
Algorithmica (1997) 17: 183–198 Algorithmica
© 1997 Springer-Verlag New York Inc.

Maintaining Dynamic Sequences under Equality Tests
in Polylogarithmic Time1

K. Mehlhorn,2 R. Sundar,3 and C. Uhrig2

Abstract. We present a randomized and a deterministic data structure for maintaining a dynamic family of
sequences under equality tests of pairs of sequences and creations of new sequences by joining or splitting
existing sequences. Both data structures support equality tests inO(1) time. The randomized version supports
new sequence creations inO(log2 n) expected time wheren is the length of the sequence created. The
deterministic solution supports sequence creations inO(logn(logm log∗m+logn)) time for themth operation.

Key Words. Algorithms, Data structures, Derandomization, Randomization, Sequences.

1. Introduction. We present a data structure for maintaining dynamically a familyF
of sequences over a universeU . Lets1, s2 be sequences,aj ∈ U for j = 1, . . . ,n, and let
i be an integer, then the data structure supports the following operations on an initially
empty family of sequences:

• Makesequence(s,a1): Creates the sequences1 = a1.
• Equal(s1, s2): Returns true ifs1 = s2.
• Concatenate(s1, s2, s3): Creates the sequences3 = s1s2 without destroyings1 ands2.
• Split(s1, s2, s3, i): Creates the two new sequencess2 = a1 · · ·ai ands3 = ai+1 · · ·an

without destroyings1 = a1 · · ·an.

We present two solutions: one randomized and one deterministic. The deterministic
solution is essentially a derandomization of the randomized solution. Table 1 lists the
time bounds for themth operation in a sequence of operations. The incremental space
cost is given in Table 2. We usen to denote the total length of all sequences involved in
themth operation.

We use the standard RAM model of computation. In particular, we assume that the
word sizew is at least log max(n,m), that arithmetic on words of lengthw takes constant
time, and that a random bitstring of lengthw can be chosen in constant time. The problem
of maintaining dynamic sequences with equality test arises mainly in the implementation
of high-level programming languages like SETL, where sequences are supported as a
primitive data type and equality tests are allowed.

The best previous deterministic solution is due to Sundar and Tarjan [ST]. They
achieve constant time for the equality test and amortized timeO(

√
n logm+ logm) for

1 This work was supported by the ESPRIT Basic Research Actions Program, under Contract No. 7141 (Project
ALCOM II).
2 Max-Planck-Institut f¨ur Informatik, Im Stadtwald, D-66123 Saarbr¨ucken, Germany.
3 Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, India.

Received November 5, 1994; revised June 15, 1995. Communicated by B. Chazelle.

184 K. Mehlhorn, R. Sundar, and C. Uhrig

Table 1.Time bounds.

Operation Randomized Deterministic

Equal 1 1
Makesequence 1 logm
Concatenate O(log2 n) O(logn(logm log∗m+ logn))
Split O(log2 n) O(logn(logm log∗m+ logn))

an update operation. The amortized space required per update isO(
√

n). Our solution is
exponentially better. Pugh [P] and Pugh and Teitelbaum [PT] gave a randomized solution
for the special case ofrepetition-freesequences (i.e.,ai 6= ai+1 for all i , 1≤ i < n). It
has logarithmic expected running time per operation.

We now give a brief account of our randomized solution. We compute for each
sequencesa unique signaturesig(s) in [0..m3]. This signature is used to perform equality
tests. The signature of a sequences = a1a2 · · ·an with ai 6= ai+1 for all i , 1 ≤ i < n,
is computed as follows (the extension to general sequences is described in Section 3):
First, s is broken into blocks (subsequences) of length at least 2 and expected length
at most logn. Secondly, each block, sayb = ai · · ·aj , is replaced by a single integer
which is computed in a Horner-like scheme by means of a pairing functionp, i.e.,b is
replaced byp(ai , p(ai+1, . . . , p(aj−1,aj)) . . .). Afterward, the same rules are applied
to the shrunken sequence until the sequence has length 1. The depth of nesting in this
recursion isO(logn). Randomization is used to break a sequence into blocks. For each
element of the sequence a random real number is chosen and blocks begin at local
minima. In this way blocks (except maybe the first) have length at least 2. Also the
expected length of the longest block isO(logn) (since the probability that a sequence
of k random real numbers is increasing or decreasing is 2/k!). The update algorithms
only need to manipulate a constant number of blocks in each level of the recursion and
hence spend timeO(logn) in each level. TheO(log2 n) time bound results.

In our deterministic solution we replace the randomized strategy for breaking a se-
quence into blocks by a deterministic one which we exhibit in Section 2. It is based
on an algorithm for three-coloring rooted trees (we consider a sequence to be a rooted
tree) by Goldberget al. [GPS], which is a generalization of the so-calleddeterministic
coin-tossing techniqueof Cole and Vishkin [CV]. We generate blocks of length at most
4 and decide for each indexi whetherai starts a new block by looking only atO(log∗m)
neighbors ofai . The update algorithms have a recursion depth ofO(logn). On each
level they have to manipulate a balanced tree of depthO(logn) spendingO(logn) time.
Furthermore, they have to handleO(log∗m) blocks spendingO(logm) time for each.

This paper is structured as follows. In Section 2 we give randomized and deterministic
rules for decomposing a sequence into blocks, in Section 3 we define a hierarchical

Table 2. Incremental space cost.

