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Abstract. We propose an efficient method for non-rigid surface track-
ing from monocular RGB videos. Given a video and a template mesh, our
algorithm sequentially registers the template non-rigidly to each frame.
We formulate the per-frame registration as an optimization problem
that includes a novel texture term specifically tailored towards tracking
objects with uniform texture but fine-scale structure, such as the regular
micro-structural patterns of fabric. Our texture term exploits the orien-
tation information in the micro-structures of the objects, e.g., the yarn
patterns of fabrics. This enables us to accurately track uniformly colored
materials that have these high frequency micro-structures, for which tra-
ditional photometric terms are usually less effective. The results demon-
strate the effectiveness of our method on both general textured non-rigid
objects and monochromatic fabrics.

1 Introduction

In this paper, we propose NRST, an efficient method for non-rigid surface track-
ing from monocular RGB videos. Capturing the non-rigid deformation of a
dynamic surface is an important and long-standing problem in computer vision.
It has a wide range of real world applications in fields such as virtual/augmented
reality, medicine and visual effects. Most of the existing methods are based
on multi-view imagery, where expensive and complicated system setups are
required [3,23,25]. There also exist methods that rely on only a single depth or
RGB-D camera [18,19,42,44]. However, these sensors are not as ubiquitous as
RGB cameras, and these methods cannot be applied on plenty of existing video
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footage which is found on social media like YouTube. There are also monocular
RGB methods [30,43], of course with their own limitations; e.g., they rely on
highly textured surfaces and they are often times slow.

Fig. 1. We propose an efficient method for interactive non-rigid surface tracking from
monocular RGB videos for general objects such as faces ((a)–(d)). Given the input
image (a) our reconstruction nicely overlays with the input (b) and looks also plausible
from another view point (c). The textured overlay looks realistic as well (d). Further-
more, our novel texture term leads to improved reconstruction quality for fabrics given
a single video (e). Again the overlayed reconstruction (f) aligns well, and also in 3D
(g) our result (red) matches the ground truth (blue). (Color figure online)

In this work, we present a method which is able to densely track the non-
rigid deformations of general objects such as faces and fabrics from a single
RGB video (Fig. 1). To solve this challenging problem, our method relies on a
textured mesh template of the deforming object’s surface. Given the input video,
our algorithm sequentially registers the template to each frame. More specifically,
our method automatically reproduces a deformation sequence of the template
model that coincides with the non-rigid surface motion in the video. To this end,
we formulate the per-frame registration as a non-linear least squares optimization
problem – with an objective function consisting of a photometric alignment and
several regularization terms. The optimization is computationally intensive due
to the large number of residuals in our alignment objective. To address this,
we adapt the efficient GPU-based Gauss-Newton solver of Zollhoefer et al. [44]
to our problem that allows for deformable object tracking at interactive frame
rates.

Besides the efficiency of the algorithm, the core contribution of our app-
roach is a novel texture term that exploits the orientation information in the
micro-structures of the tracked objects, such as the yarn patterns of fabrics.
This enables us to track uniformly colored materials which have high frequency
patterns, for which the classical color-based term is usually less effective.

In our experimental results, we evaluate our method qualitatively and quan-
titatively on several challenging sequences of deforming surfaces. We use well
established benchmarks, such as pieces of cloth [31,40] and human faces [39,43].
The results demonstrate that our method can accurately track general non-rigid
objects. Furthermore, for materials with regular micro-structural patterns, such
as fabrics, the tracking accuracy is further improved with our texture term.



