
Efficient and Differentiable Shadow Computation for Inverse Problems
– Supplemental Document –

Linjie Lyu, Marc Habermann, Lingjie Liu, Mallikarjun B R, Ayush Tewari, and Christian Theobalt

Max Planck Institute for Informatics, Saarland Informatics Campus

1. Overview
In the following, we provide more details regarding

the sphere fitting process (Sec. 2), geometry deformation
(Sec. 3), faster computation of SH multiplications (Sec. 4),
implementation (Sec. 5), more results (Sec. 6), and further
limitations (Sec. 7).

2. Sphere Fitting
Given a water-tight geometry and its bounding sphere

set, the Sphere Outside Volume (SOV) [9] is defined as the
volume inside the sphere set while being outside the mesh.
To approximate the geometry with our sphere representa-
tion as closely as possible, we want to minimize the SOV
by optimizing the sphere positions and radii. Therefore, we
first voxelize the space around the mesh such that the SOV
can be computed as the number of voxels which are inside
the sphere set and outside the mesh. Given a voxel cen-
ter vj and a fixed geometry, an outside-geometry indicator
function Ogj can be pre-computed as:

Ogj =

{
0, if vj is inside the geometry
1, otherwise. (1)

Similarly, the outside-sphere indicator function with respect
to a sphere represented by the sphere center ci and radius ri
is approximated as:

Os(vj , ci, ri) = φ(‖vj − ci‖2 − r2
i ). (2)

φ is the activation function, which is a relu function com-
bined with a tanh function. This function Os indicates the
relative position between the voxel and the sphere. If the
voxel is inside the sphere, Os is 0. When the voxel is far
outside from the sphere, Os increases and will become 1 in
the limit. Thus, the SOV energy

ESOV (C,R) =
∑
j∈V

Ogj · (1−
∏

i∈(C,R)

(Os(vj , ci, ri)))

(3)

approximates the number of voxels which are outside the
geometry but inside at least one sphere. C = {ci} and
R = {ri} represent the set of sphere centers and radii, re-
spectively, and V is the voxel set. In addition, we use a
surface term

Esurface(C,R) =
∑
k∈S

∏
i∈(C,R)

(Os(pk, ci, ri)) , (4)

where pk is the sampled points from the geometry surface
S, to encourage that the sphere set covers as much of the
surface as possible. We minimize

E(C,R) = ESOV (C,R) + ws ∗ Esurface(C,R) , (5)

which is differentiable with respect to each sphere center ci
and radius ri. ws is the weight for the surface term which
is between 10 and 150 depending on the type of object and
the surface point sampling resolution.

3. Geometry Deformation
After constructing the sphere set, the sphere centers can

be directly used to drive the geometry deformation. Like
Sumner et al. [8], we first link the sphere centers to each
other using the K nearest neighbor algorithm. These cen-
ters serve as the nodes of the Embedded Graph [8]. Then
each vertex on the mesh is registered to itsK nearest sphere
centers with distance-dependent weights. For different ob-
jects, we choose different K varying between 4 and 8. Dur-
ing the deformation, a translation and a rotation matrix is
defined at each sphere center which models the local de-
formation. Then, the vertices on the mesh are influenced
by the local deformations of their nearby spheres. Dur-
ing geometry optimization, we regularize the deformation
space by employing two spatial regularizers Erot and Ereg
as proposed by Sumner et al. [8]. In contrast to the original
approach, we use our shadow-aware image loss (described
in Section 3.5 in the main paper) as data term to optimize
the 6D poses of the spheres, which enables us to guide the
geometry deformation based on the monocular image ob-
servation.



4. SH Logarithm and Exponentiation
Next, we explain how the SH multiplication can be ap-

proximated using SH logarithm and exponentiation, which
allows for faster computation.

4.1. SH Logarithm

Our method leverages SH Logarithm and Exponentia-
tion computation. To project the logarithm of each blocker
function

Vi(ω,x) =

{
0, if Si blocks light in direction ω;
1, otherwise.

into the SH space and to avoid infinite logarithm for 0, we
replace the 0-1 blocker function with

V
′

i (ω,x) =

{
e−ε, if Si blocks in direction ω;
1, otherwise. (6)

In that case,

log(V
′

i (ω,x)) =

{
−ε, if Si blocks in direction ω:
0, otherwise.

