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fasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

I hereby confirm that I have written this thesis on my own and that I have not used

any other media or materials than the ones referred to in this thesis.

Signature:

Marc Habermann
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Abstract

Over the last decade there was an enormous amount of research projects that tackled

the problem of human motion capture, given a single view. At the same time, re-

constructing non-rigidly deforming objects remains challenging, which can also be

seen in video games, where character animations often look orders of magnitude bet-

ter than for example cloth simulations. Estimating such motions is a difficult task

and a lot of existing approaches therefore need a multi-view setup or depth cam-

eras. Apart from these sophisticated recording conditions, there are also monocular

methods, but they often have a low quality or restrict themselves to specific object

categories, dense features, known lighting conditions or structured light sources.

The main goal of this work was to construct an approach that is as general and

accurate as possible, while at the same time the recording setup should be simple

and user-friendly. Therefore, the thesis presents a novel energy-based framework,

named RONDA, that solves the challenging task of non-rigid motion estimation,

given a single RGB video and a template of the object. To achieve a high accuracy,

several penalties are combined where each of them is based on plausible assumptions.

For example the thesis uses a term to ensure a photometric alignment and a smooth

surface deformation. As a result, the proposed method can deal with a large amount

of different motions and a variety of object categories.

To further refine the estimation for the case of woven fabrics, the thesis examined

the local structures of different clothes and found that there are patterns, which can

be used to improve the reconstructions. Due to the increasing video resolution of

recording devices, these small patterns are also visible in the frames and a novel

constraint is presented that exploits this. The combined energy is optimized on the

graphics processing unit such that results are obtained at interactive frame rates.

Quantitative and qualitative evaluations are shown to confirm the accuracy and

generality of the proposed method.
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Chapter 1

Introduction

1.1 Motivation

In the early 70’s, the film series Planet of the Apes caused a sensation and was

commercially very successful. Looking particularly at the recording conditions at

that time, the actors had to wear uncomfortable ape costumes because there were

no other techniques available to produce natural appearing sequences and especially

naturalistic motion. In the movie Dawn of the Planet of the Apes published in 2014,

the situation changed drastically since computer graphics revolutionised making

movies. Watching the animal character Caesar (see Figure 1.1 right) when he climbs

through the post-apocalyptic scenes is just impressive, having in mind that all these

sequences are computer animated.

But this is only one of many examples. In most today’s movies one will find

a lot of synthetic animations. This can be for example actors moving in a virtual

environment or digital objects and characters, which are inserted into a video of

the real world or even completely virtual scenes. The shift from classically recorded

films to computer animated ones is caused by the significant improvement of render-

ing techniques and the higher computational power of modern hardware. Realistic

images can be produced in an adequate amount of time at comparatively low cost.

As a result, one is able to produce nice-looking movies of fictional scenes which

even agree with the physical laws of light transport and one can in fact use freely

available software such as the Cycles render engine of Blender [10]. But what about

the motion in a video? State-of-the-art rendering techniques do not imply realistic

animations. However, humans are very sensitive to it and can distinguish artificial

movements from natural ones. An article on the internet [11] refers to the work

of Saygin et al. [12], who study the human perception, and says that “[...] the

1



Chapter 1. Introduction 2

Figure 1.1: Dawn of the Planet of the Apes. Left. Original recorded film sequence where

the actor Andy Serkis wears a motion capture suit. Right. Final rendered movie where

the motion of the actor was mapped to a 3D model of a monkey. Pictures where retrieved

from [9].

researchers concluded that we’re fine with anything that tries to look human–until

it starts to move. If those movements aren’t distinctly human, our brains don’t

know how to process what they’re seeing.”. So that apart from physically-based

rendering, motion has to be close to reality, too. The computer science community

also recognized that and Ren et al. [13] for example tried to build a data-driven

approach, which automatically judges if a human motion is natural or not. People in

film industries as well realized the evidence and huge companies nowadays have their

own staff just to create natural-looking animations. There are two main approaches

for them to try to achieve this. Either one animates the virtual object by hand

or one records a real motion sequence and maps it to a three-dimensional (3D)

model. The latter needs the right equipment. In case of character motion the actors

often have to wear a suit with sensors or markers (see Figure 1.1 left) that makes

it easier to track the position of the body parts. For general objects like the carpet

in Figure 1.2 and also for humans one often uses depth cameras or a multi-view

setup to record the sequence without requiring markers. After the data acquisition,

motion reconstruction algorithms are used to extract the movement which can then

be used for further applications.

But both approaches have some drawbacks. When it comes to creating animation

by hand, everyone can try this in modeling softwares, nevertheless it is really difficult

and time-consuming. Imagine one wants to animate a human body model like the

SMPL model of Loper et al. [14] consisting of 23 joints, and one also has to choose

the right shape parameters. To record sequences over thousands of frames, it takes

a lot of time and needs a fair bit of skill to place the joints in the right locations.

In case of automated reconstruction techniques, multi-view setups and body suits

are impractical for private users since they are expensive and calibrating the devices
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is a time-consuming process. Large film enterprises have their own green screen

studios and they also engage many experts, who are able to control the devices.

But ordinary people do not have such conditions. Apart from that, depth cameras

are still more expensive than RGB ones and most people feel less comfortable with

them. Additionally, one cannot use the huge amount of freely available RGB-only

video footage on social media platforms like YouTube, Facebook or Twitter.

On these grounds, one of the main goals of the thesis was that the recording setup

is just a single camera to keep it as simple as possible and to be able to use a lot of

existing online content. Focusing on general objects, the thesis presents a method

named RONDA, which is able to reconstruct non-rigid surface deformations, such

as clothes moving in the wind, from a single RGB video and a template mesh of the

object (see Figure 1.2). Given this input, the algorithm automatically produces a

deformation sequence of the virtual model that coincides with the movement in the

video. To solve this challenging task, the thesis created an energy-based approach,

which consists of different cost terms including photometric alignment and several

smoothness constraints. The resulting non-convex function is then efficiently op-

timized using the computational power of modern graphics processing units (GPU).

Besides this, the thesis examines how the amount of useful information changes

when one records high resolution videos since most of today’s devices can produce

such formats. Smartphones for example can already film 4K videos. The proposed

work then shows how to use this additional knowledge for better non-rigid mo-

tion estimation. Therefore, RONDA focuses on the reconstruction of woven fabrics.

Constraining the setting to clothes and being given the additional high resolution

information has the advantage that one can build additional assumptions based on

the textural appearance. These findings are integrated into the energy function

which further improves the quality of reconstructions as will be shown later.

Since the proposed method uses only one RGB camera, one can get rid of the

above described problems at the price of needing a template and high resolution

video data. Today’s cameras are at low cost (one can even use a smartphone to

record a video) and there is neither expert knowledge nor a professional equipment

needed. Furthermore, one is able to use online video content. Therefore, the process

of extracting motions from real scenes becomes easier, faster and cheaper with the

proposed approach.

Given the animation data, typical applications are, as already mentioned, char-

acter animations in movies. But the 3D deformation sequence can also be used to

improve the quality of motion in video games. Moreover, the method could also be

beneficial for researchers. Since the growing field of Machine Learning, in particular
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Figure 1.2: Overview of RONDA. It takes a video and a textured template mesh as

input. The proposed approach then computes the non-rigid deformation of the object

shown in the video. The output is a sequence of meshes which can be used for further

applications.

Neural Networks, becomes more and more important, the demand for the training

data also ascends. Especially motion data is rare and not easy to generate. There-

fore, the thesis could be practical to create motion data bases in a quick and easy

fashion.

All in all, RONDA solves the challenging task of estimating non-rigid deforma-

tions. The core advance is a novel texture-direction term that exploits the regular

structures visible in high-resolution video, such as the yarn patterns of fabrics. But

the thesis’ method can also handle other types of objects because it integrates sev-

eral cost terms already proposed by previous approaches. Typical applications reach

from movies over games up to science.

1.2 Challenges

The thesis tries to reconstruct 3D motion from two-dimensional (2D) videos or more

precisely from 2D projections of the original object. According to the definition

this is an inverse problem, which is in general hard to solve. Estimating non-rigid

deformations from monocular video is, in fact, under-constrained since one wants to
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Figure 1.3: Left. The child and the Eiffel Tower seems to be the same size. Right.

Different pairs of distances and object sizes lead to the same projection. Parts of the

graphic were retrieved from [15, 16].

estimate higher dimensional data (3D deformation) from lower dimensional input

(2D video). As a consequence, there are multiple possible solutions for the same

problem. In the following, some examples are explained to illustrate the challenges.

Scale ambiguity. Most of the people will implicity know what scale ambiguity

is, since there are a lot of photos on the internet like the one in Figure 1.3 left, that

illustrates it well. It comes from the fact that if one moves an object further away

one can compensate the decrease of the projection size by scaling the object (see

Figure 1.3 right). This implies that different camera distances and their correspond-

ing scale factors can lead to the same image, which makes it hard to estimate the

true underlying geometry from a single picture.

Convex-concave ambiguity. The concept behind this ambiguity is that the

projection of a convex surface can be imitated by a concave one and vice versa (see

Figure 1.4 left). Especially in the orthographic projection it is difficult to distinguish

between concave and convex shapes caused by the fact that the projection lines are

parallel to each other. Consequentially, a convex shape can be converted into a

concave one by mirroring it along the plane which is orthogonal to the projection

lines such that the image of the new surface still looks like the old one. This principle

also holds for concave shapes. If one wants to get the same effect with a perspective

camera, one additionally has to stretch the surface to trick the observer.
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Figure 1.4: Top left. Virtual scene containing a convex and a concave surface. Bottom

left. Render result of the scene. Note that the two projections look almost the same

despite some shading differences. Right. Blue geometry represents the ground truth mesh

and the corresponding 2D projection. Black geometries are other shapes that lead to

almost the same 2D projection. Parts of the graphic were retrieved from [17].

General deformation ambiguity. In general, different deformations can lead

to the same projection. Moreno-Noguer and Porta [17] visualized this phenomena

very well in their work as shown in Figure 1.4 right.

Being aware of these challenges the thesis presents different constraints which

help to solve the above ambiguities with the result that the initial ill-posed problem

becomes well-posed.

1.3 Overview

In the following chapter (Chapter 2) an overview of existing approaches for motion

reconstruction is given. Therefore, it is distinguished between the recording equip-

ments which are used by the approaches for example multi-view methods. Chapter 3

introduces the mathematical ingredients and the corresponding notations. Next,

the underlying energy function for estimating non-rigid surface motion in the gen-

eral case is explained (Chapter 4). The special instance of fabrics is introduced in
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Chapter 5. Having the energy function the next chapter (Chapter 6) explains the

structure of the GPU-based optimization framework that is used to solve the non-

convex energy function. Afterwards, the results are shown (Chapter 7) and some

limitations and future work are discussed (Chapter 8). Finally, Chapter 9 gives a

summary of the presented work.



Chapter 2

Related Work

2.1 Multi-view Methods

First, some multi-view methods will be reviewed since they are also related to the

thesis’ topic and they help to get a better understanding of the bigger picture of

reconstructions of non-rigid deformations. Multi-view means that several cameras

at different locations are used to record the scene.

Already in 2001 Carceroni and Kutulakos [18] proposed a template-free method

that was able to recover shape, reflectance and motion given seven different camera

views of the object and full knowledge about the lighting conditions. Therefore,

they introduced so-called dynamic surfels representing the shape, reflectance and

motion in a high dimensional space. To find the correct surfel parameters they

solve an energy function based on the generalized temporal brightness constancy

assumption, which means that surface points do not change their brightness value

over time and space (apart from specular reflections).

A few years later, Pons et al. [19] published a variational multi-view approach

that estimates non-rigid deformations of unknown objects. They use the image of

one camera view to project it back onto the current surface guess. The “textured”

geometry is then reviewed from another position and compared with the correspond-

ing frame to get an estimate if the actual projections of this geometry are consistent

over different views. They developed an energy functional based on this idea and

optimize it by using gradient descend. Compared to the previous paper they deliver

a more detailed surface geometry.

The last approach mentioned here is the one of Perriollat and Bartoli [20], that

focuses, in contrast to the other methods, on paper-like surfaces. This has the

advantage that they were able to build a parametric model of the geometry which

8
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Figure 2.1: Results of Zollhöfer et al. [1]. From left to right. Frames from the input

video. Reconstructed 3D geometry. Re-targeted facial expression. Re-textured version of

the estimated mesh. The graphic was retrieved from [1].

has a lower dimensionality than the non-parametric ones at the expense of worse

generalization. To estimate the non-rigid deformation of the surface they use a

multiple view fitting algorithm.

Although the presented approaches produce good results they nevertheless need

a multi-view architecture which, as already said in the introduction, is really im-

practical for ordinary users.

2.2 RGB-D Methods

To simplify the recording setup, the following approaches use a single depth camera

instead of multiple RGB-only devices. Liao et al. [21] proposed a method that tracks

a deformable object given its depth. Since they only use a single camera, one of the

main issues is occlusion. They tackle this problem by assuming that the motion in

a short time interval is continuous and predictable. To estimate the occluded parts

of the surface, too, they use the reconstructions from different frames where the

occluded parts were probably visible. The partial surfaces are then aligned with the

help of a mesh warping algorithm. Finally, a volumetric method is used to merge

these pieces.

In contrast to Liao, Zollhöfer et al. [1] proposed a newly invented RGB-IR stereo

camera to capture deformable objects placed close to the recording device. After-

wards, their customized patch-match stereo algorithm estimates the RGB-D data.

To generalize well with respect to the shape of the objects they initially create a

template mesh by scanning the object. Given this input, they perform non-rigid re-

gistration between the template and the RGB-D data using an as-rigid-as-possible

constraint. Real-time is realized by an efficient GPU-based solver framework which

is also the baseline for the thesis’ optimization. Their results can be seen in Fig-

ure 2.1.
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Newcombe et al. [22] presented a real-time method that is able to reconstruct

a static scene using the data of a Microsoft’s Kinect sensor. During streaming the

algorithm refines a single implicit model of the recorded environment. Therefore,

they need the current camera position and viewing direction, which is estimated by

comparing the live depth data with the relative depth of the current scene model

using a coarse-to-fine iterative closest point algorithm.