NRST: Non-rigid Surface Tracking from Monocular Video 337

2 Related Work

There is a variety of approaches that reconstruct geometry from multiple
images, e.g., template-free methods [3], variational ones [25] or object specific
approaches [23]. Although multi-view methods can produce accurate tracking
results, their setup is expensive and hard to operate. Some approaches use a
single RGB-D sensor instead [9,10,18,19,36,42,44]. They manage to capture
deformable surfaces nicely and at high efficiency, some even build up a tem-
plate model alongside per-frame reconstruction. The main limitations of these
methods are that the sensors have a high power consumption, they do not work
outdoors, the object has to be close to the camera and they cannot use the large
amount of RGB-only video footage provided by social media. On these grounds,
we aim for a method that uses just a single RGB video as input. In the following,
we focus on related monocular reconstruction and tracking approaches.

Monocular Methods. Non-rigid structure from motion methods, which do
not rely on any template, try to infer the 3D geometry from a single video by
using a prior-free formulation [4], global models [37], local ones [27] or solving a
variational formulation [6]. But they often either capture the deformations only
coarsely, are not able to model strong deformations, typically require strongly
textured objects or rely on dense 2D correspondences. By constraining the set-
ting to specific types of objects such as faces [7], very accurate reconstructions
can be obtained, but at the expense of generality. Since in recent years, several
approaches [11,22] build a 3D model given a set of images, and even commer-
cial software1 is available for this task, template acquisition has become easier.
Templates are an effective prior for the challenging task of estimating non-rigid
deformations from single images as demonstrated by previous work [1,2,14–
17,21,24,28–33,40,43]. But even if a template is used, ambiguities [30] remain
and additional constraints have to be imposed. Theoretical results [1] show that
only allowing isometric deformations [24] results in a uniquely defined solution.
Therefore, approaches constrain the deformation space in several ways, e.g., by
a Laplacian regularization [21] or by non-linear [32] or linear local surface mod-
els [29]. Salzmann et al. [28] argued that relaxing the isometric constraint is ben-
eficial since it allows to model sharp folds. Moreno-Noguer et al. [17] and Malti
et al. [16] even go beyond this and show results for elastic surfaces; Tsoli and
Argyros [38] demonstrated tracking surfaces that undergo topological changes
but require a depth camera. Other approaches investigate how to make recon-
struction more robust under faster motions [33] and occlusions [20], or try to
replace the feature-based data term by a dense pixel-based one [15] and to find
better texture descriptors [8,12,26]. Brunet et al. [2] and Yu et al. [43] formulate
the problem of estimating non-rigid deformations as minimizing an objective
function which brings them closest to our formulation. In particular, we adopt
the photometric, spatial and temporal terms of Yu et al. [43] and combine them
with an isometric and acceleration constraint as well as our novel texture term.

1 http://www.agisoft.com/.

http://www.agisoft.com/
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Along the line of monocular methods, we propose NRST, a template-based
reconstruction framework that estimates the non-rigidly deforming geometry of
general objects from just monocular video. In contrast to previous work, our
approach does not rely on 3D to 2D correspondences and due to the GPU-based
solver architecture it is also much faster than previous approaches. Furthermore,
our novel texture term enables tracking of regions with little texture.

3 Method

The goal is to estimate the non-rigid deformation of an object from T frames
It(x, y) with t ∈ {1, ..., T}. We assume a static camera and known camera intrin-
sics. Since this problem is in general severely under-constrained, it is assumed
that a template triangle mesh of the object to be tracked is given as the matrix
V̂ ∈ R

N×3 where each row contains the coordinates of one of the N vertices.
According to that, V̂i is defined as the ith vertex of the template in vector form.
This notation is also used for the following matrices. The edges of the template
are given as the mapping N (i). Given a vertex index i ∈ {1, 2, ..., N}, it returns
the set of indices sharing an edge with V̂i. The F faces of the mesh are repre-
sented as the matrix F ∈ {1, ..., N}F×3. Each row contains the vertex indices of
one triangle. The UV map is given as the matrix U ∈ N

N×2. Each row contains
the UV coordinates for the corresponding vertex. The color Ci ∈ {0, ..., 255}3
of vertex i can be computed by a simple lookup in the texture map ITM at the
position Ui. The color of all vertices is stored in the matrix C ∈ {0, ..., 255}N×3.
Furthermore, it is assumed that the geometry at time t = 1 roughly agrees with
the true shape shown in the video so that the gradients of the photometric term
can guide the optimization to the correct solution without being trapped into
local minima. The non-rigidly deformed mesh at time t+1 is represented as the
matrix Vt+1 ∈ R

N×3 and contains the updated vertex positions according to
the 3D displacement from t to t + 1.