(7)
As in Eq. 11 in the main paper (Section 3.3), the SH co-
efficients of this function can be easily computed using the
SH rotation [2], and it is differentiable with respect to x, the
sphere center ci, and radius ri.

Note that Ren et al. [7] leverage eigenvalue analysis to
approximate a mapping table from the SH vector to its
SH logarithm, which is applied after the projection of the
blocker function to the SH space. This is not continuous
with respect to the sphere orientations. Instead, the whole
process can be made differentiable by directly projecting
the logarithm of the blocker function to the SH space.

4.2. SH Exponentiation

We leverage optimal linear SH exponentiation approxi-
mation, as used in Ren et al. [7]. Given the SH coefficient
vector f for a function f , the SH exponentiation, which
is an approximation of the SH coefficients of exp(f), can
be efficiently computed as an operation on the SH vector
f = [f0,f1,f2, ...,fn2−1]. We first use DC Isolation [7],
to obtain the DC component f0, and the remaining compo-
nent f̂ = [0,f1,f2, ...,fn2−1]. Then, the SH exponentia-
tion is approximated as:

exp∗(f) = exp(
f0√
4π

)(a(‖f̂‖)1 + b(‖f̂‖)f̂ , (8)

where 1 = [
√

4π, 0, 0, ..., 0] is also a vector in SH space.
Ren et al. [7] use a non-continuous tabulation method for
the function a and b, while we empirically use a(x) =
exp(0.1x) and b(x) = exp(−0.2x), which allows differ-
entiating through the SH Exponentiation. Further, we also
use scaling/squaring [7] to scale f to a suitable range for
the SH Exponentiation.

4.3. Hyperparameters

The functions a(x) and b(x) in Eq. 8 affect the qual-
ity of the approximated visibility. The optimal choice of a
and b is related to the number of overlapping spheres, the
number of bands of spherical harmonics, and the range of
‖f̂‖. We empirically select a(x) and b(x), and use scal-
ing/squaring [7] so that the shadow looks reasonable in most
of our experiments. The optimal approximation of the SH
exponentiation requires adequate data from different set-
tings, and a learning-based method could be a potential so-
lution.

5. Implementation Details
Next, we provide more information about the implemen-

tation details, which includes the hyperparameters, initial-
ization, and settings for comparisons with Redner.

5.1. Optimization

For texture, lighting, and 6D pose reconstruction, we
use the Adam optimizer with a learning rate of 10−2 for
all methods. For geometry deformation and reconstruction
from shadows, we use Adam with a learning rate of 10−2

for translations, and 10−3 for the rotation matrices. Our
optimization stops if Θn−Θn−1

Θn
≤ 0.001, where Θn is the

objective function at the nth iteration.

5.2. Initialization

For texture and lighting optimizations, we initialize the
texture and environment maps as pure black. For 6D pose
reconstruction, geometry deformation, and reconstruction
from shadow, our optimization starts from a natural pose,
which is reasonably close to the ground truth pose such that
gradients can still guide the unknown scene parameters (see
also the supplemental video).

5.3. Redner Settings

We extensively experimented with different settings for
Redner [3] and choose the fastest setting, which leads to a
successful optimization within a comparable number of it-
erations. In our experience, a sampling number of 64 per
pixel is required for texture and environment map optimiza-
tion. We keep the same settings for pose and geometry op-
timization. Notice that even with 4 samples per-pixel, our
method is∼10 times faster for inverse problems such as en-
vironment map estimation.

6. Additional Results
In the following, we show more results including a joint

optimization of multiple scene parameters, results on real
data, a comparison to another differentiable ray tracing ap-
proach [5], and a visualization of the optimized scene illu-
mination.



Figure 1. Joint optimization of 6D pose and scene illumination.

6.1. Joint Optimization

Our method is capable of optimizing multiple variables
simultaneously, as shown in Fig. 1, where the 6D pose of
the object and scene illumination are optimized at the same
time. We outperform DI methods [6] as they cannot account
for the shadow. Compared to ray tracing based methods [3,
5], our method achieves visually similar results while being
much faster.

