Formalisation of Ground Resolution and CDCL in Isabelle/HOL

Mathias Fleury and Jasmin Blanchette

July 17, 2023

Contents

0.1 Rewrite Systems and Properties. oL 3
0.1.1 Lifting of Rewrite Rules 3
0.1.2 Consistency Preservation)
0.1.3 Full Lifting 6

0.2 Transformation testing Lo 7
0.2.1 Definition and first Properties L. 7
0.2.2 Invariant conservationo o 10

0.3 Rewrite Rules 13
0.3.1 Elimination of the Equivalences 13
0.3.2 Eliminate Implication 14
0.3.3 Eliminate all the True and False in the formula 16
0.3.4 PushNeg. 22
0.3.5 PushlInside 27

0.4 The Full Transformations 41
0.4.1 Abstract Definition 41
0.4.2 Conjunctive Normal Form 43
0.4.3 Disjunctive Normal Form 44

0.5 More aggressive simplifications: Removing true and false at the beginning 45
0.5.1 Transformation L L 45
0.5.2 More invariants L Lo 47
0.5.3 The new CNF and DNF transformation 51

0.6 Link with Multiset Version 0. 52
0.6.1 Transformation to Multiset 52
0.6.2 Equisatisfiability of the two Versions 52

theory Prop-Abstract- Transformation
imports Entailment-Definition. Prop-Logic Weidenbach-Book-Base. Wellfounded-More

begin

This file is devoted to abstract properties of the transformations, like consistency preservation
and lifting from terms to proposition.

0.1 Rewrite Systems and Properties

0.1.1 Lifting of Rewrite Rules
We can lift a rewrite relation r over a fulll formula: the relation r works on terms, while
propo-rew-step works on formulas.

inductive propo-rew-step :: ("v propo = v propo = bool) = "v propo = "v propo = bool
for r :: 'v propo = v propo = bool where

global-rel: T ¢ v = propo-rew-step r ¢ U |
propo-rew-one-step-lift: propo-rew-step r ¢ ' => wf-conn ¢ (Ys Q@ @ # hs’)
= propo-rew-step r (conn ¢ (s Q ¢ # Ps’)) (conn ¢ (Vs Q @'# hs’))

Here is a more precise link between the lifting and the subformulas: if a rewriting takes place
between ¢ and ¢’ then there are two subformulas 1) in ¢ and 1’ in ¢/, ¢ is the result of the
rewriting of r on .

This lemma is only a health condition:

lemma propo-rew-step-subformula-imp:
shows propo-rew-step r o @' = I Y Y. Y Lo AP 2 ' AN r Y’
apply (induct rule: propo-rew-step.induct)
using subformula.simps subformula-into-subformula apply blast
using wf-conn-no-arity-change subformula-into-subformula wf-conn-no-arity-change-helper
in-set-conv-decomp by metis

The converse is moreover true: if there is a ¢ and v’, then every formula ¢ containing 1, can
be rewritten into a formula ¢’, such that it contains ¢’.

lemma propo-rew-step-subformula-rec:
fixes ¢ ¥’ ¢ = 'v propo
shows) < o = r ¢ ' = (Fp’ ' 2 ' A propo-rew-step r ¢ ¢’
proof (induct ¢ rule: subformula.induct)
case subformula-refl
then have propo-rew-step r 1 1’ using propo-rew-step.intros by auto
moreover have 1)’ < v’ using Prop-Logic.subformula-refl by auto
ultimately show J¢’. ' < o’ A propo-rew-step r 1 ¢’ by fastforce
next
case (subformula-into-subformula ¥'"' 1 ¢)
note IH = this(4) and r = this(5) and ¢ = this(1) and wf = this(2) and incl = this(3)
then obtain ¢’ where x:)’ < ¢’ A propo-rew-step r "' ¢’ by metis
moreover obtain £ £’ :: 'v propo list where
Il =¢&Qy" # & using List.split-list 1" by metis
ultimately have propo-rew-step r (conn ¢ 1) (conn ¢ (£ @ ¢’ # &)
using propo-rew-step.intros(2) wf by metis
moreover have ¢’ < conn ¢ (£ Q ¢’ # &)
using wf * wf-conn-no-arity-change Prop-Logic.subformula-into-subformula
by (metis (no-types) in-set-conv-decomp | wf-conn-no-arity-change-helper)
ultimately show J¢’. ¢’ < ¢’ A propo-rew-step r (conn c 1) ¢’ by metis
qed

lemma propo-rew-step-subformula:

By Y. 2o A rp) «— (. propo-rew-step r ¢ ¢’
using propo-rew-step-subformula-imp propo-rew-step-subformula-rec by metis+

lemma consistency-decompose-into-list:
assumes wf: wf-conn c | and wf’: wf-conn c I’
and same: Vn. AEl!n+— (AEU!n)
shows A = conn ¢l +— A |= conn c I’
proof (cases c¢ rule: connective-cases-arity-2)
case nullary
then show (A | conn ¢ 1) +— (A | conn ¢ l') using wf wf’ by auto
next
case unary note ¢ = this
then obtain a where I: | = [a] using wf-conn-Not-decomp wf by metis
obtain o’ where [I’ = [a'] using wf-conn-Not-decomp wf' ¢ by metis

4

have A | a «— A = o' using [I’ by (metis nth-Cons-0 same)
then show A | conn ¢l +— A = conn ¢ I’ using [I’ ¢ by auto
next

case binary note ¢ = this
then obtain a b where I: | = [a, 0]

using wf-conn-bin-list-length list-length2-decomp wf by metis
obtain a’ b’ where " I’ = [a’, b/

using wf-conn-bin-list-length list-length2-decomp wf’ ¢ by metis

have p: A a<— AEd AEbI— AED
using [I’ same by (metis diff-Suc-1 nth-Cons’ nat.distinct(2))+
show A E conncl+— A= conncl’
using wf ¢ p unfolding binary-connectives-def I I’ by auto
qed

Relation between propo-rew-step and the rewriting we have seen before: propo-rew-step r ¢ '
means that we rewrite 1 inside ¢ (ie at a path p) into ¢".

lemma propo-rew-step-rewrite:
fixes ¢ ¢’ :: 'v propo and r :: "v propo = v propo = bool
assumes propo-rew-step v o @’
shows 3¢ ¥’ p. v ¥ ' A path-to p o P A replace-at p @ ' = ¢’
using assms
proof (induct rule: propo-rew-step.induct)
case(global-rel ¢)
moreover have path-to [| ¢ ¢ by auto
moreover have replace-at [| ¢ ¥ = 1 by auto
ultimately show ?case by metis
next
case (propo-rew-one-step-lift ¢ ¢’ ¢ £ £') note rel = this(1) and IHO = this(2) and corr = this(3)
obtain 1 ¢’ p where IH: r v 1’ A path-to p ¢ ¢ A replace-at p ¢ ' = @' using IHO by metis

{
fix z:: v
assume ¢c = CT V ¢c=CFV c= CVarz
then have Fulse using corr by auto
then have 3¢ ¢/ p. r ¢ ' A path-to p (conn ¢ (£Q (o # &) ¥
A replace-at p (conn ¢ (6@ (o # £))) &' = conn ¢ (6@ (o' # £1)
by fast
}
moreover {
assume c: ¢ = CNot
then have empty: £ =[] {'=[] using corr by auto
have path-to (L#p) (conn ¢ (§Q (¢ # £))) ¥
using ¢ empty IH wf-conn-unary path-to-l by fastforce
moreover have replace-at (L#p) (conn ¢ (£Q (¢ # £'))) ¥/ = conn ¢ (£Q (p' # ')
using c empty IH by auto
ultimately have 3¢ ¢’ p. v ¢ ¢’ A path-to p (conn ¢ (£Q (¢ # &) ¥
A replace-at p (conn ¢ (EQ (p # &) ' = conn ¢ (£Q (¢’ # &)
using IH by metis
}
moreover {
assume c: ¢ € binary-connectives
have length (£Q ¢ # &') = 2 using wf-conn-bin-list-length corr ¢ by metis
then have length £ + length £’ = 1 by auto
then have ld: (length £ = 1 A length £’ = 0) V (length £ = 0 A length £’ = 1) by arith
obtain a b where ab: (§=[] A '=[b]) V (€=[a] A £'=]])

using ld by (case-tac &, case-tac &', auto)
{
assume @: £=[] A £'=[b)
have path-to (L#p) (conn ¢ (§Q (¢ # ¢'))) ¢
using ¢ ¢ IH ab corr by (simp add: path-to-I)
moreover have replace-at (L#p) (conn ¢ (£Q (¢ # £'))) ¥’ = conn ¢ (€Q (¢’ # &)
using ¢ IH ab ¢ unfolding binary-connectives-def by auto
ultimately have 3¢ ¢’ p. 7 ¢ ' A path-to p (conn ¢ (£Q (¢ # £'))) ¢
A replace-at p (conn ¢ (£Q (¢ # £'))) ¥/ = conn ¢ (£Q (p’ # ¢&'))
using IH by metis
}
moreover {
assume @: {=[a] £'=|]
then have path-to (R#p) (conn ¢ (£Q (¢ # &) ¥
using ¢ IH corr path-to-r corr ¢ by (simp add: path-to-r)
moreover have replace-at (R#p) (conn ¢ (£Q (¢ # £'))) ¥’ = conn ¢ (£Q (¢’ # &)
using ¢ IH ab ¢ unfolding binary-connectives-def by auto
ultimately have ?case using IH by metis

}

ultimately have ?case using ab by blast
}
ultimately show ?Zcase using connective-cases-arity by blast
qed

0.1.2 Consistency Preservation

We define preserve-models: it means that a relation preserves consistency.

definition preserve-models where
preserve-models r «+— Vo . rpp — VA A E o «— A= 1))

lemma propo-rew-step-preservers-val-explicit:
propo-rew-step r @ 1 = preserve-models 1 = propo-rew-step 1 p Y = (VA. A Ep +— A=)
unfolding preserve-models-def
proof (induction rule: propo-rew-step.induct)
case global-rel
then show ?case by simp
next
case (propo-rew-one-step-lift ¢ ¢’ ¢ € £') note rel = this(1) and wf = this(2)
and IH = this(3)[OF this(4) this(1)] and consistent = this(4)

{
fix A

from IH haveVn. (AE (EQo # &) In)=(AE Qe #)!n)
by (metis (mono-tags, opaque-lifting) list-update-length nth-Cons-0 nth-append-length-plus
nth-list-update-neq)
then have (A | connc (@ p # &) = (A connc (£ Q ' # ')
by (meson consistency-decompose-into-list wf wf-conn-no-arity-change-helper
wf-conn-no-arity-change)

}
then show VA. A = connc (EQ o # &) +— A E conn ¢ (£ Q ¢’ # &) by auto
qed

lemma propo-rew-step-preservers-val:
assumes preserve-models T

shows preserve-models (propo-rew-step)
using assms by (simp add: preserve-models-def propo-rew-step-preservers-val-explicit)

lemma preserve-models-OO[intro]:
preserve-models f = preserve-models g = preserve-models (f OO g)
unfolding preserve-models-def by auto

lemma star-consistency-preservation-explicit:
assumes (propo-rew-step) “x* @ 1 and preserve-models r
showsVA. AEp+— AEY
using assms by (induct rule: rtranclp-induct)
(auto simp add: propo-rew-step-preservers-val-explicit)

lemma star-consistency-preservation:
preserve-models 1 = preserve-models (propo-rew-step 1) x
by (simp add: star-consistency-preservation-explicit preserve-models-def)

0.1.3 Full Lifting

In the previous a relation was lifted to a formula, now we define the relation such it is applied
as long as possible. The definition is thus simply: it can be derived and nothing more can be
derived.

lemma full-ropo-rew-step-preservers-val[simp):
preserve-models r = preserve-models (full (propo-rew-step r))
by (metis full-def preserve-models-def star-consistency-preservation)

lemma full-propo-rew-step-subformula:

full (propo-rew-step r) o' ¢ = =(F Y V" Y 2o AT Y WY
unfolding full-def using propo-rew-step-subformula-rec by metis

0.2 Transformation testing

0.2.1 Definition and first Properties

To prove correctness of our transformation, we create a all-subformula-st predicate. It tests
recursively all subformulas. At each step, the actual formula is tested. The aim of this test-symb
function is to test locally some properties of the formulas (i.e. at the level of the connective or
at first level). This allows a clause description between the rewrite relation and the test-symb

definition all-subformula-st :: ('a propo = bool) = 'a propo = bool where
all-subformula-st test-symb o = Vp. b < ¢ —> test-symb

lemma test-symb-imp-all-subformula-st[simp):
test-symb FT = all-subformula-st test-symb FT
test-symb FF = all-subformula-st test-symb FF
test-symb (FVar x) = all-subformula-st test-symb (FVar x)
unfolding all-subformula-st-def using subformula-leaf by metis+

lemma all-subformula-st-test-symb-true-phi:
all-subformula-st test-symb ¢ = test-symb

unfolding all-subformula-st-def by auto

lemma all-subformula-st-decomp-imp:
wf-conn ¢ | = (test-symb (conn ¢ 1) A (Vo€ set l. all-subformula-st test-symb))
= all-subformula-st test-symb (conn c 1)
unfolding all-subformula-st-def by auto

To ease the finding of proofs, we give some explicit theorem about the decomposition.

lemma all-subformula-st-decomp-rec:
all-subformula-st test-symb (conn ¢ 1) = wf-conn c |
= (test-symb (conn c 1) A (Y€ set l. all-subformula-st test-symb ¢))
unfolding all-subformula-st-def by auto

lemma all-subformula-st-decomp:
fixes ¢ :: ‘v connective and [:: "v propo list
assumes wf-conn c |
shows all-subformula-st test-symb (conn c 1)
<« (test-symb (conn c 1) N (Y€ set l. all-subformula-st test-symb ¢))
using assms all-subformula-st-decomp-rec all-subformula-st-decomp-imp by metis

lemma helper-fact: ¢ € binary-connectives +— (¢ = COr V ¢ = CAnd V ¢ = CEq V ¢ = CImp)
unfolding binary-connectives-def by auto
lemma all-subformula-st-decomp-explicit[simp]:
fixes ¢ 9 :: 'v propo
shows all-subformula-st test-symb (FAnd ¢ 1)
+— (test-symb (FAnd o) A all-subformula-st test-symb @ A all-subformula-st test-symb 1)
and all-subformula-st test-symb (FOr ¢ 1)
+— (test-symb (FOr ¢) A all-subformula-st test-symb ¢ A all-subformula-st test-symb 1))
and all-subformula-st test-symb (FNot ©)
> (test-symb (FNot ¢) A all-subformula-st test-symb)
and all-subformula-st test-symb (FEq ¢ 1)
+— (test-symb (FEq ¢ ¥) A all-subformula-st test-symb ¢ A all-subformula-st test-symb 1)
and all-subformula-st test-symb (FImp ¢ 1)
+— (test-symb (FImp ¢) A all-subformula-st test-symb ¢ A all-subformula-st test-symb 1)
proof —
have all-subformula-st test-symb (FAnd ¢) <— all-subformula-st test-symb (conn CAnd [p, ¥])
by auto
moreover have ... «—test-symb (conn CAnd [p, Y)A(VEE set [p,). all-subformula-st test-symb

£)
using all-subformula-st-decomp wf-conn-helper-facts(5) by metis
finally show all-subformula-st test-symb (FAnd ¢)
+— (test-symb (FAnd o) A all-subformula-st test-symb ¢ A all-subformula-st test-symb 1))
by simp

have all-subformula-st test-symb (FOr ¢ 1) +— all-subformula-st test-symb (conn COr [p, 1))
by auto

moreover have ...<—
(test-symb (conn COr [p, ¥]) N (VEE set [p, ¥]. all-subformula-st test-symb §))
using all-subformula-st-decomp wf-conn-helper-facts(6) by metis

finally show all-subformula-st test-symb (FOr ¢ 1))
> (test-symb (FOr ¢ 1) A all-subformula-st test-symb ¢ A all-subformula-st test-symb 1)
by simp

have all-subformula-st test-symb (FEq ¢ 1) «— all-subformula-st test-symb (conn CEq [p, ¥])
by auto
moreover have ...

+—— (test-symb (conn CEq [p, ¢¥]) N (VEE set [p, ¥]. all-subformula-st test-symb §))
using all-subformula-st-decomp wf-conn-helper-facts(8) by metis
finally show all-subformula-st test-symb (FEq ¢)
+— (test-symb (FEq ¢ ¥) N all-subformula-st test-symb ¢ N all-subformula-st test-symb)
by simp

have all-subformula-st test-symb (FImp ¢) +— all-subformula-st test-symb (conn CImp [p, ¥])
by auto

moreover have ...
+——(test-symb (conn CImp [p, ¥]) N (VE€E set [p, Y] all-subformula-st test-symb &))
using all-subformula-st-decomp wf-conn-helper-facts(7) by metis

finally show all-subformula-st test-symb (FImp ¢)
+— (test-symb (FImp ¢) A all-subformula-st test-symb ¢ A all-subformula-st test-symb 1))
by simp

have all-subformula-st test-symb (FNot ¢) <— all-subformula-st test-symb (conn CNot [¢])
by auto
moreover have ... = (test-symb (conn CNot [p]) A (VE€ set [¢]. all-subformula-st test-symb &))
using all-subformula-st-decomp wf-conn-helper-facts(1) by metis
finally show all-subformula-st test-symb (FNot)
+— (test-symb (FNot ¢) A all-subformula-st test-symb) by simp
qed

As all-subformula-st tests recursively, the function is true on every subformula.

lemma subformula-all-subformula-st:
Y = ¢ = all-subformula-st test-symb ¢ = all-subformula-st test-symb
by (induct rule: subformula.induct, auto simp add: all-subformula-st-decomp)

The following theorem no-test-symb-step-exists shows the link between the test-symb function
and the corresponding rewrite relation r: if we assume that if every time test-symb is true, then
a r can be applied, finally as long as — all-subformula-st test-symb ¢, then something can be
rewritten in .

lemma no-test-symb-step-exists:
fixes r:: "v propo = v propo = bool and test-symb:: v propo = bool and z :: v
and ¢ :: "v propo
assumes
test-symb-false-nullary: ¥V x. test-symb FF A test-symb FT A test-symb (FVar x) and
Vo' o < ¢ — (otest-symb ¢') — (3 . r ¢’) and
= all-subformula-st test-symb ¢
shows Y /. ¢ <o A r) 9’
using assms
proof (induct ¢ rule: propo-induct-arity)
case (nullary ¢)
then show 3¢ /. b X o A1 ¢’
using wf-conn-nullary test-symb-false-nullary by fastforce
next
case (unary) note ITH = this(1)[OF this(2)] and r = this(2) and nst = this(3) and subf =
this(4)
from r IH nst have H: — all-subformula-st test-symb ¢ = Jp. b < A (FV'. 7 Y Y’)
by (metis subformula-in-subformula-not subformula-refl subformula-trans)
{
assume n: —test-symb (FNot)
obtain ¢ where r (FNot ¢) ¢ using subformula-refl r n nst by blast
moreover have FNot ¢ =< FNot ¢ using subformula-refl by auto
ultimately have 3 ¢’ ¢p < FNot ¢ A r 1 ' by metis

9

}

moreover {
assume n: test-symb (FNot o)
then have — all-subformula-st test-symb ¢
using all-subformula-st-decomp-explicit(3) nst subf by blast
then have 3¢ ¢'. ¢ < FNot o A r 9)’
using H subformula-in-subformula-not subformula-refl subformula-trans by blast

}

ultimately show 3 1’ p < FNot © A r 1 1)’ by blast
next
case (binary ¢ 1 p2)
note IHp1-0 = this(1)[OF this(4)] and IHp2-0 = this(2)[OF this(4)] and r = this(4)
and ¢ = this(3) and le = this(5) and nst = this(6)

obtain ¢ :: 'v connective where
c¢: (c=CAnd vV ¢ = COr vV ¢ = Clmp V ¢ = CEq) A conn ¢ [¢l, 2] = ¢
using ¢ by fastforce

then have corr: wf-conn ¢ [p1, ¢2] using wf-conn.simps unfolding binary-connectives-def by auto
have inc: p1 = ¢ 2 <X ¢ using binary-connectives-def ¢ subformula-in-binary-conn by blast+
from r IHp1-0 have [Hp!1: = all-subformula-st test-symb o1 = Y P’ p <l A rp 3’
using inc(1) subformula-trans le by blast
from r THp2-0 have IHp2: — all-subformula-st test-symb 02 = F1h. » X 2 A (Y. r o Y7)
using inc(2) subformula-trans le by blast
have cases: —test-symb ¢ V —all-subformula-st test-symb @1 V —all-subformula-st test-symb p2
using c nst by auto

show Y Y. R p AT’
using [Hp1 [Hp?2 subformula-trans inc subformula-refl cases le by blast
qed

0.2.2 Invariant conservation

If two rewrite relation are independant (or at least independant enough), then the property
characterizing the first relation all-subformula-st test-symb remains true. The next show the
same property, with changes in the assumptions.