3.1 Non-rigid Tracking as Energy Minimization

Given the template V̂ and our estimate of the previous frame Vt, our method
sequentially estimates the geometry Vt+1 of the current frame t + 1. We jointly
optimize per-vertex local rotations denoted by Φt+1 and vertex locations Vt+1.
Specifically, for each time step the deformation estimation is formulated as the
non-linear optimization problem

(Vt+1,Φt+1) = arg min
V,Φ∈RN×3

E (V,Φ) , (1)

with

E (V,Φ) = λPhotoEPhoto (V) + λSmoothESmooth (V) + λEdgeEEdge (V)
+ λArapEArap (V,Φ) + λVelEVel (V) + λAccEAcc (V) .

(2)
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λPhoto, λSmooth, λEdge, λV el, λAcc, λArap are hyperparameters set before the
optimization starts and afterwards they are kept constant. E (V,Φ) combines
different cost terms ensuring that the mesh deformations agree with the motion
in the video. The resulting non-linear least squares optimization problem is
solved with the GPU-based Gauss-Newton solver based on the work of Zoll-
hoefer et al. [44] where we adapted the Jacobian and residual implementation to
our energy formulation. The high efficiency is obtained by exploiting the sparse
structure of the system of normal equations. For more details we refer the reader
to the approach of Zollhoefer et al. [44]. Now, we will explain the terms in more
detail.

Photometric Alignment. The photometric term

EPhoto(V) =
N∑

i=1

∥∥σ
(
It+1 ∗ Gw (Π (Vi)) − Ci

)∥∥2 (3)

densely measures the re-projection error. ‖·‖ is the Euclidean norm, ∗ is the
convolution operator and Gw is a Gaussian kernel with standard deviation w.
We use Gaussian smoothing on the input frame for more stable and longer range
gradients. Π(Vi) = ( u

w , v
w )� with (u, v, w)� = IVi projects the vertex Vi on the

image plane and It+1 ∗Gw returns the RGB color vector of the smoothed frame
at position Π (Vi) which is compared against the pre-computed and constant
vertex color Ci. Here, I ∈ R

3×3 is the intrinsic camera matrix. σ is a robust
pruning function for wrong correspondences with respect to color similarity.
More specifically, we discard errors above a certain threshold because in most
cases they are due to occlusions.

Spatial Smoothness. Without regularization, estimating 3D geometry from
a single image is an ill-posed problem. Therefore, we introduce several spatial
and temporal regularizers to make the problem well-posed and to propagate 3D
deformations into areas where information for data terms is missing, e.g., poorly
textured or occluded regions. The first prior

ESmooth (V) =
N∑

i=1

∑

j∈N (i)

∥∥∥(Vi − Vj) − (V̂i − V̂j)
∥∥∥
2

(4)

ensures that if a vertex Vi changes its position, its neighbors Vj with j ∈ N (i)
are deformed such that the overall shape is still spatially smooth compared to
the template mesh V̂. In addition, the prior

EEdge (V) =
N∑

i=1

∑

j∈N (i)

(
‖Vi − Vj‖ − ‖V̂i − V̂j‖

)2

(5)

ensures isometric deformations which means that the edge length with respect to
the template is preserved. In contrast to ESmooth, this prior is rotation invariant.
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Finally, the as-rigid-as-possible (ARAP) prior [34]

EArap (V,Φ) =
N∑

i=1

∑

j∈N (i)

∥∥∥(Vi − Vj) − R(Φi)(V̂i − V̂j)
∥∥∥
2

, (6)

allows local rotations for each of the mesh vertices as long as the relative position
with respect to their neighborhood remains the same. Each row of the matrix
Φ ∈ R

N×3 contains the per-vertex Euler angles which encode a local rotation
around Vi. R(Φi) converts them into a rotation matrix.

