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In the following, we show more qualitative results and visualize our undeformed template
meshes (Sec. 1), provide details about the network architectures (Sec. 2), and give more
explanations regarding the individual loss terms (Sec. 3). Last, we provide more details
about the training process (Sec. 4) and limitations as well as future work (Sec. 5).

1 Qualitative Results and Template Meshes

We visualize some additional qualitative results in Fig. 1, which include different actors,
clothing styles, body motions, backgrounds, facial expressions, and hand gestures. The
results show that our reconstruction can jointly capture facial expressions, hand poses, and
also high-frequency details, such as deforming wrinkles on the clothes. We show our final
templates after further adding hands and face in Fig. 2.

2 Ablation Study

We propose a combined image- and graph-convolutional architecture, called DisplaceNet,
to regress the per-vertex displacement field, which captures the high-frequency details on
the nonrigid deforming surface. In Fig. 3, we compare our method to a purely image-based
convolutional architecture [3] and a baseline, which does not use any dense per-vertex dis-
placements. The comparison results demonstrate that our design achieves the best result as
indicated by the per-vertex error and recovers richer surface details such as the wrinkles of
the clothing. Note that especially in those regions, the baselines fall short in recovering the
geometric details. Thus, the highest error for the baselines can be observed in these regions
while our method shows a significantly lower error.

Next, in Tab. 2, we evaluate our design choices concerning the novel displacement net-
work architecture and the proposed supervision strategy. To this end, we first replace the
DisplaceNet architecture with a ResNet50 that has a fully connected backbone predicting
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Figure 1: Qualitative results. We show results for subjects with different types of apparel,
poses, and backgrounds. We show the overlay of our reconstruction onto the input frames.
Note that our method not only precisely overlays onto the input images, but also captures the
wrinkle patterns nicely.

the displacement field directly (second result row). The result shows that our proposed ar-
chitecture improves the quality of deformation. This is due to the fact, that the receptive field
of our proposed architecture is more local and, thus, the deep features attached to the graph
are better suited for predicting these local displacement vectors compared to the ResNet50
architecture, which in its last fully connected layer creates a fully global dependency between
the spatial image features.

To show the importance of the different loss terms and the proposed visibility-aware
and rigidity-aware vertex displacement network DisplaceNet, we conduct an ablation study
where we remove each of these components from the non-rigid training process. We report
the average Chamfer distance and the average symmetric Hausdorff distance and visualize
their per-vertex errors. We can see that removing any component from our carefully de-
signed combination reduces the quality of the estimated deformations, which confirms that
our design choice indeed provides the best performance. Furthermore, we show an error
comparison of how the visibility-modulated feature map improves the overall reconstruction
performance in Fig. 4.
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Figure 2: Examples of the final template meshes with hands and face.

Figure 3: Ablation studies. Visualization of the per-vertex error (MSE) of our method, our
method without DisplaceNet, and another baseline where we replace our proposed architec-
ture with a pure image-convolutional one. Our method has significantly lower error than the
baselines, which validates our design choices.

3 Details about the Loss Terms

3.1 Silhouette Loss
We define the multi-view silhouette loss for the input frame f as

Lsil(V) =
C

∑
c=1

∑
i∈Bc

dc,i∥Dc(πc(Vi))∥2. (1)
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Method Sequence 1 Sequence 2 Sequence 3
Rend. Chamfer Displ. Chamfer↓ Hausd.↓ Chamfer↓ Hausd.↓ Chamfer↓ Hausd.↓

✓ ✓ ✓ 7.25 39.72 9.21 40.07 7.26 32.69
✓ ✓ + 9.17 41.82 9.62 51.70 8.75 38.91
✗ ✓ ✓ 15.66 51.21 10.88 71.53 9.80 46.82
✓ ✗ ✓ 18.21 65.45 12.23 93.64 15.43 89.77
✓ ✓ ✗ 18.34 65.85 12.70 88.78 16.32 75.47
✗ ✗ ✓ 18.47 72.81 12.92 99.16 16.73 93.58
✗ ✓ ✗ 18.76 69.19 13.17 97.79 17.52 80.71
✓ ✗ ✗ 20.15 75.46 13.45 105.62 17.81 96.71
✗ ✗ ✗ 21.09 77.83 14.32 107.21 17.88 98.49

Table 1: Quantitative ablation study. We evaluate the necessity of the different loss terms
and the visibility-aware and rigidity-aware displacement network in terms of Chamfer dis-
tance and Hausdorff distance compared to the ground truth meshes. “+” indicates that we use
a ResNet architecture instead of our proposed DisplaceNet architecture. Note that our spe-
cific design choices provide the best results in terms of surface tracking accuracy compared
to the baselines.