The main drawback of the previous approach is that they assume that the scene

is static in most parts. To overcome this problem, Newcombe et al. [23] proposed

in their follow-up work a new method, called DynamicFusion, to be able to handle

dynamic environments. Therefore, they added a six dimensional motion field, that

captures the deformation of the surfaces.

Although these methods perform great in non-rigid motion reconstruction one

has to bear in mind that they use depth sensors. At the moment, these devices are

still more costly than cameras and most users feel more comfortable with ordinary

cameras than with depth sensors. The main disadvantage of this kind of hardware

is that one cannot use the huge amount of RGB-only video footage provided by

social media platforms like YouTube, Facebook or Twitter. On these grounds, the

thesis focuses on RGB methods and the next section presents the related work in

this research area.

2.3 RGB-only Methods

There are a lot of publications in the field of estimating non-rigid deformations from

monocular video. To get a well-structured overview of them, the thesis divided the

approaches into three categories based on the constraints, that they impose to make

sure that the problem formulation is well-posed. Clearly, some papers belong to

multiple classes, nevertheless their main contributions can be uniquely categorized.

2.3.1 Appearance Constraints

Publications, which constrain the surface appearance of the tracked object, are

the first out of the three categories. In the following, approaches based on the

idea of so-called structured light sources are reviewed since they build the bridge

between the previously discussed RGB-D methods. After that, shape from texture

(SfT) approaches are examined, because they are strongly related to the proposed

texture-based constraint.



Chapter 2. Related Work 11

Structured light sources. To start with the first subcategory of appearance

constraints, the paper of Hernández et al. [24] is presented. They use structured light

sources that illuminate the object of interest, similar to depth cameras which also

use light patterns. As a consequence, the appearance of the surface is constrained by

the light. A camera records the deforming lit object and they propose an algorithm

to estimate the surface normals that are then used to compute depth maps per

frame. Afterwards, the first image of the sequence is used to build a mesh, which is

deformed over time such that it matches the depth data of the corresponding frame.

Additionally, they constrain the motion with an optic flow term and an as-rigid-as-

possible guideline. Zhang et al. [25] and Weise et al. [26] also proposed methods

based on structured light sources. All their motion reconstructions look reasonable

and nice but they again have a customized and more difficult setup since the user

has to install light sources. These illuminants disallow the use of existing videos

recorded under ordinary lighting conditions.

Shape from texture. Since a main part of RONDA consists of the newly in-

vented texture term, which helps to further restrict the solution space for the case

of fabrics, the corresponding related work should also be mentioned at this point.

They all have in common that they assume texture patterns on the surface that is

another form of an appearance constraint. Already in 1992, G̊arding [27] retrieves

the object’s shape by computing the textural distortion caused by the projection.

Loh and Hartley [28] proposed a more generalized method that does not rely on

certain types of textures and viewing conditions. While their methods produce

reasonable deformations they are still of poor quality. Rao et al. [2] went in a differ-

ent direction since they proposed a method which is able to compute the directions

of a texture by using the gradient of a Gaussian. In particular, their method pro-

ceeds in five steps. First, they smooth the image with a Gaussian kernel, followed

by the computation of the gradient image. Next, these two-dimensional gradients

are converted to angles and an averaging is applied in a certain neighbourhood to

obtain the dominant angle of the region. Finally, they propose a coherence measure

such that regions, where no unique gradient direction is present, are detected. A

result is shown in Figure 2.2. The work of Rao and RONDA have in common that

both do texture analysis and up to the third step they are equal, but the thesis

approach differs in the last two ones which will be explained later and it addition-

ally uses these orientations to estimate the shape of an object. Liang et al. [3] built

up on this idea and tried to create a flattened virtual model of curved documents

visualized in Figure 2.2, given a single image of it. They estimate the shape of the

paper with the help of the texture direction created by the text on the document.
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Figure 2.2: Results of Rao et al. [2] and Liang et al. [3]. Left. Image of a texture

which has line-like patterns. The lines mark the estimated texture orientations of Rao’s

approach. Right. In the middle one can see an input image of a curved document and

on the right side one can see the flattened reconstruction of Liang et al. [3]. The graphics

were retrieved from [2] and [3].

But in contrast to the proposed approach, they represent the object as a develop-

able surface and use vanishing points for the reconstruction which is different from

RONDA’s energy-based method that uses a vertex model. Although the last two

mentioned approaches are not directly related to the thesis’ problem, they build the

main inspiration for the proposed texture-based constraint. White and Forsyth [29]

combined shape-from-texture and shape-from-shading (SfS). The texture inform-

ation alone introduces a so-called “texture normal ambiguity” which means that

two surface normals are possible to achieve the observed projected texture. To get

rid of this problem they use a shading constraint that leads to an unique solution.

While their reconstruction can compete with multi-view results, they nevertheless

only show results where the objects have dense patterns on the surface, whereas the

thesis can also interpolate information in non-textured surface regions.

On the one hand, structured light sources are an interesting direction for solv-

ing the non-rigid motion estimation. But their complicated setup and the implied

restrictions contradict the thesis’ goal of a versatile and easy-to-deploy solution.

On the other hand, shape from texture approaches by nature heavily rely on dense

patterns or features. But they can still be of use if they are combined with other

techniques shown in later chapters.
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2.3.2 Geometric Constraints

Next, approaches, which assume certain knowledge about the geometry of the filmed

objects, are discussed. It starts with the least restricted setting, namely template-

free methods, followed by parametric models, that already rely on basis shapes.

Afterwards, automated template acquisition methods and template-based non-rigid

surface deformation approaches are reviewed. The latter assumes the most know-

ledge about the geometry.

Template-free methods. There were several template-free in literature also

called non-rigid structure from motion (NRSfM) approaches, which tried to solve

the described problem by using global models [30, 31, 32, 33, 34], but their main

drawback was that they were not able to reconstruct strong deformations. Russell

et al. [35] use multiple local models instead of a global one such that he can also

capture larger deformations. But they only show results where features can easily be

generated. On the contrary, RONDA can also deal with low textured regions where

feature extraction is challenging. Garg et al. [36] introduced a variational approach

to solve the problem of non-rigid structure from motion. While their reconstructed

geometries have a high level of detail, their main drawback is that they rely on dense

2D correspondences to estimate the mesh. Therefore, their method stands and falls

with the computation of these correspondences. Apart from that, an orthographic

camera model is chosen, which is not valid if the object is close to the camera. Dai

et al. [37] go in a different direction because they tried to build a prior-free NRSfM

approach. On the one hand, it is theoretically beneficial to have a method without

any constraint toward the surface or the camera motions. But on the other hand,

their reconstructions have a low quality and they give only a rough estimate of the

true geometry of the object such that it is impractical for real applications.

Parametric models. Bregler et al. [38] introduced a method to recover non-

rigid shape deformations from a single video sequence without using a template.

Nevertheless, their approach needs a set of basis shapes for the corresponding ob-

ject category, e.g. faces. Additionally, their reconstruction quality is really poor

compared to today’s algorithms. Garrido et al. [4] proposed a method to capture

non-rigid and detailed face geometries. The motion and the mesh have a high

quality, which can be seen in Figure 2.3 and they can directly be used for further

applications. However, they need a 3D scan of the subject’s face, a blend shape

model and they are only able to reconstruct faces, whereas the thesis wants to focus

on general objects.
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Figure 2.3: Results of Garrido et al. [4]. Top row. Frames of the input video. Bottom

row. The frames overlayed with the estimated geometries. Note that the expressions are

realistic and even small wrinkles were reconstructed. The graphic was retrieved from [4].

Template acquisition. In recent years, researchers invented a lot of ideas

to easily generate a template model given multiple images such that it is not too

complicated for ordinary users. This can be either in real-time like the proposed

method of Pan et al. [39] or offline approaches like the ones of Labatut et al. [40]

or Pollefeys et al. [41]. Agisoft [42] even invented a commerical program that one

can buy. It produces a fine-detailed and textured geometry given a set of images

of the object. An example output can be seen in Figure 2.4. Since the model

acquisition nowadays is no longer a big problem the thesis focuses on building a

template-based approach and in the following papers will be presented, which also

pursue this strategy or assume that 3D to 2D correspondences are known.

Template-based methods. In 2007 Salzmann et al. [43] gave a mathematical

explanation of ambiguities “[...] that occur when tracking a generic deformable sur-

face under monocular perspective projection given 3–D to 2–D correspondence.”.

They also proposed a solution to this problem by taking the image sequence into

account instead of a single frame. However, they rely on densely textured surfaces

and 3D to 2D correspondences, whereas RONDA can also handle partially uni-

form regions and it only needs a manual initialization where the user has to place

the template such that it correctly projects onto the first frame. One year later,

Salzmann et al. [8] proposed a closed-form solution, which does not rely on 3D to 2D
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Figure 2.4: From left to right, the first three images are examples out of 34 input pictures.

The last picture is a rendered version of the 3D model produced by the Agisoft software.

Note that the quality of the shirt is really good although the input only consists of 34

images.

correspondences for the input image sequence. Instead, they assume that a separ-

ate picture is given where the 3D configuration of the shape is known. Using this

information they are able to reconstruct inelastic motions shown in the video. To

make their method work for larger meshes too, they developed a deformation model,

that was obtained by applying a Principal Component Analysis (PCA) to a set of

training motions where the geometry was known. Although they do not have to

know the shape, which the template has in the first frame, they still need a con-

figuration but just for another individual picture. In consequence, they just shifted

the initial constraint compared to previous approaches. Salzmann et al. [44] also

published a method that uses local surface models to reconstruct different types

of materials and shapes. With these models they can estimate geometries, which

have a low amount of texture. Instead, the thesis uses a local smoothness prior so

that it is also able to reproduce low textured meshes. Shen et al. [45] proposed

a method to make the reprojection error more robust with respect to outliers and

larger motions between consecutive frames using a different penalization norm for

their feature-based data term. Although the thesis does not directly work on 3D to

2D correspondences but on a photometric error, which will be explained later, it is

also robust to outliers by a customized penalty function. In 2010 Moreno-Noguer

et al. [17] tried to overcome the previously in Section 1.2 described ambiguities

by selecting multiple so-called candidate shapes. To choose the final one out of

the set they use a shading and motion constraint. However, it is assumed that

there is only one light source present which is often not the case, especially in

in-door conditions. This makes their approach less general compared to RONDA.
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Figure 2.5: Results of Yu et al. [5]. Left. The top row shows some frames of the input

video. Below one can see the reconstruction of Garg et al. [36] and Yu et al. [5], which

has a better quality since the overall shape is more similar to the original one in the input

video. Right. Top row shows frames of the “Teddy sequence”. The bottom row shows

Yu’s reconstructions. The graphic was retrieved from [5].

Brunet et al. [46] proposed an energy-based reconstruction method. The problem

boils down to minimizing a non-convex function that consists of three terms respons-

ible for the correct reprojection, preservation of edge lengths and surface smoothness.

Likewise, the thesis uses such constraints but they are formulated in a different way

and additional terms are imposed to make the problem easier to solve and to be

more robust with respect to ambiguities. Unlike Perriollat et al. [47] and most other

papers, Malti et al. [48] proposed a pixel-based approach instead of feature-based

ones. RONDA also makes use of this idea to formulate the photometric error term

that will be discussed later. Östland et al. [49] use the so-called Laplacian formal-

ism proposed by Sorkine et al. [50] in combination with control points on the mesh

to obtain a well-conditioned system of equations. Inspired by that the thesis uses

a Laplacian surface constraint. Bartoli et al. [51] proof in their rather theoretical

work that “template-based isometric surface reconstruction from a single view re-

gistered to the template generally has a single solution”. They also proposed the

first analytical algorithm to solve this type of problem which goes in a different dir-

ection compared to the thesis’ energy-based approach. In contrast to all previously

discussed methods, Varol et al. [6] invented an algorithm where a latent variable

model is learned from a labeled training set. Nevertheless, they only showed results

of highly textured surfaces. The last paper in this paragraph is the one of Yu et

al. [5]. They proposed an energy-based non-convex optimization formalism to solve

the challenging task of reconstruction of non-rigid deformations given a template

and a single video. Since their results have a high quality (see Figure 2.5) and they
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are able to reconstruct a variety of objects, they contribute the most to the ideas

that will be presented in this thesis and some parts of their energy function are also a

component of this work. However, they use the Ceres solver [52], which runs on the

central processing unit (CPU), whereas the thesis uses a GPU-based architecture

that is much faster and RONDA proposes additional regularization terms to further

reduce the solution space.

What one can learn from these approaches is that if one wants to be template-

free this has a certain cost since the problem is really challenging and in general

ill-posed. As the above papers showed one has to choose if one wants to build a high

quality geometry at the price of relying on dense correspondences or if one wants

to be as general as possible by accepting that the quality of the geometry is lower.

None of the limitations complies with the thesis’ claims and therefore they offer

no opportunity to solve the problem. On the other hand, more recent parametric

models like the one of Garrido et al. [4] achieve very accurate and realistic results.

Nevertheless, the object category has to be constrained for example to faces whereas

RONDA wants to be able to reconstruct general objects. The template acquisition

nowadays only needs a single camera and since it is accurate too, the thesis builds

on the idea of a template-based framework. Previous work in this research field

was very successful in terms of quality and generality. However, all approaches have

certain drawbacks and none of them focuses on the case of woven fabrics.

