
Monocular Real-time Full Body Capture with Inter-part Correlations

Yuxiao Zhou1 Marc Habermann2,3 Ikhsanul Habibie2,3 Ayush Tewari2,3 Christian Theobalt2,3 Feng Xu1*

1BNRist and School of Software, Tsinghua University 2Max Planck Institute for Informatics 3Saarland Informatics Campus

Abstract

We present the first method for real-time full body cap-
ture that estimates shape and motion of body and hands to-
gether with a dynamic 3D face model from a single color
image. Our approach uses a new neural network architec-
ture that exploits correlations between body and hands at
high computational efficiency. Unlike previous works, our
approach is jointly trained on multiple datasets focusing
on hand, body or face separately, without requiring data
where all the parts are annotated at the same time, which
is much more difficult to create at sufficient variety. The
possibility of such multi-dataset training enables superior
generalization ability. In contrast to earlier monocular full
body methods, our approach captures more expressive 3D
face geometry and color by estimating the shape, expres-
sion, albedo and illumination parameters of a statistical
face model. Our method achieves competitive accuracy on
public benchmarks, while being significantly faster and pro-
viding more complete face reconstructions.

1. Introduction

Human motion capture from a single color image is
an important and widely studied topic in computer vision.
Most solutions are unable to capture local motions of hands
and faces together with full body motions. This renders
them unsuitable for a variety of applications, e.g. AR, VR,
or tele-presence, where capturing full human body pose
and shape, including hands and face, is highly important.
In these applications, monocular approaches should ide-
ally recover the full body pose (including facial expres-
sion) as well as a render-ready dense surface which con-
tains person-specific information, such as facial identity and
body shape. Moreover, they should run at real-time fram-
erates. Much progress has been made on relevant subtasks,
i.e. body pose estimation [33, 31, 45, 40], hand pose estima-
tion [78, 42, 80], and face capture [14, 61, 60, 53, 81]. How-
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Figure 1: We present the first real-time monocular approach
that jointly captures shape and pose of body and hands to-
gether with facial geometry and color. Top: results on in-
the-wild sequences. Bottom: real-time demo. Our approach
predicts facial color while the body color is set manually.

ever, joint full body capture, let alone in real-time, is still
an open problem. Several recent works [9, 68, 28, 46, 38]
have demonstrated promising results on capturing the full
body. Nevertheless, they either only recover sparse 2D key-
points [38, 28], require specific training data [9, 28] where
body, hands, and face are annotated altogether which is
expensive to collect, or cannot achieve real-time perfor-
mance [9, 68, 46, 38].

We therefore introduce the first real-time monocular ap-
proach that estimates: 1) 2D and 3D keypoint positions
of body and hands; 2) 3D joint angles and shape pa-
rameters of body and hands; and 3) shape, expression,
albedo, and illumination parameters of a 3D morphable face
model [61, 14]. To recover the dense mesh, we use the SM-
PLH model [49] for body and hands surface, and replace its
face area with a more expressive face model.

To achieve real-time performance without the loss of ac-
curacy, we rigorously design our new network architecture
to exploit inter-part correlations by streaming body features
into the hand pose estimation branch. Specifically, the sub-
network for hand keypoint detection takes in two sources



of features: one comes from the body keypoint detection
branch as low-frequency global features, whereas the other
is extracted from the hand area in the input image as high-
frequency local features. This feature composition utilizes
body information for hand keypoint detection, and saves the
computation of extracting high-level features for the hands,
resulting in reduced runtime and improved accuracy.

Further, we do not require a dataset where ground truth
body, hands, and face reconstructions are all available at
the same time: creating such data at sufficient variety is
very difficult. Instead, we only require existing part-specific
datasets. Our network features four task-specific modules
that are trained individually with different types of data,
while being end-to-end at inference. The first module, Det-
Net, takes a color image as input, estimates 3D body and
hand keypoint coordinates, and detects the face location in
the input image. The second and third module, namely
BodyIKNet and HandIKNet, take in body and hand keypoint
positions and regress joint rotations along with shape pa-
rameters. The last module, called FaceNet, takes in a face
image and predicts the shape, expression, albedo, and il-
lumination parameters of the 3DMM face model [61]. This
modular network design enables us to jointly use the follow-
ing data types: 1) images with only body or hand keypoint
annotations; 2) images with body and hand keypoint anno-
tations; 3) images annotated with body joint angles; 4) mo-
tion capture (MoCap) data with only body or hand joint an-
gles but without corresponding images; and 5) face images
with 2D landmarks. To train with so many data modalities,
we propose an attention mechanism to handle various data
types in the same mini-batch during training, which guides
the model to utilize the features selectively. We also in-
troduce a 2-stage body keypoint detection structure to cope
with the keypoint discrepancy between different datasets.
The above multi-modal training enables our superior gener-
alization across different benchmarks.

