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Abstract

Unmanned Aerial Vehicles (UAV) become more and more popular today. The chair-

man of DJI which is one of the most important UAV producers told an online

magazine that their turnover increased by a factor of four in the last years [1]. This

development validates the increasing popularity of UAVs. But it is still challenging

to control them and it is even more challenging to film important surface structures

which are for example used for virtual model reconstructions. Therefore, the thesis

presents an algorithm which is able to automatically plan the shortest drone path

where all surfaces of an arbitrary mesh which the user can choose were seen. One of

the main components to achieve this performance is a cost function which ensures

that the drone saw most parts of a virtual model and that at the same time the

travelling path is short. This function is then minimized with different optimization

methods like the particle swarm and the Nelder-Mead method. The other part is

a graphics processing unit-based (GPU-based) rendering technique to speed up the

evaluation of the cost function. The result is a drone path which can be revisited,

stored and used to reconstruct a 2D texture of a 3D surface. The findings were

evaluated to demonstrate the efficiency of the path and the quality of the texture

reconstruction.
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Chapter 1

Introduction

1.1 Motivation

Nowadays drones are present in many daily life scenarios. This is due to the steep

decrease in cost and also the control became more user-friendly. In general, this

topic is no longer an expert field accessible only to a few people. One can get deep

insights in UAVs with books like the “Handbook of Unmanned Aerial Vehicle” [3].

Figure 1.1: Different UAVs. Left: Parrot Bebop 2.0. Retrieved from the Parrot website

[4]. Middle: DJI Phantom 3 Advanced. Retrieved from the DJI website [5]. Right: UAV

which was used during the Alte Schmelz Projekt.

Additionally, there are many applications for custom users where a drone is

useful. Two main fields can be mentioned. First the private sector where UAVs can

be used for filming or just for fun. On the left hand side in Figure 1.1 one can see

the Parrot Bebop 2.0 [4] which is a typical example for the private market since it

is cheap, small and can be controlled via smartphones or tablets. But the possible

range of rotation for the camera is limited since it cannot be rotated independently

from the UAV. Second there are also many commercial applications where drones

play an important role. When one thinks of professional flight videos they can be

really helpful and are able to replace the expensive helicopter flights. Therefore DJI

invented the Phantom 3 Advanced [5] (see Figure 1.1 middle) which is able to make
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Chapter 1. Introduction 2

pleasing flight videos since the camera is exchangeable and can be rotated in many

directions. The last drone presented in the Figure is the one which was used during

the Alte Schmelz Projekt. It is a mix of both previously mentioned UAV types.

The increasing number of drones was also recognized by many scientists. There-

fore, the number of published papers regarding drones and drone applications in-

creased in the last few years. While a search with the tag “UAV” within the years

2000 and 2001 in Google Scholar returns 2.590 results, the same tag delivers 24.800

entries within 2014 and 2015. Some of these will be presented in the following

chapter.

Nevertheless, UAVs have two main drawbacks. On the one hand, although the

control became easier it is still challenging to record appealing videos with it. On

the other hand, the drones flight range is limited because it costs a lot of energy to

fly. In consequence, the flight time is in general short. Therefore, many users want

to film as much as they can until they run out of energy.

Figure 1.2: Pipeline of a modelling process. Parts of the graphic were retrieved from

different websites [6, 7].

Imagine a graphic designer or a 3D model expert (see Figure 1.2) who has to

construct a 3D model of a real building. To create a realistic reconstruction textures

are essential. One can see that the untextured mesh looks unpleasant and synthetic.

The simplest solution is to make pictures from the ground. But in many cases it

is not enough to make the photographies from there. For example if one wants to
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model high buildings for Google Earth it is impossible to take good pictures from the

upper part without leaving the ground. In this case, drones are a possible solution.

With the recorded textures it is possible to create a textured mesh which looks

much better and more realistic than the untextured one. But as already mentioned

the range is limited. In consequence, it is desirable to record as much textures as

possible in a finite time. Now the question arises: Which path will be the best

one? Finding an answer is not easy. Another problem is that users often want to

check if the drone path is good regarding other parameters than only the filmed

textures. Therefore, a preview of the found path is also essential to give the user

the opportunity of virtually looking at the drone behaviour.

Path planning itself is an interesting research theme. Alexander Schrijver wrote

that “one can imagine that even in very primitive (even animal) societies, finding

short paths (for instance, to food) is essential” [8]. Already in the earliest steps

of computer science it was a prominent topic which has many applications. The

most popular one which everybody knows is the navigation system. Even today

many computer science groups spend their time on solving these kinds of problems

in general.

The thesis picked up both themes and tried to combine them. On the one hand,

the more practical part and on the other hand, the theoretical part. Therefore,

an offline algorithm was constructed where virtual drone flights are simulated and

evaluated towards their efficiency. The work can be segmented in two main parts:

1. At first the path planning itself which is a non-linear optimization problem

is described in a mathematical way. Therefore, a cost function is constructed

which ensures that the drone saw most of the surfaces of the mesh and at the

same time it looks for a path which is short. These computations are done on

the central processing unit (CPU).

2. The second part is a fast GPU-based implementation which evaluates the cost

function. Therefore, the drone path is rendered in a 3D scene where the object

of interest is placed. After each rendered path it is computed how good the

drone filmed the mesh and how much energy the flight cost. These two values

are then combined to get the value of the cost function.

The result is a virtual path where the drone saw most parts of the object e.g. a

house model. Figure 1.3 left shows a single drone view. The observed textures are

stored in a 2D texture map (Figure 1.3 right). At the same time, the path is really

short. Since it is a virtual offline algorithm it can also be used to plan camera paths

in the virtual environment.
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So the thesis is able to solve the problem of planning efficient paths for arbitrary

buildings. The only thing which is needed is a virtual model of the structure. It can

also be used to animate a drone or to get a mapping between 3D views and a 2D

texture map. At last it can visualizes which parts of the model are currently seen

by the drone. All of these functionalities are important in practice.

Figure 1.3: Left: Drone view of the virtual mesh. Right: Reconstructed texture map of

the mesh.

1.2 Overview

The second chapter contains the related work. The first section summarizes the

previous research regarding drone animation (Section 2.1). In the following section

different path planning approaches are presented and it is explained why these are

not able to deal with the previously explained problem and their limitations are

shown (Section 2.2). The next section (Section 2.3) explains the general idea behind

different optimization algorithms which are used in this thesis. The last section

presents the framework in which the thesis was implemented (Section 2.4).

The third chapter shows the different parts of the program. First, the general

idea behind the program pipeline is described (Section 3.1). Afterwards, how the

animation model for the drone works is explained (Section 3.2). The cost function

which consist of two different parts will be discussed in Section 3.3. Two different

kinds of algorithms are presented in Section 3.4 and 3.5. Finally, the user input is

described (Section 3.6) and the final output of the program is shown (Section 3.7).

The fourth chapter contains the evaluation of the thesis. First, different technical

comparisons are made (Section 4.1 and 4.2) regarding for example the evaluation

time. Then, the different implementations and algorithms are compared to illustrate
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the different efficiencies (Section 4.3).

The final chapter contains thoughts about future work (Section 5.1) and a con-

clusion which summarizes the main ideas (Section 5.2).



Chapter 2

Related Work

2.1 Drone Animation

There are already papers which can plan camera paths in virtual. The DJI GROUND

STATION [9] allows the user to place 2D points on a 2D map. The result is a route

where the drone visits each of the points. Since the customer can only place the

position in 2D the control is still unintuitive. The QGROUND CONTROL system

[10] allows the people to place the waypoints in a 3D scene. Therefore, the program

control became more user-friendly. But both of these papers have several draw-

backs. First, they do not give a virtual preview of the drone flight to improve the

path if there is something missing in the video. Second, they do not allow the user

to do precise adjustments like to the speed of the drone. All in all, the tools are not

practicable for professional movie makers who want to plan exciting and pleasing

quadrotor flights and they are also not able to deal with the previous presented path

planning problem.

Joubert et al. [11] presented a drone application where the user can also plan the

path in a virtual 3D scene. Therefore, the customer has to insert keyframes where the

position and the viewing direction of the drone has to be specified. In contrast to the

previous papers, the user can now review the created path on the screen. During

the preview, one can precisely adjust the path and e.g. the speed of the drone.

Finally, the program also informs the user if physical limits are reached e.g. when

the speed of the drone is too high for a realistic flight. The paper is well suited for

cinematographers since they are able to precisely plan routes in virtual environments

without being afraid of physical limits. Regarding the previously presented problem,

this paper is able to solve it since the user can manually try routes. Afterwards, he

can compare the seen and the energy which has to be spent until he found a more or

6
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less good solution. The problem is that the papers algorithm does not check against

collisions with buildings. Additionally, the user gets no visual feedback of how much

of the textures on the mesh was already seen. The worst point is that one has to

try it manually. For a good result the user has to plan multiple routes and he has

to evaluate each individually in order to find a good solution. These steps cost a lot

of time and it is not guaranteed that the solution is the optimal one or even near

an optimal solution.