The assumption V' . o' < & — 7 ') — all-subformula-st test-symb o' — all-subformula-st
test-symb 1 means that rewriting with r does not mess up the property we want to preserve
locally.

The previous assumption is not enough to go from r to propo-rew-step r: we have to add
the assumption that rewriting inside does not mess up the term: Ve &€ ¢ £ ¢'. p < & —
propo-rew-step ¢ @' — wf-conn ¢ (€ Q@ ¢ # &) — test-symb (conn ¢ (£ Q@ ¢ # &) —
test-symb @' — test-symb (conn ¢ (£ Q @’ # &)

Invariant while lifting of the Rewriting Relation

The condition ¢ =< ® (that will by used with ® = ¢ most of the time) is here to ensure that the
recursive conditions on ¢ will moreover hold for the subterm we are rewriting. For example if
there is no equivalence symbol in ®, we do not have to care about equivalence symbols in the
two previous assumptions.
lemma propo-rew-step-inv-stay’:
fixes r:: 'v propo = v propo = bool and test-symb:: v propo = bool and z :: v
and ¢ ¥ ®:: v propo

10

assumes H: Vo' . o/ < & — 7 o' ¢ — all-subformula-st test-symb o’
— all-subformula-st test-symb 1
and H”: V(c:: 'v connective) & ¢ £ ¢'. ¢ X & — propo-rew-step r ¢ @’
— wf-conn ¢ (€ Q ¢ # &) —> test-symb (conn ¢ (€ Q ¢ # £')) —> test-symb '
— test-symb (conn ¢ (£ @ ¢’ # &')) and
propo-rew-step r ¢ ¥ and
p 2 ® and
all-subformula-st test-symb ¢
shows all-subformula-st test-symb
using assms(3—95)
proof (induct rule: propo-rew-step.induct)
case global-rel
then show ?case using H by simp
next
case (propo-rew-one-step-lift p @' ¢ £ £')
note rel = this(1) and ¢ = this(2) and corr = this(3) and ® = this(4) and nst = this(5)
have sq¢: ¢ X @
using @ corr subformula-into-subformula subformula-refl subformula-trans
by (metis in-set-conv-decomp)
from corr have V . ¢ € set (£ Q ¢ # &') — all-subformula-st test-symb
using all-subformula-st-decomp nst by blast
then have *: V. ¢ € set (£ Q ¢’ # &) — all-subformula-st test-symb 1) using ¢ sq by fastforce
then have test-symb ¢’ using all-subformula-st-test-symb-true-phi by auto
moreover from corr nst have test-symb (conn ¢ (§ @ ¢ # £'))
using all-subformula-st-decomp by blast
ultimately have test-symb: test-symb (conn ¢ (§ @ ¢’ # &) using H' sq corr rel by blast

have wf-conn ¢ (£ @ ¢’ # &)
by (metis wf-conn-no-arity-change-helper corr wf-conn-no-arity-change)
then show all-subformula-st test-symb (conn ¢ (£ Q ¢’ # £’))
using * test-symb by (metis all-subformula-st-decomp)
qed

The need for ¢ < ® is not always necessary, hence we moreover have a version without inclusion.

lemma propo-rew-step-inv-stay:
fixes r:: 'v propo = v propo = bool and test-symb:: v propo = bool and z :: v
and ¢ v :: "v propo
assumes
H: Yo' . r o' — all-subformula-st test-symb o' — all-subformula-st test-symb 1 and
H'’: V¥ (c:: "v connective) € ¢ &' ¢’ wf-conn ¢ (€ Q ¢ # £') — test-symb (conn ¢ (£ Q@ ¢ # &)
— test-symb @’ — test-symb (conn ¢ (£ Q ¢’ # ¢’)) and
propo-rew-step T @ ¢ and
all-subformula-st test-symb ¢
shows all-subformula-st test-symb 1
using propo-rew-step-inv-stay’[of ¢ r test-symb ¢ V] assms subformula-refl by metis

The lemmas can be lifted to propo-rew-step r* instead of propo-rew-step

Invariant after all Rewriting

lemma full-propo-rew-step-inv-stay-with-inc:
fixes r:: "v propo = v propo = bool and test-symb:: v propo = bool and z :: v
and ¢ v :: "v propo
assumes
H:Y ¢ . propo-rew-step v ¢ ¥ — all-subformula-st test-symb ¢
— all-subformula-st test-symb 1 and

11

!’

H': ¥ (c:: "v connective) € ¢ £’ ¢'. ¢ < & — propo-rew-step v ¢ '
— wf-conn ¢ (£ Q @ # &) —> test-symb (conn ¢ (£ Q@ ¢ # &) — test-symb ¢’
— test-symb (conn ¢ (£ Q@ ¢’ # ¢')) and
p = ® and
full: full (propo-rew-step r) ¢ ¥ and
init: all-subformula-st test-symb ¢
shows all-subformula-st test-symb 1
using assms unfolding full-def
proof —
have rel: (propo-rew-step r)** ¢ 1
using full unfolding full-def by auto
then show all-subformula-st test-symb 1)
using nit
proof (induct rule: rtranclp-induct)
case base
then show all-subformula-st test-symb ¢ by blast
next
case (step b ¢) note star = this(1) and IH = this(3) and one = this(2) and all = this(4)
then have all-subformula-st test-symb b by metis
then show all-subformula-st test-symb ¢ using propo-rew-step-inv-stay’ H H' rel one by auto
qed
qed

lemma full-propo-rew-step-inv-stay”:
fixes r:: 'v propo = v propo = bool and test-symb:: v propo = bool and z :: v
and ¢ v :: "v propo
assumes
H: Y ¢ 1. propo-rew-step r ¢ v — all-subformula-st test-symb ¢
— all-subformula-st test-symb 1 and
H'" ¥ (c:: "v connective) € ¢ &' @'. propo-rew-step r ¢ @' — wf-conn ¢ (£ Q ¢ # &)
— test-symb (conn ¢ (£ Q ¢ # &) — test-symb ¢’ — test-symb (conn ¢ (£ Q ¢’ # £’)) and
full: full (propo-rew-step r) ¢ 1 and
init: all-subformula-st test-symb ¢
shows all-subformula-st test-symb
using full-propo-rew-step-inv-stay-with-inclof r test-symb] assms subformula-refl by metis

lemma full-propo-rew-step-inv-stay:
fixes r:: "v propo = v propo = bool and test-symb:: v propo = bool and z :: v
and ¢ 9 1 'v propo
assumes
H:Yp . r oy — all-subformula-st test-symb ¢ — all-subformula-st test-symb 1 and
H" Y (¢:: "v connective) & o &' @' wf-conn ¢ (€ Q p # £') — test-symb (conn ¢ (£ Q ¢ # &)
— test-symb ¢’ — test-symb (conn ¢ (£ Q ¢’ # ¢’)) and
full: full (propo-rew-step r) ¢ ¥ and
init: all-subformula-st test-symb o
shows all-subformula-st test-symb
unfolding full-def
proof —
have rel: (propo-rew-step 1) % @
using full unfolding full-def by auto
then show all-subformula-st test-symb 1)

using init
proof (induct rule: rtranclp-induct)

case base

then show all-subformula-st test-symb ¢ by blast
next

12

case (step b ¢)
note star = this(1) and IH = this(3) and one = this(2) and all = this(4)
then have all-subformula-st test-symb b by metis
then show all-subformula-st test-symb c
using propo-rew-step-inv-stay subformula-refl H H' rel one by auto
qed
qed

lemma full-propo-rew-step-inv-stay-conn:
fixes r:: v propo = v propo = bool and test-symb:: v propo = bool and z :: v
and ¢ v 1 'v propo
assumes
H:Yp . r oY — all-subformula-st test-symb ¢ — all-subformula-st test-symb 1) and
H'" ¥ (¢:: 'v connective) 1 1. wf-conn ¢ | — wf-conn ¢ 1’
— (test-symb (conn ¢ l) <— test-symb (conn c l’)) and
full: full (propo-rew-step r) ¢ 1 and
init: all-subformula-st test-symb ¢
shows all-subformula-st test-symb
proof —
have A(c:: 'v connective) € ¢ £ ¢’ wf-conn ¢ (£ @ ¢ # &)
= test-symb (conn ¢ (£ Q ¢ # £')) = test-symb @' => test-symb (conn ¢ (£ Q@ ¢’ # &)
using H' by (metis wf-conn-no-arity-change-helper wf-conn-no-arity-change)
then show all-subformula-st test-symb 1)
using H full init full-propo-rew-step-inv-stay by blast
qed

end

theory Prop-Normalisation

imports Entailment-Definition. Prop-Logic Prop-Abstract- Transformation Nested-Multisets-Ordinals. Multiset-More
begin

Given the previous definition about abstract rewriting and theorem about them, we now have
the detailed rule making the transformation into CNF/DNF.

0.3 Rewrite Rules

The idea of Christoph Weidenbach’s book is to remove gradually the operators: first equivalen-
cies, then implication, after that the unused true/false and finally the reorganizing the or/and.
We will prove each transformation seperately.

0.3.1 Elimination of the Equivalences

The first transformation consists in removing every equivalence symbol.
inductive elim-equiv :: 'v propo = 'v propo = bool where

elim-equiv[simp|: elim-equiv (FEq ¢ 1) (FAnd (FImp ¢) (FImp ¢ ¢))

lemma elim-equiv-transformation-consistent:
Al FEq o ¢ +— A = FAnd (FImp ¢) (FImp ¢ @)
by auto

lemma elim-equiv-explicit: elim-equiv ¢ v = VA. AE p+— AE1¢
by (induct rule: elim-equiv.induct, auto)

13

lemma elim-equiv-consistent: preserve-models elim-equiv
unfolding preserve-models-def by (simp add: elim-equiv-explicit)

lemma elimFEquu-lifted-consistant:
preserve-models (full (propo-rew-step elim-equiv))
by (simp add: elim-equiv-consistent)

This function ensures that there is no equivalencies left in the formula tested by no-equiv-symb.

fun no-equiv-symb :: v propo = bool where
no-equiv-symb (FEq - -) = False |
no-equiv-symb - = True

Given the definition of no-equiv-symb, it does not depend on the formula, but only on the
connective used.

lemma no-equiv-symb-conn-characterization|simpl:
fixes ¢ :: ‘v connective and | :: "v propo list
assumes wf: wf-conn c [
shows no-equiv-symb (conn ¢ 1) +— ¢ # CEq
by (metis connective.distinct(13,25,35,43) wf no-equiv-symb.elims(3) no-equiv-symb.simps(1)
wf-conn.cases wf-conn-list(6))

definition no-equiv where no-equiv = all-subformula-st no-equiv-symb

lemma no-equiv-eq[simp):
fixes ¢ v 1 'v propo
shows
—no-equiv (FEq ¢ 1)
no-equiv F'T
no-equiv F'F
using no-equiv-symb.simps(1) all-subformula-st-test-symb-true-phi unfolding no-equiv-def by auto

The following lemma helps to reconstruct no-equiv expressions: this representation is easier to
use than the set definition.

lemma all-subformula-st-decomp-explicit-no-equiv[iff]:

fixes ¢ ¢ :: "v propo

shows
no-equiv
no-equiv

FNot) <— no-equiv ¢

FAnd ¢ ¢) +— (no-equiv ¢ A no-equiv 1)
no-equiv (FOr ¢ ¥) <— (no-equiv ¢ N no-equiv 1)
no-equiv (FImp ¢ ¢) <— (no-equiv ¢ N\ no-equiv 1)
by (auto simp: no-equiv-def)

A~ N S

A theorem to show the link between the rewrite relation elim-equiv and the function no-equiv-symb.
This theorem is one of the assumption we need to characterize the transformation.

lemma no-equiv-elim-equiv-step:
fixes ¢ :: 'v propo
assumes no-equiv: T No-equiv Y
shows ¢ ¢ ¢ < o A elim-equiv ¢ 1’
proof —
have test-symb-false-nullary:
Y z::'v. no-equiv-symb FF A no-equiv-symb FT A no-equiv-symb (FVar x)
unfolding no-equiv-def by auto
moreover {

14

fix c:: 'v connective and [:: "v propo list and v :: 'v propo
assume al: elim-equiv (conn ¢ 1) 1
have Ap pa. - elim-equiv (p::"v propo) pa V = no-equiv-symb p
using elim-equiv.cases no-equiv-symb.simps(1) by blast
then have elim-equiv (conn ¢ 1) v = —no-equiv-symb (conn ¢ l) using al by metis
}
moreover have H'’: V. —elim-equiv FT 1 Y. —elim-equiv FF) V4 z. —elim-equiv (FVar z)
using elim-equiv.cases by auto
moreover have A\p. = no-equiv-symb ¢ = F4). elim-equiv v ¢
by (case-tac p, auto simp: elim-equiv.simps)
then have \¢'. ¢’ < ¢ = —no-equiv-symb ¢’ = 1. elim-equiv ¢’ ¥ by force
ultimately show ?thesis
using no-test-symb-step-exists no-equiv test-symb-false-nullary unfolding no-equiv-def by blast
qed

Given all the previous theorem and the characterization, once we have rewritten everything,
there is no equivalence symbol any more.

lemma no-equiv-full-propo-rew-step-elim-equiv:
full (propo-rew-step elim-equiv) ¢ ¥ = no-equiv ¥
using full-propo-rew-step-subformula no-equiv-elim-equiv-step by blast

0.3.2 Eliminate Implication

After that, we can eliminate the implication symbols.

inductive elim-imp :: 'v propo = v propo = bool where
[simp]: elim-imp (FImp ¢ ¢) (FOr (FNot @) 1)

lemma elim-imp-transformation-consistent:
A= Flmp ¢ ¢ <— A |= FOr (FNot ¢) ¢
by auto

lemma elim-imp-explicit: elim-imp p Y = VA. AE o +— A=
by (induct ¢ ¢ rule: elim-imp.induct, auto)

lemma elim-imp-consistent: preserve-models elim-imp
unfolding preserve-models-def by (simp add: elim-imp-explicit)

lemma elim-imp-lifted-consistant:
preserve-models (full (propo-rew-step elim-imp))
by (simp add: elim-imp-consistent)

fun no-imp-symb where
no-imp-symb (FImp - -) = False |
no-imp-symb - = True

lemma no-imp-symb-conn-characterization:
wf-conn ¢ | = no-imp-symb (conn ¢ 1) +— ¢ # CImp
by (induction rule: wf-conn-induct) auto

definition no-imp where no-imp = all-subformula-st no-imp-symb
declare no-imp-def|[simp]

lemma no-imp-Imp[simpl:
—no-imp (FImp ¢)
no-imp F'T

15

no-imp FF
unfolding no-imp-def by auto

lemma all-subformula-st-decomp-explicit-imp|simpl:
fixes ¢ v :: "v propo
shows
no-imp (FNot @) «— no-imp ¢
no-imp (FAnd ¢) +— (no-imp ¢ A no-imp 1)
no-imp (FOr ¢ ¢) <— (no-imp ¢ A no-imp)
by auto

Invariant of the elim-imp transformation

lemma elim-imp-no-equiv:
elim-imp p ¥ = no-equiv p => no-equiv Y
by (induct ¢ ¥ rule: elim-imp.induct, auto)

lemma elim-imp-inv:
fixes ¢ v :: "v propo
assumes full (propo-rew-step elim-imp) ¢ 1 and no-equiv @
shows no-equiv ¥
using full-propo-rew-step-inv-stay-conn|of elim-imp no-equiv-symb @ | assms elim-imp-no-equiv
no-equiv-symb-conn-characterization unfolding no-equiv-def by metis

lemma no-no-imp-elim-imp-step-exists:
fixes ¢ :: 'v propo
assumes no-equiv: T NO-IMp @
shows 3¢ ¥’ ¢ < o A elim-imp ¢ '
proof —
have test-symb-false-nullary: ¥V z. no-imp-symb FF A no-imp-symb FT A no-imp-symb (FVar (z:: 'v))
by auto
moreover {
fix c:: 'v connective and [:: 'v propo list and 1 :: "v propo
have H: elim-imp (conn c 1) v = —no-imp-symb (conn c 1)
by (auto elim: elim-imp.cases)
}
moreover
have H': V4. —elim-imp FT ¢ V. —elim-imp FF ¢ Y x. —elim-imp (FVar z) ¢
by (auto elim: elim-imp.cases)+
moreover
have Ap. = no-imp-symb ¢ = 4. elim-imp ¢
by (case-tac @) (force simp: elim-imp.simps)+
then have Ay’ ¢’ < ¢ = —no-imp-symb ¢’ = 3 . elim-imp ¢’ 1) by force
ultimately show ?thesis
using no-test-symb-step-exists no-equiv test-symb-false-nullary unfolding no-imp-def by blast
qed

lemma no-imp-full-propo-rew-step-elim-imp: full (propo-rew-step elim-imp) ¢ ¥ => no-imp ¥
using full-propo-rew-step-subformula no-no-imp-elim-imp-step-exists by blast

0.3.3 Eliminate all the True and False in the formula

Contrary to the book, we have to give the transformation and the “commutative” transforma-
tion. The latter is implicit in the book.

