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In the following, we first provide more details about
the template processing (Sec. 1) where we define the rest
shape for our simulation and give illustrations of our tem-
plates and embedded graphs. Then, we explain in more
detail regarding different simulation components, includ-
ing the cloth model, the time integration scheme, collision
resolution, and failure case handling (Sec. 2). Finally, we
provide the weights used for the learning objectives and
the barycentric weights formulation for the attachment loss
(Sec. 3).

1. Template Processing
Rest Shape. We find our cloth rest shape by isometri-
cally mapping all triangles of the template onto a 2D plane.
Specifically, we move one vertex of each triangle to the ori-
gin, align one edge that shares this vertex to the x-axis, and
rotate the third vertex into the xy-plane.

Templates and Embedded Graphs. In Fig. 1, we visu-
alize our separated templates as well as the corresponding
graph meshes for all of our subjects. Note that the estimated
naked body looks plausible and can thus be used in our sim-
ulation layer as a collision proxy.

2. Simulation Details
We adopt the finite element-based simulation framework

ARCSim [7] and employ an optimization-based implicit
Euler method [6] for time integration. We use Continuous
Collision Detection [8] together with the method by Har-
mon et al. [5] for collision response.

Cloth Model. We adopt the same cloth model used by
Thomaszewski et al. [9], where the in-plane stretching be-
havior is defined on a triangle basis using nonlinear con-
stant strain triangles [1] and the out-of-plane bending force
is computed between adjacent triangle pairs adapted from
Bridson et al. [3]. Here we provide the detailed formulation
in our implementation.

Figure 1. Template and graph meshes of our subjects. The 3D
body geometries are plausible and can thus be used to drive our
cloth simulation.

We use an isotropic St.Venant-Kirchhoff constitutive
model [2] to capture the in-plane deformations. Given the
deformed 3D vertex locations (x) of a triangle and its un-
deformed rest configuration in 2D (X), we compute the
triangle-wise stretching energy as

Estretch = µ||E||2 +
λ

2
tr(E)2 (1)

where tr(·) is the trace operator, and the non-linear Green
strain E is defined as E = FTF − I, and F = ∂x

∂X is the
deformation gradient of a given triangle. µ and λ are Lamé
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parameters which are computed from Young’s modulus Y
and Poisson ratio ν as

µ =
Y

2(1 + ν)
, λ =

Y ν

(1 + ν)(1− 2ν)
. (2)

We obtain X from the template as described in Sec. 1.
Bending energy is defined on the common edge (e) of

adjacent triangle pairs, which reads

Ebend =
3

2
kbend

|e|2

|n1|+ |n2|
(θ − θ0)2 (3)

where θ, θ0 are the dihedral angles of an adjacent triangle
pair in the deformed and undeformed configurations, kbend
is the bending stiffness, n1,n2 are the normal vectors of the
neighboring triangles. It is worth noting that this model has
only three parameters and these are intuitive to adjust. We
use kbend = 10−6, Y = 105 and µ = 0.42 for all of our
simulations.

Time Integration. To allow stable simulations with step
sizes that match the time-stepping from the captured data,
we rely on implicit integration. Specifically, we use the
first-order implicit Euler method, whose update rules solve
the minimization problem

min
x

1

2
(x− y)TM(x− y) + ∆t2Epot(x) , (4)

whereEpot = Eint+Eext+Econs+Ecol collects all poten-
tial energy contributions, x are end-of-time-step positions,
and y = xn−vn∆t are first-order predictions for positions.
∆t is the time step, which we choose to be the frame rate of
the input video sequence.

Collision Resolution. Given the solution xIE from Eq. 4,
we seek for a collision-free state x. We perform Continuous
Collision Detection first and group the intersecting edge-
edge (EE), vertex-face (VF) pairs into impact zones [5]. We
then resolve collisions by solving the following constraint
minimization problem [7].

min
x

1

2
(x− xIE)TM̃(x− xIE)

s.t.Gx ≤ h
(5)

where M̃ is a diagonal mass matrix divided by the sum of
the mass of all vertices and the constraints take the form of

n

4∑
i=0

ωixi ≤ d (6)

where the x are the four vertices involved in an EE/VF col-
lision pair. Given a VF pair, n is the face normal. Other-
wise, if an EE pair is given, n is the cross product of the
two edges. d is a user-defined distance threshold. Eq. 6 in-
dicates that the tetrahedron which is formed by these four
vertices should have positive volume.

Failure Case Handling. The simulation can fail for cer-
tain configurations, e.g. when a piece of cloth lies inside of
self-penetrating body geometry. In this case, the collision
resolving is not able to find a solution. We exit the simu-
lation when the objective function is above a threshold and
ignore the loss and gradient for this frame. We further ini-
tialize the next frame velocity from the forward differences
of the network outputs again if the simulation exits before
the end of the F frames we defined. We choose F = 5 in
our implementation.

3. Additional Information

Weights. We adapt DeepCap [4]’s weighting scheme for
the same terms. Additionally, we use βatt = 0.2, and
βsim = 20, 000 for the attachment loss and simulation loss,
respectively.

Barycentric Weights. Here we provide the formula for
the barycentric weights γ in the attachment loss. Given the
vertices C0,C1,C2 of the triangle, the barycentric weights
of a given point p w.r.t. the three vertices are computed as

γ0 =
A(C0PC2)

A(C0C1C2)
, γ1 =

A(C0PC1)

A(C0C1C2)
, γ2 =

A(C1PC2)

A(C0C1C2)
,

(7)
where A(·) compute the area of a given triangle.
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