Figure 4: Error comparison showing how the visibility-modulated feature map improves the
overall reconstruction performance.

The silhouette loss Lsil encourages the deformed mesh to fit the multi-view image silhouettes
from all the cameras. Vi is the position of the i-th vertex of the posed and the deformed
template mesh obtained by the deformation layer. πc, the perspective camera projection of
the camera c, projects Vi onto the image plane. dc,i ∈ {−1,+1} is a directional weight to
encourage the optimization to follow the right direction in the distance field [2] and Bc is the
set of boundary vertices computed by rendering the depth maps and detecting whether the
projected vertex πc(Vi) is near the intersection of background and foreground pixels. Here,
Dc is the distance transform image of camera c.

3.2 Marker Loss

Similar to the 2D keypoint loss for PoseNet, we define the marker loss as the weighted
squared loss of the difference between the projected 3D marker on the posed mesh from the
camera c and the detected 2D marker on the input image. The loss is defines as

Lmk = ∑
c

∑
m

βc, j∥πc(M j)−mc, j∥2, (2)

Citation
Citation
{Habermann, Xu, Zollhöfer, Pons-Moll, and Theobalt} 2019



JIANG ET AL.: HIFECAP 5

where πc(M j) is the projected 3D marker j on the posed mesh from the camera c, mc, j is the
detected 2D marker on the input image, and βc, j is its corresponding confidence value.

3.3 As-Rigid-As-Possible Deformation Loss
To ensure the smoothness of the mesh surface, we apply as-rigid-as-possible deformation
loss Larap [8] and use material-aware weights [2] to define the different levels of rigidity for
embedded graph nodes (e.g., clothing is assigned to a lower rigidity weight than the skin,
and, thus, it has more freedom to deform than skin).

3.4 Differentiable Rendering Loss
The multi-view silhouette-based loss can be used to get the posed and coarsely deformed
mesh. However, it does not allow to capture fine non-rigid deformations such as surface
folds. Thus, we deploy a dense rendering loss

Ldr(V,L) = ∑
c
∥Rc(V,Lc,T )−Ic∥2

, (3)

which takes the posed and deformed mesh and the static texture, renders it from various
camera views, and compares the rendered images Rc(V,L,T ) under the camera’s lighting
condition L with the corresponding input frame Ic: To deal with different light conditions,
camera optics and scene reflections, we optimize the lighting parameters for all the cam-
eras used in the multi-camera sequences. Under the assumption of Lambertian material and
smooth lighting environment, we apply the spherical harmonics (SH) lighting representa-
tion [6] to model the lighting condition Lc of each camera based on 27 lighting coefficients
lc ∈ R9×3. There are nine SH basis functions and for each SH basis function SH j, and we
have lc, j ∈ R3 for each color channel. Then, the lighting condition for each camera Lc(V, lc)
can be computed as

Lc(V, lc) =
9

∑
j=1

lc, jSH j(nc(V)), (4)

where nc(V) represents the image pixel normal based on the underlying geometry. Then, the
rendering function can be defined as

Rc(V, lc,T ) = Ac(V,T ) ·Lc(V, lc). (5)

Given the vertex positions V, the lighting coefficients lc the texture T —and under the as-
sumption of Lambertian surface—the rendering function equals to the dot product of the
albedo of the projected surface Ac(V,T ) and the lighting condition Lc(V, lc). The optimized
lighting condition lc for each camera c is then

argminlc∥Rc(V, lc,T )−Ic∥2. (6)

To optimize the lighting coefficients across all the frames in the training sequence, we apply
the Adam optimizer [4] to minimize ∥Rc(V, lc,T )−Ic∥2 by iteratively sampling the training
frames.
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Figure 5: We apply Dual Quaternion Skinning to unpose the original template mesh to T-
pose. We then replace the face and hands of the original template with the optimized models
to obtain the updated template mesh that contains the controllable hand and face models.

