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Abstract

Recent monocular human performance capture ap-
proaches have shown compelling dense tracking results of
the full body from a single RGB camera. However, ex-
isting methods either do not estimate clothing at all or
model cloth deformation with simple geometric priors in-
stead of taking into account the underlying physical princi-
ples. This leads to noticeable artifacts in their reconstruc-
tions, e.g. baked-in wrinkles, implausible deformations that
seemingly defy gravity, and intersections between cloth and
body. To address these problems, we propose a person-
specific, learning-based method that integrates a simula-
tion layer into the training process to provide for the first
time physics supervision in the context of weakly supervised
deep monocular human performance capture. We show how
integrating physics into the training process improves the
learned cloth deformations, allows modeling clothing as a
separate piece of geometry, and largely reduces cloth-body
intersections. Relying only on weak 2D multi-view super-
vision during training, our approach leads to a significant
improvement over current state-of-the-art methods and is
thus a clear step towards realistic monocular capture of the
entire deforming surface of a clothed human.

1. Introduction

Human performance capture plays a critical role in vari-
ous computer graphics and vision applications such as vir-
tual try-on, movies as well as video games. With rapid
progress in display and capture technology, expectations
on the quality of geometric reconstruction and tracking are
constantly increasing. Here, not only the geometric de-
tails are of major importance but also that the deformed
and posed reconstructions follow the physical behavior of
real objects which includes realistic wrinkle patterns as well
as coherent interaction of body and clothing. While pro-
fessional content production studios can rely on involved
multi-camera setups to capture high-fidelity human perfor-
mances, there is an ever-growing desire to democratize per-

Figure 1. Our method estimates body pose and physically plau-
sible surface deformation from a single image. Importantly, body
and clothing are represented as separate meshes allowing for ac-
curate modeling of body-cloth interactions.

formance capture for everyday applications, e.g. virtual try-
on, by utilizing much simpler and cheaper capture devices.

Hence, research has shifted from expensive and complex
multi-view capture setups [52, 6, 9, 7, 50, 13, 16, 38, 44,
73, 77, 50] to depth cameras [61, 21, 46, 27, 20, 35, 80, 15,
82, 81, 76, 83] over the past decade. Unfortunately, the lat-
ter are sensitive to bright sunlight and thus are not suited
for outdoor use-cases. In conjunction with the advances in
deep learning, the most recent research has shifted its at-
tention onto single RGB camera setups, offering the most
flexible and low-cost setup. Previous monocular methods
have made a substantial progress in recovering the 3D un-
clothed body [30, 49, 31], hand pose [74, 43, 88], facial
identity and expression [33, 67, 68] as well as jointly track-
ing all of those [48, 78, 29, 87]. However, only a few meth-
ods [23, 22, 79] coherently track the dense surface deforma-
tions with clothing included from monocular views, which
is essential for a majority of applications. These person-
specific methods densely deform and pose a geometry to
match the body pose and the clothing deformation in the in-
put image while assuming an initial template of the person
is given. Recent learning-based monocular methods [23]
only leverage image-based supervision, rendering it a chal-
lenging task to densely supervise deformations. This man-



ifests in simplified model assumptions, e.g., a single geom-
etry for both body and clothing, or the utilization of sim-
ple geometric priors disobeying physics principles. Con-
sequently, they either fail to account for body-cloth inter-
actions or having deformations that do not follow physical
rules. Importantly, artifacts such as baked-in wrinkles from
the initial scan are highly noticeable in their results.

