

Contents

0.1	Rewrite Systems and Properties	3
	0.1.1 Lifting of Rewrite Rules	3
	0.1.2 Consistency Preservation	5
	0.1.3 Full Lifting	6
0.2	Transformation testing	7
	0.2.1 Definition and first Properties	7
	0.2.2 Invariant conservation	10
0.3	Rewrite Rules	13
	0.3.1 Elimination of the Equivalences	13
	0.3.2 Eliminate Implication	14
	0.3.3 Eliminate all the True and False in the formula	16
	0.3.4 PushNeg	22
	0.3.5 Push Inside	27
0.4	The Full Transformations	41
	0.4.1 Abstract Definition	41
	0.4.2 Conjunctive Normal Form	43
	0.4.3 Disjunctive Normal Form	44
0.5		45
		45
	0.5.2 More invariants	47
	0.5.3 The new CNF and DNF transformation	51
0.6	Link with Multiset Version	52
	0.6.1 Transformation to Multiset	52
	0.6.2 Equisatisfiability of the two Versions	52
	${\it Prop-Abstract-Transformation}$	
imports	s Entailment-Definition. Prop-Logic Weidenbach-Book-Base. Wellfounded-More	

begin

This file is devoted to abstract properties of the transformations, like consistency preservation and lifting from terms to proposition.

0.1 Rewrite Systems and Properties

0.1.1 Lifting of Rewrite Rules

We can lift a rewrite relation r over a full formula: the relation r works on terms, while propo-rew-step works on formulas.

```
inductive propo-rew-step :: ('v propo \Rightarrow 'v propo \Rightarrow bool) \Rightarrow 'v propo \Rightarrow 'v propo \Rightarrow bool for r :: 'v propo \Rightarrow 'v propo \Rightarrow bool where
```

```
global-rel: r \varphi \psi \Longrightarrow propo-rew-step r \varphi \psi \mid
propo-rew-one-step-lift: propo-rew-step r \varphi \varphi' \Longrightarrow wf-conn c (\psi s @ \varphi \# \psi s')
\Longrightarrow propo-rew-step r (conn \ c (\psi s @ \varphi \# \psi s')) (conn \ c (\psi s @ \varphi' \# \psi s'))
```

Here is a more precise link between the lifting and the subformulas: if a rewriting takes place between φ and φ' , then there are two subformulas ψ in φ and ψ' in φ' , ψ' is the result of the rewriting of r on ψ .

This lemma is only a health condition:

```
lemma propo-rew-step-subformula-imp:

shows propo-rew-step r \varphi \varphi' \Longrightarrow \exists \psi \psi'. \psi \preceq \varphi \wedge \psi' \preceq \varphi' \wedge r \psi \psi'

apply (induct rule: propo-rew-step.induct)

using subformula.simps subformula-into-subformula apply blast

using wf-conn-no-arity-change subformula-into-subformula wf-conn-no-arity-change-helper

in-set-conv-decomp by metis
```

The converse is moreover true: if there is a ψ and ψ' , then every formula φ containing ψ , can be rewritten into a formula φ' , such that it contains φ' .

```
{f lemma} propo-rew-step-subformula-rec:
 fixes \psi \ \psi' \ \varphi :: \ 'v \ propo
  shows \psi \preceq \varphi \Longrightarrow r \psi \psi' \Longrightarrow (\exists \varphi'. \psi' \preceq \varphi' \land propo-rew-step \ r \varphi \varphi')
proof (induct \varphi rule: subformula.induct)
  case subformula-refl
  then have propo-rew-step r \psi \psi' using propo-rew-step.intros by auto
 moreover have \psi' \leq \psi' using Prop-Logic.subformula-reft by auto
  ultimately show \exists \varphi'. \psi' \preceq \varphi' \land propo-rew-step \ r \ \psi \ \varphi' by fastforce
next
  case (subformula-into-subformula \psi'' l c)
 note IH = this(4) and r = this(5) and \psi'' = this(1) and wf = this(2) and incl = this(3)
  then obtain \varphi' where *: \psi' \preceq \varphi' \land propo-rew-step \ r \ \psi'' \ \varphi' by metis
  moreover obtain \xi \xi' :: 'v \ propo \ list \ where
    l: l = \xi @ \psi'' \# \xi'  using List.split-list \psi''  by metis
  ultimately have propo-rew-step r (conn c l) (conn c (\xi @ \varphi' \# \xi'))
    using propo-rew-step.intros(2) wf by metis
  moreover have \psi' \leq conn \ c \ (\xi @ \varphi' \# \xi')
    using \ wf * wf-conn-no-arity-change \ Prop-Logic.subformula-into-subformula
    by (metis (no-types) in-set-conv-decomp l wf-conn-no-arity-change-helper)
  ultimately show \exists \varphi' . \psi' \preceq \varphi' \land propo-rew-step \ r \ (conn \ c \ l) \ \varphi' by metis
qed
lemma propo-rew-step-subformula:
  (\exists \psi \ \psi'. \ \psi \preceq \varphi \land r \ \psi \ \psi') \longleftrightarrow (\exists \varphi'. \ propo-rew-step \ r \ \varphi \ \varphi')
 using propo-rew-step-subformula-imp propo-rew-step-subformula-rec by metis+
lemma consistency-decompose-into-list:
  assumes wf: wf-conn c l and wf': wf-conn c l'
 and same: \forall n. A \models l! n \longleftrightarrow (A \models l'! n)
 \mathbf{shows}\ A \models conn\ c\ l \longleftrightarrow A \models conn\ c\ l'
proof (cases c rule: connective-cases-arity-2)
  case nullary
  then show (A \models conn \ c \ l) \longleftrightarrow (A \models conn \ c \ l') using wf wf' by auto
next
  case unary note c = this
  then obtain a where l: l = [a] using wf-conn-Not-decomp wf by metis
  obtain a' where l': l' = [a'] using wf-conn-Not-decomp wf' c by metis
```

```
have A \models a \longleftrightarrow A \models a' using l \ l' by (metis nth-Cons-0 same)
  then show A \models conn \ c \ l \longleftrightarrow A \models conn \ c \ l' \ using \ l \ l' \ c \ by \ auto
  case binary note c = this
  then obtain a b where l: l = [a, b]
    using wf-conn-bin-list-length list-length2-decomp wf by metis
  obtain a' b' where l': l' = [a', b']
    using wf-conn-bin-list-length list-length2-decomp wf' c by metis
  have p: A \models a \longleftrightarrow A \models a' A \models b \longleftrightarrow A \models b'
    using l \ l' same by (metis diff-Suc-1 nth-Cons' nat.distinct(2))+
  \mathbf{show}\ A \models conn\ c\ l \longleftrightarrow A \models conn\ c\ l'
    using wf c p unfolding binary-connectives-def l l' by auto
Relation between propo-rew-step and the rewriting we have seen before: propo-rew-step r \varphi \varphi'
means that we rewrite \psi inside \varphi (ie at a path p) into \psi'.
lemma propo-rew-step-rewrite:
  fixes \varphi \varphi' :: 'v \ propo \ and \ r :: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool
  assumes propo-rew-step r \varphi \varphi'
  shows \exists \psi \ \psi' \ p. \ r \ \psi \ \psi' \land path-to \ p \ \varphi \ \psi \land replace-at \ p \ \varphi \ \psi' = \varphi'
  using assms
proof (induct rule: propo-rew-step.induct)
  \mathbf{case}(\mathit{global}\text{-}\mathit{rel}\ \varphi\ \psi)
  moreover have path-to [ \varphi \varphi \text{ by } auto ]
  moreover have replace-at [ \varphi \psi = \psi \text{ by } auto ]
  ultimately show ?case by metis
next
  case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi') note rel = this(1) and IH0 = this(2) and corr = this(3)
  obtain \psi \psi' p where IH: r \psi \psi' \wedge path-to p \varphi \psi \wedge replace-at p \varphi \psi' = \varphi' using IH0 by metis
  {
     \mathbf{fix} \ x :: \ 'v
     assume c = CT \lor c = CF \lor c = CVar x
     then have False using corr by auto
     then have \exists \psi \ \psi' \ p. \ r \ \psi \ \psi' \land path-to \ p \ (conn \ c \ (\xi@ \ (\varphi \# \xi'))) \ \psi
                        \land replace-at p (conn c (\xi@ (\varphi \# \xi'))) \psi' = conn \ c (\xi@ (\varphi' \# \xi'))
       by fast
  }
  moreover {
     assume c: c = CNot
     then have empty: \xi = [\xi' = [using \ corr \ by \ auto]]
     have path-to (L\#p) (conn c (\xi@ (\varphi \# \xi'))) \psi
       \mathbf{using}\ c\ empty\ IH\ wf\text{-}conn\text{-}unary\ path\text{-}to\text{-}l\ \mathbf{by}\ fastforce
     moreover have replace-at (L\#p) (conn c (\xi @ (\varphi \# \xi'))) \psi' = conn \ c (\xi @ (\varphi' \# \xi'))
       using c empty IH by auto
     ultimately have \exists \psi \ \psi' \ p. \ r \ \psi \ \psi' \land path-to \ p \ (conn \ c \ (\xi@ \ (\varphi \ \# \ \xi'))) \ \psi
                                 \land replace-at p (conn c (\xi @ (\varphi \# \xi'))) \psi' = conn \ c \ (\xi @ (\varphi' \# \xi'))
     using IH by metis
  moreover {
     assume c: c \in binary\text{-}connectives
     have length (\xi @ \varphi \# \xi') = 2 using wf-conn-bin-list-length corr c by metis
     then have length \xi + length \ \xi' = 1 by auto
     then have ld: (length \xi = 1 \land length \ \xi' = 0) \lor (length \xi = 0 \land length \ \xi' = 1) by arith
     obtain a b where ab: (\xi=[] \land \xi'=[b]) \lor (\xi=[a] \land \xi'=[])
```

```
using ld by (case-tac \xi, case-tac \xi', auto)
     {
        assume \varphi: \xi = [] \land \xi' = [b]
       have path-to (L\#p) (conn c (\xi@ (\varphi \# \xi'))) \psi
          using \varphi c IH ab corr by (simp add: path-to-l)
        moreover have replace-at (L \# p) (conn c (\xi @ (\varphi \# \xi'))) \psi' = conn c (\xi @ (\varphi' \# \xi'))
          using c IH ab \varphi unfolding binary-connectives-def by auto
        ultimately have \exists \psi \ \psi' \ p. \ r \ \psi \ \psi' \land path-to \ p \ (conn \ c \ (\xi@ \ (\varphi \ \# \ \xi'))) \ \psi
          \land replace-at p (conn c (\xi @ (\varphi \# \xi'))) \psi' = conn \ c \ (\xi @ (\varphi' \# \xi'))
          using IH by metis
     }
    moreover {
        assume \varphi: \xi = [a] \quad \xi' = []
       then have path-to (R \# p) (conn c (\xi @ (\varphi \# \xi'))) \psi
          using c IH corr path-to-r corr \varphi by (simp add: path-to-r)
       moreover have replace-at (R \# p) (conn c (\xi @ (\varphi \# \xi'))) \psi' = conn c (\xi @ (\varphi' \# \xi'))
          using c IH ab \varphi unfolding binary-connectives-def by auto
        ultimately have ?case using IH by metis
     }
     ultimately have ?case using ab by blast
  ultimately show ?case using connective-cases-arity by blast
qed
0.1.2
           Consistency Preservation
We define preserve-models: it means that a relation preserves consistency.
definition preserve-models where
preserve-models r \longleftrightarrow (\forall \varphi \psi. \ r \ \varphi \psi \longrightarrow (\forall A. \ A \models \varphi \longleftrightarrow A \models \psi))
\mathbf{lemma}\ propo-rew-step-preservers-val-explicit\colon
propo-rew-step r \varphi \psi \Longrightarrow preserve-models r \Longrightarrow propo-rew-step r \varphi \psi \Longrightarrow (\forall A. \ A \models \varphi \longleftrightarrow A \models \psi)
  unfolding preserve-models-def
proof (induction rule: propo-rew-step.induct)
  case global-rel
  then show ?case by simp
  case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi') note rel = this(1) and wf = this(2)
    and IH = this(3)[OF\ this(4)\ this(1)] and consistent = this(4)
  {
    \mathbf{fix} \ A
    from IH have \forall n. (A \models (\xi @ \varphi \# \xi') ! n) = (A \models (\xi @ \varphi' \# \xi') ! n)
      by (metis (mono-tags, opaque-lifting) list-update-length nth-Cons-0 nth-append-length-plus
        nth-list-update-neg)
    then have (A \models conn \ c \ (\xi @ \varphi \# \xi')) = (A \models conn \ c \ (\xi @ \varphi' \# \xi'))
      by (meson consistency-decompose-into-list wf wf-conn-no-arity-change-helper
        wf-conn-no-arity-change)
 then show \forall A. A \models conn \ c \ (\xi @ \varphi \# \xi') \longleftrightarrow A \models conn \ c \ (\xi @ \varphi' \# \xi') by auto
qed
lemma propo-rew-step-preservers-val':
 assumes preserve-models r
```

```
shows preserve-models (propo-rew-step r)
using assms by (simp add: preserve-models-def propo-rew-step-preservers-val-explicit)

lemma preserve-models-OO[intro]:
preserve-models f \Longrightarrow preserve-models g \Longrightarrow preserve-models (f OO g)
unfolding preserve-models-def by auto

lemma star-consistency-preservation-explicit:
assumes (propo-rew-step r) ^*** \varphi \ \psi and preserve-models r
shows \forall A. \ A \models \varphi \longleftrightarrow A \models \psi
using assms by (induct rule: rtranclp-induct)
(auto simp add: propo-rew-step-preservers-val-explicit)

lemma star-consistency-preservation:
preserve-models r \Longrightarrow preserve-models (propo-rew-step r) ^***
by (simp add: star-consistency-preservation-explicit preserve-models-def)
```

0.1.3 Full Lifting

In the previous a relation was lifted to a formula, now we define the relation such it is applied as long as possible. The definition is thus simply: it can be derived and nothing more can be derived.

```
lemma full-ropo-rew-step-preservers-val[simp]: preserve-models r \Longrightarrow preserve-models (full (propo-rew-step r)) by (metis full-def preserve-models-def star-consistency-preservation) lemma full-propo-rew-step-subformula: full (propo-rew-step r) \varphi' \varphi \Longrightarrow \neg (\exists \ \psi \ \psi'. \ \psi \preceq \varphi \land r \ \psi \ \psi') unfolding full-def using propo-rew-step-subformula-rec by metis
```

0.2 Transformation testing

0.2.1 Definition and first Properties

To prove correctness of our transformation, we create a *all-subformula-st* predicate. It tests recursively all subformulas. At each step, the actual formula is tested. The aim of this *test-symb* function is to test locally some properties of the formulas (i.e. at the level of the connective or at first level). This allows a clause description between the rewrite relation and the *test-symb*

```
definition all-subformula-st :: ('a propo \Rightarrow bool) \Rightarrow 'a propo \Rightarrow bool where all-subformula-st test-symb \varphi \equiv \forall \psi. \ \psi \prec \varphi \longrightarrow test-symb \psi
```

```
lemma test-symb-imp-all-subformula-st[simp]:
test-symb FT \implies all-subformula-st test-symb FF
test-symb FF \implies all-subformula-st test-symb FF
test-symb (FVar\ x) \implies all-subformula-st test-symb (FVar\ x)
unfolding all-subformula-st-def using subformula-leaf by metis+
lemma all-subformula-st-test-symb-true-phi:
all-subformula-st test-symb \varphi \implies test-symb \varphi
```

unfolding all-subformula-st-def by auto

```
lemma all-subformula-st-decomp-imp:
  wf-conn c \ l \Longrightarrow (test-symb (conn \ c \ l) \land (\forall \varphi \in set \ l. \ all-subformula-st test-symb (\varphi)
  \implies all-subformula-st test-symb (conn c l)
  unfolding all-subformula-st-def by auto
To ease the finding of proofs, we give some explicit theorem about the decomposition.
\mathbf{lemma}\ \mathit{all-subformula-st-decomp-rec}:
  all-subformula-st test-symb (conn c l) \Longrightarrow wf-conn c l
    \implies (test\text{-}symb\ (conn\ c\ l) \land (\forall \varphi \in set\ l.\ all\text{-}subformula\text{-}st\ test\text{-}symb\ \varphi))
  unfolding all-subformula-st-def by auto
{f lemma}\ all\text{-}subformula\text{-}st\text{-}decomp:
  fixes c :: 'v \ connective \ and \ l :: 'v \ propo \ list
  assumes wf-conn c l
  shows all-subformula-st test-symb (conn c l)
    \longleftrightarrow (test-symb (conn c l) \land (\forall \varphi \in set \ l. \ all-subformula-st test-symb \varphi))
  using assms all-subformula-st-decomp-rec all-subformula-st-decomp-imp by metis
lemma helper-fact: c \in binary-connectives \longleftrightarrow (c = COr \lor c = CAnd \lor c = CEq \lor c = CImp)
  unfolding binary-connectives-def by auto
lemma all-subformula-st-decomp-explicit[simp]:
  fixes \varphi \psi :: 'v \ propo
  shows all-subformula-st test-symb (FAnd \varphi \psi)
      \longleftrightarrow (test-symb (FAnd \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
  and all-subformula-st test-symb (FOr \varphi \psi)
     \longleftrightarrow (test-symb (FOr \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
  and all-subformula-st test-symb (FNot \varphi)
     \longleftrightarrow (test\text{-}symb\ (FNot\ \varphi) \land all\text{-}subformula\text{-}st\ test\text{-}symb\ \varphi)
  and all-subformula-st test-symb (FEq \varphi \psi)
     \longleftrightarrow (test-symb (FEq \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
  and all-subformula-st test-symb (FImp \varphi \psi)
     \longleftrightarrow (test-symb (FImp \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
proof -
  have all-subformula-st test-symb (FAnd \varphi \psi) \longleftrightarrow all-subformula-st test-symb (conn CAnd [\varphi, \psi])
    by auto
  moreover have ... \longleftrightarrow test-symb (conn CAnd [\varphi, \psi])\land(\forall \xi \in set [\varphi, \psi]. all-subformula-st test-symb
\xi)
    using all-subformula-st-decomp wf-conn-helper-facts (5) by metis
  finally show all-subformula-st test-symb (FAnd \varphi \psi)
    \longleftrightarrow (test-symb (FAnd \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
    by simp
  have all-subformula-st test-symb (FOr \varphi \psi) \longleftrightarrow all-subformula-st test-symb (conn COr [\varphi, \psi])
  moreover have \ldots \longleftrightarrow
    (test\text{-}symb\ (conn\ COr\ [\varphi,\psi]) \land (\forall \xi \in set\ [\varphi,\psi].\ all\text{-}subformula\text{-}st\ test\text{-}symb\ \xi))
    using all-subformula-st-decomp wf-conn-helper-facts (6) by metis
  finally show all-subformula-st test-symb (FOr \varphi \psi)
    \longleftrightarrow (test-symb (FOr \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
    by simp
  have all-subformula-st test-symb (FEq \varphi \psi) \longleftrightarrow all-subformula-st test-symb (conn CEq [\varphi, \psi])
    by auto
  moreover have ...
```

```
\longleftrightarrow (test-symb (conn CEq [\varphi, \psi]) \land (\forall \xi \in set [\varphi, \psi]. all-subformula-st test-symb \xi))
    using all-subformula-st-decomp wf-conn-helper-facts(8) by metis
  finally show all-subformula-st test-symb (FEq \varphi \psi)
    \longleftrightarrow (test-symb (FEq \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
    by simp
  have all-subformula-st test-symb (FImp \varphi \psi) \longleftrightarrow all-subformula-st test-symb (conn CImp [\varphi, \psi])
    by auto
  moreover have ...
    \longleftrightarrow (test-symb (conn CImp [\varphi, \psi]) \land (\forall \xi \in set [\varphi, \psi]. all-subformula-st test-symb \xi))
    using all-subformula-st-decomp wf-conn-helper-facts(7) by metis
  finally show all-subformula-st test-symb (FImp \varphi \psi)
    \longleftrightarrow (test-symb (FImp \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
    by simp
  have all-subformula-st test-symb (FNot \varphi) \longleftrightarrow all-subformula-st test-symb (conn CNot [\varphi])
    by auto
  moreover have ... = (test\text{-}symb\ (conn\ CNot\ [\varphi]) \land (\forall \xi \in set\ [\varphi].\ all\text{-}subformula\text{-}st\ test\text{-}symb\ \xi))
    using all-subformula-st-decomp wf-conn-helper-facts(1) by metis
  finally show all-subformula-st test-symb (FNot \varphi)
    \longleftrightarrow (test\text{-}symb\ (FNot\ \varphi) \land all\text{-}subformula\text{-}st\ test\text{-}symb\ \varphi)\ \mathbf{by}\ simp
qed
As all-subformula-st tests recursively, the function is true on every subformula.
\mathbf{lemma}\ \mathit{subformula-all-subformula-st}\colon
  \psi \preceq \varphi \Longrightarrow all\text{-subformula-st test-symb } \varphi \Longrightarrow all\text{-subformula-st test-symb } \psi
  by (induct rule: subformula.induct, auto simp add: all-subformula-st-decomp)
The following theorem no-test-symb-step-exists shows the link between the test-symb function
and the corresponding rewrite relation r: if we assume that if every time test-symb is true, then
a r can be applied, finally as long as \neg all-subformula-st test-symb \varphi, then something can be
rewritten in \varphi.
lemma no-test-symb-step-exists:
  fixes r:: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ and \ test-symb:: 'v \ propo \Rightarrow bool \ and \ x :: 'v
  and \varphi :: 'v \ propo
  assumes
    test-symb-false-nullary: \forall x. \ test-symb FF \land test-symb FT \land test-symb (FVar \ x) and
    \forall \varphi'. \varphi' \preceq \varphi \longrightarrow (\neg test\text{-symb } \varphi') \longrightarrow (\exists \psi. r \varphi' \psi) \text{ and }
    \neg all-subformula-st test-symb \varphi
  shows \exists \psi \ \psi' . \ \psi \preceq \varphi \wedge r \ \psi \ \psi'
  using assms
proof (induct \varphi rule: propo-induct-arity)
  case (nullary \varphi x)
  then show \exists \psi \ \psi' . \ \psi \prec \varphi \land r \ \psi \ \psi'
    using wf-conn-nullary test-symb-false-nullary by fastforce
next
  case (unary \varphi) note IH = this(1)[OF\ this(2)] and r = this(2) and nst = this(3) and subf =
this(4)
  from r IH nst have H: \neg all-subformula-st test-symb \varphi \Longrightarrow \exists \psi. \ \psi \prec \varphi \land (\exists \psi'. \ r \ \psi \ \psi')
    by (metis subformula-in-subformula-not subformula-refl subformula-trans)
  {
    assume n: \neg test-symb (FNot \varphi)
    obtain \psi where r (FNot \varphi) \psi using subformula-refl r n nst by blast
    moreover have FNot \varphi \leq FNot \varphi using subformula-refl by auto
    ultimately have \exists \psi \ \psi' . \ \psi \leq FNot \ \varphi \wedge r \ \psi \ \psi' by metis
```

```
}
  moreover {
    assume n: test-symb (FNot \varphi)
    then have \neg all-subformula-st test-symb \varphi
      using all-subformula-st-decomp-explicit(3) nst subf by blast
    then have \exists \psi \ \psi' . \ \psi \leq FNot \ \varphi \wedge r \ \psi \ \psi'
      using H subformula-in-subformula-not subformula-refl subformula-trans by blast
  ultimately show \exists \psi \ \psi'. \psi \leq FNot \ \varphi \land r \ \psi \ \psi' by blast
next
  case (binary \varphi \varphi 1 \varphi 2)
  note IH\varphi 1-\theta = this(1)[OF\ this(4)] and IH\varphi 2-\theta = this(2)[OF\ this(4)] and r = this(4)
    and \varphi = this(3) and le = this(5) and nst = this(6)
  obtain c :: 'v \ connective \ \mathbf{where}
    c: (c = CAnd \lor c = COr \lor c = CImp \lor c = CEq) \land conn \ c \ [\varphi 1, \varphi 2] = \varphi
    using \varphi by fastforce
  then have corr: wf-conn c [\varphi 1, \varphi 2] using wf-conn.simps unfolding binary-connectives-def by auto
  have inc: \varphi 1 \preceq \varphi \varphi 2 \preceq \varphi using binary-connectives-def c subformula-in-binary-conn by blast+
  from r \ IH \varphi 1-0 have IH \varphi 1: \neg \ all-subformula-st test-symb \varphi 1 \Longrightarrow \exists \ \psi \ \psi'. \ \psi \preceq \varphi 1 \ \land \ r \ \psi \ \psi'
    using inc(1) subformula-trans le by blast
  from rIH\varphi 2-0 have IH\varphi 2: \neg all-subformula-st test-symb \varphi 2 \Longrightarrow \exists \psi. \ \psi \preceq \varphi 2 \land (\exists \psi'. \ r \ \psi \ \psi')
    using inc(2) subformula-trans le by blast
  have cases: \neg test-symb \varphi \lor \neg all-subformula-st test-symb \varphi 1 \lor \neg all-subformula-st test-symb \varphi 2
    using c nst by auto
  show \exists \psi \ \psi' . \ \psi \preceq \varphi \wedge r \ \psi \ \psi'
    using IH\varphi 1 IH\varphi 2 subformula-trans inc subformula-refl cases le by blast
```

0.2.2 Invariant conservation

If two rewrite relation are independent (or at least independent enough), then the property characterizing the first relation *all-subformula-st test-symb* remains true. The next show the same property, with changes in the assumptions.