2.3.3 Deformation Constraints

While the previous methods all have in common that they implicitly or explicitly

assume that the surface is inelastic (also called isometric), there are also efforts

to less constrain the types of deformations. The approaches of Moreno-Noguer et

al. [53] and Malti et al. [54] show that the elastic case can also be handled by for

example introducing a shading constraint. Since the thesis wants to focus on woven

fabrics, which are inelastic most of the time, this case will not be discussed any

further at this point. Between elastic and inelastic surfaces there is also a third

category where the edges can shrink but not grow. Salzmann et al. [55, 56] argued

in their work that if one has sharp folds, like it is the case for clothes, they can only

be well reconstructed if the edges are allowed to shrink. This is caused by the fact

that while the geodesic distance on a surface can remain constant, the Euclidean

one can shrink (see Figure 2.6). The thesis instead consciously keeps the edge length

constraint which will be discussed later and overcomes this problem by subdividing

the mesh until the edge lengths are small enough to handle these kind of folds.
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Figure 2.6: Left. Unfolded surface where the two dots mark the vertices of the underlying

mesh. Middle. Folded surface. Note that geodesic distance between the two points remains

the same but the Euclidean one (marked as dotted line) is smaller. Right. By inserting

additional vertices (green dots) one is able to reconstruct the true surface without allowing

the edges to shrink. Parts of the graphic were retrieved from [56].

2.4 Summary

In summary, one can see that none of the above methods is completely customized

towards the described problem of reconstruction of non-rigid surfaces and especially

fabrics given a very simple hardware setup. Multi-view methods are able to produce

high quality reconstructions but the setting is not user-friendly. The same holds

for RGB-D methods and approaches, which use structured light sources. Being

template-free or using parametric models comes with a certain trade-off in terms of

quality or generality. Since the template acquisition nowadays is accurate, general

and easy-to-deploy, it forms the perfect basis for the proposed algorithm. Recent

template-based approaches often need 3D to 2D correspondences or highly textured

surfaces. Instead, RONDA is versatile and fast. In addition, it combines several

advantages from previous papers, does not rely on features and it is also able to

reconstruct low textured regions. Next, the mathematical ingredients to solve a

non-linear system of equations are explained and basic as well as more advanced

image analysis techniques are introduced.



Chapter 3

Math Background

3.1 Linear and Non-linear System of Equations

Since the thesis tries to estimate non-rigid deformations by optimizing a multi-

dimensional function, the notions of linear systems of equations (LSE) and non-

linear systems of equations (NLSE) have to be introduced. The intuition behind

these terms is that one has multiple equations in the same unknowns, also called

variables. An example could be

2x− 3y = −2

4x+ y = 24.
(3.1)

Here, two equations are given and x, y ∈ R are the unknowns. One says that a system

is solvable if variable values can be found such that all equations are fulfilled. The

above example is solvable because (x, y) = (5, 4) is a solution.

LSE are systems where the equations are linear in the unknowns as it is the case

in Equation 3.1. In general, they have the form

A1,1x1

A2,1x1

...

Am,1x1

+

+

+

A1,2x2

A2,2x2

...

Am,2x2

+

+

+

· · ·
· · ·

· · ·

+

+

+

A1,n−1xn−1

A2,n−1xn−1
...

Am,n−1xn−1

+

+

+

A1,nxn

A2,nxn
...

Am,nxn

=

=

=

b1

b2

...

bm.

(3.2)

The variables are xj ∈ R. Ai,j ∈ R are also called coefficients and bi ∈ R are

referred to as constants where i ∈ 1, 2, ...,m and j ∈ 1, 2, ..., n. n is the number of

unknowns and m is the count of equations.

19
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Using matrix notation, Equation 3.2 can be reformulated as

Ax = b, (3.3)

where A ∈ Rm×n, x ∈ Rn and b ∈ Rm are defined as

A =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

. . . · · ·
Am,1 Am,2 · · · Am,n

 , x =


x1

x2

...

xn

 , b =


b1

b2

...

bm

 . (3.4)

In contrast to LSE, NLSE are not linear with respect to the variables which

makes them harder to solve. For example

3x− y = −2

2x2 − y = 0
(3.5)

is a non-linear system since the second equality is quadratic in x. Next, the term

optimization is defined mathematically and it is shown how it relates to LSE and

NLSE.

3.2 Non-linear Least Squares Optimization

The goal of an optimization is to find the values for the parameters x = (x1,x2, ...,xn)>

such that they minimize a function e(x) : Rn → R that is also called cost or energy.

Mathematically, it can be written as

arg min
x∈Rn

e(x). (3.6)

In case of least squares optimization the cost has the form

e(x) =
m∑
i=0

(ri(x))2 (3.7)

= ‖r(x)‖2, (3.8)

where r(x) = (r1(x), ..., rm(x))> : Rn → Rm is also called residuals. The necessary

condition for a minimum of a function f(x) : R → R which takes a single argu-

ment, is that the derivative f ′(x) is zero. Similarly, the necessary condition for a

minimum of e(x) in Equation 3.6 that takes multiple arguments, is that the partial

derivatives ∂e(x)
∂xj

have to be zero for all j ∈ 1, ..., n. Using the gradient notation
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Figure 3.1: One-dimensional first-order Taylor expansion. T1,f (x, o) linearly approxim-

ates the non-convex function f at o. Note that for the one-dimensional case the Taylor

expansion is equal to the tangent line of the function f at location o.

∇f(y) : Rn → Rn defined as ∇f(y) =
(
∂f(y)
∂x1

, ∂f(y)
∂x2

, ..., ∂f(y)
∂xn

)>
one gets the system

of equations

∇e(x) = 0. (3.9)

In the least squares case this boils down to solving

∂e(x)

∂xj
=

m∑
i=0

2ri(x)
∂ri(x)

∂xj
= 0 (3.10)

for all j ∈ 1, ..., n. Since the thesis’ cost function is non-linear in x, the system of

equations 3.9 has not a closed-form solution and one has to use so-called iterative

methods. The key concept is that one initializes the parameters x with an initial

guess x1 ∈ Rn. Then at each step Equation 3.9 has to be approximated with a LSE

and the guess of the previous iteration xt ∈ Rn is refined to the new value xt+1 ∈ Rn.

To apply this strategy one first needs some mathematical tools, starting with

the multi-dimensional first-order Taylor series expansion which is defined as

T1,f (x,o) = f(o) + 〈∇f(o),x− o〉 (3.11)

= f(o) +
m∑
j=0

∂f(o)

∂xj
(xj − oj) . (3.12)
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It gives a local estimate of a function around the point o ∈ Rn. One says that

T1,f (x,o) linearly approximates f at o. An example of an one-dimensional first-

order Taylor expansion can be seen in Figure 3.1. Next, the Jacobian Jf (y) of a

function f(y) : Rn → Rm is defined as

Jf (y) =


∂f1(y)
∂x1

∂f1(y)
∂x2

. . . ∂f1(y)
∂xn

∂f2(y)
∂x1

∂f2(y)
∂x2

. . . ∂f2(y)
∂xn

...
...

. . .
...

∂fm(y)
∂x1

∂fm(y)
∂x2

. . . ∂fm(y)
∂xn

 (3.13)

and the corresponding transpose is

J>f (y) =


∂f1(y)
∂x1

∂f2(y)
∂x1

. . . ∂fm(y)
∂x1

∂f1(y)
∂x2

∂f2(y)
∂x2

. . . ∂fm(y)
∂x2

...
...

. . .
...

∂f1(y)
∂xn

∂f2(y)
∂xn

. . . ∂fm(y)
∂xn

 . (3.14)

Coming back to the iterative scheme the variable update from xt to xt+1 can be

achieved by adding ∆x ∈ Rn, which results in

x ≈ xt+1 = xt + ∆x. (3.15)

After that, the Taylor expansion can be applied to ri(x) and one obtains the so-called

linearised residual

ri(x) ≈ T1,ri
(
x,xt

)
= ri

(
xt
)

+
n∑
j=0

∂ri(x
t)

∂xj

(
xj − xtj

)
(3.16)

= ri
(
xt
)

+
n∑
j=0

(
Jr(x

t)
)
i,j

∆xj, (3.17)

where the second equality follows from the definition of the Jacobian 3.13 and from

the Equation 3.15. (Jr(x
t))i,j is the entry of the Jacobian of r(xt) at row i and

column j. For the sake of readability it is abbreviated as Ji,j and Jr(x
t) is equivalent

to J. The partial derivative of the linearised residual with respect to xj is then

∂ri(x)

∂xj
= Ji,j. (3.18)

For all j ∈ 1, ..., n, plugging 3.18 and 3.17 into Equation 3.10 yields

2
m∑
i=1

Ji,j

(
ri(x

t) +
n∑
k=1

Ji,k∆xk

)
= 0 (3.19)

⇔ 2
m∑
i=1

n∑
k=1

Ji,jJi,k∆xk = −2
m∑
i=1

Ji,jri(x
t). (3.20)
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Using matrix notation one obtains

2J>J∆x = −2J>r
(
xt
)

. (3.21)

Note that the last equation is linear in the parameter ∆x. In consequence, one gets

an LSE which can be solved with the algorithm explained in the next section.

3.3 Conjugate Gradient Method

Conjugate gradient (CG) was originally proposed by Hestenes and Stiefel [57] in

1952. It is a method to numerically minimize the quadratic function

g(x) =
1

2
x>Ax− b>x. (3.22)

If the matrix A is positive definite this is equivalent to solving Equation 3.3.

As initialisation one chooses a starting point x1 for the unknown x. Afterwards,

the error e1 ∈ Rn at time one is computed as e1 = b−Ax1 and one defines ê1 = e1.

Furthermore, one sets p1 = e1 and p̂1 = ê1. Afterwards, the iterations start and

execute the variable updates

αt =
êtet

p̂tApt

et+1 = = et − αtApt

êt+1 = êt − αtA>p̂t

βt =
êt+1 − et+1

êtet

pt+1 = et+1 + βtpt

p̂t+1 = êt+1 + βtp̂t

xt+1 = xt + αtpt,

(3.23)

where ê1,p1, p̂1, et, êt,pt, p̂t, et+1, êt+1,pt+1, p̂t+1 ∈ Rn and αt, βt ∈ R. In the last

line the current guess is refined. The outline of the CG algorithm is partially based

on the version of the book Numerical Recipes [58]. Figure 3.2 shows a Conjugate

Gradient optimization. With this method one can now solve the linear system

of equations shown in Equation 3.21 with respect to ∆x by choosing the variable

assignment

A = 2J>J

x = ∆x

b = −2J>r
(
xt
)

.

(3.24)
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Figure 3.2: Visualization of the Conjugate Gradient method for the 2D function

f(x, y) = x2 + y2 that corresponds to setting A =

(
2 0

0 2

)
and b =

(
0

0

)
. The red

dot marks the initial guess. The orange ones are intermediate results and the green point

marks the final solution.

As a result, one has a solution for the linear approximation of the original non-linear

system. But to solve the later one, another step has to be taken, which is the content

of the next section.

3.4 Gauss-Newton Method

To get the final solution one can use the so-called Gauss-Newton method that is also

greatly explained by Stephen Boyd and Lieven Vandenberghe [59]. The idea behind

is that one can reformulate Equation 3.21 as

∆x = −
(
J>J

)−1
J>r

(
xt
)

. (3.25)

Plugging this into Equation 3.15 yields

xt+1 = xt −
(
J>J

)−1
J>r

(
xt
)

. (3.26)

Since one already knows from the previous section what the value of ∆x is, this boils

down to a simple addition, also called Gauss-Newton step. Nevertheless, the non-

linearity of the thesis’ cost e(x) also introduces some difficulties since one wants to

find the global optimum, but the function can have multiple local minima where the
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algorithm can stuck. For example, the function shown in Figure 3.2 does not have

such an issue since it is convex meaning that there is only one minimum. In contrast,

the function shown in Figure 3.1 has two minima. Depending on the initialization

one can obtain different solutions using the CG method. While choosing x1 = o leads

to the global optimum g, the initialization x1 = w only finds a local minimum l.

Thus, one should choose an initial guess close to the global solution. Assuming

that the initialization fulfils this requirement, the thesis’ non-linear energy function,

which will be explained in the next chapter, can be solved using the above concepts.

3.5 Camera Model

Since RONDA uses camera projections for example to compute the photometric

error, the underlying perspective camera model should be explained that is sim-

ilar to the one discussed in the book Fundamentals of Computer Graphics [60].

Without loss of generality it is assumed that the device is placed at the global ori-

gin and the viewing direction, also called Principal Axis, coincides with the global

z-axis. Because of this and the fact that the other two axis are also parallel to the

corresponding global ones, the Camera Coordinate System is equal to the Global

Coordinate System and one can get rid of the Extrinsic Camera Matrix. It remains

to introduce the Intrinsic Camera Matrix

P =

αu γ u0

0 αv v0

0 0 1

 , (3.27)

where the entries are a defined as

αu =
f̂

su
ru

αv =
f̂

sv
rv

u0 = oxru +
ru
2

v0 = oyrv +
rv
2

γ = paru.

(3.28)

su, sv ∈ R are the size of the camera sensor along the u- and v-direction. ru, rv ∈ R
form the resolution of the video. ox, oy ∈ R are the x- and y-coordinates of the

Principal Point in the Camera Coordinate System. It is defined as the location

where the Principal Axis and the Image Plane intersect. Usually, it is assumed that
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Figure 3.3: The perspective camera model that illustrates the components of the Intrinsic

Camera Matrix. The blue dots visualize the projection π(p) of the point p ∈ R3 at the

real object onto the Image plane at location p′ ∈ R2.

the point (u0, v0)
> lies at the center of the image. Thus, ox and oy are set to zero.

f̂ ∈ R is the focal length of the camera and it is defined as the distance between the

Focal Point and the Principal Point. Finally, pa ∈ R is the Pixel Aspect which can

be computed as the ratio of the pixel width to the pixel height. The above terms

are visualized in Figure 3.3.

