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Abstract

Based on our formal framework for CDCL (conflict-driven clause learning) using the
proof assistant Isabelle/HOL, we verify an extension of CDCL computing cost-minimal
models called OCDCL. It is based on branch and bound and computes models of minimal
cost with respect to total valuations. The verification starts by developing a framework for
CDCL with branch and bound, called CDCLBnB, which is then instantiated to get OCDCL.
We then apply our formalization to three different applications. Firstly, through the dual
rail encoding, we reduce the search for cost-optimal models with respect to partial valuations
to searching for total cost-optimal models, as derived by OCDCL. Secondly, we instantiate
OCDCL to solve MAX-SAT, and, thirdly, CDCLBnB to compute a set of covering models.
A large part of the original CDCL verification framework was reused without changes to
reduce the complexity of the new formalization. To the best of our knowledge, this is
the first rigorous formalization of CDCL with branch and bound and its application to an
optimizing CDCL calculus, and the first solution that computes cost-optimal models with
respect to partial valuations.

1 Introduction

Researchers in automated reasoning spend a significant portion of their work time specifying
calculi and proving metatheorems about them. These proofs are mostly carried out with pen
and paper, which is error-prone and can be tedious. Especially when working on variants of
previously devised calculi, it is easy to miss subtle but important differences. We are part of an
effort, called IsaFoL (Isabelle Formalization of Logic) [1] that aims at developing libraries and
methodologies to formalize these calculi using the Isabelle/HOL proof assistant [20]. This does
not only include developing formal companions to paper proofs but also includes simplifying
the verification of variants of earlier devised calculi.

We extend our previous formalization of conflict-driven clause learning (CDCL) [4]. An
important extension to CDCL is optimizing propositional satisfiability (OPT-SAT): Given a
cost function on literals, OPT-SAT aims at finding a cost-optimal model for a set of clauses.
In Weidenbach’s upcoming textbook, tentatively called Automated Reasoning—Some Basics,
he developed an optimizing CDCL for OPT-SAT called OCDCL. It is based on his CDCL
calculus [26] and the correctness is proved by copy-pasting and adapting the CDCL proofs.
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As a case study, we formalized it. When doing so, we realized that the calculus did not find
optimal models if partial valuations (i.e., valuations not assigning values to all variables) are
considered: CDCL’s learned-clause mechanism in the context of searching for (optimal) models
is not correct with respect to partial valuations. Therefore, the developed OCDCL calculus
searches for optimal models based on total valuations. It has similarities to Larrosa et al.’s
DPLLBB calculus [13] but is far more concrete. Their calculus is only correct for models with
respect to total valuations, too. We took this as a further motivation for formalizing OCDCL
on total valuations, as well as for finding an encoding such that OCDCL is also correct with
respect to partial valuations.

In contrast to most of the existing literature on finding cost-optimal models [23], we define
our cost function on literals, not on atoms. For example, this more general definition arises in
applications where a propositional variable encodes membership in one class and its negation
membership in a different class. This is a typical encoding in a product configuration scenario.
The truth of a propositional variable may encode the containment of a component in a product
generating some cost. However, the absence of the component typically also generates some
(often lower) cost.

Our contributions are firstly a rigorous proof of the correctness of OCDCL with respect to
total valuations. Formalizations and verification in proof assistants are often justified by the
idea that they can be reused and extended. This is exactly what we are doing here. CDCL
with branch and bound amounts to around 1600 lines, its instantiation to weights to 1200 lines,
and its restriction to OCDCL to 600 lines of correctness proof. This is small compared to the
2600 lines of shared libraries (e.g., on levels and valuations), plus 6000 lines for the original
formalization of CDCL [4], and 4500 lines for Nieuwenhuis et al.’s account for CDCL [18]. Thus,
secondly, we show that one of the standard arguments supporting formal verification, the reuse
of already proved results, works out in the case of CDCL and OCDCL. The overall formalization
took around 1.5 person−months of work and was straightforward to do. Thirdly, we further
demonstrate the potential of reuse, by applying our framework to three additional problems.
First, we prove that OCDCL is also correct with respect to partial valuations using a dual
rail encoding [6,21], eventually solving the problem of finding optimal models with respect to
both partial valuations and total valuations using the very same framework. The extension to
partial valuations amounts to 1300 lines. Second, we reduce MAX-SAT to OCDCL. Third, we
apply our approach to covering models. The overall effort for the extensions was 1100, 800 and,
400 lines, respectively.

After some preliminaries on Isabelle and our previous formalization of CDCL (Section 2),
the optimizing OCDCL calculus is introduced (Section 3). It is described as an abstract non-
deterministic transition system and has the conflict analysis for the first unique implication
point [3] built into its CDCL part. In Isabelle, instead of working directly on an optimizing
calculus, we first verify an abstract calculus, CDCLBnB. This calculus implements an abstract
CDCL with branch and bound and it can be instantiated with weights to get OCDCL (Section 4).
We then apply the OCDCL calculus to partial models using the dual rail encoding to solve MAX-
SAT and we apply the CDCLBnB framework to find minimal sets of covering models (Section 5).
The paper ends with a discussion of the obtained results and related work (Section 6).

All theorems that have been proved in Isabelle show in the theorem name the Isabelle theorem

name from the formalization with the notation “Isa:fact �3” with a link to the documentation of
our formalization. Throughout this paper, we distinguish “Lemmas” that follow the presentation
on paper from “Isabelle Lemmas” that are specific to our approach in the Isabelle formalization.
We link the lemmas to their formalized counterpart even if the formalization path is different.
This presentation is based on Fleury’s Ph.D. thesis [8].
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2 Formalization of CDCL in Isabelle

Isabelle. Isabelle [19,20] is a generic proof assistant and a framework that supports various
logics. We use the instantiation with a fragment of higher-order logic (HOL) [7]. Base types
are type variables ′a, ′b, . . . and can be combined to n-ary type constructors written in postfix
notation (e.g., ′a multiset). We usually use currified notation for functions (e.g., f x y). The
notation t :: τ is a judgment and indicates that term t has type τ .

Following the LCF system [10], inferences are derived by a small trusted kernel. Types and
functions are defined instead of being axiomatized to avoid inconsistencies. For example, we
can define inductive predicates and the system generates the internal low-level definitions that
are used to derive the provided specification.