Our contribution can be summarized as follows:
• The first real-time approach that jointly captures 3D

body, hands and face from a single color image.
• A novel network structure that combines local and

global features and exploits inter-part correlations for
hand keypoint detection, resulting in high computa-
tional efficiency and improved accuracy.

• The utilization of various data modalities supported by
decoupled modules, an attention mechanism, and a 2-
stage body keypoint detection structure, resulting in
superior generalization.

2. Related Work
Human performance capture has a long research his-

tory. Some methods are based on multi-view systems
or a monocular depth camera to capture body [75, 29],
hand [71, 43], and face [20, 50]. Although accurate, they

are largely limited by the hardware requirements: multi-
view systems are hard to setup while depth sensors do not
work under bright sunlight. This can be avoided by using a
single RGB camera. As our approach falls in the category
of monocular methods, we focus on related works that only
require a monocular image.
Body and Hand Capture. The very early researches [55,
12] propose to combine local features and spatial relation-
ship between body parts for pose estimation. With the ad-
vent of deep learning, new breakthrough is being made,
from 2D keypoint detection [8, 15] to 3D keypoint esti-
mation [58, 24, 39, 3]. In addition to sparse landmarks,
recent approaches stress the task of producing a dense sur-
face. A series of statistical parametric models [2, 36, 46, 30]
are introduced and many approaches are proposed to es-
timate joint rotations for mesh animation. Some of these
work [40, 54, 68] incorporate a separate inverse kinematics
step to solve for joint rotations, while others [31, 33, 23]
regress model parameters from input directly. To cope
with the lack of detail in parametric models, some meth-
ods [69, 22, 23] propose to use subject-specific mesh tem-
plates and perform dense tracking of the surface with
non-rigid deformations. Apart from model-based meth-
ods, model-free approaches also achieve impressive qual-
ity. Various surface representations are proposed, includ-
ing mesh [34], per-pixel depth [17] and normal [57], vox-
els [76, 27], and implicit surface functions [51, 52]. The
research of hand capture has a similar history. The task
evolves from 2D keypoint detection [56, 65], to 3D key-
point estimation [79, 42, 13], and finally dense surface re-
covery [7, 78, 74, 72] based on parametric models [49, 63].
Methods that directly regresses mesh vertices are also pro-
posed [41, 19, 4]. However, they all focus only on body or
hands and failed to capture them jointly.
Face Capture. Early works [48, 18, 62, 66] reconstruct
faces based on iterative optimization. Deep learning ap-
proaches [47, 64] are also presented in the literature. To
cope with the problem of limited training data, semi- and
self-supervised approaches are introduced [61, 60, 53, 59],
where the models are trained in an analysis-by-synthesis
fashion using differentiable rendering. We refer to the sur-
veys [81, 14] for more details.
Full Body Capture. Several recent works investigate the
task of capturing body, face and hands simultaneously from
a monocular color image. The work of [67] estimates 3D
keypoints of full body by distilling knowledge from part ex-
perts. To obtain joint angles, previous works [68, 46] pro-
pose a two-stage approach that first uses a network to ex-
tract keypoint information and then fits a body model onto
the keypoints. Choutas el al. [9] regress model parameters
directly from the input image and then apply hand/face-
specific models to refine the capture iteratively. Although
they demonstrate promising results, they are all far from be-



ing real-time. The shared shortcoming of their approaches
is that they do not consider the correlation between body
and hands. In their work, body information is merely used
to locate [68, 9, 46] and initialize [9] hands, while we ar-
gue that the high-level body features can help to deduce the
hand pose [44]. Further, recent methods [68, 46, 9] only
capture facial expression, while our approach also recovers
the facial identity in terms of geometry and color.

3. Method
As shown in Fig. 2, our method takes a color image as in-

put, and outputs 2D and 3D keypoint positions, joint angles,
and shape parameters of body and hands, together with fa-
cial expression, shape, albedo, and illumination parameters.
We then animate our new parametric model (Sec. 3.1) to re-
cover a dense full body surface. To leverage various data
modalities, the whole network is trained as four individual
modules: DetNet (Sec. 3.2) that estimates body and hand
keypoint positions from a body image, with our novel inter-
part feature composition, the attention mechanism, and the
2-stage body keypoint detection structure; BodyIKNet and
HandIKNet (Sec. 3.3) that estimate shape parameters and
joint angles from keypoint coordinates for body and hands;
and FaceNet (Sec. 3.4) that regresses face parameters from
a face image crop.