Having this matrix, the projection function π : R3 → R2 can be defined as

π(p) =

(
π1(p)

π2(p)

)
=

(
αup1+γp2+u0p3

p3
αvp2+v0p3

p3

)
. (3.29)

It takes a 3D point p = (p1,p2,p3)
> and returns the corresponding position on the

Image Plane (see Figure 3.3). Since the thesis makes use of the OpenCV library [61]

it also follows their convention of the Image Coordinate System where the u-axis

goes from left to right and the v-axis goes from top to bottom, starting at the top-left

corner.
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3.6 Images, Image Gradients and Edges

The thesis’ energy function operates on images. Therefore, they should be formally

defined as well as their gradients since both are needed to compute the partial de-

rivatives for certain parts of the cost terms. In the real world an image consists of

two-dimensional continuous functions It(u, v) : R2 → R. They take a 2D coordin-

ate and return the corresponding value of a certain color channel t ∈ {R,G,B, S}
representing the red, green and blue components or in case of a grey scale image, it

returns the grey value. But the pictures, which people store on their computers, are

just sampled and quantized versions of the real ones. The thesis represents a color

image as three discrete functions IR(i, j), IG(i, j), IB(i, j) : N2 → {0, ..., 255}, one

for each color channel. In case of grey scale images, there is just a single function

IS(i, j) : N2 → {0, ..., 255}. They take a pixel position (i, j) ∈ N2 and return the

quantized color or grey value ranging from zero to 255.

Since one has such a discrete version of an image, the gradient

∇I(i, j) =
(
∂It(i,j)
∂u

, ∂It(i,j)
∂v

)>
cannot be computed analytically. Instead, it has to be

approximated with the help of finite differences. The thesis uses

∂It(i, j)
∂u

≈ I t(i+ 1, j)− I t(i− 1, j)

2hu
= Itu(i, j)

∂It(i, j)
∂v

≈ I t(i, j + 1)− I t(i, j − 1)

2hv
= Itv(i, j)

(3.30)

as gradient approximation ∇I t(i, j) =
(
∂Itu (i,j)

∂u
, ∂Itv (i,j)

∂v

)>
in the u- and v-direction

of the image It at position (i, j) ∈ N2, which agrees with the definitions in the liter-

ature [62, 63]. hu, hv ∈ R are the grid sizes along the corresponding directions that

are assumed to be one. The gradient magnitude can then be defined as ‖∇I t(i, j)‖.

Since the edges or line-like patterns in an image are one of the key components

of this work, it is natural to ask how they can be detected. An intuitive definition of

an edge would be that these are areas where a high difference is present between the

values of neighbouring pixels. Thus, if a pixel is an edge then the gradient at that

location should have a maximum or a minimum. In different words, the gradient

magnitude has to be larger than a predefined threshold.



Chapter 3. Math Background 28

3.7 Image Smoothing

Smoothing is a fundamental operation on images and an adequate strategy to remove

noise and to create a gradient direction in flat regions. Hence, the thesis also applies

a blur operation over the frames. The math behind is a discrete 2D convolution of

a kernel matrix K ∈ Rw×w with the image function I t. The convolution operator ∗
is defined as

(I t ∗K) (i, j) =
w∑
k=1

w∑
l=1

Kk,lI t (i+ k − w + 1), j + l − w + 1) (3.31)

and the convolution of two matrices is

(A ∗K) (i, j) =
w∑
k=1

w∑
l=1

Kk,lA(i+k−w+1,j+l−w+1). (3.32)

It is assumed that w ∈ N is an odd number. To smooth the image, the Gaussian

kernel matrix Gw is used where the underlying 2D Gaussian distribution has zero

mean and a standard deviation

σ =
3

10

(w
2
− 1
)

+
8

10
(3.33)

based on the OpenCV implementation of the smoothing function. The entries of

Gw are the sampled values of this distribution. At image regions where the kernel

goes beyond the boundary, imaginary pixels are created by mirroring the existing

ones along the boundary axis. The same principle holds for the case of two matrices.

Coming back to image gradients one can now rewrite the gradient approximation

as

Itu(i, j) = (I t ∗Du) (i, j) (3.34)

Itv(i, j) = (I t ∗Dv) (i, j), (3.35)

where

Du =
1

2

 0 0 0

−1 0 1

0 0 0

 , Dv =
1

2

0 −1 0

0 0 0

0 1 0

 . (3.36)
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3.8 Sobel Operator

Usually, the problem with the above derivative approximations is that they smooth

along the u- and v-direction, but not perpendicular to it. In addition, they are only

able to detect very narrow edges. To compute the gradient without these issues, one

can convolve the image with Desai’s modified version [64] of the Sobel operators [65]

Suw , Svw which are defined as

Suw = LvDuw (3.37)

Svw = DvwLu, (3.38)

where Duw ∈ R1×w and Dvw ∈ Rw×1 are

Duw =
(
−1 0 0 · · · 0 1

)
, Dvw =



−1

0

0
...

0

1


(3.39)

and Lu ∈ R1×3, Lv ∈ R3×1 are

Lu =
(

1 2 1
)

, Lv =

1

2

1

 . (3.40)

w ∈ N has to be an odd number and defines the kernel size along the corresponding

direction. If one has smooth edges instead of sharp ones, w can be adapted such

that they can also be detected.

3.9 Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) was first proposed by Dalal and Triggs [66],

but in the context of pedestrian detection. HOG can be seen as a feature descriptor

for images that analyses the local gradient directions. The thesis uses a modified

version of the original approach and computes for each pixel of an input image a

corresponding histogram which represents the feature. The algorithm is described

in the following paragraph.
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Figure 3.4: Overview of Histogram of Oriented Gradients. The blue arrows represent

the gradients and the length corresponds to their magnitude. In this particular example

the angles are only counted from zero to 180 and since there are nine bins, each of them

has a range of 20 degrees. Parts of the graphic were retrieved from [67].

An overview of the method is shown in Figure 3.4. First, the color image IR,

IG, IB is converted into a grey scale one IS. For a pixel (i, j), the mask region M is

defined as

M i,j = {(x, y) ∈ N2|i−mu ≤ x ≤ i+mu ∧ j −mv ≤ y ≤ j +mv}, (3.41)

where mu,mv ∈ R are the mask size. Now, the image gradients for each element

(x, y) of M i,j can be computed with the Sobel operator(
ISu(x, y)

ISv(x, y)

)
=

(
(Suw ∗ IS) (x, y)

(Svw ∗ IS) (x, y)

)
, (3.42)

where w ∈ R is again the kernel size as defined above. The corresponding gradient

angle is

α = tan−1
(
ISv(x, y)

ISu(x, y)

)
(3.43)

and the respective gradient magnitudes can also be calculated. After that, a histo-

gram is created, which has b bins such that it divides the 360 degrees into b pieces.
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For example, if one has b = 6, then each bin covers 60 degrees and the first bin

contains the angles between zero and 60 degrees. If the gradient magnitude is larger

than a certain threshold value, the frequency of the bin that falls into the range of

the corresponding angle, is incremented. This thresholding step is applied because

of the fact that small gradient magnitudes often belong to noise. In consequence,

they are not meaningful for the histogram. At the end, one has for each pixel (i, j)

in the image a histogram hi,j ∈ Rb that contains the values of the bins. This gives

an estimate of the frequencies of the gradient angles around (i, j) in a vectorized

form.



Chapter 4

RONDA - Estimating Non-rigid

Surface Motion

After the mathematical ingredients are stated, the thesis’ contributions can be intro-

duced. In the following chapter a solution for tracking general non-rigid deformations

is proposed. First, a formal description of the problem will be given and notations

are defined. After that, the different assumptions and the resulting constraints are

explained which together form the energy function.

4.1 Formal Description of the Problem

RONDA’s goal is to estimate the non-rigid deformation of an object from a single

RGB video. Since this problem is in general severely under-constrained, it is assumed

that a template mesh is given. Hence, a formal definition and the notations of the

terms video, template mesh and deformation are necessary to mathematically state

the objective.

Video. One kind of input is the video showing the deformations of the object. It

consists of T frames where each one is represented as three image functions I tR(i, j),

I tG(i, j) and I tB(i, j) corresponding to the color channel and the time t ∈ {1, ..., T}.
As stated in the previous chapter, the camera does not move and the Extrinsic Cam-

era Matrix is the identity. Furthermore, it is assumed that the intrinsic parameters

of the recording device are known such that the Intrinsic Camera Matrix P as well

as the projection function π(p) for a point p ∈ R3 can be computed.

32
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Template mesh. The template mesh V̂ ∈ RN×3, which has N vertices is

defined as the matrix

V̂ =


V̂1,1 V̂1,2 V̂1,3

V̂2,1 V̂2,2 V̂2,3

...
...

...

V̂N,1 V̂N,2 V̂N,3

 , (4.1)

where each row contains the coordinates of one mesh point. According to that

V̂i =

V̂i,1

V̂i,2

V̂i,3

 (4.2)

is defined as the ith vertex of the template in vector form. This notation is also used

for the following matrices. Furthermore, it is assumed that the geometry at time one

roughly agrees with the true shape shown in the video. Without losing expressive

power, the mesh has to be triangulated, which means that each of the F faces is a

triangle. The edges of the template are implicitly given as the mapping N (i). It

takes the index i ∈ {1, 2, ..., N} of a certain vertex V̂i and returns the set of indices

sharing an edge with V̂i. The faces of the mesh are represented as the matrix

F =


F1,1 F1,2 F1,3

F2,1 F2,2 F2,3

...
...

...

FF ,1 FF ,2 FF ,3

 , (4.3)

where F ∈ {1, ..., N}F×3. Each row contains the vertex indices of one triangle.

According to that Fj is the jth face of the mesh. Beside the geometry it is also

assumed that the UV map

U =


U1,1 U1,2

U2,1 U2,2

...
...

UN,1 UN,2

 , (4.4)

where U ∈ NN×2, is known. Each row contains the pixel coordinates for the cor-

responding vertex. Because of the fact that the texture map ITM is also given, the

color of vertex i can be computed by a simple look up at the position Ui. These

values are stored in the variables cRi
, cGi

, cBi
∈ {0, ..., 255}. Together they form the

three vectors cR, cG, cB ∈ {0, ..., 255}N , which contain the colors of all mesh points.
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Deformation. Non-rigid deformations can be represented as vector fields for

each time step. They contain the 3D displacements for the vertices going from frame

t to t+1. Instead of computing them in explicit form, the thesis directly estimates the

resulting geometry after adding the vector field to the old mesh position. According

to that the shape at time t+ 1 is

Vt+1 =


Vt+1

1,1 Vt+1
1,2 Vt+1

1,3

Vt+1
2,1 Vt+1

2,2 Vt+1
2,3

...
...

...

Vt+1
N,1 Vt+1

N,2 Vt+1
N,3

 . (4.5)

Statement of the problem. Given V̂ and the video frames, RONDA is inter-

ested in sequentially computing the geometry Vt+1 at time t+1 for all t ∈ {1, ..., T}.
It starts with t = 1 and ends with t = T . For each time step the deformation es-

timation can be formulated as the minimization problem

(Vt+1,Φt+1) = arg min
V,Φ∈RN×3

eArap(V,Φ) +
6∑
i=1

ei(V), (4.6)

where ei(V) : RN×3 → R, eArap(V,Φ) : RN×3 × RN×3 → R are the cost terms.

They help to ensure that the mesh deformations agree with the motion in the video

by penalizing movements, which violate the underlying assumptions. V, Φ are

the jointly optimized variables. V represents the mesh estimate and Φ are local

rotations needed for the function eArap. They will be explained later in more detail.

One can see that the cost is split into seven terms. Six of them are the content of

the remaining part of this chapter. Together they build a framework, which is a

combination of existing approaches, such that general object deformations can be

tracked.

4.2 Photometric Alignment

The overall goal is that the reconstructed geometry should match with the shape of

the real object in the actual frame. Because one has no access to the ground truth, a

direct measure of mesh differences cannot be applied. Nevertheless, the vertex color

(cRi
, cGi

, cBi
) of the template is known and it is assumed that it remains constant.

One can then measure the difference between (cRi
, cGi

, cBi
) and the color observed

at the pixel location in the frame where Vi is projected onto. This builds a strong

source of information, which can be used to indirectly measure the correctness of

the estimation. Based on the work of Yu et al. [5], the thesis uses a cost term
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ePhoto(V) : RN×3 → R that minimizes these color differences. In the following, the

penalty is also called photometric alignment and it is defined as

ePhoto(V) =
N∑
i=0

(σp (CR (π (Vi))− cRi
))2

+ (σp (CG (π (Vi))− cGi
))2

+ (σp (CB (π (Vi))− cBi
))2.

(4.7)

For every vertex Vi, it consists of three parts where each corresponds to one of the

color channels c ∈ {R,G,B}. Cc (u, v) : R2 → {0, ..., 255} is defined as

Cc (u, v) =

(I t+1
c ∗Gw) (due, dve) , if 0 ≤ due < ru ∧ 0 ≤ dve < rv

∞ , else.
(4.8)

The function takes the location on the image plane where Vi is projected onto.

The pixel coordinates are obtained by rounding up the real valued 2D coordinates.

If they do not lie inside the image, the function outputs infinity since no measure

can be made. Otherwise, the color of the smoothed frame is returned where Gw

is the Gaussian kernel with width w. The smoothing is applied for two reasons.

On the one hand, it eliminates noise and on the other hand, it creates non-zero

image gradients at regions where an edge between two flat areas is present. Because

otherwise having zero image gradients results in vanishing partial derivatives and

the solution of the optimization could not be refined as one can see in Figure 4.1.

The function σp(x) : R→ R is defined as

σp(x) =

x , if |x| < p

0 , else,
(4.9)

where p ∈ {0, ..., 255}. It takes the color differences (Cc (π (Vi))− cci) and thresholds

it such that the 2D locations which lie outside of the image do not contribute to the

solution. At the same time projections where the color differences are too large are

also set to zero. For example if one defines p = 200, then all color differences above

200 are excluded from the minimization. The idea behind this is that occlusions

often lead to such strong mismatches and the photometric alignment of occluded

vertices obviously contains no information and therefore it should not be part of the

optimization.
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Figure 4.1: First column. The top graphic shows an input frame overlayed with the

previous geometry estimate which does not perfectly project onto the triangle in the

frame. On the bottom one can see the same frame smoothed with a Gaussian kernel.