inductive elimTB where
ElimTB1: elimTB (FAnd ¢ FT) ¢ |

16

ElimTB1": elimTB (FAnd FT ¢) ¢ |

ElimTB2: elimTB (FAnd ¢ FF) FF |
ElimTB2": elimTB (FAnd FF o) FF |

ElimTB3: elimTB (FOr ¢ FT) FT |
ElimTB3": elimTB (FOr FT ¢) FT |

ElimTB/: elimTB (FOr ¢ FF) ¢ |
ElimTB4" elimTB (FOr FF ¢) ¢ |

ElimTB5: elimTB (FNot FT) FF |
ElimTB6: elimTB (FNot FF) FT

lemma elimTB-consistent: preserve-models elimTB
proof —

fix ¢ :: 'b propo
have elimTB ¢ v = VA. A = p +— A |E ¢ by (induction rule: elimTB.inducts) auto
}
then show ?thesis using preserve-models-def by auto
qed

inductive no-T-F-symb :: 'v propo = bool where
no-T-F-symb-comp: ¢ # CF = ¢ # CT = wf-conn ¢l = (V¢ € setl. p # FT N\ p # FF)
= no-T-F-symb (conn c)

lemma wf-conn-no-T-F-symb-iff [simp]:
wf-conn ¢ s =
no-T-F-symb (conn ¢ s) «— (¢ # CF A ¢ # CT N (Vy€set s p # FF N # FT))
unfolding no-T-F-symb.simps apply (cases c)
using wf-conn-list(1) apply fastforce
using wf-conn-list(2) apply fastforce
using wf-conn-list(3) apply fastforce
apply (metis (no-types, opaque-lifting) conn-inj connective.distinct(5,17))
using conn-inj apply blast+
done

lemma wf-conn-no-T-F-symb-iff-explicit[simp]:
no-T-F-symb (FAnd ¢) «— (Vx € set [@, ¥]. x # FF N x # FT)
no-T-F-symb (FOr ¢) «— (Vx € set [p, ¥]. x # FF N x # FT)
no-T-F-symb (FEq ¢ ¢) +— (Vx € set [p, ¥]. x # FF AN x # FT)
no-T-F-symb (FImp ¢) +— (Vx € set [¢, ¥]. x # FF A x # FT)
apply (metis conn.simps(36) conn.simps(37) conn.simps(5) propo.distinct(19)
wf-conn-helper-facts(5) wf-conn-no-T-F-symb-iff)
apply (metis conn.simps(36) conn.simps(37) conn.simps(6) propo.distinct(22)
wf-conn-helper-facts(6) wf-conn-no-T-F-symb-iff)
using wf-conn-no-T-F-symb-iff apply fastforce
by (metis conn.simps(36) conn.simps(87) conn.simps(7) propo.distinct(23) wf-conn-helper-facts(7)
wf-conn-no-T-F-symb-iff)

lemma no-T-F-symb-false[simp]:
fixes c :: 'v connective

17

shows
—no-T-F-symb (FT :: 'v propo)
—no-T-F-symb (FF :: 'v propo)
by (metis (no-types) conn.simps(1,2) wf-conn-no-T-F-symb-iff wf-conn-nullary)+

lemma no-T-F-symb-bool[simp]:
fixes z :: v
shows no-T-F-symb (FVar)
using no-T-F-symb-comp wf-conn-nullary by (metis connective.distinct(3, 15) conn.simps(8)
empty-iff list.set(1))

lemma no-T-F-symb-fnot-imp:
—no-T-F-symb (FNot ¢) = ¢ = FT V ¢ = FF
proof (rule ccontr)
assume n: - no-T-F-symb (FNot)
assume - (¢ = FT V ¢ = FF)
then have Vo' € set [¢]. p'AFT N ¢'2AFF by auto
moreover have wf-conn CNot [p] by simp
ultimately have no-T-F-symb (FNot)
using no-T-F-symb.intros by (metis conn.simps(4) connective.distinct(5,17))
then show Fulse using n by blast
qed

lemma no-T-F-symb-fnot][simp):
no-T-F-symb (FNot ¢) <— —(p = FT V ¢ = FF)
using no-T-F-symb.simps no-T-F-symb-fnot-imp by (metis conn-inj-not(2) list.set-intros(1))

Actually it is not possible to remover every FT and FF: if the formula is equal to true or false,
we can not remove it.

inductive no-T-F-symb-except-toplevel where

no-T-F-symb-except-toplevel-true[simp]: no-T-F-symb-except-toplevel FT |
no-T-F-symb-except-toplevel-false[simp]: no-T-F-symb-except-toplevel FF |
noTrue-no-T-F-symb-except-toplevel[simp]: no-T-F-symb ¢ = no-T-F-symb-except-toplevel ¢

lemma no-T-F-symb-except-toplevel-bool:
fixes z :: v
shows no-T-F-symb-except-toplevel (FVar x)

by simp

lemma no-T-F-symb-except-toplevel-not-decom:
¢ # FT = ¢ # FF = no-T-F-symb-except-toplevel (FNot ¢)
by simp

lemma no-T-F-symb-except-toplevel-bin-decom:

fixes ¢ v 1 'v propo

assumes ¢ # FT and ¢ # FF and ¢ # FT and ¢ # FF

and c: c€ binary-connectives

shows no-T-F-symb-except-toplevel (conn ¢ [¢, 1))

by (metis (no-types, lifting) assms ¢ conn.simps(4) list.discI noTrue-no-T-F-symb-except-toplevel
wf-conn-no-T-F-symb-iff no-T-F-symb-fnot set-ConsD wf-conn-binary wf-conn-helper-facts(1)
wf-conn-list-decomp(1,2))

lemma no-T-F-symb-except-toplevel-if-is-a-true-false:

fixes | :: 'v propo list and ¢ :: 'v connective
assumes corr: wf-conn c |

18

and FT € setlV FF € setl

shows —no-T-F-symb-except-toplevel (conn ¢ 1)

by (metis assms empty-iff no-T-F-symb-except-toplevel.simps wf-conn-no-T-F-symb-iff set-empty
wf-conn-list(1,2))

lemma no-T-F-symb-except-top-level-false-example[simp):
fixes ¢ v 1 "v propo
assumes ¢ = FT' V¢ =FT V ¢ =FF V¢ =FF
shows
= no-T-F-symb-except-toplevel (FAnd ¢ 1)
= no-T-F-symb-except-toplevel (FOr ¢ 1)
= no-T-F-symb-except-toplevel (FImp ¢ 1)
= no-T-F-symb-except-toplevel (FEq ¢ 1)
using assms no-T-F-symb-except-toplevel-if-is-a-true-false unfolding binary-connectives-def
by (metis (no-types) conn.simps(5—38) insert-iff list.simps(14—15) wf-conn-helper-facts(5—8))+

lemma no-T-F-symb-except-top-level-false-not[simp):
fixes ¢ v :: "v propo
assumes ¢ = FT V ¢ = FF
shows
= no-T-F-symb-except-toplevel (FNot ¢)
by (simp add: assms no-T-F-symb-except-toplevel.simps)

This is the local extension of no-T-F-symb-except-toplevel.

definition no-T-F-except-top-level where
no-T-F-except-top-level = all-subformula-st no-T-F-symb-except-toplevel

This is another property we will use. While this version might seem to be the one we want to
prove, it is not since F'T can not be reduced.

definition no-T-F where
no-T-F = all-subformula-st no-T-F-symb

lemma no-T-F-except-top-level-false:
fixes [:: "v propo list and c :: 'v connective
assumes wf-conn c |
and FT € setlV FF € setl
shows —no-T-F-except-top-level (conn c¢ 1)
by (simp add: all-subformula-st-decomp assms no-T-F-except-top-level-def
no-T-F-symb-except-toplevel-if-is-a-true-false)

lemma no-T-F-except-top-level-false-example[simp):

fixes ¢ ¢ :: 'v propo

assumes ¢ = FIT'V ¢ =FT V ¢ =FF V¢ = FF

shows
—no-T-F-except-top-level (FAnd ¢ 1)
—no-T-F-except-top-level (FOr ¢ 1)
—no-T-F-except-top-level (FEq ¢ 1))
—no-T-F-except-top-level (FImp ¢)

by (metis all-subformula-st-test-symb-true-phi assms no-T-F-except-top-level-def
no-T-F-symb-except-top-level-false-example)+

lemma no-T-F-symb-ezxcept-toplevel-no-T-F-symb:
no-T-F-symb-except-toplevel ¢ = ¢ # FF = ¢ # FT = no-T-F-symb ¢

19

by (induct rule: no-T-F-symb-except-toplevel.induct, auto)

The two following lemmas give the precise link between the two definitions.

lemma no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb:
no-T-F-except-top-level p = p # FF = ¢ # FT = no-T-F ¢
unfolding no-T-F-except-top-level-def no-T-F-def apply (induct ¢)
using no-T-F-symb-fnot by fastforce+

lemma no-T-F-no-T-F-except-top-level:
no-T-F ¢ = no-T-F-except-top-level ¢
unfolding no-T-F-except-top-level-def no-T-F-def
unfolding all-subformula-st-def by auto

lemma no-T-F-exceptl-top-level-simp[simp]: no-T-F-except-top-level FF no-T-F-except-top-level FT
unfolding no-T-F-except-top-level-def by auto

lemma no-T-F-no-T-F-except-top-level [simp]:
no-T-F-except-top-level p «— (¢ = FF V ¢ = FT V no-T-F)
using no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb no-T-F-no-T-F-except-top-level
by auto

lemma no-T-F-bin-decomp|simp]:
assumes c: ¢ € binary-connectives
shows no-T-F (conn ¢ [p, ¥]) «— (no-T-F ¢ A no-T-F)
proof —
have wf: wf-conn ¢ [p, ¢] using ¢ by auto
then have no-T-F (conn ¢ [p, ¢]) +— (no-T-F-symb (conn ¢ [¢, ¥]) A no-T-F ¢ A no-T-F)
by (simp add: all-subformula-st-decomp no-T-F-def)
then show no-T-F (conn ¢ [p, ¢]) <— (no-T-F ¢ A no-T-F 1))
using ¢ wf all-subformula-st-decomp list.discl no-T-F-def no-T-F-symb-except-toplevel-bin-decom
no-T-F-symb-except-toplevel-no-T-F-symb no-T-F-symb-false(1,2) wf-conn-helper-facts(2,3)
wf-conn-list(1,2) by metis
qed

lemma no-T-F-bin-decomp-expanded|simp]:
assumes c¢: ¢ = CAnd V ¢ = COr vV ¢ = CEq V ¢ = CImp
shows no-T-F (conn ¢ [p, ¥]) +— (no-T-F ¢ A no-T-F 1)
using no-T-F-bin-decomp assms unfolding binary-connectives-def by blast

lemma no-T-F-comp-expanded-explicit[simp]:

fixes ¢ v 1 'v propo

shows
no-T-F (FAnd ¢ ¢) <— (no-T-F ¢ A no-T-F 1))
no-T-F (FOr ¢ ¢) +— (no-T-F ¢ A no-T-F 1))
no-T-F (FEq ¢) <— (no-T-F ¢ A no-T-F 1)
no-T-F (FImp ¢ ¢) <— (no-T-F ¢ A no-T-F 1))

using conn.simps(5—38) no-T-F-bin-decomp-expanded by (metis (no-types))+

lemma no-T-F-comp-not[simp]:
fixes ¢ v :: "v propo
shows no-T-F (FNot ¢) <— no-T-F ¢
by (metis all-subformula-st-decomp-explicit(3) all-subformula-st-test-symb-true-phi no-T-F-def
no-T-F-symb-false(1,2) no-T-F-symb-fnot-imp)

lemma no-T-F-decomp:
fixes ¢ v :: "v propo

20

assumes ¢: no-T-F (FAnd ¢) V no-T-F (FOr ¢) V no-T-F (FEq ¢ ¥) V no-T-F (FImp ¢ 1)
shows no-T-F i and no-T-F ¢
using assms by auto

lemma no-T-F-decomp-not:
fixes ¢ :: "v propo
assumes ¢: no-T-F (FNot ¢)
shows no-T-F ¢
using assms by auto

lemma no-T-F-symb-except-toplevel-step-exists:
fixes ¢ v 1 'v propo
assumes no-equiv ¢ and no-imp @
shows 1) < ¢ = — no-T-F-symb-except-toplevel 1) = I1)’. elimTB v 1’
proof (induct ¢ rule: propo-induct-arity)
case (nullary ¢’ x)
then have Fulse using no-T-F-symb-except-toplevel-true no-T-F-symb-except-toplevel-false by auto
then show ?Zcase by blast
next
case (unary 1)
then have v = FF V ¢ = FT using no-T-F-symb-except-toplevel-not-decom by blast
then show ?case using ElimTBS5 ElimTB6 by blast
next
case (binary ¢’ Y1 ¥2)
note [H! = this(1) and IH2 = this(2) and ¢’ = this(3) and Fo = this(4) and n = this(H)
{
assume @' = Flmp Y1 Y2 V ¢’ = FEq {1 2
then have Fulse using n Fy subformula-all-subformula-st assms
by (metis (no-types) no-equiv-eq(1) no-equiv-def no-imp-Imp(1) no-imp-def)
then have ?case by blast
}
moreover {
assume ¢ o' = FAnd ¥1 $2 V @' = FOr 1 2
then have v1 = FT V 92 = FT vV 1 = FF V ¢2 = FF
using no-T-F-symb-except-toplevel-bin-decom conn.simps(5,6) n unfolding binary-connectives-def
by fastforce+
then have ?case using elimTB.intros ¢’ by blast
}
ultimately show ?case using ¢’ by blast
qed

lemma no-T-F-except-top-level-rew:
fixes ¢ :: 'v propo
assumes noTB: - no-T-F-except-top-level ¢ and no-equiv: no-equiv ¢ and no-imp: no-imp
shows 3¢ ¥’ 1 =< o A elimTB) v’
proof —
have test-symb-false-nullary: ¥ x. no-T-F-symb-except-toplevel (FF:: "v propo)
A no-T-F-symb-except-toplevel FT A no-T-F-symb-except-toplevel (FVar (z:: 'v)) by auto
moreover {
fix c:: 'v connective and [:: 'v propo list and 1 :: "v propo
have H: elimTB (conn ¢ 1) ¢p = —no-T-F-symb-except-toplevel (conn c 1)
by (cases conn c | rule: elimTB.cases, auto)
}

moreover {
fix z = v

have H': no-T-F-except-top-level FT no-T-F-except-top-level FF

21

no-T-F-except-top-level (FVar z)
by (auto simp: no-T-F-except-top-level-def test-symb-false-nullary)
}
moreover {
fix 1
have ¢ < ¢ = = no-T-F-symb-except-toplevel 1 = AY’. elimTB) 1’
using no-T-F-symb-except-toplevel-step-exists no-equiv no-imp by auto
}

ultimately show ?thesis
using no-test-symb-step-exists noTB unfolding no-T-F-except-top-level-def by blast
qed

lemma elimTB-inv:
fixes ¢ v 1 "v propo
assumes full (propo-rew-step elimTB) ¢ ¥
and no-equiv ¢ and no-imp ¢
shows no-equiv ¥ and no-imp ¥
proof —
{
fix ¢ ¢ 2 'v propo
have H: elimTB ¢ ¥ = no-equiv ¢ = no-equiv
by (induct ¢ ¢ rule: elimTB.induct, auto)
}

then show no-equiv ¢
using full-propo-rew-step-inv-stay-conn|of elimTB no-equiv-symb ¢ 1]
no-equiv-symb-conn-characterization assms unfolding no-equiv-def by metis
next

{
fix ¢ ¢ 2 "v propo
have H: elimTB ¢ ¥ = no-imp ¢ = no-imp
by (induct ¢ ¢ rule: elimTB.induct, auto)
}

then show no-imp ¢
using full-propo-rew-step-inv-stay-conn|of elimTB no-imp-symb ¢] assms
no-imp-symb-conn-characterization unfolding no-imp-def by metis
qed

lemma elimTB-full-propo-rew-step:
fixes ¢ v 1 'v propo
assumes no-equiv » and no-imp ¢ and full (propo-rew-step elimTB) ¢ 1)
shows no-T-F-except-top-level i
using full-propo-rew-step-subformula no-T-F-except-top-level-rew assms elimTB-inv by fastforce

0.3.4 PushNeg

Push the negation inside the formula, until the litteral.

inductive pushNeg where

PushNegl[simp]: pushNeg (FNot (FAnd ¢ 1)) (FOr (FNot @) (FNot v)) |
PushNeg2|[simp|: pushNeg (FNot (FOr ¢ 1)) (FAnd (FNot @) (FNot v)) |
PushNeg3|[simp|: pushNeg (FNot (FNot ¢)) ¢

lemma pushNeg-transformation-consistent:
A | FNot (FAnd ¢ ¥) +— A |= (FOr (FNot ¢) (FNot v))
A = FNot (FOr ¢ ¢) <— A |= (FAnd (FNot ¢) (FNot 1))

22

A |= FNot (FNot ¢) +«— Ao
by auto

lemma pushNeg-explicit: pushNeg o v = VA. A E o +— AE Y
by (induct ¢ ¢ rule: pushNeg.induct, auto)

lemma pushNeg-consistent: preserve-models pushNeg
unfolding preserve-models-def by (simp add: pushNeg-explicit)

lemma pushNeg-lifted-consistant:
preserve-models (full (propo-rew-step pushNeg))
by (simp add: pushNeg-consistent)

fun simple where
stimple FT = True |
simple FF = True |
simple (FVar -) = True |
simple - = False

lemma simple-decomp:
simple o +— (¢ = FT V ¢ = FF V (32. ¢ = FVar z))
by (cases @) auto

lemma subformula-conn-decomp-simple:

fixes ¢ v :: "v propo

assumes s: simple v

shows ¢ <X FNot ¢ «— (¢ = FNot ¢ V ¢ = 1))
proof —

have ¢ < conn CNot [¢)] <— (p = conn CNot [p] V (3 Y€ set [¢]. ¢ <))

using subformula-conn-decomp wf-conn-helper-facts(1) by metis

then show ¢ <X FNot) «+— (p = FNot ¢ V ¢ = 1) using s by (auto simp: simple-decomp)

qed

lemma subformula-conn-decomp-explicit[simp]:
fixes ¢ :: ‘v propo and :: v
shows
@ = FNot FT <— (p = FNot FT vV ¢ = FT)
@ <X FNot FF +— (¢ = FNot FF V ¢ = FF)
© <X FNot (FVar z) «— (¢ = FNot (FVar z) V ¢ = FVar z)

by (auto simp: subformula-conn-decomp-simple)

fun simple-not-symb where
simple-not-symb (FNot @) = (simple ¢) |
simple-not-symb - = True

definition simple-not where
simple-not = all-subformula-st simple-not-symb
declare simple-not-def[simp)

lemma simple-not-Not[simp]:
— simple-not (FNot (FAnd ¢ 1))
- simple-not (FNot (FOr ¢ 1))
by auto

23

lemma simple-not-step-exists:
fixes ¢ v 1 "v propo
assumes no-equiv ¢ and no-imp ¢
shows 1 < ¢ = — simple-not-symb b = I)’. pushNeg 1 ¢’
apply (induct 9, auto)
apply (rename-tac v, case-tac 1, auto intro: pushNeg.intros)
by (metis assms(1,2) no-imp-Imp(1) no-equiv-eq(1) no-imp-def no-equiv-def
subformula-in-subformula-not subformula-all-subformula-st)+

lemma simple-not-rew:
fixes ¢ :: "v propo
assumes noTB: - simple-not ¢ and no-equiv: no-equiv ¢ and no-imp: no-imp @
shows 39 ¥’ 1 < o A pushNeg 1 ¢’
proof —
have V z. simple-not-symb (FF:: v propo) A simple-not-symb FT A simple-not-symb (FVar (z:: 'v))
by auto
moreover {
fix c:: 'v connective and [:: 'v propo list and 1) :: "v propo
have H: pushNeg (conn ¢ 1) 1» = —simple-not-symb (conn ¢)
by (cases conn ¢ l rule: pushNeg.cases) auto
}

moreover {
fix z v
have H': simple-not FT simple-not FF simple-not (FVar x)
by simp-all
}

moreover {
fix ¢ :: 'v propo
have ¢ < ¢ = — simple-not-symb 1 = I1’. pushNeg 1 1’
using simple-not-step-exists no-equiv no-imp by blast
}

ultimately show ?thesis using no-test-symb-step-exists noTB unfolding simple-not-def by blast
qed

lemma no-T-F-except-top-level-pushNeg1 :
no-T-F-except-top-level (FNot (FAnd ¢ 1)) = no-T-F-except-top-level (FOr (FNot ¢) (FNot 1))
using no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb no-T-F-comp-not no-T-F-decomp(1)
no-T-F-decomp(2) no-T-F-no-T-F-except-top-level by (metis no-T-F-comp-expanded-explicit(2)
propo.distinct(5,17))

lemma no-T-F-except-top-level-pushNeg2:
no-T-F-except-top-level (FNot (FOr ¢ 1)) = no-T-F-except-top-level (FAnd (FNot @) (FNot 1))
by auto

lemma no-T-F-symb-pushNeg:
no-T-F-symb (FOr (FNot ¢') (FNot v"))
no-T-F-symb (FAnd (FNot ¢') (FNot "))
no-T-F-symb (FNot (FNot ¢'))
by auto

lemma propo-rew-step-pushNeg-no-T-F-symb:
propo-rew-step pushNeg ¢ 1 = no-T-F-except-top-level ¢ = no-T-F-symb ¢ = no-T-F-symb
apply (induct rule: propo-rew-step.induct)
apply (cases rule: pushNeg.cases)
apply simp-all