3.1. Full Body Model

Body with Hands. We use the SMPLH-neutral [49] model
to represent the body and hands. Specifically, SMPLH is
formulated as

TB = T̄B + βEβ (1)

where T̄B is the mean body shape withNB = 6890 vertices,
Eβ is the PCA basis accounting for different body shapes,
and values in β ∈ R16 indicate PCA coefficients. Given
the body pose θb and the hand pose θh, which represent the
rotation of JB = 22 body joints and JH = 15 × 2 hand
joints, the posed mesh is defined as

VB = W (TB ,W, θb, θh) (2)

whereW (·) is the linear blend skinning function andW are
the skinning weights.
Face. For face capture, we adopt the 3DMM [5] face model
used in [61]. Its geometry is given as

VF = V̄F + ζEζ + εEε (3)

where V̄F is the mean face with NF = 53490 vertices, Eζ
and Eε are PCA bases that encode shape and expression
variations, respectively. ζ ∈ R80 and ε ∈ R64 are the shape
and expression parameters to be estimated. The face color
is given by

R = R̄+ γEγ (4)

ti = ri

B2∑
b=1

µbHb(ni) (5)

where R and ri are per vertex reflection, R̄ is the mean skin
reflectance, Eγ is the PCA basis for reflectance, ti and ni
are radiosity and normal of vertex i, and Hb : R3 → R
are the spherical harmonics basis functions. We set B2 =
9. γ ∈ R80 and µ ∈ R3×9 are albedo and illumination
parameters.
Combining Face and Body. To replace the SMPLH face
with the 3DMM face, we manually annotate the face bound-
ary Bb of SMPLH and the corresponding boundary Bf on
the 3DMM face. Then, a rigid transformation with a scale
factor is manually set to align the face-excluded part of Bb
and the face part of Bf . This manual work only needs to be
performed once. After bridging the two boundaries using
Blender [11], the face part rotates rigidly by the upper-neck
joint using the head angles. Unlike previous works [46, 30],
we do not simplify the face mesh. Our model has more
face vertices (N ′F = 23817) than the full body meshes of
[9, 46] (10475 vertices) and [30, 68] (18540 vertices), sup-
ports more expression parameters (64 versus 40 [30, 68] and
10 [9, 46]), and embeds identity and color variation for face
while others do not. This design allows us to model face
more accurately and account for the fact that humans are
more sensitive to the face quality. We show the combina-
tion process and full body meshes in Fig. 3.

3.2. Keypoint Detection Network: DetNet

The goal of our keypoint detection network, DetNet, is to
estimate 3D body and hand keypoint coordinates from the
input image. Particularly challenging is that body and hands
have very different scales in an image so that a single net-
work can barely deal with both tasks at the same time. The
naive solution would be to use two separate networks. How-
ever, they would require much longer runtime, making real-
time difficult to achieve. Our key observation to solve this
issue is that the high-level global features of the hand area
extracted by the body keypoint estimation branch can be
shared with the hand branch. By combining them with the
high-frequency local features additionally extracted from
the hand area, expensive computation of hand high-level
features is avoided, and body information for hand keypoint
detection is provided, resulting in higher accuracy.

3.2.1 Two-Stage Body Keypoint Detection

It is a well-known issue that different body datasets have
different sets of keypoint definitions, and the same key-
point is annotated differently in different datasets [30]. This
inconsistency prevents the utilization of multiple datasets
to improve the generalization ability. To this end, instead
of estimating all keypoints at once, we follow a two-stage
manner for body keypoint detection. We split the body



Figure 2: System overview and DetNet structure. Left: An input image Ih is first downscaled by 4x for body keypoint
detection and face/hand localization. The hand area is then cropped from Ih to retrieve supp-features, which are concatenated
with processed body-features for hand keypoint detection. Here, we use the attention channel to indicate the validity of body-
features. Body and hand 3D keypoint positions are fed into BodyIKNet and HandIKNet to estimate joint angles. The face
area is cropped from Ih and processed by FaceNet. Finally, the parameters are combined to obtain a full mesh. Right: The
detailed structure of DetNet. Descriptions can be found in Sec. 3.2. We only illustrate one hand for simplicity.

Figure 3: Our mesh model. From left to right: the original
face in SMPLH; the replaced face (gap not bridged); the
replaced face (gap bridged); example full body meshes.

keypoints into two subsets: basic body keypoints which
are shared by all body datasets without annotation dis-
crepancy, and extended body keypoints that are dataset-
specific. We use one BasicBody-PoseNet to predict the
basic body keypoints for all datasets, and use different
ExtBody-PoseNets to estimate the extended body keypoints
for different datasets. This separation is essential for the
multi-dataset training, and avoids BasicBody-PoseNet to be
biased to a specific dataset. The -PoseNet structure will be
detailed in Sec. 3.2.5.

The input of DetNet is an image Ih of resolution 768 ×
1024 with one person as the main subject. We bilinearly
downscale it by a factor of 4 to get the low resolution im-
age I , and feed it into the MainFeatNet, a ResNet [25] alike
feature extractor, to obtain main features F , which are fed
into BasicBody-PoseNet to estimate basic body keypoints.
We then concatenate the features F with the outputs of
BasicBody-PoseNet to get the body features F ∗, which en-
codes high-level features and body information. Finally, we
use ExtBody-PoseNet to predict the extended body keypoints
from F ∗. The basic body keypoints and extended body key-
points are combined to obtain the complete body keypoints.

