Some Remarks on Boolean Sums*

Kurt Mehlhorn

Fachbereich 10 – Angewandte Mathematik und Informatik, Universität des Saarlandes,
D-6600 Saarbrücken, Germany (Fed. Rep.)

Summary. Neciporuk, Lamagna/Savage and Tarjan determined the monotone network complexity of a set of Boolean sums if any two sums have at most one variable in common. Wegener then solved the case that any two sums have at most k variables in common. We extend his methods and results and consider the case that any set of $h+1$ distinct sums have at most k variables in common. We use our general results to explicitly construct a set of n Boolean sums over n variables whose monotone complexity is of order $n^{5/3}$. The best previously known bound was of order $n^{3/2}$. Related results were obtained independently by Pippenger.

1. Introduction, Notations and Results

We consider the monotone network complexity of sets of Boolean sums $f = (f_1, \ldots, f_m): \{0, 1\}^n \rightarrow \{0, 1\}^m$ with

$$f_i = \bigvee_{j \in F_i} x_j \quad \text{and} \quad F_i \subseteq \{1, \ldots, n\}.$$

Sets of Boolean sums were also considered by Neciporuk, Lamagna/Savage, Tarjan, Wegener and Pippenger.

$C_B(f)$ denotes the network complexity of f over the basis B; we will consider $B = \{ \lor \}$ and $B = \{ \lor, \land \}$. A set of Boolean sums is called (h, k)-disjoint if for all pairwise distinct $i_0, i_1, i_2, \ldots, i_h$: $|F_{i_0} \cap F_{i_1} \cap \ldots \cap F_{i_h}| \leq k$. It is possible to represent a set of Boolean sums $f: \{0, 1\}^n \rightarrow \{0, 1\}^m$ by a bipartite graph with inputs $\{x_1, \ldots, x_n\}$ and outputs $\{f_1, \ldots, f_m\}$. The edge (x_j, f_i) is present if and only if $j \in F_i$. Then (h, k)-disjointness is equivalent to saying that the associated bipartite graph does not contain $K_{k+1,k+1}$ (= complete bipartite graph with $k+1$ inputs and $h+1$ outputs).

* This paper was presented at the MFCS 79 Symposium, Olomouc, Sept. 79
Theorem 1. Let \(f: \{0, 1\}^n \to \{0, 1\}^m \) be a \((h, k)\)-disjoint set of Boolean sums. Then
\[
C_{\lor, \land}(f) \geq \sum_{i=1}^{m} (|F_i|/k-1)/h \cdot \max(1, h-1)
\]

Neciporuk, Lamagna/Savage, Tarjan proved the theorem in the case \(h=1=k \). Wegener extended their results to the case \(h=1 \) and arbitrary \(k \). The first three authors used their result to explicitly construct sets of \(n \) Boolean sums over \(n \) variables whose monotone network complexity is \(\Omega(n^{3/2}) \).

We explicitly construct sets of Boolean sums
\[
f: \{0, 1\}^n \to \{0, 1\}^m
\]
such that \(C_{\lor, \land}(f) = \Omega(n^{5/3}) \). This result was independently obtained by Pippenger.

2. Proofs

Our proof of Theorem 1 is based on two Lemmas. In these Lemmas we will make use of complexity measure \(C^*_B \). \(C^*_B(f) \) is the network complexity of \(f \) over the basis \(B \) under the assumption that all sums \(\bigvee_{x_j} \) with \(|F| \leq k \) are given for free, i.e. the sums \(\bigvee_{x_j} \) can be used as additional inputs.

Measure \(C^*_B \) was introduced by Wegener.

Lemma 1. Let \(f: \{0, 1\}^n \to \{0, 1\}^m \) be a \((h, k)\)-disjoint set of Boolean sums. Then
\[
a) \quad C^*_B(f) \leq \max \{1, h-1\} \cdot C_{\lor, \land}(f), \\
b) \quad C_{\lor, \land}(f) \leq \max \{1, h-1, k-1\} \cdot C_{\lor, \land}(f).
\]

Proof. a) Let \(N \) be an optimal \(*\)-network for \(f \) over the basis \(\{\lor, \land\} \). Then \(N \) contains \(s \lor \)-gates and \(t \land \)-gates, \(s + t = C^*_B(f) \).