The assumption $\forall \varphi' \psi$. $\varphi' \preceq \Phi \longrightarrow r \varphi' \psi \longrightarrow all$ -subformula-st test-symb $\varphi' \longrightarrow all$ -subformula-st test-symb ψ means that rewriting with r does not mess up the property we want to preserve locally.

The previous assumption is not enough to go from r to propo-rew-step r: we have to add the assumption that rewriting inside does not mess up the term: $\forall c \ \xi \ \varphi \ \xi' \ \varphi'. \ \varphi \ \preceq \ \Phi \longrightarrow propo-rew$ -step $r \ \varphi \ \varphi' \longrightarrow wf$ -conn $c \ (\xi \ @ \ \varphi \ \# \ \xi') \longrightarrow test$ -symb $(conn \ c \ (\xi \ @ \ \varphi \ \# \ \xi')) \longrightarrow test$ -symb $(conn \ c \ (\xi \ @ \ \varphi' \ \# \ \xi'))$

Invariant while lifting of the Rewriting Relation

The condition $\varphi \leq \Phi$ (that will by used with $\Phi = \varphi$ most of the time) is here to ensure that the recursive conditions on Φ will moreover hold for the subterm we are rewriting. For example if there is no equivalence symbol in Φ , we do not have to care about equivalence symbols in the two previous assumptions.

```
lemma propo-rew-step-inv-stay': fixes r:: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ and \ test-symb:: 'v \ propo \Rightarrow bool \ and \ x :: 'v \ and \ \varphi \ \psi \ \Phi:: 'v \ propo
```

```
assumes H: \forall \varphi' \psi. \varphi' \leq \Phi \longrightarrow r \varphi' \psi \longrightarrow all\text{-subformula-st test-symb } \varphi'
    \longrightarrow all-subformula-st test-symb \psi
  and H': \forall (c:: 'v connective) \xi \varphi \xi' \varphi'. \varphi \leq \Phi \longrightarrow propo-rew-step \ r \varphi \varphi'
    \longrightarrow wf-conn c (\xi @ \varphi \# \xi') \longrightarrow test-symb (conn c (\xi @ \varphi \# \xi')) \longrightarrow test-symb \varphi'
    \longrightarrow test-symb (conn c (\xi @ \varphi' \# \xi')) and
    propo-rew-step r \varphi \psi and
    \varphi \leq \Phi and
    all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
  using assms(3-5)
proof (induct rule: propo-rew-step.induct)
  case global-rel
  then show ?case using H by simp
next
  case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi')
  note rel = this(1) and \varphi = this(2) and corr = this(3) and \Phi = this(4) and nst = this(5)
  have sq: \varphi \prec \Phi
    using \Phi corr subformula-into-subformula subformula-refl subformula-trans
    by (metis in-set-conv-decomp)
  from corr have \forall \psi. \psi \in set \ (\xi @ \varphi \# \xi') \longrightarrow all\text{-subformula-st test-symb } \psi
    using all-subformula-st-decomp nst by blast
  then have *: \forall \psi. \ \psi \in set \ (\xi @ \varphi' \# \xi') \longrightarrow all\text{-subformula-st test-symb} \ \psi \text{ using } \varphi \text{ sq by } fastforce
  then have test-symb \varphi' using all-subformula-st-test-symb-true-phi by auto
  moreover from corr nst have test-symb (conn c (\xi @ \varphi \# \xi'))
    using all-subformula-st-decomp by blast
  ultimately have test-symb: test-symb (conn c (\xi @ \varphi' \# \xi')) using H' sq corr rel by blast
  have wf-conn c (\xi @ \varphi' \# \xi')
    by (metis wf-conn-no-arity-change-helper corr wf-conn-no-arity-change)
  then show all-subformula-st test-symb (conn c (\xi \otimes \varphi' \# \xi'))
    using * test-symb by (metis all-subformula-st-decomp)
qed
The need for \varphi \prec \Phi is not always necessary, hence we moreover have a version without inclusion.
lemma propo-rew-step-inv-stay:
  fixes r:: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ and \ test-symb:: 'v \ propo \Rightarrow bool \ and \ x:: 'v
  and \varphi \psi :: 'v \ propo
  assumes
    H: \forall \varphi' \psi. \ r \ \varphi' \psi \longrightarrow all\text{-subformula-st test-symb} \ \varphi' \longrightarrow all\text{-subformula-st test-symb} \ \psi and
    H': \forall (c:: 'v \ connective) \ \xi \ \varphi \ \xi' \ \varphi'. \ wf-conn \ c \ (\xi \ @ \ \varphi \ \# \ \xi') \longrightarrow test-symb \ (conn \ c \ (\xi \ @ \ \varphi \ \# \ \xi'))
       \longrightarrow test\text{-symb }\varphi' \longrightarrow test\text{-symb }(conn\ c\ (\xi\ @\ \varphi'\ \#\ \xi')) and
    propo-rew-step r \varphi \psi and
    all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
  using propo-rew-step-inv-stay'[of \varphi r test-symb \varphi \psi] assms subformula-refl by metis
The lemmas can be lifted to propo-rew-step r^{\downarrow} instead of propo-rew-step
Invariant after all Rewriting
lemma full-propo-rew-step-inv-stay-with-inc:
  fixes r:: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ and \ test-symb:: 'v \ propo \Rightarrow bool \ and \ x :: 'v
  and \varphi \psi :: 'v \ propo
  assumes
    H: \forall \varphi \psi. propo-rew-step \ r \ \varphi \ \psi \longrightarrow all-subformula-st \ test-symb \ \varphi
       \rightarrow all-subformula-st test-symb \psi and
```

```
H': \forall (c:: 'v \ connective) \ \xi \ \varphi \ \xi' \ \varphi'. \ \varphi \leq \Phi \longrightarrow propo-rew-step \ r \ \varphi \ \varphi'
       \longrightarrow wf-conn c (\xi @ \varphi \# \xi') \longrightarrow test-symb (conn c (\xi @ \varphi \# \xi')) \longrightarrow test-symb \varphi'
      \longrightarrow test\text{-symb} (conn \ c \ (\xi @ \varphi' \# \xi')) \text{ and }
      \varphi \leq \Phi and
    full: full (propo-rew-step r) \varphi \psi and
    init: all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
  using assms unfolding full-def
proof -
  have rel: (propo-rew-step \ r)^{**} \ \varphi \ \psi
    using full unfolding full-def by auto
  then show all-subformula-st test-symb \psi
    using init
    proof (induct rule: rtranclp-induct)
      case base
      then show all-subformula-st test-symb \varphi by blast
    next
      case (step b c) note star = this(1) and IH = this(3) and one = this(2) and all = this(4)
      then have all-subformula-st test-symb b by metis
      then show all-subformula-st test-symb c using propo-rew-step-inv-stay' H H' rel one by auto
    qed
qed
lemma full-propo-rew-step-inv-stay':
  fixes r:: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ and \ test-symb:: 'v \ propo \Rightarrow bool \ and \ x:: 'v
  and \varphi \psi :: 'v \ propo
  assumes
    H: \forall \varphi \psi. propo-rew-step \ r \ \varphi \ \psi \longrightarrow all-subformula-st \ test-symb \ \varphi
        \rightarrow all-subformula-st test-symb \psi and
    H': \forall (c:: 'v \ connective) \ \xi \ \varphi \ \xi' \ \varphi'. \ propo-rew-step \ r \ \varphi \ \varphi' \longrightarrow wf-conn \ c \ (\xi @ \varphi \ \# \ \xi')
       \longrightarrow test\text{-symb} \ (conn \ c \ (\xi @ \varphi \# \xi')) \longrightarrow test\text{-symb} \ \varphi' \longrightarrow test\text{-symb} \ (conn \ c \ (\xi @ \varphi' \# \xi')) \ \text{and}
    full: full (propo-rew-step r) \varphi \psi and
    init: all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
  using full-propo-rew-step-inv-stay-with-inc[of r test-symb \varphi] assms subformula-refl by metis
lemma full-propo-rew-step-inv-stay:
  fixes r:: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ and \ test-symb:: 'v \ propo \Rightarrow bool \ and \ x:: 'v
  and \varphi \psi :: 'v \ propo
  assumes
    H: \forall \varphi \ \psi. \ r \ \varphi \ \psi \longrightarrow all\text{-subformula-st test-symb} \ \varphi \longrightarrow all\text{-subformula-st test-symb} \ \psi and
    H': \forall (c:: 'v \ connective) \ \xi \ \varphi \ \xi' \ \varphi'. \ wf-conn \ c \ (\xi \ @ \ \varphi \ \# \ \xi') \longrightarrow test-symb \ (conn \ c \ (\xi \ @ \ \varphi \ \# \ \xi'))
       \longrightarrow test\text{-symb }\varphi' \longrightarrow test\text{-symb }(conn\ c\ (\xi\ @\ \varphi'\ \#\ \xi')) and
    full: full (propo-rew-step r) \varphi \psi and
    init: all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
  \mathbf{unfolding} \; \mathit{full-def}
proof -
  have rel: (propo-rew-step \ r) ** \varphi \ \psi
    using full unfolding full-def by auto
  then show all-subformula-st test-symb \psi
    using init
    proof (induct rule: rtranclp-induct)
      then show all-subformula-st test-symb \varphi by blast
    next
```

```
case (step \ b \ c)
      note star = this(1) and IH = this(3) and one = this(2) and all = this(4)
      then have all-subformula-st test-symb b by metis
      then show all-subformula-st test-symb c
       using propo-rew-step-inv-stay subformula-refl H H' rel one by auto
   qed
qed
lemma full-propo-rew-step-inv-stay-conn:
  fixes r:: 'v propo \Rightarrow 'v propo \Rightarrow bool and test-symb:: 'v propo \Rightarrow bool and x :: 'v
 and \varphi \psi :: 'v \ propo
 assumes
   H: \forall \varphi \ \psi. \ r \ \varphi \ \psi \longrightarrow all\text{-subformula-st test-symb} \ \varphi \longrightarrow all\text{-subformula-st test-symb} \ \psi and
   H': \forall (c:: 'v \ connective) \ l \ l'. \ wf-conn \ c \ l \longrightarrow wf-conn \ c \ l'
       \longrightarrow (test\text{-}symb\ (conn\ c\ l) \longleftrightarrow test\text{-}symb\ (conn\ c\ l')) and
   full: full (propo-rew-step r) \varphi \psi and
   init: all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
proof -
  have \bigwedge(c:: 'v \ connective) \ \xi \ \varphi \ \xi' \ \varphi'. \ wf-conn \ c \ (\xi @ \varphi \ \# \ \xi')
   \implies test-symb (conn c (\xi @ \varphi \# \xi')) \implies test-symb (conn c (\xi @ \varphi' \# \xi'))
   using H' by (metis wf-conn-no-arity-change-helper wf-conn-no-arity-change)
  then show all-subformula-st test-symb \psi
   using H full init full-propo-rew-step-inv-stay by blast
ged
end
theory Prop-Normalisation
imports Entailment-Definition. Prop-Logic Prop-Abstract-Transformation Nested-Multisets-Ordinals. Multiset-More
begin
```

Given the previous definition about abstract rewriting and theorem about them, we now have the detailed rule making the transformation into CNF/DNF.

0.3 Rewrite Rules

The idea of Christoph Weidenbach's book is to remove gradually the operators: first equivalencies, then implication, after that the unused true/false and finally the reorganizing the or/and. We will prove each transformation separately.

0.3.1 Elimination of the Equivalences

The first transformation consists in removing every equivalence symbol.

```
inductive elim-equiv :: 'v propo \Rightarrow 'v propo \Rightarrow bool where elim-equiv[simp]: elim-equiv (FEq \varphi \psi) (FAnd (FImp \varphi \psi) (FImp \psi \varphi))

lemma elim-equiv-transformation-consistent: A \models FEq \varphi \psi \longleftrightarrow A \models FAnd (FImp \varphi \psi) (FImp \psi \varphi)
by auto

lemma elim-equiv-explicit: elim-equiv \varphi \psi \Longrightarrow \forall A. A \models \varphi \longleftrightarrow A \models \psi
by (induct\ rule:\ elim-equiv.induct, auto)
```

```
\begin{tabular}{ll} \bf lemma & \it elim-equiv-consistent: preserve-models & \it elim-equiv-explicit) \\ \bf unfolding & \it preserve-models-def & \bf by & \it (simp add: elim-equiv-explicit) \\ \end{tabular}
```

```
lemma elimEquv-lifted-consistant:
   preserve-models (full (propo-rew-step elim-equiv))
   by (simp add: elim-equiv-consistent)
```

This function ensures that there is no equivalencies left in the formula tested by no-equiv-symb.

```
fun no-equiv-symb :: 'v propo \Rightarrow bool where no-equiv-symb (FEq - -) = False \mid no-equiv-symb - = True
```

Given the definition of *no-equiv-symb*, it does not depend on the formula, but only on the connective used.

```
lemma no-equiv-symb-conn-characterization[simp]:

fixes c:: 'v \ connective \ and \ l:: 'v \ propo \ list

assumes wf: \ wf\text{-}conn \ c \ l

shows no-equiv-symb (conn c \ l) \longleftrightarrow c \neq CEq

by (metis connective.distinct(13,25,35,43) wf no-equiv-symb.elims(3) no-equiv-symb.simps(1)

wf\text{-}conn.cases \ wf\text{-}conn-list(6))
```

definition no-equiv where no-equiv = all-subformula-st no-equiv-symb

```
lemma no-equiv-eq[simp]:
fixes \varphi \psi :: 'v \ propo
shows
\neg no-equiv \ (FEq \ \varphi \ \psi)
no-equiv \ FT
no-equiv \ FF
using no-equiv-symb.simps(1) all-subformula-st-test-symb-true-phi unfolding no-equiv-def by auto
```

The following lemma helps to reconstruct *no-equiv* expressions: this representation is easier to use than the set definition.

```
lemma all-subformula-st-decomp-explicit-no-equiv[iff]: fixes \varphi \psi :: 'v propo shows no-equiv (FNot \ \varphi) \longleftrightarrow no\text{-equiv} \ \varphi \land no\text{-equiv} \ \psi \land no\text{-equi
```

A theorem to show the link between the rewrite relation *elim-equiv* and the function *no-equiv-symb*. This theorem is one of the assumption we need to characterize the transformation.

```
lemma no-equiv-elim-equiv-step:
fixes \varphi :: 'v propo
assumes no-equiv: \neg no-equiv \varphi
shows \exists \psi \ \psi'. \ \psi \preceq \varphi \land elim-equiv \psi \ \psi'
proof -
have test-symb-false-nullary:
\forall x::'v. no-equiv-symb FF \land no-equiv-symb FT \land no-equiv-symb (FVar x)
unfolding no-equiv-def by auto
moreover {
```

```
fix c:: 'v connective and l :: 'v propo list and \psi :: 'v propo
      assume a1: elim-equiv (conn c l) \psi
      have \bigwedge p pa. \neg elim-equiv (p::'v propo) pa \lor \neg no-equiv-symb p
        using elim-equiv.cases no-equiv-symb.simps(1) by blast
      then have elim-equiv (conn c l) \psi \Longrightarrow \neg no-equiv-symb (conn c l) using a1 by metis
  moreover have H': \forall \psi. \neg elim-equiv FT \psi \forall \psi. \neg elim-equiv FF \psi \forall \psi x. \neg elim-equiv (FVar x) \psi
    using elim-equiv.cases by auto
  moreover have \bigwedge \varphi. \neg no-equiv-symb \varphi \Longrightarrow \exists \psi. elim-equiv \varphi \psi
    by (case-tac \varphi, auto simp: elim-equiv.simps)
  then have \bigwedge \varphi'. \varphi' \leq \varphi \Longrightarrow \neg no\text{-}equiv\text{-}symb \ \varphi' \Longrightarrow \ \exists \psi. \ elim\text{-}equiv \ \varphi' \ \psi \ by \ force
  ultimately show ?thesis
    using no-test-symb-step-exists no-equiv test-symb-false-nullary unfolding no-equiv-def by blast
qed
```

Given all the previous theorem and the characterization, once we have rewritten everything, there is no equivalence symbol any more.

```
lemma no-equiv-full-propo-rew-step-elim-equiv:
 full (propo-rew-step elim-equiv) \varphi \psi \Longrightarrow no-equiv \psi
 using full-propo-rew-step-subformula no-equiv-elim-equiv-step by blast
```

0.3.2Eliminate Implication

 $\neg no\text{-}imp \ (FImp \ \varphi \ \psi)$

 $no\text{-}imp\ FT$

```
After that, we can eliminate the implication symbols.
inductive elim-imp :: 'v propo \Rightarrow 'v propo \Rightarrow bool where
[simp]: elim-imp (FImp \varphi \psi) (FOr (FNot \varphi) \psi)
\mathbf{lemma}\ elim-imp-transformation\text{-}consistent:
  A \models FImp \ \varphi \ \psi \longleftrightarrow A \models FOr \ (FNot \ \varphi) \ \psi
  by auto
lemma elim-imp-explicit: elim-imp \varphi \psi \Longrightarrow \forall A. A \models \varphi \longleftrightarrow A \models \psi
  by (induct \varphi \psi rule: elim-imp.induct, auto)
lemma elim-imp-consistent: preserve-models elim-imp
  unfolding preserve-models-def by (simp add: elim-imp-explicit)
lemma elim-imp-lifted-consistant:
  preserve-models (full (propo-rew-step elim-imp))
  by (simp add: elim-imp-consistent)
fun no-imp-symb where
no\text{-}imp\text{-}symb \ (FImp - -) = False \ |
no\text{-}imp\text{-}symb - = True
lemma no-imp-symb-conn-characterization:
  wf-conn c \ l \Longrightarrow no-imp-symb (conn \ c \ l) \longleftrightarrow c \neq CImp
  by (induction rule: wf-conn-induct) auto
definition no-imp where no-imp \equiv all-subformula-st no-imp-symb
declare no\text{-}imp\text{-}def[simp]
lemma no\text{-}imp\text{-}Imp[simp]:
```

```
no-imp FF
  unfolding no-imp-def by auto
lemma all-subformula-st-decomp-explicit-imp[simp]:
  fixes \varphi \psi :: 'v \ propo
  shows
    no\text{-}imp\ (FNot\ \varphi) \longleftrightarrow no\text{-}imp\ \varphi
    no\text{-}imp\ (FAnd\ \varphi\ \psi) \longleftrightarrow (no\text{-}imp\ \varphi \land no\text{-}imp\ \psi)
    no\text{-}imp\ (FOr\ \varphi\ \psi) \longleftrightarrow (no\text{-}imp\ \varphi \land no\text{-}imp\ \psi)
  by auto
Invariant of the elim-imp transformation
lemma elim-imp-no-equiv:
  elim-imp \ \varphi \ \psi \implies no-equiv \ \varphi \implies no-equiv \ \psi
  by (induct \varphi \psi rule: elim-imp.induct, auto)
lemma elim-imp-inv:
  fixes \varphi \psi :: 'v \ propo
  assumes full (propo-rew-step elim-imp) \varphi \psi and no-equiv \varphi
  shows no-equiv \psi
  using full-propo-rew-step-inv-stay-conn[of elim-imp no-equiv-symb \varphi \psi] assms elim-imp-no-equiv
    no-equiv-symb-conn-characterization unfolding no-equiv-def by metis
lemma no-no-imp-elim-imp-step-exists:
  fixes \varphi :: 'v \ propo
  assumes no-equiv: \neg no-imp \varphi
  shows \exists \psi \ \psi' . \ \psi \leq \varphi \land elim-imp \ \psi \ \psi'
  have test-symb-false-nullary: \forall x. \ no\text{-}imp\text{-}symb\ FF \land no\text{-}imp\text{-}symb\ FT \land no\text{-}imp\text{-}symb\ (FVar\ (x:: 'v))
    by auto
  moreover {
     fix c:: 'v connective and l :: 'v propo list and \psi :: 'v propo
     have H: elim-imp (conn c l) \psi \Longrightarrow \neg no-imp-symb (conn c l)
       by (auto elim: elim-imp.cases)
    }
  moreover
    have H': \forall \psi. \neg elim\text{-}imp\ FT\ \psi\ \forall \psi. \neg elim\text{-}imp\ FF\ \psi\ \forall \psi\ x. \neg elim\text{-}imp\ (FVar\ x)\ \psi
      by (auto elim: elim-imp.cases)+
  moreover
    have \bigwedge \varphi. \neg no-imp-symb \varphi \Longrightarrow \exists \psi. elim-imp \varphi \psi
      by (case-tac \varphi) (force simp: elim-imp.simps)+
    then have \land \varphi'. \varphi' \preceq \varphi \Longrightarrow \neg no\text{-}imp\text{-}symb \ \varphi' \Longrightarrow \exists \ \psi. elim-imp \ \varphi' \ \psi by force
  ultimately show ?thesis
    using no-test-symb-step-exists no-equiv test-symb-false-nullary unfolding no-imp-def by blast
qed
lemma no-imp-full-propo-rew-step-elim-imp: full (propo-rew-step elim-imp) \varphi \psi \implies no-imp \psi
```