3.2.2 Hand Localization
From the body features F ∗, we use one convolutional layer
to estimate left and right hand heat-maps Hl and Hr. For
each hand, its heat-map H is a one-channel 2D map where
the value at each pixel represents the confidence that this

pixel is occupied by the hand. We use a sliding window to
locate each hand from H , determined by its width w and
top-left corner location (u, v), given by

arg min
w

: max
u,v

i<u+w,j<v+w∑
i=u,j=v

hij > t ∗
i<a,j<b∑
i=0,j=0

hij (6)

where hij is the confidence value of H at pixel (i, j); a and
b are the width and height of H; and t is a manually-set
threshold value. The intuition behind is to take the bound-
ing box of minimal size that sufficiently contains the hand.
This heat-map based approach is consistent with the convo-
lutional structure and the information of body embedded in
F ∗ is naturally leveraged in the estimation of H .

3.2.3 Hand Keypoint Detection with Attention-based
Feature Composition

After hand localization, for the left and right hand, we crop
F ∗ at the area of the hands to get the corresponding fea-
tures F ∗l and F ∗r , referred to as body-features. They repre-
sent high-level global features. Similarly, we crop the high
resolution input image Ih to get the left and right hand im-
ages Il and Ir, which are processed by SuppFeatNet to ob-
tain supplementary features F̂l and F̂r, referred to as supp-
features. They represent high-frequency local features. For
each hand, its corresponding body-features are bilinearly
resized and processed by one convolutional layer and then
concatenated with its supp-features. The combined features
are fed into Hand-PoseNet to estimate hand keypoints. This
feature composition exploits the inter-part correlations be-
tween body and hands, and saves the computation of high-
level features of the hand area by streaming directly from
the body branch. For time efficiency, SuppFeatNet is de-
signed to be a shallow network with only 8 ResNet blocks.
We use one SuppFeatNet that handles Il and horizontally
flipped Ir at the same time. The extracted features of Ir are
then flipped back. On the other hand, we use two separate
Hand-PoseNets for the two hands, as different hands focus
on different channels of F ∗.



To leverage hand-only datasets for training, we further
introduce an attention mechanism that guides the hand
branch to ignore body-features when the body is not pre-
sented in the image. Specifically, we additionally feed a
one-channel binary-valued map into Hand-PoseNet to indi-
cate whether the body-features are valid. When the body is
presented in the training sample, we set it to 1; otherwise, it
is set to 0. At inference, it is always set to 1.

3.2.4 Face Localization

DetNet localizes the face in the input image using a face
heat-map Hf similarly as Eq. 6. The face is cropped from
the input image and later used to regress the face parame-
ters by the separately trained FaceNet module introduced in
Sec. 3.4. Different to the hands, FaceNet only requires the
face image and does not take F ∗ as input. This is based on
our observation that the image input is sufficient for our fast
FaceNet to capture the face with high quality.

3.2.5 Other Details

PoseNet Module. The BasicBody-PoseNet, the ExtBody-
PoseNet, and the Hand-PoseNet share the same atomic net-
work structure which comprises 6 convolutional layers to
regress keypoint-mapsK (for 2D keypoint positions), delta-
maps D (for 3D bone directions), and location-maps L (for
3D keypoint locations) from input features. At inference,
the coordinate of keypoint i is retrieved from the location-
map Li at the position of the maximum of the keypoint-map
Ki. The delta-mapDi is for involving intermediate supervi-
sion. Please refer to the supplementary document and [40]
for more details. The atomic loss function of this module is
formulated as follows:

Lp = wkLkmap + wdLdmap + wlLlmap (7)

where
Lkmap = ||KGT −K||2F (8)

Ldmap = ||KGT � (DGT −D)||2F (9)

Llmap = ||KGT � (LGT − L)||2F . (10)

K, D and L are keypoint-maps, delta-maps, and location-
maps, respectively. Superscript ·GT denotes the ground
truth, || · ||F is the Frobenius norm, and � is the element-
wise product. KGT is obtained by placing Gaussian kernels
centered at the 2D keypoint locations. DGT and LGT are
constructed by tiling ground truth 3D keypoint coordinates
and unit bone direction vectors to the size of KGT . wk, wd
and wl are hyperparameters to balance the terms. For the
training data without 3D labels, we set wd and wl to 0.
Full Loss. The full loss function of the DetNet is defined as

λbLbp + λh(Llhp + Lrhp + Lh) + λfLf . (11)

Lbp, Llhp , and Lrhp are the keypoint detection losses for body,
left hand and right hand, respectively.