Isabelle developments are composed of theory files, containing definitions, properties, and
proofs written in the proof language Isar. Isabelle offers two proof styles. The first one is
backward where tactics manipulate the proof obligations directly. The second is forward and it
is a more readable and more natural style. We mostly use the latter.

CDCL. We have previously developed a framework [4] to formalize the conflict-driven-clause-
learning procedure. Clauses are defined as (finite) multisets. For readability, we will write ⊥
and A ∨B instead of their Isabelle counterparts {#} and A+B. Given a literal L and a set of
literals A, called a valuation, we define entailment by A � L iff L ∈ A. We can lift it to clauses
(multiset of literals) by A � C iff there is a literal L ∈ C such that A � L. We can also lift it
to clause sets A � N iff ∀C ∈ N. A � C. If A is also consistent (i.e., does not contain a literal
L and its negation ¬L), A is called a model of N . A model A is total over the set of clauses
N when all atoms of N are defined in A; otherwise, A is partial. An atom L is defined in a
valuation A, if either the literal L or ¬L belong to A. We identify ¬¬L and L.

Conflict-driven clause learning is a procedure that builds a candidate model, called the trail
or M . It contains literals that have either been decided (L†) or propagated (LC where the clause
C justifies the propagation). We identify trails and valuations by ignoring the annotations and
the order of literals. As in the CDCL formalization, trails grow on the left (following Isabelle
conventions on lists) and not on the right (as usually done in the CDCL literature). Each time
a clause is falsified by the trail, CDCL analyzes the clauses to adapt the trail and learns a new
clause to avoid running into the same dead end again. CDCL is presented as a non-deterministic
transition system. It operates on tuples (M ;N ;U ;D) where M is the current candidate model,
N are the initial clauses, U are learned clauses, and D is either a conflicting clause that is
currently analyzed or > if there is no conflict. For example, the Decide rule extends M by an
arbitrary choice L, whereas Propagate extends the trail by propagating a clause:

Decide (M ;N ;U ;>) =⇒ (L†M ;N ;U ;
>)

provided L is undefined in M and
atom(L) ∈ N .

Propagate (M ;N ;U ;>) =⇒ (LC∨LM ;N ;
U ;>)

if L is undefined in M , C ∨L ∈ N ∪U , and
M � ¬C.

Instead of a tuple, the formalization uses abstract states of type ’st associated with selectors
to access the different components of the states. Isabelle’s locale mechanism [11] makes it
possible to abstract over the concrete state representation and simply specify the behavior of
the selectors. For example, the locale defining CDCL starts with:

locale CDCL locale =
fixes prepend trail :: ’v ann lit⇒ ′st⇒ ′st and
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trail :: ′st⇒ ’v ann lit list and ...

assumes ∀LS. trail(prepend trailLS) = L · trailS and ...

Definitions in a locale can depend on the types, constants, and axioms of the locales. Locales
can be combined (including sharing of parameters) and inherit from other locales. Seen from
the outside, theorems in the locale are universally quantified over the constants and have as
additional hypotheses the assumptions of the locales. A locale can be instantiated by the
command

interpretationCDCL locale where

prepend trail = prepend trail′ and
trail = trail′ and ...

yielding the assumptions as the proof obligation, here ∀LS. trail′(prepend trail′ LS) = L·trail′ S.
Then all definitions and lemmas of the locale become available. Locales can be instantiated
several times yielding different version of the constants. This mechanism turned out to be very
useful in our formalization by providing different ways to instantiate the type ′st.

In the locale of our CDCL formalization, the Decide and Propagate rules are actually defined
in the following way:

inductive decide :: ′st ⇒ ′st ⇒ bool
where

undefined lit (trail S ) L =�⇒
L ∈ atom (clauses S ) =�⇒
S ′ ∼ prepend trail (L†) S =�⇒
decide S S ′

inductive propagate :: ′st ⇒ ′st ⇒ bool
where

undefined lit (trail S ) L =�⇒
C ∨ L ∈ clauses S =�⇒
trail S � ¬C =�⇒
S ′ ∼ prepend trail (LC∨L) S =�⇒
propagate S S ′

where the functions trail S and clauses S select M and N ∪U , and prepend trail L S prepends
the annotated literal L to the trail without changing the other components. Since states are
equivalent if the selectors return the same components, we don’t use the usual equality on ’st,
and instead use S ∼ T that holds if all components are equal.

To simplify the notation we will use tuples (M ;N ;U ;D) instead of referring to each compo-
nent with the selectors.

3 Optimizing Conflict-Driven Clause Learning

We want to find an optimal total model w.r.t. a set of clauses and the total cost function cost on
the set of all literals Lit(Σ) over Σ into the positive reals, cost : Lit(Σ)→ R+. In Isabelle, we
take all values of an arbitrary type instead of the set Lit(Σ) and the codomain simply needs to be
equipped with a linear order compatible with +, as we do not rely on other properties of R+ in
our proofs. The cost function is extended to (partial) valuations by cost(A) =

∑
L∈MA

cost(L).
The optimizing conflict-driven clause learning calculus (OCDCL) solves the OPT-SAT prob-

lem on total valuations. Compared with a normal CDCL state, a fifth component O is added.
It either stores the best model so far or >. We extend the cost function to > by defining
cost (>) =∞ (i.e., > is the worst possible outcome). OCDCL is a strict extension of the CDCL
rules with additional rules to take the cost of models into account. The additional component
O is simply ignored by the original CDCL rules.

The intuition behind the extension is to see CDCL as a special case of a branch-and-bound
algorithm: CDCL finds a model that is stored (the branching part), while the stored model is
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used to limit the depth of the search (the bounding part) by adding conflict clauses that are
subsequently analyzed by the usual CDCL rules. Therefore, CDCL is extended in two ways:
First, models are identified as such and stored in a new component of the state. Second, CDCL
runs are pruned by adding conflict clauses on-the-fly, based on the best model found so far.

The initial state for some clause set N is (ε;N ; ∅;>;>). The calculus searches for models in
the usual CDCL-style. If a partial model M already exceeds the current cost bound, a conflict
clause can be generated (rule ConflOpt, defined below). Once a better model is found (rule
Improve, defined below), it can be ruled out by generating a conflict (rule ConflictOpt).