24

apply (metis no-T-F-symb-pushNeg(1))
apply (metis no-T-F-symb-pushNeg(2))
apply (simp, metis all-subformula-st-test-symb-true-phi no-T-F-def)
proof —
fix ¢ ©":: 'a propo and c:: 'a connective and £ £":: 'a propo list
assume rel: propo-rew-step pushNeg ¢ o’
and IH: no-T-F ¢ = no-T-F-symb ¢ = no-T-F-symb ¢’
and wf: wf-conn ¢ (£ Q ¢ # ¢')
and n: conn ¢ (EQ p # &) =FF V connc (EQ p # &) = FT V no-T-F (conn ¢ (£ Q ¢ # &)
andz: c £ CFANc#ECT N #FFNp#FT NNy € set £ U set &+ FF ANy # FT)
then have ¢ # CF A ¢ # CF N\ wf-conn ¢ (£ Q o' # &)
using wf-conn-no-arity-change-helper wf-conn-no-arity-change by metis
moreover have n’: no-T-F (conn ¢ (£ Q ¢ # ¢')) using n by (simp add: wf wf-conn-list(1,2))
moreover
{
have no-T-F ¢
by (metis Un-iff all-subformula-st-decomp list.set-intros(1) n’ wf no-T-F-def set-append)
moreover then have no-T-F-symb ¢
by (simp add: all-subformula-st-test-symb-true-phi no-T-F-def)
ultimately have ¢’ # FF A ¢’ # FT
using IH no-T-F-symb-false(1) no-T-F-symb-false(2) by blast
then have Ve set (£ Q ¢’ # £). o # FF A ¢ # FT using z by auto
}
ultimately show no-T-F-symb (conn ¢ (£ @ ¢’ # &) by (simp add: x)
qed

lemma propo-rew-step-pushNeg-no-T-F'
propo-rew-step pushNeg ¢ v = no-T-F o = no-T-F
proof (induct rule: propo-rew-step.induct)
case global-rel
then show ?case
by (metis (no-types, lifting) no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb
no-T-F-def no-T-F-except-top-level-pushNegl no-T-F-except-top-level-pushNeg2
no-T-F-no-T-F-except-top-level all-subformula-st-decomp-explicit(3) pushNeg.simps
simple.simps(1,2,5,6))
next
case (propo-rew-one-step-lift ¢ ¢’ ¢ € £’)
note rel = this(1) and IH = this(2) and wf = this(3) and no-T-F = this(4)
moreover have wf’: wf-conn ¢ (£ Q ¢’ # &)
using wf-conn-no-arity-change wf-conn-no-arity-change-helper wf by metis
ultimately show no-T-F (conn ¢ (£ Q ¢’ # ')
using all-subformula-st-test-symb-true-phi
by (fastforce simp: no-T-F-def all-subformula-st-decomp wf wf’)
qed

lemma pushNeg-inv:
fixes ¢ 9 :: "v propo
assumes full (propo-rew-step pushNeg) ¢ ¥
and no-equiv ¢ and no-imp ¢ and no-T-F-except-top-level ¢
shows no-equiv ¢ and no-imp ¥ and no-T-F-except-top-level
proof —
{
fix ¢ ¢ 1 "v propo
assume rel: propo-rew-step pushNeg ¢
and no: no-T-F-except-top-level ¢

25

then have no-T-F-except-top-level 1)
proof —
{
assume ¢ = FT V ¢ = FF
from rel this have Fulse
apply (induct rule: propo-rew-step.induct)
using pushNeg.cases apply blast
using wf-conn-list(1) wf-conn-list(2) by auto
then have no-T-F-except-top-level 1 by blast
}
moreover {
assume ¢ # FT N p # FF
then have no-T-F ¢
by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
then have no-T-F o
using propo-rew-step-pushNeg-no-T-F rel by auto
then have no-T-F-except-top-level ¥ by (simp add: no-T-F-no-T-F-except-top-level)
}
ultimately show no-T-F-except-top-level i) by metis
qed
}
moreover {
fix ¢ :: 'v connective and £ £’ :: "v propo list and ¢ ' :: "v propo
assume rel: propo-rew-step pushNeg ¢ ¢’
and incl: (2 ¢
and corr: wf-conn ¢ (£ @ ¢ # &)
and no-T-F: no-T-F-symb-except-toplevel (conn ¢ (£ @Q ¢ # £'))
and n: no-T-F-symb-except-toplevel ¢’
have no-T-F-symb-except-toplevel (conn ¢ (£ Q (' # &)
proof
have p: no-T-F-symb (conn ¢ (£ @ { # ¢'))
using corr wf-conn-list(1) wf-conn-list(2) no-T-F-symb-except-toplevel-no-T-F-symb no-T-F
by blast
have I: Vyoeset (EQ (# E). ¢p £ FT AN p # FF
using corr wf-conn-no-T-F-symb-iff p by blast
from rel incl have ('AFT N('AFF
apply (induction ¢ ' rule: propo-rew-step.induct)
apply (cases rule: pushNeg.cases, auto)
by (metis assms(4) no-T-F-symb-except-top-level-false-not no-T-F-except-top-level-def
all-subformula-st-test-symb-true-phi subformula-in-subformula-not
subformula-all-subformula-st append-is-Nil-conv list.distinct(1)
wf-conn-no-arity-change-helper wf-conn-list(1,2) wf-conn-no-arity-change)+
then have Vo € set (€ Q (' # £'). ¢ # FT N ¢ # FF using [by auto
moreover have ¢ # CT A ¢ # CF using corr by auto
ultimately show no-T-F-symb (conn ¢ (£ Q@ (' # ')
by (metis corr no-T-F-symb-comp wf-conn-no-arity-change wf-conn-no-arity-change-helper)
qed
}
ultimately show no-T-F-except-top-level i
using full-propo-rew-step-inv-stay-with-inc[of pushNeg no-T-F-symb-except-toplevel | assms
subformula-refl unfolding no-T-F-except-top-level-def full-unfold by metis
next
{
fix ¢ ¢ 1 "v propo
have H: pushNeg ¢ v = no-equiv ¢ = no-equiv 1
by (induct ¢ v rule: pushNeg.induct, auto)

26

}

then show no-equiv ¢
using full-propo-rew-step-inv-stay-conn|of pushNeg no-equiv-symb ¢ 1]
no-equiv-symb-conn-characterization assms unfolding no-equiv-def full-unfold by metis
next

{
fix ¢ ¢ :: 'v propo
have H: pushNeg ¢) = no-imp ¢ = no-imp ¢
by (induct ¢ ¥ rule: pushNeg.induct, auto)
}

then show no-imp ¢
using full-propo-rew-step-inv-stay-conn|of pushNeg no-imp-symb ¢ 1] assms
no-imp-symb-conn-characterization unfolding no-imp-def full-unfold by metis
qed

lemma pushNeg-full-propo-rew-step:
fixes ¢ v :: "v propo
assumes
no-equiv ¢ and
no-imp ¢ and
full (propo-rew-step pushNeg) ¢ 1 and
no-T-F-except-top-level
shows simple-not 1
using assms full-propo-rew-step-subformula pushNeg-inv(1,2) simple-not-rew by blast

0.3.5 Push Inside

inductive push-conn-inside :: "v connective = v connective = v propo = v propo = bool

for ¢ ¢": 'v connective where
push-conn-inside-l[simp]: ¢ = CAnd V ¢ = COr = ¢’ = CAnd vV ¢’ = COr

= push-conn-inside ¢ ¢’ (conn ¢ [conn ¢’ [p1, ©2], ¥])

(conn ¢’ [conn ¢ [¢p1, 1], conn ¢ [p2, ¥]]) |

push-conn-inside-r[simp]: ¢ = CAnd V ¢ = COr = ¢’ = CAnd V ¢’ = COr

= push-conn-inside ¢ ¢’ (conn ¢ [, conn ¢’ [p1, p2]])

(conn ¢’ [conn ¢ [, p1], conn ¢ [, p2]])

lemma push-conn-inside-explicit: push-conn-inside ¢ ¢’ p v = VA. AEp +— Ay
by (induct ¢ ¢ rule: push-conn-inside.induct, auto)

lemma push-conn-inside-consistent: preserve-models (push-conn-inside ¢ c’)
unfolding preserve-models-def by (simp add: push-conn-inside-explicit)

lemma propo-rew-step-push-conn-inside[simp]:
—propo-rew-step (push-conn-inside ¢ ¢') FT 1 —propo-rew-step (push-conn-inside ¢ ¢') FF 1
proof —
{
{

fix o Y
have push-conn-inside ¢ ¢’ ¢ v = ¢ = FT V ¢ = FF = False

by (induct rule: push-conn-inside.induct, auto)
} note H = this
fix ¢
have propo-rew-step (push-conn-inside ¢ ¢’) ¢ » = ¢ = FT V ¢ = FF = Fulse
apply (induct rule: propo-rew-step.induct, auto simp: wf-conn-list(1) wf-conn-list(2))

27

using H by blast+
}
then show
—propo-rew-step (push-conn-inside ¢ ¢') FT 1)
—propo-rew-step (push-conn-inside ¢ ¢’) FF 1 by blast+
qed

inductive not-c-in-c’-symb:: 'v connective = 'v connective = 'v propo = bool for ¢ ¢’ where
not-c-in-c’-symb-l[simp|: wf-conn ¢ [conn ¢’ [p, ¢'], Y] = wf-conn ¢’ [¢, ¢]

= not-c-in-c¢’-symb ¢ ¢’ (conn ¢ [conn ¢’ [¢, @], ¥]) |
not-c-in-c’-symb-r[simpl: wf-conn ¢ [, conn ¢’ [p, ¢'|]] = wf-conn ¢’ [p, ¥

= not-c-in-c’-symb ¢ ¢’ (conn ¢ [, conn ¢’ [, ©']])

abbreviation c-in-c’-symb ¢ ¢’ ¢ = —not-c-in-c¢’-symb ¢ ¢’

lemma c-in-c’-symb-simp:
not-c-in-c’-symb c ¢' { = £ =FF NV E=FT V(= FVarzV £ = FNot FF Vv £ = FNot FT
V & = FNot (FVar x)=> Fulse
apply (induct rule: not-c-in-c’-symb.induct, auto simp: wf-conn.simps wf-conn-list(1—3))
using conn-inj-not(2) wf-conn-binary unfolding binary-connectives-def by fastforce+

lemma c-in-c’-symb-simp'[simp]:
—not-c-in-c’-symb ¢ ¢’ FF
—not-c-in-c’-symb ¢ ¢ FT
—not-c-in-c’-symb ¢ ¢’ (FVar x)
—not-c-in-c’-symb ¢ ¢’ (FNot FF)
—not-c-in-c’-symb ¢ ¢’ (FNot FT)
—not-c-in-c’-symb ¢ ¢’ (FNot (FVar x))
using c-in-c’-symb-simp by metis+

definition c-in-c’-only where
c-in-c’-only ¢ ¢’ = all-subformula-st (c-in-c’-symb ¢ ¢’)

lemma c-in-c’-only-simp|simp]:
c-in-c’-only ¢ ¢’ FF
c-in-c’-only ¢ ¢’ FT
c-in-c¢’-only ¢ ¢’ (FVar)
c-in-c’-only ¢ ¢’ (FNot FF)
c-in-c’-only ¢ ¢’ (FNot FT)
c-in-c’-only ¢ ¢’ (FNot (FVar z))
unfolding c-in-c’-only-def by auto

lemma not-c-in-c’-symb-commute:
not-c-in-c’-symb ¢ ¢’ & = wf-conn ¢ [p, Y] = £ = conn ¢ [¢, Y]
= not-c-in-c’-symb ¢ ¢’ (conn c [, ¢])
proof (induct rule: not-c-in-c’-symb.induct)
case (not-c-in-c’-symb-r ¢’ ¢’ ') note H = this
then have ¢:) = conn ¢’ [p”, Y] using conn-inj by auto
have wf-conn ¢ [conn ¢’ [p"”, V], ¢]
using H (1) wf-conn-no-arity-change length-Cons by metis
then show not-c-in-c’-symb ¢ ¢’ (conn ¢ [, ¢])
unfolding ¢ using not-c-in-c’-symb.intros(1) H by auto
next

28

case (not-c-in-c’-symb-l ' ' 1)’) note H = this
then have ¢ = conn ¢’ [¢/, '] using conn-inj by auto
moreover have wf-conn ¢ [', conn ¢’ [p’, "]
using H (1) wf-conn-no-arity-change length-Cons by metis
ultimately show not-c-in-c’-symb ¢ ¢’ (conn ¢ [1, ¢])
using not-c-in-c’-symb.intros(2) conn-inj not-c-in-c’-symb-1.hyps
not-c-in-c’-symb-l.prems(1,2) by blast
qed

lemma not-c-in-c’-symb-commute’:
wf-conn ¢ [p, Y] => c-in-c’-symb ¢ ¢’ (conn ¢ [p, Y]) — c-in-c’-symb ¢ ¢’ (conn ¢ [, ¢])
using not-c-in-c’-symb-commaute wf-conn-no-arity-change by (metis length-Cons)

lemma not-c-in-c’-comms:
assumes wf: wf-conn ¢ [p, V]
shows c-in-c’-only ¢ ¢’ (conn ¢ [p, ¥]) «— c-in-c’-only ¢ ¢’ (conn ¢ [, ¢]) (is ?A +— ?B)
proof —
have ?A «— (c-in-c¢’-symb ¢ ¢’ (conn ¢ [p, ¢])
A (V& € set [p,). all-subformula-st (c-in-c’-symb ¢ ¢’) £))
using all-subformula-st-decomp wf unfolding c-in-c’-only-def by fastforce
also have ... «— (c-in-c’-symb ¢ ¢’ (conn ¢ [, ¢])
A (V€ € set [, ¢]. all-subformula-st (c-in-c’-symb ¢ ¢’) €))
using not-c-in-c’-symb-commute’ wf by auto
also
have wf-conn ¢ [, ¢| using wf-conn-no-arity-change wf by (metis length-Cons)
then have (c-in-c¢’-symb ¢ ¢’ (conn ¢ [, ¢])
A (V€ € set [, ¢]. all-subformula-st (c-in-c’-symb ¢ ¢’) €))
+— 7B
using all-subformula-st-decomp unfolding c-in-c’-only-def by fastforce
finally show ?thesis .
qed

lemma not-c-in-c’-simp|simpl:
fixes p1 2 1) :: "v propo and z :: v
shows
c-in-c¢’-symb ¢ ¢’ FT
c-in-c’-symb ¢ ¢’ FF
c-in-c¢’-symb ¢ ¢’ (FVar x)
wf-conn ¢ [conn ¢’ [p1, 2], Y] = wf-conn ¢’ [p1, p2]
= - c-in-c’-only ¢ ¢’ (conn ¢ [conn ¢’ [p1, 2], V])
apply (simp-all add: c-in-c’-only-def)
using all-subformula-st-test-symb-true-phi not-c-in-c’-symb-1 by blast

lemma c-in-c’-symb-not[simp]:
fixes c ¢’ :: "v connective and v :: "v propo
shows c-in-c’-symb ¢ ¢’ (FNot)
proof —
{
fix £ :: 'v propo
have not-c-in-c’-symb ¢ ¢’ (FNot 1) = False
apply (induct FNot ¢ rule: not-c-in-c’-symb.induct)
using conn-inj-not(2) by blast+
}
then show ?thesis by auto
qed

29

lemma c-in-c’-symb-step-exists:
fixes ¢ :: 'v propo
assumes c¢: ¢ = CAnd V ¢ = COr and ¢": ¢/ = CAnd vV ¢’ = COr
shows 1) < ¢ = = c-in-c’-symb ¢ ¢’ ¢ = ', push-conn-inside ¢ ¢’ P '
apply (induct ¥ rule: propo-induct-arity)
apply auto[2]
proof —
fix 1 ¥2 o": v propo
assume [HY1: Y1 < ¢ => = c-in-¢’-symb ¢ ¢’ v1 = Ex (push-conn-inside ¢ ¢’ 1)
and IHY2: ¥1 < p = - c-in-c’-symb ¢ ¢’ v1 = Ex (push-conn-inside ¢ ¢’ 1)
and ¢" ¢’ = FAnd 1 Y2 V o' = FOr ¢1 Y2 V ¢’ = FImp 1 Y2 V o' = FEq 1 2
and inp: ¢’ < p and n0: —c-in-c’-symb ¢ ¢’ ¢’
then have n: not-c-in-c’-symb c ¢’ ¢’ by auto
{
assume @ @' = conn ¢ [Y1, V2]
obtain a b where ¢¥1 = conn ¢’ [a, b] V 2 = conn ¢’ [a, b]
using n ¢’ apply (induct rule: not-c-in-c’-symb.induct)
using ¢ by force+
then have Ex (push-conn-inside ¢ ¢’ ¢
unfolding ¢’ apply auto
using push-conn-inside.intros(1) ¢ ¢’ apply blast
using push-conn-inside.intros(2) ¢ ¢’ by blast
}
moreover {
assume ¢ ¢’ £ conn ¢ 1, 2]
have Vi ¢ ca. 3pl 1 2 1" 2" ¢2'. conn (c::'v connective) [pl1, conn ca 1, 2] = ¢
V conn ¢ [conn ca [Y1', Y27, 02/ = ¢ V c-in-c’-symb ¢ ca @
by (metis not-c-in-c’-symb.cases)
then have Ex (push-conn-inside ¢ ¢’ @)
by (metis (no-types) c¢ ¢’ n push-conn-inside-l push-conn-inside-r)
}
ultimately show Fz (push-conn-inside ¢ ¢’ ¢’) by blast
qed

lemma c-in-c’-symb-rew:
fixes ¢ :: v propo
assumes noTB: —c-in-c’-only ¢ ¢’ ¢
and ¢: ¢ = CAnd V ¢ = COr and c¢": ¢/ = CAnd VvV ¢’ = COr
shows 39 ¥’ 1 < ¢ A push-conn-inside c ¢’ 1 1’
proof —
have test-symb-false-nullary:
Vz. c-in-c’-symb ¢ ¢’ (FF:: 'v propo) A c-in-c’-symb ¢ ¢’ FT
A c-in-c’-symb ¢ ¢’ (FVar (z:: 'v))
by auto
moreover {
fixz v
have H'”: c-in-c’-symb ¢ ¢’ FT c-in-c’-symb ¢ ¢’ FF c-in-c’-symb ¢ ¢’ (FVar x)
by simp+
}
moreover {
fix ¢ :: v propo
have) < ¢ = = c-in-c¢’-symb ¢ ¢’ = ', push-conn-inside ¢ ¢’ P P’

by (auto simp: assms(2) ¢’ c-in-c'-symb-step-exists)
}

ultimately show ?thesis using noTB no-test-symb-step-exists|of c-in-c¢’-symb ¢ ¢’]

30

unfolding c-in-c’-only-def by metis
qed

lemma push-conn-insidec-in-c’-symb-no-T-F:
fixes ¢ v :: "v propo
shows propo-rew-step (push-conn-inside ¢ ¢') ¢ v = no-T-F ¢ = no-T-F 1
proof (induct rule: propo-rew-step.induct)
case (global-rel ¢ 1)
then show no-T-F 1
by (cases rule: push-conn-inside.cases, auto)
next
case (propo-rew-one-step-lift ¢ @' ¢ £ &)
note rel = this(1) and IH = this(2) and wf = this(3) and no-T-F = this(4)
have no-T-F ¢
using wf no-T-F no-T-F-def subformula-into-subformula subformula-all-subformula-st
subformula-refl by (metis (no-types) in-set-conv-decomp)
then have ¢ no-T-F ¢’ using IH by blast

have V(€ set (€ Q ¢ # £). no-T-F ¢ by (metis wf no-T-F no-T-F-def all-subformula-st-decomp)
then have n: V{ € set (£ Q ¢’ # £'). no-T-F ¢ using ¢’ by auto
then have n: V{ € set (E Q o' #). (£ FFN(#FT
using ¢’ by (metis no-T-F-symb-false(1) no-T-F-symb-false(2) no-T-F-def
all-subformula-st-test-symb-true-phi)

have wf”: wf-conn ¢ (£ Q ¢’ # &)

using wf wf-conn-no-arity-change by (metis wf-conn-no-arity-change-helper)
{

fix z:: v

assume ¢ = CT V¢ = CF V ¢ = CVarzx

then have Fulse using wf by auto

then have no-T-F (conn ¢ (£ Q ¢’ # £')) by blast
}
moreover {

assume c: ¢ = CNot

then have ¢ =[] ¢’ = [] using wf by auto

then have no-T-F (conn ¢ (£ Q ¢’ # &)

using ¢ by (metis ¢’ conn.simps(4) no-T-F-symb-false(1,2) no-T-F-symb-fnot no-T-F-def
all-subformula-st-decomp-explicit(3) all-subformula-st-test-symb-true-phi self-append-conv2)