All the previous papers have one thing in common. The user has to define

the path manually. But there are also papers which are focused on automated

path planning like the work of Srikanth et. al. [12]. They invented an application

for drones to achieve a rim illumination for the object of interest ,e.g., a human.

Therefore, a light source is placed at the drone. If the relative position between the

human and the photograph changes, the drone also changes the position in a way

that the rim illumination is still realized. Lee et. al. [13] presented an algorithm

that enables an UAV to track a ground vehicle autonomously. But both papers plan

paths in a reactive manner. It means that the drone path is determined by the

moving of another object ,e.g., the vehicle on the ground. Although these papers

demonstrate that it is in general possible to create automated drone flights it cannot

solve the thesis’ path planning problem since the mesh in the scene does not move

and its position does not determine the position or the viewing direction of the UAV.

Hrabar et. al. [14] presented a paper which tries to solve the problem of autonom-

ously flying through an urban canyon. Therefore, they invented a stereo vision and

optic flow based algorithm which enables an UAV to automatically travel through

an outdoor environment without collisions. The main difficulty regarding the thesis’

problem is that the approach is an online algorithm. In consequence, they are not

able to solve the task offline in a virtual environment which is desirable as already

mentioned.

Nikolos et. al. [15] published a paper which deals with the problem of path

planning in a known environment. In contrast to the previous paper they constructed

an offline algorithm which is able to determine a drone path from a starting point

towards an end point in a 3D scene. In this case the problem is that they not involve

the factor of how much the drone saw during it travels. Since they have no measure

of how meaningful the seen parts of the scene really were they cannot decide if the

UAV saw enough from the object of interest or not.

All in all, the previous work shows how interesting drone applications are and how

wide the field of application really is. It starts with the obvious filming approach

followed by the automated illumination and there are still other applications not
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mentioned here. At the same time it demonstrates that the thesis’ problem cannot

be solved by the existing papers in a good and easy way.

2.2 Path Planning

This section presents previous work in path finding. It tries to illustrate why existing

algorithms are not able to deal with the drone path planning problem. Therefore,

the algorithms and the extension to the thesis’ problem will be described followed

by a detailed explanation where these approaches will fail.

2.2.1 Travelling Salesman Problem

As already described above, the problem is the following: A virtual mesh is given

which consists of different surfaces. The goal is to find a path which has a small

distance. At the same time the drone camera should see each surface of the mesh

in a good viewing position like Wolfgang Stuerzlingers method [16]. Now the next

question arises: What is a “good viewing position” for the drone? The first criterion

for a good one is that the surface is completely visible. Second, the angle between the

surface normal and the viewing direction of the drone should be as small as possible.

Otherwise, the perspective distortion would be too large. At last, also the distance

between the surface and the UAV should not be too huge since the resolution of the

filmed texture will decrease. With these three constraints it is possible to determine

a perfect position for the drone and the corresponding viewing direction. In the

following, the drone position and direction will be called drone configuration. If one

assumes that these optimal configurations can be computed, then this could be done

for each surface of the mesh. After this computation step one would have different

points in 6D space representing the best drone configurations for the surfaces. If the

drone visits each of these configurations one can be sure that the drone saw most

parts of the mesh. Figure 2.1 illustrates the above thoughts.

Now it can be abstracted from the 6D model to a graph model. For the sake of

simplicity it is assumed that the change of the viewing direction plays a minor role

for the energy which the drone has to spend. Therefore, the distance between two

position points is only taken into account. In the following, P is defined as the set

which contains the position for each of the configurations. Each of the previously

computed elements in P will now represent a node in a graph. The edges in the

graph are determined as follows. Each node is connected to each other node. The

Euclidean distance between the positions determines the weight for each edge.
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Figure 2.1: Visualization of the above thoughts about the TSP. The light blue lines

represents the surface normals. The red dots are the camera position. The orange arrows

illustrate the cameras viewing direction. The red lines shows the connections between the

configurations.

With the previous thoughts a undirected graph G(V,E) can be defined as follows:

• V = {v|v ∈ R3 ∧ v ∈ P}

• E = {(u, v, w)|u, v ∈ V ∧ w = weight(u, v)}

• weight


ab
c

 ,

de
f


 =

√
(a− d)2 + (b− e)2 + (c− f)2

V contains the nodes of the graph whereas E is the set of the edges. A path p

can now be defined as a list L of the edges where the drone travels along. The

total distance for p is the sum of all edge weights contained in L. The goal is

now to find a way through the graph so that at the end each node v ∈ V was at

least visited once. At the same time the total distance should be the least possible

one. This goal is also known as the Travelling Salesman Problem (TSP) which is

a combinatorial optimization problem. Imagine a graph only has 15 nodes means

a mesh that only has 15 surfaces. The number of possible paths is then already

more than a billion. This example shows how huge the computational effort would

be already for really simple 3D meshes. Since the weights are computed with the

Euclidean Distance one has the Euclidean TSP. From the theoretical aspect it is

known that it is NP-complete [17]. So almost certainly no algorithm exists which

has a polynomial worst-case runtime.



Chapter 2. Related Work 10

Usual scenes have much more than 1000 surfaces. In consequence, the TSP

cannot be solved since the computational effort is too huge. The evaluation time

would take several days or even more.

There already exist a lot of approximation algorithms. Christofides’ 1,5 - appro-

ximation [18] solves the metric TSP in polynomial time. But there are still other

difficulties which will be described in the following subsection.

2.2.2 Shortest Path in 3D Space

Previously it was assumed that the shortest path between two graph nodes is al-

ways the direct way between the two points. But when there is one or multiple

geometries intersecting the direct route the assumption no longer holds. If there

are no constraints made towards the geometry of the obstacles, it turns out that

also this problem is in general NP-hard [19]. In consequence, the Euclidean distance

cannot longer be used for the weight calculation. Therefore, one has the general

TSP instead of the Euclidean TSP which is even worse for path calculations.

2.2.3 Art Gallery Problem

Above the problem was described in a combinatorial manner. But one can also think

of it as a problem of computational geometry. The question of a shortest path can

then be rephrased in the following way which is also called Art Gallery Problem.

Figure 2.2: Art Gallery Problem in 2D.

The name comes from the following interrogation: One assumes that there is an

art gallery which has a two-dimensional groundplan. The goal is now to observe

each point inside this plan. Guards can be placed for surveillance. The question is

now how many guards have to be placed at the minimum such that each point inside

the groundplan is at least observed by one guard. Figure 2.2 visualizes the problem

in 2D. The dots represent the guards. The colored boxes represent the room which
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the corresponding guard can observe. One can notice that some space is unobserved

in this example.

For the drone path planning problem the guards represent the configurations of

the drone in space. The goal is to find the minimal number of them in 3D space so

that all surfaces of the mesh were seen by at least one guard. Although the distance

between the found points would also play a role for the energy, which the UAV has

to spent, it would be a good guess for a minimal path. The main point why this

approach is not practicable is that Lee and Lin [20] showed that already for the

original 2D case the problem of finding the minimum number of guards is NP-hard.

2.3 Optimization Algorithms

Previously it was shown that neither the graph-based approach nor the geometrical

method are able to provide a solution for the path planning problem. The alter-

native for solving this problem are optimization algorithms which iteratively try to

minimize a cost function. In the following section different optimization methods

are introduced and explained since they are used in the minimization step in the

thesis.

2.3.1 Downhill-Simplex

The Downhill-Simplex optimization or Nelder-Mead method was invented by John

Nelder and Roger Mead in 1965 [21]. It is an approach which is able to solve non-

linear optimization problems. The main pro of the Downhill-Simplex optimization

is that it does not need to compute the derivatives compared to other algorithms

like Newton’s method.

Figure 2.3: Illustration of a Downhill-Simplex optimization for a 2D function. Designed

by Wolfram Alpha [22].
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It takes a function f : Rn → R. Now an initial simplex is constructed out of

n + 1 points xi ∈ Rn where i = 1, ..., n + 1. They have to be chosen in a way that

they not lie in a hyperplane which has a smaller dimension. For example if one has

a 2-dimensional function f : R2 → R the simplex will be a triangle. If the points lie

on the same line the triangle is degenerated.

The goal of the algorithm is now to move the simplex in a way that the function

values become smaller which means the algorithm looks for local minima. Figure

2.3 shows a typical simplex optimization for the function f(x, y) = x2 + y2. The

moving behaviour of the simplex is described in Figure 2.4 and can be influenced

with the parameters α, β, γ and σ. After they are set they will remain constant

during the optimization. There are different termination criterions. The algorithm

can for example terminate if a constant number of iterations is reached or if the

worst function value and the best function value are nearly the same. The best

point xbest is then stored in x0.

Figure 2.4: Different movements of the simplex in 2D. The grey triangles represent the

original simplex. The green ones show the moved version. The orange dots visualize the

updated points.

One drawback is that the algorithm often finds a local minima but it does not

need to be the global optimum. Another problem is that the starting simplex influ-

ences the result. So different initializations can lead to different local minima. To

avoid this behaviour a new simplex can be constructed around the old best point

xbest. Then this one is again optimized. These steps can be repeated several times.
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Figure 2.5: Overview of the Particle Swarm algorithm.
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2.3.2 Particle Swarm

The Particle Swarm Optimization was invented by James Kennedy and Russell C.