using full-propo-rew-step-subformula no-no-imp-elim-imp-step-exists by blast

0.3.3 Eliminate all the True and False in the formula

Contrary to the book, we have to give the transformation and the "commutative" transformation. The latter is implicit in the book.

```
inductive elimTB where ElimTB1: elimTB (FAnd \varphi FT) \varphi \mid
```

```
Elim TB1': elim TB (FAnd FT \varphi) \varphi
ElimTB2: elimTB (FAnd \varphi FF) FF
Elim TB2': elim TB (FAnd FF \varphi) FF |
ElimTB3: elimTB (FOr \varphi FT) FT |
ElimTB3': elimTB (FOr FT \varphi) FT
Elim TB4: elim TB (FOr \varphi FF) \varphi
Elim TB4': elim TB (FOr FF \varphi) \varphi
ElimTB5: elimTB (FNot FT) FF |
ElimTB6: elimTB (FNot FF) FT
lemma elimTB-consistent: preserve-models elimTB
proof -
    fix \varphi \psi:: 'b propo
    have elimTB \varphi \psi \Longrightarrow \forall A. A \models \varphi \longleftrightarrow A \models \psi by (induction rule: elimTB.inducts) auto
  then show ?thesis using preserve-models-def by auto
qed
inductive no-T-F-symb :: 'v propo <math>\Rightarrow bool where
no-T-F-symb-comp: c \neq CF \Longrightarrow c \neq CT \Longrightarrow \text{wf-conn } c \mid l \Longrightarrow (\forall \varphi \in set \mid l. \mid \varphi \neq FT \land \varphi \neq FF)
  \implies no\text{-}T\text{-}F\text{-}symb \ (conn \ c \ l)
lemma wf-conn-no-T-F-symb-iff[simp]:
  wf-conn c \ \psi s \Longrightarrow
    no\text{-}T\text{-}F\text{-}symb\ (conn\ c\ \psi s) \longleftrightarrow (c \neq CF \land c \neq CT \land (\forall \psi \in set\ \psi s.\ \psi \neq FF \land \psi \neq FT))
  unfolding no-T-F-symb.simps apply (cases c)
          using wf-conn-list(1) apply fastforce
         using wf-conn-list(2) apply fastforce
        using wf-conn-list(3) apply fastforce
       apply (metis (no-types, opaque-lifting) conn-inj connective. distinct(5,17))
      using conn-inj apply blast+
  done
lemma wf-conn-no-T-F-symb-iff-explicit[simp]:
  no-T-F-symb (FAnd \varphi \psi) \longleftrightarrow (\forall \chi \in set [\varphi, \psi]. \chi \neq FF \land \chi \neq FT)
  no\text{-}T\text{-}F\text{-}symb\ (FOr\ \varphi\ \psi)\longleftrightarrow (\forall\ \chi\in set\ [\varphi,\ \psi].\ \chi\neq FF\ \land\ \chi\neq FT)
  no-T-F-symb (FEq \varphi \psi) \longleftrightarrow (\forall \chi \in set [\varphi, \psi]. \chi \neq FF \land \chi \neq FT)
  no-T-F-symb (FImp \varphi \psi) \longleftrightarrow (\forall \chi \in set [\varphi, \psi]. \chi \neq FF \land \chi \neq FT)
     apply (metis\ conn.simps(36)\ conn.simps(37)\ conn.simps(5)\ propo.distinct(19)
       wf-conn-helper-facts(5) wf-conn-no-T-F-symb-iff)
    apply (metis \ conn.simps(36) \ conn.simps(37) \ conn.simps(6) \ propo.distinct(22)
      wf-conn-helper-facts(6) wf-conn-no-T-F-symb-iff)
   using wf-conn-no-T-F-symb-iff apply fastforce
  by (metis conn.simps(36) conn.simps(37) conn.simps(7) propo.distinct(23) wf-conn-helper-facts(7)
    wf-conn-no-T-F-symb-iff)
lemma no-T-F-symb-false[simp]:
  fixes c :: 'v \ connective
```

```
shows
    \neg no\text{-}T\text{-}F\text{-}symb \ (FT :: 'v \ propo)
   \neg no\text{-}T\text{-}F\text{-}symb \ (FF :: 'v \ propo)
   by (metis\ (no-types)\ conn.simps(1,2)\ wf-conn-no-T-F-symb-iff\ wf-conn-nullary)+
lemma no-T-F-symb-bool[simp]:
  fixes x :: 'v
  shows no-T-F-symb (FVar x)
  using no-T-F-symb-comp wf-conn-nullary by (metis connective distinct (3, 15) conn. simps (3)
   empty-iff list.set(1)
lemma no-T-F-symb-fnot-imp:
  \neg no\text{-}T\text{-}F\text{-}symb \ (FNot \ \varphi) \Longrightarrow \varphi = FT \lor \varphi = FF
proof (rule ccontr)
  assume n: \neg no\text{-}T\text{-}F\text{-}symb (FNot \varphi)
 assume \neg (\varphi = FT \lor \varphi = FF)
  then have \forall \varphi' \in set [\varphi]. \ \varphi' \neq FT \land \varphi' \neq FF by auto
  moreover have wf-conn CNot [\varphi] by simp
  ultimately have no-T-F-symb (FNot \varphi)
   using no-T-F-symb.intros by (metis conn.simps(4) connective.distinct(5,17))
  then show False using n by blast
qed
lemma no-T-F-symb-fnot[simp]:
  no\text{-}T\text{-}F\text{-}symb \ (FNot \ \varphi) \longleftrightarrow \neg(\varphi = FT \lor \varphi = FF)
  using no-T-F-symb.simps no-T-F-symb-fnot-imp by (metis conn-inj-not(2) list.set-intros(1))
Actually it is not possible to remover every FT and FF: if the formula is equal to true or false,
we can not remove it.
inductive no-T-F-symb-except-toplevel where
no-T-F-symb-except-toplevel-true[simp]: no-T-F-symb-except-toplevel\ FT \mid
no-T-F-symb-except-toplevel-false[simp]: no-T-F-symb-except-toplevel FF
noTrue-no-T-F-symb-except-toplevel[simp]: no-T-F-symb \varphi \Longrightarrow no-T-F-symb-except-toplevel \varphi
lemma no-T-F-symb-except-toplevel-bool:
  fixes x :: 'v
  shows no-T-F-symb-except-toplevel (FVar x)
 by simp
lemma no-T-F-symb-except-toplevel-not-decom:
  \varphi \neq FT \Longrightarrow \varphi \neq FF \Longrightarrow no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (FNot <math>\varphi)
 by simp
lemma no-T-F-symb-except-toplevel-bin-decom:
  fixes \varphi \psi :: 'v \ propo
  assumes \varphi \neq FT and \varphi \neq FF and \psi \neq FT and \psi \neq FF
 and c: c \in binary\text{-}connectives
 shows no-T-F-symb-except-toplevel (conn c [\varphi, \psi])
  by (metis (no-types, lifting) assms c conn.simps(4) list.discI noTrue-no-T-F-symb-except-toplevel
   wf-conn-no-T-F-symb-iff no-T-F-symb-fnot set-ConsD wf-conn-binary wf-conn-helper-facts(1)
   wf-conn-list-decomp(1,2))
\mathbf{lemma}\ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel\text{-}if\text{-}is\text{-}a\text{-}true\text{-}false:}
  fixes l :: 'v propo list and <math>c :: 'v connective
  assumes corr: wf-conn c l
```

```
and FT \in set \ l \lor FF \in set \ l
  shows \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (conn c l)
  by (metis assms empty-iff no-T-F-symb-except-toplevel.simps wf-conn-no-T-F-symb-iff set-empty
    wf-conn-list(1,2))
lemma no-T-F-symb-except-top-level-false-example[simp]:
  fixes \varphi \psi :: 'v \ propo
  assumes \varphi = FT \lor \psi = FT \lor \varphi = FF \lor \psi = FF
  shows
    \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (FAnd <math>\varphi \psi)
    \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (FOr <math>\varphi \psi)
    \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (FImp <math>\varphi \psi)
    \neg no-T-F-symb-except-toplevel (FEq \varphi \psi)
  using assms no-T-F-symb-except-toplevel-if-is-a-true-false unfolding binary-connectives-def
    by (metis\ (no-types)\ conn.simps(5-8)\ insert-iff\ list.simps(14-15)\ wf-conn-helper-facts(5-8))+
lemma no-T-F-symb-except-top-level-false-not[simp]:
  fixes \varphi \psi :: 'v \ propo
  assumes \varphi = FT \vee \varphi = FF
  shows
    \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (FNot <math>\varphi)
  by (simp add: assms no-T-F-symb-except-toplevel.simps)
This is the local extension of no-T-F-symb-except-toplevel.
definition no-T-F-except-top-level where
no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level \equiv all\text{-}subformula\text{-}st\ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel}
This is another property we will use. While this version might seem to be the one we want to
prove, it is not since FT can not be reduced.
definition no-T-F where
no\text{-}T\text{-}F \equiv \textit{all-subformula-st } no\text{-}T\text{-}F\text{-}symb
lemma no-T-F-except-top-level-false:
  fixes l :: 'v \text{ propo list and } c :: 'v \text{ connective}
  assumes wf-conn c l
  and FT \in set \ l \lor FF \in set \ l
  shows \neg no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (conn c l)
  by (simp add: all-subformula-st-decomp assms no-T-F-except-top-level-def
    no-T-F-symb-except-toplevel-if-is-a-true-false)
lemma no-T-F-except-top-level-false-example[simp]:
  fixes \varphi \psi :: 'v \ propo
  assumes \varphi = FT \lor \psi = FT \lor \varphi = FF \lor \psi = FF
    \neg no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FAnd <math>\varphi \psi)
    \neg no-T-F-except-top-level (FOr \varphi \psi)
    \neg no-T-F-except-top-level (FEq \varphi \psi)
    \neg no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FImp <math>\varphi \psi)
  by (metis all-subformula-st-test-symb-true-phi assms no-T-F-except-top-level-def
    no-T-F-symb-except-top-level-false-example)+
lemma no-T-F-symb-except-toplevel-no-T-F-symb:
  no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel }\varphi \Longrightarrow \varphi \neq FF \Longrightarrow \varphi \neq FT \Longrightarrow no\text{-}T\text{-}F\text{-}symb }\varphi
```

```
by (induct rule: no-T-F-symb-except-toplevel.induct, auto)
The two following lemmas give the precise link between the two definitions.
lemma no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb:
  no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level\ \varphi \Longrightarrow \varphi \neq FF \Longrightarrow \varphi \neq FT \Longrightarrow no\text{-}T\text{-}F\ \varphi
  unfolding no-T-F-except-top-level-def no-T-F-def apply (induct \varphi)
  using no-T-F-symb-fnot by fastforce+
lemma no-T-F-no-T-F-except-top-level:
  no\text{-}T\text{-}F \varphi \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level \varphi
  unfolding no-T-F-except-top-level-def no-T-F-def
  unfolding all-subformula-st-def by auto
lemma\ no-T-F-except-top-level\ FF\ no-T-F-except-top-level\ FT
  unfolding no-T-F-except-top-level-def by auto
lemma no-T-F-no-T-F-except-top-level'[simp]:
  no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level\ \varphi \longleftrightarrow (\varphi = FF \lor \varphi = FT \lor no\text{-}T\text{-}F\ \varphi)
  \mathbf{using}\ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel\text{-}all\text{-}subformula\text{-}st\text{-}no\text{-}T\text{-}F\text{-}symb\ no\text{-}T\text{-}F\text{-}no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level}
  by auto
lemma no-T-F-bin-decomp[simp]:
  assumes c: c \in binary\text{-}connectives
  shows no-T-F (conn\ c\ [\varphi,\psi])\longleftrightarrow (no-T-F\ \varphi\land no-T-F\ \psi)
proof -
  have wf: wf-conn c [\varphi, \psi] using c by auto
  then have no-T-F (conn c [\varphi, \psi]) \longleftrightarrow (no-T-F-symb (conn c [\varphi, \psi]) \land no-T-F \varphi \land no-T-F \psi)
    by (simp add: all-subformula-st-decomp no-T-F-def)
  then show no-T-F (conn c [\varphi, \psi]) \longleftrightarrow (no-T-F \varphi \land no-T-F \psi)
    \textbf{using} \ c \ \textit{wf all-subformula-st-decomp list.discI} \ \textit{no-T-F-def no-T-F-symb-except-toplevel-bin-decom}
       no-T-F-symb-except-toplevel-no-T-F-symb no-T-F-symb-false(1,2) wf-conn-helper-facts(2,3)
       wf-conn-list(1,2) by metis
qed
lemma no-T-F-bin-decomp-expanded[simp]:
  assumes c: c = CAnd \lor c = COr \lor c = CEq \lor c = CImp
  shows no-T-F (conn\ c\ [\varphi,\psi]) \longleftrightarrow (no-T-F\ \varphi \land no-T-F\ \psi)
  using no-T-F-bin-decomp assms unfolding binary-connectives-def by blast
lemma no-T-F-comp-expanded-explicit[simp]:
  fixes \varphi \psi :: 'v \ propo
  shows
    no\text{-}T\text{-}F \ (FAnd \ \varphi \ \psi) \longleftrightarrow (no\text{-}T\text{-}F \ \varphi \land no\text{-}T\text{-}F \ \psi)
    no\text{-}T\text{-}F \ (FOr \ \varphi \ \psi) \ \longleftrightarrow (no\text{-}T\text{-}F \ \varphi \land no\text{-}T\text{-}F \ \psi)
    no\text{-}T\text{-}F \ (FEq \ \varphi \ \psi) \ \longleftrightarrow (no\text{-}T\text{-}F \ \varphi \land no\text{-}T\text{-}F \ \psi)
    no\text{-}T\text{-}F \ (FImp \ \varphi \ \psi) \longleftrightarrow (no\text{-}T\text{-}F \ \varphi \land no\text{-}T\text{-}F \ \psi)
  using conn.simps(5-8) no-T-F-bin-decomp-expanded by (metis\ (no-types))+
lemma no-T-F-comp-not[simp]:
  fixes \varphi \psi :: 'v \ propo
  shows no-T-F (FNot \varphi) \longleftrightarrow no-T-F \varphi
   \mathbf{by} \ (metis \ all\text{-}subformula\text{-}st\text{-}decomp\text{-}explicit(3)} \ all\text{-}subformula\text{-}st\text{-}test\text{-}symb\text{-}true\text{-}phi \ no\text{-}T\text{-}F\text{-}def
    no-T-F-symb-false(1,2) no-T-F-symb-fnot-imp)
lemma no-T-F-decomp:
```