To this end, we propose a learning-based approach for
capturing the body pose and the physically plausible cloth-
ing deformation from a single RGB image (see Fig. 1).
Our method comprises two networks dedicated to regress
body pose in terms of joint angles and surface deforma-
tions in form of embedded deformation. Importantly, during
training, we only assume weak supervision with multi-view
imagery, i.e. 2D skeletal joint detection, and foreground
masks. These supervisions alone can hardly ensure phys-
ically plausible results. Thus, at the core of our approach,
we propose an efficient simulation layer that for the first
time allows physically plausible self-supervision during the
training in such a weakly supervised setting. We achieve
this by integrating a physics-based simulator into a learn-
ing architecture that takes intermediate predictions of cloth
and body positions and velocities to perform forward sim-
ulations. The simulation results are then used to supervise
the cloth deformations during training. As cloth-body col-
lisions are explicitly handled in the proposed layer, we can
accurately model clothing as a separate piece of geometry
in contrast to previous monocular methods. In summary,
our contributions are:

• A monocular human performance capture approach,
which outputs body pose and physically plausible cloth
deformations for dressed subjects.

• A simulation network layer that allows on-the-fly sim-
ulation supervision during training, which also enables
separate modeling of cloth and body geometry.

In contrast to prior work, our method reconstructs physi-
cally more accurate deformations without baked-in wrin-
kles and with correct body-cloth collision handling. Our
quantitative evaluations indicate that incorporating physics-
based simulation during training provides significant im-
provements over state-of-the-art methods.

2. Related Work

As our goal is recovering a dense surface of the human,
we focus on previous works that achieve this by using para-
metric body models or template meshes, and works that
treat body and clothing as separate mesh layers. We omit
the works on 2D [10, 11, 60, 75] and 3D skeletal pose es-
timation [42, 41, 24, 54, 53, 86, 66, 70, 55] as they are not
concerned with the problem of surface reconstruction.

Reconstruction of Parametric Body Models. The
works [85, 28, 56, 18, 4, 37, 30, 71] that fall into this cat-
egory use parametric body models [39]. Some works fit
the model parameters to sparse 2D and 3D joint predic-
tions [4] or regressed vertex positions [34] by minimizing
corresponding energies. Others [30] directly regress these
parameters from images. A set of recent works [48, 78] ex-
tended body models to account for varying hand poses and
facial expressions to jointly capture hands, face, and body.
While motion and shape of the undressed body are recon-
structed, clothing is not considered.

Unified Reconstruction. One stream of previous work
treats body and clothing as a single geometry. Volumet-
ric representations [84, 72] use an occupancy grid to rep-
resent the body, meaning that the resolution is limited by
the grid. Implicit methods [57, 26, 58] methods overcome
this limitation by treating the surface as an implicit func-
tion. However, both approaches require post-processing
to recover explicit surface representations. Lacking tem-
poral consistency thus prohibits these approaches for ap-
plications such as texture replacement or motion retarget-
ing. Closely related to our work are template-based meth-
ods [22, 23, 79, 12, 14] that track a template based on image
observations. Using a mesh with fixed topology as a refer-
ence, surface correspondence over time is explicitly given.
With input data originating from images only, this ill-posed
problem is countered by simplified assumptions and geo-
metric priors. Consequently, static wrinkles contained in a
template remain visible across all poses, and deformations
commonly appear to be physically implausible, e.g. defying
gravity. Most importantly, all these methods treat clothing
and body as a single piece of geometry ignoring dynamic
body-cloth interactions. To address these limitations, we
propose a simulation layer that encourages cloth deforma-
tions to not only satisfy image constraints but also exhibit
physically plausible behavior.

Cloth as a Separate Part. In contrast to the above meth-
ods, there is also a line of work that reconstructs body and
clothing as separate geometries. Bhatnagar et al. [3] re-
cover static geometry for clothing and body from a set of
RGB images. DeepWrinkles [36] enables posing a piece of
cloth where their method learns to regress pose-dependent
wrinkles at high resolution. ClothCap [51] uses multi-view
capture to produce a clothed human body that can be used
for re-targeting. Stoll et al. [63] recover cloth material pa-
rameters from multi-view video sequences to reproduce the
observed garment deformation. SimulCap [83] performs
quasi-static physics simulation with depth matching con-
straints to reconstruct the clothing layer. Different from the
above methods, our approach relies solely on a monocular
RGB camera. Also leveraging simulation, MulayCap [64]



recovers, both, the texture and the geometry of a dressed
subject from monocular RGB videos by a multi-layer de-
composition approach. However, simulation is only used to
generate initialization for the succeeding refinement stage,
whereas we consistently enforce simulation supervision.