Eberhart in 1995 [23]. They were inspired by the social behaviour of bird flocking

and fish schooling and the resulting moving behaviour of them. The travelling of

such a swarm has two main factors: On the one hand, there is the best experience of

each individual and on the other hand, there is the best experience which the swarm

made. Based on these factors the swarm will go in certain directions. The inventors

tried to model this behaviour where a particle stands for a single animal. The whole

fish or bird population is represented by the set of the particles. These thoughts

lead to the particle swarm optimization which tries to optimize non-linear problems

with simulating intelligent swarm moving. The algorithm is also a gradient-free

optimization method.

Similar to the Downhill-Simplex method it takes a cost function f : Rd → R and

minimizes the costs iteratively. The size of the swarm determines the number of

the particles. Each particle n has a position or experience pn ∈ Rd, a best position

pbest,n ∈ Rd which contains the best position which the particle previously had and

the corresponding best achieved value pvalue,n ∈ R.

The particles also have a velocity vn ∈ Rd which is responsible for how they

move and how pn will look like after it is updated. To determine vn there are also

weights needed called ω, wg and wp ∈ R. The best position of the whole swarm and

the corresponding cost function value are stored in gbest ∈ Rd and gvalue ∈ R. The

algorithm assumes that the positions which are possible are bounded from below

and from top. The bounds will be called l and u ∈ R in the following. The goal

is now to move the particles’ position in a way that the resulting function values

become smaller. The whole algorithm is presented in Figure 2.5.

The particle swarm algorithm can also stuck in local optima but it is easier to

optimize h-d functions compared to the Downhill-Simplex method.

2.4 Plexus

The dataflow network Plexus invented by Tobias Ritschel is a visual computing

software which is used on the Max-Planck Institute for Informatics at Saarbrücken.

It supports CPU and parallel GPU computations and is designed in a way that the

core framework can easily be adapted to new requirements.

Since Plexus already has a lot of important components for graphical computa-

tions like voxelization it was the perfect framework to implement the thesis. A main
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application consists out of different smaller programs called devices. These devices

usually have an input and an output which can be connected to a graph. The thesis’

program consists out of already existing devices and newly developed devices which

will be presented in the following sections. Figure 2.6 shows the user interface of

Plexus where each box represents a device and the lines are the connections between

them.

Figure 2.6: Plexus interface.



Chapter 3

Drone Path Planning

In the following chapter, the main work of the thesis is presented. It starts with a

short overview of the program pipeline to illustrate the general program flow. After-

wards, the different main components and minimization algorithms are described.

Finally, the user initialization, the program control and the output of the application

are explained.

3.1 Program Overview

Figure 3.1 illustrates the program flow of the thesis. The algorithm takes as input

a mesh for which the user wants to have the reconstructed texture map with the

corresponding shortest drone path. The Path Calculator device is the central

processing device of the application. It computes the next positions and directions

for the UAV.

The current configuration, which is defined through the interpolated vector of

the previous and the next configuration, will be sent to the Path Render device.

In this step the actual drone view is rendered from the corresponding direction and

position. If the end of the whole path is reached, a per pixel rating which tells how

good a texture map pixel was seen by the drone and another map for the current

visible parts is computed. The rating is encoded in a 2D texture which is sent to

the Path Rating device. It sums up all the pixel values and computes a single float

which is called rating in the following.

At the same time, the Path Calculator also sends the interpolated configuration

to the Collision Checker device. Here it is checked if the drone hits the mesh.

The result of the collision check is sent to the Path Burden device. It takes the old

and new configuration and computes the amount of energy which has to be spent

16
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for this piece of the path. The sum of all parts will be called burden. Additionally,

the device takes the result of the collision check for further computations described

below.

Now the previous computed results are brought together in the Evaluator

device. The rating and the burden are compared and it is decided if the current path

is better or not. This feedback is sent to the Path Calculator since it is necessary

for the next steps. On the other hand, the Evaluator informs the Final Texture

Map device to update the old texture since a better path was found. If the path was

not better, the Final Texture Map remains the same.

Figure 3.1: Overview of the program pipeline.

When one thinks of minimization the previous steps evaluated a path and the

result of the evaluation is the cost function value. The Path Calculator now

takes the value and starts the minimization which includes the computing of new

configurations. These are again send to the Path Render, Collision Checker

and Path Burden. Finally, the above steps are repeated iteratively until the Path

Calculator reached its termination criterion. The best path is then stored as a list

of configurations. The reconstructed texture is stored in the Final Texture Map

and can be reviewed by the user.

In addition, a preview of the computed path is implemented which is not men-
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tioned in the Figure above. Some functionalities which are used in the components

were already given in Plexus. For instance the device which computes the view-

ing and projection matrix out of a known position and direction was implemented.

Other ones which were available in Plexus are rasterization devices which visual-

izes the current scene, sink/source devices which enables temporary storage of data,

mipmap devices which enables calculations on textures and mathematical devices

which can solve scalar and vector computations.

3.2 Camera Animation

To create a virtual UAV a mathematical model of it has to be defined. Usually, a

camera, which can be rotated, is placed on real drones. The thesis just considers

this camera and abstracts from all other parts. The two basic parameters for its

virtual model are the position which tells the program where in 3D space the drone

takes place and the viewing direction which defines in what direction the UAV is

looking at the moment. Both are encoded as a 3-dimensional vector. Additional

parameters are the field of view and the aspect. Virtual cameras require the near

and far clipping plane. Therefore, these two values can also be set.

To create an animation the drone has to travel along predefined lines in 3D

space which can be linear or curved. The thesis animates the UAV along linked

straight ones which are defined through a list of configurations. Each list element

contains a 3D position (see orange dots in Figure 3.2) and a viewing direction (see

blue arrows in Figure 3.2). The whole list will be called a path. The length of the

path is N − 1 where N is the number of configurations in the list. The travel from

one configuration to the next will be called a route. Figure 3.2 illustrates the terms.

Figure 3.2: Visualization of a path in 2D.
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The actual elements which define the current drone position pcurrent ∈ R3 and

viewing direction dcurrent ∈ R3 are stored in the variables pold, dold ∈ R3 representing

the old configuration and pnext, dnext ∈ R3 representing the new configuration. If

the drone is between two configurations, the interpolated position and viewing dir-

ection is calculated to determine the exact current drone configuration. When the

drone reaches the next configuration pold and dold are set to the previous pnext and

dnext respectively. The new pnext and dnext are computed in different ways in the

Path Calculator depending on the optimization algorithm which is used. Now the

interpolation starts from the beginning. Figure 3.3 shows the implementation and

how the exact computation is done for a route.

With the above animation model paths can smoothly be rendered. In con-

sequence, the rating and burden can virtually be computed. How these two are

exactly determined and how they are used in the cost function will be discussed in

the next section.

// check against invalid drone speeds

if(speed < 0.f)

{

LOG_ERROR << "Negative Speed not allowed";

}

else

{

// direction in which the drone flights

Vector3f travelVec = (pNext -pOld).normalized ();

// update the current position

pCurrent = pCurrent+ travelVec*speed;

// length between the current point on the road and the end

// point

float lengthToCurrentPoint = (pNext - pCurrent).length ();

// length of the current route

float currentPathLength = (pNext - pOld).length ();

//ratio between the full path length and remaining way

//which the drone has to pass

float t = lengthToCurrentPoint/currentPathLength;

// interpolated current direction

Vector3f dCurrent = t*dOld + (1-t)* dNext;

// interpolated target vector

tCurrent= dCurrent.normalized ()+pCurrent;

}

Figure 3.3: Computation of the virtual drone parameters for a route.
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3.3 Cost Function

The cost function is the essential key for the later minimization. The constraints

which are important for a good flight namely the quality of the reconstructed texture

map and the short travelling path for the drone were already mentioned. Now it is

time to build a mathematical equation which simulates this behaviour.

To ensure such a UAV movement the following function will be minimized:

argmin
t∈R

∫ 1

0

(1− ratingPoint (p(t), v(t))) + burdenPoint(p(t), d(t)) dt (3.1)

= argmin
t∈R

∫ 1

0

(1− (ratingPoint(p(t), v(t)) dt)

+

∫ 1

0

(burdenPoint(p(t), v(t)) dt)

(3.2)

t is the parameter to be minimized. p : R → R3 and v : R → R3 are functions

which take a scalar value and return the position and the viewing direction of the

drone on the path with respect to the scalar. In consequence, (p(t), v(t)) encodes

the current drone configuration. The function 1− ratingPoint(p(t), v(t)) takes this

configuration for the UAV and ensures that the quality of the reconstructed texture

is good. The function burdenPoint(p(t), v(t)) avoids large paths. The integral in

Equation 3.1 sums the values up to a total result for the path. Equation 3.2 implies

that the rating and burden can be computed separately which is described in the

following sections.