The level of a literal is the number of decisions right of its atom in the trail M , including
the atom. We lift the definition to clauses, by defining the level of a clause as the maximum of
the levels of its literals or 0 if it is empty.

First, there are three rules involving the last component O that implement a branch-and-
bound approach on the models:

Improve (M ;N ;U ;>;O) =⇒OCDCL (M ;N ;U ;>;M)

provided M |= N , M is total over N , and cost(M) < cost(O).

ConflOpt (M ;N ;U ;>;O) =⇒OCDCL (M ;N ;U ;¬M ;O)

provided O 6= > and cost(M) ≥ cost(O).

Prune (M ;N ;U ;>;O) =⇒OCDCL (M ;N ;U ;¬M ;O)

provided for all total trail extensions M ′M of M , it holds that cost(M ′M) ≥ cost(O).

The Prune rule is not necessary for the correctness and completeness of the calculus. In
practice, Prune would be an integral part of any optimizing solver where a lower-bound on the
cost of all extensions of M is maintained for efficiency.

The other rules are unchanged imports from the CDCL calculus. They simply ignore the
additional component O. The rules Propagate and Decide extend the trail searching for a model.
The rule ConflSat detects a conflict. All three rules implement the classical CDCL-style model
search until conflict or success.

Propagate (M ;N ;U ;>;O) =⇒OCDCL (LC∨LM ;N ;U ;>;O)

provided C ∨ L ∈ N ∪ U , M |= ¬C, L is undefined in M .

Decide (M ;N ;U ;>;O) =⇒OCDCL (L†M ;N ;U ;>;O)

provided L is undefined in M , contained in N .

ConflSat (M ;N ;U ;>;O) =⇒OCDCL (M ;N ;U ;D;O)

provided D ∈ N ∪ U and M |= ¬D.

Once a conflict has been found, it is analyzed to derive a new clause that is then a first
unique implication point [3]. After that, the trail is adapted.

Skip (LC∨LM ;N ;U ;D;O) =⇒OCDCL (M ;N ;U ;D;O)

provided D 6∈ {>,⊥} and ¬L does not occur in D.

Resolve (LC∨LM ;N ;U ;D ∨ −L;O) =⇒OCDCL (M ;N ;U ;D ∨ C;O)

provided D is of level k, where k is the number of decisions in M .

Backtrack (M2K
†M1;N ;U ;D ∨ L;O) =⇒OCDCL (LD∨LM1;N ;U ∪ {D ∨ L};>;O)

provided L is of level k and D and K are of level i < k, where k is the number of decisions
in M .
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Without any restriction on rule applications CDCL can get stuck in states where neither
SAT nor UNSAT can be concluded. To avoid these we follow the reasonable strategy. Under
this strategy the OCDCL calculus always terminates in deriving the empty clause ⊥. If in this
case O = >, then N was unsatisfiable. Otherwise, O contains a cost-optimal total model for N .

Definition 1 (Reasonable OCDCL Strategy). An OCDCL strategy is reasonable if ConflSat
is preferred over ConflOpt, which is preferred over Improve, which is preferred over Propagate,
which is preferred over the remaining rules.

Example 2. Consider the clause set N = {P ∨ Q} with cost (P ) = 3 and cost (¬P ) =
cost (¬Q) = cost (Q) = 1. Here is a possible sequence of transitions:

(ε,N, ∅,>,>) =⇒Decide (P †, N, ∅,>,>) (1)

=⇒Decide (Q†P †, N, ∅,>,>)

=⇒Improve (Q†P †, N, ∅,>, PQ)

The total model PQ of weight 4 was found, we can now exclude it:

=⇒ConflOpt (Q†P †, N, ∅,¬P ∨ ¬Q,PQ)

=⇒Backtrack ((¬Q)¬P∨¬QP †, N, {¬P ∨ ¬Q},>, PQ)

The trail is a total model with weight 4. We can exclude the current model:

=⇒ConflOpt (¬Q†P †, N, ∅, P ∨ ¬Q,PQ)

=⇒Backtrack (¬P¬P , N, {¬P ∨ ¬Q,¬P},>, PQ)

=⇒Propagate (QP∨Q¬P¬P , N, {¬P ∨ ¬Q,¬P},>,¬PQ) (2)

The model can be improved again:

=⇒Improve (QP∨Q¬P¬P , N, {¬P ∨ ¬Q,¬P},>,¬PQ)

=⇒?
ConflOpt+Resolve (ε,N, {¬P ∨ ¬Q,¬P},⊥,¬PQ)

Since the conflict clause was reduced to ⊥, we know that the clause set N ∪ {¬P ∨ ¬Q,¬P} is
unsatisfiable and the best model is ¬PQ of weight 1.

Lemma 3 (Termination, Isa:wf ocdclW �3). OCDCL with a reasonable strategy terminates.

Proof Sketch. If the derivation started from (ε,N, ∅,>,>), the following function is a measure
for OCDCL:

µ((M ;N ;U ;D;O)) =

{
(3n − 1− |U |, 1, n− |M |, cost (O)) if D = >
(3n − 1− |U |, 0, |M |, cost (O)) otherwise

It is decreasing for the lexicographic order. The hardest part of the proof is the decrease when
the rule Backjump is applied: 3n−1−|U ∪{D∨L}| < 3n−1−|U | is decreasing since no clause
is relearned (i.e., D ∨ L /∈ U). The proof is similar to the one we made for CDCL [4].

Theorem 4 (Correctness, Isa:full ocdclw stgy no conflicting clause from init state �3). An
OCDCL run with a reasonable strategy starting from state (ε;N ; ∅;>;>) terminates in a state
(M ;N ;U ;⊥;O). If O = > then N is unsatisfiable. If O 6= > then O |= N and for any other
total model M ′ with M ′ |= N it holds that cost (M ′) ≥ cost (O).
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The rule Improve can actually be generalized to situations where M is not total, but all
literals with weights have been already set.

Improve+ (M ;N ;U ;>;O) =⇒OCDCL (M ;N ;U ;>;MM ′)

provided M |= N , the model MM ′ is a total extension, cost (M) < cost (O), and for any
total extension MM ′′ of the trail, cost (M) = cost (MM ′′) holds.