As a potential alternative to simulation, geometric de-
tail such as wrinkles can be added in a data-driven, pose-
dependent manner [17, 59, 47, 19]. Different from these
geometry-driven methods, we integrate physics-based sim-
ulation into our training framework thus encouraging phys-
ical plausibility with only a single image as input.

3. Method
Our template-based method leverages a deep neural ar-

chitecture, taking a single background-segmented person
image as input and regresses posed and deformed surface
meshes for body and clothing which match the performance
in the input image (Fig. 2). Before training, a 3D template
of the person with separate cloth and body geometry and a
multi-view recording of the subject performing various mo-
tions has to be acquired (Sec. 3.1). The technical core of our
architecture is formed by two prediction networks, PoseNet
and PADefNet, that are trained to regress body pose and
physics-aware cloth deformation, respectively (Sec. 3.3).
PoseNet [23] regresses skeleton joint angles and the root ro-
tation from the input image using multi-view 2D joint detec-
tion as weak supervision. The proposed PADefNet predicts
the surface deformation of the cloth template by regress-
ing embedded graph parameters from the same input image.
In addition to multi-view image data, PADefNet leverages
our cloth simulation layer as supervision, which encourages
physically plausible deformations (Sec. 3.2).

3.1. Data Processing

Template Acquisition. Similar to DeepCap[23], we ac-
quire a single scan for body and clothing (e.g. using pho-
togrammetric scanning). Surface registration against a para-
metric body mesh model [1, 2] is then performed to obtain
an estimate for body parts occluded by clothing, e.g. the legs
under a skirt, which are merged with the visible body parts
from the scan to form a complete body mesh. The arms of
the body mesh are labeled as inactive when resolving col-
lisions. A separate cloth mesh is created manually from
the scan, a task could also be automated [63, 51]. Skeleton
parameters and skinning weights, required for posing the
meshes, are determined automatically [23]. Two separate
embedded graphs [65, 62] for body and clothing are com-
puted by down-sampling the original meshes. These pre-
processing steps only need to be done once per character.
For more details, we refer to the supplemental document.

Video Capture. We capture the subject to be tracked in
a multi-view green screen studio with calibrated and syn-

chronized cameras. The person is asked to perform various
tasks, e.g. walking, and dancing, to best sample the space of
possible poses. Next, we apply OpenPose [11, 10, 60, 75]
on all frames and views to obtain multi-view 2D joint pre-
dictions. Color keying is used to segment the foreground
from the green-screen background and compute distance
transformation imagesDc from the foreground masks [5].

3.2. Cloth Simulation Layer

Our simulation layer uses the publicly available cloth
simulation framework ARCSim [45] as its basis, but we
make several adjustments that we describe below.

Material Model and Parameter Selection. ARCSim
leverages a data-driven material model defined by a total
of 39 parameters. While parameter values for several real-
world fabrics are provided, we found that none of them were
ideally suited for the materials that we use in our examples,
and manually adjusting parameters to obtain better approx-
imation proved very difficult. For this reason, we resorted
to a simpler, isotropic material model[69] defined through
three parameters: Young’s modulus and Poisson’s ratio for
in-plane behavior, and a single bending stiffness coefficient.
We determine parameter values through best-guess initial-
ization and a few iterations of simulation-based tuning to
better approximate the qualitative behavior observed in the
input video sequences. We used the same parameters for all
sequences. Although this manual approach is sufficient for
our examples, this task could be further automated [63].

Time Integration. During training, the initial state and
velocities that are fed into the simulation layer can exhibit
large deformations that, when using ARCSim’s default in-
tegration method, can lead to instabilities. To improve sta-
bility, we resort to an optimization-based formulation of
fully implicit Euler [40] combined with adaptive regulariza-
tion and a back-tracking line search. Finally, we make sev-
eral code adaptations to enable batch operations for efficient
training and integrate the simulation engine in a customized
TensorFlow1 layer. We refer to this layer as the simulation
function S, which takes cloth and body vertices as input and
returns the cloth positions for the next time step.