3.3.1 Collision Checker

In previous drone animation applications one saw that collision detection plays a

minor role which is fine since the customer itself can design the path. But the

thesis tries to find paths without any user interaction. Therefore, collision detection

is necessary. It is done in the Collision Checker device which one already saw

in the overview. As mentioned in Section 2.4 Plexus enables GPU computation.

Therefore, this step is GPU-based since “good speeds and accuracy can be achieved

using existing graphics hardware” [24].

To realize a fast collision checking it is assumed that the mesh is placed in a big

bounding box (BBB) which has its center in the origin. The boxes side lengths are

encoded as l in the following. Additionally, a 3D texture tinput3D is given which has

a resolution r for each dimension. Each pixel in this texture represents a smaller
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bounding box (SBB) with edge length l/r in BBB. Now BBB is sliced in r pieces

along the x-direction. An orthographic camera with viewing direction parallel to

the x-axis is placed at the x-axis right in front of the current slice. Then the scene

is rendered to the corresponding 3D texture layer in a way that in regions where a

mesh is present the texture will be green. Otherwise it will be black. After each

slice was rendered to the corresponding layer this step is repeated for the y and

z-axis but with blue and red colors respectively. The repetition is necessary since it

is possible to miss surfaces. Imagine it is only rendered along the x-axis and there is

a surface where the normal is perpendicular to the viewing direction of the camera.

The surface will not be rendered and as a consequence, the pixel values will not be

set to green although there is an object. At the end of this step, each pixel in the in

the 3D texture encodes if there is a mesh present then the color would be unequal to

black. Otherwise, the color would be black. Figure 3.4 shows the summary of a 3D

texture containing the comic house mesh (see also Figure 3.6 top left). One can see

that for example the grassy ground which is perpendicular to the y-axis is rendered

in blue at the bottom row and the red parts represent two of the four house walls.

Since the normals of the ground are perpendicular to the x and z-axis it will only

be rendered when the camera direction is parallel to the y-axis. So the projection

along each axis is really necessary. This device was already implemented in Plexus

and was the basis for the collision detection. The process is also called voxelization.

Figure 3.4: Summary of the slices in a 3D texture. The black parts are converted to

white ones.
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void main()

{

//check if drone is in range of the mesh

if(abs(p.x)>range || abs(p.y)>range || abs(p.z) > range)

{

outputTexture2D = 0.f;

}

//drone is in range of the mesh

else

{

bool collision = false;

highp int texRange = int(s+1.f);

for(int i1 =-texRange; i1 <= texRange ; i1++)

{

for(int i2 =-texRange; i2 <= texRange ; i2++)

{

for(int i3 =-texRange; i3 <= texRange ; i3++)

{

// review the texture projected along the x-axis

vec4 colorZ =texelFetch(input3D ,ivec3(x+i1 ,y+i2 ,z+i3) ,0);

// review the textures projected along the y-axis

vec4 colorX =texelFetch(input3D ,ivec3(y+i1 ,z+i2 ,x+i3) ,0);

// review the textures projected along the z-axis

vec4 colorY =texelFetch(input3D ,ivec3(z+i1 ,x+i2 ,y+i3) ,0);

if(colorX.y !=0.f || colorY.z != 0.f || colorZ.x !=0.f)

{

collision = true;

}

}

}

}

// collision detected

if(collision)

{

output2D = 1.f;

}

//no collision

else

{

output2D = 0.f;

}

}

}

Figure 3.5: Shader code of the Collision Checker device.
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The collision detector now takes the actual drone position p ∈ R3, the speed of

the UAV s ∈ R and the previous computed 3D texture tinput3D. The virtual position

corresponds to a coordinate in the 3D texture which are as x, y, z ∈ R given to the

shader. First, it is checked if the drone is in BBB in general. If this not the case

there will be no clashes since it is assumed that the mesh only takes place inside

BBB. Otherwise, the collision device has to check the pixel value at (x, y, z) in the

3D texture. Since the drone is translated in a discrete way it can happen that the

UAV skips over an obstacle. It is especially the case when the speed is high. To

avoid this behaviour also the environment around the pixel coordinates (x, y, z) is

checked. The size of the area depends on the speed of the UAV. If the mesh was

placed at these locations the pixel value will be unequal to black as mentioned above.

So it is known that the drone collides. The output is a 1x1 texture touput2D which is

white if a clash was detected else it is black. Figure 3.5 shows the collision shader

implementation. The result will be used in the following section which describes

how the burden is computed.

3.3.2 Path Burden

Previously the burden was described in the second integral in Equation 3.2 in a

mathematical way. But for the thesis’ purpose it has to be translated in the discrete

domain. The burden encodes the energy which the drone has to spend for a path

as already mentioned. Now in the discrete variant and in the path model one can

say that it is defined as:

N−1∑
i=0

burdenRoutetrans(cList(i), cList(i+ 1))

+burdenRouterot(cList(i), cList(i+ 1))

(3.3)

cList is the list which contains the configurations. burdenRoutetrans(a, b) : R6×R6 →
R computes the burden for travelling from start position a to the end position b.

burdenRouterot(a, b) : R6 × R6 → R computes how much the UAV has to spend for

changing the viewing direction. The Path Burden device implements the burden

in different ways depending on how exact the user wants to compute it. For a

configuration c in the following c.pos() will return the position and c.dir() will

return the direction. The three different modes are listed below:

• Geometrical computation without rotation. The simplest computation

for the burden of a single route is the geometrical one which means that

physical components like the gravitation and the mass of the drone are ignored.
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Also the amount of energy which has to be spent for the rotation is set to zero

here. In consequence, the route burden is defined as the Euclidean distance

between the two positions:

burdenRoutetrans(a, b) = ‖(a.pos()− b.pos())‖ (3.4)

burdenRouterot(a, b) = 0 (3.5)

• Geometrical computation with rotation. The second variant also in-

cludes the difference between the starting direction and the end direction since

rotation also costs a reasonable amount of energy.

burdenRoutetrans(a, b) = ‖(a.pos()− b.pos())‖ (3.6)

burdenRouterot(a, b) =

(
1− 〈a.dir(), b.dir()〉
‖a.dir()‖ ∗ ‖b.dir()‖

)
(3.7)

• Physical computation. The physical burden function tries to simulate a

more physical correct behaviour. Therefore, the burdenRoutetrans(a, b) for a

route is separated in two components. It is differentiated between how high

the drone flights and how far at all. For the height difference 4h(a, b) :

R6 ×R6 → R the UAV has to spent enough energy to overcome the potential

energy Epot(a, b) : R6 × R6 → R. Since the drone weight m ∈ R and the

gravitation constant g ∈ R are known it can be computed:

4h(a, b) =

b.pos().y − a.pos().y for a.pos().y<b.pos().y

0 for a.pos().y ≥ b.pos().y
(3.8)

Epot(a, b) = m ∗ g ∗ 4h(a, b) (3.9)

For the remaining part it is assumed that the UAV needs a constant amount

of voltage u ∈ R and current i ∈ R per time where it travels along the route.

Since the length 4s(a, b) : R6 ×R6 → R and the drone speed s ∈ R are given

the travel time 4t(a, b) : R6 × R6 → R and Etrans(a, b) : R6 × R6 → R can be

determined:

4s(a, b) = ‖(a.pos()− b.pos())‖ (3.10)

4t(a, b) =
4s(a, b)

s
(3.11)
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Etrans(a, b) = u ∗ i ∗ 4t(a, b) (3.12)

Finally, burdenRouterot(a, b) is equal to Equation 3.7 and burdenRoutetrans(a, b)

is defined as:

burdenRoutetrans(a, b) = Epot(a, b) + Etrans(a, b) (3.13)

If a route is determined the burden can directly be computed with one of the three

models and there is no rendering needed. But it was said that the computation also

considers clashes. Therefore, the Collision Checker gives feedback which is used

to update the burden. If a collision is detected during render burdenRouterot(a, b)

and burdenRoutetrans(a, b) are set to infinite.

3.3.3 Path Render

The rating for a path which was defined in the first integral in Equation 3.2 will also

be translated in a discrete setting. It describes how good the textures were seen by

the drone. For the whole path the rating will be equal to:

N−1∑
i=0

ratingRoute(cList(i), cList(i+ 1)) (3.14)

cList(i) is again the ith configuration in the list which determines the path. Now

the function ratingRoute(a, b) : R6 × R6 → R has to be defined. It represents the

seen part of the mesh when the drone flow from configuration a to b. Therefore, the

camera is animated (see Section 3.2) along the route and the resulting frames show

the current view of the drone. During this step a device called Atlas which is part

of the Path Render processes each one as follows.

The Atlas gets the rendered UAV view tview2D (see Figure 3.6 top left) which

shows the diffuse color of the mesh. The device also receives the same view but as a

normal texture tnormal2D (see Figure 3.6 top right)which contains the surface normals

of the model. The last texture which is given to the device is a depth map tdepth2D

of the drone view. The position of the UAV pcam ∈ R3 and the currently processed

fragment position pfrag ∈ R4 of the mesh are also given. Finally, the device has the

view matrix V ∈ R4×4 and the projection matrix P ∈ R4×4. It creates two UV maps

called trating2D (see Figure 3.6 bottom right) and tdiffuse2D (see Figure 3.6 bottom left)

where pfrag has a corresponding texture coordinate.