Middle column. Both pictures show the image gradient magnitude where the brightness

increases with the magnitude, overlayed with the previous shape estimate. Right column.

Geometry after the minimization. Note that the reconstruction of the unsmoothed image

did not move because the image gradients were zero at the locations where the vertices are

projected onto. Instead the reconstruction of the smoothed frame is close to the ground

truth.

4.3 Laplacian Surface Deformation

The idea is that if a vertex Vi changes its position, his neighbours Vj with

j ∈ N (i) should also be influenced such that the overall shape is still spatially

smooth compared to the template mesh V̂. This is the case especially for clothes,

but also for other objects like paper. The constraint eLaplacian (V) : RN×3 → R is

therefore defined as

eLaplacian (V) =
N∑
i=0

∑
j∈N (i)

∥∥∥(Vi −Vj)− (V̂i − V̂j)
∥∥∥2 , (4.10)

where ‖·‖ is the Euclidean norm. In the following, it is also called Laplacian sur-

face constraint. The main advantage of this term, is that it can propagate the

deformation estimate over multiple vertices (see Figure 4.2) and at poorly textured

regions one can still reconstruct the shape, if the surrounding vertices deliver enough

information.
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Figure 4.2: Information propagation of the Laplacian surface constraint. Only the

upper right corner of the paper mesh contains texture information. In consequence, the

photometric alignment can compute the deformations just in this area. Nevertheless, with

the help of the Laplacian surface constraint the motion, e.g. translations, can be carried

from the red dot to the non-textured parts of the mesh (lower green dots). The red arrows

mark the deformation propagation.

4.4 Preservation of Edge Lengths

The next constraint is based on the assumption that the object has a non-flexible

surface, which is for example the case for most woven fabrics. This implies that the

edge lengths should be preserved compared to the template. The corresponding cost

function eEdge (V) : RN×3 → R is defined as

eEdge (V) =
N∑
i=0

∑
j∈N (i)

(
‖Vi −Vj‖ −

∥∥∥V̂i − V̂j

∥∥∥)2 . (4.11)

This constraint can help to solve the previously mentioned scale ambiguity since

it ensures that the overall mesh size remains constant. Figure 4.3 illustrates the

influence of this cost term.
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Figure 4.3: Influence of the edge length constraint. Left column. Side view of the first

and last frame where the triangle represents the camera and the carpet is the tracked

object. Middle column. First and last frame. Right column. On the top one can see

the reconstruction of the object for the last frame without the edge length constraint and

below the one which included it. Note that the upper estimate is far away from the ground

truth since the geometry shrank whereas the one below keeps the original edge lengths

and it therefore gives a more accurate result.

4.5 Smooth Motion

Since today’s cameras can record videos with a high number of frames per second

(fps), only a short time is passed between two consecutive images. In consequence,

the displacement of the vertices between t and t + 1 also has to be small.

eVeloctiy (V) : RN×3 → R that is defined as

eVeloctiy (V) =
N∑
i=0

∥∥Vi −Vt
i

∥∥2 , (4.12)

ensures this by penalizing large motions. Hence, the search space for the vertex Vi

can be reduced to a sphere with a small radius centered at the old position of the

vertex Vt
i. Another advantage is that it can also help to recover the shape at low

textured regions since it does not depend on textural information.
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4.6 Smooth Direction of Motion over Time

The next constraint is based on the assumption that the motion direction changes

only smoothly over time. This is often the case since objects need a certain time to

accelerate, to change the moving direction and to stop. Therefore, the cost term

eAcceleration (V) =
N∑
i=0

∥∥(Vi −Vt
i

)
−
(
Vt
i −Vt−1

i

)∥∥2 (4.13)

penalizes large deviations of the actual moving direction from the previous one that

is defined as the difference Vt
i −Vt−1

i .

4.7 As-rigid-as-possible Deformations

Finally, the as-rigid-as-possible (ARAP) constraint

eArap (V,Φ) =
N∑
i=0

∑
j∈N (i)

∥∥∥(Vi −Vj)−Ri(Φ)(V̂i − V̂j)
∥∥∥2 , (4.14)

which is also used by Yu et al. [5] and Zollhöfer et al. [1], allows local rotations

for each of the mesh vertices as long as the relative position with respect to their

neighbourhood remains constant. The local rotation function

Ri(Φ) =

Ri,1,1(Φ) Ri,1,2(Φ) Ri,1,3(Φ)

Ri,2,1(Φ) Ri,2,2(Φ) Ri,2,3(Φ)

Ri,3,1(Φ) Ri,3,2(Φ) Ri,3,3(Φ)

 (4.15)

=

 cos(θ) cos(φ)− sin(θ) cos(β) sin(φ) sin(θ) cos(φ) + cos(θ) cos(β) sin(φ) sin(β) sin(φ)

− cos(θ) sin(φ)− sin(θ) cos(β) cos(φ) − sin(θ) sin(φ) + cos(θ) cos(β) cos(φ) sin(β) cos(φ)

sin(θ) sin(β) − cos(θ) sin(β) cos(β)

 (4.16)

per vertex i is derived through the Euler angles [68]. θ, β and φ are the rotations

according to the x-, y- and z-axis such that each local transformation has three

parameters. For the sake of readability the index i was dropped. More formally, one

has θ = θi, β = βi and φ = φi. These parameters for all vertices are then stored in

the matrix

Φ =

 θ1 β1 φ1

...
...

...

θN βN φN

 (4.17)

that has a size of N × 3.



Chapter 5

RONDA - Non-rigid Motion of

Woven Fabrics

5.1 Idea

The first question that arises is: Why should one focus on fabrics? The answer is that

while their was a huge success in the field of human motion capture, the recovered

animations of clothes still appear synthetic, if one looks for example at computer

games. At the same time, fabrics have some nice properties such that reconstruction

algorithms can make use of them as explained in the following. Inspired by that

demand and these characteristics, the thesis presents a novel texture term, which can

be combined with the previous energy functions to refine the estimation of non-rigid

motions for the case of woven fabrics.

Therefore, a closer look was taken to the characteristics of clothes to build an

additional constraint. Most of the studied garments show line-like structures caused

by the manufacturing process. Since they are very small one was not able to capture

them at large scale in the past. But due to technological developments, the video

resolution of the recording devices increases steadily and nowadays, the textural

lines can be seen if one zooms into a video. Figure 5.1 illustrates the difference

between low and high resolution videos regarding the richness of details.

So, these patterns can now be captured. But to really compute a texture direction

and how they can be of use, previous approaches [3, 69, 2, 70] were examined and

parts of their concepts are adapted to form the proposed energy function. In the

next section, the algorithm, which finds the directions of textures, is explained for

the case of line-like patterns.

40
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Figure 5.1: Comparison between low and high resolution frames regarding the richness

of details. Top left. Downscaled image with a resolution of 853 × 1065. Top right.

Original image with a resolution of 3409 × 4257. Bottom. The corresponding zoomed

versions, which are converted to grey to better visualize the details. Note that while the

line patterns are clearly visible at high resolution, they cannot be seen at low resolution.

5.2 Computation of Directions of a Texture

In Chapter 3, the concept of HOG was introduced that provides a tool to describe

the local texture directions where each pixel (i, j) of an input image is related to a

histogram hi,j of gradient angles. This method can also be applied to pictures of

fabrics. In the following, it is assumed that the number of histogram bins is 360, such

that each bin belongs to one degree. Furthermore, the angle direction is clockwise,

where zero degree is parallel to the u-axis. An example is shown in Figure 5.2. Here,

the special characteristic of woven fabrics becomes visible. Caused by the line-like

patterns, there are two more emerging texture gradient angles α and β, which are

perpendicular to the lines. The histogram in Figure 5.2 validates this since there
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Figure 5.2: Histogram of Oriented Gradients of woven fabrics. Left. The mask region

with the center pixel in the middle. Right. The corresponding histogram.

are two maxima, one at about 75 degree and one at 255 degree. These are exactly

the angles orthogonal to the one of the line patterns (165 degree).

In the following, only these two so-called dominant frame angles are of interest

because they provide the most characteristic information of the pattern in the input

image at (i, j). Since, β can be computed out of α by taking ((α + 180) mod 360)

and vice versa, only one of the two values has to be stored. Therefore, one can

compute the dominant frame angle αmax,i,j for (i, j) as

αmax,i,j =

maxLoc (hi,j) , if p < max (hi,j)

∞ , else,
(5.1)

where p ∈ N is a predefined threshold parameter. The maxLoc-operator returns the

position of the bin having the highest frequency and the max operator determines

the largest value of the histogram vector. The thresholding is applied such that flat

regions do not return a dominant angle because they indeed have none. After that,

αmax,i,j is converted to a 2D direction, which is referred to as the dominant frame

gradient dF,i,j ∈ R2 that is defined as

dF,i,j =


(

cos (αmax,i,j) , sin (αmax,i,j)
)>

, if αmax,i,j ≤ 360(
0, 0
)>

, else.
(5.2)

Finally, these directions are stored in two images

IDir,u(i, j) = (dF,i,j)1 , IDir,v(i, j) = (dF,i,j)2 . (5.3)
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All in all, one has for each pixel (i, j) of an input image the corresponding 2D

dominant frame gradient that is the most occurring direction in the mask region,

stored in IDir,u(i, j), IDir,v(i, j).

5.3 Derivation of the Texture-based Constraint

So far, the computation of the dominant frame gradients is known. Now, it will be

explained how they can help to form a constraint. An overview of the method is

given in Figure 5.3.

UV map and HOG. Since the UV coordinates Uk,Um,Ul for each vertex of

the triangle Fi = (k,m, l) are given, one can compute the pixel position cTM ∈ R2

of the triangle’s center point in the texture map (marked as blue dot in Figure 5.3)

as

cTM =
1

3
Uk +

1

3
Um +

1

3
Ul. (5.4)

Now, the mask region around dcTMe is defined as the 2D bounding box of the

triangle, where d·e rounds up all elements of a vector. The histogram of the center

point in the texture map can be calculated and with the above concept one can

determine the resultant dominant frame gradient dTM.

Barycentric coordinates. By adding dTM to the center, the barycentric point

bTM = cTM + dTM is obtained (marked in yellow in Figure 5.3). In general, one

can take any point on the half-line cTM + sdTM where s > 0. But the cost term

which will be shown in the next section is independent of the choice of s due to a

normalization and therefore, the thesis sets s to one. To express bTM as a linear

combination of the triangles’ UV coordinates, RONDA solves the equation

Bi,1Uk + Bi,2Um + Bi,3Ul = bTM (5.5)

for the barycentric coordinates Bi,1,Bi,2,Bi,3 of the face Fi. They form together

with the other triangles the barycentric coordinates matrix

B =


B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

...
...

...

BF ,1 BF ,2 BF ,3

 . (5.6)

Each row represents the texture gradients for the respective triangle of the mesh in

an implicit form, which becomes clearer in the next paragraph.
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Figure 5.3: Overview of the texture term that illustrates the different steps explained in

Section 5.3.
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2D to 3D. Since the 2D point bTM can be represented as a linear combination,

one can easily compute the corresponding 3D barycentric point b3D ∈ R3 on the

mesh V as

b3D = Bi,1Vk + Bi,2Vm + Bi,3Vl (5.7)

as well as the 3D center point

c3D =
1

3
Vk +

1

3
Vm +

1

3
Vl. (5.8)

The barycentric coordinates remain constant, so that b3D, c3D only depend on the

mesh vertices. In consequence, they can be changed by deforming the surface.

Dominant mesh gradients. Given b3D, c3D and the camera intrinsics, the 3D

points can be projected into the current frame t + 1 and one obtains

bF = π(b3D) ∈ R2 and cF = π(c3D) ∈ R2. The difference dM = bF − cF ∈ R2 is the

projected texture gradient of the mesh, which is called the dominant mesh gradient.

At the same time, one can retrieve the dominant frame gradient dF (marked as

violet arrow in Figure 5.3) of the frame t+ 1 at the location of cF by the image look

up

dF =

(
I t+1
Dir,u(dcFe)
I t+1
Dir,v(dcFe)

)
. (5.9)

Similar to the photometric alignment, RONDA penalizes deviations of the two gradi-

ents dM,dF since they should align with each other, if the deformation is correctly

estimated. Next, the concrete energy function for the above described method will

be shown.

5.4 Texture-based Constraint

eTexture (V) : RN×3 → R ensures that the dominant mesh gradient and the dominant

frame gradient at the center location of the triangle Fi = (k,m, l) are aligned and

it is defined as

eTexture (V) =
F∑
i=0

‖ρp (dM,i,dF,i)‖2. (5.10)

Here,

dM,i =
π (b (Fi))− π (c (Fi))

‖π (b (Fi))− π (c (Fi))‖
(5.11)

represents the dominant mesh gradient of face Fi where the division is applied to

normalize the vector and

dF,i =

(
I t+1
Dir,u (π (c (Fi)))

I t+1
Dir,v (π (c (Fi)))

)
(5.12)



Chapter 5. RONDA - Non-rigid Motion of Woven Fabrics 46

is the normalized dominant frame gradient at the location of the face’s center

where I t+1
Dir,u, I

t+1
Dir,v are the texture gradient images of frame t + 1. The function

c (Fi) : {1, ..., N}3 → R3 computes the 3D center point of a triangle as

c (Fi) =
1

3
Vk +

1

3
Vm +

1

3
Vl (5.13)

and b (Fi) : {1, ..., N}3 → R3 calculates the 3D barycentric point

b (Fi) = Bi,1Vk + Bi,2Vm + Bi,3Vl. (5.14)

Finally, ρp (x,y) : {x,y ∈ R2| ‖x‖ ∈ {0, 1} ∧ ‖y‖ ∈ {0, 1}} → R2 is defined as

ρp (x,y) =


min(x− y,x + y) , if ‖min(x− y,x + y)‖ < p

∧ x 6= 0

∧ y 6= 0

0 , else.