fixes $\varphi \psi :: 'v \ propo$

```
assumes \varphi: no-T-F (FAnd \varphi \psi) \vee no-T-F (FOr \varphi \psi) \vee no-T-F (FEq \varphi \psi) \vee no-T-F (FImp \varphi \psi)
 shows no-T-F \psi and no-T-F \varphi
 using assms by auto
lemma no-T-F-decomp-not:
 fixes \varphi :: 'v \ propo
 assumes \varphi: no-T-F (FNot \varphi)
 shows no-T-F \varphi
 using assms by auto
lemma no-T-F-symb-except-toplevel-step-exists:
 fixes \varphi \psi :: 'v \ propo
 assumes no-equiv \varphi and no-imp \varphi
 shows \psi \leq \varphi \Longrightarrow \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel }\psi \Longrightarrow \exists \psi'. \ elimTB \ \psi \ \psi'
proof (induct \psi rule: propo-induct-arity)
 case (nullary \varphi'(x))
 then have False using no-T-F-symb-except-toplevel-true no-T-F-symb-except-toplevel-false by auto
 then show ?case by blast
next
  case (unary \psi)
 then have \psi = FF \lor \psi = FT using no-T-F-symb-except-toplevel-not-decom by blast
 then show ?case using ElimTB5 ElimTB6 by blast
next
 case (binary \varphi' \psi 1 \psi 2)
 note IH1 = this(1) and IH2 = this(2) and \varphi' = this(3) and F\varphi = this(4) and n = this(5)
   assume \varphi' = FImp \ \psi 1 \ \psi 2 \lor \varphi' = FEq \ \psi 1 \ \psi 2
   then have False using n F\varphi subformula-all-subformula-st assms
     by (metis\ (no-types)\ no-equiv-eq(1)\ no-equiv-def\ no-imp-Imp(1)\ no-imp-def)
   then have ?case by blast
 moreover {
   assume \varphi': \varphi' = FAnd \ \psi 1 \ \psi 2 \lor \varphi' = FOr \ \psi 1 \ \psi 2
   then have \psi 1 = FT \vee \psi 2 = FT \vee \psi 1 = FF \vee \psi 2 = FF
    using no-T-F-symb-except-toplevel-bin-decom conn.simps(5,6) n unfolding binary-connectives-def
     by fastforce+
   then have ?case using elimTB.intros \varphi' by blast
 ultimately show ?case using \varphi' by blast
qed
lemma no-T-F-except-top-level-rew:
 fixes \varphi :: 'v \ propo
 assumes noTB: \neg no-T-F-except-top-level \varphi and no-equiv: no-equiv \varphi and no-imp: no-imp \varphi
 shows \exists \psi \ \psi' . \ \psi \preceq \varphi \land elimTB \ \psi \ \psi'
proof -
 have test-symb-false-nullary: \forall x. no-T-F-symb-except-toplevel (FF:: 'v propo)
   \land no-T-F-symb-except-toplevel (FVar (x:: 'v)) by auto
 moreover {
    fix c:: 'v connective and l:: 'v propo list and \psi:: 'v propo
    have H: elimTB (conn c l) \psi \Longrightarrow \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (conn c l)
      by (cases conn c l rule: elimTB.cases, auto)
 moreover {
    \mathbf{fix} \ x :: \ 'v
    have H': no-T-F-except-top-level FT no-T-F-except-top-level FF
```

```
no-T-F-except-top-level (FVar x)
      by (auto simp: no-T-F-except-top-level-def test-symb-false-nullary)
  }
 moreover {
     fix \psi
     have \psi \preceq \varphi \Longrightarrow \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel }\psi \Longrightarrow \exists \psi'. elimTB \psi \psi'
      using no-T-F-symb-except-toplevel-step-exists no-equiv no-imp by auto
 ultimately show ?thesis
   using no-test-symb-step-exists noTB unfolding no-T-F-except-top-level-def by blast
qed
lemma elimTB-inv:
 fixes \varphi \psi :: 'v \ propo
  assumes full (propo-rew-step elim TB) \varphi \psi
 and no-equiv \varphi and no-imp \varphi
 shows no-equiv \psi and no-imp \psi
proof -
     fix \varphi \psi :: 'v \ propo
     have H: elimTB \ \varphi \ \psi \Longrightarrow no\text{-}equiv \ \varphi \Longrightarrow no\text{-}equiv \ \psi
      by (induct \varphi \psi rule: elimTB.induct, auto)
  then show no-equiv \psi
   using full-propo-rew-step-inv-stay-conn[of elimTB no-equiv-symb \varphi \psi]
      no-equiv-symb-conn-characterization assms unfolding no-equiv-def by metis
next
     \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
     have H: elimTB \varphi \psi \Longrightarrow no\text{-}imp \varphi \Longrightarrow no\text{-}imp \psi
      by (induct \varphi \psi rule: elimTB.induct, auto)
  then show no-imp \psi
   using full-propo-rew-step-inv-stay-conn[of elimTB no-imp-symb \varphi \psi] assms
      no-imp-symb-conn-characterization unfolding no-imp-def by metis
qed
\mathbf{lemma}\ elimTB-full-propo-rew-step:
  fixes \varphi \psi :: 'v \ propo
  assumes no-equiv \varphi and no-imp \varphi and full (propo-rew-step elimTB) \varphi \psi
  shows no-T-F-except-top-level \psi
  using full-propo-rew-step-subformula no-T-F-except-top-level-rew assms elimTB-inv by fastforce
0.3.4
          PushNeg
Push the negation inside the formula, until the litteral.
inductive pushNeg where
PushNeg1[simp]: pushNeg (FNot (FAnd \varphi \psi)) (FOr (FNot \varphi) (FNot \psi))
PushNeg2[simp]: pushNeg (FNot (FOr \varphi \psi)) (FAnd (FNot \varphi) (FNot \psi))
PushNeg3[simp]: pushNeg (FNot (FNot \varphi)) \varphi
\mathbf{lemma}\ push Neg-transformation-consistent:
A \models FNot \ (FAnd \ \varphi \ \psi) \longleftrightarrow A \models (FOr \ (FNot \ \varphi) \ (FNot \ \psi))
A \models FNot (FOr \varphi \psi) \longleftrightarrow A \models (FAnd (FNot \varphi) (FNot \psi))
```

```
A \models FNot (FNot \varphi) \longleftrightarrow A \models \varphi
  by auto
lemma pushNeg-explicit: pushNeg \varphi \psi \Longrightarrow \forall A. A \models \varphi \longleftrightarrow A \models \psi
  by (induct \varphi \psi rule: pushNeg.induct, auto)
{f lemma}\ pushNeg\text{-}consistent:\ preserve\text{-}models\ pushNeg
  unfolding preserve-models-def by (simp add: pushNeg-explicit)
\mathbf{lemma} \ \mathit{pushNeg-lifted-consistant} :
preserve-models (full (propo-rew-step pushNeg))
  by (simp add: pushNeg-consistent)
fun simple where
simple FT = True
simple FF = True
simple (FVar -) = True \mid
simple -= False
lemma simple-decomp:
  simple \ \varphi \longleftrightarrow (\varphi = FT \lor \varphi = FF \lor (\exists x. \ \varphi = FVar \ x))
  by (cases \varphi) auto
{f lemma}\ subformula\mbox{-}conn\mbox{-}decomp\mbox{-}simple:
  fixes \varphi \psi :: 'v \ propo
  assumes s: simple \ \psi
  shows \varphi \leq FNot \ \psi \longleftrightarrow (\varphi = FNot \ \psi \lor \varphi = \psi)
proof -
  have \varphi \leq conn \ CNot \ [\psi] \longleftrightarrow (\varphi = conn \ CNot \ [\psi] \lor (\exists \ \psi \in set \ [\psi]. \ \varphi \leq \psi))
    using subformula-conn-decomp wf-conn-helper-facts(1) by metis
  then show \varphi \leq FNot \ \psi \longleftrightarrow (\varphi = FNot \ \psi \lor \varphi = \psi) using s by (auto simp: simple-decomp)
qed
lemma subformula-conn-decomp-explicit[simp]:
  fixes \varphi :: 'v \ propo \ {\bf and} \ x :: 'v
  shows
    \varphi \preceq \mathit{FNot}\;\mathit{FT} \longleftrightarrow (\varphi = \mathit{FNot}\;\mathit{FT} \vee \varphi = \mathit{FT})
    \varphi \leq FNot \ FF \longleftrightarrow (\varphi = FNot \ FF \lor \varphi = FF)
    \varphi \leq FNot \ (FVar \ x) \longleftrightarrow (\varphi = FNot \ (FVar \ x) \lor \varphi = FVar \ x)
  by (auto simp: subformula-conn-decomp-simple)
fun simple-not-symb where
simple-not-symb \ (FNot \ \varphi) = (simple \ \varphi) \mid
simple\text{-}not\text{-}symb \ \text{-} = \ True
definition simple-not where
simple-not = all-subformula-st\ simple-not-symb
declare simple-not-def[simp]
lemma simple-not-Not[simp]:
  \neg simple-not (FNot (FAnd \varphi \psi))
  \neg simple-not (FNot (FOr \varphi \psi))
  by auto
```

```
lemma simple-not-step-exists:
  fixes \varphi \psi :: 'v \ propo
  assumes no-equiv \varphi and no-imp \varphi
  shows \psi \preceq \varphi \Longrightarrow \neg simple-not-symb \ \psi \Longrightarrow \exists \ \psi'. \ pushNeg \ \psi \ \psi'
  apply (induct \psi, auto)
  apply (rename-tac \psi, case-tac \psi, auto intro: pushNeg.intros)
  by (metis\ assms(1,2)\ no-imp-Imp(1)\ no-equiv-eq(1)\ no-imp-def\ no-equiv-def
    subformula-in-subformula-not\ subformula-all-subformula-st)+
lemma simple-not-rew:
  fixes \varphi :: 'v \ propo
  assumes noTB: \neg simple-not \varphi and no-equiv: no-equiv \varphi and no-imp: no-imp \varphi
  shows \exists \psi \ \psi' . \ \psi \preceq \varphi \land pushNeg \ \psi \ \psi'
proof -
  have \forall x. simple-not-symb (FF:: 'v propo) \land simple-not-symb FT \land simple-not-symb (FVar (x:: 'v))
    by auto
  moreover {
     fix c:: 'v connective and l :: 'v propo list and \psi :: 'v propo
     have H: pushNeg (conn \ c \ l) \ \psi \Longrightarrow \neg simple-not-symb (conn \ c \ l)
       by (cases conn c l rule: pushNeg.cases) auto
  moreover {
     \mathbf{fix} \ x :: \ 'v
     have H': simple-not\ FT\ simple-not\ FF\ simple-not\ (FVar\ x)
       bv simp-all
  }
  moreover {
     fix \psi :: 'v \ propo
     have \psi \prec \varphi \Longrightarrow \neg simple-not-symb \psi \Longrightarrow \exists \psi'. pushNeg \psi \psi'
       using simple-not-step-exists no-equiv no-imp by blast
  ultimately show ?thesis using no-test-symb-step-exists no TB unfolding simple-not-def by blast
qed
lemma no-T-F-except-top-level-pushNeq1:
  no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FNot (FAnd <math>\varphi \psi)) \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FOr (FNot <math>\varphi)) (FNot \psi))
  \textbf{using } no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel\text{-}all\text{-}subformula\text{-}st\text{-}no\text{-}T\text{-}F\text{-}symb\text{ }no\text{-}T\text{-}F\text{-}comp\text{-}not\text{ }no\text{-}T\text{-}F\text{-}decomp(1) 
    no-T-F-decomp(2) no-T-F-no-T-F-except-top-level by (metis no-T-F-comp-expanded-explicit(2))
      propo.distinct(5,17)
lemma no-T-F-except-top-level-pushNeg2:
  no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FNot (FOr <math>\varphi \psi)) \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FAnd (FNot <math>\varphi)) (FNot \psi))
  by auto
lemma no-T-F-symb-pushNeg:
  no-T-F-symb (FOr (FNot \varphi') (FNot \psi'))
  no-T-F-symb (FAnd (FNot \varphi') (FNot \psi'))
  no-T-F-symb (FNot (FNot \varphi'))
  by auto
lemma propo-rew-step-pushNeg-no-T-F-symb:
  propo-rew-step pushNeg \varphi \psi \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level } \varphi \Longrightarrow no\text{-}T\text{-}F\text{-}symb } \psi \Longrightarrow no\text{-}T\text{-}F\text{-}symb } \psi
  apply (induct rule: propo-rew-step.induct)
  apply (cases rule: pushNeg.cases)
  apply simp-all
```

```
apply (metis\ no\text{-}T\text{-}F\text{-}symb\text{-}pushNeg(1))
 apply (metis\ no\text{-}T\text{-}F\text{-}symb\text{-}pushNeg(2))
 apply (simp, metis all-subformula-st-test-symb-true-phi no-T-F-def)
proof -
  fix \varphi \varphi':: 'a propo and c:: 'a connective and \xi \xi':: 'a propo list
  assume rel: propo-rew-step pushNeg \varphi \varphi'
 and IH: no-T-F \varphi \implies no-T-F-symb \varphi \implies no-T-F-symb \varphi'
  and wf: wf-conn c (\xi @ \varphi \# \xi')
 and n: conn\ c\ (\xi\ @\ \varphi\ \#\ \xi') = FF\ \lor\ conn\ c\ (\xi\ @\ \varphi\ \#\ \xi') = FT\ \lor\ no\ T-F\ (conn\ c\ (\xi\ @\ \varphi\ \#\ \xi'))
 and x: c \neq CF \land c \neq CT \land \varphi \neq FF \land \varphi \neq FT \land (\forall \psi \in set \ \xi \cup set \ \xi'. \ \psi \neq FF \land \psi \neq FT)
  then have c \neq CF \land c \neq CF \land wf\text{-}conn\ c\ (\xi @ \varphi' \# \xi')
   using wf-conn-no-arity-change-helper wf-conn-no-arity-change by metis
  moreover have n': no-T-F (conn\ c\ (\xi\ @\ \varphi\ \#\ \xi')) using n by (simp\ add:\ wf\ wf-conn-list(1,2))
 moreover
   have no-T-F \varphi
     by (metis Un-iff all-subformula-st-decomp list.set-intros(1) n' wf no-T-F-def set-append)
   moreover then have no-T-F-symb \varphi
     by (simp add: all-subformula-st-test-symb-true-phi no-T-F-def)
   ultimately have \varphi' \neq FF \land \varphi' \neq FT
     using IH no-T-F-symb-false(1) no-T-F-symb-false(2) by blast
   then have \forall \psi \in set \ (\xi @ \varphi' \# \xi'). \ \psi \neq FF \land \psi \neq FT \ using \ x \ by \ auto
  ultimately show no-T-F-symb (conn c (\xi @ \varphi' \# \xi')) by (simp add: x)
qed
lemma propo-rew-step-pushNeg-no-T-F:
  propo-rew-step pushNeg \varphi \psi \Longrightarrow no-T-F \varphi \Longrightarrow no-T-F \psi
proof (induct rule: propo-rew-step.induct)
 {\bf case}\ global\text{-}rel
  then show ?case
   by (metis (no-types, lifting) no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb
     no-T-F-def no-T-F-except-top-level-pushNeg1 no-T-F-except-top-level-pushNeg2
     no-T-F-no-T-F-except-top-level \ all-subformula-st-decomp-explicit (3) \ pushNeg.simps
     simple.simps(1,2,5,6))
next
  case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi')
  note rel = this(1) and IH = this(2) and wf = this(3) and no\text{-}T\text{-}F = this(4)
  moreover have wf': wf-conn c (\xi @ \varphi' \# \xi')
   using wf-conn-no-arity-change wf-conn-no-arity-change-helper wf by metis
  ultimately show no-T-F (conn c (\xi \otimes \varphi' \# \xi'))
   using all-subformula-st-test-symb-true-phi
   by (fastforce simp: no-T-F-def all-subformula-st-decomp wf wf')
qed
lemma pushNeg-inv:
 fixes \varphi \psi :: 'v \ propo
 assumes full (propo-rew-step pushNeq) \varphi \psi
 and no-equiv \varphi and no-imp \varphi and no-T-F-except-top-level \varphi
 shows no-equiv \psi and no-imp \psi and no-T-F-except-top-level \psi
proof -
  {
   fix \varphi \psi :: 'v \ propo
   assume rel: propo-rew-step pushNeg \varphi \psi
   and no: no-T-F-except-top-level \varphi
```

```
then have no-T-F-except-top-level \psi
     proof -
       {
         assume \varphi = FT \vee \varphi = FF
         from rel this have False
           apply (induct rule: propo-rew-step.induct)
             using pushNeg.cases apply blast
           using wf-conn-list(1) wf-conn-list(2) by auto
         then have no-T-F-except-top-level \psi by blast
       }
       moreover {
         assume \varphi \neq FT \land \varphi \neq FF
         then have no-T-F \varphi
           by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
         then have no-T-F \psi
           using propo-rew-step-pushNeg-no-T-F rel by auto
         then have no-T-F-except-top-level \psi by (simp add: no-T-F-no-T-F-except-top-level)
       ultimately show no-T-F-except-top-level \psi by metis
     qed
  }
  moreover {
    fix c :: 'v \ connective \ and \ \xi \ \xi' :: 'v \ propo \ list \ and \ \zeta \ \zeta' :: 'v \ propo
    assume rel: propo-rew-step pushNeg \zeta \zeta'
    and incl: \zeta \leq \varphi
    and corr: wf-conn c (\xi @ \zeta \# \xi')
    and no-T-F: no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta \# \xi'))
    and n: no-T-F-symb-except-toplevel \zeta'
    have no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta' \# \xi'))
    proof
      have p: no-T-F-symb (conn c (\xi \otimes \zeta \# \xi'))
        using corr wf-conn-list(1) wf-conn-list(2) no-T-F-symb-except-toplevel-no-T-F-symb no-T-F
      have l: \forall \varphi \in set \ (\xi @ \zeta \# \xi'). \ \varphi \neq FT \land \varphi \neq FF
        using corr wf-conn-no-T-F-symb-iff p by blast
      from rel incl have \zeta' \neq FT \land \zeta' \neq FF
        apply (induction \zeta \zeta' rule: propo-rew-step.induct)
        apply (cases rule: pushNeg.cases, auto)
        by (metis assms(4) no-T-F-symb-except-top-level-false-not no-T-F-except-top-level-def
          all\-subformula\-st\-test\-symb\-true\-phi subformula\-in\-subformula\-not
          subformula-all-subformula-st\ append-is-Nil-conv\ list.distinct(1)
          wf-conn-no-arity-change-helper wf-conn-list(1,2) wf-conn-no-arity-change)+
      then have \forall \varphi \in set \ (\xi \otimes \zeta' \# \xi'). \ \varphi \neq FT \land \varphi \neq FF \ using \ l \ by \ auto
      moreover have c \neq CT \land c \neq CF using corr by auto
      ultimately show no-T-F-symb (conn c (\xi \otimes \zeta' \# \xi'))
        by (metis corr no-T-F-symb-comp wf-conn-no-arity-change wf-conn-no-arity-change-helper)
    qed
  ultimately show no-T-F-except-top-level \psi
   \textbf{using} \ \textit{full-propo-rew-step-inv-stay-with-inc} [\textit{of} \ \textit{pushNeg} \ \textit{no-T-F-symb-except-toplevel} \ \varphi] \ \textit{assms}
     subformula-refl unfolding no-T-F-except-top-level-def full-unfold by metis
next
  {
   fix \varphi \psi :: 'v \ propo
   have H: pushNeg \varphi \psi \Longrightarrow no\text{-}equiv \varphi \Longrightarrow no\text{-}equiv \psi
     by (induct \varphi \psi rule: pushNeg.induct, auto)
```

```
}
  then show no-equiv \psi
    using full-propo-rew-step-inv-stay-conn[of pushNeg no-equiv-symb \varphi \psi]
    no-equiv-symb-conn-characterization assms unfolding no-equiv-def full-unfold by metis
next
  {
    \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
    have H: pushNeg \varphi \psi \Longrightarrow no\text{-imp } \varphi \Longrightarrow no\text{-imp } \psi
      by (induct \varphi \psi rule: pushNeg.induct, auto)
  }
  then show no-imp \psi
    using full-propo-rew-step-inv-stay-conn[of pushNeg no-imp-symb \varphi \psi] assms
      no-imp-symb-conn-characterization unfolding no-imp-def full-unfold by metis
qed
lemma pushNeg-full-propo-rew-step:
 fixes \varphi \psi :: 'v \ propo
  assumes
    no-equiv \varphi and
    no-imp \varphi and
    full (propo-rew-step pushNeg) \varphi \psi and
    no-T-F-except-top-level \varphi
  shows simple-not \psi
  using assms full-propo-rew-step-subformula pushNeq-inv(1,2) simple-not-rew by blast
0.3.5
           Push Inside
inductive push-conn-inside :: 'v connective \Rightarrow 'v connective \Rightarrow 'v propo \Rightarrow 'v propo \Rightarrow bool
 for c c':: 'v connective where
push-conn-inside-l[simp]: c = CAnd \lor c = COr \Longrightarrow c' = CAnd \lor c' = COr
  \implies push\text{-}conn\text{-}inside\ c\ c'\ (conn\ c\ [conn\ c'\ [\varphi 1,\ \varphi 2],\ \psi])
        (conn\ c'\ [conn\ c\ [\varphi 1,\ \psi],\ conn\ c\ [\varphi 2,\ \psi]])\ |
push-conn-inside-r[simp]: c = CAnd \lor c = COr \Longrightarrow c' = CAnd \lor c' = COr
  \implies push\text{-}conn\text{-}inside\ c\ c'\ (conn\ c\ [\psi,\ conn\ c'\ [\varphi 1,\ \varphi 2]])
    (conn\ c'\ [conn\ c\ [\psi,\,\varphi 1],\ conn\ c\ [\psi,\,\varphi 2]])
lemma push-conn-inside-explicit: push-conn-inside c c' \varphi \psi \Longrightarrow \forall A. A \models \varphi \longleftrightarrow A \models \psi
  by (induct \varphi \psi rule: push-conn-inside.induct, auto)
lemma push-conn-inside-consistent: preserve-models (push-conn-inside c c')
  unfolding preserve-models-def by (simp add: push-conn-inside-explicit)
lemma propo-rew-step-push-conn-inside[simp]:
 \neg propo-rew-step (push-conn-inside c c') FT \psi \neg propo-rew-step (push-conn-inside c c') FF \psi
 proof -
  {
     have push-conn-inside c\ c'\ \varphi\ \psi \Longrightarrow \varphi = FT\ \lor \varphi = FF \Longrightarrow False
        by (induct rule: push-conn-inside.induct, auto)
    } note H = this
    fix \varphi
    have propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow \varphi = FT \lor \varphi = FF \Longrightarrow False
      apply (induct rule: propo-rew-step.induct, auto simp: wf-conn-list(1) wf-conn-list(2))
```

```
using H by blast+
  }
  then show
    \neg propo-rew-step \ (push-conn-inside \ c \ c') \ FT \ \psi
     \neg propo-rew-step (push-conn-inside c c') FF \psi by blast+
qed
inductive not-c-in-c'-symb:: 'v connective \Rightarrow 'v connective \Rightarrow 'v propo \Rightarrow bool for c c' where
not\text{-}c\text{-}in\text{-}c'\text{-}symb\text{-}l[simp]: wf\text{-}conn \ c \ [conn \ c' \ [\varphi, \varphi'], \ \psi] \Longrightarrow wf\text{-}conn \ c' \ [\varphi, \varphi']
  \implies not-c-in-c'-symb c c' (conn c [conn c' [\varphi, \varphi'], \psi]) |
not\text{-}c\text{-}in\text{-}c'\text{-}symb\text{-}r[simp]: wf\text{-}conn \ c\ [\psi,\ conn\ c'\ [\varphi,\ \varphi']] \Longrightarrow wf\text{-}conn\ c'\ [\varphi,\ \varphi']
  \implies not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (conn\ c\ [\psi,\ conn\ c'\ [\varphi,\ \varphi']])
abbreviation c-in-c'-symb c c' \varphi \equiv \neg not-c-in-c'-symb c c' \varphi
lemma c-in-c'-symb-simp:
  not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ \xi \Longrightarrow \xi = FF\ \lor\ \xi = FT\ \lor\ \xi = FVar\ x\ \lor\ \xi = FNot\ FF\ \lor\ \xi = FNot\ FT
    \vee \xi = FNot \ (FVar \ x) \Longrightarrow False
  apply (induct rule: not-c-in-c'-symb.induct, auto simp: wf-conn.simps wf-conn-list(1-3))
  using conn-inj-not(2) wf-conn-binary unfolding binary-connectives-def by fastforce+
lemma c-in-c'-symb-simp'[simp]:
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ FF
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ FT
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (FVar\ x)
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (FNot\ FF)
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (FNot\ FT)
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (FNot\ (FVar\ x))
  using c-in-c'-symb-simp by metis+
definition c-in-c'-only where
c\text{-in-}c'\text{-only }c\ c' \equiv all\text{-subformula-st }(c\text{-in-}c'\text{-symb }c\ c')
lemma c-in-c'-only-simp[simp]:
  c-in-c'-only c c' FF
  c-in-c'-only c c' FT
  c-in-c'-only c c' (FVar x)
  c-in-c'-only c c' (FNot FF)
  c-in-c'-only c c' (FNot FT)
  c-in-c'-only c c' (FNot (FVar x))
  unfolding c-in-c'-only-def by auto
lemma not-c-in-c'-symb-commute:
  not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ \xi \Longrightarrow wf\text{-}conn\ c\ [\varphi,\,\psi] \Longrightarrow \xi = conn\ c\ [\varphi,\,\psi]
    \implies not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (conn\ c\ [\psi,\,\varphi])
proof (induct rule: not-c-in-c'-symb.induct)
  case (not-c-in-c'-symb-r \varphi' \varphi'' \psi') note H = this
  then have \psi: \psi = conn \ c' \ [\varphi'', \psi'] using conn-inj by auto
  have wf-conn c [conn c' [\varphi'', \psi'], \varphi]
    using H(1) wf-conn-no-arity-change length-Cons by metis
  then show not-c-in-c'-symb c c' (conn c [\psi, \varphi])
    unfolding \psi using not-c-in-c'-symb.intros(1) H by auto
\mathbf{next}
```

```
case (not-c-in-c'-symb-l \varphi' \varphi'' \psi') note H = this
  then have \varphi = conn \ c' \ [\varphi', \varphi''] using conn-inj by auto
  moreover have wf-conn c [\psi', conn c' [\varphi', \varphi'']]
    using H(1) wf-conn-no-arity-change length-Cons by metis
  ultimately show not-c-in-c'-symb c c' (conn c [\psi, \varphi])
    using not-c-in-c'-symb.intros(2) conn-inj not-c-in-c'-symb-l.hyps
      not\text{-}c\text{-}in\text{-}c'\text{-}symb\text{-}l.prems(1,2) by blast
qed
lemma not-c-in-c'-symb-commute':
  wf-conn c [\varphi, \psi] \implies c-in-c'-symb c c' (conn c [\varphi, \psi]) \longleftrightarrow c-in-c'-symb c c' (conn c [\psi, \varphi])
  using not-c-in-c'-symb-commute wf-conn-no-arity-change by (metis length-Cons)
lemma not-c-in-c'-comm:
  assumes wf: wf-conn c [\varphi, \psi]