6.2. Real Data

We also evaluate our method on real data. In this ex-
periment, we show that we can optimize for the illumina-
tion, given geometry, albedo and pose of the object. We use
a light-stage dataset [10] where a human face is captured
from 16 viewpoints and 150 one-light-at-a-time (OLAT)
light sources. We use photogrammetry-based 3D recon-
struction from Agisoft Metashape1 to compute the 3D ge-
ometry and pose from the multi-view images. To compute
the albedo, we average the color of the individual OLAT
images. A reference image is synthesized by linearly com-
bining the OLAT images using a real environment map from
the Laval Outdoor dataset [1]. Given the albedo, geometry,
and pose, we optimize for the environment map (see Fig. 2).
Our method obtains results comparable in quality to Redner,
and higher quality compared to DI. This can be seen in the
color-coded error image, which shows the error between the
optimized rendering and the ground truth image.

6.3. Mitsuba 2 Comparison

We also compare our method with the Mitsuba 2 ren-
derer [5] using the reparameterization integrator [4] on tex-
ture, environment, and pose optimization, see Fig. 1. Due to
the memory limits, we only use 16 samples per pixel. The
optimized results using Mitsuba 2 are qualitatively close to
those obtained with Redner (we use Redner with 32 sam-
ples per pixel for the result in Fig. 1.) Mitsuba 2 takes
1.7s to 2.1s for each iteration, depending on the optimiza-
tion task, for an image resolution of 512× 512. In contrast,
our method only requires 18ms to 200ms, while achieving
a visually comparable result.

6.4. Visualization of the Optimized Scene Lighting

In Fig. 3, we visualize the estimated scene lighting given
just a monocular reference image of the scene. Since the
object has a diffuse material, and due to the fact that only

1https://www.agisoft.com/

a monocular image of the scene is given, the optimization
problem is very underconstrained. In consequence, multiple
solutions exist, which still lead to a plausible rendering that
matches the scene. However, for the DI method [6], the
reference image can not be reproduced since shadows are
not modeled in the rendering process.

7. Additional Limitations
For the geometry and 6D pose optimization, our method

can fail to optimize the deformation/6D pose parameters
correctly when the initialization is too far away from the
ground truth. For example, when the ground truth shadows
and the estimated shadows do not overlap at all in image
space. In this case, there are no meaningful gradients for
supervising the scene parameters.

References
[1] Yannick Hold-Geoffroy, Akshaya Athawale, and Jean-

François Lalonde. Deep sky modeling for single image out-
door lighting estimation. In Computer Vision and Pattern
Recognition (CVPR), 2019.

[2] Jan Kautz, John Snyder, and Peter-Pike J Sloan. Fast arbi-
trary brdf shading for low-frequency lighting using spherical
harmonics. Rendering Techniques, 2(291-296):1, 2002.

[3] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehti-
nen. Differentiable monte carlo ray tracing through edge
sampling. ACM Transactions on Graphics (TOG), 37(6):1–
11, 2018.

[4] Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob.
Reparameterizing discontinuous integrands for differentiable
rendering. ACM Transactions on Graphics (TOG), 38(6):1–
14, 2019.

[5] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wen-
zel Jakob. Mitsuba 2: A retargetable forward and inverse
renderer. ACM Transactions on Graphics (TOG), 38(6):1–
17, 2019.

[6] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020.

[7] Zhong Ren, Rui Wang, John Snyder, Kun Zhou, Xinguo Liu,
Bo Sun, Peter-Pike Sloan, Hujun Bao, Qunsheng Peng, and
Baining Guo. Real-time soft shadows in dynamic scenes us-
ing spherical harmonic exponentiation. In ACM SIGGRAPH
2006 Papers, pages 977–986. 2006.

[8] Robert W Sumner, Johannes Schmid, and Mark Pauly. Em-
bedded deformation for shape manipulation. In ACM SIG-
GRAPH 2007 papers, pages 80–es. 2007.

[9] Rui Wang, Kun Zhou, John Snyder, Xinguo Liu, Hujun
Bao, Qunsheng Peng, and Baining Guo. Variational sphere
set approximation for solid objects. The Visual Computer,
22(9):612–621, 2006.

[10] Tim Weyrich, Wojciech Matusik, Hanspeter Pfister, Bernd
Bickel, Craig Donner, Chien Tu, Janet McAndless, Jinho
Lee, Addy Ngan, Henrik Wann Jensen, and Markus Gross.



Figure 2. Optimization of the environment map using a real world image.

Figure 3. Visualization of the scene lighting (bottom) optimized
using a single image observation. The rendered results are shown
on top.

Analysis of human faces using a measurement-based skin re-
flectance model. ACM Trans. on Graphics (Proceedings of
SIGGRAPH), 25(3):1013–1024, 2006.