Lemma 5 (OCDCL with Improve+, Isa:full ocdclW p stgy no conflicting clause from init -

state �3 and Isa:wf ocdclW p �3). The rule Improve can be replaced by Improve+: All previously
established OCDCL properties are preserved.

The rule ConflOpt may produce very long conflict clauses. Moreover, without conflict
minimization, the subsequent backtrack is only chronological ; i.e., only the last decision literal is
removed from the trail and flipped by the rule Backtrack. Even with conflict minimization, they
will contain the negation of all decision literals from the trail. It can be advantageous to generate
the conflict composed of only the literals with a non-zero weight, i.e., ¬{L ∈M | cost (L) > 0}
instead of ¬M . In this case a more general Skip rule is required, such that the eventual
conflict before application of Backtrack contains one literal of highest level. As said, this is not
always beneficial, e.g., the rule used in Lingeling, based on an idea by Donald Knuth (private
communication between Biere and Knuth [2]), switches between the two options by taking the
shortest clause.

The rules Restart and Forget can also be added to OCDCL with the same well-known
implications from CDCL. For example, completeness is only preserved if Restart is applied after
longer and longer intervals.

CDCL’s learned-clause mechanism in the context of searching for (optimal) models does not
apply with respect to partial valuations. We consider again Example 2 but drop the totality
condition in Improve for the clause set N = {P ∨Q} and cost function cost (P ) = 3, cost (¬P ) =
cost (Q) = cost (¬Q) = 1. As derived in the example, an optimal-cost model based on total
valuations is [¬P,Q] at overall cost 2, whereas an optimal-cost model based on partial valuations
is just [Q] at cost 1. The cost of undefined variables is always considered to be 0. Now the
run of an optimizing branch-and-bound CDCL framework may start by deciding [P †] (Step 1),
detect that this is already a model for N , and learn ¬P and establishes 3 as the best current
bound on an optimal-cost model. After backtracking and reaching a state similar to Step 2
(without the learned clause ¬P ∨¬Q), it can propagate Q with trail [QP∨Q,¬P¬P ] resulting in
a model of cost 2, learning the clause P ∨ ¬Q. The resulting clause set {P ∨Q,¬P, P ∨ ¬Q} is
unsatisfiable and hence 2 is considered to be the cost-optimal result. The issue is that although
this CDCL run already stopped as soon as a partial valuation (trail) is a model for the clause set,
it does not compute the optimal result with respect to partial valuations. From the existence
of the model [P ], we cannot conclude the clause ¬P to eliminate all further models containing
P , because P could be undefined.

4 Formalization of OCDCL

The formalization takes a different path than described in Section 3 to reuse as much as possible
from our CDCL formalization, including definitions and invariants, to avoid redefining concepts
and reproving lemmas, like the consistency of the trail. Additionally, we formalize a more
general approach, CDCL with branch and bound, that can be instantiated to OCDCL.

A first observation is that an OCDCL run can be seen as a series of CDCL runs, separated by
applications of the rules Improve or ConflOpt. This is conceptually similar to the incremental

7

https://m-fleury.github.io/publications/LPAR23/Weidenbach_Book/CDCL_Extensions/OCDCL.html#ocdcl-improvep-correctness
https://m-fleury.github.io/publications/LPAR23/Weidenbach_Book/CDCL_Extensions/OCDCL.html#ocdcl-improvep-correctness
https://m-fleury.github.io/publications/LPAR23/Weidenbach_Book/CDCL_Extensions/OCDCL.html#ocdcl-improvep-correctness
https://m-fleury.github.io/publications/LPAR23/Weidenbach_Book/CDCL_Extensions/OCDCL.html#ocdcl-improvep-termination
https://m-fleury.github.io/publications/LPAR23/Weidenbach_Book/CDCL_Extensions/OCDCL.html#ocdcl-improvep-termination


A Verified Framework including Optimization Fleury and Weidenbach

version of the calculus developed in our CDCL framework [4], except that CDCL runs are
not complete between addition of clauses and conflicts. We can go further with the analogy:
ConflOpt is similar to CDCL’s ConflSat rule, except that the conflict does not appear in either
N or U , but only in a richer set of clauses, like {¬C. cost (C) ≥ cost (O)}. Therefore, we can
see OCDCL as a CDCL run extended with N ∪ {¬C. cost (C) ≥ cost (O)} instead of N . With
this idea, the Prune rule is now another special case of ConflSat allowing us to reuse proofs.
Only Improve is different and has no counterpart in CDCL: It adds new clauses because more
models are now excluded.

To generalize over the optimizing CDCL, we abstract over the additional set of clauses by
taking N ∪ TN (O) and use a predicate is improving M O′ O to indicate that Improve can be
applied. That way we obtain an abstract branch-and-bound calculus CDCLBnB (Section 4.1).
Here O is an arbitrary extra component.

As described above for OCDCL, CDCLBnB can be seen as a generalized CDCL extended with
the clause set TN (O), interleaved with adding new clauses (Section 4.2), called CDCLe+Improve.
However, since it might not always be possible to calculate explicitly TN (O), the calculus does
not eagerly find conflict clauses for clauses in TN (O).

The advantage of this approach is twofold: First, we formalize a more general calculus that
can be instantiated with a different set of clauses to obtain a different branch-and-bound CDCL.
Second, and more importantly, the resulting calculus can reuse many proofs already done on
CDCL, because it is a CDCL run interleaved with adding new clauses. In particular, if applying
Improve is terminating, then CDCLBnB is also terminating, because CDCL is terminating.

Finally, we can instantiate CDCLBnB to get a generalized version OCDCLg: The set of clauses
TN (O) is instantiated by the set of clauses {D | {¬C | cost (C) ≥ cost (O)} � D} (Section 4.3),
instead of {¬C | cost (C) ≥ cost (O)}, because the latter is not strong enough to express Prune.
At last, we specialize OCDCLg to get exactly the OCDCL calculus from Section 3 (Section 4.4).
Fig. 1 summarizes the links between the formalized calculi.