(5.15)

It computes the minimum of the differences between x,y and x,−y. The reason

for this is as already mentioned above, that there are two dominant frame gradients

for the case of line patterns. Since it is assumed that the initialization is close to

the ground truth, RONDA takes the minimum of the two possible directions. But

the function only returns this for the case that they are similar up to a threshold p,

because completely wrong directions are often induced by occlusions and noise and

therefore the corresponding cost should not be counted. Beside this condition, x has

to be a non-zero vector. Otherwise, it would mean that the dominant mesh gradient

was undefined because there were no line patterns present at the corresponding part

of the surface. Similarly, y has to be non-zero because the opposite would imply

that there is no dominant frame gradient present at the specified location in the

current frame.

5.5 Effects of the Texture Term

One could also ask if it is not sufficient to use a penalty term based on first order sim-

ilarity metrics like the image gradient instead of the more complex HOG descriptor.

The reason why Histogram of Oriented Gradients outperforms the others for the

case of fabrics is that HOG is more robust with respect to small noisy gradient

directions, which are often present in pictures of clothes. Another advantage is that

if the pattern is interrupted for example by hard shadows, the proposed approach



Chapter 5. RONDA - Non-rigid Motion of Woven Fabrics 47

Figure 5.4: Effects of the texture term. Left. Red arrow shows the ordinary texture

gradient that is clearly influenced by the shadow. The green arrow shows the dominant

frame gradient of the HOG descriptor. It is not affected by the shadow since there are

enough small gradients corresponding to the texture pattern. Right. One can see a

triangle where the blue vertex projects wrongly. The green arrow represents the correct

deformation of the vertex. The red arrows mark further moving directions, which would

also result in a zero penalty of the photometric term.

is still able to correctly recover the dominant angles of the lines since the frequency

of gradient directions corresponding to the structure of the fabrics are often higher

than the ones caused by the shadow boundary. These findings are illustrated in

Figure 5.4 left.

Apart from that, the photometric term cannot well handle line-like structures in

clothes. The high frequent patterns imply that there are a lot of locations having

the same color so that it is difficult to decide which one is the right projection

area. Assuming a vertex v has the same color as a line structure in the fabrics,

then ePhoto(V) would return zero wherever v lies along the line and this is obviously

wrong. Additionally, due to the density of the patterns it can also happen that

the vertex skips one structure if the size of the update step is too large such that

it goes to the neighbouring same-colored line, which is also wrong (see Figure 5.4

right). But if the photometric cost and the texture term are combined, one obtains

an additional constraint such that it reduces the number of possible deformations.



Chapter 6

Optimization

6.1 Energy Function

After the different cost terms were introduced, one obtains the final energy function

e (V,Φ) = λPhotoePhoto (V)

+ λLaplacianeLaplacian (V)

+ λEdgeeEdge (V)

+ λVelocityeVeloctiy (V)

+ λAccelerationeAcceleration (V)

+ λArapeArap (V,Φ)

+ λTextureeTexture (V) ,

(6.1)

where the lambdas are the weights, which are set before the optimization starts

and afterwards they are kept constant. In the beginning their values can be freely

chosen such that they force a high or a small influence of the corresponding cost

term regarding the solution of the minimization. Setting the weights to zero means

that the respective part of the energy function is not used at all.

6.2 Solver Architecture

e (V,Φ) is sequentially optimized for each of the T frames, which results in the

deformed meshes Vt and the rotation parameters Φt where t ∈ {1, ..., T}. The

initial values of V at each time step are set to the result of the optimization for

the previous frame and the rotation angle values are zero at the beginning. For

the case of t = 2, the starting guess of V is equal to the template mesh V̂.

48
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The architecture of the solver that is used to minimize e (V,Φ), is based on the

work of Zollhöfer et al. [1]. In particular, the presented energy function forms a

non-linear least squares optimization problem and each of the constraints can be

expressed in terms of residuals. For example eVeloctiy(V) can be written as

eVeloctiy (V) =
N∑
i=0

∥∥Vi −Vt
i

∥∥2 (6.2)

=
N∑
i=0

(
Vi,x −Vt

i,x

)2
+
(
Vi,y −Vt

i,y

)2
+
(
Vi,z −Vt

i,z

)2
(6.3)

=
N∑
i=0

(rVelocity,i,x(V))2 + (rVelocity,i,y(V))2 + (rVelocity,i,z(V))2 , (6.4)

where

rVelocity,i,d(V) = Vi,d −Vt
i,d (6.5)

for d ∈ {x, y, z}. Given this notation, one already saw in Chapter 3 that minimizing

e (V,Φ) boils down to solving the LSE

2J>r Jr∆V = −2J>r r
(
Vk,Φk

)
, (6.6)

where r
(
Vk,Φk

)
: RN×3×RN×3 → RM is the function that takes the current mesh

and rotation estimate Vk, Φk with N vertices and returns the vector that contains

all M residuals of the constraints after the kth solver iteration. Jr is the Jacobian

of r
(
Vk,Φk

)
. In the Appendix A, one can see how the entries of the matrices J>r Jr

and Jr can be derived. The variables ∆V of the LSE are the update vector, which

refines Vk.

The minimization problem is then solved in two nested loops. The inner one

computes the solution ∆V of the linear system of equations 6.6 by multiple iterations

of the Conjugate Gradient method. Afterwards, the outer loop performs a Gauss-

Newton step using the intermediate result ∆V.

If one looks closely at the structure of the energy functions, one can see that

the texture term has two times F residuals. The photo, velocity and acceleration

constraint have three times N residuals and finally the Laplacian, ARAP and the

edge terms have residuals that also depend on the neighbourhood structure. As-

suming that each vertex has six neighbours one gets N times 18 residuals for the

two former costs and N times six for the latter one. Therefore, r
(
Vk,Φk

)
has the

size M = 2F + 3N + 3N + 3N + 18N + 18N + 6N . Since the meshes often have

more than 5,000 vertices and 7,000 faces (that corresponds to 30,000 variables and
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Figure 6.1: The transposed Jacobian of the energy function. Note that ePhoto, eVeloctiy

and eAcceleration only have non-zero 3 × 3 entries along their diagonal. For eLaplacian and

eArap each row i has one bigger block of non-zero entries of size 3× 3|N (i)|, which corres-

ponds to the neighbourhood of the vertex Vi and 3×3 non-zero blocks that appear if Vi is

in the neighbourhood of another vertex. Additionally, eArap has tridiagonal entries for the

rotation parameters. eEdge has a similar structure as eLaplacian but the bigger blocks have a

size of 3×|N (i)| and the smaller ones are just 3×1 columns. Note that for eLaplacian, eEdge

and eArap the number of columns of all smaller blocks together and the one of the bigger

block at the same row are equal due to the bidirectional structure of the neighbourhood.

eTexture has single non-zero 3× 2 blocks for row i if Vi is part of the face belonging to this

column. So one can see that the matrix is sparse in most parts.

269,000 residuals), the Jacobian has dimensions of 269,000×30,000, which would

require a lot of memory. Luckily, the matrices have a sparse structure, as shown in

Figure 6.1 and therefore, they do not have to be stored entirely. Instead, the entries

are computed on demand.

The solver is implemented on the GPU using Nvidia’s Compute Unified Device

Architecture (CUDA) [71] that strongly speeds up the computation due to the par-

allelism of the kernel units on the graphics card. One can exploit the fact that

each row of the above LSE can be calculated concurrently at different kernels.

Therefore, one core is assigned to one mesh vertex Vi and it computes the rows

3i − 2, 3i − 1, 3i of Equation 6.6 as well as the rows corresponding to its rotation
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parameters. More precisely, for the left hand side of Equation 6.6 the 3×M matrix,

which is formed by the rows 3i − 2, 3i − 1, 3i of J>r is multiplied with the M × 3

matrix defined by the columns 3i − 2, 3i − 1, 3i of Jr. For the right side of Equa-

tion 6.6, the same 3×M matrix as above is multiplied with the residual vector. The

computation of the rotation parameters follows the same strategy.
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Results

All the results were performed on a XMG P505 notebook, which has 16GB RAM,

a NVIDIA GeForce GTX 970M with 3GB RAM and a Intel Core i7-4720 with

2.60GHz. Furthermore, the frame directions were computed in a preprocessing stage

in order to safe test time. In the next step, synthetic scenes will be evaluated. After

that, the reconstructions of real recordings will be shown, followed by an ablation

analysis, where the influence of the texture term is demonstrated. At last, possible

applications will be presented. The test data, the thesis’ results and a demo video

are available on the project’s webpage1. The estimated deformations can be best

examined by watching the video.

7.1 Synthetic Scenes

The scenes are modelled, textured and animated in Blender [10]. The mesh of

the first frame serves as the geometry of the template. The UV coordinates and

the texture map are initially known, since they were already created during the

modelling stage. To get a better visualization of the estimated deformation and to

be able to compare it with the input image sequence, the reconstructed motions are

rendered in the same scene as the original geometry in the input video.

Carpet. The carpet sequence in Figure 7.1 shows a rotating object. Due to

the regularization terms of the energy function, the reconstruction is close to the

ground truth shape although the object’s texture is challenging, because of the fact

that it is similar to the background color and that it has large flat regions, where

the photometric term is less informative.

1http://www.ronda.3dmodellierung.com/
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Figure 7.1: Reconstruction of the synthetic carpet sequence. The top row shows different

frames of the video. The one below illustrates the rendered reconstruction using the same

background as the original video.

Figure 7.2: Reconstruction of the synthetic MPI logo sequence. Top row. Different

frames of the input video. Bottom row. The corresponding reconstructions, that are

rendered in the same environment as the original sequence.
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Figure 7.3: Angles of the MPI logo sequence. The color encoding represents the dominant

frame angle for each pixel. The images show the angles of the left and right frame in

Figure 7.2. It becomes obvious that they are robustly estimated in the region of the

carpet and lie around zero degree for the left frame and around 150 degree for the other

frame. But the proposed texture descriptor is also able to identify flat regions that are

marked in black, where no dominant frame angle can be found.

MPI logo. The MPI logo sequence in Figure 7.2 shows the same rotation as

in the scene before, but with a different background and another object texture.

Again, RONDA is able to reconstruct the rigid deformation. The correct rotation

is caused by the combination of the texture term and the photometric penalty. On

the one hand, the latter cost provides only a small amount of information near the

object boundaries, since these parts of the mesh have a dense pattern with very

similar colors. On the other hand, the texture term is more informative exactly

at these locations, since the line-like structure is not interrupted by the logo. In

consequence, the combination of both leads to the best result. Figure 7.3 illustrates

the estimated dominant gradient directions of the frames corresponding to the left

and right column in Figure 7.2. One can see that they are correctly and robustly

detected in the object region. But the flat image areas, represented as black pixels,

are identified too.

Synthetic lines. The last synthetic test setting is a high resolution video of a

carpet that has the characteristic line-like pattern. The sequence in Figure 7.4 shows

a non-rigid deformation and the corresponding reconstructions for different frames.

It can be seen that the proposed approach is able to track the deformation and due

to the specialized texture term, it can also recover regions where the photometric

term is less informative. The right column shows a comparison with respect to the

ground truth geometry that validates the accuracy of the reconstruction.
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Figure 7.4: Reconstruction of the synthetic line sequence. Top row from left to right.

One can see an input frame of the synthetic line sequence, followed by the estimated

deformed geometry rendered in the same environment as the original video. On the right,

the ground truth deformation (blue) and the corresponding reconstruction (red) for the

same frame is shown. The bottom row illustrates the result for another frame of the

sequence. It applies to both rows that the reconstruction is close to the ground truth.

7.2 Real Scenes

Next, real recordings of different types of objects will be evaluated. In the beginning,

new sequences are tested, followed by videos from existing approaches.

7.2.1 New Recordings

To test the thesis’ method and especially the proposed texture term, new videos were

recorded since existing data did not capture line-like cloth patterns. The scenes were
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Figure 7.5: Reconstruction of the Van Gogh sequence. Top row. Input frames. Bottom

row. Corresponding reconstructions projected in the input frame. Note that the proposed

approach can handle fast translations as well as rotations.

filmed with a Panasonic GX802 and a lens3, which has a focal length of 12mm. The

sensor size is 17.3× 13mm with an pixel aspect ratio of 4 : 3. The template meshes

are modelled by hand in Blender. The first frame serves as the texture map and the

UV coordinates are the projected locations of the vertices in the image plane. It is

assumed that all vertices of the mesh are visible in the first frame to avoid wrong

vertex colors caused by occlusions.

Van Gogh. The Van Gogh sequence in Figure 7.5 visualizes a piece of paper

with a printed Van Gogh painting. The video shows fast translations and rotations

of the object. RONDA is able to reproduce them well since the smoothing level

of the Gaussian can be adjusted such that the photometric term is able to find

meaningful gradients for large vertex displacements, too.

Rigid kids painting. Figure 7.6 shows the rigid kids painting sequence, where

similar transformations are performed as in the scene before.

Non-rigid kids painting. This video shows non-rigid transformations that are

more challenging than rigid ones. Figure 7.7 shows three input frames, the recon-

structed geometry reprojected into the frame and the same meshes from a different

viewing position. One can see that the proposed approach is able to reconstruct the

convexity of the deformed object.

2http://www.panasonic.com/de/consumer/foto-video/lumix-g-

wechselobjektivkameras/dmc-gx80.html
3http://www.panasonic.com/de/consumer/foto-video/lumix-g-objektive/h-

fs12032e.html

http://www.panasonic.com/de/consumer/foto-video/lumix-g-wechselobjektivkameras/dmc-gx80.html
http://www.panasonic.com/de/consumer/foto-video/lumix-g-wechselobjektivkameras/dmc-gx80.html
http://www.panasonic.com/de/consumer/foto-video/lumix-g-objektive/h-fs12032e.html
http://www.panasonic.com/de/consumer/foto-video/lumix-g-objektive/h-fs12032e.html
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Figure 7.6: Reconstruction of the rigid kids painting sequence. Top row. Input frames.