Lh = ||HGT
l −Hl||2 + ||HGT

r −Hr||2 (12)

supervises hand heat-maps for hand localization. Similarly,

Lf = ||HGT
f −Hf ||2 (13)

supervises the face heat-map. HGT
f , HGT

l , and HGT
r are

constructed by taking the maximum along the channel axis
of the keypoint-maps to obtain a one-channel confidence
map. λb, λh, and λf are hyperparameters which are set to 0
when the corresponding parts are not in the training sample.
Global Translation. All monocular approaches suffer from
depth-scale ambiguity. In DetNet, the estimated keypoint
positions are relative to the root keypoint. However, when
the camera intrinsics matrix C and the length of any bone
lcp are known, the global translation can be determined
based on

lcp = ||C−1zp

upvp
1

−C−1(zp+dc−dp)

uwvw
1

 ||2. (14)

Here, the subscript ·c and ·p denote the child and parent
keypoint of bone lcp; u and v are 2D keypoint positions; d
refers to the root-relative depth; and zp is the absolute depth
of keypoint p relative to the camera. In Eq. 14, zp is the
only unknown variable that can be solved in closed form.
When zp is known, the global translation can be computed
with the camera projection formula.

3.3. Inverse Kinematics Network: IKNet

Sparse 3D keypoint positions are not sufficient to drive
CG character models. To animate mesh models and obtain
dense surface, joint angles need to be estimated from sparse
keypoints. This task is known as inverse kinematics (IK).
Typically, the IK task is tackled with iterative optimization
methods [6, 21, 68, 69, 22, 63], which are sensitive to ini-
tialization, take longer time, and need hand-crafted priors.
Instead, we use a fully connected neural network module,
referred to as IKNet, to regress joint angles from keypoint
coordinates, similar to [78]. Trained with additional MoCap
data, IKNet learns a pose prior implicitly from the data, and
as a result further decreases keypoint position errors. Due
to the end-to-end architecture, IKNet achieves superior run-
time performance, which is crucial for being real-time.

In particular, IKNet is a fully connected network that
takes in keypoint coordinates and outputs joint rotations
θb and θh for body and hands. The main difference be-
tween our approach and [78] is that we use relative 6D ro-
tation [77] as the output formulation, and our network addi-
tionally estimates the shape parameters β and a scale factor
α. Since there is little MoCap data that contains body and



hand joint rotations simultaneously, and synthesizing such
data is not guaranteed to be anatomically correct, we train
BodyIKNet and HandIKNet to estimate θb and θh separately,
instead of training a single network that regresses all joint
angles. The loss terms are defined as:

λαLα + λβLβ + λθLθ + λχLχ + λχ̄Lχ̄. (15)

Here, Lα, Lβ , Lθ, Lχ, and Lχ̄ are L2 losses for the scale
factor α, shape parameters β, joint rotations θ, keypoint co-
ordinates after posing χ, and keypoint coordinates at the
reference pose χ̄. λ· are the weights for different terms.

3.4. Face Parameters Estimation: FaceNet

We adopt a convolutional module, named FaceNet, to
estimate shape, expression, albedo and illumination param-
eters of a statistical 3DMM face model [5] from a face-
centered image. The face image is obtained by cropping the
original high-resolution image according to the face heat-
map estimated by DetNet. Compared with previous full
body capture works [68, 46, 30, 9] that only estimate facial
expression, our regression of shape, albedo and illumina-
tion gives more personalized and realistic results. FaceNet
is originally proposed and pre-trained by Tewari et al. [61].
As the original model in [61] is sensitive to the size and lo-
cation of the face in the image, we finetune it with the face
crops produced by the DetNet for better generalization.

4. Experiments

4.1. Datasets and Evaluation Metrics

The following datasets are used to train DetNet: 1) body-
only datasets: HUMBI [70], MPII3D [39], HM36M [26],
SPIN [33], MPII2D [1], and COCO [35]; 2) hand-only
datasets: FreiHand [80], STB [73], and CMU-Hand [56];
3) body with hands dataset: MTC [30]. Here, MPII2D,
COCO, and CMU-Hand only have 2D labels, but they
are helpful for generalization since they are in-the-wild.
Please refer to the supplementary document for more de-
tails on these datasets. We utilize AMASS [37], HUMBI
and SPIN to train BodyIKNet, and use the MoCap data from
MANO [49] to train HandIKNet following the method of
[78]. The training data for HandIKNet and BodyIKNet are
augmented as in [78]. FaceNet is pre-trained on the Vox-
Celeb2 [10] dataset following [61], and fine-tuned with face
images from MTC.

We evaluate body predictions on MTC, HM36M,
MPII3D, and HUMBI, using the same protocol as in [68]
(MTC, HM36M) and [40] (MPII3D). On HUMBI, we se-
lect 15 keypoints for evaluation to be consistent with other
datasets, and ignore the keypoints outside the image. For
hand evaluation we use MTC and FreiHand. Since not all
the test images in MTC have both hands annotated, we only

evaluate on the samples where both hands are labeled, re-
ferred to as MTC-Hand. We use Mean Per Joint Position
Error (MPJPE) in millimeter (mm) as the metric for body
and hand pose estimation, and follow the convention of pre-
vious works to report results without (default) and with (in-
dicated by ‡ and “PA”) rigid alignment by performing Pro-
crustes analysis. As [9] outputs the SMPL mesh, we use a
keypoint regressor to obtain HM36M-style keypoint predic-
tions, similar to [33, 31]. We evaluate FaceNet on the face
images cropped from MTC test set by using 2D landmark
error and per channel photometric error as the metric. We
use PnP-RANSAC [16] and PA alignment to estimate cam-
era pose for projection and error computation of the face.