Randomized Deterministic

O(log2 n) O(logn(logn+ log∗m))

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 185

representation of sequences based on the block decomposition, and in Section 4 we
show how to realize the various operations.

2. The Block Decomposition. We first give the randomized block decomposition. Let
U be a universe ands = a1 · · ·an with ai ∈ U andai 6= ai+1 for all i, 1 ≤ i ≤ n− 1.
Each elementa ∈ U is assigned a random priorityprio(a) ∈ [0, 1]. We represent these
priorities with sufficiently large finite precision that guarantees that all priorities are
distinct. In Section 4 we show that the expected number of bits in the representation of
a priority is small and that this will not affect the complexity of the operations.

An elementai of s is a local minimum ofs if it has a successor ins and its priority is
a local minimum in the sequenceprio(a1) · · ·prio(an) of priorities corresponding tos.

RANDOMIZED MARKING RULE. Every local minimum is marked.

Then at every marked position (and at position 1) a block starts. It ends just before
the next marked position (the last block ends at positionn).

We next give a deterministic construction to divide a sequence into suitable blocks.
As mentioned above, the underlying algorithm is essentially a sequential version of the
so-calledthree-coloring technique for rooted treesof Goldberget al. [GPS] (which in
turn is a generalization of thedeterministic coin-tossing techniqueof Cole and Vishkin
[CV]) and can be considered as a constructive proof of the following lemma.

LEMMA 1. For every integer N there is a function f: [−1..N − 1]log∗ N+11 → {0, 1}
such that for every sequence a1 · · ·an ∈ [0..N − 1]∗ with ai 6= ai+1 for all i with
1 ≤ i < n the sequence d1 · · ·dn ∈ {0, 1}∗ defined by di := f (ãi−log∗ N−6, . . . , ãi+4),
whereãj = aj for all j with 1≤ j ≤ n andãj = −1 otherwise, satisfies:

1. di + di+1 ≤ 1 for 1≤ i < n,
2. di + di+1+ di+2+ di+3 ≥ 1 for all i , 1≤ i < n− 3,

i.e., among two adjacent di ’s there is at most one1, and among four adjacent di ’s there
is at least one1.

The sequenced1 · · ·dn is used to decompose the sequencea1 · · ·an into blocks ac-
cording to the following rule: Start a new block at indexi = 1 and at every indexi with
di = 1. It is clear that no block has length exceeding 4 and that all but the first and last
block have length at least 2.

In the following subsection we review the three-coloring technique. Lemmas 2 and
3 are due to Goldberget al. [GPS] but Lemma 4 is new. In Section 2.2 we explain the
decomposition rule and show how one can derive Lemma 1 from the coloring algorithm.

2.1. The Three-coloring Algorithm. Let s = a1 · · ·an with ai ∈ [0..N − 1] andai 6=
ai+1. We considers as a linked list (which is a special form of rooted tree). Ak-coloring
of a list is an assignmentC: {a1, . . . ,an} → {0, . . . , k−1}. A valid coloring is a coloring
such that no two adjacent elements have the same color.

186 K. Mehlhorn, R. Sundar, and C. Uhrig

Informally it is done as follows. We first compute a validdlog Ne-coloring. Afterward
we replace the elements in the list by their colors, consider the set of colors to be the
new universe, and iterate the coloring procedure. AfterO(log∗ N) iteration steps we get
a valid six-coloring which we then reduce by a different procedure to a three-coloring
(of course it is easy to compute a valid two-coloring for a list in timeO(n), but for
our purpose the decisions have to be made “locally,” that means the color of an element
must not depend on more than a small neighborhood of the element). The details are as
follows:

Identify eachai (and its color) with its binary representation (which hasdlog Ne
bits). The bits are numbered from zero and thej th bit of the representation of a color
of elementai is denoted byCi (j). The following procedure has as input the sequence
s = a1 · · ·an and computes a six-coloring fors. In each iteration every elementai is
assigned a new color by concatenating the number of the bit, where the old color ofai

differs from the old color ofai−1 and the value of this bit. We useCi to denote the color
of ai andNC denotes the number of used colors.

1. ProcedureSix-Colors(a1 · · ·an: sequence);
2. begin
3. NC ← N;
4. forall i ∈ {1, ..,n} do
5. Ci ← ai ;
6. od;
7. while NC > 6 do
8. C1← C1(0);
9. forall i ∈ {2, . . . ,n} do

10. ji ← min{ j |Ci (j) 6= Ci−1(j)};
11. bi ← Ci (ji);
12. C′i ← 2 ji + bi ;
13. od;
14. NC ← max{Ci |i ∈ {1, ..,n}} + 1;
15. od;
16. end;

LEMMA 2. The procedure Six-Colors produces a valid six-coloring of a list a1 · · ·an

where ai ∈ {0, .., N − 1} for all i , 1≤ i ≤ n, in time O(n log∗ N).

PROOF. First we show that the procedure computes a valid coloring. Note thatC is
valid at the beginning, sinceai 6= ai+1 for all i , 1≤ i ≤ n− 1. Now supposeC is valid
when we enter the while-loop (line 7). Consider two adjacent elementsai andai+1 for
somei, 1 < i < n. In line 12ai+1 chooses some indexj1 such thatCi+1(j1) 6= Ci (j1)
andai chooses some indexj2 such thatCi (j2) 6= Ci−1(j2). The new color ofai+1 is
2 j1+Ci+1(j1) and the new color ofai is 2j2+Ci (j2) (note that in line 12 we concatenate
the number of the least significant bit, where the old color differs from the old color of
ai−1 and the value of this bit). Ifj1 6= j2 the new colors are different and we are done.