4.1 Defining the Branch-and-Bound Calculus, CDCLBnB

We use a similar approach to the CDCL formalization with an abstract state and selectors.
Compared to CDCL, we only add an additional component representing information for the
optimizing branch-and-bound part of the calculus and we do not yet specify the type of this
additional component nor its content. For OCDCL, the additional component is the best model
found so far by the calculus.

We parameterize the calculus by a set of clauses TN that contains the conflicting clauses that
can be used by the rules ConflOpt and Prune, and a predicate is improving M O′ O to indicate
that Improve can be applied (without any intended semantics). For OCDCL, the predicate
is improving M O′ O means that the current trail M is a model, O′ is the information that will
be stored, and O is the currently stored information. We separate M and O′ because we might
want to store a different information than the current trail (e.g., to remove some literals that
are not required to satisfy the formulas in order to produce shorter conflicts later). T represents
all the clauses that are entailed. We require several preconditions on the set of clauses. These
preconditions are implemented in Isabelle as assumptions on the locale used to define CDCLBnB

that have to be discharged whenever instantiating it.

Precondition 6 (Preconditions on the clauses TN (O) and on is improving M O′ O). We
require that:

• the atoms of TN (O) are included in the atoms of N ; i.e., no new variables are introduced.
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CDCL [4]

CDCLe+Improve
(M ;N ∪ TN (O);U)

(Sect. 4.2)
CDCLBnB

(M ;N ;U ;O)
(Sect. 4.1)

CDCL with ignored
extra component O
(M ;N ;U ;O)

OCDCLg

OCDCL

is defined in terms of

inherits definitions of transi-
tions and invariants

is an instance of where CDCLe instance of

is a run of

inherits invariants and prop-
erties like termination

is an instance of (Sect. 4.3)

specializes (Sect. 4.4)

Figure 1: The calculi CDCLBnB, OCDCL, and CDCLe. Dotted links are locale instantiations

and are for free, while dashed links indicate that some parts are for free. The arrows X
does−−−→ Y

and Y
does←−−− X both denote that “X does Y .”

• the clauses of TN (O) do not contain duplicate literals, because duplicates are incompatible
with conflict analysis.

• if is improving M O′ O, then TN (O) ⊆ TN (O′); i.e., extending the set of clauses is
monotone.

• if is improving M O′ O, then ¬M ∈ TN (O′); i.e., the clause ¬M is entailed by TN (O′)
and can be used as conflict clause.

The rules ConflOptBnB, ImproveBnB, and BacktrackBnB (slighty generalized compared to
Backtrack from Sect. 3, as we did for CDCL) are defined as follows:

ConflOptBnB (M ;N ;U ;>;O) =⇒CDCLBnB
(M ;N ;U ;¬M ;O)

provided ¬M ∈ TN (O).

ImproveBnB
+ (M ;N ;U ;>;O) =⇒CDCLBnB

(M ;N ;U ;¬M ;O′).

provided is improving M O′ O holds.

BacktrackBnB (M2K
†M1;N ;U ;D ∨L;O) =⇒CDCLBnB

(LD′∨LM1;N ;U ∪ {D′ ∨L};>;O)

provided L is of the maximum level, D′ ⊆ D, N ∪ U ∪ TN (O) � D′ ∨ L, D′ and K are of
the same level i, and i is strictly less than the maximum level.

We can simply instantiate in the CDCL formalization the states with weights and reuse the
previous definitions, properties, and invariants by interpreting OCDCL states (M ;N ;U ;D;O)
to CDCL states (M ;N ;U ;D) (i.e., the selectors simply ignore the additional component). For
example, we can reuse the Decide rule and the proofs on it.

Compared with the rule from Section 3, we make it possible to express conflict-clause
minimization: Instead of D∨L, a clause D′∨L is learned such that D′ ⊆ D and N∪U∪TN (O) �

9
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D′ ∨ L. While all other CDCL rules are reused, the Backtrack rule is not reused for OCDCL:
If we had reused Backtrack from CDCL, only the weaker entailment N ∪ U � D′ ∨ L would
be used. The weaker version is sufficient to express conflict minimization as implemented in
most SAT solvers [24], but the former is stronger and makes it possible for example to remove
decision literals without cost from D.

We use the Improve+ rule instead of the Improve rule, because the latter is a special case
of the former. The strategy favors ConflictSat and Propagate over all other rules. We do not
need to favor ConflictOpt over the other rules for correctness, although doing so helps in an
implementation, by providing shorter conflicts.

4.2 Embedding into CDCL

In order to reuse the proofs that were done previously about CDCL, CDCLBnB is seen as a
special instance of CDCL by mapping the states (M ;N ;U ;D;O) to the CDCL state (M ;N ∪
TN (O);U ;D) (and not (M ;N ;U ;D) as in the previous section). To distinguish between both,
we will refer to the CDCL with the enriched set of clauses as CDCLe.

In Isabelle, the most direct solution would be to instantiate the CDCL calculus with a
selector returning N ∪ TN (O) instead of just N . This, however, would lead to a loop in the
locale hierarchy which is not allowed. Instead, we add an explicit conversion via the function
statee of from (M ;N ;U ;D;O) to (M ;N ∪ TN (O);U ;D) and consider normal CDCL on tuples
of the latter; i.e., we map S =⇒CDCLBnB T to statee of (S) =⇒CDCLe statee of (T ).

Except for the Improve rule, every OCDCL rule can be mapped to a CDCLe rule: The
ConflictOptBnB rule corresponds to the ConflictSat rule (because it can pick a clause from
TN (O)) and BacktrackBnB is mapped to CDCLe’s Backtrack. The Improve rule has no coun-
terpart and requires new proofs, but adding clauses is compatible with the CDCLe invariants.

In our CDCL formalization, we distinguish structural properties that are invariants of the
state (e.g., consistency of the trail) from the strategy-specific properties that make sure CDCLBnB

does not get stuck. The latter makes sure that the conflict clause contains a literal of highest
level, which does not necessarily hold for the unrestricted CDCLe: The clause ⊥ might be in
TN (O) and can be picked by ConflictSat leading to a state where CDCLe is stuck. However,
we can easily prove that the strategy-specific invariants hold for CDCLBnB and we can reuse
the CDCL proof we have already done for most transitions. To reuse some proofs on CDCL’s
Backtrack, we slightly generalized some proofs by dropping the assumption N ∪ U � D′ ∨ L′
when not required. This is the only change made to the formalization of CDCL.