4.2. Qualitative Results

We present qualitative results in Fig. 4 and compare
with the state-of-the-art approach of Choutas et al. [9].
Despite much faster inference speed, our model gives re-
sults with equal visual quality. In the first row we show
that our model captures detailed hand poses while [9] gives
over-smooth estimation. This is because of our utilization
of high-frequency local features extracted from the high-
resolution hand image. In the second row, we demonstrate
that our hand pose is consistent with the wrist and arm,
while the result of [9] is anatomically incorrect. This is due
to our utilization of body information for hand pose estima-
tion. We demonstrate in the third row that with variations
in facial shape and color, our approach provides highly per-
sonalized capture results, while [9] lacks identity informa-
tion. In Fig. 5 we compare the face capture results of coarse
and tight face crops. The result on the loosely cropped
image already captures the subject very well (left), and a
tighter bounding box obtained from a third party face de-
tector [32] based on the coarse crop further improves the
quality (right). Unless specified, the presented results in the
paper are all based on tight face crops. As our approach
does not estimate camera pose, for overlay visualization,
we adopt PnP-RANSAC [16] and PA alignment to align our
3D and 2D predictions. The transformations are rigid and
no information of ground truth is used. Please refer to the
supplemental material for more results.

4.3. Quantitative Results

Runtime. Runtime performance is crucial for a variety of
applications, thus real-time capability is one of our main
goals. In Tab. 1, we report the runtime of each subtask in
milliseconds (ms) on a commodity PC with an Intel Core i9-
10920X CPU and an Nvidia 2080Ti GPU. We use -B and
-H to indicate body and hand sub-tasks. Due to the efficient
inter-part feature composition, it takes only 10.3ms to esti-
mate keypoint positions of two hands, which is two times
faster than the lightweight method of [78]. The end-to-end
IKNet takes 2.68ms in total, which is nearly impossible for



Figure 4: Qualitative results. From top to bottom: 1) our
method captures subtle gestures while [9] is over-smooth; 2)
our hand pose is consistent with the wrist and arm while [9]
is anatomically incorrect; 3) our faces are more personal-
ized and realistic due to the variation in identity-dependent
facial geometry and albedo.

Figure 5: Comparison on face crop. A coarse face crop is
already sufficient for face capture, while a tighter one fur-
ther improves quality.

Figure 6: Samples from test data. Left: we zero-pad the
hand-only image from FreiHand to evaluate our model,
which is disadvantageous for us. Right: we mask the body
and only keep the hand regions visible to construct the
MTC-Hand-Mask test set.

traditional iterative optimization-based IK solvers. The op-
tional face detector [32] takes 7ms, without breaking the
real-time limitation (25.5fps).
Body Pose Estimation. In Tab. 2, we report quantitative
evaluation for body keypoint detection of DetNet, and com-
pare with other state-of-the-art approaches. Despite DetNet
is extremely fast, it is still comparable with the top models

Module DetNet-B DetNet-H IKNet-B IKNet-H FaceNet Total
Runtime 16.9 10.3 1.51 1.17 1.92 32.1
Method Ours Kanazawa [31] Choutas [9] Xiang [68] Pavlakos [46]
Runtime 32.1 60 160 20000 ∼50000

FPS 31.1 16.7 6.25 0.05 ∼0.02

Table 1: Runtime analysis in milliseconds and frames per
second (FPS). Top: runtime of each subtask in our method.
Bottom: comparison with previous works.

Method MPJPE (mm)
HM36M MPII3D MTC HUMBI

Xiang et al. [68] 58.3 - 63.0 -
Kolotouros et al. [33] 41.1‡ 105.2 - 101.7‡§

Choutas et al. [9] 54.3‡ - - 67.2‡§

Kanazawa et al. [31] 56.8‡ 124.2 - 84.2‡§

DetNet 64.8 116.4 66.8 43.5
DetNet (PA) 50.3‡ 77.0‡ 61.5‡ 32.5‡

Table 2: Body MPJPE on public datasets. Our model has
competitive results across all datasets while being much
faster. § means the model is not trained on the train split.