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 187

Otherwisej1 = j2 butCi (j1) 6= Ci+1(j1) by the definition ofj1 and again the new colors
are different. Thus at the end of the loop the new coloring is also valid.

Now we give an upper bound on the number of iterations. LetL = dlog Ne andLk

denote the number of bits in the longest representation of a color afterk iterations of the
while-loop. We show thatLk ≤ dlogk Le + 2, if dlogk Le ≥ 2.

For k = 1 we haveL1 ≤ dlog Le + 1.
Now supposeLk−1 ≤ 2dlogk−1 Le + 2, dlogk Le ≥ 2 and thereforedlogk−1 Le ≥ 4.

Then

Lk ≤ dlog Lk−1e + 1(1)

≤ dlog(2 logk−1 L)e + 1(2)

≤ dlogk Le + 2.(3)

Here (1) follows from the fact that in line 10ji ≤ dLk−1e and (2) holds by the
induction hypothesis. After log∗ N + 1 iterations we havedlogk Le = 1 and hence
Lk = 3. Then there are three possible values for the indexj and two possible values
of the bitbi . Therefore, another iteration produces a valid six-coloring and, since each
iteration takes timeO(n), the time bound follows.

We can easily compute a valid three-coloring by the following procedure, which
replaces each colorCi ∈ {3, 4, 5} of an elementai by the smallest color in{0, 1, 2} not
being assigned to one of its neighbors.

1. ProcedureThree-Colors(a1 · · ·an: sequence);
2. begin
3. Six-Colors(a1 · · ·an);
4. C0←∞;
5. Cn+1←∞;
6. for c = 3 to 5 do
7. forall i ∈ {1, . . . ,n} do
8. if Ci = c then
9. Ci ← min{{0, 1, 2} − {Ci−1,Ci+1}};

10. fi;
11. od;
12. od;
13. end;

LEMMA 3. The procedure Three-Colors produces a valid three-coloring of a list a1 · · ·an

where ai ∈ {0, . . . , N − 1} for all i , 1≤ i ≤ n in time O(n log∗ N).

PROOF. In line 3 the procedure computes a valid six-coloring. Then each of the three
iterations of the for-statement (line 6) removes one color and preserves the validity of

188 K. Mehlhorn, R. Sundar, and C. Uhrig

the coloring, since every list element whose color is replaced gets a new color different
from the (unchanged) colors of its two neighbors. Therefore, the three-coloring at the
end of the third iteration is still valid. The running time of lines 7–11 is obviouslyO(n)
and the time bound follows.

2.2. The Decomposition Rule. For any sequencea1 · · ·an we define the sequence
d1 · · ·dn in the following way. We first compute a valid three-coloring by the proce-
dureThree-Colorspresented above and then setdi = 1 iff the color ofai (which is now
considered to be an integer in{0, 1, 2}) is a local maximum in the sequence of colors
anddi = 0 otherwise.

For technical reasons, we define the elementsai with i < 1 or i > n to beempty
elements that have no influence on the computation (in Lemma 1 these elements are
written as−1).

LEMMA 4. Given a sequence a1 · · ·an, the values d1 · · ·dn defined above have the
following properties:

1. di + di+1 ≤ 1 for all i , 1≤ i < n.
2. di + di+1+ di+2+ di+3 ≥ 1 for all i , 1≤ i < n− 3.
3. The value of di only depends on the subsequence ai−log∗ N−6 · · ·ai+4.

PROOF. Property 1 follows from the fact that in a valid coloring any two colors of
consecutive elements are different and thus there are no neighboring local maxima.

For property 2 note that any sequence of four consecutive elements either contains
the color 2 which is always a local maximum or it contains the subsequence 010 where
1 is a local maximum.

We prove property 3 in several steps. First, we prove by induction on the number of
iterations of the while-statement in the procedureSix-Colorsthat for eachai the color
of the valid six-coloring computed only depends on the subsequenceai−log∗ N−2 · · ·ai .
More precisely, we argue that the color ofai after thekth iteration depends on the
subsequenceai−k · · ·ai . (Remember thatk ≤ log∗ N+2 (see Lemma 2).) However, this
is easy to see. Before the first iteration, the color ofai is given byai directly and does
not depend on another element. Now suppose that for eachi , 1≤ i ≤ n, the color ofai

after the(k − 1)th iteration depends on the subsequenceai−k+1 · · ·ai . During the next
iteration each elementai with 1 < i ≤ n is assigned a new color by concatenating the
binary string representation of the lowest index of the bit where the old color (its binary
representation) differs from the old color ofai−1, and the value of this bit. Therefore, the
new color ofai only depends on its old colorCi and the old colorCi−1 of elementai−1.
SinceCi depended onai−k+1 · · ·ai andCi−1 onai−k · · ·ai−1, the new color depends on
ai−k · · ·ai , and the induction step is completed.

Next we argue that for eachai the color computed by the procedureThree-Colorsonly
depends on the subsequenceai−log∗ N−5 · · ·ai+3. This again can be seen by induction on
the number of iterations of the procedure. Before the first iteration, each colorCi depends
on the subsequenceai−log∗ N−2 · · ·ai (as shown above). In each iteration the new color
of an element depends on the old colors of its two neighbors. Since there are only three
iterations, the color ofai in the six-coloring depends on the six-coloring of the elements

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 189

ai−3 · · ·ai+3 and therefore on the elementsai−log∗ N−5 · · ·ai+3. To complete the proof for
property 3 note that the value ofdi is set in dependence on the colorsCi−1, Ci , andCi+1

and therefore of the subsequenceai−log∗ N−6 · · ·ai+4.