Bottom row. Corresponding reconstructions projected in the input frame. Although the

texture color is constant in large regions, RONDA can reproduce the underlying shape

due to the smoothness constraints.

Figure 7.7: Reconstruction of the non-rigid kids painting sequence. Top row. Input

frames. Middle row. Corresponding reconstructions projected in the input frame. The

last row shows the 3D reconstruction from a different view.
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Figure 7.8: Reconstruction of the fabric pattern sequence. The first three rows show

pairs of input frame and reconstructed geometry, that is projected into the video frame.

The last row illustrates the estimated dominant angles corresponding to the first and last

frame above.



Chapter 7. Results 59

Fabric pattern. To evaluate the texture term, a moving piece of cloth that has

the typical line patterns as described in the previous chapters, is recorded and recon-

structed. Figure 7.8 shows different frames of the sequence and the corresponding

reconstructions. Although the scene has a challenging shading and a sparse object

texture, RONDA is able to recover the deformations due to the texture term, which

accurately tracks the dominant directions of the line pattern.

7.2.2 Comparison to Other Approaches

In the following, RONDA is evaluated on test data from related approaches. All of

the examples below provide the geometry of the template mesh that corresponds to

the first frame of the sequence. Partially, the vertex colors are given too. If they

are not available, the vertices are projected into the first frame as it was the case

for the own recordings.

Yu et al. [5]. The thesis tested the face sequence of Yu et al. [5], where different

non-rigid deformations are performed due to varying face expressions. Figure 7.9

shows the result of four different frames. One can see that also the untextured

reconstructions illustrate the underlying expression. Figure 7.10 shows a direct

comparison between RONDA’s reconstruction and the one of Yu of the last frame

shown in Figure 7.9. It becomes obvious that both capture the facial expression, but

the proposed approach is faster than the one of Yu due to the computational power

of the GPU. This example with 500 frames indicates that the proposed approach

also performs well for longer video sequences.

Varol et al. [6]. The challenging part of this sequence was that the vertex

displacement at each time step was larger than for other testing scenes due to fast

motions. Some parts of the video are even cut out that is another source of the

large displacements. By increasing the Gaussian kernel size, the proposed approach

was able to recover the fast motion and produced results which are comparable to

existing methods. Some example frames can be found in Figure 7.11.

Salzmann et al. [8]. The proposed approach was also tested against a sequence

of Salzmann et al. [8]. Although the background color is similar to the one of

the moving object and there is the fact that shadows are present, RONDA was

able to reproduce the motion, which visually agrees with the one in the video (see

Figure 7.12).

Valgaerts et al. [7]. Next, the face sequence of Valgaerts et al. [7], who pro-

posed a method based on blend shapes and a 3D scan, is evaluated. Figure 7.13

shows the results. Again, facial expressions are reconstructed well.
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Figure 7.9: Reconstruction of Yu’s sequence [5]. Top row. Input frames. Middle row.

Corresponding reconstructions projected in the input frame. At the bottom row the

reconstructed deformed geometries are visible from a different view. Note that the facial

expressions of the person are clearly recognizable. Especially the eyebrow regions move

remarkably. But also the mouth deformation for the last frame can be seen.
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Figure 7.10: Comparison of RONDA’s reconstruction (left) and the one of Yu [5] (right).

Note that the wrinkles and the facial expression is more visible in the thesis’ estimated

geometry.

Figure 7.11: Reconstruction of Varol’s sequence [6]. Top row. Input frames. Middle

row. Corresponding reconstructions projected in the input frame. Bottom row. Estimated

deformed geometries from another view.
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Figure 7.13: Reconstruction of Valgaerts’ sequence [7]. Top row. Input frames. Middle

row. Corresponding reconstructions projected in the input frame. Bottom row. Estimated

deformed geometries from another view. Again, one can see that RONDA is able to

reconstruct facial expressions.
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Figure 7.12: Reconstruction of Salzmann’s sequence [8]. Top row. Input frames. Middle

row. Corresponding reconstructions projected in the input frame. Bottom row. Estimated

deformed geometries from another view.
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7.3 Ablation Analysis

To validate that the texture term eTexture can help to refine the solution, the thesis

tested several of the above scenes with and without it. In case of synthetic recordings,

the ground truth data was available such that a quantitative evaluation is possible.

Therefore, the measured error is defined as the sum of the Euclidean distances

between the ground truth mesh vertices and the corresponding reconstructed points,

averaged over the number of frames and the vertex count.

Table 7.1 shows the errors of the MPI logo sequence visualized in Figure 7.2 and

the evaluation of a modified version of the scene, but again with the same motion

(see Figure 7.14).

Method Reconstruction error Reconstruction error of

with logo the modified scene

Texture-only 5.627 4.084

Photometric-only 1.321 6.676

Combined 0.825 6.217

Table 7.1: Quantitative comparison of the reconstructions of the MPI logo sequence (see

Figure 7.2) and the modified rotation sequence (see Figure 7.14) depending on the weights

λPhoto and λTexture.

Regarding the first videos, the error decreases by 77%, if one uses only the

photometric term instead of the texture cost. The best result is obtained by the

combination of eTexture and ePhoto (decrease of 38% compared to the photometric-

only estimate). The reason for this behaviour is that on the one hand, the mesh has

certain parts where the line patterns dominate and therefore, the texture term gives

a better estimate in these regions. On the other hand, some areas of the surface

contain more color variations such that the photometric term is more informative

at these locations. If the two penalties are combined, they benefit from each other

such that together they deliver the best result for this test setting.

The errors of the modified video are different from the ones above. In this case,

the best result was obtained by the texture-only setting. But this makes sense too,

since the whole scene does not have a lot of color variations, leading to an error

increase by the photometric term. Due to the fact that the line patterns are not

interrupted by the logo, the texture term can robustly compute the line directions

and they deliver a reliable source of information. The heat maps in Figure 7.14

showing the error per vertex, as well as the ground truth confirm these findings.
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Figure 7.14: Top row. The first and last frame of the modified rotation sequence.

Note that the background and foreground colors are very similar so that an observer can

hardly distinguish between object and background. Middle row. On the left side, the

photometric-only reconstruction is shown in red together with the ground truth in blue.

On the right side, the texture-only estimate is visualized. Bottom row from left to right.

The per vertex error visualized as a heat map for the photometric-only reconstruction

(left) and the one that only uses the texture term (right).
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Here one can see that the photometric-only reconstruction is not able to rotate

the object completely. Instead, the texture-only estimate is close to the ground

truth and captures the motion. The heat maps reflect these observations. The

one for the photometric-only reconstruction has overall higher errors that occur

mostly at the boundary of the object because the outer vertices perform a larger

movement and therefore the error increases faster, if the rotation is not recovered.

The heat map for the texture-only estimation has globally smaller vertex errors. The

highest ones occur also at the boundary region, but for a different reason. They are

projected into a frame area, where the HOG descriptor was not able to find unique

dominant gradient directions since the background stripes and the ones of the object

have a different orientation. By the definition of the texture term, these areas are

regarded as flat regions and eTexture is set to zero. In consequence, these vertices are

only moved by the regularizers and this leads to the small observed errors near the

boundary.

The synthetic line sequence in Figure 7.4 is also quantitatively evaluated and the

errors are shown in Table 7.2. Again, the texture term refines the estimated result.

Method Reconstruction error of

the synthetic stripes sequence

Photometric-only 26.83

Combined 25.54

Table 7.2: Quantitative comparison of the reconstructions of the synthetic stripes se-

quence (see Figure 7.4) depending on the weights of the photometric and the texture

term.

All in all, the texture term can help to recover the deformations for challenging

scenes like the modified version of the MPI logo sequence, where the whole video

has almost the same color. But also for rather usual setups like the synthetic line

sequence, the texture term can improve the estimate, if it is combined with ePhoto,

since there are also small patches that contain line-like structures.

7.4 Performance

To evaluate the speed of the computation, the MPI Logo sequence from Section 7.1

was used, which consists of 100 frames. If not stated otherwise, the frame size is

800 × 800 and the mesh has 1,089 vertices. The solver performs 20 Gauss-Newton

steps and ten CG iterations.
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First, the relation between the vertex count and the performance was tested.

Therefore, the number of mesh points is quadrupled at each step. Table 7.3 below

shows the counts and the corresponding time that was needed to compute the solu-

tion. One can see that for a large number of vertices the performance scales linearly

with respect to their count that enables the user to reconstruct also fine details in

an adequate amount of time. 50,000 vertices for example are already sufficient to

represent small wrinkles in faces without perceivable distortions. Table 7.4 shows

how well RONDA can handle large video resolutions, since it can still compute one

frame in about 1.62 seconds. That implies that the proposed approach can also

cope with the resolutions of current recording devices. The tables (Table 7.5 and

Table 7.6) below show the speed of the thesis’ optimization for different numbers of

CG iterations and Gauss-Newton steps. One can see that the method needs at most

0.53 seconds per frame which is still fast. In most cases, the algorithm converges

after 20 Gauss-Newton steps and 40 iterations of the Conjugate Gradient method.

All in all, RONDA needs between 0.13 and 1.62 seconds per frame, which is

fast regarding the size of the non-linear system that is solved. As stated before, the

performance test was made on a laptop. The speed can still be improved by running

the algorithm on a desktop PC.

Number of vertices N Time (in seconds)

1,089 19

4,225 22

16,641 49

66,049 176

Table 7.3: Performance for different numbers of mesh vertices.

Resolution of the video Time (in seconds)

400× 400 13

800× 800 19

1600× 1600 44

3200× 3200 162

Table 7.4: Performance for different video resolutions.
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Number of CG iterations Time (in seconds)

10 19

20 23

40 33

60 43

80 53

Table 7.5: Performance for different numbers of CG iterations.

Number of Gauss-Newton iterations Time (in seconds)

10 16

20 19

40 25

60 31

80 37

Table 7.6: Performance for different numbers of Gauss-Newton iterations.

7.5 Applications

The 3D animation data, that is the output of RONDA, can be used for several

applications. Two specific ones are shown in Figure 7.15, where in the left column,

the original sequence is shown and in the right column, one can see the edited virtual

scene containing the deformed model.

Re-texturing the mesh. Since the thesis’ approach returns a deforming geo-

metry with UV coordinates, one can edit the corresponding texture map such that

one is able to produce realistic deformations with arbitrary textures that can be used

as training data in Neural Networks. Figure 7.15 illustrates this field of application.

Re-lighting the scene. Usually, re-lighting a scene without knowing the shape

of a moving object is difficult and shadows cannot be determined well. But since

RONDA estimates the deforming geometry, one can change the scene lighting for

the foreground such that the shading remains realistic. An example is shown at the

bottom row of Figure 7.15.
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Figure 7.15: Applications. Top row. Example of re-texturing the mesh. One can see

that the interior of the signpost contains flowers instead of the logo “SOUTH PARK”

after the re-texturing step. Bottom row. This example shows that one can also re-texture

(stripes on the face skin) and re-light the scene such that the shadows on the deformed

model look realistic. For this particular scene a blue and orange light source were chosen.
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Discussion

Of course, RONDA has some drawbacks and limitations since the problem of re-

constructing non-rigid deformations from a monocular video is in general hard and

under-constrained. The remaining challenges will be the content of the following

paragraphs together with ideas for future work to tackle them.

Initialization. Although Agisoft delivers an accurate and detailed template

mesh, the global position still has to be initialized manually. To remove this needed

user input, one can try to automatically estimate the six parameters responsible for

translation and rotation in 3D. Therefore, one can build an energy-based approach

by using a modified version of the thesis’ photometric alignment term that takes as

parameters a matrix which has six degrees of freedom such that it rigidly transforms

all mesh vertices to ensure a correct projection into the first frame.

Real-time performance. Although RONDA is a fast framework, it is still not

in real-time. Especially the computation of the dominant gradient directions in the

frame takes a lot of time. Therefore, future work can involve to build an efficient

GPU-based version of Histogram of Oriented Gradients to speed up the process.

Weight selection. Another practical issue is to find the right choices for λi

where i ∈ {1, ..., 7}. Since the thesis has seven energy terms, one has to determine six

weights (one of the seven can be kept constant). This process can be automatized by

implementing a meta-optimization. It takes as input a synthetic scene such that the

ground truth is known and then a gradient-free method, for example the Downhill-

Simplex algorithm [72], can be used to determine the best weights. Although they

are tuned to the specific scenario, one still obtains a better estimate for certain kinds

of deformations such that these weights can also be applied to real recordings where

ground truth data is not available.

70
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Figure 8.1: Other fabric patterns. Note that they have more than two dominant gradient

directions. Graphics were retrieved from [74].

Generalization of the texture pattern. It is clear that other structural cloth

patterns exist and that they can have more than two dominant gradient directions.

Some examples are shown in Figure 8.1. Therefore, the presented texture term could

be extended in a future work to be able to handle these cases. One idea is to apply

the Hough Transform [73] to the frame, which results in a better representation

of line directions or just to look for more than two peaks in the histogram and

according to that to penalize more than one difference of gradient directions.

L1 norm. The L2 norm for the Laplacian surface constraint introduces a smooth-

ness that is sometimes not desired. If one thinks of sharp folds like the one in Fig-

ure 8.2, it is better to use the L1 norm. The reason is that the residuals are linearly

penalized such that the solution introduces a certain sparsity with respect to them.

This means most residuals will be zero except a few which is the desired behaviour

for sharp deformations. For the ARAP term it can also be beneficial to have a L1

norm to handle scenarios where only a part of the object changes its location while

the rest does not move.

Parametric surface models. One can see that the number of variables lin-

early scales with the amount of mesh vertices. For small geometries (up to 15,000

vertices) this is not problematic, but if one wants to reconstruct larger objects, it is

of advantage to have a parametric surface model such that one does not have this

linear dependency.