For \(i=0, 1, \ldots, t \) we show the existence of a \(*\)-network \(N_i \) for \(f \) with \(\leq t-i \land \)-gates and \(\leq s + (h-1) \cdot i \lor \)-gates.

We have \(N_0 = N \). Suppose now \(N_i \) exists. If \(N_i \) does not contain an \(\land \)-gate then we are done. Otherwise let \(G \) be a last \(\land \)-gate in topological order, i.e. between \(G \) and the outputs there are no other \(\land \)-gates. Let \(g \) be the function computed by \(G \), \(g_1 \) and \(g_2 \) the functions at the input lines of \(G \). Then
\[
g = s_1 \lor \ldots \lor s_p \lor t_1 \lor \ldots \lor t_q,
\]
where \(s_i \) is a variable and \(t_j \) is of length at least 2, is the monotone disjunctive normal form of \(g \).

Case 1: \(p \leq k \). The sum \(s_1 \lor \ldots \lor s_p \) comes for free. By Theorem I of Mehlhorn/Galil \(g \) may be replaced by \(s_1 \lor \ldots \lor s_p \) and an equivalent circuit is obtained.
This shows the existence of network N_{i+1} with $\leq t - i - 1$ \land-gates and $\leq s + (h - 1)(i + 1)$ \lor-gates.

Case 2: $p > k$. There are some outputs, say f_1, f_2, \ldots, f_l, depending on G. Between G and the output f_j there are only \lor-gates and hence $f_j = g \lor u_j$. Since f_j is a boolean sum, u_j is not the constant 1. Hence $\{s_1, \ldots, s_p\} \subseteq F_j$ for $j = 1, \ldots, l$. Since f is (h, k)-disjoint we conclude $l \leq h$.

Claim. For every j, $1 \leq j \leq l$: either $f_j = g_1 \lor u_j$ or $f_j = g_2 \lor u_j$.

Proof. Since $g = g_1 \land g_2$ and $f_j = g \lor u_j$ we certainly have $f_j \leq g_1 \lor u_j$ and $f_j \leq g_2 \lor u_j$. Suppose both inequalities are proper. Then there are assignments $\alpha_1, \alpha_2 \in \{0, 1\}^n$ with $f_j(\alpha_1) = 0 < 1 = (g_1 \lor u_j)(\alpha_1)$ and $f_j(\alpha_2) = 0 < 1 = (g_2 \lor u_j)(\alpha_2)$.

Let $\alpha = \max(\alpha_1, \alpha_2)$. Since f_j is a boolean sum $f_j(\alpha) = 0$ and since $g_1 \lor u_j$ and $g_2 \lor u_j$ are monotone $(g_1 \lor u_j)(\alpha) = (g_2 \lor u_j)(\alpha) = 1$. Hence either $u_j(\alpha) = 1$ or $g_1(\alpha) = g_2(\alpha) = 1$ and hence $g(\alpha) = 1$. In either case we conclude $f_j(\alpha) = (g \lor u_j)(\alpha) = 1$.

Contradition. \(\square\)

We obtain circuit N_{i+1} equivalent to N_i as follows.

1) Replace g by the constant 0. This eliminates \land-gate G and at least one \lor-gate. After this replacement the output line corresponding to f_j, $1 \leq j \leq l$, realizes function u_j.

2) For every output f_j, $1 \leq j \leq l$, we use one \lor-gate to sum u_j and g_1 (resp. g_2). This adds $l \leq h$ \lor-gates.

Circuit N_{i+1} has $\leq s + (h - 1)(i + 1)$ \lor-gates and $\leq t - i - 1$ \land-gates.

In either case we showed the existence of $*$-network N_{i+1}. Hence there exists a $*$-network realizing f and containing at most $s + (h - 1) \cdot t \leq \max\{1, h - 1\} \cdot (s + t)$ \lor-gates and no \land-gates. This ends the proof of part a.

b) In order to prove b) we only have to observe that in case 1) above (i.e. $p \leq k$) we can explicitly compute $s_1 \lor \ldots \lor s_p$ using at most $k - 1$ \lor-gates. Hence N_{i+1} contains at most $(k - 1)$ additional \lor-gates. \(\square\)

Lemma 1 has several interesting consequences. Firstly it shows that \land-gates can reduce the monotone network complexity of sets of (h, k)-disjoint Boolean sums by at most a constant factor. Secondly, the proof of Lemma 1 shows that optimal circuits for $(1, 1)$-disjoint sums use no \land-gates and that there is always an optimal monotone circuit for $(2, 2)$-disjoint sums without any \land-gates.