PROOF OFLEMMA 1. Now note that by the definition of thedi ’s the existence of the
functions as demanded in Lemma 1 is proven.

DETERMINISTIC MARKING RULE. Every positioni with di = 1 is marked.

As mentioned before, we now decompose the sequence into blocks by starting a new
block at position 1 and at every marked position.

3. A Hierarchical Representation of Sequences. As mentioned in the Introduction
we implement efficient equality tests by assigning unique signatures to sequences. In
this section we explain how this is done and how sequences are represented. A signature
is a small integer. More precisely, afterm operations there is no signature exceedingm3.
Since we maintain a hierarchy of sequences, i.e., signatures are also assigned to blocks
and subsequences of shrunken sequences, we need more thanm signatures.

Each sequences can be uniquely written asal1
1 · · ·aln

n with ai 6= ai+1 for all i ,
1 ≤ i < n, and all l i being positive integers, whereali

i denotes a subsequence ofl i
repetitions of the elementai . Informally, a signature is assigned to a sequences =
al1

1 · · ·aln
n in the following way. Each elementai ∈ U gets a signature (this will be

done by the functionsig(s)). In order to eliminate repetitions, to each powerali
i (for

1≤ i ≤ n) a signature is assigned. Afterward we compute a block decomposition of the
sequencesig(al1

1) · · · sig(aln
n) according to the methods introduced in Section 2. Note that

all neighboring elements in this sequence are different. Then for each block a signature
is computed by repeated application of a pairing function, i.e., pairs of signatures are
encoded by a new signature. The resulting sequence is denoted byshrink(s). Afterward
the whole procedure is applied onshrink(s), the sequence of block encodings (instead
of the original sequence), and this is repeated until the original sequence is reduced to a
single integer, its signature. We now give the details.

Let S be the current set of signatures,S= [0..max sig]. Each element inS encodes
either an element ofU or a pair inS× S or a power inS× N≥2, i.e., S is the disjoint
unionSU ∪SP∪SR and there are injectionsu: SU → U , p: SP → {(a, b);a, b ∈ Sand
a 6= b} andr : SR→ {(a, i);a ∈ Sandi ∈ N, i ≥ 2}. The inverse functionsu, p, andr
are maintained as dictionaries (in the randomized case based on dynamic perfect hashing
and in the deterministic case based on balanced binary trees). In the randomized scheme
every elements ∈ Sthat encodes a power also has a random real priorityprio(s) ∈ [0, 1]
associated with it. For each suchs we only store a finite approximation ofprio(s); the
approximations are long enough to be pairwise distinct. They are chosen in a piecemeal
fashion, i.e., whenever two priorities need to be compared and are found to be equal they
are extended by a random word. Lemma 9 shows that only approximations of logarithmic
length are needed on average.

We now give a constructive definition of the signaturesig(s) of a sequences =

190 K. Mehlhorn, R. Sundar, and C. Uhrig

al1
1 · · ·aln

n with ai 6= ai+1 for all i, 1 ≤ i < n andn ≥ 1. The functionsshrink(s) and
sig(s) which are used in this definition are defined afterward.

The functionsig is defined recursively. In all cases marked by(∗), maxsigis incre-
mented and the corresponding function (r in the definition ofsig, andu and p in the
definition ofsig) is extended.

sig(s) =


sig(a1) if n = 1 andl1 = 1,
r−1((a1, l1)) if n = 1, l1 > 1, and(a1, l1) ∈ range(r),
maxsig+ 1 if n = 1, l1 > 1, and(a1, l1) /∈ range(r), (∗)
sig(shrink(s)) if n > 1.

Next we define the functionshrink(s). Let n > 1, then the functionelpow(s) (elimi-
nate powers) is defined by

elpow(s) = sig(al1
1) · · · sig(aln

n),

i.e., every power is replaced by its signature (which is defined above). We denoteelpow(s)
by g1 · · · gn wheregi = sig(ali

i) for all i , 1 ≤ i ≤ n. Note thatgi 6= gi+1 for all i ,
1 ≤ i < n. Therefore, we can apply the block decomposition introduced in Section 2.
Now let b1 · · ·bk denote the block decomposition ofelpow(s), i.e., eachbi for all i ,
1≤ i ≤ k, is a block. Then we defineshrink(s) by

shrink(s) = sig(b1) · · · sig(bk).

Now note that ifsig is defined for all sequencess = a1 · · ·an with ai 6= ai+1 for all
i , 1≤ i < n (i.e.,s contains no powers), thensig is completely defined.

sig(s) =



a1 if n = 1 anda1 ∈ S,
u−1(a1) if n = 1, a1 ∈ U,

anda1 ∈ range(u),
maxsig+ 1 if n = 1, a1 ∈ U,

anda1 /∈ range(u), (∗)
p−1((sig(a1), sig(a2))) if n = 2 and

(sig(a1), sig(a2)) ∈ range(p),
maxsig+ 1 if n = 2 and(sig(a1), sig(a2))

/∈ range(p), (∗)
sig(a1, sig(a2, . . . , sig(an−1,an) · · ·)) if n > 2.