Coarse-to-fine strategy. To be able to reconstruct larger motions between

consecutive frames too and to reduce the number of solver iterations until it con-

verges, one can use a coarse-to-fine strategy. This can be applied to the image such

that the process iteratively reduces the size of the smoothing kernel. But also on

the mesh level it makes sense to start with a coarser representation and then refine

it by inserting additional vertices. Figure 8.3 illustrates the idea.
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Figure 8.2: Sharp folds. Left. Input frame. Right. Reconstruction of Salzmann and

Fua [56]. Graphics were retrieved from [56].

Shading term. One can see in the results that RONDA is able to reconstruct

non-textured regions, but only if features in the surrounding area are given. To make

the estimation in such flat parts more robust, one can use an additional shading term.

Due to the steadily improving intrinsic image decomposition methods like the one

of Meka et al. [75] and the fact that clothes often underlie a Lambertian material

model [76], the shading estimation is possible without loosing too much generality.

Liu-Yin et al. [77] even showed that specular reflections based on an approximation

of the Phong model [78] can be used to reconstruct non-rigid deformations.

Contour-based term. To be more robust with respect to convex-concave am-

biguities, one can also try to take the object contour into account. Since there is a

huge progress in the field of image segmentation, like the work of Khoreva et al. [79],

one can try to segment the objects contour from the background and then enforce

that the projected mesh boundary and the segmented one in the frame match.

Combination with a CNN. In the introduction it was said that the thesis can

be used to produce data for deep learning methods. But one could also think of the

opposite direction. The sensor technologies evolve steadily such that one can use

the advanced measurements. For example, there already exist strips that measure

the bending and send this information to the computer. If they are combined in a

way that a surface is formed, one could infer the position of points on the surface by

taking the bending measure into account. If these strips can be developed further

such that they are as small as sewing threads, one could weave them into fabrics and

directly measure the realistic deformation to obtain annotated 3D motion sequences.

By re-texturing them one could also generate additional data. Given this, it can be

used to train a CNN which outputs the kind of deformation shown in a frame. This

estimate can be integrated as an additional constraint for the proposed energy.
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Figure 8.3: Coarse-to-fine strategy. The first row shows the decreasing of the kernel size

that results in different smoothing levels. Below one can see the coarsest mesh on the left

side, which is then refined from left to right by inserting additional vertices.

Camera motions. At the moment, it is assumed that the camera does not

move and all deformations in the video are caused by the mesh itself. To extend the

framework to also handle camera motions, like the characteristic shaking of hand-

held recordings, one can try to jointly estimate the mesh movement and the one of

the recording device. Therefore, one can take the background information in the

video into account to discriminate the two types of motion as proposed by Davison

et al. [80].

Non-sequential optimization. Instead of optimizing each frame by itself,

one can also try to take n frames simultaneously and solve for the corresponding n

deformations. This has the advantage, that imperfections like noise and occlusions

in a single frame can be neutralized by the other frames and one can impose a more

accurate temporal smoothness prior. For example the deformations can be expressed

in the trajectory space like Akhter et al. [81] proposed. They use the Discrete Cosine

Transform to get basis trajectories such that all motions are linear combinations of

them. One the one hand, this reduces the number of variables and on the other hand

it also allows to directly control the temporal smoothness by setting the coefficients

corresponding to higher frequencies to zero.
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Conclusion

The thesis presented an energy-based method, which is able to solve the challenging

task of estimating non-rigid motion, given a single RGB video and a template of the

object. The proposed cost function is divided into different constraints where each

ensures plausible physical properties, for example photometric alignment. Refor-

mulating the task mathematically leads to a non-linear least squares optimization

problem that is tackled by iteratively solving a linear system of equations and sub-

sequent update steps.

One part of the constraints is tuned to the specific case of woven fabrics. It

exploits the regular line patterns due to the fabrication process. To precisely detect

them, a modified version of Histogram of Oriented Gradients was developed and

the difference between the projected texture gradient directions and the ones in the

frame are penalized.

The GPU-based optimization framework is fast since it can solve the linear sys-

tem in parallel. At the same time, the memory usage is low due to the fact that the

Jacobian is not fully stored, but instead the computation is performed on demand.

The presented results show that the method delivers accurate reconstructions,

which can be used in further applications. One possible practical scenario could be

to re-texture the object or to insert the moving mesh into a different environment.

Clearly, RONDA has some limitations caused by the nature of the problem. To

overcome these drawbacks, there is a variety of possible directions for future work

such that the topic of non-rigid motion estimation from monocular video will also

be interesting in the years to come.
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Appendix A

Gradients of the Energy Terms

A.1 Photometric Alignment ePhoto

It was already mentioned that the entries of the transposed Jacobian have a tridiag-

onal structure. For a vertex Vi the rows correspond to the partial derivatives with

respect to the three coordinates Vt,x, Vt,y and Vt,z. The columns correspond to the

colors c ∈ {R,G,B}. Since the partial derivatives are similar for all color channels

the thesis only provides the ones for the red channel’s residual

rPhoto,R,i(V) = σp (CR (π (Vi))− cRi
) . (A.1)

In the following only the case where σp(x) = x is considered because otherwise the

partial derivatives are zero. This yields

rPhoto,R,i(V) = CR (π (Vi))− cRi
(A.2)

and the partial derivatives can be derived as

∂rPhoto,R,i(V)

∂Vt,x

=
∂CR (π (Vi))

∂u

αu
Vi,z

(A.3)

∂rPhoto,R,i(V)

∂Vt,y

=
∂CR (π (Vi))

∂u

γ

Vi,z

+
∂CR (π (Vi))

∂v

αv
Vi,z

(A.4)

∂rPhoto,R,i(V)

∂Vt,z

=
∂CR (π (Vi))

∂u

−αuVi,x − γVi,y

(Vi,z)
2 +

∂CR (π (Vi))

∂v

−αvVi,y

(Vi,z)
2 , (A.5)

if t = i. Otherwise the partial derivatives are zero. ∂CR(π(Vi))
∂u

and ∂CR(π(Vi))
∂v

are

approximated with finite differences in the smoothed image I t+1
R ∗Gw at the location

dπ (Vi)e.
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A.2 Laplacian Surface Deformation eLaplacian

The Laplacian surface deformation constraint can be reformulated as

eLaplacian (V) =
N∑
i=0

∑
j∈N (i)

∥∥∥(Vi −Vj)− (V̂i − V̂j)
∥∥∥2 (A.6)

=
N∑
i=0

∑
j∈N (i)

∑
k∈{x,y,z}

(
(Vi,k −Vj,k)− (V̂i,k − V̂j,k)

)2
(A.7)

=
N∑
i=0

∑
j∈N (i)

∑
k∈{x,y,z}

(rLaplacian,i,j,k(V))2 , (A.8)

where

rLaplacian,i,j,k(V) = (Vi,k −Vj,k)− (V̂i,k − V̂j,k). (A.9)

The partial derivative with respect to Vt,k is then

∂rLaplacian,i,j,k(V)

∂Vt,k

=


1 , if t = i

−1 , if t = j

0 , else.

(A.10)

A.3 Preservation of Edge Lengths eEdge

The edge length constraint can be expressed in terms of the residuals as

eEdge (V) =
N∑
i=0

∑
j∈N (i)

(
‖Vi −Vj‖ −

∥∥∥V̂i − V̂j

∥∥∥)2 (A.11)

=
N∑
i=0

∑
j∈N (i)

(rEdge,i,j(V))2 , (A.12)

where rEdge,i,j(V) is defined as

rEdge,i,j(V) = ‖Vi −Vj‖ −
∥∥∥V̂i − V̂j

∥∥∥ (A.13)

=

√
(Vi,x −Vj,x)

2 + (Vi,y −Vj,y)
2 + (Vi,z −Vj,z)

2

−
√(

V̂i,x − V̂j,x

)2
+
(
V̂i,y − V̂j,y

)2
+
(
V̂i,z − V̂j,z

)2
.

(A.14)
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The partial derivative with respect to Vt,k are then

∂rEdge,i,j(V)

∂Vt,k

=


1

‖Vi−Vj‖ (Vi,k −Vj,k) , if t = i

1
‖Vi−Vj‖ (Vi,k −Vj,k) (−1) , if t = j

0 , else,

(A.15)

where k ∈ {x, y, z}.

A.4 Smooth Motion eVelocity

The smooth motion constraint can be written as

eVeloctiy (V) =
N∑
i=0

∥∥Vi −Vt
i

∥∥2 (A.16)

=
N∑
i=0

∑
k∈{x,y,z}

(
Vi,k −Vt

i,k

)2
(A.17)

=
N∑
i=0

∑
k∈{x,y,z}

(rVeloctiy,i,k (V))2 , (A.18)

where the residual is defined as

rVeloctiy,i,k (V) = Vi,k −Vt
i,k. (A.19)

The partial derivatives with respect to Vt,k are

∂rVelocity,i,k(V)

∂Vt,k

=

1 , if t = i

0 , else,
(A.20)

where k ∈ {x, y, z}.

A.5 Smooth Direction of Motion eAcceleration

The smooth motion direction over time constraint can be written as

eAcceleration (V) =
N∑
i=0

∥∥(Vi −Vt
i

)
−
(
Vt

i −Vt−1
i

)∥∥2 (A.21)

=
N∑
i=0

∑
k∈{x,y,z}

((
Vi,k −Vt

i,k

)
−
(
Vt

i,k −Vt−1
i,k

))2
(A.22)

=
N∑
i=0

∑
k∈{x,y,z}

(rAcceleration,i,k (V))2 , (A.23)



Chapter A. Gradients of the Energy Terms 78

where the residual is defined as

rAcceleration,i,k (V) =
(
Vi,k −Vt

i,k

)
−
(
Vt

i,k −Vt−1
i,k

)
. (A.24)

The partial derivatives with respect to Vt,k are

∂rAcceleration,i,k(V)

∂Vt,k

=

1 , if t = i

0 , else,
(A.25)

where k ∈ {x, y, z}.

A.6 As-rigid-as-possible Constraint eArap

The ARAP constraint can be reformulated as

eArap(V,Φ) =
N∑
i=0

∑
j∈N (i)

∥∥∥(Vi −Vj)−Ri(Φ)(V̂i − V̂j)
∥∥∥2 (A.26)

=
N∑
i=0

∑
j∈N (i)

∑
k∈{x,y,z}

(
(Vi,k −Vj,k)−Ri,k(Φ)(V̂i − V̂j)

)2
(A.27)

=
N∑
i=0

∑
j∈N (i)

∑
k∈{x,y,z}

(rArap,i,j,k(V,Φ))2 , (A.28)

where

rArap,i,j,k(V,Φ) = (Vi,k −Vj,k)−Ri,k(Φ)(V̂i − V̂j) (A.29)

and Ri,k(Φ) is the kth row of Ri(Φ) where k = x = 1, k = y = 2 and k = z = 3.

The partial derivatives with respect to V and Φ are given as

∂rArap,i,j,k(V)

∂Vt,k′
=



1− ∂
∂Vt,k′

(
Ri,k(Φ)(V̂i)

)
, if t = i ∧ k = k′

− ∂
∂Vt,k′

(
Ri,k(Φ)(V̂i)

)
, if t = i ∧ k 6= k′

−1 + ∂
∂Vt,k′

(
Ri,k(Φ)(V̂j)

)
, if t = j ∧ k = k′

∂
∂Vt,k′

(
Ri,k(Φ)(V̂j)

)
, if t = j ∧ k 6= k′

0 , else

(A.30)

and

∂rArap,i,j,k(V)

∂Φt,k′,o
=

−
∂

∂Φt,k′,o

(
Ri,k(Φ)(V̂i − V̂j)

)
, if t = i ∧ k = k′

0 , else,
(A.31)

where o ∈ {1, 2, 3} and k′ ∈ {1, 2, 3} ∨ {x, y, z}.
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A.7 Texture-based Constraint eTexture

For now it is assumed that the function ρp (x,y) is reduced to the case

ρp (x,y) = x − y because otherwise it returns zero which implies that the par-

tial derivatives are zero. The case ρp (x,y) = x + y can be derived by a simple sign

change and is therefore not derived explicitly. The texture energy function boils

down to

eTexture (V) =
F∑
i=0

∥∥∥∥∥ π (b (Fi))− π (c (Fi))

‖π (b (Fi))− π (c (Fi))‖
−

(
I t+1
Dir,u (π (c (Fi)))

I t+1
Dir,v (π (c (Fi)))

)∥∥∥∥∥
2

(A.32)

=
F∑
i=0

(
π1 (b (Fi))− π1 (c (Fi))

‖π (b (Fi))− π (c (Fi))‖
− I t+1

Dir,u (π (c (Fi)))

)2

+

(
π2 (b (Fi))− π2 (c (Fi))

‖π (b (Fi))− π (c (Fi))‖
− I t+1

Dir,v (π (c (Fi)))

)2
(A.33)

=
F∑
i=0

(rTexture,i,1 (V))2 + (rTexture,i,2 (V))2 , (A.34)

where the residuals are defined as

rTexture,i,1 (V) =
π1 (b (Fi))− π1 (c (Fi))

‖π (b (Fi))− π (c (Fi))‖
− I t+1

Dir,u (π (c (Fi))) (A.35)

rTexture,i,2 (V) =
π2 (b (Fi))− π2 (c (Fi))

‖π (b (Fi))− π (c (Fi))‖
− I t+1

Dir,v (π (c (Fi))) (A.36)

and Fi = (l,m, n). The partial derivatives with respect to Vt,x, Vt,y and Vt,z are

∂rTexture,i,r (V)

∂Vt,k

=

(
∂

∂Vt,k

(
1

‖π (b (Fi))− π (c (Fi))‖

))
(πr (b (Fi))− πr (c (Fi)))

+
1

‖π (b (Fi))− π (c (Fi))‖

(
∂

∂Vt,k

(πr (b (Fi))− πr (c (Fi)))

)
− ∂

∂Vt,k

(
I t+1
Dir,r (π (c (Fi)))

)
,

(A.37)

where r = 1 = u∨ r = 2 = v, k ∈ {x, y, z} and t ∈ {1, ..., N}. But only t ∈ {l,m, n}
are of interest since other cases will result in a zero partial derivative.
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