We choose a combination of spatial regularizers to ensure that our method
can track different types of non-rigid deformations equally well. For example,
ESmooth is usually sufficient to track facial expressions without large head rota-
tions. But tracking rotating objects can only be achieved with rotational invari-
ant regularizers (EEdge, EArap). In contrast to Yu et al. [43], we adopt the
Euclidean norm in Eqs. 4 and 6 instead of the Huber loss because it led to
visually better results.

Temporal Smoothness. To enforce temporally smooth reconstructions, we
propose two additional priors. The first one is defined as

EVelocity (V) =
N∑

i=1

∥∥Vi − Vt
i

∥∥2 (7)

and ensures that the displacement of vertices between t and t+1 is small. Second,
the prior

EAcc (V) =
N∑

i=1

∥∥(
Vi − Vt

i

) − (
Vt

i − Vt−1
i

)∥∥2
(8)

penalizes large deviations of the current velocity direction from the previous one.

3.2 Non-rigid Tracking of Woven Fabrics

Tracking of uniformly colored fabrics is usually challenging for classical color-
based terms due to the lack of color features. To overcome this limitation, we
inspected the structure of different garments and found that most of them show
line-like micro-structures due to the manufacturing process of the woven threads,
see Fig. 2 left. Those can be recorded with recent high resolution cameras such
that reconstruction algorithms can make use of those patterns. To this end, we
propose a novel texture term to refine the estimation of non-rigid motions for
the case of woven fabrics. It can be combined with the terms in Eq. 2. Now, we
will explain our novel data term in more detail.

Histogram of Oriented Gradient (HOG). Based on HOG [5] we compute
for each pixel (i, j) of an image the corresponding histogram hi,j ∈ R

b where
b is the number of bins that count the total number of gradient angles present
in the neighborhood of pixel (i, j). To be more robust with respect to outliers
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Fig. 2. Histogram of oriented gradients of woven fabrics. Left. The neighborhood region
with the center pixel in the middle. Right. The corresponding histogram.

and noise we count the number of gradients per angular bin irrespective of the
gradient magnitude and only if the magnitude is higher than a certain threshold.
Compared to pure image gradients, HOG is less sensitive to noise. Especially for
woven fabrics, image gradients are very localized since changing the position in
the image can lead to large differences in the gradient directions due to the high
frequency of the image content. HOG instead averages over a certain window so
that outliers are discarded.

Directions of a Texture. Applying HOG to pictures of fabrics reveals their
special characteristics caused by the line like patterns (see Fig. 2). There are two
dominant texture gradient angles α and β = ((α+180) mod 360) perpendicular
to the lines. So α provides the most characteristic information of the pattern
in the image at (i, j) and can be computed as the angle whose bin has the
highest frequency in hi,j . α is then converted to its normalized 2D direction,
also called dominant frame gradient (DFG), which is stored in the two-valued
image IDir(i, j). To detect image regions that do not contain line patterns, we
set IDir(i, j) = (0, 0)� if the highest frequency is below a certain threshold.