In order to show the correctness of the operation Equal(s1, s2) we have to prove

LEMMA 5. Let s1, s2 ∈ F . Then s1 = s2 ⇔ sig(s1) = sig(s2).

PROOF. It is easy to see that eachs ∈ S encodes a unique sequence inU ∗ by simply
running the encoding process backward.

We next explain how sequences are stored. As above, lets= al1
1 · · ·aln

n , letelpow(s) =
sig(al1

1) · · · sig(aln
n), let b1 · · ·bk be the sequence of blocks ofelpow(s), and finally let

shrink(s) = sig(b1) · · · sig(bk).

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 191

Then we represent a sequences by a list of sequences̄s = (τ0 · · · τ2t) whereτ0 = s
and for all i , 1 ≤ i ≤ t , τ2i−1 = elpow(τ2i−2) and τ2i = shrink(τ2i−2). Note that
t = O(logn) in both schemes, since blocks (except maybe the first and the last) have
length at least 2 in both schemes.

In order to support the operations we store eachτj as a balanced binary treeTj in
such a way that the symmetric traversal ofTj yieldsτj . Each nodev contains:

• An elementa of τj .
• The size of the subtree rooted atv.
• The length of the block corresponding toa in τj−1.
• The sum of the lengths of the blocks corresponding to the elements stored in the

subtree rooted atv.
• The mark of the elementa if j is odd.

Section 4 explains how this information is used. Eachs̄ is maintained as a linked
list of the roots of the treesTj . F is maintained as a linked list of the heads of these
lists. In the randomized solution the dictionaries are implemented by dynamic perfect
hashing (see [DKM+]) and in the deterministic solution they are maintained as balanced
binary trees. The operations are performed persistently such that none of the sequences
is destroyed (see [DSST] for the details).

4. The Operations. The operationsEqual andMakesequenceare identical in both
cases (randomized and deterministic).

Let s1, s2 be sequences. ThenEqual(s1, s2) can be implemented by returningtrue if
sig(s1) = sig(s2) andfalseotherwise. This obviously needs timeO(1).

For a ∈ U , Makesequence(s,a) creates a single node binary tree representings =
sig(a). Therefore it retrievessig(a) by evaluatingu(a) if a ∈ range(u); otherwise, a new
signature is assigned andu is extended.

This requiresO(logm) time in the deterministic andO(1) time in the randomized
case.

The operationsConcatenateandSplit are more difficult to realize, but the basic idea
is simple. When we concatenates1 ands2 all but theO(1) last blocks ofs1 and all but
some few first blocks (O(log∗m) for the deterministic andO(1) for the randomized
case) ofs2 will also be blocks ofs1s2 since the fact whether an element starts a new
block depends only on a small neighborhood of the element (of sizeO(log∗m) in the
deterministic andO(1) in the randomized case).

4.1. The Randomized Update Operations. We first discuss the operationConcatenate.
The input is the hierarchical representations of sequencess1 and s2 and we need to
compute the hierarchical representation ofs3 = s1s2. The following lemma paves the
way. It states that if we join the suitable trees of the hierarchical representations ofs1

ands2 to perform the concatenation, then for each tree only a small neighborhood of the
concatenation position differs from the correct tree for the hierarchical representation of
s3 (a corresponding statement holds for the reverse operation split). Therefore, for each
tree ofs̄3 only a small middle part has to be recomputed.

192 K. Mehlhorn, R. Sundar, and C. Uhrig

LEMMA 6. Let s1 = a1 · · ·al , s2 = al+1 · · ·an, and s3 = s1s2 be sequences and let
j ≥ 0 be an integer. Let shrinkj (s3) = c1 · · · cr , i.e., c1 . . . cr is the result of applying
the shrink operation j times, and let i be such that ci encodes the subsequence of s3

containing al . Then:

1. c1 · · · ci−5 is a prefix of shrinkj (s1) and|shrinkj (s1)| ≤ i + 5.
2. ci+4 . . . cr is a suffix of shrinkj (s2) and|shrinkj (s2)| ≤ r − i + 7.

PROOF. We use induction onj .
For j = 0 there is nothing to prove sinceshrink0(si) = si for all i , 1 ≤ i ≤ 3. So

assume that the claim holds for somej ≥ 0. We establish the claim forj + 1.
We denoteshrinkj+1(s3) by c′1 · · · c′r ′ , wherec′i ′ encodes the subsequence ofs3 con-

tainingal andelpow(shrinkj (s3)) by g1 · · · gk, wheregz encodes the subsequence ofs3

containingal . By the induction hypothesis we haveshrinkj (s1) = c1 · · · ci−5e1 · · ·ep

andshrinkj (s2) = f1 · · · fqci+4 · · · cr with p,q ≤ 10. Then the subsequence encoded
by g1 · · · gz−6 is a proper prefix of that encoded byc1 · · · ci−5 and the subsequence of
gz+5 · · · gk is a proper suffix of that encoded byci+4 · · · cr . Since the marks are influenced
by at most one predecessor and one successor (by the definition of “local minimum”),
the marks of the sequencesg1 · · · gz−7 andgz+5 · · · gk are identical to those of the cor-
responding elements inelpow(shrinkj (s1)) andelpow(shrinkj (s2)). Since every block
has size at least 2 it follows that the subsequencec′i ′−4 · · · c′i ′+3 encodes the subsequence
of elpow(shrinkj (s3)) containinggz−7 · · · gz+6. Thusc′1 · · · c′i ′−5 exclusively depends on
c1 · · · ci−5 and therefore is a prefix ofshrinkj+1(s1) andc′i ′+4 · · · c′r ′ exclusively depends
onci+4 · · · cr and therefore is a suffix ofshrinkj+1(s2).