Silhouette Constraint. While our simulation model cap-
tures the characteristic behavior of clothing, it is still an ap-
proximation, and deviations from the input images must be
expected due to external forces such as air drag, viscous
damping, and friction that are not modeled. To better track
the real-world behavior, we add a multi-view silhouette con-
straint term. Specifically, this constraint ensures that the
vertices Ṽ

t

cloth of the simulated cloth geometry matches

1https://www.tensorflow.org/



Figure 2. Our method takes a single image as input and two networks, PoseNet and PADefNet, regress the skeletal pose as well as embedded
deformation parameters for the clothing. Combining the outputs of the two networks allows posing and deforming the body and clothing
geometry. During training, we use multi-view image losses for PoseNet and PADefNet is additionally supervised by our proposed simulation
loss to encourage physically plausible deformations. To evaluate the simulation loss, we run on-the-fly cloth simulation on small windows
of subsequent frames from the training sequence and penalize the difference between regressed deformations and simulation outputs.

the image silhouettes from all camera views for frame t.
We construct a 3D ray going through the camera origin and
the silhouette pixel p and search for the boundary vertex
Ṽ

t

cloth,p that minimizes the distance to this ray. The closest
point on the ray is used as 3D point correspondence for the
boundary vertex, enforced via soft constraints

Econs =
∑
p

||Ṽ
t

cloth,p − V
t
ray,p||2. (1)

3.3. Pose and Deformation Regression

We separate the task of regressing the full surface defor-
mation into predicting pose and surface deformation inde-
pendently. Therefore, our method consists of two ResNet50
based CNNs [25], PoseNet and PADefNet, which regress
skeleton pose and embedded deformation parameters from
a segmented input image, respectively.

3.3.1 Pose Regression and Deformation Model

To pose and deform template vertices as well as sparse body
markers, a deformation layer [23] denoted as

V loc,Kloc = f(θ,α,A,T ) (2)

is used, which is a combination of dual quaternion skin-
ning [32] and embedded deformation [65, 62]. It takes the
pose in terms of skeleton joint angles θ ∈ R3 and camera-
relative root joint rotation α ∈ R3 as well as the embedded
graph node rotation A ∈ RK×3 and translation T ∈ RK×3

where each row encodes rotations in terms of Euler angles

and translation vectors for each of the K nodes. The output
is the posed and deformed vertices V loc and markers Kloc

in camera and root-relative space . The body pose parame-
ters θ, T and α are obtained from PoseNet [23].

3.3.2 Physics-aware Deformation Regression

To not only pose the template but also account for surface
deformation, a dedicated network PADefNet predicts the
translation vectors T and rotation angles A of the embed-
ded graph (EG) from the segmented input image. PADefNet
is supervised using a combination of both image-based
and physics-based metrics, which ensure that deformations
match image-based observations while minimizing viola-
tions of physical equilibrium conditions. In the remainder
of this chapter, we assume PoseNet is fixed and provides the
posed and deformed vertices V and markers K in global
space. As V andK are a function of the PADefNet outputs
(T, A), we can then supervise PADefNet on V andK.

Warm Start. To jump-start our training including the
simulation layer, we first pre-train PADefNet with-
out running simulation but use a geometric regularizer
(ARAP [62]). This adds robustness to the training as geo-
metric regularizers are more stable than simulation and sig-
nificantly reduces overall training time. Once the network
predicts reasonable shapes, we add the simulation loss to
supervise the physical deformation. The loss is defined as

Lwarm = Lsil + Llm + Lreg + Latt (3)



which comprises multi-view losses as well as geometric pri-
ors. The individual loss terms are defined as follows.