Metric DetNet DetNet+IKNet (IK-βββ) DetNet+IKNet (GT-β)
MPJPE 43.5 43.3 39.9

MPJPE (PA) 32.5‡ 31.6‡ 31.2‡

Table 3: Body MPJPE on HUMBI. We demonstrate that
incorporating BodyIKNet further lowers error. The small
gap between IK-β and GT-β indicates the high accuracy of
body shape estimation.

in terms of accuracy. We also evaluate previous works on
HUMBI although they were not trained on the train split.
Notably, their accuracy significantly drops as their gener-
alization across datasets is limited. In contrast, our ap-
proach performs similarly well across all datasets due to
the multi-dataset training, indicating a better generalization
ability. In Tab. 3, we compare the results after BodyIKNet
on HUMBI with different sources of shape parameters: IK-
β uses the shape parameters estimated by BodyIKNet, and
GT-β uses the ground truth shape parameters. Due to the
additional knowledge of the pose prior learned from Mo-
Cap data, BodyIKNet decreases the keypoint error. After
PA alignment, the error of IK-β is very close to GT-β, indi-
cating that the body shape estimation is also accurate.
Hand Pose Estimation. We report our results for hand pose
estimation in Tab. 4. The results after IK are based on the
shape parameters estimated by HandIKNet. On the MTC-
Hand test set, our mean error is only 9.3mm. We attribute
the 1.1mm increase of error after IK to the difference in
keypoint definitions between our hand model (SMPLH) and
the MTC hand model, as the bone length difference is 25%
on average. When it comes to FreiHand, our error increases.
This is because FreiHand is a hand-only dataset, while in
our method hand pose deeply relies on body information.
Since we do not have a hand-specific module, to evaluate
on FreiHand, we have to zero-pad the hand image to the
full size and feed it into the model (Fig. 6) as if body is
presented. Despite this non-ideal setup, after IK, our error



Method MPJPE (mm)
MTC-Hand (left) MTC-Hand (right) FreiHand

Choutas et al. [9] 13.0‡§ 12.2‡§ 12.2‡
Zhou et al. [78] 16.1‡§ 15.6‡§ 21.8‡§

DetNet 15.1 13.8 -
DetNet (PA) 8.50‡ 7.90‡ 24.2‡

DetNet + IKNet (PA) 9.42‡ 9.10‡ 15.7‡

Table 4: Hand MPJPE on public datasets. Our model has
the lowest error on MTC-Hand where the body information
is available, and is comparable on FreiHand even the body
is absent. § means the model is not trained on the train split.

Metric Tewari et al. [61] FaceNet FaceNet-T
Landmark Err. 4.70 3.43 3.37

Photometric Err. 0.0661 0.0447 0.0444
Table 5: Landmark error in pixel and photometric error per
channel on MTC-Face. FaceNet performs better than [61]
on these challenging samples, and a tighter bounding box
further improves accuracy.

is still comparable to [9], and outperforms [78] which is
not trained on FreiHand. Note that the previous methods in
Tab. 4 are not trained on the train split of MTC and cannot
compare with us directly on MTC-Hand.
Face Capture. In Tab. 5, we evaluate FaceNet on the face
crops from the MTC test set (MTC-Face). Compared with
typical datasets, the faces in MTC-Face are more blurry and
challenging. Our FaceNet gives better results than [61] on
such in-the-wild samples, and a tighter face bounding box
(denoted by postfix “T”) further lowers error. Please refer to
the supplementary document for more evaluation on face.

4.4. Ablation Study

Feature Composition. The inter-part feature composition
from body to hands is critical to reduce runtime and im-
prove hand pose accuracy. To examine this design, we
train the following models for comparison: 1) DetNet-
S(upplementary) where the hand branch estimates hand
pose only from supp-features F̂ and does not take any in-
formation from body except hand localization; 2) DetNet-
B(ody) where the hand branch estimates hand pose only
from body-features F ∗ and does not see the high-resolution
input image. To further examine the importance of body
information for hand keypoint detection, we additionally
construct a test set derived from MTC-Hand, called MTC-
Hand-Mask, where the body area is masked and only the
hands are visible (Fig. 6). The results are reported in Tab. 6.
On MTC-Hand, because of the utilization of body informa-
tion, the error of DetNet is lower than DetNet-S by 28%.
When it comes to FreiHand and MTC-Hand-Mask, the gap
between DetNet and DetNet-S shrinks to 4% and -5%. This
is due to the missing body information in these two test sets,
which indicates that the body-features indeed contribute to
the hand keypoint detection. DetNet-B always performs
worse than DetNet. This is because body-features are ex-
tracted from the low-resolution image where the hands are

Method MPJPE (mm)
MTC-Hand MTC-Hand-Mask FreiHand

DetNet-S(upplementary) 18.4 31.7 23.1‡
DetNet-B(ody) 17.2 37.5 26.8‡

DetNet 14.4 30.6 24.2‡

Table 6: Ablation study on body-features and supp-features.
The comparison between the three versions demonstrates
the help of F ∗ and F̂ in the hand pose estimation task.