Let elpow(shrinkj (s1)) be denoted byg1 · · · gz−6g′1 · · · g′y and shrinkj+1(s1)

by c′1 · · · c′i ′−5e′1 · · ·e′p′ . Note that the sequencec′i ′−4 · · · c′i ′ encodes a sequence
gz−x · · · gz−6 · · · gz and the sequencee′1 · · ·e′p′ encodes a sequencegz−x · · · gz−6g′1 · · · g′y
wherey ≤ p+1.gz−x · · · gz−7 is encoded by at most four elements (thenc′i ′−4 · · · c′i ′−1 =
e′1 · · ·e′4). gz−6g′1 · · · g′y is encoded by at mostd(y+1)/2e = d(p+2)/2e elements. Since
p ≤ 10, p′ ≤ 4+ 6= 10. A similar argument shows thatq′ ≤ 10 and we are done.

Lemma 6 tells us that all but a small middle part ofshrinkj (s3) can be copied
from shrinkj (s1) or shrinkj (s2). The proof of Lemma 6 also gives the recipe for com-
puting the missing part fromshrinkj (s1), shrinkj (s2), andelpow(shrinkj−1(s3)): Let
elpow(shrinkj−1(s3)) = g1 · · · gk and letgz be the element encoding the subsequence of
s3 containingal . The marks of the elementsg1 · · · gz−7 andgz+6 · · · gk are identical to
the corresponding marks inelpow(shrinkj−1(s1)) andelpow(shrinkj−1(s2)). We com-
pute new marks for the elementsgz−6 · · · gz+5. Afterward we can computeshrinkj (s3) by
computing the middle partci−4 · · · ci+3 and copying the other parts fromshrinkj (s1) and
shrinkj (s2). The split operations on the corresponding trees can easily be performed
in O(logn) each: we know the length of those subsequences ofshrinkj−1(s1) and
shrinkj−1(s2), for which we want to copy the encoding subsequences ofshrinkj (s1)

andshrinkj (s2). Note that in every nodev in the treesTshrinkj (s1)
andTshrinkj (s2)

the length
of the block corresponding tov (resp. to its element) as well as the sum of the lengths of
the blocks corresponding to the nodes in the subtree rooted atv are stored. Therefore, it
suffices to visit a single path to split the tree.

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 193

Now the computation of the hierarchical representations̄3 of s3 is easy to understand.
Generally, all operations are performed persistently. This is essentially done by copying
all nodes that are to be changed and then changing these copies. The details of this
technique can be seen in [DSST].

In the following,s1 = a1 · · ·al , s2 = al+1 · · ·an, let s be any sequence,elpow(s) =
g1 · · · gk, andTs is the balanced binary tree fors.

ProcedureRanConcatenate(s1, s2, s3: sequence);

1. ComputeTs3 by joining Ts1 andTs2.
2. ComputeTelpow(s3) by joining Telpow(s1) and Telpow(s2) (in the case that

al = al+1 recompute the corresponding element ofelpow(s3)).
3. Lets= s3, letzbe such thatgz encodes the subsequence ofs3 containing

al and lets̄3 be an empty list.
4. while |s| > 1 do

(a) Appends andelpow(s) at the end of the list̄s3.
(b) Choose (or retrieve) the priorities of the subsequencegz−5 · · · gz+4

of g(s) and compute the marks ofgz−6 · · · gz+4 in Telpow(s)

accordingly.
(c) Assignshrink(s) to s, whereshrink(s) is computed as indicated

above.
(d) ComputeTs. If |s| > 1, then computeTelpow(s) and updatez.

5. Appends at the end ofs̄3.

The complexity of the operationRanConcatenateis given by

LEMMA 7. A RanConcatenate operation requires expected time O(log2 n)and expected
space O(log2 n).

PROOF. Lines 1 and 2 require timeO(logn). Lines 4(c) and 4(d) can also be done in
O(logn) by use of the informations stored in the nodes of the trees (see Section 3). LetL
be the number of bits of precision needed to represent a random priority so that all of the
random priorities will be distinct and letl̄ = dL/we be the maximal number of memory
words needed to represent a priority. Then line 4(b) needs timeO(l̄). In line 4(c) we have
to recompute the signatures ofO(1) blocks. Letl be the maximal length of a block in̄s3.
Then line 4(c) needs timeO(l) to retrieve or create the signatures. Note that priorities are
only assigned to those signatures being elements of a sequenceg(s) (see line 4(b)). Line
4(d) again needs timeO(logn). Thus we spend timeO(logn + l + l̄) per level of the
hierarchy. Since there areO(logn) recursion steps we need timeO(logn(logn+ l + l̄)).

Now we want to compute the expected size of the largest block.

LEMMA 8. E[l] ≤ 2 logn+ 2.

PROOF. Let l ′ be the length of the longest subsequence of increasing priorities in a
sequences. Since every block ofs is a sequence of elements of increasing priorities
followed by a sequence of elements of decreasing priorities it follows thatE[l] ≤ 2E[l ′].

194 K. Mehlhorn, R. Sundar, and C. Uhrig

We estimateE[l ′]. Suppose thats= a1 · · ·ak and let j andt be positive integers.

Pr [[prio(aj) < prio(aj+1) < · · · < prio(aj+t−1)] = 1/t !

and so

Pr [∃ j : prio(aj) < prio(aj+1) < · · · < prio(aj+t−1)] ≤ k/t !