Multi-view Losses. Our multi-view 2D landmark loss

Llm = βlm
∑
c

∑
m

||Πc(Km)− pc,m||2 (4)

ensures that the projected landmark matches the 2D detec-
tion pc,m for all views c and landmarks m. Here, Πc de-
notes the projection function of the camera c. To densely
supervise the surface, we also introduce a silhouette loss

Lsil = βsil
∑
c

∑
b∈Bc

ρc,b||Πc(V b)−Dc||2, (5)

which ensures that the set of mesh boundary vertices Bc
matches the zero contour line in the distance transformation
image Dc for all views. ρc,b is a weighting term ensuring
that silhouettes are only matched if the normal of the surface
aligns with the gradient of the distance transformation [22].

Regularization Loss. To regularize deformations and to
avoid drifting of the surface, we employ the as-rigid-as-
possible prior [62] to ensure smooth local embedded de-
formations. We further adopt the rigidity weights formula-
tion [23] to model material-dependent deformation behav-
iors, e.g. the skirt can deform more freely than the skin.

Attachment Loss. Note that our entire mesh V can be
split into body and garment meshes, denoted as V cloth and
V body in the remainder of this section. To ensure a coherent
movement of these two, an attachment loss

Latt = βatt
∑
i∈A
||V cloth,i−

2∑
j=0

γi,jC(V cloth,i,V body)j ||2

(6)
is included to ensure that the cloth is attached to the body
at some anchor positions, e.g. the waistband of a skirt has
to be attached to the hip of the body mesh. Here, A are the
selected vertices on the garment that act as anchor points,
C is a function that takes the cloth vertex id i and returns
the 3 vertices of its closest triangle on the undeformed body
mesh, and γij are barycentric weights computed from the
closest point on this triangle and its three vertices.

Physics-aware Training. While the previous training
stage constrains the surface mesh to match the image evi-
dence, it can neither account for the collision of body and
clothing nor ensure physically plausible cloth deformations.
To this end, we introduce a dedicated simulation-based loss
as a better substitution for the ARAP term to explicitly pe-
nalize collision behavior and physically implausible defor-
mations. Our final loss is then defined as

L = Lsil + Llm + Lsim + Latt. (7)

As our simulation layer S is directly integrated into a
learning framework, we can perform on-the-fly simulation
during training. While our method takes a single image as
input, the simulation-based loss term is designed to be a
multi-frame function to better leverage the sequential train-
ing data available. More concretely, this term penalizes
the accumulated error on a set of consecutive frames, i.e.
the mismatching between the per-frame predictions and the
on-the-fly simulation results within a frame window (see
Eqn. 8). We found that in practice performing simulation
over long sequences is extremely challenging when using
shapes and poses predicted by a network, since even visu-
ally unnoticeable errors, e.g. cloth getting trapped in body
self-intersections, can lead to catastrophic failures. Hence,
we designed our framework specifically to rely only on
small simulation windows F starting at random frames t′ to
have shorter but successful simulations for training. Addi-
tionally, the chosen design is well suited for machine learn-
ing, as it allows to access data randomly and in parallel for
training. In the following, we refer to a specific frame in this
window using the superscript ·t, where t ∈ {t′, ..., t′ + F}.
Our physics loss then reads

Lsim = βsim
∑
i

t′+F∑
t=t′+1

||V t
cloth,i − Ṽ

t

cloth,i||2. (8)

Here, Ṽ
t

cloth,i denote the post-simulation cloth vertex posi-
tions, defined as

Ṽ
t

cloth =


V t

cloth, t = t′

S(V t−1
cloth,V

t
cloth,V

t−1
body,V

t
body), t = t′ + 1

S(Ṽ
t−2
cloth, Ṽ

t−1
cloth,V

t−1
body,V

t
body), t > t′ + 1

where S is the aforementioned simulation operation. We
initialize the cloth position with PADefNet outputs at t = t′,
where no history is available, and the velocity is initial-
ized using finite difference with cloth position between the
succeeding frame. The body vertices positions come from
the network predictions and velocities are computed always
with finite differences. The loss is then evaluated on the
F − 1 frames (excluding the first frame). Even though the
first frame in a training sample sequence does not receive
this supervision, that frame is supervised by our multi-view
supervision, such that in practice all frames are supervised.
We opted to not backpropagate gradients through the simu-
lation inputs with respect to the EG parameters as guaran-
teeing convergence during training would be harder.