  shows c-in-c'-only c c' (conn c [\varphi, \psi]) \longleftrightarrow c-in-c'-only c c' (conn c [\psi, \varphi]) (is ?A \longleftrightarrow ?B)
proof -
  have ?A \longleftrightarrow (c\text{-in-}c'\text{-symb } c \ c' \ (conn \ c \ [\varphi, \psi])
                \land (\forall \xi \in set \ [\varphi, \psi]. \ all\text{-subformula-st} \ (c\text{-in-}c'\text{-symb} \ c \ c') \ \xi))
    using all-subformula-st-decomp wf unfolding c-in-c'-only-def by fastforce
  also have ... \longleftrightarrow (c\text{-in-}c'\text{-symb }c\ c'\ (conn\ c\ [\psi,\ \varphi])
                     \land (\forall \xi \in set \ [\psi, \varphi]. \ all\text{-subformula-st} \ (c\text{-in-}c'\text{-symb} \ c \ c') \ \xi))
    using not-c-in-c'-symb-commute' wf by auto
  also
    have wf-conn c [\psi, \varphi] using wf-conn-no-arity-change wf by (metis length-Cons)
    then have (c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (conn\ c\ [\psi,\ \varphi])
             \land (\forall \xi \in set \ [\psi, \varphi]. \ all\text{-subformula-st} \ (c\text{-in-}c'\text{-symb} \ c \ c') \ \xi))
      using all-subformula-st-decomp unfolding c-in-c'-only-def by fastforce
  finally show ?thesis.
qed
lemma not-c-in-c'-simp[simp]:
  fixes \varphi 1 \varphi 2 \psi :: 'v \text{ propo and } x :: 'v
  shows
  c-in-c'-symb c c' FT
  c-in-c'-symb c c' FF
  c-in-c'-symb c c' (FVar x)
  wf-conn c [conn c' [\varphi 1, \varphi 2], \psi] \Longrightarrow wf-conn c' [\varphi 1, \varphi 2]
    \implies \neg c\text{-in-}c'\text{-only }c\ c'\ (conn\ c\ [conn\ c'\ [\varphi 1,\ \varphi 2],\ \psi])
  apply (simp-all add: c-in-c'-only-def)
  using all-subformula-st-test-symb-true-phi not-c-in-c'-symb-l by blast
lemma c-in-c'-symb-not[simp]:
  fixes c c' :: 'v connective and \psi :: 'v propo
  shows c-in-c'-symb c c' (FNot \psi)
proof -
    fix \xi :: 'v propo
    have not-c-in-c'-symb c c' (FNot \psi) \Longrightarrow False
      apply (induct FNot \psi rule: not-c-in-c'-symb.induct)
      using conn-inj-not(2) by blast+
 then show ?thesis by auto
qed
```

```
lemma c-in-c'-symb-step-exists:
  fixes \varphi :: 'v \ propo
  assumes c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr
  shows \psi \leq \varphi \Longrightarrow \neg c\text{-in-}c'\text{-symb }c\ c'\ \psi \Longrightarrow \exists\ \psi'.\ push-conn\text{-inside }c\ c'\ \psi\ \psi'
  apply (induct \psi rule: propo-induct-arity)
  apply auto[2]
proof -
  fix \psi 1 \ \psi 2 \ \varphi' :: 'v \ propo
  assume IH\psi 1: \psi 1 \leq \varphi \implies \neg c\text{-in-}c'\text{-symb } c \ c' \ \psi 1 \implies Ex \ (push-conn-inside \ c \ c' \ \psi 1)
  and IH\psi 2: \psi 1 \leq \varphi \Longrightarrow \neg c\text{-in-}c'\text{-symb } c \ c' \ \psi 1 \Longrightarrow Ex \ (push-conn-inside \ c \ c' \ \psi 1)
  and \varphi': \varphi' = FAnd \ \psi 1 \ \psi 2 \lor \varphi' = FOr \ \psi 1 \ \psi 2 \lor \varphi' = FImp \ \psi 1 \ \psi 2 \lor \varphi' = FEq \ \psi 1 \ \psi 2
  and in\varphi: \varphi' \preceq \varphi and n\theta: \neg c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ \varphi'
  then have n: not-c-in-c'-symb c c' \varphi' by auto
    assume \varphi': \varphi' = conn \ c \ [\psi 1, \psi 2]
    obtain a b where \psi 1 = conn \ c' [a, b] \lor \psi 2 = conn \ c' [a, b]
      using n \varphi' apply (induct rule: not-c-in-c'-symb.induct)
      using c by force+
    then have Ex (push-conn-inside c c' \varphi')
      unfolding \varphi' apply auto
      using push-conn-inside.intros(1) c c' apply blast
      using push-conn-inside.intros(2) c c' by blast
  }
  moreover {
     assume \varphi': \varphi' \neq conn \ c \ [\psi 1, \psi 2]
     have \forall \varphi \ c \ ca. \ \exists \varphi 1 \ \psi 1 \ \psi 2 \ \psi 1' \ \psi 2' \ \varphi 2'. \ conn \ (c::'v \ connective) \ [\varphi 1, \ conn \ ca \ [\psi 1, \psi 2]] = \varphi
              \vee conn c [conn ca [\psi 1', \psi 2'], \varphi 2'] = \varphi \vee c-in-c'-symb c ca \varphi
       by (metis not-c-in-c'-symb.cases)
     then have Ex (push-conn-inside c c' \varphi')
       by (metis (no-types) c c' n push-conn-inside-l push-conn-inside-r)
  }
  ultimately show Ex (push-conn-inside c c' \varphi') by blast
qed
lemma c-in-c'-symb-rew:
  fixes \varphi :: 'v \ propo
  assumes noTB: \neg c\text{-}in\text{-}c'\text{-}only\ c\ c'\ \varphi
  and c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr
  shows \exists \psi \ \psi' . \ \psi \leq \varphi \land push-conn-inside \ c \ c' \ \psi \ \psi'
proof -
  have test-symb-false-nullary:
    \forall x. \ c\text{-in-}c'\text{-symb} \ c \ c' \ (FF:: \ 'v \ propo) \land c\text{-in-}c'\text{-symb} \ c \ c' \ FT
      \land c\text{-in-}c'\text{-symb}\ c\ c'\ (FVar\ (x::\ 'v))
    by auto
  moreover {
    \mathbf{fix}\ x::\ 'v
    have H': c-in-c'-symb c c' FT c-in-c'-symb c c' FF c-in-c'-symb c c' (FVar x)
  }
  moreover {
    fix \psi :: 'v \ propo
    have \psi \leq \varphi \Longrightarrow \neg c\text{-in-}c'\text{-symb }c\ c'\ \psi \Longrightarrow \exists\ \psi'.\ push-conn-inside\ c\ c'\ \psi\ \psi'
      by (auto simp: assms(2) \ c' \ c-in-c'-symb-step-exists)
  ultimately show ?thesis using noTB no-test-symb-step-exists[of c-in-c'-symb c c']
```

```
unfolding c-in-c'-only-def by metis
qed
lemma push-conn-insidec-in-c'-symb-no-T-F:
  fixes \varphi \psi :: 'v \ propo
  shows propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow no\text{-}T\text{-}F \ \varphi \Longrightarrow no\text{-}T\text{-}F \ \psi
proof (induct rule: propo-rew-step.induct)
  case (global-rel \varphi \psi)
  then show no-T-F \psi
    by (cases rule: push-conn-inside.cases, auto)
  case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi')
  note rel = this(1) and IH = this(2) and wf = this(3) and no-T-F = this(4)
  have no-T-F \varphi
    \mathbf{using} \ wf \ no\text{-}T\text{-}F \ no\text{-}T\text{-}F \ def \ subformula-into-subformula} \ subformula-all-subformula-st
    subformula-refl by (metis (no-types) in-set-conv-decomp)
  then have \varphi': no-T-F \varphi' using IH by blast
 have \forall \zeta \in set \ (\xi @ \varphi \# \xi'). no-T-F \zeta by (metis wf no-T-F no-T-F-def all-subformula-st-decomp)
  then have n: \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). \ no\text{-}T\text{-}F \ \zeta \ using \ \varphi' \ by \ auto
  then have n': \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). \ \zeta \neq FF \land \zeta \neq FT
    using \varphi' by (metis\ no\text{-}T\text{-}F\text{-}symb\text{-}false(1)\ no\text{-}T\text{-}F\text{-}symb\text{-}false(2)\ no\text{-}T\text{-}F\text{-}def
      all-subformula-st-test-symb-true-phi)
 have wf': wf-conn c (\xi @ \varphi' \# \xi')
    using wf wf-conn-no-arity-change by (metis wf-conn-no-arity-change-helper)
  {
    \mathbf{fix} \ x :: \ 'v
    assume c = CT \lor c = CF \lor c = CVar x
    then have False using wf by auto
    then have no-T-F (conn c (\xi @ \varphi' \# \xi')) by blast
  moreover {
    assume c: c = CNot
    then have \xi = [] \xi' = [] using wf by auto
    then have no-T-F (conn c (\xi @ \varphi' \# \xi'))
      using c by (metis \varphi' conn.simps(4) no-T-F-symb-false(1,2) no-T-F-symb-fnot no-T-F-def
        all-subformula-st-decomp-explicit(3) all-subformula-st-test-symb-true-phi self-append-conv2)
  }
  moreover {
    assume c: c \in binary\text{-}connectives
    then have no-T-F-symb (conn c (\xi \otimes \varphi' \# \xi')) using wf' n' no-T-F-symb.simps by fastforce
    then have no-T-F (conn c (\xi @ \varphi' \# \xi'))
      by (metis all-subformula-st-decomp-imp wf' n no-T-F-def)
  ultimately show no-T-F (conn c (\xi @ \varphi' \# \xi')) using connective-cases-arity by auto
qed
\mathbf{lemma}\ simple-propo-rew-step-push-conn-inside-inv:
propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow simple \varphi \Longrightarrow simple \psi
  apply (induct rule: propo-rew-step.induct)
 apply (rename-tac \varphi, case-tac \varphi, auto simp: push-conn-inside.simps)
 \mathbf{by}\ (\textit{metis append-is-Nil-conv list.distinct}(1)\ \textit{simple.elims}(2)\ \textit{wf-conn-list}(1-3))
```

```
\mathbf{lemma}\ simple-propo-rew-step-inv-push-conn-inside-simple-not:
   fixes c c' :: 'v connective and \varphi \psi :: 'v propo
   shows propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow simple-not \varphi \Longrightarrow simple-not \psi
proof (induct rule: propo-rew-step.induct)
   case (global-rel \varphi \psi)
   then show ?case by (cases \varphi, auto simp: push-conn-inside.simps)
next
   case (propo-rew-one-step-lift \varphi \varphi' ca \xi \xi') note rew = this(1) and IH = this(2) and wf = this(3)
    and simple = this(4)
   show ?case
      proof (cases ca rule: connective-cases-arity)
         case nullary
         then show ?thesis using propo-rew-one-step-lift by auto
         case binary note ca = this
         obtain a b where ab: \xi @ \varphi' \# \xi' = [a, b]
             using wf ca list-length2-decomp wf-conn-bin-list-length
             by (metis (no-types) wf-conn-no-arity-change-helper)
         have \forall \zeta \in set \ (\xi @ \varphi \# \xi'). simple-not \zeta
             \mathbf{by}\ (\mathit{metis}\ \mathit{wf}\ \mathit{all-subformula-st-decomp}\ \mathit{simple}\ \mathit{simple-not-def})
         then have \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). simple-not \ \zeta \ using \ IH \ by \ simple-not \ \zeta \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ using \ IH \ by \ simple-not \ G \ \ using \ G \ using 
         moreover have simple-not-symb (conn ca (\xi @ \varphi' \# \xi')) using ca
         by (metis\ ab\ conn.simps(5-8)\ helper-fact\ simple-not-symb.simps(5)\ simple-not-symb.simps(6)
                simple-not-symb.simps(7) simple-not-symb.simps(8))
         ultimately show ?thesis
            by (simp add: ab all-subformula-st-decomp ca)
      next
         case unary
         then show ?thesis
              using rew simple-propo-rew-step-push-conn-inside-inv[OF rew] IH local.wf simple by auto
      qed
qed
\mathbf{lemma}\ propo-rew-step-push-conn-inside-simple-not:
   fixes \varphi \varphi' :: 'v \text{ propo and } \xi \xi' :: 'v \text{ propo list and } c :: 'v \text{ connective}
   assumes
      propo-rew-step (push-conn-inside c c') \varphi \varphi' and
      wf-conn c (\xi \otimes \varphi \# \xi') and
      simple-not-symb \ (conn \ c \ (\xi @ \varphi \# \xi')) and
      simple-not-symb \varphi'
   shows simple-not-symb (conn c (\xi \otimes \varphi' \# \xi'))
   using assms
proof (induction rule: propo-rew-step.induct)
print-cases
   case (global-rel)
   then show ?case
      by (metis conn.simps(12,17) list.discI push-conn-inside.cases simple-not-symb.elims(3)
         wf-conn-helper-facts(5) wf-conn-list(2) wf-conn-list(8) wf-conn-no-arity-change
         wf-conn-no-arity-change-helper)
   case (propo-rew-one-step-lift \varphi \varphi' c' \chi s \chi s') note tel = this(1) and wf = this(2) and
       IH = this(3) and wf' = this(4) and simple' = this(5) and simple = this(6)
   then show ?case
      proof (cases c' rule: connective-cases-arity)
         case nullary
         then show ?thesis using wf simple simple' by auto
```

```
next
     case binary note c = this(1)
     have corr': wf-conn c (\xi @ conn c' (\chi s @ \varphi' # \chi s') # \xi')
       using wf wf-conn-no-arity-change
       by (metis wf' wf-conn-no-arity-change-helper)
     then show ?thesis
       using c propo-rew-one-step-lift wf
       by (metis conn.simps(17) connective.distinct(37) propo-rew-step-subformula-imp
         push-conn-inside.cases\ simple-not-symb.elims(3)\ wf-conn.simps\ wf-conn-list(2,8))
   next
     case unary
     then have empty: \chi s = [] \chi s' = [] using wf by auto
     then show ?thesis using simple unary simple' wf wf'
       by (metis connective.distinct(37) connective.distinct(39) propo-rew-step-subformula-imp
         push-conn-inside.cases\ simple-not-symb.elims(3)\ tel\ wf-conn-list(8)
         wf-conn-no-arity-change wf-conn-no-arity-change-helper)
   qed
qed
lemma push-conn-inside-not-true-false:
  push-conn-inside c c' \varphi \psi \Longrightarrow \psi \neq FT \land \psi \neq FF
  by (induct rule: push-conn-inside.induct, auto)
\mathbf{lemma} \ \mathit{push-conn-inside-inv} :
  fixes \varphi \psi :: 'v \ propo
 assumes full (propo-rew-step (push-conn-inside c c')) \varphi \psi
 and no-equiv \varphi and no-imp \varphi and no-T-F-except-top-level \varphi and simple-not \varphi
 shows no-equiv \psi and no-imp \psi and no-T-F-except-top-level \psi and simple-not \psi
proof -
  {
    {
       fix \varphi \psi :: 'v \ propo
       have H: push-conn-inside c c' \varphi \psi \Longrightarrow all-subformula-st simple-not-symb \varphi
         \implies all-subformula-st simple-not-symb \psi
         by (induct \varphi \psi rule: push-conn-inside.induct, auto)
    } note H = this
   fix \varphi \psi :: 'v \ propo
   have H: propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow all-subformula-st simple-not-symb \varphi
     \implies all-subformula-st simple-not-symb \psi
     apply (induct \varphi \psi rule: propo-rew-step.induct)
     using H apply simp
     proof (rename-tac \varphi \varphi' ca \psi s \psi s', case-tac ca rule: connective-cases-arity)
       fix \varphi \varphi' :: 'v \text{ propo and } c:: 'v \text{ connective and } \xi \xi':: 'v \text{ propo list}
       and x:: 'v
       assume wf-conn c (\xi @ \varphi \# \xi')
       and c = CT \lor c = CF \lor c = CVar x
       then have \xi @ \varphi \# \xi' = [] by auto
       then have False by auto
       then show all-subformula-st simple-not-symb (conn c (\xi \otimes \varphi' \# \xi')) by blast
     next
       fix \varphi \varphi' :: 'v \text{ propo and } ca:: 'v \text{ connective and } \xi \xi':: 'v \text{ propo list}
       and x :: 'v
       assume rel: propo-rew-step (push-conn-inside c c') \varphi \varphi'
       and \varphi-\varphi': all-subformula-st simple-not-symb \varphi \Longrightarrow all-subformula-st simple-not-symb \varphi'
       and corr: wf-conn ca (\xi @ \varphi \# \xi')
```

```
and n: all-subformula-st simple-not-symb (conn ca (\xi @ \varphi \# \xi'))
     and c: ca = CNot
     have empty: \xi = [ ] \xi' = [ ] using c corr by auto
     then have simple-not:all-subformula-st simple-not-symb (FNot \varphi) using corr c n by auto
     then have simple \varphi
       using all-subformula-st-test-symb-true-phi simple-not-symb.simps(1) by blast
     then have simple \varphi'
       using rel simple-propo-rew-step-push-conn-inside-inv by blast
     then show all-subformula-st simple-not-symb (conn ca (\xi @ \varphi' \# \xi')) using c empty
       by (metis simple-not \varphi - \varphi' append-Nil conn.simps(4) all-subformula-st-decomp-explicit(3)
         simple-not-symb.simps(1))
   next
     fix \varphi \varphi' :: 'v \text{ propo and } ca :: 'v \text{ connective and } \xi \xi' :: 'v \text{ propo list}
     and x :: 'v
     assume rel: propo-rew-step (push-conn-inside c c') \varphi \varphi'
     and n\varphi: all-subformula-st simple-not-symb \varphi \implies all-subformula-st simple-not-symb \varphi'
     and corr: wf-conn ca (\xi \otimes \varphi \# \xi')
     and n: all-subformula-st simple-not-symb (conn ca (\xi @ \varphi \# \xi'))
     and c: ca \in binary\text{-}connectives
     have all-subformula-st simple-not-symb \varphi
       using n c corr all-subformula-st-decomp by fastforce
     then have \varphi': all-subformula-st simple-not-symb \varphi' using n\varphi by blast
     obtain a b where ab: [a, b] = (\xi @ \varphi \# \xi')
       using corr c list-length2-decomp wf-conn-bin-list-length by metis
     then have \xi @ \varphi' \# \xi' = [a, \varphi'] \lor (\xi @ \varphi' \# \xi') = [\varphi', b]
       using ab by (metis (no-types, opaque-lifting) append-Cons append-Nil append-Nil2
         append-is-Nil-conv\ butlast.simps(2)\ butlast-append\ list.sel(3)\ tl-append2)
     moreover
     {
        fix \chi :: 'v \ propo
        have wf': wf-conn ca [a, b]
          using ab corr by presburger
        \mathbf{have}\ \mathit{all-subformula-st\ simple-not-symb}\ (\mathit{conn}\ \mathit{ca}\ [\mathit{a},\ \mathit{b}])
          using ab n by presburger
        then have all-subformula-st simple-not-symb \chi \vee \chi \notin set \ (\xi @ \varphi' \# \xi')
          using wf' by (metis (no-types) \varphi' all-subformula-st-decomp calculation insert-iff
            list.set(2)
     then have \forall \varphi. \varphi \in set \ (\xi @ \varphi' \# \xi') \longrightarrow all\text{-subformula-st simple-not-symb} \ \varphi
         by (metis (no-types))
     moreover have simple-not-symb (conn ca (\xi @ \varphi' \# \xi'))
       using ab conn-inj-not(1) corr wf-conn-list-decomp(4) wf-conn-no-arity-change
         not	ext{-}Cons	ext{-}self2 \ self	ext{-}append	ext{-}conv2 \ simple	ext{-}not	ext{-}symb.elims(3) \ \mathbf{by} \ (metis \ (no	ext{-}types) \ c
         calculation(1) wf-conn-binary)
     moreover have wf-conn ca (\xi \otimes \varphi' \# \xi') using c calculation(1) by auto
     ultimately show all-subformula-st simple-not-symb (conn ca (\xi @ \varphi' \# \xi'))
       by (metis all-subformula-st-decomp-imp)
   qed
}
moreover {
  fix ca :: 'v \ connective \ and \ \xi \ \xi' :: 'v \ propo \ list \ and \ \varphi \ \varphi' :: 'v \ propo
  have propo-rew-step (push-conn-inside c c') \varphi \varphi' \Longrightarrow wf-conn ca (\xi @ \varphi \# \xi')
    \implies simple-not-symb (conn ca (\xi @ \varphi \# \xi')) \implies simple-not-symb \varphi'
```

```
\implies simple-not-symb (conn ca (\xi @ \varphi' \# \xi'))
      by (metis append-self-conv2 conn.simps(4) conn-inj-not(1) simple-not-symb.elims(3)
        simple-not-symb.simps(1) simple-propo-rew-step-push-conn-inside-inv
        wf-conn-no-arity-change-helper wf-conn-list-decomp(4) wf-conn-no-arity-change)
 ultimately show simple-not \ \psi
   using full-propo-rew-step-inv-stay'[of push-conn-inside c c' simple-not-symb] assms
   unfolding no-T-F-except-top-level-def simple-not-def full-unfold by metis
next
  {
   fix \varphi \psi :: 'v \ propo
   have H: propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow no-T-F-except-top-level \varphi
     \implies no-T-F-except-top-level \psi
     proof -
       assume rel: propo-rew-step (push-conn-inside c c') \varphi \psi
       and no-T-F-except-top-level \varphi
       then have no-T-F \varphi \vee \varphi = FF \vee \varphi = FT
         by (metis no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
       moreover {
         assume \varphi = FF \vee \varphi = FT
         then have False using rel propo-rew-step-push-conn-inside by blast
         then have no-T-F-except-top-level \psi by blast
       }
       moreover {
         assume no-T-F \varphi \land \varphi \neq FF \land \varphi \neq FT
         then have no-T-F \psi using rel push-conn-insidec-in-c'-symb-no-T-F by blast
         then have no-T-F-except-top-level \psi using no-T-F-no-T-F-except-top-level by blast
       ultimately show no-T-F-except-top-level \psi by blast
     qed
 }
 moreover {
    fix ca :: 'v \ connective \ and \ \xi \ \xi' :: 'v \ propo \ list \ and \ \varphi \ \varphi' :: 'v \ propo
    assume rel: propo-rew-step (push-conn-inside c c') \varphi \varphi'
    assume corr: wf-conn ca (\xi @ \varphi \# \xi')
    then have c: ca \neq CT \land ca \neq CF by auto
    assume no-T-F: no-T-F-symb-except-toplevel (conn ca (\xi @ \varphi \# \xi'))
    have no-T-F-symb-except-toplevel (conn ca (\xi \otimes \varphi' \# \xi'))
    proof
      have c: ca \neq CT \land ca \neq CF using corr by auto
      have \zeta: \forall \zeta \in set \ (\xi @ \varphi \# \xi'). \zeta \neq FT \land \zeta \neq FF
        using corr no-T-F no-T-F-symb-except-toplevel-if-is-a-true-false by blast
      then have \varphi \neq FT \land \varphi \neq FF by auto
      from rel this have \varphi' \neq FT \land \varphi' \neq FF
        apply (induct rule: propo-rew-step.induct)
        by (metis\ append-is-Nil-conv\ conn.simps(2)\ conn-inj\ list.distinct(1)
          wf-conn-helper-facts(3) wf-conn-list(1) wf-conn-no-arity-change
          wf\text{-}conn\text{-}no\text{-}arity\text{-}change\text{-}helper\ push\text{-}conn\text{-}inside\text{-}not\text{-}true\text{-}false) +
      then have \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). \ \zeta \neq FT \land \zeta \neq FF \ using \ \zeta \ by \ auto
      moreover have wf-conn ca (\xi @ \varphi' \# \xi')
        using corr wf-conn-no-arity-change by (metis wf-conn-no-arity-change-helper)
      ultimately show no-T-F-symb (conn ca (\xi @ \varphi' \# \xi')) using no-T-F-symb intros c by metis
    qed
  ultimately show no-T-F-except-top-level \psi
   using full-propo-rew-step-inv-stay'[of push-conn-inside c c' no-T-F-symb-except-toplevel]
```

```
next
   \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
   have H: push-conn-inside c c' \varphi \psi \Longrightarrow no-equiv \varphi \Longrightarrow no-equiv \psi
      by (induct \varphi \psi rule: push-conn-inside.induct, auto)
  then show no-equiv \psi
   using full-propo-rew-step-inv-stay-conn[of push-conn-inside c c' no-equiv-symb] assms
   no-equiv-symb-conn-characterization unfolding no-equiv-def by metis
\mathbf{next}
  {
   fix \varphi \psi :: 'v \ propo
   have H: push-conn-inside c c' \varphi \psi \implies no\text{-imp } \varphi \implies no\text{-imp } \psi
      by (induct \varphi \psi rule: push-conn-inside.induct, auto)
  then show no-imp \psi
   using full-propo-rew-step-inv-stay-conn[of push-conn-inside c c' no-imp-symb] assms
    no-imp-symb-conn-characterization unfolding no-imp-def by metis
qed
lemma push-conn-inside-full-propo-rew-step:
  fixes \varphi \psi :: 'v \ propo
  assumes
   no-equiv \varphi and
   no-imp \varphi and
   full (propo-rew-step (push-conn-inside c c')) \varphi \psi and
   no-T-F-except-top-level <math>\varphi and
   simple-not \varphi and
   c = CAnd \lor c = COr and
   c' = CAnd \lor c' = COr
  shows c-in-c'-only c c' \psi
  \mathbf{using}\ c\text{-}in\text{-}c'\text{-}symb\text{-}rew\ assms\ full\text{-}propo\text{-}rew\text{-}step\text{-}subformula\ }\mathbf{by}\ blast
Only one type of connective in the formula (+ \text{ not})
inductive only-c-inside-symb :: 'v connective \Rightarrow 'v propo \Rightarrow bool for c :: 'v connective where
simple-only-c-inside[simp]: simple \varphi \implies only-c-inside-symb \ c \ \varphi \ |
simple-cnot-only-c-inside[simp]: simple \varphi \implies only-c-inside-symb \ c \ (FNot \ \varphi)
only-c-inside-into-only-c-inside: wf-conn c \ l \implies only-c-inside-symb c \ (conn \ c \ l)
lemma only-c-inside-symb-simp[simp]:
  only-c-inside-symb c FF only-c-inside-symb c FT only-c-inside-symb c (FVar x) by auto