Not all transitions of CDCLe can be taken by OCDCL: Propagating clauses in TN (O)
is not possible and would violate invariants if propagation can be done out-of-order (CDCL
can be extended to support that as described by Möhle and Biere [17] but that would require
some changes in our calculus). The structural properties are sufficient to prove that OCDCL
is terminating as long as Improve+ can be applied only finitely often, because CDCLe is
terminating. At this level, Improve+ is too abstract to prove that CDCLBnB terminates. With
the additional assumptions that Improve can always be applied when the trail is a total model
satisfying the clauses, we show that the final set of clauses is unsatisfiable. An example where
Improve cannot always be applied is the search for a model that fulfills some properties: If such
a model is found, we stop and there is no need to search for further models.

Theorem 7 (CDCLBnB Termination, Isa:wf cdcl bnb �3). If Improve is well founded, then
CDCLBnB is also well founded.

Theorem 8 (CDCLBnB Termination, Isa:full cdcl bnb stgy no conflicting clss unsat �3 and
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Isa:no step cdcl bnb stgy empty conflict �3). If Improve can be applied when all literals are set
in the trail M and M � N ∪ U , then a CDCLBnB run terminates in a state (M ′;N ;U ′;⊥;O)
and the resulting clause set N ∪ U ′ is unsatisfiable.

4.3 Instantiating with Weights, OCDCLg

Now having developed an abstract CDCLBnB framework, we can instantiate it with weights
and save the best current found model in O. We assume the existence of a cost function that is
monotone with respect to inclusion:

locale cost =
fixes cost :: ’v literal multiset⇒ ’c :: linorder
assumes ∀C. consistent interpB ∧ distinct msetB ∧A ⊆ B −�→ cost (A) ≤ cost (B)

We assume that the function cost is monotone with respect to inclusion for consistent
duplicate-free models. This is natural for trails, which by construction do not contain duplicates.
The monotonicity is less restrictive than the condition from Sect. 3, which mandates that the
cost is a sum over the literals. We instantiate the set of clauses and the predicate indicating if
the current model is improving with

TN (O) = {C | atom(C) ⊆ atom(N)

∧ C neither is a tautology nor contains duplicates

∧ {¬D | cost (D) ≥ cost (O)} � C}
is improving M O′ O ↔ O′ is a total extension of M, M � N,

any total extension of M has the same cost, and

cost (M) < cost (O)

and then discharge the assumptions given in Precondition 6 to be able to instantiate the locale.
We call OCDCLg the version of CDCLBnB with this instantiation.

As the locale was instantiated, OCDCLg’s invariants are exactly the ones from CDCLBnB.
For termination, we only have to prove that Improve+ terminates, which makes it possible to
use Theorem 7 to prove termination. The key property for the correctness of OCDCLg is the
following:

Lemma 9 (Cheaper Models stay Models, Isa:entails too heavy clauses too heavy clauses �3).
If I is a total consistent model of N , then either cost (I) ≥ cost (O) or I is a total model of
N ∪ TN (O).

Isabelle Proof. Assume cost (I) < cost (O). First, we have show that I � {¬C | cost (C) ≥
cost (O)}. Let D be a clause of {¬C | cost (C) ≥ cost (O)}. D is not a subset of I (by
monotonicity of cost, cost (I) ≥ cost (D)). Therefore, there is at least a literal L in D such that
¬L in I and I � D.

By transitivity, since I is total, I is also a model of TN (O) and therefore of N ∪TN (O).

This is the proof that breaks if partial models are allowed: Literals of the clause D might
not be defined in I. The fact that the proof does not work for partial models does not imply
that the theorem is wrong, but it gave us the idea of the counterexample described in Section 3.

Some additional proofs are required to specify the content of the component O. For example,
the sequence of literals O is always a total consistent model of N . This property cannot
be inherited from the correctness of CDCL, because it does not express any property of the
component O.
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4.4 OCDCL

Finally, we can restrict the calculus to precisely the rules expressed in Section 3. We define
two calculi: one with only the rule Improve, and the other with both Improve+ and Prune. In
both cases, the rule ConflictOpt is only applied when cost (M) > cost (O) and is therefore a
special case of ConflictOptBnB. The Prune rule is also seen as a special case of ConflictOptBnB.
Therefore, every transition of OCDCL is also a transition of OCDCLg. Moreover, since final
states of both calculi are the same, a complete run of OCDCL is also a complete run of OCDCLg.
Ultimately, the correctness theorem is inherited.

Overall, the full formalization was straightforward to do, once we got the idea how to see
OCDCL as a special case of a sequence of CDCL runs without strategy. Formalizing a changing
target is different than a fixed version of a calculus, as we did previously for CDCL [4]. We
had to change our formalization several times to take into account additional rules. The set
of clauses {¬C | cost (C) ≥ cost (O)} as T N (O) is sufficient for Improve+. However, when we
added the Prune rule, we had to change T N (O) to {D | {¬C | cost (C) ≥ cost (O)} � D}. This
forced us to change the formalization a little, but our approach is robust enough that except
for a few changes in intermediate proof steps, nothing else had to be changed.

5 Solving Further Optimization Problems

In this section, we show three applications of our framework. First, we verify an encoding
that reduces the search for partial models to the search for total models (Section 5.1). Second,
CDCL can be used to solve MAX-SAT (Section 5.2) by adding new variables to the problem.
Instead of considering the weight of literals, in MAX-SAT the weight of clauses is considered.
Finally, we apply our CDCLBnB framework to another problem, covering models (Section 5.3).
All extensions are verified using Isabelle.

5.1 Optimal Partial Valuations

To reduce the search from optimal partial valuations to optimal total valuations, we use the
dual rail encoding [6, 21]. For every proposition variable P , it creates two variables P 1 and
P 0 indicating that P is defined positively or negatively. If both are negative, then P is unset.
Adding the clause ¬P 1 ∨ ¬P 0 ensures that P is not defined both positively and negatively at
the same time. The resulting set is called penc (N).