}

moreover {
assume c: ¢ € binary-connectives
then have no-T-F-symb (conn ¢ (£ Q ¢’ # ¢£')) using wf' n’ no-T-F-symb.simps by fastforce
then have no-T-F (conn ¢ (£ Q ¢’ # &)

by (metis all-subformula-st-decomp-imp wf’ n no-T-F-def)
}
ultimately show no-T-F (conn ¢ (£ @Q @' # £)) using connective-cases-arity by auto
qed

lemma simple-propo-rew-step-push-conn-inside-inv:
propo-rew-step (push-conn-inside ¢ ¢’) o 1 = simple ¢ = simple
apply (induct rule: propo-rew-step.induct)
apply (rename-tac @, case-tac p, auto simp: push-conn-inside.simps)]]
by (metis append-is-Nil-conv list.distinct(1) simple.elims(2) wf-conn-list(1—3))

31

lemma simple-propo-rew-step-inv-push-conn-inside-simple-not:
fixes ¢ ¢’ :: 'v connective and ¢ 9 :: 'v propo
shows propo-rew-step (push-conn-inside ¢ ¢') ¢ ¥ = simple-not ¢ => simple-not 1)
proof (induct rule: propo-rew-step.induct)
case (global-rel ¢ V)
then show Zcase by (cases p, auto simp: push-conn-inside.simps)
next
case (propo-rew-one-step-lift ¢ ¢’ ca & £') note rew = this(1) and IH = this(2) and wf = this(3)
and simple = this(4)
show ?Zcase
proof (cases ca rule: connective-cases-arity)
case nullary
then show ?thesis using propo-rew-one-step-lift by auto
next
case binary note ca = this
obtain a b where ab: £ Q o' # £’ = [a, b]
using wf ca list-length2-decomp wf-conn-bin-list-length
by (metis (no-types) wf-conn-no-arity-change-helper)
have V({ € set (£ Q ¢ # &'). simple-not ¢
by (metis wf all-subformula-st-decomp simple simple-not-def)
then have V(€ set (£ @Q ¢’ # £'). simple-not ¢ using IH by simp
moreover have simple-not-symb (conn ca (£ @ ¢’ # £')) using ca
by (metis ab conn.simps(5—8) helper-fact simple-not-symb.simps(5) simple-not-symb.simps(6)
simple-not-symb.simps(7) simple-not-symb.simps(8))
ultimately show ?thesis
by (simp add: ab all-subformula-st-decomp ca)
next
case unary
then show ?Zthesis
using rew simple-propo-rew-step-push-conn-inside-inv[OF rew] IH local.wf simple by auto
qed
qed

lemma propo-rew-step-push-conn-inside-simple-not:
fixes ¢ ¢’ :: 'v propo and £ £’ :: 'v propo list and c :: "v connective
assumes
propo-rew-step (push-conn-inside ¢ ¢') ¢ ¢’ and
wf-conn ¢ (€ Q@ ¢ # ¢’) and
simple-not-symb (conn ¢ (£ Q ¢ # ¢’)) and
simple-not-symb o’
shows simple-not-symb (conn ¢ (£ Q ¢’ # £'))
using assms
proof (induction rule: propo-rew-step.induct)
print-cases
case (global-rel)
then show ?case
by (metis conn.simps(12,17) list.discI push-conn-inside.cases simple-not-symb.elims(3)
wf-conn-helper-facts(5) wf-conn-list(2) wf-conn-list(8) wf-conn-no-arity-change
wf-conn-no-arity-change-helper)
next
case (propo-rew-one-step-lift ¢ @' ¢’ xs xs’) note tel = this(1) and wf = this(2) and
IH = this(8) and wf' = this(4) and simple’ = this(5) and simple = this(6)
then show ?case
proof (cases ¢’ rule: connective-cases-arity)
case nullary
then show ?thesis using wf simple simple’ by auto

32

next
case binary note ¢ = this(1)
have corr’. wf-conn ¢ (£ Q conn ¢’ (xs Q@ ¢’ # xs') # &)
using wf wf-conn-no-arity-change
by (metis wf’ wf-conn-no-arity-change-helper)
then show ?thesis
using ¢ propo-rew-one-step-lift wf
by (metis conn.simps(17) connective.distinct(87) propo-rew-step-subformula-imp
push-conn-inside.cases simple-not-symb.elims(3) wf-conn.simps wf-conn-list(2,8))
next
case unary
then have empty: xs =[] xs’ = [| using wf by auto
then show ?thesis using simple unary simple’ wf wf’
by (metis connective.distinct(37) connective.distinct(39) propo-rew-step-subformula-imp
push-conn-inside.cases simple-not-symb.elims(3) tel wf-conn-list(8)
wf-conn-no-arity-change wf-conn-no-arity-change-helper)
qed

qed

lemma push-conn-inside-not-true-false:

push-conn-inside ¢ ¢’ ¢) = ¢ # FT N # FF
by (induct rule: push-conn-inside.induct, auto)

lemma push-conn-inside-inv:

fixes ¢ v 1 'v propo

assumes full (propo-rew-step (push-conn-inside ¢ c¢’)) ¢ 9

and no-equiv ¢ and no-imp ¢ and no-T-F-except-top-level ¢ and simple-not
shows no-equiv ¥ and no-imp 1 and no-T-F-except-top-level ¢ and simple-not

proof —

{
fix ¢ 9 :: "v propo
have H: push-conn-inside ¢ ¢’ ¢ 1 = all-subformula-st simple-not-symb
= all-subformula-st simple-not-symb
by (induct ¢ 1 rule: push-conn-inside.induct, auto)
} note H = this

fix ¢ ¢ 1 "v propo
have H: propo-rew-step (push-conn-inside ¢ ¢’) ¢ ¥ = all-subformula-st simple-not-symb ¢
= all-subformula-st simple-not-symb
apply (induct ¢ @ rule: propo-rew-step.induct)
using H apply simp
proof (rename-tac ¢ ¢’ ca ¥s ¥s’, case-tac ca rule: connective-cases-arity)
fix ¢ ¢’ :: 'v propo and c:: v connective and £ £":: v propo list
and z:: v
assume wf-conn ¢ (£ Q ¢ # &)
and ¢c=CTVc¢c=CFVc=CVarz
then have £ @ ¢ # ¢’ =[] by auto
then have Fulse by auto
then show all-subformula-st simple-not-symb (conn ¢ (§ Q@ ¢’ # £’)) by blast
next
fix ¢ ¢’ :: 'v propo and ca:: "v connective and & £":: v propo list
and z :: v
assume rel: propo-rew-step (push-conn-inside ¢ ¢’) ¢ p’
and @-¢": all-subformula-st simple-not-symb ¢ = all-subformula-st simple-not-symb '
and corr: wf-conn ca (£ Q ¢ # &)

33

and n: all-subformula-st simple-not-symb (conn ca (£ Q ¢ # ¢£'))
and c¢: ca = CNot

have empty: £ =[] ¢/ =[] using ¢ corr by auto
then have simple-not:all-subformula-st simple-not-symb (FNot ¢) using corr ¢ n by auto
then have simple ¢
using all-subformula-st-test-symb-true-phi simple-not-symb.simps(1) by blast
then have simple @’
using rel simple-propo-rew-step-push-conn-inside-inv by blast
then show all-subformula-st simple-not-symb (conn ca (§ Q ¢’ # £')) using ¢ empty
by (metis simple-not @-p' append-Nil conn.simps(4) all-subformula-st-decomp-explicit(3)
simple-not-symb.simps(1))
next
fix ¢ ¢’ :: 'v propo and ca :: 'v connective and £ £’ :: 'v propo list
and z :: v
assume rel: propo-rew-step (push-conn-inside ¢ ¢') ¢ ¢’
and ny: all-subformula-st simple-not-symb ¢ = all-subformula-st simple-not-symb '
and corr: wf-conn ca (£ Q ¢ # &)
and n: all-subformula-st simple-not-symb (conn ca (£ Q ¢ # ¢£'))
and c: ca € binary-connectives

have all-subformula-st simple-not-symb ¢
using n ¢ corr all-subformula-st-decomp by fastforce
then have ¢ all-subformula-st simple-not-symb ¢’ using ny by blast
obtain a b where ab: [a, b] = (£ Q ¢ #)
using corr c list-length2-decomp wf-conn-bin-list-length by metis
then have & @ o' # €' = [, 9| V (€ @ ¢ # &) = [/,]
using ab by (metis (no-types, opaque-lifting) append-Cons append-Nil append-Nil2
append-is-Nil-conv butlast.simps(2) butlast-append list.sel(3) tl-append2)
moreover
{
fix x :: 'v propo
have wf’: wf-conn ca [a, b]
using ab corr by presburger
have all-subformula-st simple-not-symb (conn ca [a, b))
using ab n by presburger
then have all-subformula-st simple-not-symb x V x ¢ set (£ @ ¢’ # &)
using wf’ by (metis (no-types) ¢’ all-subformula-st-decomp calculation insert-iff
list.set(2))

then have V. ¢ € set (£ Q ¢’ # &) — all-subformula-st simple-not-symb ¢
by (metis (no-types))

moreover have simple-not-symb (conn ca (£ @ ¢’ # &)
using ab conn-inj-not(1) corr wf-conn-list-decomp(4) wf-conn-no-arity-change
not-Cons-self2 self-append-conv2 simple-not-symb.elims(3) by (metis (no-types) c
calculation(1) wf-conn-binary)
moreover have wf-conn ca (§ Q ¢’ # &£') using ¢ calculation(1) by auto
ultimately show all-subformula-st simple-not-symb (conn ca (§ Q@ ¢’ # £'))
by (metis all-subformula-st-decomp-imp)
qed
}
moreover {
fix ca :: 'v connective and £ £’ :: 'v propo list and ¢ ¢’ :: "v propo
have propo-rew-step (push-conn-inside ¢ ¢’) ¢ ¢’ = wf-conn ca (£ Q ¢ # &)
= simple-not-symb (conn ca (£ Q ¢ # &) = simple-not-symb ¢’

34

= simple-not-symb (conn ca (£ Q ¢’ # £’))
by (metis append-self-conv2 conn.simps(4) conn-inj-not(1) simple-not-symb.elims(3)
simple-not-symb.simps(1) simple-propo-rew-step-push-conn-inside-inv
wf-conn-no-arity-change-helper wf-conn-list-decomp(4) wf-conn-no-arity-change)
}
ultimately show simple-not v
using full-propo-rew-step-inv-stay’|of push-conn-inside ¢ ¢’ simple-not-symb] assms
unfolding no-T-F-except-top-level-def simple-not-def full-unfold by metis
next
{
fix ¢ ¢ 2 'v propo
have H: propo-rew-step (push-conn-inside ¢ ¢’) ¢ 1 => no-T-F-except-top-level
= no-T-F-except-top-level 1)
proof —
assume rel: propo-rew-step (push-conn-inside ¢ ¢') ¢ ¥
and no-T-F-except-top-level ¢
then have no-T-F ¢ V ¢ = FF V ¢ = FT
by (metis no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
moreover {
assume ¢ = FFV ¢ = FT
then have Fulse using rel propo-rew-step-push-conn-inside by blast
then have no-T-F-except-top-level 1) by blast
}
moreover {
assume no-T-F o A p # FF N ¢ # FT
then have no-T-F 1 using rel push-conn-insidec-in-c’-symb-no-T-F by blast
then have no-T-F-except-top-level 1 using no-T-F-no-T-F-except-top-level by blast
}
ultimately show no-T-F-ezcept-top-level i by blast
qed
}
moreover {
fix ca :: 'v connective and £ £’ :: 'v propo list and ¢ ¢’ :: "v propo
assume rel: propo-rew-step (push-conn-inside ¢ ¢) ¢ @’
assume corr: wf-conn ca (§ Q ¢ # &)
then have c¢: ca # CT A ca # CF by auto
assume no-T-F: no-T-F-symb-except-toplevel (conn ca (£ Q ¢ # £'))
have no-T-F-symb-except-toplevel (conn ca (£ @ ¢’ # &)
proof
have c¢: ca # CT A ca # CF using corr by auto
have (: V(€ set (£ Q ¢ # &'). (#FT N ¢ # FF
using corr no-T-F no-T-F-symb-except-toplevel-if-is-a-true-false by blast
then have ¢ # FT A ¢ # FF by auto
from rel this have ¢’ # FT N o' # FF
apply (induct rule: propo-rew-step.induct)
by (metis append-is-Nil-conv conn.simps(2) conn-ing list.distinct(1)
wf-conn-helper-facts(3) wf-conn-list(1) wf-conn-no-arity-change
wf-conn-no-arity-change-helper push-conn-inside-not-true-false)+
then have V(€ set (£ Q@ ¢’ # £'). (# FT A (# FF using ¢ by auto
moreover have wf-conn ca (§ Q@ ¢’ # &)
using corr wf-conn-no-arity-change by (metis wf-conn-no-arity-change-helper)
ultimately show no-T-F-symb (conn ca (€ Q ¢’ # £')) using no-T-F-symb.intros ¢ by metis
qed
}
ultimately show no-T-F-except-top-level ¢
using full-propo-rew-step-inv-stay’|of push-conn-inside ¢ ¢’ no-T-F-symb-except-toplevel]

35

assms unfolding no-T-F-except-top-level-def full-unfold by metis

next
{
fix ¢ ¢ 2 'v propo
have H: push-conn-inside ¢ ¢’ ¢ 1 = no-equiv @ = no-equiv
by (induct ¢ 1 rule: push-conn-inside.induct, auto)
}

then show no-equiv
using full-propo-rew-step-inv-stay-conn|of push-conn-inside ¢ ¢’ no-equiv-symb] assms
no-equiv-symb-conn-characterization unfolding no-equiv-def by metis

next
{
fix ¢ ¢ 1 'v propo
have H: push-conn-inside ¢ ¢’ ¢ 1 = no-imp p = no-imp
by (induct ¢ ¥ rule: push-conn-inside.induct, auto)
}

then show no-imp ¥
using full-propo-rew-step-inv-stay-conn|of push-conn-inside ¢ ¢’ no-imp-symb] assms
no-imp-symb-conn-characterization unfolding no-imp-def by metis
qed

lemma push-conn-inside-full-propo-rew-step:

fixes ¢ v :: "v propo

assumes
no-equiv p and
no-imp ¢ and
full (propo-rew-step (push-conn-inside ¢ ¢')) ¢ ¢ and
no-T-F-except-top-level ¢ and
simple-not p and
¢ = CAnd vV ¢ = COr and
¢'= CAnd v ¢’ = COr

shows c-in-c’-only ¢ ¢’ 1

using c-in-c’-symb-rew assms full-propo-rew-step-subformula by blast

Only one type of connective in the formula (+ not)

inductive only-c-inside-symb :: 'v connective = v propo = bool for ¢ :: 'v connective where
simple-only-c-inside[simp]: simple ¢ => only-c-inside-symb ¢ ¢ |
simple-cnot-only-c-inside[simp|: simple ¢ = only-c-inside-symb ¢ (FNot ¢) |
only-c-inside-into-only-c-inside: wf-conn ¢ | = only-c-inside-symb ¢ (conn c 1)

lemma only-c-inside-symb-simp|[simp]:
only-c-inside-symb ¢ FF only-c-inside-symb ¢ FT only-c-inside-symb ¢ (FVar z) by auto

definition only-c-inside where only-c-inside ¢ = all-subformula-st (only-c-inside-symb c)

lemma only-c-inside-symb-decomp:
only-c-inside-symb ¢ 1 <— (simple)
V (3 ¢’ = FNot ' N simple)
V (3. ¢ = conn ¢ I A wf-conn ¢ 1))
by (auto simp: only-c-inside-symb.intros(3)) (induct rule: only-c-inside-symb.induct, auto)

36

lemma only-c-inside-symb-decomp-not|simp]:
fixes ¢ :: 'v connective
assumes c: ¢ # CNot
shows only-c-inside-symb ¢ (FNot ¢) +— simple ¢
apply (auto simp: only-c-inside-symb.intros(3))
by (induct FNot v rule: only-c-inside-symb.induct, auto simp: wf-conn-list(8) c)

lemma only-c-inside-decomp-not[simp]:
assumes c: ¢ # CNot
shows only-c-inside ¢ (FNot ¢) +— simple ¢
by (metis (no-types, opaque-lifting) all-subformula-st-def all-subformula-st-test-symb-true-phi ¢
only-c-inside-def only-c-inside-symb-decomp-not simple-only-c-inside
subformula-conn-decomp-simple)

lemma only-c-inside-decomp:
only-c-inside ¢ ¢ +—
(Vp. ¥ <X o — (simple p V (3 ¢’ p = FNot ¢’ A simple)
V (3. Y = conn ¢l A wf-conn ¢ l)))
unfolding only-c-inside-def by (auto simp: all-subformula-st-def only-c-inside-symb-decomp)

lemma only-c-inside-c-c'-false:
fixes c ¢’ :: 'v connective and [:: 'v propo list and ¢ :: 'v propo
assumes cc”: ¢ # ¢’ and ¢: ¢ = CAnd V ¢ = COr and ¢ ¢’ = CAnd V ¢’ = COr
and only: only-c-inside ¢ ¢ and incl: conn ¢’ | < ¢ and wf: wf-conn ¢’
shows Fulse
proof —
let %) = conn ¢’
have simple 2 V (3 ¢’. 2 = FNot ¢’ A simple ¢') V (3. %p = conn ¢ I A wf-conn ¢ 1)
using only-c-inside-decomp only incl by blast
moreover have — simple %)
using wf simple-decomp by (metis ¢’ connective.distinct(19) connective.distinct(7,9,21,29,31)
wf-conn-list(1—3))
moreover
{
fix ¢’
have % # FNot ¢’ using ¢’ conn-inj-not(1) wf by blast
}
ultimately obtain [:: 'v propo list where ?1) = conn ¢ | A wf-conn c | by metis
then have ¢ = ¢’ using conn-inj wf by metis
then show Fulse using cc’ by auto
qed

lemma only-c-inside-implies-c-in-c’-symb:
assumes 0: ¢ # ¢’ and ¢: ¢ = CAnd V ¢ = COr and c¢”: ¢/’ = CAnd V ¢’ = COr
shows only-c-inside ¢ o = c-in-c’-symb ¢ ¢’ ¢
apply (rule ccontr)
apply (cases rule: not-c-in-c’-symb.cases, auto)
by (metis § ¢ ¢’ connective.distinct(87,39) list.distinct(1) only-c-inside-c-c’-false
subformula-in-binary-conn(1,2) wf-conn.simps)—+

lemma c-in-c’-symb-decomp-levell :

fixes | :: "v propo list and c ¢’ ca :: 'v connective

shows wf-conn ca | = ca # ¢ = c-in-c’-symb ¢ ¢’ (conn ca l)
proof —

37

have not-c-in-c’-symb ¢ ¢’ (conn ca l) = wf-conn ca | = ca = ¢
by (induct conn ca I rule: not-c-in-c’-symb.induct, auto simp: conn-ingj)
then show wf-conn ca | = ca # ¢ = c-in-c’-symb c ¢’ (conn ca) by blast
qed