definition only-c-inside where only-c-inside c = all-subformula-st (only-c-inside-symb c)
lemma only-c-inside-symb-decomp:
  only-c-inside-symb c \psi \longleftrightarrow (simple \psi)
                               \vee (\exists \varphi'. \psi = FNot \varphi' \wedge simple \varphi')
                               \vee (\exists l. \ \psi = conn \ c \ l \land wf\text{-}conn \ c \ l))
 by (auto simp: only-c-inside-symb.intros(3)) (induct rule: only-c-inside-symb.induct, auto)
```

```
lemma only-c-inside-symb-decomp-not[simp]:
  fixes c :: 'v \ connective
  assumes c: c \neq CNot
  shows only-c-inside-symb c (FNot \psi) \longleftrightarrow simple \psi
 apply (auto simp: only-c-inside-symb.intros(3))
 by (induct FNot \psi rule: only-c-inside-symb.induct, auto simp: wf-conn-list(8) c)
lemma only-c-inside-decomp-not[simp]:
  assumes c: c \neq CNot
  shows only-c-inside c (FNot \psi) \longleftrightarrow simple \psi
  by (metis\ (no-types,\ opaque-lifting)\ all-subformula-st-def\ all-subformula-st-test-symb-true-phi\ c
   only\text{-}c\text{-}inside\text{-}def \ only\text{-}c\text{-}inside\text{-}symb\text{-}decomp\text{-}not \ simple\text{-}only\text{-}c\text{-}inside}
    subformula-conn-decomp-simple)
{f lemma} only-c-inside-decomp:
  only-c-inside c \varphi \longleftrightarrow
   (\forall \psi. \ \psi \preceq \varphi \longrightarrow (simple \ \psi \lor (\exists \ \varphi'. \ \psi = FNot \ \varphi' \land simple \ \varphi')
                   \vee (\exists l. \ \psi = conn \ c \ l \land wf\text{-}conn \ c \ l)))
  unfolding only-c-inside-def by (auto simp: all-subformula-st-def only-c-inside-symb-decomp)
lemma only-c-inside-c-c'-false:
  fixes c c' :: 'v connective and l :: 'v propo list and \varphi :: 'v propo
  assumes cc': c \neq c' and c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr
 and only: only-c-inside c \varphi and incl: conn c' l \preceq \varphi and wf: wf-conn c' l
 shows False
proof -
  let ?\psi = conn \ c' \ l
 have simple ?\psi \lor (\exists \varphi'. ?\psi = FNot \varphi' \land simple \varphi') \lor (\exists l. ?\psi = conn \ c \ l \land wf\text{-}conn \ c \ l)
   using only-c-inside-decomp only incl by blast
 moreover have \neg simple ?\psi
   using wf simple-decomp by (metis c' connective.distinct(19) connective.distinct(7,9,21,29,31)
     wf-conn-list(1-3)
  moreover
    {
     fix \varphi'
     have ?\psi \neq FNot \varphi' using c' conn-inj-not(1) wf by blast
  ultimately obtain l: 'v propo list where ?\psi = conn \ c \ l \land wf-conn c \ l by metis
  then have c = c' using conn-inj wf by metis
  then show False using cc' by auto
qed
lemma only-c-inside-implies-c-in-c'-symb:
  assumes \delta: c \neq c' and c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr
  shows only-c-inside c \varphi \Longrightarrow c-in-c'-symb c c' \varphi
 apply (rule ccontr)
 apply (cases rule: not-c-in-c'-symb.cases, auto)
  by (metis \delta c c' connective distinct (37,39) list distinct (1) only-c-inside-c-c'-false
   subformula-in-binary-conn(1,2) wf-conn.simps)+
lemma c-in-c'-symb-decomp-level1:
  fixes l :: 'v \text{ propo list and } c \ c' \ ca :: 'v \ connective
  shows wf-conn ca l \Longrightarrow ca \neq c \Longrightarrow c-in-c'-symb c c' (conn ca l)
proof -
```

```
have not-c-in-c'-symb c c' (conn ca l) \Longrightarrow wf-conn ca l \Longrightarrow ca = c
   by (induct conn ca l rule: not-c-in-c'-symb.induct, auto simp: conn-inj)
 then show wf-conn ca l \Longrightarrow ca \neq c \Longrightarrow c-in-c'-symb c c' (conn ca l) by blast
qed
lemma only-c-inside-implies-c-in-c'-only:
  assumes \delta: c \neq c' and c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr
 shows only-c-inside c \varphi \Longrightarrow c-in-c'-only c c' \varphi
 unfolding c-in-c'-only-def all-subformula-st-def
 using only-c-inside-implies-c-in-c'-symb
   by (metis all-subformula-st-def assms(1) c c' only-c-inside-def subformula-trans)
lemma c-in-c'-symb-c-implies-only-c-inside:
 assumes \delta: c = CAnd \lor c = COr c' = CAnd \lor c' = COr c \neq c' and wf: wf-conn c \ [\varphi, \psi]
 and inv: no-equiv (conn c l) no-imp (conn c l) simple-not (conn c l)
 shows wf-conn c \ l \Longrightarrow c-in-c'-only c \ c' \ (conn \ c \ l) \Longrightarrow (\forall \psi \in set \ l. \ only-c-inside c \ \psi)
using inv
proof (induct conn c l arbitrary: l rule: propo-induct-arity)
 case (nullary x)
 then show ?case by (auto simp: wf-conn-list assms)
next
 case (unary \varphi la)
 then have c = CNot \wedge la = [\varphi] by (metis (no-types) \text{ wf-conn-list}(8))
 then show ?case using assms(2) assms(1) by blast
next
 case (binary \varphi 1 \varphi 2)
 note IH\varphi 1 = this(1) and IH\varphi 2 = this(2) and \varphi = this(3) and only = this(5) and wf = this(4)
   and no-equiv = this(6) and no-imp = this(7) and simple-not = this(8)
  then have l: l = [\varphi 1, \varphi 2] by (meson \ wf\text{-}conn\text{-}list(4-7))
 let ?\varphi = conn \ c \ l
 obtain c1 l1 c2 l2 where \varphi 1: \varphi 1 = conn \ c1 \ l1 and wf \varphi 1: wf-conn c1 l1
   and \varphi 2: \varphi 2 = conn \ c2 \ l2 and wf \varphi 2: wf-conn c2 \ l2 using exists-c-conn by metis
  then have c-in-only \varphi1: c-in-c'-only c c' (conn c1 l1) and c-in-c'-only c c' (conn c2 l2)
   using only l unfolding c-in-c'-only-def using assms(1) by auto
 have inc\varphi 1: \varphi 1 \leq \varphi and inc\varphi 2: \varphi 2 \leq \varphi
   using \varphi 1 \varphi 2 \varphi local wf by (metric conn.simps(5-8) helper-fact subformula-in-binary-conn(1,2))+
 have c1-eq: c1 \neq CEq and c2-eq: c2 \neq CEq
   unfolding no-equiv-def using inc\varphi 1 inc\varphi 2 by (metis \varphi 1 \varphi 2 wf\varphi 1 wf\varphi 2 assms(1) no-equiv
     no-equiv-eq(1) no-equiv-symb.elims(3) no-equiv-symb-conn-characterization wf-conn-list(4,5)
     no-equiv-def subformula-all-subformula-st)+
 have c1-imp: c1 \neq CImp and c2-imp: c2 \neq CImp
   using no-imp by (metis \varphi 1 \varphi 2 all-subformula-st-decomp-explicit-imp(2,3) assms(1)
     conn.simps(5,6) l no-imp-Imp(1) no-imp-symb.elims(3) no-imp-symb-conn-characterization
     wf\varphi 1 \ wf\varphi 2 \ all-subformula-st-decomp \ no-imp-symb-conn-characterization)+
 have c1c: c1 \neq c'
   proof
     assume c1c: c1 = c'
     then obtain \xi 1 \ \xi 2 where l1: l1 = [\xi 1, \xi 2]
       by (metis assms(2) connective.distinct(37,39) helper-fact wf \varphi1 wf-conn.simps
         wf-conn-list-decomp(1-3))
     have c-in-c'-only c c' (conn c [conn c' l1, \varphi 2]) using c1c l only \varphi 1 by auto
     moreover have not-c-in-c'-symb c c' (conn c [conn c' l1, \varphi 2])
```

```
using l1 \varphi1 c1c l local.wf not-c-in-c'-symb-l wf\varphi1 by blast
   ultimately show False using \varphi 1 c1c l l1 local.wf not-c-in-c'-simp(4) wf\varphi 1 by blast
qed
then have (\varphi 1 = conn \ c \ l1 \land wf\text{-}conn \ c \ l1) \lor (\exists \psi 1. \ \varphi 1 = FNot \ \psi 1) \lor simple \ \varphi 1
 by (metis \ \varphi 1 \ assms(1-3) \ c1-eq c1-imp simple.elims(3) \ wf \varphi 1 \ wf-conn-list(4) \ wf-conn-list(5-7))
moreover {
 assume \varphi 1 = conn \ c \ l1 \land wf\text{-}conn \ c \ l1
 then have only-c-inside c \varphi 1
   by (metis IH\varphi 1 \ \varphi 1 all-subformula-st-decomp-imp in c\varphi 1 no-equiv no-equiv-def no-imp no-imp-def
     c-in-only\varphi1 only-c-inside-def only-c-inside-into-only-c-inside simple-not simple-not-def
     subformula-all-subformula-st)
}
moreover {
 assume \exists \psi 1. \varphi 1 = FNot \psi 1
 then obtain \psi 1 where \varphi 1 = FNot \ \psi 1 by metis
 then have only-c-inside c \varphi 1
   by (metis all-subformula-st-def assms(1) connective.distinct(37,39) inc\varphi 1
      only-c-inside-decomp-not simple-not simple-not-def simple-not-symb.simps(1))
}
moreover {
 assume simple \varphi 1
 then have only-c-inside c \varphi 1
   by (metis\ all-subformula-st-decomp-explicit(3)\ assms(1)\ connective.distinct(37,39)
     only-c-inside-decomp-not only-c-inside-def)
}
ultimately have only-c-inside \varphi 1: only-c-inside c \varphi 1 by metis
have c-in-only \varphi 2: c-in-c'-only c c' (conn c2 l2)
 using only l \varphi 2 wf \varphi 2 assms unfolding c-in-c'-only-def by auto
have c2c: c2 \neq c'
 proof
   assume c2c: c2 = c'
   then obtain \xi 1 \ \xi 2 where l2: l2 = [\xi 1, \xi 2]
    by (metis assms(2) wf\varphi 2 wf-conn.simps connective.distinct(7,9,19,21,29,31,37,39))
   then have c-in-c'-symb c c' (conn c [\varphi1, conn c' l2])
     using c2c l only φ2 all-subformula-st-test-symb-true-phi unfolding c-in-c'-only-def by auto
   moreover have not-c-in-c'-symb c c' (conn c [\varphi 1, conn c' l2])
     using assms(1) c2c l2 not-c-in-c'-symb-r wf\varphi2 wf-conn-helper-facts(5,6) by metis
   ultimately show False by auto
 qed
then have (\varphi 2 = conn \ c \ l2 \land wf\text{-}conn \ c \ l2) \lor (\exists \psi 2. \ \varphi 2 = FNot \ \psi 2) \lor simple \ \varphi 2
 using c2-eq by (metis\ \varphi 2\ assms(1-3)\ c2-eq c2-imp simple.elims(3)\ wf\varphi 2\ wf-conn-list(4-7))
moreover {
 assume \varphi 2 = conn \ c \ l2 \land wf\text{-}conn \ c \ l2
 then have only-c-inside c \varphi 2
   by (metis IH\varphi 2 \varphi 2 all-subformula-st-decomp inc\varphi 2 no-equiv no-equiv-def no-imp no-imp-def
     c-in-only\varphi 2 only-c-inside-def only-c-inside-into-only-c-inside simple-not-def
     subformula-all-subformula-st)
}
moreover {
 assume \exists \psi 2. \ \varphi 2 = FNot \ \psi 2
 then obtain \psi 2 where \varphi 2 = FNot \ \psi 2 by metis
 then have only-c-inside c \varphi 2
   by (metis all-subformula-st-def assms(1-3) connective.distinct(38,40) inc\varphi 2
      only-c-inside-decomp-not simple-not-def simple-not-symb.simps(1))
}
```

```
moreover {
   assume simple \varphi 2
   then have only-c-inside c \varphi 2
     by (metis\ all-subformula-st-decomp-explicit(3)\ assms(1)\ connective.distinct(37,39)
      only-c-inside-decomp-not only-c-inside-def)
 ultimately have only-c-inside \varphi 2: only-c-inside \varphi \varphi 2 by metis
 show ?case using l only-c-inside\varphi 1 only-c-inside\varphi 2 by auto
qed
Push Conjunction
definition pushConj where pushConj = push-conn-inside CAnd COr
lemma pushConj-consistent: preserve-models pushConj
 unfolding pushConj-def by (simp add: push-conn-inside-consistent)
definition and-in-or-symb where and-in-or-symb = c-in-c'-symb CAnd COr
definition and-in-or-only where
and-in-or-only = all-subformula-st (c-in-c'-symb CAnd\ COr)
lemma pushConj-inv:
 fixes \varphi \psi :: 'v \ propo
 assumes full (propo-rew-step pushConj) \varphi \psi
 and no-equiv \varphi and no-imp \varphi and no-T-F-except-top-level \varphi and simple-not \varphi
 shows no-equiv \psi and no-imp \psi and no-T-F-except-top-level \psi and simple-not \psi
 using push-conn-inside-inv assms unfolding pushConj-def by metis+
lemma push Conj-full-propo-rew-step:
 fixes \varphi \psi :: 'v \ propo
 assumes
   no-equiv \varphi and
   no-imp \varphi and
   full (propo-rew-step pushConj) \varphi \psi and
   no-T-F-except-top-level <math>\varphi and
   simple-not \varphi
 shows and-in-or-only \psi
 using assms push-conn-inside-full-propo-rew-step
 unfolding pushConj-def and-in-or-only-def c-in-c'-only-def by (metis (no-types))
Push Disjunction
definition pushDisj where pushDisj = push-conn-inside COr CAnd
lemma pushDisj-consistent: preserve-models pushDisj
 unfolding pushDisj-def by (simp add: push-conn-inside-consistent)
definition or-in-and-symb where or-in-and-symb = c-in-c'-symb COr CAnd
definition or-in-and-only where
or-in-and-only = all-subformula-st (c-in-c'-symb COr \ CAnd)
lemma not-or-in-and-only-or-and[simp]:
```

```
\sim or-in-and-only (FOr (FAnd \psi 1 \ \psi 2) \ \varphi')
  unfolding or-in-and-only-def
  by (metis\ all\text{-}subformula\text{-}st\text{-}test\text{-}symb\text{-}true\text{-}phi\ conn.}simps(5-6)\ not\text{-}c\text{-}in\text{-}c'\text{-}symb\text{-}l
    wf-conn-helper-facts(5) wf-conn-helper-facts(6))
lemma pushDisj-inv:
  fixes \varphi \psi :: 'v \ propo
  assumes full (propo-rew-step pushDisj) \varphi \psi
 and no-equiv \varphi and no-imp \varphi and no-T-F-except-top-level \varphi and simple-not \varphi
 shows no-equiv \psi and no-imp \psi and no-T-F-except-top-level \psi and simple-not \psi
  using push-conn-inside-inv assms unfolding pushDisj-def by metis+
lemma pushDisj-full-propo-rew-step:
  fixes \varphi \psi :: 'v \ propo
  assumes
    no-equiv \varphi and
    no-imp \varphi and
    full (propo-rew-step pushDisj) \varphi \psi and
    no-T-F-except-top-level <math>\varphi and
    simple-not \varphi
  shows or-in-and-only \psi
  using assms push-conn-inside-full-propo-rew-step
  unfolding pushDisj-def or-in-and-only-def c-in-c'-only-def by (metis (no-types))
0.4
          The Full Transformations
0.4.1
           Abstract Definition
The normal form is a super group of groups
inductive grouped-by :: 'a connective \Rightarrow 'a propo \Rightarrow bool for c where
simple-is-grouped[simp]: simple \varphi \Longrightarrow grouped-by c \varphi
simple-not-is-grouped[simp]: simple \varphi \Longrightarrow grouped-by \ c \ (FNot \ \varphi) \ |
connected-is-group[simp]: grouped-by c \varphi \implies grouped-by c \psi \implies wf-conn c [\varphi, \psi]
  \implies grouped-by c (conn c [\varphi, \psi])
lemma simple-clause[simp]:
  grouped-by c FT
  grouped-by c FF
  grouped-by c (FVar x)
  grouped-by c (FNot FT)
  grouped-by c (FNot FF)
  grouped-by c (FNot (FVar x))
  by simp+
lemma only-c-inside-symb-c-eq-c':
  only\text{-}c\text{-}inside\text{-}symb\text{ }c\text{ }(conn\text{ }c'\text{ }[\varphi 1,\varphi 2]) \Longrightarrow c' = CAnd \lor c' = COr \Longrightarrow wf\text{-}conn\text{ }c'\text{ }[\varphi 1,\varphi 2]
  by (induct conn c'[\varphi 1, \varphi 2] rule: only-c-inside-symb.induct, auto simp: conn-inj)
lemma only-c-inside-c-eq-c':
  only-c-inside c (conn c' [\varphi 1, \varphi 2]) \Longrightarrow c' = CAnd \lor c' = COr \Longrightarrow wf\text{-conn } c' [\varphi 1, \varphi 2] \Longrightarrow c = c'
  unfolding only-c-inside-def all-subformula-st-def using only-c-inside-symb-c-eq-c' subformula-refl
  by blast
```

```
lemma only-c-inside-imp-grouped-by:
  assumes c: c \neq CNot and c': c' = CAnd \lor c' = COr
  shows only-c-inside c \varphi \Longrightarrow grouped-by c \varphi (is ?O \varphi \Longrightarrow ?G \varphi)
proof (induct \varphi rule: propo-induct-arity)
  case (nullary \varphi x)
  then show ?G \varphi by auto
next
  case (unary \psi)
  then show ?G (FNot \psi) by (auto simp: c)
next
  case (binary \varphi \varphi 1 \varphi 2)
 note IH\varphi 1 = this(1) and IH\varphi 2 = this(2) and \varphi = this(3) and only = this(4)
 have \varphi-conn: \varphi = conn \ c \ [\varphi 1, \varphi 2] and wf: wf-conn c \ [\varphi 1, \varphi 2]
   proof -
     obtain c'' l'' where \varphi-c'': \varphi = conn \ c'' \ l'' and wf: wf-conn \ c'' \ l''
       \mathbf{using}\ \mathit{exists-c-conn}\ \mathbf{by}\ \mathit{metis}
     then have l'': l'' = [\varphi 1, \varphi 2] using \varphi by (metis \ wf\text{-}conn\text{-}list(4-7))
     have only-c-inside-symb c (conn c'' [\varphi 1, \varphi 2])
       using only all-subformula-st-test-symb-true-phi
       unfolding only-c-inside-def \varphi-c'' l'' by metis
     then have c = c''
       by (metis \varphi \varphi-c" conn-inj conn-inj-not(2) l" list.distinct(1) list.inject wf
         only-c-inside-symb.cases simple.simps(5-8))
     then show \varphi = conn \ c \ [\varphi 1, \ \varphi 2] and wf-conn c \ [\varphi 1, \ \varphi 2] using \varphi-c" wf l" by auto
   qed
  have grouped-by c \varphi 1 using wf IH\varphi 1 IH\varphi 2 \varphi-conn only \varphi unfolding only-c-inside-def by auto
  moreover have grouped-by c \varphi 2
   using wf \varphi IH\varphi1 IH\varphi2 \varphi-conn only unfolding only-c-inside-def by auto
  ultimately show ?G \varphi using \varphi-conn connected-is-group local wf by blast
qed
lemma grouped-by-false:
  grouped-by c (conn c'[\varphi, \psi]) \Longrightarrow c \neq c' \Longrightarrow wf\text{-conn } c'[\varphi, \psi] \Longrightarrow False
 apply (induct conn c'[\varphi, \psi] rule: grouped-by.induct)
 apply (auto simp: simple-decomp wf-conn-list, auto simp: conn-inj)
  by (metis\ list.distinct(1)\ list.sel(3)\ wf-conn-list(8))+
Then the CNF form is a conjunction of clauses: every clause is in CNF form and two formulas
in CNF form can be related by an and.
inductive super-grouped-by: 'a connective \Rightarrow 'a connective \Rightarrow 'a propo \Rightarrow bool for c c' where
grouped-is-super-grouped[simp]: grouped-by c \varphi \implies super-grouped-by \ c \ c' \varphi
connected-is-super-group: super-grouped-by c\ c'\ \varphi \implies super-grouped-by c\ c'\ \psi \implies wf-conn c\ [\varphi,\ \psi]
  \implies super-grouped-by c c' (conn c' [\varphi, \psi])
lemma simple-cnf[simp]:
  super-grouped-by c c' FT
  super-grouped-by c c' FF
  super-grouped-by\ c\ c'\ (FVar\ x)
  super-grouped-by c c' (FNot FT)
  super-grouped-by c c' (FNot FF)
  super-grouped-by\ c\ c'\ (FNot\ (FVar\ x))
  by auto
lemma c-in-c'-only-super-grouped-by:
  assumes c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr and cc': c \neq c'
```

```
shows no-equiv \varphi \Longrightarrow no-imp \varphi \Longrightarrow simple-not \varphi \Longrightarrow c-in-c'-only c c' \varphi
    \implies super-grouped-by c c' \varphi
    (is ?NE \varphi \Longrightarrow ?NI \varphi \Longrightarrow ?SN \varphi \Longrightarrow ?C \varphi \Longrightarrow ?S \varphi)
proof (induct \varphi rule: propo-induct-arity)
  case (nullary \varphi x)
  then show ?S \varphi by auto
next
  case (unary \varphi)
  then have simple-not-symb (FNot \varphi)
    using all-subformula-st-test-symb-true-phi unfolding simple-not-def by blast
  then have \varphi = FT \vee \varphi = FF \vee (\exists x. \varphi = FVar x) by (cases \varphi, auto)
 then show ?S (FNot \varphi) by auto
next
  case (binary \varphi \varphi 1 \varphi 2)
  note IH\varphi 1 = this(1) and IH\varphi 2 = this(2) and no\text{-}equiv = this(4) and no\text{-}imp = this(5)
    and simpleN = this(6) and c\text{-}in\text{-}c'\text{-}only = this(7) and \varphi' = this(3)
    assume \varphi = FImp \ \varphi 1 \ \varphi 2 \lor \varphi = FEq \ \varphi 1 \ \varphi 2
    then have False using no-equiv no-imp by auto
    then have ?S \varphi by auto
  moreover {
    assume \varphi: \varphi = conn \ c' \ [\varphi 1, \ \varphi 2] \land \textit{wf-conn } \ c' \ [\varphi 1, \ \varphi 2]
    have c-in-c'-only: c-in-c'-only c c' \varphi1 \wedge c-in-c'-only c c' \varphi2 \wedge c-in-c'-symb c c' \varphi
      using c-in-c'-only \varphi' unfolding c-in-c'-only-def by auto
    have super-grouped-by c\ c'\ \varphi 1 using \varphi\ c' no-equiv no-imp simple N\ IH\ \varphi 1 c-in-c'-only by auto
    moreover have super-grouped-by c c' \varphi 2
      using \varphi c' no-equiv no-imp simpleN IH\varphi2 c-in-c'-only by auto
    ultimately have ?S \varphi
      using super-grouped-by.intros(2) \varphi by (metis c wf-conn-helper-facts(5,6))
  }
  moreover {
    assume \varphi: \varphi = conn \ c \ [\varphi 1, \varphi 2] \land wf\text{-}conn \ c \ [\varphi 1, \varphi 2]
    then have only-c-inside c \varphi 1 \wedge only-c-inside c \varphi 2
      using c-in-c'-symb-c-implies-only-c-inside c c' c-in-c'-only list.set-intros(1)
        wf-conn-helper-facts(5,6) no-equiv no-imp simpleN last-ConsL last-ConsR last-in-set
        list.distinct(1) by (metis (no-types, opaque-lifting) cc')
    then have only-c-inside c (conn c [\varphi 1, \varphi 2])
      unfolding only-c-inside-def using \varphi
      by (simp add: only-c-inside-into-only-c-inside all-subformula-st-decomp)
    then have grouped-by c \varphi using \varphi only-c-inside-imp-grouped-by c by blast
    then have ?S \varphi using super-grouped-by.intros(1) by metis
 ultimately show ?S \varphi by (metis \varphi' c c' cc' conn.simps(5,6) wf-conn-helper-facts(5,6))
qed
0.4.2
           Conjunctive Normal Form
Definition
definition is-conj-with-TF where is-conj-with-TF == super-grouped-by COr CAnd
lemma or-in-and-only-conjunction-in-disj:
  shows no-equiv \varphi \Longrightarrow no-imp \varphi \Longrightarrow simple-not \varphi \Longrightarrow or-in-and-only \varphi \Longrightarrow is-conj-with-TF \varphi
  using c-in-c'-only-super-grouped-by
  unfolding is-conj-with-TF-def or-in-and-only-def c-in-c'-only-def
```

```
by (simp add: c-in-c'-only-def c-in-c'-only-super-grouped-by)
definition is-cnf where
is-cnf \varphi \equiv is-conj-with-TF \varphi \wedge no-T-F-except-top-level \varphi
Full CNF transformation
The full CNF transformation consists simply in chaining all the transformation defined before.
definition cnf-rew where cnf-rew =
  (full (propo-rew-step elim-equiv)) OO
  (full (propo-rew-step elim-imp)) OO
  (full\ (propo-rew-step\ elim\ TB))\ OO
  (full\ (propo-rew-step\ pushNeg))\ OO
  (full\ (propo-rew-step\ pushDisj))
lemma cnf-rew-equivalent: preserve-models cnf-rew
 by (simp add: cnf-rew-def elimEquv-lifted-consistant elim-imp-lifted-consistant elimTB-consistent
   preserve-models-OO pushDisj-consistent pushNeg-lifted-consistant)
lemma cnf-rew-is-cnf: cnf-rew \varphi \varphi' \Longrightarrow is-cnf \varphi'
 apply (unfold cnf-rew-def OO-def)
 apply auto
proof -
 \mathbf{fix} \ \varphi \ \varphi Eq \ \varphi Imp \ \varphi TB \ \varphi Neg \ \varphi Disj :: \ 'v \ propo
 assume Eq. full (propo-rew-step elim-equiv) \varphi \varphi Eq
 then have no-equiv: no-equiv \varphi Eq using no-equiv-full-propo-rew-step-elim-equiv by blast
 assume Imp: full (propo-rew-step elim-imp) \varphi Eq \varphi Imp
  then have no-imp: no-imp \varphiImp using no-imp-full-propo-rew-step-elim-imp by blast
 have no-imp-inv: no-equiv \varphiImp using no-equiv Imp elim-imp-inv by blast
 assume TB: full (propo-rew-step elimTB) \varphiImp \varphiTB
  then have no TB: no-T-F-except-top-level \varphi TB
   using no-imp-inv no-imp elimTB-full-propo-rew-step by blast
 have no TB-inv: no-equiv \varphi TB no-imp \varphi TB using elim TB-inv TB no-imp no-imp-inv by blast+
 assume Neg: full (propo-rew-step pushNeg) \varphi TB \varphi Neg
  then have noNeg: simple-not \varphiNeg
   using noTB-inv noTB pushNeg-full-propo-rew-step by blast
 have noNeg-inv: no-equiv \varphiNeg no-imp \varphiNeg no-T-F-except-top-level \varphiNeg
   using pushNeg-inv Neg noTB noTB-inv by blast+
 assume Disj: full (propo-rew-step pushDisj) \varphiNeq \varphiDisj
  then have no-Disj: or-in-and-only \varphi Disj
   using noNeg-inv noNeg pushDisj-full-propo-rew-step by blast
 have noDisj-inv: no-equiv \varphiDisj no-imp \varphiDisj no-T-F-except-top-level \varphiDisj
   simple-not \varphi Disj
  using pushDisj-inv Disj noNeg noNeg-inv by blast+
```