First, one needs a mapping from the pixels in trating2D and tdiffuse2D and the ones in

the input textures. In consequence, pfrag has to be processed such that each surface
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point or fragment of the mesh has a corresponding coordinate in tview2D, tnormal2D

and tdepth2D. Therefore, first pclip is defined by the the product (P ∗ (V ∗ pfrag)). The

final pixel mappings and the resulting screen coordinates c ∈ R3 are arrived by a

perspective divide pclip.xyz/pclip.w and a shifting.

It was already mentioned in Section 2.2.1 that different constraints are given to

reconstruct a precise texture map:

• Depth. First of all the filmed surface should not be too far away from the

camera since the resolution of the filmed texture will decrease. Therefore, the

Atlas looks at tdepth2D at position c.xy. The found value should be smaller

than a constant threshold.

• Viewing angle. Another constraint was that the angle between the surface

normal and the viewing direction should not be to huge. Therefore, the device

computes the vector k ∈ R3 which is defined by pcam − pfrag.xyz. The angle

θ between k and the normal which is contained in tnormal2D at position c.xy

encoded as a RGB-value is computed. If it is greater than 70 degree, the angle

is too huge for a good texture reconstruction.

• Occlusion. The surface should also not be occluded by another one. If this

is true, c.z has to be smaller than the corresponding pixel value in tdepth2D

since a depth map pixel encodes the actual depth between the camera and the

fragment which is rendered at that place. If c.z is higher than this value it is

known that the surface is occluded.

• Viewing field. Finally, the last and most obvious constraint is that the

surface should be in the viewing range of the drone. Therefore, c.x and c.y

have to be between zero and one.

If one of the above constraints is false the red value in the corresponding pixel

in trating2D will be set to zero and the pixel in tdiffuse2D will be blue, which signalizes

that in the current view configuration no good texture reconstruction can be found

for these surface parts. In Figure 3.6 one can see that for instance a part of the

grass on the ground in the texture map is rendered in blue since the house occludes

the ground partially.

If the above constraints are fulfilled for the pixel in tdiffuse2D it will be set to

the corresponding one in tview2D. The red value of trating2D will be set to cos(θ).

It encodes a rating for each pixel of the texture map. The range is between zero

and one where zero represents the worst viewing angle and one encodes the best
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possible angle. In consequence, good ratings can be achieved when the angle is near

zero which means that the drones viewing direction is almost parallel to the surface

normal. Additionally, the blue color of each pixel which is part of trating2D is set to

0.7 to separate between non texture map pixels and texture map pixels. The lower

right picture in Figure 3.6 illustrates the rating procedure. It can be seen that the

smaller roof facing towards the camera is rendered in a bright pink which indicates

that the red values were near one. This is caused by the fact that the camera’s

viewing direction is almost parallel to the surface normal. The main function of the

Atlas shader is listed in Figure 3.7.

Figure 3.6: Input and output textures of the Atlas. Top left: Input diffuse texture. Top

right: Input normal texture. Bottom left: Output diffuse texture of the Atlas. Bottom

right: Output rating texture of the Atlas.

The current diffuse map and the corresponding rating map can be evaluated

but it is also important to remember which parts were already seen by the drone.

Therefore, a second device called Global Atlas is constructed which is also part

of the Path Render. It takes trating2D and tdiffuse2D. At the same time, it holds his

own diffuse texture map tglobalDiffuse2D and rating texture map tglobalRating2D. For each

coordinate in tglobalRating2D it is compared if the corresponding pixel in trating2D has

a better value. If this is true the RGB-value in tglobalRating2D and in tglobalDiffuse2D

are updated to the values in trating2D and tdiffuse2D respectively. If the drone reaches

the next configuration and each frame was rendered, the global textures contain the

seen parts of the mesh and the achieved rating for a route.
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void main()

{

vec4 viewSpacePosition = viewM * vec4(fragmentPosition , 1);

vec4 clipSpacePosition = projectM * viewSpacePosition;

vec3 screenCoord = clipSpacePosition.xyz / clipSpacePosition.w;

screenCoord.xyz = screenCoord.xyz * 0.5 + vec3 (0.5);

vec3 toCamera = cameraPosition -fragmentPosition;

vec3 normal = texture(normalTexture2D , screenCoord.xy).xyz;

// CONSTRAINTS COMPUTATION

//depth

bool notTooFarAway = texture(depthTexture2D , screenCoord.xy).x

<0.9987777f;

// viewing angle

float cosTheta = dot(normal , toCamera) / (length(normal) * length

(toCamera));

bool goodViewAngle = cosTheta <= 1.f && cosTheta > 0.342020143f);

// Occlusion

bool notOccluded =screenCoord.z <= texture(depthTexture2D ,

screenCoord.xy).x +0.00001f;

// Viewing field

bool inViewingField = screenCoord.x >=0 && screenCoord.x <1 &&

screenCoord.y >=0 && screenCoord.y < 1;

// CONSTRAINTS FULFILLED

if(notTooFarAway && goodViewAngle && notOccluded & inViewingField)

{

ratingColor.x =cosTheta;

diffuseColor = texture(viewTexture2D , screenCoord.xy);

}

// CONSTRAINTS NOT FULFILLED

else

{

ratingColor.x = 0.f;

diffuseColor = vec4 (0.f,0.f,1.f,0.f);

}

//set the blue color to encode if this pixel is part of the

texture map

ratingColor.z = 0.7f;

}

Figure 3.7: Shader code for the Atlas device.
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The Global Atlas can also be reset in two different ways. The scenario is

the following: The drone travelled along n routes. Now the actual n + 1th route is

rendered and tglobalRating2D represents the seen of the path with the length n+1. But

the application tries different possibilities for the last part of the path. Therefore,

tglobalRating2D and tglobalDiffuse2D have to be reset to the seen of the first n routes after

each try. The Global Atlas is implemented in a way that the Path Calculator

device can signalize that the textures have to be reset to the old state. Additionally,

when a whole path was tested it is sometimes needed to reset the global textures to

the initial state which means a black texture. The Path Calculator can also force

the Global Atlas to do this.

3.3.4 Path Rating

tglobalRating2D encodes the rating but in form of a texture instead of a single float value.

Therefore, a map is created where pixels are set to white when the corresponding

blue channel in tglobalRating2D was set to 0.7. The Path Rating device creates a

mipmap of this texture and takes the value contained in the 1× 1 level which holds

the average pixel value of the original map. The number will be called ctexmap. The

red values in tglobalRating2D are then used to create a second map where these values

determine the pixel color ranging from zero to one. Again a mipmap is created and

the value in the 1 × 1 level is taken which is called crating in the following. Now

crating/ctexmap is finally the rating as a float which has a range between zero and one.

As a result the function value of ratingRoute(a, b) can be computed and used for

the next steps.

3.3.5 Evaluator

The Evaluator device gets the previously computed burden and rating for a route.

These values are then used to compute the cost:

costRoute(a, b) = α ∗ (1− ratingRoute(a, b)) + β ∗ burdenRoutetrans(a, b)

+γ ∗ burdenRouterot(a, b)
(3.15)

where a is the starting configuration of the current route and b is the end confi-

guration. The weights α, β and γ are used to balance the different factors of the cost

function since the range of their possible values is different. The burden for example

can theoretically lie between zero and infinite but the rating is always between one

and zero. At the same time, the weights can be used to ensure a certain behaviour

of the drone. For example, by increasing γ the UAV tries to avoid large rotations.
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With these thoughts it is possible to get a mapping between routes and the corres-

ponding cost values. In consequence, the cost function costPath(clist) : R6×N → R
for a path where clist is the configuration list is known:

costPath(clist) = α ∗

(
1−

(
N−1∑
i=0

ratingRoute(cList(i), cList(i+ 1)

))

+β ∗

(
N−1∑
i=0

burdenRoutetrans(cList(i), cList(i+ 1))

)

+γ ∗

(
N−1∑
i=0

burdenRouterot(cList(i), cList(i+ 1))

) (3.16)

The device also holds the best cost cbest which was computed for the previous

processed routes or paths. If the currently computed cost ccurrent is better than

cbest, then ccurrent is stored and the Evaluator signalizes the Final Texure Map

device that a better route or path was found. The device updates the texture maps

tbestRating2D and tbestDiffuse2D to the current global rating and diffuse map. If ccurrent

is not better, then the textures in the Final Texture Map device and cbest remain

the same. At last the Evaluator sends the current cost to the Path Calculator

device for the minimization which is described in the following sections.

3.4 Greedy Path Calculator

This section shows two different greedy algorithms which try to find the shortest

path by optimizing over each route separately. It means a starting configuration

is chosen and then the next optimal point is computed. This optimal solution is

the new start configuration. These steps are repeated until a convergence criterion

is reached. The cost function for a route will then be costa(b) : R6 → R since

the starting configuration a is known and the end configuration b is optimized.

Each of the two presented greedy optimization methods are inheritance of the Path

Calculator device.