lemma only-c-inside-implies-c-in-c’-only:
assumes 4: ¢ # ¢’ and ¢: ¢ = CAnd V ¢ = COr and c¢”: ¢/’ = CAnd V ¢’ = COr
shows only-c-inside ¢ ¢ = c-in-c’-only c ¢’ p
unfolding c-in-c’-only-def all-subformula-st-def
using only-c-inside-implies-c-in-c’-symb
by (metis all-subformula-st-def assms(1) ¢ ¢’ only-c-inside-def subformula-trans)

lemma c-in-c’-symb-c-implies-only-c-inside:
assumes 0: ¢ = CAnd V ¢ = COr ¢’ = CAnd V ¢’ = COr ¢ # ¢’ and wf: wf-conn ¢ [p, V]
and inv: no-equiv (conn c 1) no-imp (conn c) simple-not (conn c I)
shows wf-conn ¢ | = c-in-c’-only ¢ ¢’ (conn ¢) = (VY€ set . only-c-inside ¢ 1))
using inv
proof (induct conn c 1 arbitrary: | rule: propo-induct-arity)
case (nullary)
then show Zcase by (auto simp: wf-conn-list assms)
next
case (unary ¢ la)
then have ¢ = CNot A la = [p] by (metis (no-types) wf-conn-list(8))
then show ?Zcase using assms(2) assms(1) by blast
next
case (binary @1 p2)
note IHp! = this(1) and IHp?2 = this(2) and ¢ = this(3) and only = this(5) and wf = this(4)
and no-equiv = this(6) and no-imp = this(7) and simple-not = this(8)
then have [: | = [p1, p2] by (meson wf-conn-list(4—7))
let %p = conn ¢l

obtain c1 1 ¢2 12 where p1: p1 = conn ¢l l1 and wfpl: wf-conn cl 1
and ¢2: 2 = conn c2 12 and wfp2: wf-conn c2 12 using exists-c-conn by metis
then have c-in-onlypl1: c-in-c’-only ¢ ¢’ (conn ¢l 11) and c-in-c¢’-only ¢ ¢’ (conn ¢2 12)
using only | unfolding c-in-c’-only-def using assms(1) by auto
have incpl: 1 < % and incp2: 2 < %
using 1 ¢2 ¢ local.wf by (metis conn.simps(5—8) helper-fact subformula-in-binary-conn(1,2))+

have cl-eq: ¢1 # CEq and c2-eq: c2 # CEq
unfolding no-equiv-def using incpl incp2 by (metis p1 2 wfpl wfp2 assms(1) no-equiv
no-equiv-eq(1) no-equiv-symb.elims(8) no-equiv-symb-conn-characterization wf-conn-list(4,5)
no-equiv-def subformula-all-subformula-st)+
have c1-imp: c1 # Clmp and c2-imp: c2 # Clmp
using no-imp by (metis 1 ¢2 all-subformula-st-decomp-explicit-imp(2,3) assms(1)
conn.simps(5,6) 1 no-imp-Imp(1) no-imp-symb.elims(3) no-imp-symb-conn-characterization
wfpl wfp?2 all-subformula-st-decomp no-imp-symb-conn-characterization)—+
have clc: ¢l # ¢’
proof
assume clc: ¢l = ¢’
then obtain 1 £2 where [1: 11 = [£1, £2]
by (metis assms(2) connective.distinct(87,39) helper-fact wfp1 wf-conn.simps
wf-conn-list-decomp(1—3))
have c-in-c’-only ¢ ¢’ (conn ¢ [conn ¢’ 11, ¢2]) using clc | only 1 by auto
moreover have not-c-in-c¢’-symb ¢ ¢’ (conn ¢ [conn ¢' 11, v2])

38

using 11 p1 clc l local.wf not-c-in-c’-symb-1 wfp1 by blast
ultimately show Fualse using @1 cic 1 11 local.wf not-c-in-c’-simp(4) wfel by blast
qged
then have (p1 = conn ¢ lI A wf-conn ¢ 1)V (1. o1 = FNot 1) V simple @1
by (metis @1 assms(1—3) cl-eq c1-imp simple.elims(3) wfel wf-conn-list(4) wf-conn-list(5—7))
moreover {
assume @I = conn c l1 N wf-conn c l1
then have only-c-inside c ¢1
by (metis IHpl 1 all-subformula-st-decomp-imp incel no-equiv no-equiv-def no-imp no-imp-def
c-in-onlyp1 only-c-inside-def only-c-inside-into-only-c-inside simple-not simple-not-def
subformula-all-subformula-st)
}
moreover {
assume 3y 1. 91 = FNot 91
then obtain 1 where ¢! = FNot ¥1 by metis
then have only-c-inside c 1
by (metis all-subformula-st-def assms(1) connective.distinct(37,39) incpl
only-c-inside-decomp-not simple-not simple-not-def simple-not-symb.simps(1))
}
moreover {
assume simple p1
then have only-c-inside ¢ 1
by (metis all-subformula-st-decomp-explicit(3) assms(1) connective.distinct(37,39)
only-c-inside-decomp-not only-c-inside-def)

ultimately have only-c-insidep1: only-c-inside ¢ ¢1 by metis

have c-in-onlyp2: c-in-c’-only ¢ ¢’ (conn 2 12)
using only | 02 wf2 assms unfolding c-in-c’-only-def by auto
have c2c: c2 # ¢’
proof
assume c2c: c2 = ¢’
then obtain 1 £2 where 12: 12 = [£1, £2]
by (metis assms(2) wfp2 wf-conn.simps connective.distinct(7,9,19,21,29,31,37,39))
then have c-in-c’-symb ¢ ¢’ (conn ¢ [p1, conn ¢’ 12])
using c2c | only ©2 all-subformula-st-test-symb-true-phi unfolding c-in-c’-only-def by auto
moreover have not-c-in-c’-symb ¢ ¢’ (conn ¢ [p1, conn ¢’ I2])
using assms(1) c2c 12 not-c-in-c'-symb-r wfp2 wf-conn-helper-facts(5,6) by metis
ultimately show Fulse by auto
qed
then have (p2 = conn ¢ 12 A wf-conn ¢ 12) V (392. 92 = FNot ¥ 2) V simple 2
using c2-eq by (metis ©2 assms(1—3) c2-eq c2-imp simple.elims(3) wfp2 wf-conn-list(4—"7))
moreover {
assume @2 = conn c 12 N\ wf-conn c 12
then have only-c-inside c p2
by (metis IHp2 @2 all-subformula-st-decomp incp?2 no-equiv no-equiv-def no-imp no-imp-def
c-in-onlyp2 only-c-inside-def only-c-inside-into-only-c-inside simple-not simple-not-def
subformula-all-subformula-st)
}
moreover {
assume 3P 2. 92 = FNot 2
then obtain 2 where ¢2 = FNot ¥2 by metis
then have only-c-inside ¢ p2
by (metis all-subformula-st-def assms(1—3) connective.distinct(38,40) incp2
only-c-inside-decomp-not simple-not simple-not-def simple-not-symb.simps(1))

39

moreover {
assume simple p2
then have only-c-inside ¢ p2
by (metis all-subformula-st-decomp-explicit(3) assms(1) connective.distinct(37,39)
only-c-inside-decomp-not only-c-inside-def)
}
ultimately have only-c-insidep2: only-c-inside ¢ ¢2 by metis
show ?case using [only-c-insidep1 only-c-insidep?2 by auto
qed

Push Conjunction

definition pushConj where pushConj = push-conn-inside CAnd COr

lemma pushConj-consistent: preserve-models pushConj
unfolding pushConj-def by (simp add: push-conn-inside-consistent)

definition and-in-or-symb where and-in-or-symb = c-in-c’-symb CAnd COr

definition and-in-or-only where
and-in-or-only = all-subformula-st (c-in-c’-symb CAnd COr)

lemma pushConj-inv:
fixes ¢ v 1 'v propo
assumes full (propo-rew-step pushConj) ¢ 1)
and no-equiv ¢ and no-imp ¢ and no-T-F-except-top-level ¢ and simple-not
shows no-equiv ¥ and no-imp ¢ and no-T-F-except-top-level ¢ and simple-not i
using push-conn-inside-inv assms unfolding pushConj-def by metis+

lemma pushCongj-full-propo-rew-step:
fixes ¢ ¥ :: 'v propo
assumes
no-equiv p and
no-imp ¢ and
full (propo-rew-step pushConj) ¢ ¢ and
no-T-F-except-top-level ¢ and
simple-not ¢
shows and-in-or-only v
using assms push-conn-inside-full-propo-rew-step
unfolding pushConj-def and-in-or-only-def c-in-c’-only-def by (metis (no-types))

Push Disjunction
definition pushDisj where pushDisj = push-conn-inside COr CAnd

lemma pushDisj-consistent: preserve-models pushDisj
unfolding pushDisj-def by (simp add: push-conn-inside-consistent)

definition or-in-and-symb where or-in-and-symb = c-in-c¢’-symb COr CAnd
definition or-in-and-only where
or-in-and-only = all-subformula-st (c-in-c’-symb COr CAnd)

lemma not-or-in-and-only-or-and[simpl:

40

~or-in-and-only (FOr (FAnd ¢1 ¢2) ¢’)

unfolding or-in-and-only-def

by (metis all-subformula-st-test-symb-true-phi conn.simps(5—6) not-c-in-c’-symb-1
wf-conn-helper-facts(5) wf-conn-helper-facts(6))

lemma pushDisj-inv:
fixes ¢ v 1 'v propo
assumes full (propo-rew-step pushDisj) ¢
and no-equiv ¢ and no-imp ¢ and no-T-F-except-top-level ¢ and simple-not
shows no-equiv ¥ and no-imp ¢ and no-T-F-except-top-level ¢ and simple-not
using push-conn-inside-inv assms unfolding pushDisj-def by metis+

lemma pushDisj-full-propo-rew-step:
fixes ¢ v 1 "v propo
assumes
no-equiv p and
no-imp p and
full (propo-rew-step pushDisj) ¢ 1 and
no-T-F-except-top-level p and
simple-not
shows or-in-and-only
using assms push-conn-inside-full-propo-rew-step
unfolding pushDisj-def or-in-and-only-def c-in-c’-only-def by (metis (no-types))

0.4 The Full Transformations
0.4.1 Abstract Definition

The normal form is a super group of groups

inductive grouped-by :: 'a connective = 'a propo = bool for ¢ where

simple-is-grouped[simp|: simple ¢ = grouped-by c ¢ |

simple-not-is-grouped[simp]: simple ¢ = grouped-by ¢ (FNot ¢) |

connected-is-group[simpl: grouped-by ¢ ¢ => grouped-by ¢ ¥ => wf-conn ¢ [p, Y]
= grouped-by ¢ (conn ¢ [p, ¥])

lemma simple-clause[simp]:
grouped-by ¢ FT
grouped-by ¢ FF
grouped-by ¢ (FVar z)
grouped-by ¢ (FNot FT)
grouped-by ¢ (FNot FF)
grouped-by ¢ (FNot (FVar x))
by simp+

lemma only-c-inside-symb-c-eq-c':
only-c-inside-symb ¢ (conn ¢’ [pl, p2]) = ¢’ = CAnd V ¢/ = COr = wf-conn ¢’ [p1, p2]
= c¢'=c
by (induct conn ¢’ [p1, ¢2] rule: only-c-inside-symb.induct, auto simp: conn-inj)

lemma only-c-inside-c-eq-c”:
only-c-inside ¢ (conn ¢’ [p1, p2]) = ¢’ = CAnd V ¢’ = COr = wf-conn ¢’ [pl, p2] = ¢ = ¢’
unfolding only-c-inside-def all-subformula-st-def using only-c-inside-symb-c-eq-c’ subformula-refl
by blast

41

lemma only-c-inside-imp-grouped-by:
assumes c: ¢ # CNot and c¢”: ¢/ = CAnd V ¢’ = COr
shows only-c-inside ¢ p = grouped-by ¢ ¢ (is 70 p = ?G ¢)
proof (induct ¢ rule: propo-induct-arity)
case (nullary ¢ x)
then show ?G ¢ by auto
next
case (unary 1)
then show ?G (FNot v) by (auto simp: c)
next
case (binary ¢ 1 p2)
note [Hp! = this(1) and IHp2 = this(2) and ¢ = this(3) and only = this(4)
have p-conn: ¢ = conn ¢ [p1, p2] and wf: wf-conn ¢ [p1, p2]
proof —
obtain ¢ where p-c¢”: ¢ = conn ¢’ " and wf: wf-conn c
using ezxists-c-conn by metis
then have [": " = [p1, ¢2] using ¢ by (metis wf-conn-list(4—7))
have only-c-inside-symb ¢ (conn ¢"' [p1, ©2])
using only all-subformula-st-test-symb-true-phi
unfolding only-c-inside-def @-c'’ " by metis
then have ¢ = ¢”
by (metis ¢ ©-¢'" conn-inj conn-inj-not(2) 1" list.distinct(1) list.inject wf
only-c-inside-symb.cases simple.simps(5—8))
then show ¢ = conn ¢ [p1, 2] and wf-conn ¢ [p1, p2] using p-c¢’’ wf 1" by auto
qed
have grouped-by ¢ 1 using wf IHp1 IHp2 p-conn only ¢ unfolding only-c-inside-def by auto
moreover have grouped-by c p2
using wf ¢ [Hpl IHp?2 p-conn only unfolding only-c-inside-def by auto
ultimately show ?G ¢ using p-conn connected-is-group local.wf by blast
qed

1 l/l 1 l/l

lemma grouped-by-false:
grouped-by ¢ (conn ¢’ [p, ¢¥]) = ¢ # ¢/ = wf-conn ¢’ [¢,] = False
apply (induct conn ¢’ [p,] rule: grouped-by.induct)
apply (auto simp: simple-decomp wf-conn-list, auto simp: conn-inj)
by (metis list.distinct(1) list.sel(3) wf-conn-list(8))+

Then the CNF form is a conjunction of clauses: every clause is in CNF form and two formulas
in CNF form can be related by an and.

inductive super-grouped-by:: ‘a connective = 'a connective = 'a propo = bool for ¢ ¢’ where

grouped-is-super-grouped|[simpl: grouped-by ¢ ¢ => super-grouped-by c ¢’ ¢ |

connected-is-super-group: super-grouped-by ¢ ¢’ ¢ = super-grouped-by ¢ ¢’ v = wf-conn ¢ [p, V)
= super-grouped-by ¢ ¢’ (conn ¢’ [p, V])

lemma simple-cnf|[simp]:
super-grouped-by ¢ ¢’ FT
super-grouped-by c ¢’ FF
super-grouped-by ¢ ¢’ (FVar x)
super-grouped-by ¢ ¢’ (FNot FT)
super-grouped-by ¢ ¢’ (FNot FF)
super-grouped-by ¢ ¢’ (FNot (FVar x))
by auto

!
!
!
!

lemma c-in-c’-only-super-grouped-by:
assumes c¢: ¢ = CAnd V ¢ = COr and ¢": ¢/ = CAnd V ¢’ = COr and cc”: ¢ # ¢’

42

shows no-equiv ¢ = no-imp ¢ = simple-not ¢ = c-in-c’-only ¢ ¢’ ¢
= super-grouped-by ¢ ¢’ ¢
(is PNE ¢ = ?NI ¢ = 25N p = 72C ¢ = 25 o)
proof (induct ¢ rule: propo-induct-arity)
case (nullary ¢ x)
then show %S ¢ by auto
next
case (unary ¢)
then have simple-not-symb (FNot)
using all-subformula-st-test-symb-true-phi unfolding simple-not-def by blast
then have ¢ = FT' V ¢ = FF V (3 2. ¢ = FVar z) by (cases ¢, auto)
then show ?S (FNot ¢) by auto
next
case (binary ¢ p1 p2)
note IHp! = this(1) and IHp2 = this(2) and no-equiv = this(4) and no-imp = this(5)
and simpleN = this(6) and c-in-c’-only = this(7) and ¢’ = this(3)
{
assume ¢ = FImp o1 92 V ¢ = FEq p1 p2
then have Fulse using no-equiv no-imp by auto
then have 25 ¢ by auto
}
moreover {
assume @: p = conn ¢’ [pl, p2] A wf-conn ¢’ [p1, p2]
have c-in-c’-only: c-in-c’-only c ¢’ p1 N c-in-c’-only ¢ ¢’ 2 A c-in-c’-symb c ¢’ ¢
using c-in-c’-only ¢’ unfolding c-in-c’-only-def by auto
have super-grouped-by ¢ ¢’ p1 using ¢ ¢’ no-equiv no-imp simpleN IHp1 c-in-c’-only by auto
moreover have super-grouped-by ¢ ¢’ 2
using ¢ ¢’ no-equiv no-imp simpleN IHp2 c-in-c’-only by auto
ultimately have 75 ¢
using super-grouped-by.intros(2) ¢ by (metis ¢ wf-conn-helper-facts(5,6))
}

moreover {
assume @: p = conn ¢ [pl, p2] A wf-conn ¢ [pl, 2]
then have only-c-inside ¢ ¢1 A only-c-inside ¢ @2
using c-in-c’-symb-c-implies-only-c-inside ¢ ¢’ c-in-c’-only list.set-intros(1)
wf-conn-helper-facts(5,6) no-equiv no-imp simpleN last-ConsL last-ConsR last-in-set
list.distinct(1) by (metis (no-types, opaque-lifting) cc’)
then have only-c-inside ¢ (conn ¢ [p1, p2])
unfolding only-c-inside-def using ¢
by (simp add: only-c-inside-into-only-c-inside all-subformula-st-decomp)
then have grouped-by ¢ ¢ using ¢ only-c-inside-imp-grouped-by ¢ by blast
then have %5 ¢ using super-grouped-by.intros(1) by metis
}
ultimately show 25 ¢ by (metis ¢’ ¢ ¢’ cc’ conn.simps(5,6) wf-conn-helper-facts(5,6))
qed

0.4.2 Conjunctive Normal Form
Definition
definition is-conj-with-TF where is-conj-with-TEF == super-grouped-by COr CAnd
lemma or-in-and-only-conjunction-in-disj:
shows no-equiv ¢ = no-imp ¢ = simple-not ¢ = or-in-and-only ¢ = is-conj-with-TF ¢

using c-in-c’-only-super-grouped-by
unfolding is-conj-with-TF-def or-in-and-only-def c-in-c’-only-def

43

by (simp add: c-in-c’-only-def c-in-c'-only-super-grouped-by)

definition is-cnf where
is-cnf @ = is-conj-with-TF ¢ A no-T-F-except-top-level

Full CNF transformation

The fulll CNF transformation consists simply in chaining all the transformation defined before.