using or-in-and-only-conjunction-in-disj noDisj-inv no-Disj by blast

ultimately show is-cnf $\varphi Disj$ unfolding is-cnf-def by blast

moreover have is-conj-with-TF $\varphi Disj$

qed

0.4.3 Disjunctive Normal Form

Definition

```
definition is-disj-with-TF where is-disj-with-TF \equiv super-grouped-by CAnd COr lemma and-in-or-only-conjunction-in-disj: shows no-equiv \varphi \Longrightarrow no-imp \varphi \Longrightarrow simple-not \varphi \Longrightarrow and-in-or-only \varphi \Longrightarrow is-disj-with-TF \varphi using c-in-c'-only-super-grouped-by unfolding is-disj-with-TF-def and-in-or-only-def c-in-c'-only-def by (simp add: c-in-c'-only-def c-in-c'-only-super-grouped-by) definition is-dnf :: 'a propo \Rightarrow bool where is-dnf \varphi \longleftrightarrow is-disj-with-TF \varphi \land no-T-F-except-top-level \varphi
```

Full DNF transform

The full DNF transformation consists simply in chaining all the transformation defined before.

```
definition dnf-rew where dnf-rew \equiv
 (full (propo-rew-step elim-equiv)) OO
 (full (propo-rew-step elim-imp)) OO
 (full\ (propo-rew-step\ elim\ TB))\ OO
 (full\ (propo-rew-step\ pushNeg))\ OO
 (full (propo-rew-step pushConj))
lemma dnf-rew-consistent: preserve-models dnf-rew
 by (simp add: dnf-rew-def elimEquv-lifted-consistant elim-imp-lifted-consistant elimTB-consistent
   preserve-models-OO pushConj-consistent pushNeg-lifted-consistant)
theorem dnf-transformation-correction:
   dnf-rew \varphi \varphi' \Longrightarrow is-dnf \varphi'
 apply (unfold dnf-rew-def OO-def)
 by (meson and-in-or-only-conjunction-in-disj elim TB-full-propo-rew-step elim TB-inv(1,2)
   elim-imp-inv is-dnf-def no-equiv-full-propo-rew-step-elim-equiv
   no-imp-full-propo-rew-step-elim-imp\ pushConj-full-propo-rew-step\ pushConj-inv(1-4)
   pushNeg-full-propo-rew-step\ pushNeg-inv(1-3))
```

0.5 More aggressive simplifications: Removing true and false at the beginning

0.5.1 Transformation

We should remove FT and FF at the beginning and not in the middle of the algorithm. To do this, we have to use more rules (one for each connective):

```
inductive elimTBFull where ElimTBFull1[simp]: elimTBFull1 (FAnd \varphi FT) \varphi \mid ElimTBFull1'[simp]: elimTBFull1 (FAnd FT \varphi) \varphi \mid ElimTBFull2[simp]: elimTBFull1 (FAnd \varphi FF) FF \mid ElimTBFull2'[simp]: elimTBFull1 (FAnd FF \varphi) FF \mid ElimTBFull3[simp]: elimTBFull1 (FOr \varphi FT) FT \mid ElimTBFull3'[simp]: elimTBFull1 (FOr FT \varphi) FT \mid ElimTBFull3'[simp]: elimTBFull1 (FOr FT \varphi) FT \mid ElimTBFull3'[simp]
```

```
ElimTBFull4[simp]: elimTBFull (FOr \varphi FF) \varphi
Elim TBFull4 '[simp]: elim TBFull (FOr FF \varphi) \varphi
ElimTBFull5[simp]: elimTBFull (FNot FT) FF |
ElimTBFull5'[simp]: elimTBFull (FNot FF) FT |
ElimTBFull6-l[simp]: elimTBFull\ (FImp\ FT\ \varphi)\ \varphi
ElimTBFull6-l'[simp]: elimTBFull\ (FImp\ FF\ \varphi)\ FT
ElimTBFull6-r[simp]: elimTBFull\ (FImp\ \varphi\ FT)\ FT
ElimTBFull6-r'[simp]: elimTBFull (FImp \varphi FF) (FNot \varphi)
Elim TBFull7-l[simp]: elim TBFull (FEq FT \varphi) \varphi
ElimTBFull7-l'[simp]: elimTBFull (FEq FF <math>\varphi) (FNot \varphi)
ElimTBFull7-r[simp]: elimTBFull (FEq \varphi FT) \varphi
ElimTBFull7-r'[simp]: elimTBFull (FEq \varphi FF) (FNot \varphi)
The transformation is still consistent.
{f lemma}\ elim TBFull\mbox{-}consistent:\ preserve\mbox{-}models\ elim TBFull
proof -
  {
   fix \varphi \psi:: 'b propo
   have elimTBFull \varphi \psi \Longrightarrow \forall A. A \models \varphi \longleftrightarrow A \models \psi
     by (induct-tac rule: elimTBFull.inducts, auto)
 then show ?thesis using preserve-models-def by auto
qed
Contrary to the theorem no-T-F-symb-except-toplevel-step-exists, we do not need the assumption
no-equiv \varphi and no-imp \varphi, since our transformation is more general.
lemma no-T-F-symb-except-toplevel-step-exists':
 fixes \varphi :: 'v \ propo
 shows \psi \preceq \varphi \Longrightarrow \neg \ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel} \ \psi \Longrightarrow \exists \ \psi'. \ elimTBFull \ \psi \ \psi'
proof (induct \psi rule: propo-induct-arity)
 case (nullary \varphi')
  then have False using no-T-F-symb-except-toplevel-true no-T-F-symb-except-toplevel-false by auto
  then show Ex (elimTBFull \varphi') by blast
next
  case (unary \psi)
 then have \psi = FF \lor \psi = FT using no-T-F-symb-except-toplevel-not-decom by blast
  then show Ex (elimTBFull (FNot \psi)) using ElimTBFull5 ElimTBFull5' by blast
next
 case (binary \varphi' \psi 1 \psi 2)
 then have \psi 1 = FT \vee \psi 2 = FT \vee \psi 1 = FF \vee \psi 2 = FF
   by (metis binary-connectives-def conn.simps(5-8) insertI1 insert-commute
     no-T-F-symb-except-toplevel-bin-decom\ binary.hyps(3))
 then show Ex (elimTBFull \varphi') using elimTBFull.intros\ binary.hyps(3) by blast
The same applies here. We do not need the assumption, but the deep link between \neg no-T-F-except-top-level
\varphi and the existence of a rewriting step, still exists.
lemma no-T-F-except-top-level-rew':
 fixes \varphi :: 'v \ propo
 assumes noTB: \neg no-T-F-except-top-level \varphi
 shows \exists \psi \ \psi' . \ \psi \leq \varphi \land elimTBFull \ \psi \ \psi'
proof -
```

```
have test-symb-false-nullary:
   \forall x. \ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (FF:: 'v \ propo) \land no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel FT
     \land no-T-F-symb-except-toplevel (FVar (x:: 'v))
   by auto
  moreover {
   fix c:: 'v connective and l :: 'v propo list and \psi :: 'v propo
   have H: elimTBFull\ (conn\ c\ l)\ \psi \Longrightarrow \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel\ (conn\ c\ l)}
     by (cases conn c l rule: elimTBFull.cases) auto
  }
  ultimately show ?thesis
   using no-test-symb-step-exists of no-T-F-symb-except-toplevel \varphi elimTBFull noTB
   no-T-F-symb-except-toplevel-step-exists' unfolding no-T-F-except-top-level-def by metis
qed
lemma elimTBFull-full-propo-rew-step:
  fixes \varphi \psi :: 'v \ propo
  assumes full (propo-rew-step elim TBFull) \varphi \psi
  shows no-T-F-except-top-level \psi
  using full-propo-rew-step-subformula no-T-F-except-top-level-rew' assms by fastforce
```

0.5.2 More invariants

As the aim is to use the transformation as the first transformation, we have to show some more invariants for *elim-equiv* and *elim-imp*. For the other transformation, we have already proven it.

```
lemma propo-rew-step-ElimEquiv-no-T-F: propo-rew-step elim-equiv \varphi \psi \Longrightarrow no-T-F \varphi \Longrightarrow no-T-F \psi
proof (induct rule: propo-rew-step.induct)
  fix \varphi' :: 'v \ propo \ and \ \psi' :: 'v \ propo
  assume a1: no-T-F \varphi'
 assume a2: elim-equiv \varphi' \psi'
 have \forall x0 \ x1. \ (\neg \ elim-equiv \ (x1 :: 'v \ propo) \ x0 \lor (\exists v2 \ v3 \ v4 \ v5 \ v6 \ v7. \ x1 = FEq \ v2 \ v3
    \land x0 = FAnd \ (FImp \ v4 \ v5) \ (FImp \ v6 \ v7) \land v2 = v4 \land v4 = v7 \land v3 = v5 \land v3 = v6))
 = (\neg elim-equiv x1 x0 \lor (\exists v2 v3 v4 v5 v6 v7. x1 = FEq v2 v3)
     \land x0 = FAnd \ (FImp \ v4 \ v5) \ (FImp \ v6 \ v7) \land v2 = v4 \land v4 = v7 \land v3 = v5 \land v3 = v6)) 
    by meson
  then have \forall p \ pa. \ \neg \ elim-equiv \ (p :: 'v \ propo) \ pa \lor (\exists \ pb \ pc \ pd \ pe \ pf \ pg. \ p = FEq \ pb \ pc
    \land pa = FAnd \ (FImp \ pd \ pe) \ (FImp \ pf \ pg) \ \land \ pb = pd \ \land \ pd = pg \ \land \ pc = pe \ \land \ pc = pf)
    using elim-equiv.cases by force
  then show no-T-F \psi' using a1 a2 by fastforce
next
  fix \varphi \varphi' :: 'v \text{ propo and } \xi \xi' :: 'v \text{ propo list and } c :: 'v \text{ connective}
 assume rel: propo-rew-step elim-equiv \varphi \varphi'
 and IH: no-T-F \varphi \Longrightarrow no-T-F \varphi'
  and corr: wf-conn c (\xi @ \varphi \# \xi')
  and no-T-F: no-T-F (conn c (\xi @ \varphi \# \xi'))
  {
    assume c: c = CNot
    then have empty: \xi = [] \xi' = [] using corr by auto
    then have no-T-F \varphi using no-T-F c no-T-F-decomp-not by auto
    then have no-T-F (conn c (\xi @ \varphi' \# \xi')) using c empty no-T-F-comp-not IH by auto
  }
  moreover {
    assume c: c \in binary\text{-}connectives
```

```
obtain a b where ab: \xi @ \varphi \# \xi' = [a, b]
     using corr c list-length2-decomp wf-conn-bin-list-length by metis
   then have \varphi: \varphi = a \lor \varphi = b
     by (metis append.simps(1) append-is-Nil-conv list.distinct(1) list.sel(3) nth-Cons-0
        tl-append2)
   have \zeta: \forall \zeta \in set \ (\xi @ \varphi \# \xi'). no-T-F \zeta
     using no-T-F unfolding no-T-F-def using corr all-subformula-st-decomp by blast
   then have \varphi': no-T-F \varphi' using ab IH \varphi by auto
   have l': \xi @ \varphi' \# \xi' = [\varphi', b] \lor \xi @ \varphi' \# \xi' = [a, \varphi']
     by (metis (no-types, opaque-lifting) ab append-Cons append-Nil append-Nil2 butlast.simps(2)
       butlast-append list.distinct(1) list.sel(3))
   then have \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). no-T-F \zeta using \zeta \varphi' ab by fastforce
   moreover
     have \forall \zeta \in set \ (\xi @ \varphi \# \xi'). \ \zeta \neq FT \land \zeta \neq FF
       using \zeta corr no-T-F no-T-F-except-top-level-false no-T-F-no-T-F-except-top-level by blast
     then have no-T-F-symb (conn c (\xi @ \varphi' \# \xi'))
       by (metis \varphi' l' ab all-subformula-st-test-symb-true-phi c list.distinct(1)
         list.set-intros(1,2) no-T-F-symb-except-toplevel-bin-decom
         no-T-F-symb-except-toplevel-no-T-F-symb no-T-F-symb-false(1,2) no-T-F-def wf-conn-binary
         wf-conn-list(1,2))
   ultimately have no-T-F (conn c (\xi @ \varphi' \# \xi'))
     by (metis\ l'\ all-subformula-st-decomp-imp\ c\ no-T-F-def\ wf-conn-binary)
  }
  moreover {
    \mathbf{fix} \ x
    assume c = CVar \ x \lor c = CF \lor c = CT
    then have False using corr by auto
    then have no-T-F (conn c (\xi @ \varphi' \# \xi')) by auto
 ultimately show no-T-F (conn c (\xi \otimes \varphi' \# \xi')) using corr wf-conn.cases by metis
qed
lemma elim-equiv-inv':
  fixes \varphi \psi :: 'v \ propo
 assumes full (propo-rew-step elim-equiv) \varphi \psi and no-T-F-except-top-level \varphi
  shows no-T-F-except-top-level \psi
proof -
  {
   fix \varphi \psi :: 'v \ propo
   have propo-rew-step elim-equiv \varphi \psi \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level \varphi
     \implies no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level \ \psi
     proof -
       assume rel: propo-rew-step elim-equiv \varphi \psi
       and no: no-T-F-except-top-level \varphi
         assume \varphi = FT \vee \varphi = FF
         from rel this have False
           apply (induct rule: propo-rew-step.induct, auto simp: wf-conn-list(1,2))
           using elim-equiv.simps by blast+
         then have no-T-F-except-top-level \psi by blast
       moreover {
         assume \varphi \neq FT \land \varphi \neq FF
         then have no-T-F \varphi
           by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
```

```
then have no-T-F \psi using propo-rew-step-ElimEquiv-no-T-F rel by blast
         then have no-T-F-except-top-level \psi by (simp add: no-T-F-no-T-F-except-top-level)
       ultimately show no-T-F-except-top-level \psi by metis
     qed
  }
  moreover {
    fix c:: 'v \ connective \ and \ \xi \ \xi':: 'v \ propo \ list \ and \ \zeta \ \zeta':: 'v \ propo
    assume rel: propo-rew-step elim-equiv \zeta \zeta'
    and incl: \zeta \leq \varphi
    and corr: wf-conn c (\xi @ \zeta \# \xi')
    and no-T-F: no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta \# \xi'))
    and n: no-T-F-symb-except-toplevel \zeta'
    have no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta' \# \xi'))
    proof
      have p: no\text{-}T\text{-}F\text{-}symb \ (conn \ c \ (\xi @ \zeta \# \xi'))
        \mathbf{using}\ corr\ wf\text{-}conn\text{-}list(1)\ wf\text{-}conn\text{-}list(2)\ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel\text{-}no\text{-}}T\text{-}F\text{-}symb\ no\text{-}T\text{-}F
      have l: \forall \varphi \in set \ (\xi @ \zeta \# \xi'). \ \varphi \neq FT \land \varphi \neq FF
        using corr wf-conn-no-T-F-symb-iff p by blast
       from rel incl have \zeta' \neq FT \land \zeta' \neq FF
        apply (induction \zeta \zeta' rule: propo-rew-step.induct)
        apply (cases rule: elim-equiv.cases, auto simp: elim-equiv.simps)
        by (metis append-is-Nil-conv list.distinct wf-conn-list(1,2) wf-conn-no-arity-change
          wf-conn-no-arity-change-helper)+
      then have \forall \varphi \in set \ (\xi \otimes \zeta' \# \xi'). \ \varphi \neq FT \land \varphi \neq FF \ using \ l \ by \ auto
      moreover have c \neq CT \land c \neq CF using corr by auto
      ultimately show no-T-F-symb (conn c (\xi \otimes \zeta' \# \xi'))
        by (metis corr wf-conn-no-arity-change wf-conn-no-arity-change-helper no-T-F-symb-comp)
    qed
  }
  ultimately show no-T-F-except-top-level \psi
   using full-propo-rew-step-inv-stay-with-inc of elim-equiv no-T-F-symb-except-toplevel \varphi
     assms subformula-refl unfolding no-T-F-except-top-level-def by metis
qed
lemma propo-rew-step-ElimImp-no-T-F: propo-rew-step elim-imp \varphi \psi \Longrightarrow no-T-F \varphi \Longrightarrow no-T-F \psi
\mathbf{proof}\ (induct\ rule:\ propo-rew-step.induct)
  case (global-rel \varphi' \psi')
  then show no-T-F \psi'
   using elim-imp.cases no-T-F-comp-not no-T-F-decomp(1,2)
   by (metis\ no\text{-}T\text{-}F\text{-}comp\text{-}expanded\text{-}explicit(2))
next
  case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi')
  note rel = this(1) and IH = this(2) and corr = this(3) and no-T-F = this(4)
  {
   assume c: c = CNot
   then have empty: \xi = [] \xi' = [] using corr by auto
   then have no-T-F \varphi using no-T-F c no-T-F-decomp-not by auto
   then have no-T-F (conn c (\xi @ \varphi' \# \xi')) using c empty no-T-F-comp-not IH by auto
  moreover {
   assume c: c \in binary\text{-}connectives
   then obtain a b where ab: \xi @ \varphi \# \xi' = [a, b]
     using corr list-length2-decomp wf-conn-bin-list-length by metis
```

```
then have \varphi: \varphi = a \lor \varphi = b
      by (metis append-self-conv2 wf-conn-list-decomp(4) wf-conn-unary list.discI list.sel(3)
        nth-Cons-0 tl-append2)
    have \zeta \colon \forall \zeta \in set \ (\xi @ \varphi \# \xi'). no-T-F \zeta using ab c propo-rew-one-step-lift.prems by auto
    then have \varphi': no-T-F \varphi'
      using ab IH \varphi corr no-T-F no-T-F-def all-subformula-st-decomp-explicit by auto
    have \chi: \xi @ \varphi' \# \xi' = [\varphi', b] \lor \xi @ \varphi' \# \xi' = [a, \varphi']
      by (metis (no-types, opaque-lifting) ab append-Cons append-Nil append-Nil butlast.simps(2)
        butlast-append list.distinct(1) list.sel(3))
    then have \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). no-T-F \zeta using \zeta \varphi' ab by fastforce
    moreover
      have no-T-F (last (\xi @ \varphi' \# \xi')) by (simp add: calculation)
      then have no-T-F-symb (conn c (\xi @ \varphi' \# \xi'))
        by (metis \chi \varphi' \zeta ab all-subformula-st-test-symb-true-phi c last.simps list.distinct(1)
          list.set-intros(1) no-T-F-bin-decomp no-T-F-def)
    ultimately have no-T-F (conn c (\xi \otimes \varphi' \# \xi')) using c \chi by fastforce
  moreover {
    \mathbf{fix} \ x
    assume c = CVar \ x \lor c = CF \lor c = CT
    then have False using corr by auto
    then have no-T-F (conn c (\xi @ \varphi' \# \xi')) by auto
 ultimately show no-T-F (conn c (\xi @ \varphi' \# \xi')) using corr wf-conn.cases by blast
qed
lemma elim-imp-inv':
 fixes \varphi \psi :: 'v \ propo
 assumes full (propo-rew-step elim-imp) \varphi \psi and no-T-F-except-top-level \varphi
 \mathbf{shows} no-T-F-except-top-level \psi
proof -
  {
      \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
      have H: elim-imp \varphi \psi \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level } \varphi \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level } \psi
        by (induct \varphi \psi rule: elim-imp.induct, auto)
    } note H = this
    \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
    have propo-rew-step elim-imp \varphi \psi \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level } \varphi \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level } \psi
      proof -
        assume rel: propo-rew-step elim-imp \varphi \psi
        and no: no-T-F-except-top-level \varphi
          assume \varphi = FT \vee \varphi = FF
          from rel this have False
            apply (induct rule: propo-rew-step.induct)
            by (cases rule: elim-imp.cases, auto simp: wf-conn-list(1,2))
          then have no-T-F-except-top-level \psi by blast
        moreover {
          assume \varphi \neq FT \land \varphi \neq FF
          then have no-T-F \varphi
            by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
          then have no-T-F \psi
```

```
using rel propo-rew-step-ElimImp-no-T-F by blast
         then have no-T-F-except-top-level \psi by (simp add: no-T-F-no-T-F-except-top-level)
       ultimately show no-T-F-except-top-level \psi by metis
     qed
  }
 moreover {
    fix c:: 'v \ connective \ and \ \xi \ \xi':: 'v \ propo \ list \ and \ \zeta \ \zeta':: 'v \ propo
    assume rel: propo-rew-step elim-imp \zeta \zeta'
    and incl: \zeta \leq \varphi
    and corr: wf-conn c (\xi @ \zeta \# \xi')
    and no-T-F: no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta \# \xi'))
    and n: no-T-F-symb-except-toplevel \zeta'
    have no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta' \# \xi'))
    proof
      have p: no\text{-}T\text{-}F\text{-}symb \ (conn \ c \ (\xi @ \zeta \# \xi'))
        \mathbf{by}\ (simp\ add:\ corr\ no-T-F\ symb-except-toplevel-no-T-F-symb\ wf-conn-list(1,2))
      have l: \forall \varphi \in set \ (\xi @ \zeta \# \xi'). \ \varphi \neq FT \land \varphi \neq FF
        using corr wf-conn-no-T-F-symb-iff p by blast
      from rel incl have \zeta' \neq FT \land \zeta' \neq FF
        apply (induction \zeta \zeta' rule: propo-rew-step.induct)
        apply (cases rule: elim-imp.cases, auto)
        using wf-conn-list(1,2) wf-conn-no-arity-change wf-conn-no-arity-change-helper
        by (metis\ append-is-Nil-conv\ list.distinct(1))+
      then have \forall \varphi \in set \ (\xi @ \zeta' \# \xi'). \ \varphi \neq FT \land \varphi \neq FF \ using \ l \ by \ auto
      moreover have c \neq CT \land c \neq CF using corr by auto
      ultimately show no-T-F-symb (conn c (\xi \otimes \zeta' \# \xi'))
        using corr wf-conn-no-arity-change no-T-F-symb-comp
        by (metis wf-conn-no-arity-change-helper)
    qed
 }
 ultimately show no-T-F-except-top-level \psi
   using full-propo-rew-step-inv-stay-with-inc of elim-imp no-T-F-symb-except-toplevel \varphi
   assms subformula-refl unfolding no-T-F-except-top-level-def by metis
qed
```

