D. Thesis, Cornell University, 1988.
[PT] W.PughandT. Teitelbaum. Incremental computation via function caching. 16th ACM POPL
pp. 315-328, 1989.
[ST] R. Sundar and R. E. Tarjan. Unique binary search tree representation and equality-testing of sets
and sequencePBroc. 22nd ACM STOCpp. 18-25, 1990.