definition cnf-rew where cnf-rew =
(full (propo-rew-step elim-equiv)) OO
(full (propo-rew-step elim-imp)) OO
(full (propo-rew-step elimTB)) OO
(full (propo-rew-step pushNeg)) OO
(full (propo-rew-step pushDisj))

lemma cnf-rew-equivalent: preserve-models cnf-rew
by (simp add: enf-rew-def elimEquu-lifted-consistant elim-imp-lifted-consistant elimTB-consistent
preserve-models-O0 pushDisj-consistent pushNeg-lifted-consistant)

lemma cnf-rew-is-cnf: cnf-rew ¢ o' = is-cnf @’
apply (unfold cnf-rew-def OO-def)
apply auto
proof —
fix ¢ wEq pImp ¢ TB @Neg pDisj :: 'v propo
assume FEq: full (propo-rew-step elim-equiv) ¢ pEq
then have no-equiv: no-equiv pFEq using no-equiv-full-propo-rew-step-elim-equiv by blast

assume Imp: full (propo-rew-step elim-imp) @Eq pImp
then have no-imp: no-imp wImp using no-imp-full-propo-rew-step-elim-imp by blast
have no-imp-inv: no-equiv @Imp using no-equiv Imp elim-imp-inv by blast

assume TB: full (propo-rew-step elimTB) ¢Imp ¢ TB
then have noTB: no-T-F-except-top-level ¢ TB
using no-imp-inv no-imp elimTB-full-propo-rew-step by blast
have noTB-inv: no-equiv ¢ TB no-imp ¢ TB using elimTB-inv TB no-imp no-imp-inv by blast+

assume Neg: full (propo-rew-step pushNeg) ¢ TB pNeg

then have noNeg: simple-not pNeg
using noTB-inv noTB pushNeg-full-propo-rew-step by blast

have noNeg-inv: no-equiv pNeg no-imp ¢ Neg no-T-F-except-top-level pNeg
using pushNeg-inv Neg noTB noTB-inv by blast+

assume Disj: full (propo-rew-step pushDisj) ¢Neg o Disj

then have no-Disj: or-in-and-only pDisj
using noNeg-inv noNeg pushDisj-full-propo-rew-step by blast

have noDisj-inv: no-equiv @ Disj no-imp pDisj no-T-F-except-top-level ¢ Disj
simple-not pDisj

using pushDisj-inv Disj noNeg noNeg-inv by blast+

moreover have is-conj-with-TF ¢ Disj
using or-in-and-only-conjunction-in-disj noDisj-inv no-Disj by blast
ultimately show is-cnf ¢Disj unfolding is-cnf-def by blast
qed

44

0.4.3 Disjunctive Normal Form
Definition

definition is-disj-with-TF where is-disj-with-TF = super-grouped-by CAnd COr

lemma and-in-or-only-conjunction-in-disj:
shows no-equiv ¢ = no-imp ¢ = simple-not ¢ = and-in-or-only p = is-disj-with-TF ¢
using c-in-c’-only-super-grouped-by
unfolding is-disj-with-TF-def and-in-or-only-def c-in-c’-only-def
by (simp add: c-in-c’-only-def c-in-c'-only-super-grouped-by)

definition is-dnf :: ‘a propo = bool where
is-dnf @ <— is-disj-with-TF ¢ A no-T-F-except-top-level ¢

Full DNF transform

The fulll DNF transformation consists simply in chaining all the transformation defined before.

definition dnf-rew where dnf-rew =
(full (propo-rew-step elim-equiv)) OO
(full (propo-rew-step elim-imp)) OO
(full (propo-rew-step elimTB)) OO
(full (propo-rew-step pushNeg)) OO
(full (propo-rew-step pushConj))

lemma dnf-rew-consistent: preserve-models dnf-rew
by (simp add: dnf-rew-def elimEquu-lifted-consistant elim-imp-lifted-consistant elimTB-consistent
preserve-models-O0 pushConj-consistent pushNeg-lifted-consistant)

theorem dnf-transformation-correction:
dnf-rew ¢ ¢’ = is-dnf ¢’
apply (unfold dnf-rew-def OO-def)
by (meson and-in-or-only-conjunction-in-disj elimTB-full-propo-rew-step elimTB-inv(1,2)
elim-imp-inv is-dnf-def no-equiv-full-propo-rew-step-elim-equiv
no-imp-full-propo-rew-step-elim-imp pushConj-full-propo-rew-step pushConj-inv(1—4)
pushNeg-full-propo-rew-step pushNeg-inv(1—3))

0.5 More aggressive simplifications: Removing true and false at
the beginning

0.5.1 Transformation

We should remove F'T and FF at the beginning and not in the middle of the algorithm. To do
this, we have to use more rules (one for each connective):

inductive elimTBFull where
ElimTBFulll [simp]: elimTBFull (FAnd ¢ FT) ¢ |
ElimTBFulll [simp): elimTBFull (FAnd FT) ¢ |

ElimTBFull2[simp): elimTBFull (FAnd ¢ FF) FF |
ElimTBFull2'[simp]: elimTBFull (FAnd FF ¢) FF |

ElimTBFull3[simp]: elimTBFull (FOr ¢ FT) FT |
ElimTBFull3'[simp): elimTBFull (FOr FT ¢) FT |

45

ElimTBFull{ [simp): elimTBFull (FOr ¢ FF) ¢ |
ElimTBFull] [simp]: elimTBFull (FOr FF ¢) ¢ |

ElimTBFull5[simp): elimTBFull (FNot FT) FF |
ElimTBFull5 [simp): elimTBFull (FNot FF) FT |

ElimTBFull6-l[simp]: elimTBFull (FImp FT ¢) ¢ |
ElimTBFull6-1"[simp): elimTBFull (FImp FF ¢) FT |
ElimTBFull6-r[simp): elimTBFull (FImp ¢ FT) FT |
ElimTBFull6-r'[simp]: elimTBFull (FImp ¢ FF) (FNot @) |

ElimTBFull7-1[simp): elimTBFull (FEq FT ¢) ¢ |
ElimTBFull7-1"[simp): elimTBFull (FEq FF) (FNot ¢) |
ElimTBFull7-r[simp]: elimTBFull (FEq ¢ FT) ¢ |
ElimTBFull7-r'[simp]: elimTBFull (FEq ¢ FF) (FNot ¢)

The transformation is still consistent.

lemma elimTBFull-consistent: preserve-models elimTBFull
proof —

fix ¢ ¢:: 'b propo
have elimTBFull p = VA AE o +— A=Y
by (induct-tac rule: elimTBFull.inducts, auto)
}
then show ?%thesis using preserve-models-def by auto
qed

Contrary to the theorem no-T-F-symb-except-toplevel-step-exists, we do not need the assumption
no-equiv ¢ and no-imp @, since our transformation is more general.

lemma no-T-F-symb-czcept-toplevel-step-exists’:
fixes ¢ :: 'v propo
shows 1) < ¢ = = no-T-F-symb-except-toplevel v => I’ elimTBFull ¢ 1)’
proof (induct v rule: propo-induct-arity)
case (nullary @)
then have Fulse using no-T-F-symb-except-toplevel-true no-T-F-symb-except-toplevel-false by auto
then show Ez (elimTBFull ¢') by blast
next
case (unary 1)
then have v = FF V ¢ = FT using no-T-F-symb-except-toplevel-not-decom by blast
then show Ex (elimTBFull (FNot 1)) using ElimTBFull5 ElimTBFull5’ by blast
next
case (binary ¢’ w1 ¥2)
then have 1 = FT vV ¢2 = FT vV ¢1 = FF V Y2 = FF
by (metis binary-connectives-def conn.simps(5—38) insertl1 insert-commaute
no-T-F-symb-except-toplevel-bin-decom binary.hyps(3))
then show FEzx (elimTBFull ¢') using elimTBFull.intros binary.hyps(3) by blast
qed

The same applies here. We do not need the assumption, but the deep link between — no-T-F-except-top-level
 and the existence of a rewriting step, still exists.
lemma no-T-F-except-top-level-rew’:
fixes ¢ :: 'v propo
assumes noTB: - no-T-F-except-top-level ¢
shows 39 ' ¢ < o A elimTBFull ¢ 1’
proof —

46

have test-symb-false-nullary:
Y z. no-T-F-symb-except-toplevel (FF:: v propo) A no-T-F-symb-except-toplevel FT
A no-T-F-symb-except-toplevel (FVar (z:: 'v))
by auto
moreover {
fix c:: 'v connective and | :: "v propo list and v :: 'v propo
have H: elimTBFull (conn ¢ l) ¥ = —no-T-F-symb-except-toplevel (conn c I)
by (cases conn ¢ | rule: elimTBFull.cases) auto
}

ultimately show ?thesis
using no-test-symb-step-exists|of no-T-F-symb-except-toplevel ¢ elimTBFull] noTB
no-T-F-symb-ezcept-toplevel-step-exists’ unfolding no-T-F-except-top-level-def by metis
qed

lemma elim TBFull-full-propo-rew-step:
fixes ¢ v :: "v propo
assumes full (propo-rew-step elimTBFull) ¢ 1)
shows no-T-F-except-top-level i
using full-propo-rew-step-subformula no-T-F-except-top-level-rew’ assms by fastforce

0.5.2 More invariants

As the aim is to use the transformation as the first transformation, we have to show some more
invariants for elim-equiv and elim-imp. For the other transformation, we have already proven
it.
lemma propo-rew-step- ElimEquiv-no-T-F: propo-rew-step elim-equiv ¢ ¥ = no-T-F ¢ = no-T-F ¢
proof (induct rule: propo-rew-step.induct)
fix ¢’ :: v propo and ¢’ :: "v propo
assume al: no-T-F ¢’
assume a2: elim-equiv @' 1’
have V0 z1. (= elim-equiv (21 :: 'v propo) z0 V (Fv2 v3 v4 v5 v6 v7. x1 = FEq v2 v8
A 20 = FAnd (FImp v4 v5) (FImp v6 v7) A v2 = v N vf = 07 AN v8 = v5 A v3 = v6))
= (= elim-equiv z1 0 V (Fv2 v3 v4 v5 v6 v7. 1 = FEq v2 v3
A 20 = FAnd (FImp v4 v5) (FImp v6 v7) A v2 = v AN v = 07 A v8 = v5 A v3 = v6))
by meson
then have Vp pa. = elim-equiv (p :: "v propo) pa V (I pb pc pd pe pf pg. p = FEq pb pc
A pa = FAnd (FImp pd pe) (FImp pf pg) A pb = pd A pd = pg A pc = pe A pc = pf)
using elim-equiv.cases by force
then show no-T-F 1’ using al a2 by fastforce
next
fix ¢ ¢’ :: 'v propo and £ &' :: 'v propo list and ¢ :: 'v connective
assume rel: propo-rew-step elim-equiv ¢ o’
and 7H: no-T-F ¢ = no-T-F ¢’
and corr: wf-conn ¢ (£ Q ¢ # &)
and no-T-F: no-T-F (conn ¢ (£ Q@ ¢ # ')
{
assume c: ¢ = CNot
then have empty: £ =[] £’ = [] using corr by auto
then have no-T-F ¢ using no-T-F ¢ no-T-F-decomp-not by auto
then have no-T-F (conn ¢ (£ @Q ¢’ # &')) using ¢ empty no-T-F-comp-not [H by auto
}
moreover {
assume c: ¢ € binary-connectives

47

obtain a b where ab: £ Q ¢ # ¢’ = [a, b]
using corr c list-length2-decomp wf-conn-bin-list-length by metis
then have p: p =aV p =1
by (metis append.simps(1) append-is-Nil-conv list.distinct(1) list.sel(3) nth-Cons-0
tl-append?)
have (: V(€ set (£ Q ¢ # £'). no-T-F ¢
using no-T-F unfolding no-T-F-def using corr all-subformula-st-decomp by blast

then have ¢ no-T-F ¢’ using ab IH ¢ by auto
have I £ @ o’ # ' =[p",] V£ @ @' # ¢’ = [a, ¢]
by (metis (no-types, opaque-lifting) ab append-Cons append-Nil append-Nil2 butlast.simps(2)
butlast-append list.distinct(1) list.sel(3))
then have V(€ set (£ Q ¢’ # &'). no-T-F ¢ using ¢ ¢’ ab by fastforce
moreover
have V(€ set (EQ o #). (£ FT N # FF
using ¢ corr no-T-F no-T-F-except-top-level-false no-T-F-no-T-F-except-top-level by blast
then have no-T-F-symb (conn ¢ (£ Q o' # ')
by (metis ¢’ 1" ab all-subformula-st-test-symb-true-phi ¢ list.distinct(1)
list.set-intros(1,2) no-T-F-symb-except-toplevel-bin-decom
no-T-F-symb-except-toplevel-no-T-F-symb no-T-F-symb-false(1,2) no-T-F-def wf-conn-binary
wf-conn-list(1,2))
ultimately have no-T-F (conn ¢ (£ Q ¢’ # ¢£'))
by (metis I’ all-subformula-st-decomp-imp ¢ no-T-F-def wf-conn-binary)

moreover {
fix z
assume ¢ = CVarz vV ¢ = CF V ¢ = CT
then have Fulse using corr by auto
then have no-T-F (conn ¢ (£ Q ¢’ # &')) by auto
}
ultimately show no-T-F (conn ¢ (£ @ ¢’ # £)) using corr wf-conn.cases by metis
qed

lemma elim-equiv-inv’:
fixes ¢ v :: "v propo
assumes full (propo-rew-step elim-equiv) ¢ ¥ and no-T-F-except-top-level ¢
shows no-T-F-except-top-level i
proof —
{
fix ¢ 9 1 'v propo
have propo-rew-step elim-equiv ¢ v = no-T-F-except-top-level ¢
= no-T-F-except-top-level 1
proof —
assume rel: propo-rew-step elim-equiv ¢ 1)
and no: no-T-F-except-top-level ¢
{
assume ¢ = FT V ¢ = FF
from rel this have False
apply (induct rule: propo-rew-step.induct, auto simp: wf-conn-list(1,2))
using elim-equiv.simps by blast+
then have no-T-F-except-top-level 1 by blast
}
moreover {
assume ¢ # FT N p # FF
then have no-T-F ¢
by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)

48

then have no-T-F 1) using propo-rew-step-ElimEquiv-no-T-F rel by blast
then have no-T-F-except-top-level ¢ by (simp add: no-T-F-no-T-F-except-top-level)
}
ultimately show no-T-F-except-top-level i by metis
qed
}
moreover {
fix ¢ :: 'v connective and £ £’ :: 'v propo list and ¢ (' :: 'v propo
assume rel: propo-rew-step elim-equiv ¢ ¢’
and incl: (X ¢
and corr: wf-conn ¢ (£ Q ¢ # &)
and no-T-F: no-T-F-symb-except-toplevel (conn ¢ (€ Q ¢ # &)
and n: no-T-F-symb-except-toplevel ¢’
have no-T-F-symb-except-toplevel (conn ¢ (£ Q (' # &)
proof
have p: no-T-F-symb (conn ¢ (£ @ { # ¢'))
using corr wf-conn-list(1) wf-conn-list(2) no-T-F-symb-except-toplevel-no-T-F-symb no-T-F
by blast
have I: Vyoeset (EQ (# E. ¢p # FT AN p # FF
using corr wf-conn-no-T-F-symb-iff p by blast
from rel incl have ('AFT N('AFF
apply (induction ¢ ¢’ rule: propo-rew-step.induct)
apply (cases rule: elim-equiv.cases, auto simp: elim-equiv.simps)
by (metis append-is-Nil-conv list.distinct wf-conn-list(1,2) wf-conn-no-arity-change
wf-conn-no-arity-change-helper)+
then have Vo € set (€ Q (' # £'). ¢p # FT A ¢ # FF using [by auto
moreover have ¢ # CT A ¢ # CF using corr by auto
ultimately show no-T-F-symb (conn ¢ (£ @ (' # ')
by (metis corr wf-conn-no-arity-change wf-conn-no-arity-change-helper no-T-F-symb-comp)
qed
}
ultimately show no-T-F-except-top-level
using full-propo-rew-step-inv-stay-with-inc|of elim-equiv no-T-F-symb-except-toplevel ¢)]
assms subformula-refl unfolding no-T-F-except-top-level-def by metis
qed

lemma propo-rew-step-ElimImp-no-T-F': propo-rew-step elim-imp ¢ v = no-T-F ¢ = no-T-F ¢
proof (induct rule: propo-rew-step.induct)
case (global-rel ¢’ 1))
then show no-T-F '
using elim-imp.cases no-T-F-comp-not no-T-F-decomp(1,2)
by (metis no-T-F-comp-expanded-explicit(2))
next
case (propo-rew-one-step-lift ¢ @' ¢ £ &)
note rel = this(1) and IH = this(2) and corr = this(3) and no-T-F = this(4)
{
assume c: ¢ = CNot
then have empty: £ =[] £’ = [] using corr by auto
then have no-T-F ¢ using no-T-F ¢ no-T-F-decomp-not by auto
then have no-T-F (conn ¢ (§ @Q ¢’ # &')) using ¢ empty no-T-F-comp-not IH by auto
}
moreover {
assume c: ¢ € binary-connectives
then obtain a b where ab: £ Q@ ¢ # &' = [a, }]
using corr list-length2-decomp wf-conn-bin-list-length by metis

49

then have p: p =aV p =1
by (metis append-self-conv2 wf-conn-list-decomp(4) wf-conn-unary list.discl list.sel(3)
nth-Cons-0 tl-append?2)
have (: V(€ set (£ Q ¢ # £'). no-T-F ¢ using ab ¢ propo-rew-one-step-lift.prems by auto

then have ¢ no-T-F ¢’
using ab IH ¢ corr no-T-F no-T-F-def all-subformula-st-decomp-explicit by auto
have x: £ @ o' # &' = [p',] VEQ ' # &' = [a, ¢
by (metis (no-types, opaque-lifting) ab append-Cons append-Nil append-Nil2 butlast.simps(2)
butlast-append list.distinct(1) list.sel(3))
then have V(€ set (€ Q ¢’ # ¢&'). no-T-F ¢ using ¢ ¢’ ab by fastforce
moreover
have no-T-F (last (£ Q@ ¢’ # ¢£')) by (simp add: calculation)
then have no-T-F-symb (conn ¢ (£ Q ¢’ # £'))
by (metis x ¢’ ¢ ab all-subformula-st-test-symb-true-phi ¢ last.simps list.distinct(1)
list.set-intros(1) no-T-F-bin-decomp no-T-F-def)
ultimately have no-T-F (conn ¢ (£ Q ¢’ # £’)) using ¢ x by fastforce
}
moreover {
fix z
assume ¢ = CVarz V ¢ = CF V ¢ = CT
then have Fulse using corr by auto
then have no-T-F (conn ¢ (£ Q ¢’ # &')) by auto
}
ultimately show no-T-F (conn ¢ (§ Q ¢’ # £’)) using corr wf-conn.cases by blast
qed

lemma elim-imp-inv’:
fixes ¢ v :: "v propo
assumes full (propo-rew-step elim-imp) ¢ 1 and no-T-F-except-top-level ¢
showsno-T-F-except-top-level i
proof —
{
{
fix ¢ ¢ 2 "v propo
have H: elim-imp ¢ v = no-T-F-except-top-level ¢ =—> no-T-F-except-top-level
by (induct ¢ ¢ rule: elim-imp.induct, auto)
} note H = this
fix ¢ ¢ :: 'v propo
have propo-rew-step elim-imp ¢ v = no-T-F-except-top-level p => mno-T-F-except-top-level 1)
proof —
assume rel: propo-rew-step elim-imp p
and no: no-T-F-except-top-level
{
assume ¢ = FT V ¢ = FF
from rel this have Fulse
apply (induct rule: propo-rew-step.induct)
by (cases rule: elim-imp.cases, auto simp: wf-conn-list(1,2))
then have no-T-F-except-top-level 1) by blast
}
moreover {
assume ¢ #= FT N p # FF
then have no-T-F ¢
by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
then have no-T-F

50

using rel propo-rew-step-ElimImp-no-T-F by blast
then have no-T-F-except-top-level ¢ by (simp add: no-T-F-no-T-F-except-top-level)
}
ultimately show no-T-F-except-top-level i by metis
qed
}
moreover {
fix ¢ :: 'v connective and £ £’ :: 'v propo list and ¢ (' :: 'v propo
assume rel: propo-rew-step elim-imp ¢ ¢’
and incl: (X ¢
and corr: wf-conn ¢ (£ Q ¢ # &)
and no-T-F: no-T-F-symb-except-toplevel (conn ¢ (€ Q ¢ # &)
and n: no-T-F-symb-except-toplevel ¢’
have no-T-F-symb-except-toplevel (conn ¢ (£ Q (' # &)
proof
have p: no-T-F-symb (conn ¢ (£ @ { # ¢'))
by (simp add: corr no-T-F no-T-F-symb-except-toplevel-no-T-F-symb wf-conn-list(1,2))

have I: Vyoeset (EQ (# E. ¢p # FT AN p # FF
using corr wf-conn-no-T-F-symb-iff p by blast
from rel incl have ('AFT N('AFF
apply (induction ¢ ¢’ rule: propo-rew-step.induct)
apply (cases rule: elim-imp.cases, auto)
using wf-conn-list(1,2) wf-conn-no-arity-change wf-conn-no-arity-change-helper
by (metis append-is-Nil-conv list.distinct(1))+
then have Vyeset (£ @Q (' # £'). ¢ # FT A ¢ # FF using [by auto
moreover have ¢ # CT A ¢ # CF using corr by auto
ultimately show no-T-F-symb (conn ¢ (£ @ (' # ')
using corr wf-conn-no-arity-change no-T-F-symb-comp
by (metis wf-conn-no-arity-change-helper)
qed
}
ultimately show no-T-F-except-top-level i
using full-propo-rew-step-inv-stay-with-inc|of elim-imp no-T-F-symb-except-toplevel)
assms subformula-refl unfolding no-T-F-except-top-level-def by metis
qed