0.5.3 The new CNF and DNF transformation

The transformation is the same as before, but the order is not the same.

```
definition dnf\text{-}rew' :: 'a \ propo \Rightarrow 'a \ propo \Rightarrow bool \ \mathbf{where} dnf\text{-}rew' = (full \ (propo\text{-}rew\text{-}step \ elimTBFull)) \ OO \ (full \ (propo\text{-}rew\text{-}step \ elim-imp)) \ OO \ (full \ (propo\text{-}rew\text{-}step \ elim-imp)) \ OO \ (full \ (propo\text{-}rew\text{-}step \ pushNeg)) \ OO \ (full \ (propo\text{-}rew\text{-}step \ pushConj))

lemma dnf\text{-}rew'\text{-}consistent: preserve\text{-}models \ dnf\text{-}rew' by (simp \ add: dnf\text{-}rew'\text{-}def \ elimEquv\text{-}lifted\text{-}consistant \ elimTBFull\text{-}consistent \ preserve\text{-}models\text{-}OO \ pushConj\text{-}consistent \ pushNeg-lifted\text{-}consistant)

theorem cnf\text{-}transformation\text{-}correction: dnf\text{-}rew' \ \varphi \ \varphi' \implies is\text{-}dnf \ \varphi' unfolding dnf\text{-}rew'\text{-}def \ OO\text{-}def
```

```
by (meson and-in-or-only-conjunction-in-disj elimTBFull-full-propo-rew-step elim-equiv-inv'
   elim-imp-inv elim-imp-inv' is-dnf-def no-equiv-full-propo-rew-step-elim-equiv
   no-imp-full-propo-rew-step-elim-imp\ push\ Conj-full-propo-rew-step\ push\ Conj-inv(1-4)
   pushNeg-full-propo-rew-step pushNeg-inv(1-3)
Given all the lemmas before the CNF transformation is easy to prove:
definition cnf\text{-}rew':: 'a \ propo \Rightarrow 'a \ propo \Rightarrow bool \ \textbf{where}
cnf-rew' =
 (full (propo-rew-step elimTBFull)) OO
 (full (propo-rew-step elim-equiv)) OO
 (full (propo-rew-step elim-imp)) OO
 (full\ (propo-rew-step\ pushNeg))\ OO
 (full\ (propo-rew-step\ pushDisj))
lemma cnf-rew'-consistent: preserve-models cnf-rew'
 by (simp\ add:\ cnf-rew'-def\ elim Equv-lifted-consistant\ elim-imp-lifted-consistant
   elimTBFull-consistent preserve-models-OO pushDisj-consistent pushNeg-lifted-consistant)
theorem cnf'-transformation-correction:
 cnf\text{-}rew' \varphi \varphi' \Longrightarrow is\text{-}cnf \varphi'
 unfolding cnf-rew'-def OO-def
 by (meson elimTBFull-full-propo-rew-step elim-equiv-inv' elim-imp-inv elim-imp-inv' is-cnf-def
   no-equiv-full-propo-rew-step-elim-equiv no-imp-full-propo-rew-step-elim-imp
   or-in-and-only-conjunction-in-disj\ pushDisj-full-propo-rew-step\ pushDisj-inv(1-4)
   pushNeq-inv(1) pushNeq-inv(2) pushNeq-inv(3)
```

end

theory Prop-Logic-Multiset imports Nested-Multisets-Ordinals.Multiset-More Prop-Normalisation Entailment-Definition.Partial-Herbrand-Interpretation begin

0.6 Link with Multiset Version

0.6.1Transformation to Multiset

```
fun mset-of-conj :: 'a propo \Rightarrow 'a literal multiset where
\textit{mset-of-conj} \ (\textit{FOr} \ \varphi \ \psi) = \textit{mset-of-conj} \ \varphi + \textit{mset-of-conj} \ \psi \ |
mset-of-conj (FVar\ v) = \{\#\ Pos\ v\ \#\}\ |
mset-of-conj (FNot\ (FVar\ v)) = \{\#\ Neg\ v\ \#\}\ |
mset-of-conj FF = \{\#\}
fun mset-of-formula :: 'a propo \Rightarrow 'a literal multiset set where
mset-of-formula (FAnd \varphi \psi) = mset-of-formula \varphi \cup mset-of-formula \psi \mid
mset-of-formula (FOr \varphi \psi) = \{mset-of-conj (FOr \varphi \psi)\}
mset-of-formula (FVar \ \psi) = \{mset-of-conj (FVar \ \psi)\}
mset-of-formula (FNot \ \psi) = \{mset-of-conj (FNot \ \psi)\}
mset-of-formula FF = \{\{\#\}\} \mid
mset-of-formula FT = \{\}
```

0.6.2Equisatisfiability of the two Versions

```
lemma is-conj-with-TF-FNot:
  is-conj-with-TF (FNot \varphi) \longleftrightarrow (\exists v. \varphi = FVar \ v \lor \varphi = FF \lor \varphi = FT)
  unfolding is-conj-with-TF-def apply (rule iffI)
```

```
apply (induction FNot \varphi rule: super-grouped-by.induct)
 apply (induction FNot \varphi rule: grouped-by.induct)
    apply simp
   apply (cases \varphi; simp)
 apply auto
 done
\mathbf{lemma}\ \textit{grouped-by-COr-FNot}\colon
  grouped-by COr (FNot \varphi) \longleftrightarrow (\exists v. \varphi = FVar \ v \lor \varphi = FF \lor \varphi = FT)
 unfolding is-conj-with-TF-def apply (rule iffI)
 apply (induction FNot \varphi rule: grouped-by.induct)
    apply simp
   apply (cases \varphi; simp)
 apply auto
 done
lemma
 shows no\text{-}T\text{-}F\text{-}FF[simp]: \neg no\text{-}T\text{-}F FF and
   no-T-F-FT[simp]: \neg no-T-F FT
 unfolding no-T-F-def all-subformula-st-def by auto
lemma grouped-by-CAnd-FAnd:
  grouped-by CAnd (FAnd \varphi 1 \varphi 2) \longleftrightarrow grouped-by CAnd \varphi 1 \land grouped-by CAnd \varphi 2
 apply (rule iffI)
 apply (induction FAnd \varphi 1 \varphi 2 rule: grouped-by.induct)
 using connected-is-group[of CAnd \varphi 1 \varphi 2] by auto
lemma grouped-by-COr-FOr:
  grouped-by COr (FOr \varphi 1 \varphi 2) \longleftrightarrow grouped-by COr \varphi 1 \land grouped-by COr \varphi 2
 apply (rule iffI)
 apply (induction FOr \varphi 1 \varphi 2 rule: grouped-by.induct)
 using connected-is-group of COr \varphi 1 \varphi 2 by auto
lemma grouped-by-COr-FAnd[simp]: \neg grouped-by COr (FAnd \varphi1 \varphi2)
 apply clarify
  apply (induction FAnd \varphi 1 \varphi 2 rule: grouped-by.induct)
  apply auto
 done
lemma grouped-by-COr-FEq[simp]: \neg grouped-by COr (FEq \varphi1 \varphi2)
 apply clarify
  apply (induction FEq \varphi1 \varphi2 rule: grouped-by.induct)
  apply auto
 done
lemma [simp]: \neg grouped-by COr (FImp \varphi \psi)
 apply clarify
 by (induction FImp \varphi \psi rule: grouped-by.induct) simp-all
lemma [simp]: \neg is-conj-with-TF (FImp \varphi \psi)
  unfolding is-conj-with-TF-def apply clarify
 by (induction FImp \varphi \psi rule: super-grouped-by.induct) simp-all
lemma [simp]: \neg is-conj-with-TF (FEq \varphi \psi)
  unfolding is-conj-with-TF-def apply clarify
```

```
by (induction FEq \varphi \psi rule: super-grouped-by.induct) simp-all
```

```
lemma is-conj-with-TF-Fand:
  is-conj-with-TF (FAnd \varphi 1 \varphi 2) \Longrightarrow is-conj-with-TF \varphi 1 \wedge is-conj-with-TF \varphi 2
  unfolding is-conj-with-TF-def
  apply (induction FAnd \varphi 1 \varphi 2 rule: super-grouped-by.induct)
  apply (auto simp: grouped-by-CAnd-FAnd intro: grouped-is-super-grouped)[]
  apply auto[]
  done
lemma is-conj-with-TF-FOr:
  is-conj-with-TF (FOr \varphi 1 \varphi 2) \Longrightarrow grouped-by COr \varphi 1 \land grouped-by COr \varphi 2
  unfolding is-conj-with-TF-def
  apply (induction FOr \varphi 1 \varphi 2 rule: super-grouped-by.induct)
  apply (auto simp: grouped-by-COr-FOr)[]
  apply auto[]
  done
lemma grouped-by-COr-mset-of-formula:
  grouped-by COr \varphi \Longrightarrow mset-of-formula \varphi = (if \ \varphi = FT \ then \ \{\} \ else \ \{mset-of-conj \varphi\})
  by (induction \varphi) (auto simp add: grouped-by-COr-FNot)
```

When a formula is in CNF form, then there is equisatisfiability between the multiset version and the CNF form. Remark that the definition for the entailment are slightly different: (\models) uses a function assigning True or False, while ($\models s$) uses a set where being in the list means entailment of a literal.

```
theorem cnf-eval-true-clss:
 fixes \varphi :: 'v \ propo
 assumes is-cnf \varphi
 shows eval A \varphi \longleftrightarrow Partial-Herbrand-Interpretation.true-clss (\{Pos \ v | v. \ A \ v\} \cup \{Neg \ v | v. \ \neg A \ v\})
   (mset-of-formula \varphi)
 using assms
proof (induction \varphi)
 case FF
 then show ?case by auto
next
 case FT
 then show ?case by auto
\mathbf{next}
  case (FVar\ v)
 then show ?case by auto
next
 case (FAnd \varphi \psi)
 then show ?case
   unfolding is-cnf-def by (auto simp: is-conj-with-TF-FNot dest: is-conj-with-TF-Fand
   dest!: is-conj-with-TF-FOr)
next
  case (FOr \varphi \psi)
 then have [simp]: mset-of-formula \varphi = \{mset-of-conj \varphi\} mset-of-formula \psi = \{mset-of-conj \psi\}
   unfolding is-cnf-def by (auto dest!:is-conj-with-TF-FOr simp: grouped-by-COr-mset-of-formula
     split: if-splits)
 have is-conj-with-TF \varphi is-conj-with-TF \psi
   using FOr(3) unfolding is-cnf-def no-T-F-def
   by (metis grouped-is-super-grouped is-conj-with-TF-FOr is-conj-with-TF-def)+
  then show ?case using FOr
```

```
unfolding is-cnf-def by simp
next
  case (FImp \varphi \psi)
  then show ?case
   unfolding is-cnf-def by auto
next
  case (FEq \varphi \psi)
  then show ?case
   unfolding is-cnf-def by auto
next
  case (FNot \varphi)
 then show ?case
   unfolding is-cnf-def by (auto simp: is-conj-with-TF-FNot)
function formula-of-mset :: 'a clause \Rightarrow 'a propo where
  \langle formula-of\text{-}mset \ \varphi =
    (if \varphi = \{\#\} then FF
        let v = (SOME \ v. \ v \in \# \ \varphi);
            v' = (if is\text{-pos } v \text{ then } FVar (atm\text{-of } v) \text{ else } FNot (FVar (atm\text{-of } v))) \text{ in}
        if remove1-mset v \varphi = \{\#\} then v'
         else FOr v' (formula-of-mset (remove1-mset v \varphi)))>
  by auto
termination
 apply (relation ⟨measure size⟩)
  apply (auto simp: size-mset-remove1-mset-le-iff)
  by (meson multiset-nonemptyE someI-ex)
lemma formula-of-mset-empty[simp]: \langle formula-of-mset \ \{\#\} = FF \rangle
 by (auto simp: Let-def)
lemma formula-of-mset-empty-iff [iff]: \langle formula-of-mset \varphi = FF \longleftrightarrow \varphi = \{\#\} \rangle
  by (induction \varphi) (auto simp: Let-def)
declare formula-of-mset.simps[simp del]
function formula-of-msets :: 'a literal multiset set \Rightarrow 'a propo where
  \langle formula-of\text{-}msets \ \varphi s =
    (if \varphi s = \{\} \lor infinite \varphi s then FT
        let v = (SOME \ v. \ v \in \varphi s);
            v' = formula-of-mset \ v \ in
        if \varphi s - \{v\} = \{\} then v'
        else FAnd v' (formula-of-msets (\varphi s - \{v\})))
 by auto
termination
 apply (relation ⟨measure card⟩)
  apply (auto simp: some-in-eq)
 by (metis all-not-in-conv card-qt-0-iff diff-less lessI)
declare formula-of-msets.simps[simp del]
lemma remove1-mset-empty-iff:
  \langle remove1\text{-}mset\ v\ \varphi = \{\#\} \longleftrightarrow (\varphi = \{\#\} \lor \varphi = \{\#v\#\}) \rangle
  using remove1-mset-eqE by force
```

```
definition fun-of-set where
  \langle fun\text{-}of\text{-}set\ A\ x=(if\ Pos\ x\in A\ then\ True\ else\ if\ Neg\ x\in A\ then\ False\ else\ undefined)\rangle
lemma grouped-by-COr-formula-of-mset: \langle \text{grouped-by } COr \text{ (formula-of-mset } \varphi \rangle \rangle
proof (induction \langle size \varphi \rangle arbitrary: \varphi)
  case \theta
  then show ?case by (subst formula-of-mset.simps) (auto simp: Let-def)
next
  case (Suc n) note IH = this(1) and s = this(2)
  then have \langle n = size \ (remove1\text{-}mset \ (SOME \ v. \ v \in \# \ \varphi) \ \varphi) \rangle \text{ if } \langle \varphi \neq \{\#\} \rangle
    using that by (auto simp: size-Diff-singleton-if some-in-eq)
  then show ?case
    using IH[of \land remove1\text{-}mset (SOME v. v \in \# \varphi) \varphi \rangle]
    by(subst formula-of-mset.simps) (auto simp: Let-def grouped-by-COr-FOr)
qed
lemma no-T-F-formula-of-mset: \langle no\text{-}T\text{-}F \text{ (formula-of-mset } \varphi \rangle \rangle if \langle formula\text{-}of\text{-}mset \ \varphi \neq FF \rangle for \varphi
  using that
proof (induction \langle size \varphi \rangle arbitrary: \varphi)
  case \theta
  then show ?case by (subst formula-of-mset.simps) (auto simp: Let-def no-T-F-def
        all-subformula-st-def)
next
  case (Suc n) note IH = this(1) and s = this(2) and FF = this(3)
  then have \langle n = size \ (remove1\text{-}mset \ (SOME \ v. \ v \in \# \ \varphi) \ \varphi \rangle \rangle \text{ if } \langle \varphi \neq \{\#\} \rangle
    using that by (auto simp: size-Diff-singleton-if some-in-eq)
  moreover have \langle no\text{-}T\text{-}F \ (FVar \ (atm\text{-}of \ (SOME \ v. \ v \in \# \varphi))) \rangle
    by (auto simp: no-T-F-def)
  ultimately show ?case
    using IH[of \( remove1\)-mset (SOME v. \ v \in \# \ \varphi ) \ \varphi \rangle \] FF
    by(subst formula-of-mset.simps) (auto simp: Let-def grouped-by-COr-FOr)
qed
lemma mset-of-conj-formula-of-mset [simp]: \langle mset-of-conj(formula-of-mset \varphi \rangle = \varphi \rangle for \varphi
proof (induction \langle size \varphi \rangle arbitrary: \varphi)
  case \theta
  then show ?case by (subst formula-of-mset.simps) (auto simp: Let-def no-T-F-def
        all-subformula-st-def)
next
  case (Suc n) note IH = this(1) and s = this(2)
  then have \langle n = size \ (remove 1 - mset \ (SOME \ v. \ v \in \# \ \varphi) \ \varphi \rangle \rangle if \langle \varphi \neq \{ \# \} \rangle
    using that by (auto simp: size-Diff-singleton-if some-in-eq)
  moreover have \langle no\text{-}T\text{-}F \ (FVar \ (atm\text{-}of \ (SOME \ v. \ v \in \# \varphi))) \rangle
    by (auto simp: no-T-F-def)
  ultimately show ?case
    using IH[of \land remove1\text{-}mset (SOME v. v \in \# \varphi) \varphi \rangle]
  by(subst formula-of-mset.simps) (auto simp: some-in-eq Let-def grouped-by-COr-FOr remove1-mset-empty-iff)
lemma mset-of-formula-formula-of-mset [simp]: \langle mset-of-formula (formula-of-mset \varphi \rangle = \{\varphi\} \rangle for \varphi
proof (induction \langle size \varphi \rangle arbitrary: \varphi)
  then show ?case by (subst formula-of-mset.simps) (auto simp: Let-def no-T-F-def
        all-subformula-st-def)
next
  case (Suc n) note IH = this(1) and s = this(2)
```

```
then have \langle n = size \ (remove1\text{-}mset \ (SOME \ v. \ v \in \# \ \varphi) \ \varphi ) \rangle \ \text{if} \ \langle \varphi \neq \{\#\} \rangle
    using that by (auto simp: size-Diff-singleton-if some-in-eq)
  moreover have \langle no\text{-}T\text{-}F \ (FVar \ (atm\text{-}of \ (SOME \ v. \ v \in \# \varphi))) \rangle
    by (auto simp: no-T-F-def)
  ultimately show ?case
    using IH[of \land remove1\text{-}mset (SOME v. v \in \# \varphi) \varphi \rangle]
   by(subst\ formula-of-mset.simps)\ (auto\ simp:\ some-in-eq\ Let-def\ grouped-by-COr-FOr\ remove1-mset-empty-iff)
qed
lemma formula-of-mset-is-cnf: \langle is-cnf (formula-of-mset \varphi \rangle \rangle
  by (auto simp: is-cnf-def is-conj-with-TF-def grouped-by-COr-formula-of-mset no-T-F-formula-of-mset
         intro!: grouped-is-super-grouped)
lemma eval-clss-iff:
  assumes \langle consistent\text{-}interp \ A \rangle and \langle total\text{-}over\text{-}set \ A \ UNIV \rangle
  shows \langle eval\ (fun\ of\ -set\ A)\ (formula\ of\ -mset\ \varphi)\longleftrightarrow Partial\ -Herbrand\ -Interpretation\ .true\ -clss\ A\ \{\varphi\}\rangle
  apply (subst cnf-eval-true-clss[OF formula-of-mset-is-cnf])
  using assms
  apply (auto simp add: true-cls-def fun-of-set-def consistent-interp-def total-over-set-def)
  apply (case-tac\ L)
   \mathbf{by} \ (\textit{fastforce simp add: true-cls-def fun-of-set-def consistent-interp-def total-over-set-def}) + \\
lemma is-conj-with-TF-Fand-iff:
  is-conj-with-TF (FAnd \varphi 1 \varphi 2) \longleftrightarrow is-conj-with-TF \varphi 1 \wedge is-conj-with-TF \varphi 2
  unfolding is-conj-with-TF-def by (subst super-grouped-by.simps) auto
lemma is-CNF-Fand:
  \langle is\text{-}cnf \ (FAnd \ \varphi \ \psi) \longleftrightarrow (is\text{-}cnf \ \varphi \land no\text{-}T\text{-}F \ \varphi) \land is\text{-}cnf \ \psi \land no\text{-}T\text{-}F \ \psi \rangle
  by (auto simp: is-cnf-def is-conj-with-TF-Fand-iff)
lemma no-T-F-formula-of-mset-iff: \langle no\text{-}T\text{-}F \text{ (formula-of-mset } \varphi \rangle \longleftrightarrow \varphi \neq \{\#\} \rangle
proof (induction \langle size \varphi \rangle arbitrary: \varphi)
  case \theta
  then show ?case by (subst formula-of-mset.simps) (auto simp: Let-def no-T-F-def
         all-subformula-st-def)
next
  case (Suc n) note IH = this(1) and s = this(2)
  then have \langle n = size \ (remove1\text{-}mset \ (SOME \ v. \ v \in \# \ \varphi) \ \varphi ) \rangle \text{ if } \langle \varphi \neq \{\#\} \rangle
    using that by (auto simp: size-Diff-singleton-if some-in-eq)
  moreover have \langle no\text{-}T\text{-}F \ (FVar \ (atm\text{-}of \ (SOME \ v. \ v \in \# \ \varphi))) \rangle
    by (auto simp: no-T-F-def)
  ultimately show ?case
    using IH[of \land remove1\text{-}mset (SOME v. v \in \# \varphi) \varphi \rangle]
   \mathbf{by}(subst\ formula\ of\ mset.simps)\ (auto\ simp:\ some\ -in\ -eq\ Let\ -def\ grouped\ -by\ -COr\ -FOr\ remove\ 1-mset\ -empty\ -iff)
qed
lemma no-T-F-formula-of-msets:
  assumes \langle finite \varphi \rangle and \langle \{\#\} \notin \varphi \rangle and \langle \varphi \neq \{\} \rangle
  shows \langle no\text{-}T\text{-}F \text{ (formula-of-msets } (\varphi) \rangle \rangle
  using assms apply (induction \langle card \varphi \rangle arbitrary: \varphi)
  subgoal by (subst formula-of-msets.simps) (auto simp: no-T-F-def all-subformula-st-def)[]
  subgoal
    apply (subst formula-of-msets.simps)
    apply (auto split: simp: Let-def formula-of-mset-is-cnf is-CNF-Fand
         no-T-F-formula-of-mset-iff some-in-eq)
    apply (metis (mono-tags, lifting) some-eq-ex)
```

```
done
  done
lemma is-cnf-formula-of-msets:
  assumes \langle finite \varphi \rangle and \langle \{\#\} \notin \varphi \rangle
  shows \langle is\text{-}cnf \ (formula\text{-}of\text{-}msets \ \varphi) \rangle
  using assms apply (induction \langle card \varphi \rangle arbitrary: \varphi)
  subgoal by (subst formula-of-msets.simps) (auto simp: is-cnf-def is-conj-with-TF-def)[]
  subgoal
    apply (subst formula-of-msets.simps)
    apply (auto split: simp: Let-def formula-of-mset-is-cnf is-CNF-Fand
        no-T-F-formula-of-mset-iff some-in-eq intro: no-T-F-formula-of-msets)
    apply (metis (mono-tags, lifting) some-eq-ex)
    done
  done
lemma mset-of-formula-formula-of-msets:
  assumes \langle finite \varphi \rangle
  shows \langle mset\text{-}of\text{-}formula\ (formula\text{-}of\text{-}msets\ \varphi) = \varphi \rangle
  using assms apply (induction \langle card \varphi \rangle arbitrary: \varphi)
  subgoal by (subst formula-of-msets.simps) (auto simp: is-cnf-def is-conj-with-TF-def)
  subgoal
    apply (subst formula-of-msets.simps)
    apply (auto split: simp: Let-def formula-of-mset-is-cnf is-CNF-Fand
        no-T-F-formula-of-mset-iff some-in-eq intro: no-T-F-formula-of-msets)
    done
  done
lemma
  assumes \langle consistent\text{-}interp\ A \rangle and \langle total\text{-}over\text{-}set\ A\ UNIV \rangle and \langle finite\ \varphi \rangle and \langle \{\#\} \notin \varphi \rangle
  shows \langle eval\ (fun\text{-}of\text{-}set\ A)\ (formula\text{-}of\text{-}msets\ \varphi) \longleftrightarrow Partial\text{-}Herbrand\text{-}Interpretation.true\text{-}clss\ }A\ \varphi\rangle
  apply (subst cnf-eval-true-clss[OF is-cnf-formula-of-msets[OF assms(3-4)]])
  using assms(3) unfolding mset-of-formula-formula-of-msets[OF\ assms(3)]
  by (induction \varphi)
    (\textit{use eval-clss-iff}[\textit{OF assms}(\textit{1},\textit{2})] \textbf{ in } \langle \textit{simp-all add: cnf-eval-true-clss formula-of-mset-is-cnf} \rangle)
```

end