4. Results
We evaluate our approach on various outdoor and indoor

environment settings with three subject-cloth combinations
under a wide range of motions (see Fig. 3). To bridge the



domain gap between training data recorded in the capture
studio and in-the-wild testing sequences, e.g. different light
conditions, we apply a domain adaptation step. PoseNet
and PADefNet are refined for 300 iterations on the testing
sequence leveraging the losses introduced before but using
only a single camera. For in-the-wild captures with vary-
ing and dynamic backgrounds, we segment the input images
using OSVOS [8]. While the result is almost collision-free
thanks to PADefNet, minute intersections can remain, which
is why we run a final collision resolution step (see also sup-
plemental video). This optional step takes 2s per frame on
an Intel i7-9700 CPU. Following DeepCap [23], we apply a
temporal Gaussian filter of size 5 frames.

Dataset. Our training dataset contains 3 green screen stu-
dio capture sequences with actors performing a large range
of motions. For testing, we recorded an additional multi-
view green screen sequence to evaluate our reconstruction
on reference views and multiple in-the-wild captures using
a single camera with a resolution of 1920× 1080 for every
subject. Apart from a public available sequence S4 [23], we
additionally acquired two training sequences and templates,
F1 and F2, with 18 cameras at a resolution of 1285 × 940,
where each sequence contains around 20,000 frames. We
will release the dataset for future research.

Qualitative Results. In Fig. 3, we test our method on var-
ious in-the-wild environments while the subjects perform
a wide range of motions. Our method does not only pro-
vide accurate image overlays and plausible 3D body and
cloth geometries but our reconstruction also show physics-
aware cloth deformations and plausible body-cloth inter-
actions. PADefNet predicts different physically plausible
wrinkle patterns related to the character motion as shown in
Fig. 4. This is due to our separate modeling of body and
cloth geometry and the fact that body-cloth interactions are
taken into account by our simulation supervision. We fur-
ther visualize the underlying body geometry without cloth-
ing where also the occluded parts are predicted accurately.

4.1. Comparisons

We compare our approach to the state-of-the-art
template-based monocular human performance capture
methods [22, 23]. LiveCap [22] optimizes the pose via in-
verse kinematics to match predicted 2D and 3D joint po-
sitions and computes surface deformations via analysis by
synthesis. DeepCap [23] uses weak supervision from multi-
view images during training to predict pose and embedded
deformation parameters from a single segmented image.

4.1.1 Qualitative Comparisons

In Fig. 5, we compare our method with state-of-the-art
template-based methods [22, 23]. Unlike our approach,

Methods Avg Max
LiveCap[22] 79.85 1140
DeepCap[23] 2.119 29.84
Ours 1.017 7.063

Table 1. Out-of-balance force evaluation. We compare our
method to LiveCap [22] and DeepCap [23] with respect to out-
of-balance force magnitude. It can be seen that our physics-aware
method outperforms state-of-the-art geometry-based methods.

both LiveCap and DeepCap only use geometric priors on
the deformations during optimization and training, respec-
tively. Consequently, the resulting cloth deformation con-
tains static wrinkles from the initial template (see top left
corners) that persist across all poses. By using simulation
supervision and separate modeling of cloth and body ge-
ometries, the wrinkles generated by our method are less
constrained by the template and, consequently, exhibit more
variety and better physical plausibility.

4.1.2 Quantitative Comparisons

We evaluate our results using the green screen testing se-
quence of S4 for all metrics below. Note that obtaining ac-
curate ground truth 3D geometry from such a sparse camera
system is impossible and thus we resort to image-based and
physics-based metrics. For a fair comparison, we use the
same cloth-body geometry, obtained through manual clean-
up of the input scans, for all approaches.