Texture-based Constraint. Our novel texture term

ETex (V) =
F∑

i=1

‖ρ (dM,i,dF,i)‖2 (9)

ensures now that for all triangles the projected DFG dM,i parametrized on the
object surface agrees with the frame’s DFG dF,i at the location of the projected
triangle center. An overview is shown in Fig. 3. More precisely, by averaging
Uk,Um,Ul one can compute the pixel position zTM,i ∈ R

2 of the center point of
the triangle Fi = (k,m, l) in the texture map. Now, the neighborhood region for
HOG around zTM,i is defined as the 2D bounding box of the triangle. The HOG
descriptor for zTM,i can be computed and by applying the concept explained
in the previous paragraph one obtains the DFG dTM,i (see Fig. 3(a)). Next, we
define bTM,i = zTM,i + dTM,i and express it as a linear combination of the
triangles’ UV coordinates leading to the barycentric coordinates Bi,1,Bi,2,Bi,3

of the face Fi. They form together with the other triangles the barycentric
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coordinates matrix B ∈ R
F×3. Each row represents the texture map’s DFG

for the respective triangle of the mesh in an implicit form. Since bTM,i can be
represented as a linear combination, one can compute the corresponding 3D point
b3D,i = Bi,1Vk+Bi,2Vm+Bi,3Vl as well as the triangle center z3D,i ∈ R

3 in 3D
(see Fig. 3(b)). The barycentric coordinates remain constant, so that b3D,i and
z3D,i only depend on the mesh vertices Vk, Vm and Vl. One can then project
the DFG of the mesh dM,i = Π(b3D,i) − Π(z3D,i) into the frame and compare
it against the DFG dF,i of the frame t + 1 at the location of Π(z3D,i) which
can be retrieved by an image lookup in It+1

Dir (see Fig. 3(c)). ρ (x,y) computes
the minimum of the differences between x,y and x,−y iff both x and y are
non-zero vectors (otherwise we are not in an area with line patterns) and the
directions are similar up to a certain threshold to be more robust with respect
to occlusions and noise. As mentioned above, there are two DFGs in the frame
for the case of line patterns. We assume the initialization is close to the ground
truth and choose the minimum of the two possible directions.

Fig. 3. Overview of the proposed texture term.

4 Results

All experiments were performed on a PC with an NVIDIA GeForce GTX 1080Ti
and an Intel Core i7. In contrast to related methods [43], we achieve interactive
frame rates using the energy proposed in Eq. 2.

4.1 Qualitative and Quantitative Results

Now, we evaluate NRST on datasets for general objects like faces where we
disable ETex. After that, we compare our approach against another monocu-
lar method. Finally, we evaluate our proposed texture term on two new scenes
showing line-like fabric structures, perform an ablation study and demonstrate
interesting applications. More results can be found in the supplemental video.

Qualitative Evaluation for General Objects. In Fig. 4 we show frames
from our monocular reconstruction results. We tested our approach on two face
sequences [39,43] where templates are provided. Note that NRST precisely recon-
structs facial expressions. The 2D overlay (second column) matches the input
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Fig. 4. Reconstructions of existing datasets [31,39,40,43]. Input frames (a). Textured
reconstructions overlayed on the input (b). Deformed geometries obtained by our
method (rendered from a different view point) (c).

and also in 3D (third column) our results look realistic. Furthermore, we eval-
uated on the datasets of Varol et al. [40] and Salzmann et al. [31] showing fast
movements of a T-shirt and a waving towel. Again for most parts of the surface
the reconstructions look accurate in 2D since they overlap well with the input
and they are also plausible in 3D. This validates that our approach can deal with
the challenging problem of estimating 3D deformations from a monocular video
for general kinds of objects.

Comparison to Yu et al. [43]. Figure 5 shows a qualitative comparison
between our method and the one of Yu et al. [43]. It becomes obvious that
both capture the facial expression, but the proposed approach is faster than the
one of Yu et al. due to our data-parallel GPU implementation. In particular, on
their sequence our method runs at 15 fps whereas their approach takes several
seconds per frame. More sidy-by-side comparisons on this sequence can be found
in the supplemental video.
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Fig. 5. Comparison of NRST’s reconstruction (right) and the one of Yu et al. [43]
(middle). It becomes obvious that both capture the facial expression shown in the
input frame (left), but the proposed approach is significantly faster than the one of Yu
et al. due to our data-parallel GPU implementation.