Hence,

E[l ′] ≤ dlogke +
k∑

t=dlogke+1

k/t !

≤ dlogke + 1

and

E[l] ≤ 2dlogke + 2≤ 2dlog |s|e + 2.

Note that the expected number of signatures (and therefore the incremental space
cost) produced by aConcatenateoperation is log2 n. Furthermore, sincen is bounded
by 2m, the expected value ofmaxsigis at mostm3.

Next we compute the expected number of bits for the priorities. Letm be the number
of sequences in the family and letPrio be the set of priorities. Note that on each level of
Concatenateat most 10 priorities are chosen (line 6). Since there are logn levels andn
is bounded by 2m there are at most 10m2 priorities assigned.

LEMMA 9. E[L] ≤ 40dlogme + 11.

PROOF. Letagrbe a shorthand for “Some two prioritiesprio1 andprio2, whereprio1, prio2 ∈
Prio, agree in the firstk bits.” Then

Pr [agr] ≤ |Prio|2/2k+1,

and hence

E[L] ≤ 2dlog |Prio|e +
∞∑

k=2dlog |Prio|e+1

|Prio|2/2k+1 ≤ 2dlog |Prio|e + 1.

Since|Prio| ≤ 10m2 it follows that

E[L] ≤ 40 logm+ 11.

Thus the expected number of bits needed to represent priorities is small enough to
be represented inO(1) words of memory (̄l is a constant) and the complexity of the
operations is not affected by more than a constant. It follows that each recursion step
takes expected timeO(logn) and the lemma is proven.

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 195

Now we turn to the split operation. Lets1 = a1 · · ·an, s2 = a1 · · ·ai , ands3 =
ai+1 · · ·an. Lemma 6 also suggests how to computeshrinkj (s2) and shrinkj (s3) if
shrinkj (s1), elpow(shrinkj−1(s2)), andelpow(shrinkj−1(s3)) are given: Letshrinkj (s1)

be denoted byc1 · · · ck where cz encodes the subsequence ofs1 containingal , let
elpow(shrinkj−1(s2)) be denoted byg1 · · · gp and letelpow(shrinkj−1(s3)) be denoted
byh1 · · · hq. Then choose priorities for the elementsgp−12 · · · gp andh1 · · · h12; compute
the marks forgp−13 · · · gp andh1 · · · h13. Lemma 6 guarantees that now all the informa-
tion required to computeshrinkj (s1) is available.c1 · · · cz−5 is a prefix ofshrinkj (s2),
cz+4 · · · ck is a suffix ofshrinkj (s3), and the missing parts can easily be computed.

In the followings ands′ denote sequences,elpow(s) = g1 · · · gp, andelpow(s′) =
h1 · · · hq.

ProcedureRanSplit(s1, s2, s3: sequence;i : integer);

1. ComputeTs2, Ts3, Telpow(s2), andTelpow(s3).
2. Lets= s2, s′ = s3, and lets̄2 ands̄3 be empty lists.
3. while |s| > 1 do

(a) Choose the priorities of the sequencegp−12 · · · gp if necessary;
compute the marks ofgp−13 · · · gp in Telpow(s) according to the
randomized marking rule.

(b) Appends andelpow(s) at the end of the list̄s2.
(c) Lets= shrink(s), whereshrink(s) is computed as indicated above.
(d) ComputeTs; if |s| > 1 computeTelpow(s).

4. while |s′| > 1 do
(a) Choose the priorities of the sequenceh1 · · · h12 if necessary; com-

pute the marks ofh1 · · · h13 in Telpow(s′) according to the randomized
marking rule.

(b) Appends′ andelpow(s′) at the end of the list̄s3.
(c) Let s′ = shrink(s′), whereshrink(s′) is computed as explained

above.
(d) ComputeTs′ ; if |s′| > 1 computeTelpow(s′).

5. Appends at the end ofs̄2 ands′ at the end ofs̄3.

The complexity of theSplit operation is given by

LEMMA 10. A RanSplit operation requires expected time O(log2 n) and expected space
O(log2 n).

The proof is analogous to that of Lemma 7.

4.2. The Deterministic Update Operations. The deterministic operations are essen-
tially implemented in the same way as the randomized operations. As pointed out above,
the main difference is the computation of the block decomposition. The analogous lemma
to Lemma 6 is the following:

196 K. Mehlhorn, R. Sundar, and C. Uhrig

LEMMA 11. Let s1 = a1 · · ·al , s2 = al+1 · · ·an, and s3 = s1s2 be sequences and let
j ≥ 0 be an integer. Let shrinkj (s3) = c1 · · · cr and let i be such that ci encodes the
subsequence of s3 containing al . Then:

1. c1 · · · ci−8 is a prefix of shrinkj (s1) and|shrinkj (s1)| ≤ i + 7.
2. ci+log∗m3+10 · · · cr is a suffix of shrinkj (s2) and|shrinkj (s2)| ≤ r − i + log∗m3+ 11.