3.4.1 Random Walk Approach

The random walk optimization approach gets an initial starting configuration which

can be chosen by the user. Afterwards, a constant number of random target confi-

gurations are rendered and evaluated. This is done in different steps. First, a

random target point is computed by the Path Calculator. The resulting route

is rendered and evaluated. The Path Calculator gets the cost which is assigned
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to this route by the Evaluator. It is checked if this is the best value compared

to the previous best one. If this is true the actual end configuration is stored and

the corresponding global rating and diffuse texture are stored in tbestRating2D and

tbestDiffuse2D. Afterwards, tglobalDiffuse2D and tglobalRating2D are reset to the state before

the actual route was rendered and the next random configuration is rendered and

evaluated. If all random paths are tested the new starting configuration is set to the

best found configuration. tglobalRating2D and tglobalDiffuse2D are set to tbestRating2D and

tbestDiffuse2D respectively. Then again a constant number of different random routes

are rendered and evaluated. These steps are repeated until the rating is better than

a constant threshold.

A pro of this method is that it is really easy to implement. But it does not take

into account which previously rendered routes where good or not. For instance, it

could be that the random configurations are all in the same region. Although after

the first run it is clear that this region has a low rating and high burdens. Moreover

the performance is also not really fast which will be showed in the evaluation section.

Therefore, the next greedy algorithm was implemented to overcome this drawback.

3.4.2 Realization of the Downhill-Simplex Optimization

As already mentioned, the random walk approach does not consider the already

computed results in any way. Therefore, the Nelder-Mead method was chosen to

improve the result and the speed of the computation. The general algorithm was

already explained in Section 2.3.1. Now the adaptations to the concrete problem

are described.

The Downhill-Simplex algorithm takes a function f : Rn → R. For this problem

n will be six as already mentioned since the next optimal configuration has to be

computed which has a 3-dimensional position and a 3-dimensional viewing direction.

In consequence, one has a simplex which has seven points. These points or confi-

gurations xi i = 0, ..., 6 are randomly initialized. The route for xi is rendered from

the starting configuration to xi and the achieved cost value is stored. Then the

global texture maps are reset to their previous value and the next xi is processed in

the same way until each point has a cost value. Now the reflected point is computed,

rendered, evaluated and the texture is again reset. These steps are also done for

the expanded point, contracted point or when the simplex needs to be shrinked.

Depending on the achieved cost values the simplex is moved in a certain direction

and the new points are again evaluated.

If the algorithm found a best configuration the above procedure is repeated six
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times and seven optimal points with potential different coordinates are given. This

is caused by the fact that the found minima depend on the random initialization

of the starting simplex. These points form a new simplex which is again optimized

to increase the probability of finding the global minimum instead of a local one.

After this optimization terminates, the resulting final best configuration is stored

and replaces the old starting configuration. Also tglobalDiffuse2D and tglobalRating2D are

updated to the seen of the best configuration. The next optimal configuration is

computed like before. Finally, if the rating is higher than a constant threshold, the

path finding algorithm terminates.

The main pro of this method is that it also includes previously computed know-

ledge to find a local minimum. In consequence, it detects local minima faster and in

the end, better configurations than the random approach which will be demonstrated

in the evaluation section. But there are still problems remaining. For instance, the

algorithm is not able to always find the global minimum. On top of that the optim-

ization works in a greedy fashion which means that only over the next configuration

a optimization is done. To overcome the later mentioned issue the following section

presents an algorithm which optimizes over the whole path instead of single routes.

Figure 3.8: Visualization of the evolution of a swarm. Connected lines represent a

particle. Top left: Initial swarm. Top right: Swarm after 4 iterations. Bottom left:

Swarm after 8 iterations. Bottom right: Swarm after 16 iterations.
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3.5 Non-Greedy Path Calculator

Non-greedy now means that the following algorithm tries to optimize over all con-

figurations at the same time. It is also an inheritance of the Path Calculator

device.

3.5.1 Realization of the Particle Swarm Optimization

The problem dimension increases to N × 6 since N configuration have to be found

and each configuration has 6 dimensions. The cost function which is optimized has

then the form f : RN×6 → R and is equal to costPath : RN×6 → R . The greedy

algorithms took only the results of a single route since they optimize over each one

separately. The cost function of the swarm optimization takes instead the whole path

and returns a value which represents the result of it as already mentioned. Since

the dimension of the problem increases rapidly the initial guess is crucial for good

outputs. Therefore, it is not enough to just take random paths at the beginning.

To overcome this drawback two methods were constructed:

• First, a log file which contains the configurations of a Downhill-Simplex op-

timization can be uploaded. Then, these configurations are used to initialize

the first particle in the swarm. The method is called DS initialization in the

following.

• The other method makes use of the fact that the object of interest is placed in

the middle of the coordinate system and that its bounding box is known. The

positions of the configurations are then all initialized in a way that they lie on

a circle in the x-z-plane with a radius greater than the bounding box of the

object. The center is on the y-axis. The radius and the height in y-direction

can be adjusted. The corresponding viewing directions are just the normalized

negative position vectors. Again, the first particle of the swarm is initialized

with the previous computed configurations. This method will be called circle

initialization in the following.

Since the first particle is a good initial guess the other particles can be sampled

around this one.

Now each particle represents a path (see Figure 3.8). To get the corresponding

function value the path is rendered and evaluated. Afterwards, all devices are reset

and the next particle is rendered and evaluated. If these steps are repeated for the

whole swarm, the initialization of the swarm is done and the iterative optimization
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is started in a way which was already described in Figure 2.5. During this optimi-

zation the particles align around the optimum which you can see in Figure 3.8. The

termination criterion is reached when a fixed number of iterations is achieved or

when the particles are strongly aligned. The best path is then stored in the swarms

best particle.

The main pro of the method is, as already said, that it is able to optimize over

a whole path instead of a single route. But at the same time the method is not as

robust as the greedy algorithms which can be recognized during the initialization.

3.6 User Input

First of all, the user has to choose the object of interest for which he wants the drone

path and the reconstructed texture map. He can create his own mesh e.g., in Blender

[2] or other modelling softwares [25]. Then he has to export the triangulated model

in the .obj format. Texture information such as the texture map and the texture

itself should be in the .mtl file. In the Plexus interface he can choose the system

path to the .obj file. The imported .obj is used to initialize a vertex buffer object

(VBO) for GPU rendering. The mesh will be displayed in the virtual scene.

Afterwards, the user has to load the texture map image in Plexus. It works

similar to the loading of the mesh. He just has to choose the right system path.

Additionally, he can determine the resolution of the texture in Plexus.

Before the algorithm starts the user can determine a starting position and viewing

direction for the greedy algorithms. Since it is often useful to constrain the initial

point. Therefore, the functionality was realized.

The user has the possibility to choose between different focuses in the path

calculation as already mentioned. If he wants for example a path where the drone

rotates not too much around the own axis the user has to set the weighting for

the rotation higher. In consequence, higher rotation values lead in total to higher

function values and therefore to a higher influence in the minimization. At the same

time, he can choose the number of random routes which are tested and he can define

the initialization method for the particle swarm algorithm.

Also the simulation and the computation speed can be adapted by the user.

Therefore, he can determine how fast the virtual drone should fly. Apart from

the choice of the mesh and the corresponding texture all of the previous described

initializations can be skipped and are just optional parameters for advanced user

settings.

The user also has the possibility to control the application via keyboard. With ’S’
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he can start the path calculation. During the computation he can pause the program

run with ’P’. In the paused mode he can then look at the already computed path

parts in a preview by tipping ’A’. If the program terminated successfully a summary

can be created by pressing ’W’. The summary contains all important facts of the

path which were computed e.g., the total distance for the drone. The results are

then stored in a Log.txt file.

Finally, it can also be chosen between the different optimization methods, namely

random walk, Downhill-Simplex and particle swarm. But also the computation of

the burden can be chosen. The possibilities were already mentioned in Section 3.3.2.

3.7 Program Output

After the user initialized the program and the termination criterion was met several

outputs are given.

First of all, the user gets a texture map with the final reconstructed texture

which enables him to get an idea of how the real reconstruction will look like and

where distortions will be possible. On the other hand, he also gets the rating map

which visualizes which parts of the mesh were seen by the drone and how good the

viewing angles were.

Figure 3.9: Overview of the reconstructed drone path.

Second, the user gets a .txt file called log. This file contains all important facts

about the calculated path like the overall burden for it and the final rating which is

achieved. Figure 3.10 shows a typical log. The first line is only used if the random
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approach is chosen as optimization algorithm. Then, the number indicates how many

random routes are tested for each path element. Afterwards, the total burdens for

translation and rotation are presented followed by the overall achieved rating. Then,

the path length is mentioned and the weights which the user has chosen for the cost

function are shown. Finally, the log file also contains each configuration computed

by the algorithm.

Third, there is a device already mentioned in the last section which enables the

user to review the final drone path. Therefore, he can start the animation which

shows the path in the drone perspective. Below1 one can find a video link which

presents a rendered travelling.

At last, there is also a 3D scene available where the 3D path is drawn into

together with the model to give a better overview of the whole travelling of the

drone (see Figure 3.9).