More precisely, the encoding penc is defined on literals by penc(P ) := (P 1), penc(¬P ) :=
(P 0), and lifted to clauses and clause sets by penc(L1 ∨ · · · ∨ Ln) := penc(L1) ∨ · · · ∨ penc(Ln),
and, penc(C1 ∧ · · · ∧ Cm) := penc(C1) ∧ · · · ∧ penc(Cm). We call Σ′ the set of all new atoms.

The important property of this encoding is that ¬P 1 does not entail P 0: If P is not positive,
it does not have to be negative either.

Given the encoding penc(N) of N the cost function is extended to a valuation A′ on Σ ∪Σ′

by cost′(A′) = cost
({
L | L1 ∈ A′

}
∪
{
−L | L0 ∈ A′

})
.

Let pdec (A) : P 7→


1 if A(P 1) = 1

0 if A(P 0) = 1

unset otherwise

, be a function that transforms a total model of

penc (N) into a (possibly partial) model of N and pdec− (A) does the opposite transformation,
with pdec− (A)(P 1) = 1 if A(P ) = 1, pdec− (A)(P 1) = 0 if A(P ) = 0, pdec− (A)(P 0) = 1 if
A(P ) = 0, pdec− (A)(P 0) = 0 if A(P ) = 1, unset otherwise.

12
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Lemma 10 (Partial and Total Valuations Coincide up to penc, Isa:penc ent postp �3 and

Isa:penc ent upostp �3). Let N be a clause set.

1. If A |= N for a partial model A then pdec− (A) |= penc(N);

2. If A′ |= penc(N) for a total model A′ on N , then pdec (A′) |= N .

Lemma 11 (penc Preserves Cost Optimal Models, Isa:full encoding OCDCL correctness �3).
Let N be a clause set and cost a cost function over literals from N . If A′ is a cost-optimal total
model for penc(N) over cost′, resulting in cost′(A′) = m, then the partial model pdec (A′) is
cost-optimal for N and cost(pdec (A′)) = m.

Proof. Assume there is a partial model A for N such that cost(A) = k. The model pdec− (A)
is another model of N . As A′ is cost optimal, cost′(pdec− (A)) ≥ cost′(A′). Moreover,
cost′(pdec (A′)) = cost(A′) and cost′(pdec (A)) = cost(A). Ultimately A is not better than
A′ and A′ has cost m.

Lemma 12 (OCDCL on the Encoding Isa:full encoding OCDCL complexity �3). Consider an
OCDCL run on N ′ = penc(N). At most 4atom (N) conflicts will be found.

Proof. The OCDCL run starts in a state (ε;N ′; ∅;D;>) and terminates in a state (M ;N ′;
U ;D;O). The run learns the same clauses as a CDCL run (without strategy) going from
(ε;N ′ ∪ TN (O); ∅;D) to (M ;N ∪ TN (O);U ;D).

CDCL can learn at most 2atom (N ′) [8, Sect. 3.2.3], hence the bound is 4atom (N).

Formalization of the Partial Encoding. In Isabelle, total valuations are defined by Her-
brand interpretations, i.e., a set of all true atoms (all others being implicitly false) [22], but
we work on partial models for CDCL, because they are similar to a trail. To reason on total
models, we have defined a predicate to indicate whether a model is total or not. We distinguish
between literals that can have a nonzero weight ∆Σ from the others (Σ \∆Σ) because they can
be left unchanged by the encoding.

The proofs are very similar to the proofs described in Section 5.1. We instantiate the OCDCL
calculus with the cost′ function:

interpretation OCDCL where cost = cost′

We only have to discharge the proof obligation from the locale cost (Sect. 4.3) that the cost
function cost′ is monotone. Finally, we can prove the correctness Lemma 11. The formalization
is 800 lines long.

In Isabelle, for the proof of Lemma 12, we have verified first a more general theorem about
the complexity of CDCLBnB, Lemma 13.

Lemma 13 (CDCLBnB Complexity). Consider a CDCLBnB starting from (ε;N ; ∅;D;O). At
most 2atom(N) conflicts will be found.

The proof of Lemma 13 is similar to the one described for Lemma 12. Then Lemma 12 is
a simple corollary by seeing that atom(penc (N)) = 2× atom(N) yielding the 4atom(N) bound.
We have made a similar construct to the one described here for an ODPLL calculus (with a
DPLLBnB calculus). For this calculus on the encoding we proved the stronger bound 3atom(N),
but we have not managed to adapt the proof to the OCDCL case.
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5.2 MAX-SAT Encoded as an OCDCL Problem

The maximum satisfiability problem (MAX-SAT) is another well-known optimization prob-
lem [14]. It consists of two clause sets NH (hard constraints, mandatory to satisfy) and NS

(soft constraints, optional to satisfy). The set NS comes with a cost function for clauses that
are not satisfied. The aim is to find a total model with minimal cost.

Theorem 14 (Reduction of MAX-SAT to OCDCL, Isa:partial max sat is weight sat �3). Let
(NH , NS , cost) be a MAX-SAT problem and let active : NS → Σ′ be an injective and surjective
mapping for a set Σ′ of fresh propositional variables that assigns to each soft constraint an
activation variable.

Let I be a solution to the OPT-SAT problem N = NH ∪ {active(C) ∨ C | C ∈ NS} with the
cost function cost′(L) = cost(C) if active(C) = L for some C ∈ NS and cost′(L) = 0 otherwise.

If there is no model I of N , the MAX-SAT problem has no solution. Otherwise, I without
the additional atoms from Σ′ is an optimal solution to the MAX-SAT problem.

Isabelle Proof. NH is satisfiable if and only if MAX-SAT has a solution. Therefore, if there
is no model I of N , then NH is unsatisfiable.

Let I ′ = {L | L ∈ I ∧ atom(L) 6∈ Σ′}. Let J be any other model of (NH ∪ NS) and J ′ its
total extension to Σ′: J ′ = J ∪ {active(C) | C ∈ NS ∧ J 2 C} ∪ {¬active(C) | C ∈ NS ∧ J � C}.

J ′ satisfies NH and is a total consistent model of N . Hence, cost′ (J ′) ≥ cost (I), because I is
the optimal model of N . By definition, cost′ (I) = cost (I ′) and cost′ (J) = cost (J ′). Therefore
I is an optimal MAX-SAT model.