The proof is completely analogous to that of Lemma 6. The computation ofshrink(s3)

is done as follows: we denoteelpow(shrinkj−1(s3)) by g1 · · · gk andgz is the element
encoding the subsequence ofs3 containingal . The marks of the elementsg1 · · · gz−13 and
gz+2 log∗m3+17 · · · gk are identical to the corresponding marks inelpow(shrinkj−1(s1))and
elpow(shrinkj−1(s2)). To compute new marks for the elementsgz−12 · · · gz+2 log∗m3+16

we run the algorithmThree-Colorson the subsequencegz−log∗m3−18 · · · gz+2 log∗m3+20

since at most these elements have influence on the missing marks. Afterward we can
computeshrinkj (s3) by computing the middle partci−7 · · · ci+log∗m3+10 and copying the
other parts fromshrinkj (s1) andshrinkj (s2). Now it is easy to formulate the procedure
DetConcatenate.

In the following lets1 = a1 · · ·al , s2 = al+1 · · ·an, lets be any sequence,elpow(s) =
g1 · · · gk andTs is the balanced binary tree fors.

ProcedureDetConcatenate(s1, s2, s3 : sequence);

1. ComputeTs3 by joining Ts1 andTs2.
2. ComputeTelpow(s3) by joining Telpow(s1) and Telpow(s2) (in the case that

al = al+1 recompute the corresponding element ofelpow(s3)).
3. Let s = s3, let z be such thatgz encodes the subsequence containing

al , and lets̄3 be an empty list.
4. while |s| > 1 do

(a) Appends andelpow(s) at the end of the list̄s3.
(b) RunThree-Colors(gz−log∗m3−18 . . . gz+2 log∗m3+20) and change the

marks ofgz−12 . . . gz+2 log∗m3+16 accordingly.
(c) Assignshrink(s) to s, whereshrink(s) is computed as indicated

above.
(d) ComputeTs. If |s| > 1, then computeTelpow(s) and updatez.

5. Appends at the end ofs̄3.

The complexity of the operationDetConcatenateis given by

LEMMA 12. A DetConcatenate operation requires time O(logn(logm log∗m+ logn))
and space O(logn(logn+ log∗m)).

PROOF. First note that on every level of the hierarchical representation we create at
mostO(log∗m) new signatures and copyO(logn) nodes by performing persistent tree
operations. Thereby, the space bound follows as well as the factmaxsig≤ m3, since
logn is bounded bym.

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 197

Furthermore, lines 1 and 2 require timeO(logn). Computing the new marks (line
4(b)) needs timeO((log∗m)2) (we perform log∗m3 iterations on a sequence of length
about 2 log∗m3; see Lemma 3). Note that we only have to redecompose a subsequence
of length O(log∗m) in line 4(b). For the remaining parts of the sequence we use the
information (and the subtrees) of the hierarchical representations ofs1 ands2. Thus,
when computingshrink(s) (line 4(c)) we need timeO(logm log∗m) to retrieve or create
the signatures (timeO(logm) per dictionary lookup). The building of the trees in line
4(d) is done by split and join operations and needs timeO(logn). Thus we spend time
O(logm log∗m+ logn) per level of the hierarchy. Since there areO(logn) recursion
steps the lemma follows.

In the followings ands′ denote sequences,elpow(s) = g1 · · · gp, andelpow(s′) =
h1 . . . hq.

ProcedureDetSplit(s1, s2, s3: sequence;i : integer);

1. ComputeTs2, Ts3, Telpow(s2) andTelpow(s3).
2. Lets= s2, s′ = s3, and lets̄2, s̄3 be empty lists.
3. while |s| > 1 do

(a) RunThree-Colors(gp−log∗m3−26 . . . gp) and change the marks of
gp−20 · · · gp in Telpow(s) accordingly.

(b) Appends andelpow(s) at the end of the list̄s2.
(c) Let s ← shrink(s), whereshrink(s) is computed as indicated

above.
(d) ComputeTs; if |s| > 1 computeTelpow(s).

4. while |s′| > 1 do
(a) Run Three-Colors(h1 · · · h3 log∗m3+30) and change the marks of

h1 · · · h3 log∗m3+26 in Telpow(s′) accordingly.
(b) Appends′ andelpow(s′) at the end of the list̄s3.
(c) Let s′ ← shrink(s′), whereshrink(s′) is computed as indicated

above.
(d) ComputeTs′ ; if |s′| > 1 computeTelpow(s′).

5. Appends at the end ofs̄2 ands′ at the end ofs̄3.

The complexity of theDetSplitoperation is given by

LEMMA 13. A DetSplit operation requires time O(logn(logm log∗m + logn)) and
space O(logn(logn+ log∗m)).

The proof is analogous to that of Lemma 12.

References

[CV] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel list ranking.
Inform. and Control, 70:32–53, 1986.

198 K. Mehlhorn, R. Sundar, and C. Uhrig

[DKM+] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heyde, H. Rohnert, and R. E. Tarjan.
Dynamic perfect hashing: Upper and lower bounds.Proc. 29th IEEE FOCS, pp. 524–531, 1988.

[DSST] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persistent.
J. Comput. System Sci., 38:86–124, 1989.

[GPS] A. V. Goldberg, S. A. Plotkin, and G. E. Shannon Parallel symmetry-breaking in sparse graphs.
SIAM J. Discrete Math., 1(4):434–446, 1988.

[P] W. Pugh. Incremental computation and the incremental evaluation of functional programming.
Ph.D. Thesis, Cornell University, 1988.

[PT] W. Pugh and T. Teitelbaum. Incremental computation via function caching.Proc. 16th ACM POPL,
pp. 315–328, 1989.

[ST] R. Sundar and R. E. Tarjan. Unique binary search tree representation and equality-testing of sets
and sequences.Proc. 22nd ACM STOC, pp. 18–25, 1990.