Out-of-balance Force Evaluation. In Tab. 1, we list the
magnitude of the out-of-balance forces, which are defined
as the difference between inertial forces and the sum over
internal, external, and collision forces. This physical mea-
sure indicates to what extent the results deviate from New-
ton’s second law of motion and vanishes for physically cor-
rect motion. The acceleration of the body and the garment
for a given frame is determined using a centered differ-
ence approximation based on network predictions for three
consecutive frames. To reduce the global translation er-
ror irrespective of our network predictions, we apply the
ground truth global translation for all methods as described
by Habermann et al. [23]. Our method performs not only
better on average compared to other approaches but also
significantly reduces the peak value. LiveCap [22] per-
forms significantly worse due to the inherent ambiguity of
the single-image setting combined with the inability of ge-
ometric priors to capture physical behavior. As a result, the
cloth geometry returned by their method exhibits large dis-
tortions, in particular in regions occluded from view, result-
ing in large internal forces. DeepCap [23] leverages neural
network models trained with multi-view supervision. De-
spite substantial improvements compared to LiveCap, our
physics-aware method leads to a 50% decrease in error.



Figure 3. Reconstructions obtained with our method for various in-the-wild environments and challenging motion combinations. Our
results show good overlay quality throughout, attesting to the pose and clothing estimation accuracy of our method. Furthermore, diverse
and physically plausible cloth deformations are observed for a wider range of poses.

Figure 4. Reconstruction results. Despite minor distortions in
occluded regions, our reconstructed body geometry matches the
image evidence. Thanks to the separate modeling, our cloth recon-
struction is able to reproduce the folding and unfolding behavior
of the dress driven by the underlying body motions.

Garment-body Intersection Distance. In Tab. 2, we fur-
ther compare the garment-body intersection distance to
LiveCap [22] and DeepCap [23]. Their simplified one-piece
templates sidestep this issue, however, when we evaluate
with our more accurate mesh model, e.g. separate geome-
try for clothing and body, collisions severely affect the re-
construction quality. We show that our network predictions
significantly reduce cloth penetration.

IoU Percentage. To measure reconstruction quality from
different camera views, we compare our results with previ-
ous methods using the intersection over union (IoU) met-

Input LiveCap [22] DeepCap [23] Ours

Figure 5. Comparison with state-of-the-art template-based
monocular methods [22, 23]. Using simulation supervision dur-
ing training, our method produces physically more realistic results
without baked-in wrinkles from the initial template mesh (shown
in the top left corners).

Average Penetration Depth (cm)
Methods Distance
LiveCap[22] 25.58
DeepCap[23] 23.83
Ours 4.165

Table 2. Penetration Depth. We compute average penetration
depths for cloth-body intersections across a 10,000 frame testing
sequence. Not taking collisions into account, both LiveCap [22]
and DeepCap [23] produce severe penetrations. Our method han-
dles collisions during training, which leads to substantially re-
duced penetration depths.



Methods AMVIoU (%) RVIoU(%) SVIoU(%)
HMR[30] 65.10 64.66 70.84

LiveCap[22] 59.96 59.02 72.16
DeepCap[23] 82.53 82.22 86.66

Ours 80.83 80.53 84.83

Table 3. IoU percentage comparison. Average multi view
(AMVIoU), reference view (RVIoU) and single view (SVIoU) val-
ues correspond to IoU evaluation on all views, all views expect
input view, and input view, respectively. Our reconstruction pro-
vides comparable accuracy with state-of-the-art methods while de-
livering more physically plausible results.

ric (see Tab. 3). The IoU metric indicates the overlapping
percentage of the camera projection images of our recon-
struction and the foreground segmentation of input images
(ground truth). To be consistent with DeepCap [23], the
evaluation is performed for every 100th frame of the test-
ing sequence from S4, and we apply the same ground truth
global translation and a temporal filter. Comparing to body-
only reconstruction methods, our method achieves signif-
icantly better performance. It should be noted that, com-
pared to the other approaches, the cloth geometry in our
method is more constrained due to physics. For example,
the strap of a dress cannot detach from the body to match
the image silhouettes. Nonetheless, we achieve comparable
IoU accuracy while maintaining better physical plausibility.