Lemma 2. Let $f: \{0, 1\}^n \rightarrow \{0, 1\}^m$ be a (h, k)-disjoint set of Boolean sums. Then

$$C_\lor(f) \geq C_\lor^*(f) \geq \sum_{i=1}^m \binom{|F_i|}{|F_i|/k^\land - 1}/h.$$

Proof. Let S be an optimal $*$-network over the basis $B = \{\lor\}$. Since $f_i = \lor_{j \in F_i} x_j$ and input lines represent sums of at most k variables output f_i is connected to at least $|F_i|/k^\land$ inputs.

Let G be any gate in S. Since S is optimal G realizes a sum of $>k$ variables
and hence at most \(h \) outputs \(f_i \) depend on \(G \) (cf. the discussion of case 2 in the proof of Lemma 1).

For every gate \(G \) let \(n(G) \) be the number of outputs \(f_i \) depending on \(G \). Then \(n(G) \leq h \) and hence

\[
\sum_{G \in S} n(G) \leq h \cdot C_{v,\lambda}^*(f).
\]

Next consider the set of all gates \(H \) connected to output \(f_i \), \(1 \leq i \leq m \). This subcircuit must contain a binary tree with \(\lceil |F_i|/k^3 \rceil \) leaves, (corresponding to the input lines connected to \(f_i \)) and hence contains at least \(\lceil |F_i|/k^3 \rceil - 1 \) gates. This shows

\[
\sum_{G \in S} n(G) = \sum_{i=1}^{m} \text{number of gates connected to output } f_i
\geq \sum_{i=1}^{m} \left(\lceil |F_i|/k^3 \rceil - 1 \right).
\]

\[\square\]

Wegener proved Lemmas 1 and 2 for the case \(h = 1 \). This special case is considerably simpler to prove. Pippenger proved Lemma 2 by a more complicated graph-theoretic approach.

Theorem 1 is now an immediate consequence of Lemmas 1 and 2. Namely,

\[
C_{v,\lambda}(f) \geq C_{v,\lambda}^*(f) \geq C_{v,\lambda}^*(f)/\max(1, h-1) \geq \sum_{i=1}^{m} (|F_i|/k-1)/h \cdot \max(1, h-1)
\]

by definition of \(C_{v,\lambda}^* \), by Lemma 1a, and by Lemma 2.

3. Explicit Construction of a "Hard" Set of Boolean Sums

Brown exhibited bipartite graphs with \(n \) inputs and outputs, \(\Omega(n^{5/3}) \) edges, and containing no \(K_{3,3} \).

His construction is as follows. Let \(p \) be an odd prime and let \(d \) be a non-zero element of \(GF(p) \) (the field of integers modulo \(p \)), such that \(d \) is a quadratic non-residue modulo \(p \) if \(p \equiv 1 \mod 4 \), and a quadratic residue modulo \(p \) if \(p \equiv 3 \mod 4 \). Let \(H \) be a bipartite graph with \(n = p^3 \) inputs and outputs. The inputs (and outputs) are the triples \((a_1, a_2, a_3) \) with \(a_1, a_2, a_3 \in GF(p) \). Input \((a_1, a_2, a_3) \) is connected to output \((b_1, b_2, b_3) \) if

\[(a_1 - b_1)^2 + (a_2 - b_2)^2 + (a_3 - b_3)^3 = d \mod p.
\]

Brown has shown that bipartite graph \(H \) has \(p^4(p-1) \) edges and that it contains no copy of \(K_{3,3} \).

By the remark in the introduction a bipartite graph corresponds in a natural way to a set of boolean sums. Here we obtain a set of boolean sums over \(\{x_1, \ldots, x_n\} \) with \(\sum_{i=1}^{n} |F_i| = \Omega(n^{5/3}) \).
Furthermore, this set of boolean sums is (2,2)-disjoint. Theorem 1 implies that the monotone complexity of this set of boolean sums is $\Omega(n^{5/3})$.

References

Wegener, I.: A new lower bound on the monotone network complexity of boolean sums, Preprint, Dept. of Mathematics, University of Bielefeld, 1978

Received November 1978 / Revised April 24, 1979