The problem of this MAX-SAT encoding is that, in practice, it reduces the number of unit
propagations that can be done, in particular if there are many soft constraints.

5.3 Another Instantiation of CDCLBnB: Model Covering

Our third example demonstrates that our framework can be applied beyond OCDCL. We
consider the calculation of covering models. Again this is motivated by a product configuration
scenario where a propositional variable encodes the containment of a certain component in a
product. For product testing, finding a bucket of products is typically required such that every
component occurs at least once in the bucket. Translated into propositional logic: given a set N
of clauses, we search for a set of modelsM such that for each propositional variable P occurring
in N , M � P for at least one M ∈M or there is no model of N such that P holds.

In order to solve the model-covering problem, we define the domination relation: A model is
dominated if there is another model that contains the same true variables and some others. More
formally, if I and J are total models forN , then I is dominated by J if {P | I � P} ⊆ {Q | J � Q}.
In the context of Horn clauses, this is written as I < J (Horn clauses have a minimal model
unlike clauses in general). If a total model is dominated by a model already contained in M,
then it is not required in the set of covering models. The extension to CDCL are the following
two additional rules:

ConflCM (M ;N ;U ;>;M) =⇒MCCDCL (M ;N ;U ;¬M ;M)

if for all total extensions M ′M with M ′M |= N , there is an I ∈M which dominates M ′M .

Add (M ;N ;U ;>;M) =⇒MCCDCL (M ;N ;U ;>;M∪ {M})
if M |= N , all literals from N are defined in M , and M is not dominated by a model inM.

The full calculus called MCCDCL (model covering CDCL) does not necessarily compute
a minimal set of covering models. Minimization is a classical NP-complete problem [12] and
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can then be done in a second step. The minimal model covering can be computed by creating
another CDCL extension, where the set M is explicitly added as a component to a state and
used for a branch-and-bound optimization approach, similar to OCDCL [16].

In the formalization of MCCDCL, we instantiate CDCLBnB with:

TN (M) = {C. atom(C) ⊆ atom(N)

∧ C is not a tautology nor contains duplicates

∧ {¬D. is dominating M D, total} ∪N � C}
is improving M M ′M↔ M = M ′ and M � N

and M is not dominated by M
and M is consistent, total, duplicate free

Compared with OCDCL, TN (∅) is never empty, because it contains all clauses entailed by N ,
including the clauses of N . This is another reason why CDCLe cannot run with the reasonable
strategy: If N is unsatisfiable, we would have to pick the conflict clause ⊥ immediately, which
is exactly the problem we are solving with CDCL.

Theorem 15 (Correctness Isa:cdclcm correctness �3). If the clauses in N do not contain
duplicated literals, then an MCCDCL starting from (ε,N, ∅,>, ∅) ends in a state (ε,N, U,⊥,
M), and for every variable P in N , there is a model M of N , M ∈M, where M � P , or there
is no model satisfying both P and N .

The proof involves a theorem similar to Lemma 9: Every model of the initial clause set N
is either dominated by a model in M or is still a model of N ∪ TN (M).

6 Related Work and Conclusion

There are several other formalizations of CDCL, as discussed in our article [4, Section 6], but
we are not aware of any formalization of an optimizing CDCL calculus, or more generally, a
formalization used as a starting point to formalize variants of CDCL.

There are several variants of optimizing SAT. Our OCDCL has similarities with the calculus
by Larrosa et al. [13]. Our calculus is slightly more general on the optimizing part due to the
inclusion of the rule Improve+. On the CDCL part our calculus is more concrete, or, the other
way round, theirs is more abstract. For example, the computation of a first unique implication
point is built into our calculus where they only require necessary semantic conditions on learned
clauses. Our rule Prune rule can be simulated by their Learn rule: ¬M ∨ c ≥ cost(O) is entailed
by the clauses (depending on the cost function). In summary, our calculus is closer to real-world
implementations of (O)CDCL.

A related problem to finding the minimum partial model is called minimum-weight propo-
sitional satisfiability by Sebastiani et al. [23]. However, negative literals do not cost anything:
This means that the opposite of L is ¬L (because ¬L and L undefined have the same weight).

Liberatore has developed a variant of DPLL to solve this problem [15]. Each time a variable
is decided, it is first set to true, then set to false. Moreover, if the current model is larger than
a given bound, then the search stops exploring the current branch. When a new better model
is found, the search is restarted with the new lower bound. A version lifted to CDCL has been
implemented in zChaff [9] to solve MAX-SAT. Although Liberatore’s method can return partial
models, it is still an Herbrand model: It is entirely given by the set of all true atoms. Therefore,
the method actually builds total models.
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We have presented here a variant of CDCL to find optimal models and used the dual rail
encoding to reduce the search of optimal models with respect to partial valuations to the search
of optimal models with respect to total valuations. Both have been formalized using the proof
assistant Isabelle/HOL. This formalization fits nicely into the framework that was previously
developed and the abstraction in Isabelle simplifies reuse and studying variants and extensions.

We started our encoding for cost-minimal models with respect to partial valuations by
introducing three extra variables for each variable, where, compared to the dual rail encoding,
the third extra variable explicitly modeled whether a variable is defined or undefined [27]. We
performed the content of Section 5.1 with this encoding and only afterwards were pointed by a
reviewer to the dual rail encoding. It took us half a day to redo the overall formalization. For us
this is another example that the reuse of formalizations can work. This is further demonstrated
by the application of the OCDCL results to MAX-SAT and the reuse of the formalization
framework to verify the model covering calculus MCCDCL. Minimization of the model covering
set computed by MCCDCL can also be solved by an afterwards application of a CDCL calculus
with branch-and-bound [16], and would probably fit in our framework.

One idea for future work would be to refine OCDCL to executable code as we have done for
CDCL [4]. However, we have started to work on a different extension, CDCL(T ) [18]. On an
abstract level, CDCLBnB is close to an incremental version of CDCL(T ), the calculus used in
several modern SMT solvers. The main difference is that the conflicts generated are not the
negation of the trail, but clauses implied by the theory. The theory of linear integer arithmetic
(LA) has already been verified in Isabelle/HOL by Thiemann [5,25], so proving correctness of
CDCL(LA) does not need a from-scratch new effort.
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