Qualitative Evaluation for Fabrics. The top row of Fig. 6 shows frames
(resolution 1920 × 1080) of a moving piece of cloth that has the typical line pat-
terns. Although the object is sparsely textured, our approach is able to recover
the deformations due to the texture term, which accurately tracks the DFG of
the line pattern. As demonstrated in the last column, the estimated angles for
the frames are correct and therefore give a reliable information cue exploited by
ETex. For quantitative evaluation, we created a synthetic scene that is modeled
and animated in a modeling software showing a carpet that has the characteristic
line pattern but is also partially textured (see bottom row of Fig. 6). We rendered
the scene at a resolution of 1500 × 1500. ETex helps in the less textured regions
where EPhoto would fail. The last column shows how close our reconstruction
(red) is with respect to ground truth (blue).

Ablation Analysis. Apart from the proposed texture term, our energy for-
mulation is similar to the one of Yu et al. [43]. To validate that ETex improves
the reconstruction over a photometric-only formulation, we perform an abla-
tion study. We measured the averaged per-vertex Euclidean distance between
the ground truth mesh and our reconstructions. For the waving towel shown
in Fig. 6 bottom, we obtained an error of 26.8 mm without ETex and 25.5 mm
if we also use our proposed texture term leading to an improvement of 4.8%.
The diagonal of the 3D bounding box of the towel is 3162 mm. For the rotation
sequence (resolution 800×800) shown in Fig. 7 the color variation is very limited
since background and object have the same color. In contrast to EPhoto alone,
ETex can rotate the object leading to an error of 4.1 mm for the texture-only
case and 6.7 mm for the photometric-only setting. So ETex improves over EPhoto

by 38.8%.

4.2 Applications

Our method enables several applications such as free view point rendering or re-
texturing on general deformable objects or for virtual face make-up (see Fig. 8).



NRST: Non-rigid Surface Tracking from Monocular Video 345

Fig. 6. Reconstruction of line patterns. Top from left to right. Input frames. Textured
reconstructions overlayed on the frames. Color coded visualization of the estimated
dominant frame angles. Regions where no line pattern was detected are visualized in
black. Bottom from left to right. Input frames. Textured reconstructions overlayed on
the frames. Ground truth geometries (blue) and our reconstructions (red). (Color figure
online)

Since our approach estimates the deforming geometry, one can even change the
scene lighting for the foreground such that the shading remains realistic.

4.3 Limitations

By the nature of the challenging task of monocular tracking of non-rigid defor-
mations, our method has some limitations which open up directions for future
work. Although, our proposed texture term uses more of the information con-
tained in the video than a photometric-only formulation, there are still image
cues that can improve the reconstruction like shading and the object contour as
demonstrated by previous work [13,41]. So, one could combine them in a unified
framework. To increase robustness, the deformations could be jointly estimated
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Fig. 7. Rotating object sequence. From left to right. First and last frame. Note that
the object and the background have the same color. The reconstructions (red) of the
last frame with either EPhoto or ETex overlayed on the ground truth geometry (blue).
Note that ETex can recover the rotation in contrast to EPhoto. (Color figure online)

Fig. 8. Applications. Left. Re-textured shirt. Right. Re-textured and re-lighted face.

over a temporal sliding window as proposed by Xu et al. [41] and an embedded
graph [35] could lead to improved stability by reducing the number of unknowns.

5 Conclusion

We presented an optimization-based analysis-by-synthesis method that solves
the challenging task of estimating non-rigid motion, given a single RGB video
and a template. Our method tracks non-trivial deformations of a broad class
of shapes, ranging from faces to deforming fabric. Further, we introduce spe-
cific solutions tailored to capture woven fabrics, even if they lack clear color
variations. Our method runs at interactive frame rates due to the GPU-based
solver that can efficiently solve the non-linear least squares optimization prob-
lem. Our evaluation shows that the reconstructions are accurate in 2D and 3D
which enables several applications such as re-texturing.
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