========== Log of the Drone Path Planning Project =============

Minimum iterations per path: 200

Total Way Cost: 123.678

Total Rotation Cost: 0.473539

Total Rating: 0.781841

Total Time: 1.32704

Number of partial paths: 3

Rating Weight parameter: 200

Cost Way Weight parameter: 1

Cost Angle Weight parameter: 100

-------------------------------------------------------

Computed Positions & Viewing Directions:

-------------------------------------------------------

Pos: 40 | 0 | 0

Dir: -1 | 0 | 0

-------------------------------------------------------

Pos: 40.0668 | -17.4749 | -9.10086

Dir: -0.997719 | 0.0187758 | 0.0648392

-------------------------------------------------------

Pos: 34.2315 | -28.4319 | -17.6536

Dir: -0.792031 | 0.393885 | 0.466413

-------------------------------------------------------

Pos: 20.9492 | -30.1529 | -30.0341

Dir: -0.669116 | 0.553386 | 0.496033

Figure 3.10: The Log.txt file.

1https://www.youtube.com/watch?v=whVabrvCgQw

https://www.youtube.com/watch?v=whVabrvCgQw
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Evaluation

After the program itself was explained in the last chapter, the evaluation now tries

to visualize and validate the results of the thesis. Therefore, different test settings

will be described and compared. For all of them the geometrical burden function

which includes rotation was used.

4.1 Quality of the Reconstruction

First of all, a good quality of the reconstructed texture map is the main goal of

the application. Since the idea was that modelling experts can use this map for the

texturing of virtual models it is essential to achieve a high precision.

4.1.1 Different Models

The quality of a reconstruction should not depend on the geometry of the input mesh.

Therefore, different models which were modelled and textured in Blender were tested

(see Figure 4.1). In consequence, the ground truth diffuse texture maps are known

and can be used for comparison. The mesh quality varies from simple structures to

more complicated ones which have more surfaces. For each of them the reconstructed

texture map will be compared to a ground truth texture map (see Figure 4.2).

Additionally, the final rating texture is presented which visualizes which parts where

seen by the drone. The colors of the original rating textures are remapped to

grey values for better visualization and comparison. Bright grey values imply good

viewing angles and vice versa. The maps have a resolution of 512×512. For all

reconstructions the Downhill-Simplex implementation was used as the optimization

algorithm. Each run was stopped after a fixed time. In consequence, the achieved

ratings vary.

37
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Figure 4.1: Different models. Left: Comic house (64 vertices, 120 tris). Middle left:

Technisches Büro (1460 vertices, 2831 tris). Middle right: Industriekathedrale (14170

vertices, 11926 tris). Right: Terrain (4225 vertices, 8192 tris).

The simplest model is the “Comic house” mesh (see Figure 4.1 left). It has

a size of 5.34 kilo-byte which means it has only a small number of surfaces. The

reconstructed texture is pretty good and has only minor issues as you can see in

Figure 4.2. The rating texture shows that also most of the mesh parts where visible

during the flight. The rating for the path was about 75%.

The second model is a little bit more complicated and is called “Technisches

Büro” (see Figure 4.1 middle left). The mesh has a size of 0.194 mega-byte. The

reconstructed texture has more holes where no reconstruction can be made. But if

one takes a look at the rating texture it is visible that in regions where a good rating

was achieved also the reconstruction was good. This implies that if the program

would run longer and found additional routes also the quality of the reconstructed

texture will increase and it has less unfilled holes.

The last building model is the “Industriekathedrale” (see Figure 4.1 middle right)

which has a huge number of surfaces and textures. The VBO has a size of 2.41

mega-byte. The reconstructed texture contains smaller parts where the texture was

wrongly mapped. This is caused by the fact that the allowed angles between viewing

direction and surface normal were not too restrictive. By increasing this constraint

also these small issues will disappear. But on the other hand, the computation time

would increase since more views are discarded in the atlas device.

Finally, also a model which is not a building was tested. It has the name “Ter-

rain” (see Figure 4.1 right) and a size of 951 kilo-byte. The reconstruction was

really good although it was not a building. This implies that the algorithm works

probably for arbitrary meshes.

The above results illustrate that the method can handle meshes of different

difficulties. In the previous chapter Figure 3.9 showed that also incoherent meshes

are not a problem for the algorithm. Moreover it shows that by decreasing the

performance or increasing the computation time the results will be better. Finally,
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often a rating of about 75% already suffices to produce visually pleasing results.

Figure 4.2: Quality of the reconstructed texture maps. Left column: Reconstructed

texture map. Middle column: Rating texture map. Right column: Ground truth texture

map.
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4.1.2 Length of the Path

This section evaluates how much a single route contributes to the whole path. The

Downhill-Simplex optimization and the “Technisches Büro” mesh were used to pro-

duce the results. Different program runs were done where the algorithm terminates

after a fixed number of routes n. For each n the experiment was repeated 10 times.

The resulting ratings for n were averaged. 4n is defined as the difference of the

average values for the ratings for n routes and n − 1 routes. Table 4.1 shows the

results for path lengths between one and five. The middle column contains the

average values and the right column shows the corresponding 4n.

The first rating which is already pretty huge is caused by the fact that in the

beginning nothing was visible. Therefore, each new information increases the value

enormous.

The development of the values in the last column indicates that each route has

at the end a positive effect towards the rating which is plausible since the drone saw

more after an additional route. It means that the thesis’ algorithm works in a stable

way and ensures that each route has at the end a positive effect towards the final

rating.

At the same time the last column also indicates that for increasing n the addi-

tional advantage becomes smaller. This behaviour is caused by the fact that it is

more difficult to see new texture parts on a single route when most surfaces were

already visible. In consequence, after a certain number of routes it is no longer profi-

table. The observation can be used to formulate an additional termination criterion.

If 4n is smaller than a constant threshold the program can stop. For the tested

models presented in the previous section and the Downhill-Simplex approach it turns

out that a path length of 10 suffices to reconstruct the texture almost perfectly.

Table 4.1: Number of routes for a path and the corresponding ratings.

Number of routes n Average of the ratings 4n
(in percent) (in percent)

1 43.4 43.4

2 57.2 13.8

3 67.6 10.4

4 76.3 8.7

5 84.3 8
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4.2 Performance

After the quality of the results is validated it is also important that the program runs

in appropriate time intervals. Therefore, the speed of the optimization algorithms

and how the performance correlates to the resolution of the input and output images

was tested. The comic house was the rendered model. The performance tests were

made on a XMG P505 laptop which has a Intel Core i7-5700HQ and a NVIDIA

GeForce GTX970M.

4.2.1 Random Walk Performance

As a first step, the random walk algorithm was examined. The number of rendered

random targets for each route were set to 1000 to achieve similar results compared

towards the Downhill-Simplex method. The termination was set to the point when

a rating of 78% or higher was achieved. The program runs several times and the

average time until the termination criterion was met was 10 minutes. But when the

threshold was set higher than 78% the time increases really fast since it is difficult

to get good new routes with the simple random walk algorithm when most of the

textures were already seen. The performance test therefore shows that this approach

is well suited for scenarios where the time is not that much important and were the

texture ratings do not have to be higher than 78%.

4.2.2 Downhill-Simplex Performance

Also the Downhill-Simplex optimization method was tested. The termination cri-

terion was the same as before for the random walk performance test. The achieved

average time was 7.31 minutes. The main con of the previous performance test was

that the random walk approach was not able to find good paths when most of the

textures were already seen which is the case for ratings higher than 78%. In these

rating regions the Downhill-Simplex approach performs well. So for higher rating

results the Nelder-Mead algorithm is more suited.

4.2.3 Particle Swarm Performance

The performance of the particle swarm highly depends on how the particles are ini-

tialized. If the circle method is chosen the computation of the starting particles does

not take too much time but the later optimization will take more time. If the swarm

is initialized with a previous computed Downhill-Simplex path the additional effort
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for this computation has to be taken into account. At the end the final optimization

will be shorter in time. But also the particle optimization itself has highly varying

evaluation speeds depending on swarm size and path length. Therefore, an average

value would not be sufficient to describe the performance. In general, the evaluation

takes between 20 minutes and 2 hours.

4.2.4 Increasing Image Resolution

This section analyses the performance of the program when the image resolution for

the texture maps increases. Therefore, 1000 random routes with a drone speed of

1.5 were rendered and the time was measured. Table 4.2 shows the results. One can

see that the additional time which is needed when increasing the resolution is not

too high. So the program also performs well when texture maps of higher resolutions

are used.

Table 4.2: Evaluation times for different texture map resolutions.

Image resolution Passed time

(as number of pixels) (in seconds)

256×256 166.75

512×512 175

1024×1024 199.33

4.3 Efficiency of the Found Paths

Previously, the general quality of the texture map reconstruction was tested and

the performance of the different optimization algorithms was compared. Now the

approaches are evaluated towards their path efficiency. This means it is tested how

short the found paths are and how good the achieved rating was.

4.3.1 Comparison: Random Walk vs. Downhill-Simplex

First, the random walk approach is compared with the Downhill-Simplex method.