0.5.3 The new CNF and DNF transformation

The transformation is the same as before, but the order is not the same.

definition dnf-rew’ :: 'a propo = 'a propo = bool where
dnf-rew’ =

(full (propo-rew-step elimTBFull)) OO

(full (propo-rew-step elim-equiv)) OO

(full (propo-rew-step elim-imp)) OO

(full (propo-rew-step pushNeg)) OO

(full (propo-rew-step pushConj))

lemma dnf-rew’-consistent: preserve-models dnf-rew’
by (simp add: dnf-rew’-def elimEquuv-lifted-consistant elim-imp-lifted-consistant
elimTBPFull-consistent preserve-models-O0 pushConj-consistent pushNeg-lifted-consistant)

theorem cnf-transformation-correction:

dnf-rew’ p ©' = is-dnf ¢’
unfolding dnf-rew’-def OO-def

o1

by (meson and-in-or-only-conjunction-in-disj elimTBFull-full-propo-rew-step elim-equiv-inv’
elim-imp-inv elim-imp-inv’ is-dnf-def no-equiv-full-propo-rew-step-elim-equiv
no-imp-full-propo-rew-step-elim-imp pushConj-full-propo-rew-step pushConj-inv(1—4)
pushNeg-full-propo-rew-step pushNeg-inv(1—3))

Given all the lemmas before the CNF transformation is easy to prove:

definition cnf-rew’ :: 'a propo = 'a propo = bool where
enf-rew’ =

(full (propo-rew-step elimTBFull)) OO

(full (propo-rew-step elim-equiv)) OO

(full (propo-rew-step elim-imp)) OO

(full (propo-rew-step pushNeg)) OO

(full (propo-rew-step pushDisj))

lemma cnf-rew’-consistent: preserve-models cnf-rew’
by (simp add: enf-rew’-def elimEquu-lifted-consistant elim-imp-lifted-consistant
elimTBPFull-consistent preserve-models-O0 pushDisj-consistent pushNeg-lifted-consistant)

theorem cnf’-transformation-correction:
enf-rew’ ¢ o' = is-enf o’
unfolding cnf-rew’-def OO-def
by (meson elimTBFull-full-propo-rew-step elim-equiv-inv’ elim-imp-inv elim-imp-inv’ is-cnf-def
no-equiv-full-propo-rew-step-elim-equiv no-imp-full-propo-rew-step-elim-imp
or-in-and-only-conjunction-in-disj pushDisj-full-propo-rew-step pushDisj-inv(1—4)
pushNeg-full-propo-rew-step pushNeg-inv(1) pushNeg-inv(2) pushNeg-inv(3))

end

theory Prop-Logic-Multiset

imports Nested-Multisets-Ordinals. Multiset-More Prop-Normalisation
Entailment-Definition. Partial- Herbrand-Interpretation

begin

0.6 Link with Multiset Version

0.6.1 Transformation to Multiset

fun mset-of-conj :: 'a propo = ’'a literal multiset where
mset-of-conj (FOr ¢ ¢) = mset-of-conj ¢ + mset-of-conj ¥ |
mset-of-conj (F'Var v) = {# Pos v #} |

mset-of-conj (FNot (FVar v)) = {# Neg v #} |

mset-of-conj FF = {#}

fun mset-of-formula :: 'a propo = 'a literal multiset set where
mset-of-formula (FAnd ¢) = mset-of-formula ¢ U mset-of-formula 9 |
mset-of-formula (FOr ¢ 1) = {mset-of-conj (FOr ¢)} |
mset-of-formula (FVar) = {mset-of-conj (FVar ¢)} |

mset-of-formula (FNot ¢) = {mset-of-conj (FNot 1)} |

mset-of-formula FF = {{#}} |

mset-of-formula FT = {}

0.6.2 Equisatisfiability of the two Versions

lemma is-conj-with- TF-FNot:
is-conj-with-TF (FNot ¢) +— (3v. ¢ = FVarvV ¢ = FF V ¢ = FT)
unfolding is-conj-with-TF-def apply (rule iffT)

52

apply (induction FNot ¢ rule: super-grouped-by.induct)
apply (induction FNot ¢ rule: grouped-by.induct)
apply simp
apply (cases @; simp)
apply auto
done

lemma grouped-by-COr-FNot:
grouped-by COr (FNot ¢) «— (3v. ¢ = FVarvV ¢ = FF V ¢ = FT)
unfolding is-conj-with-TF-def apply (rule iffT)
apply (induction FNot ¢ rule: grouped-by.induct)
apply simp
apply (cases ¢; simp)
apply auto
done

lemma
shows no-T-F-FF[simp|: —no-T-F FF and
no-T-F-FT|[simp|: —-no-T-F FT
unfolding no-T-F-def all-subformula-st-def by auto

lemma grouped-by-CAnd-FAnd:
grouped-by CAnd (FAnd @1 ¢2) <— grouped-by CAnd 1 A grouped-by CAnd p2
apply (rule iffT)
apply (induction FAnd p1 ¢2 rule: grouped-by.induct)
using connected-is-grouplof CAnd 1 ¢2] by auto

lemma grouped-by-COr-FOr:
grouped-by COr (FOr o1 ¢2) <— grouped-by COr ¢1 A grouped-by COr o2
apply (rule iffT)
apply (induction FOr 1 ¢2 rule: grouped-by.induct)
using connected-is-group[of COr @1 ¢2] by auto

lemma grouped-by-COr-FAnd[simp]: = grouped-by COr (FAnd @1 ¢2)
apply clarify
apply (induction FAnd 1 ¢2 rule: grouped-by.induct)
apply auto
done

lemma grouped-by-COr-FEq[simp|: = grouped-by COr (FEq ¢1 ¢2)
apply clarify
apply (induction FEq @1 @2 rule: grouped-by.induct)
apply auto
done

lemma [simp]: —grouped-by COr (FImp ¢ 1)

apply clarify
by (induction FImp ¢ 1 rule: grouped-by.induct) simp-all

lemma [simp]: = is-conj-with-TF (FImp ¢ 1)
unfolding is-conj-with-TF-def apply clarify
by (induction FImp ¢ 1 rule: super-grouped-by.induct) simp-all

lemma [simp]: = is-conj-with-TF (FEq ¢ 1))
unfolding is-conj-with-TF-def apply clarify

93

by (induction FEq ¢ ¢ rule: super-grouped-by.induct) simp-all

lemma is-conj-with-TF-Fand:
is-conj-with-TF (FAnd 1 ¢2) = is-conj-with-TF p1 A is-conj-with-TF ©2
unfolding is-conj-with-TF-def
apply (induction FAnd 1 o2 rule: super-grouped-by.induct)
apply (auto simp: grouped-by-CAnd-FAnd intro: grouped-is-super-grouped)|]
apply auto[]
done

lemma is-conj-with-TF-FOr:
is-conj-with-TF (FOr @1 ¢2) = grouped-by COr ¢1 N grouped-by COr o2
unfolding is-conj-with-TF-def
apply (induction FOr o1 ¢2 rule: super-grouped-by.induct)
apply (auto simp: grouped-by-COr-FOr)|]
apply auto]
done

lemma grouped-by- COr-mset-of-formula:
grouped-by COr ¢ = mset-of-formula ¢ = (if ¢ = FT then {} else {mset-of-conj ¢})
by (induction ¢) (auto simp add: grouped-by-COr-FNot)

When a formula is in CNF form, then there is equisatisfiability between the multiset version
and the CNF form. Remark that the definition for the entailment are slightly different: (}=)
uses a function assigning True or False, while (F=s) uses a set where being in the list means
entailment of a literal.

theorem cnf-eval-true-clss:
fixes ¢ :: 'v propo
assumes is-cnf ¢
shows eval A ¢ <+— Partial-Herbrand-Interpretation.true-clss ({ Pos v|v. A v} U {Neg v|v. =4 v})
(mset-of-formula o)
using assms
proof (induction)
case F'F
then show ?Zcase by auto
next
case FT
then show ?Zcase by auto
next
case (F'Var v)
then show ?Zcase by auto
next
case (FAnd ¢)
then show ?case
unfolding is-cnf-def by (auto simp: is-conj-with-TF-FNot dest: is-conj-with-TF-Fand
dest!: is-conj-with-TF-FOr)
next
case (FOr ¢)
then have [simp|: mset-of-formula ¢ = {mset-of-conj ¢} mset-of-formula » = {mset-of-conj 1}
unfolding is-cnf-def by (auto dest!:is-conj-with-TF-FOr simp: grouped-by-COr-mset-of-formula
split: if-splits)
have is-conj-with-TF ¢ is-conj-with-TF
using FOr(3) unfolding is-cnf-def no-T-F-def
by (metis grouped-is-super-grouped is-conj-with-TF-FOr is-conj-with- TF-def)+
then show ?case using FOr

o4

unfolding is-cnf-def by simp
next
case (FImp ¢)
then show ?case
unfolding is-cnf-def by auto
next
case (FEq ¢)
then show ?Zcase
unfolding is-cnf-def by auto
next
case (FNot)
then show ?case
unfolding is-cnf-def by (auto simp: is-conj-with-TF-FNot)
qed

function formula-of-mset :: 'a clause = 'a propo where
<formula-of-mset o =
(if ¢ = {#} then FF
else
let v = (SOME v. v €# ¢);
v’ = (if is-pos v then FVar (atm-of v) else FNot (FVar (atm-of v))) in
if removel-mset v o = {#} then v’
else FOr v’ (formula-of-mset (removel-mset v ¢)))»
by auto
termination
apply (relation <measure sizey)
apply (auto simp: size-mset-removel-mset-le-iff)
by (meson multiset-nonemptyE somel-ex)

lemma formula-of-mset-empty[simp|: <formula-of-mset {#} = FF»
by (auto simp: Let-def)

lemma formula-of-mset-empty-iff [iff]: <formula-of-mset ¢ = FF «— ¢ = {#}
by (induction @) (auto simp: Let-def)

declare formula-of-mset.simps[simp del]

function formula-of-msets :: 'a literal multiset set = 'a propo where
<formula-of-msets ps =
(if ¢s ={} V infinite ps then FT
else
let v = (SOME v. v € ps);
v' = formula-of-mset v in
if s — {v} = {} then v’
else FAnd v’ (formula-of-msets (ps — {v})))
by auto
termination
apply (relation <measure cardy)
apply (auto simp: some-in-eq)
by (metis all-not-in-conv card-gt-0-iff diff-less lessI)

declare formula-of-msets.simps[simp del]
lemma removel-mset-empty-iff:

<removel-mset v o = {#} «— (o = {#} V ¢ = {#v#})
using removel-mset-eqE by force

95

definition fun-of-set where
<fun-of-set A x = (if Pos x € A then True else if Neg x € A then False else undefined)»

lemma grouped-by-COr-formula-of-mset: <grouped-by COr (formula-of-mset)»
proof (induction <size @» arbitrary: @)
case ()
then show ?Zcase by (subst formula-of-mset.simps) (auto simp: Let-def)
next
case (Suc n) note IH = this(1) and s = this(2)
then have «n = size (removel-mset (SOME v. v €# @) @) if <o # {#}
using that by (auto simp: size-Diff-singleton-if some-in-eq)
then show ?case
using IH|[of <removel-mset (SOME v. v €# ¢)]
by (subst formula-of-mset.simps) (auto simp: Let-def grouped-by-COr-FOr)
qed
lemma no-T-F-formula-of-mset: <no-T-F (formula-of-mset)» if <formula-of-mset ¢ # FF» for ¢
using that
proof (induction <size @ arbitrary: @)
case (
then show Zcase by (subst formula-of-mset.simps) (auto simp: Let-def no-T-F-def
all-subformula-st-def)
next
case (Suc n) note IH = this(1) and s = this(2) and FF = this(3)
then have «n = size (removel-mset (SOME v. v €# @) @) if <« # {#}
using that by (auto simp: size-Diff-singleton-if some-in-eq)
moreover have no-T-F (FVar (atm-of (SOME v. v €# ¢)))»
by (auto simp: no-T-F-def)
ultimately show ?Zcase
using IH|[of <removel-mset (SOME v. v €# ¢) @] FF
by (subst formula-of-mset.simps) (auto simp: Let-def grouped-by-COr-FOr)
qed

lemma mset-of-conj-formula-of-mset[simp|: <mset-of-conj(formula-of-mset p) = ¢ for ¢
proof (induction <size @) arbitrary:)
case (
then show Zcase by (subst formula-of-mset.simps) (auto simp: Let-def no-T-F-def
all-subformula-st-def)
next
case (Suc n) note IH = this(1) and s = this(2)
then have «n = size (removel-mset (SOME v. v €# @) @) if <« # {#}
using that by (auto simp: size-Diff-singleton-if some-in-eq)
moreover have no-T-F (FVar (atm-of (SOME v. v €# ¢)))»
by (auto simp: no-T-F-def)
ultimately show ?case
using IH|[of <removel-mset (SOME v. v €#)]
by (subst formula-of-mset.simps) (auto simp: some-in-eq Let-def grouped-by-COr-FOr removel-mset-empty-iff)
qed

lemma mset-of-formula-formula-of-mset [simpl: <mset-of-formula (formula-of-mset @) = {¢}> for ¢
proof (induction <size @) arbitrary: @)
case (
then show Zcase by (subst formula-of-mset.simps) (auto simp: Let-def no-T-F-def
all-subformula-st-def)
next
case (Suc n) note IH = this(1) and s = this(2)

o6

then have «n = size (removel-mset (SOME v. v €# ¢) @) if «p # {#}
using that by (auto simp: size-Diff-singleton-if some-in-eq)
moreover have no-T-F (FVar (atm-of (SOME v. v €# ©)))»
by (auto simp: no-T-F-def)
ultimately show ?Zcase
using [H[of <removel-mset (SOME v. v €# ¢) @]
by (subst formula-of-mset.simps) (auto simp: some-in-eq Let-def grouped-by-COr-FOr removel-mset-empty-iff)
qed

lemma formula-of-mset-is-cnf: <is-cnf (formula-of-mset p)»
by (auto simp: is-cnf-def is-conj-with- TF-def grouped-by-COr-formula-of-mset no-T-F-formula-of-mset
introl: grouped-is-super-grouped)

lemma eval-clss-iff:
assumes (consistent-interp Ay and <total-over-set A UNIV»
shows <eval (fun-of-set A) (formula-of-mset ¢) <— Partial-Herbrand-Interpretation.true-clss A {o}»
apply (subst cnf-eval-true-clss|OF formula-of-mset-is-cnf])
using assms
apply (auto simp add: true-cls-def fun-of-set-def consistent-interp-def total-over-set-def)
apply (case-tac L)
by (fastforce simp add: true-cls-def fun-of-set-def consistent-interp-def total-over-set-def)+

lemma is-conj-with- TF-Fand-iff:
is-conj-with-TF (FAnd o1 ¢2) +— is-conj-with-TF @1 A is-conj-with-TF ¢2
unfolding is-conj-with-TF-def by (subst super-grouped-by.simps) auto

lemma is-CNF-Fand:
<is-enf (FAnd @) «— (is-enf @ A no-T-F ¢) A is-enf ¥ A no-T-F ¢
by (auto simp: is-cnf-def is-conj-with- TF-Fand-iff)

lemma no-T-F-formula-of-mset-iff: <no-T-F (formula-of-mset ©) +— @ # {#}
proof (induction <size @» arbitrary: @)
case ()
then show ?Zcase by (subst formula-of-mset.simps) (auto simp: Let-def no-T-F-def
all-subformula-st-def)
next
case (Suc n) note IH = this(1) and s = this(2)
then have «n = size (removel-mset (SOME v. v €# @) @) if <o # {#}
using that by (auto simp: size-Diff-singleton-if some-in-eq)
moreover have no-T-F (FVar (atm-of (SOME v. v €# ¢)))»
by (auto simp: no-T-F-def)
ultimately show ?case
using IH[of <removel-mset (SOME v. v €# ¢) @]
by (subst formula-of-mset.simps) (auto simp: some-in-eq Let-def grouped-by-COr-FOr removel-mset-empty-iff)
qed

lemma no-T-F-formula-of-msets:
assumes (finite > and ({#} ¢ ¢» and «p # {}
shows «no-T-F (formula-of-msets (¢))»
using assms apply (induction <card ¢> arbitrary:)
subgoal by (subst formula-of-msets.simps) (auto simp: no-T-F-def all-subformula-st-def)]]
subgoal
apply (subst formula-of-msets.simps)
apply (auto split: simp: Let-def formula-of-mset-is-cnf is-CNF-Fand
no-T-F-formula-of-mset-iff some-in-eq)
apply (metis (mono-tags, lifting) some-eq-ex)

57

done
done

lemma is-cnf-formula-of-msets:
assumes <finite > and «{#} ¢ ¢»
shows <is-cnf (formula-of-msets ¢)»
using assms apply (induction <card @) arbitrary: @)
subgoal by (subst formula-of-msets.simps) (auto simp: is-cnf-def is-conj-with-TF-def)][]
subgoal
apply (subst formula-of-msets.simps)
apply (auto split: simp: Let-def formula-of-mset-is-cnf is-CNF-Fand
no-T-F-formula-of-mset-iff some-in-eq intro: no-T-F-formula-of-msets)
apply (metis (mono-tags, lifting) some-eq-ex)
done
done

lemma mset-of-formula-formula-of-msets:

assumes <finite @»

shows (mset-of-formula (formula-of-msets ¢) = ¢»

using assms apply (induction <card ¢> arbitrary: @)

subgoal by (subst formula-of-msets.simps) (auto simp: is-cnf-def is-conj-with-TF-def)[]

subgoal
apply (subst formula-of-msets.simps)
apply (auto split: simp: Let-def formula-of-mset-is-cnf is-CNF-Fand

no-T-F-formula-of-mset-iff some-in-eq intro: no-T-F-formula-of-msets)

done

done

lemma
assumes <consistent-interp A> and <total-over-set A UNIV» and «finite p» and {#} ¢ ¢
shows <eval (fun-of-set A) (formula-of-msets p) <— Partial-Herbrand-Interpretation.true-clss A ¢»
apply (subst cnf-eval-true-clss|OF is-cnf-formula-of-msets|OF assms(3—4)]])
using assms(8) unfolding mset-of-formula-formula-of-msets| OF assms(3)]
by (induction ¢)
(use eval-clss-iff [OF assms(1,2)] in <simp-all add: cnf-eval-true-clss formula-of-mset-is-cnf»)

end

o8

	Rewrite Systems and Properties
	Lifting of Rewrite Rules
	Consistency Preservation
	Full Lifting

	Transformation testing
	Definition and first Properties
	Invariant conservation

	Rewrite Rules
	Elimination of the Equivalences
	Eliminate Implication
	Eliminate all the True and False in the formula
	PushNeg
	Push Inside

	The Full Transformations
	Abstract Definition
	Conjunctive Normal Form
	Disjunctive Normal Form

	More aggressive simplifications: Removing true and false at the beginning
	Transformation
	More invariants
	The new CNF and DNF transformation

	Link with Multiset Version
	Transformation to Multiset
	Equisatisfiability of the two Versions