Method MPJPE (mm)
HM36M MPII3D MTC HUMBI MTC-Hand

DetNet-U(niform) 57.9‡ 99.9‡ 64.6 59.1 14.7
DetNet-O(verfitted) 272.2‡ 297.9‡ 67.7 289.4 13.8

DetNet-I(ndoor) 61.7‡ 95.7‡ 64.8 63.1 15.1
DetNet 57.5‡ 90.1‡ 66.8 52.5 14.4

Table 7: Ablation study on training data. The gap between
DetNet-U and DetNet shows the help of the attention mech-
anism. DetNet-O and DetNet-I only perform well on a few
datasets, while DetNet has the best cross-dataset accuracy.

too blurry and cover only a few pixels. This comparison
indicates the importance of supp-features.
Data Modalities. The advantage of using MoCap data is
examined in Tab. 3 where IKNet lowers the error. To eval-
uate the attention mechanism and multiple image datasets,
we train the following models: 1) DetNet-U(niform) which
is trained without the attention mechanism, i.e. we treat
hand-only data as if body is presented by always setting
the attention channel to 1; 2) DetNet-O(verfitted) which is
trained on the only dataset where body and hands are anno-
tated simultaneously, namely MTC; 3) DetNet-I(ndoor) that
only uses the training data with 3D annotations (usually in-
door) without any 2D-labeled data (usually in-the-wild). To
account for different keypoint definitions, we only evaluate
basic body keypoints, except for MTC where all the mod-
els are trained on. As shown in Tab. 7, DetNet-U generally
performs worse than DetNet, indicating that the attention
mechanism helps during training. DetNet-O has poor cross-
dataset generalization and only performs well on MTC-
Hand. This illustrates the importance of the multi-dataset
training strategy, which is enabled by our 2-stage keypoint
detection structure. Finally, the inferior of DetNet-I to Det-
Net demonstrates the help of in-the-wild images, although
they only have 2D annotations. Please refer to the supple-
mentary video for more evaluation on the training data.

5. Conclusion
We present the first real-time approach to capture body,

hands, and face from an RGB image. The accuracy and
time efficiency comes from our network design that exploits
inter-part relationship between body and hands. By training
the network as separate modules, we leverage multiple data
sources and achieve superior generalization. Further, our
approach captures personalized face with both expression
and identity-dependent shape and albedo. Future directions
can involve temporal information for smoother results.



References
[1] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and

Bernt Schiele. 2d human pose estimation: New benchmark
and state of the art analysis. In Proceedings of the IEEE Con-
ference on computer Vision and Pattern Recognition, pages
3686–3693, 2014.

[2] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Se-
bastian Thrun, Jim Rodgers, and James Davis. Scape: shape
completion and animation of people. In ACM SIGGRAPH
2005 Papers, pages 408–416. 2005.

[3] Bruno Artacho and Andreas Savakis. Unipose: Unified
human pose estimation in single images and videos. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[4] Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim.
Weakly-supervised domain adaptation via gan and mesh
model for estimating 3d hand poses interacting objects. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 6121–6131, 2020.

[5] Volker Blanz and Thomas Vetter. A morphable model for
the synthesis of 3d faces. In Proceedings of the 26th an-
nual conference on Computer graphics and interactive tech-
niques, pages 187–194, 1999.

[6] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter
Gehler, Javier Romero, and Michael J Black. Keep it smpl:
Automatic estimation of 3d human pose and shape from a
single image. In European Conference on Computer Vision,
pages 561–578. Springer, 2016.

[7] Adnane Boukhayma, Rodrigo de Bem, and Philip HS Torr.
3d hand shape and pose from images in the wild. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 10843–10852, 2019.

[8] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei,
and Yaser Sheikh. Openpose: realtime multi-person 2d
pose estimation using part affinity fields. arXiv preprint
arXiv:1812.08008, 2018.

[9] Vasileios Choutas, Georgios Pavlakos, Timo Bolkart, Dim-
itrios Tzionas, and Michael J. Black. Monocular expres-
sive body regression through body-driven attention. arXiv
preprint arXiv:2008.09062, 2020.

[10] J. S. Chung, A. Nagrani, and A. Zisserman. Voxceleb2: Deep
speaker recognition. In INTERSPEECH, 2018.

[11] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018.

[12] Matthias Dantone, Juergen Gall, Christian Leistner, and Luc
Van Gool. Human pose estimation using body parts depen-
dent joint regressors. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3041–
3048, 2013.

[13] Bardia Doosti, Shujon Naha, Majid Mirbagheri, and David J
Crandall. Hope-net: A graph-based model for hand-object
pose estimation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
6608–6617, 2020.

[14] Bernhard Egger, William AP Smith, Ayush Tewari, Stefanie
Wuhrer, Michael Zollhoefer, Thabo Beeler, Florian Bernard,

Timo Bolkart, Adam Kortylewski, Sami Romdhani, et al.
3d morphable face models—past, present, and future. ACM
Transactions on Graphics (TOG), 39(5):1–38, 2020.

[15] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu.
Rmpe: Regional multi-person pose estimation. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 2334–2343, 2017.

[16] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981.
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