Therefore, both algorithms run several times. The termination criterion was reached

after a fixed time. The resulting energies which the drone has to spent for translation

and rotation and the achieved ratings were averaged. Table 4.3 shows the results.
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Table 4.3: Comparison of the random walk approach and the Downhill-Simplex al-

gorithm.

Random walk Downhill-Simplex

Translation burden: 127.9 85.6

Rotation burden: 60.9 29.4

Rating 72.5 71.5

The burden of the random walk approach is higher with a factor of 4/3 and the

energy which has to be spent for the rotation is even twice as much. The resulting

ratings are almost equal. In consequence, the found paths which were computed

with the Downhill-Simplex are much more efficient compared to the results of the

random walk approach.

4.3.2 Comparison: Downhill-Simplex vs. Particle Swarm

Finally, also the Downhill-Simplex and the particle swarm are compared towards

their efficiency. Therefore, the Nelder-Mead method was started and stopped after

a path length of seven. The first column in Table 4.4 shows the achieved results. Af-

terwards, the particle swarm was tested in two different ways: At first, the previous

computed Downhill-Simplex route was taken as an initial guess. In the last run the

circle method was chosen for the initialization. The results can be revisited in the

the second and third column in Table 4.4. One can see that in general the particle

swarm delivers better results. When it is initialized with a Downhill-Simplex result

the ratings are only slightly better than the pure Downhill-Simplex outputs. Caused

by the fact that the swarm can also stuck in local minima. But in this scenario the

particle swarm is also a good opportunity to validate the efficiency of the input path.

The circle method achieved the best results.

Table 4.4: Downhill-Simplex algorithm vs. the particle swarm optimization.

Downhill-Simplex Particle swarm Particle swarm

(DS Initialization) (Circle Initialization)

Trans. burden: 163.27 161.90 123.79

Rot. burden: 27.01 26.81 21.66

Rating 71.32 74.90 75.20



Chapter 5

Conclusion and Future Work

5.1 Future Work

Previously, the evaluation showed that the algorithm performs well in terms of

reconstruction quality, performance and efficiency of the path. But there are still

things which can be improved in further studies.

For instance the optimization can be adapted that it finds local or global minima

in a more robust way. Especially when the function to be optimized is high dimen-

sional as in the non-greedy optimization algorithm. There are already papers like

the work of Jamian et. al. [26] and Pham et. al. [27] which are focused on optimizing

high dimensional functions. Therefore, they could help to increase the perform-

ance. The burden which has to be spent for a route or path is an approximation

as mentioned before. To compute precise energies one could made real performance

charts of different drone types and use this information in the burden part of the

cost function.

For the Downhill-Simplex optimization and for the particle swarm the parameter

choices can be varied and tested since these values highly influence the result of

the optimization. Moreover the performance and quality testing should be further

improved by taking additional models.

One of the main cons at the moment is that the thesis is implemented so that

the drone path can only be rendered in virtual but there is no real drone which

can travel along the computed path. Section 2.1 already presented papers which

are able to go from virtual to real. Therefore, it would be a nice adaptation which

might also be considered for this thesis.

Finally, the drone animation itself is at the moment unrealistic since it is assumed

that the drone can fly around corners without reducing the speed and the drone path

44
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consists of straight lines. One paper presented in Section 2.1 had a nice method to

define drone paths in a smooth and consistent way. This approach can be used

to make the UAV paths more pleasant. The current camera can be rotated in all

viewing directions. But real drone cameras are often constraint to certain angles

which are not mentioned in this thesis. A possible solution is the model of Joubert

et. al. [11] since they already consider these limitations.

5.2 Conclusion

The thesis showed that it is in general possible to plan drone paths automatically

where the main target was to optimize a path for a drone such that the drone saw

as much as possible and at the same time the travel path should be efficient.

Therefore, an algorithm was implemented which consists of two main parts.

First the cost function which ensures that the above constraints are fulfilled was

constructed and minimized. Second a GPU-based evaluation of this function was

implemented to speed up the process. The cost is structured so that the user can

control the behaviour of the drone by changing the weights. The optimization is

realized in different ways and the desired algorithms can be selected..

The output consists of two reconstructed texture maps, a log file which contains

the informations about the path, a preview where the user can see how the drone

records the model and a 3D overview of the found solution.

The evaluation showed that the paths are quite small and the resulting recon-

structions have a good quality. The algorithm also performs well for high resolution

texture maps and for meshes with a large number of surfaces. The performance

test showed that each of the optimization has his specific pros and cons. The main

future work will be focused on adapting the program in a way that the computed

paths can be used for real drones.
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mination with aerial robots. Computational Aesthetics, 2014. Cited on 7

[13] Jusuk Lee, Rosemary Huang, Andrew Vaughn, Xiao Xiao, and J. Karl Hedrick.

Strategies of Path-Planning for a UAV to Track a Ground Vehicle . AINS

Conference, 2003. Cited on 7

[14] S. Hrabar, G. Sukhatme, P. Corke, and K. Usher. Combined optic-flow and

stereo-based navigation of urban canyons for a UAV. International Conference

on Intelligent Robots and Systems, 2005. Cited on 7

[15] I.K. Nikolos, K.P. Valavanis, N.C. Tsourveloudis, and A.N. Kostaras. Evolu-

tionary algorithm based offline/online path planner for UAV navigation. IEEE

Transactions on Systems, Man and Cybernetics, 2003. Cited on 7

[16] Wolfgang Stuerzlinger. Imaging all visible surfaces. Graphics Interface, 1999.

Cited on 8

[17] Christos H. Papadimitriou. The Euclidean travelling salesman problem is NP-

complete. Theoretical Computer Science, 1977. Cited on 9

[18] Nicos Christofides. Worst-Case analysis of a new heuristic for the travelling

salesman problem. Office of Naval Research, 1976. Cited on 10

[19] John Canny and John Reif. Lower Bounds for Shortest Path and Related

Probelms. 28th Annual IEEE Symposium on Foundation Compututer Science,

1987. Cited on 10

[20] D.T. Lee nad A. Lin. Computational complexity of art gallery problems. IEEE

Transactions on Information Theory, 1986. Cited on 11

[21] John A. Nelder and Roger Mead. A simplex method for function minimization.

The Computer Journal, 1965. Cited on 11

[22] Wolfram Alpha. Wolfram Alpha computational knowledge engine. http://

www.wolframalpha.com/. Accessed: 2015-10-02. Cited on 11

http://www.wolframalpha.com/
http://www.wolframalpha.com/


Chapter 5. BIBLIOGRAPHY 48

[23] James Kennedy and Russell C. Eberbart. Particle Swarm Optimization. IEEE

International Conference on Neural Works, 1995. Cited on 14

[24] Michael Boyles and Shiaofen Fang. Slicing-Based Volumetric Collision Detec-

tion. ACM Journal of Graphics Tools, 1999. Cited on 20

[25] Autodesk Foundation. Maya. http://www.autodesk.de/products/maya/

overview. Accessed: 2015-12-01. Cited on 34

[26] J. J. Jamian, M. N. Abdullah, H. Mokhlis, M. W. Mustafa, and A. H. A. Bakar.

Global Particle Swarm Optimization for High Dimension Numerical Functions

Analysis. Journal of Applied Mathematics, 2014. Cited on 44

[27] Nam Pham and Bogdan M. Wilamowski. Improved Nelder Mead’s Simplex

Method and Applications. Journal of Computing, 2011. Cited on 44

http://www.autodesk.de/products/maya/overview
http://www.autodesk.de/products/maya/overview

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Overview

	2 Related Work
	2.1 Drone Animation
	2.2 Path Planning
	2.2.1 Travelling Salesman Problem
	2.2.2 Shortest Path in 3D Space
	2.2.3 Art Gallery Problem

	2.3 Optimization Algorithms
	2.3.1 Downhill-Simplex
	2.3.2 Particle Swarm

	2.4 Plexus

	3 Drone Path Planning
	3.1 Program Overview
	3.2 Camera Animation
	3.3 Cost Function
	3.3.1 Collision Checker
	3.3.2 Path Burden
	3.3.3 Path Render
	3.3.4 Path Rating
	3.3.5 Evaluator

	3.4 Greedy Path Calculator
	3.4.1 Random Walk Approach
	3.4.2 Realization of the Downhill-Simplex Optimization

	3.5 Non-Greedy Path Calculator
	3.5.1 Realization of the Particle Swarm Optimization

	3.6 User Input
	3.7 Program Output

	4 Evaluation
	4.1 Quality of the Reconstruction
	4.1.1 Different Models
	4.1.2 Length of the Path

	4.2 Performance
	4.2.1 Random Walk Performance
	4.2.2 Downhill-Simplex Performance
	4.2.3 Particle Swarm Performance
	4.2.4 Increasing Image Resolution

	4.3 Efficiency of the Found Paths
	4.3.1 Comparison: Random Walk vs. Downhill-Simplex
	4.3.2 Comparison: Downhill-Simplex vs. Particle Swarm


	5 Conclusion and Future Work
	5.1 Future Work
	5.2 Conclusion

	Bibliography