4.2. Ablation Study

Simulation during Training. Here, we verify that, with
simulation supervision in the training process, physically
unrealistic cloth deformations and other artifacts resulting
from merely image-based supervision can be reduced. In
Fig. 6, the strap of the dress remains on the body, and the
bottom of the dress does not distort to match the silhouette.

Figure 6. Simulation during training. We evaluate our defor-
mation network with and without simulation loss on a testing se-
quence. It can be seen that penetrations and deformation artifacts
are largely reduced when using simulation.

Simulation during Testing. We compare our learned
cloth deformation with traditional cloth simulation
(TCS) [45, 69, 40] performing sequentially on a test
sequence using PoseNet to drive the body mesh. As shown

Figure 7. Simulation during testing. Although running simulation
directly on the test sequences can lead to stronger wrinkle patterns,
these deformations neither match the wrinkles in the image nor the
image silhouettes. In contrast, our predicted cloth closely matches
the silhouettes while also showing plausible deformations.

in Fig. 7, our results faithfully match the image evidence
due to the silhouette constraint. In contrast, TCS solely
provides plausible cloth animation irrespective of the image
observation. Moreover, a single failure in the simulation
process is fatal for TCS methods, since they cannot easily
recover from such failure due to their sequential nature. As
such, we refrained from reporting quantitative numbers for
TCS methods as they failed already after several frames
for the green screen evaluation sequences. In contrast, the
presented frame-based approach is robust to failure cases
and can recover from bad frames by design.

5. Conclusion
We propose a physics-aware deep learning-based

method for monocular human performance capture. With
physics-based simulation running on the fly as a network
layer, we enforce physics plausibility to compensate for the
shorthand of using only multi-view images. We show more
visually pleasing results and much-improved physics met-
rics over state-of-the-art methods.

Limitations & Future Work. The simulation layer is not
differentiable in our current implementation. Nevertheless,
a fully differentiable physics solver would improve data ef-
ficiency and it would open the door to automatic material
parameter estimation from video input. Our method is able
to faithfully track body pose and cloth deformations for dy-
namic input motion, but it cannot produce dynamic effects
from a single input image—an inherently ill-posed prob-
lem. To further improve physical fidelity and reconstruction
quality, we would like to extend our method to regress dy-
namically consistent cloth motion by leveraging deep tem-
poral architectures, which take short videos as input instead
of single frames.
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O’Sullivan. Skinning with dual quaternions. In Proceed-
ings of the 2007 Symposium on Interactive 3D Graphics and
Games, I3D ’07, 2007. 4

[33] Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng
Xu, Justus Thies, Matthias Nießner, Patrick Pérez, Christian
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Garrido, Florian Bernard, Patrick Perez, and Theobalt Chris-
tian. MoFA: Model-based Deep Convolutional Face Autoen-
coder for Unsupervised Monocular Reconstruction. In The
IEEE International Conference on Computer Vision (ICCV),
2017. 1

[69] Bernhard Thomaszewski, Simon Pabst, and Wolfgang
Straßer. Asynchronous cloth simulation. In Computer
Graphics International, volume 2, page 2, 2008. 3, 8

[70] Denis Tome, Chris Russell, and Lourdes Agapito. Lifting
from the deep: Convolutional 3d pose estimation from a
single image. IEEE Conf. on Computer Vision and Pattern
Recognition. Proceedings, 2017. 2

[71] Gül Varol, Duygu Ceylan, Bryan Russell, Jimei Yang, Ersin
Yumer, Ivan Laptev, and Cordelia Schmid. BodyNet: Volu-
metric inference of 3D human body shapes. In ECCV, 2018.
2

[72] Gul Varol, Duygu Ceylan, Bryan Russell, Jimei Yang, Ersin
Yumer, Ivan Laptev, and Cordelia Schmid. Bodynet: Volu-
metric inference of 3d human body shapes. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 20–36, 2018. 2

[73] Daniel Vlasic, Pieter Peers, Ilya Baran, Paul Debevec, Jo-
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