3.5 Isometry Loss
We employ an Isometry loss

Liso(V) = ∑
i

∑
(i, j)∈E

r(Vi,V j)

|(i, j) ∈ E|
|∥Vi −V j∥−∥VRelax,i −VRelax, j∥|2 (7)

on the mesh geometry to encourage consistent edge lengths with respect to the undeformed
template mesh. E represents all the edges on the mesh, Vi is the vertex position of the i-th
vertex on the posed and deformed mesh and V j where (i, j) ∈ E, is any vertex connecting
to Vi. VRelax,i and VRelax, j are their corresponding vertices on the original (unposed and
undeformed) template mesh. r(Vi,V j) are the predefined per-edge rigidity weights based on
the rigidity of body parts similar to the per-vertex rigidity weights of the template. Lower
rigidity weights are assigned to materials with less non-rigid deformations. For example,
the skin has less deformation ability, so we assign weight 200.0 to the face and 50.0 to other
parts of the skin. For more deformable parts, we assign lower weights, e.g., we assign weight
1.0 to dresses, 2.0 to upper clothes, and 2.5 to pants. The isometry loss encourages that the
length of every edge in the posed and deformed mesh is similar to the corresponding edge in
the original unposed and undeformed mesh to penalize large stretching of the surface.

3.6 Laplacian Loss
To avoid geometry distortion, we regularize the mesh with a Laplacian regularization term

Llap(V ) = ∑
i

wi∥|(i, j) ∈ E|(Vi −VRelax,i)− ∑
(i, j)∈E

(V j −VRelax, j)∥2
(8)

where wi represents the spatially varying regularization weights for each vertex on the mesh.
The Laplacian loss term ensures that adding the vertex displacements does not largely change
the Laplacian of the mesh so that the mesh has a smooth surface.

3.7 Tracking of Hands and Face
Fig. 5 shows the process of replacing the face and hand regions on the template mesh with a
parametric 3D face model [1] and hand model [7] to enable the joint tracking of hands and
face.
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4 Training Details
We train and test our approach on an NVIDIA Quadro RTX8000 GPUs with 48GB of mem-
ory. Our training process includes 4 different stages, i.e.,

1. Training PoseNet with 2D keypoint Loss;

2. Training EDefNet with silhouette loss and the regularization terms;

3. Training EDefNet with all the loss terms;

4. Training DisplaceNet with all the loss terms.

We use the Adam optimizer [4] for all the training stages. All the network architectures
are implemented in the Tensorflow framework. We train each stage for 120k iterations with
a learning rate of 10−5. The training data are multi-view videos captured in studio with
around 100 cameras. Due to the limited memory and training time, instead of training on all
the multi-view inputs, for each iteration, we randomly sample 30 camera views for all the
multi-view loss terms. The entire training process takes about 4 days in total if we train on
4 GPUs in parallel with a batch size of 8. At training time, the system requires multi-view
videos, however, at test time, it only takes single-view videos. Thus, at test time, our method
takes about 0.3 seconds on a single GPU.

5 Discussion and Future Work
Although our approach is the first to jointly track the human pose, facial expressions, hand
gestures, and non-rigid clothing solely from a monocular video, it still has some limitations
that open up future work in this direction. Hands and face capture still has some room to
improve. Our input video captures the entire body without any additional information about
the hands and face, and we further localize the hands and face to capture these parts. Thus,
existing face-only and hand-only methods cannot be directly applied to our setting as our
method requires cropping and alignments of the human’s hands, face, and body. Concern-
ing full-body methods, we show the superior performance of hands and face capture results
compared to previous work as shown in our qualitative results (Zhou et al. [9] and VIBE [5]).
It is hard to compare face and hand results quantitatively because it is very hard to obtain the
ground truth meshes under this setting (i.e., marker-less multi-view full-body capture). Also,
extreme body poses and hand gestures that are too different from the training motions can
lead to erroneous pose estimation and deformation. To tackle this problem, we envision that
in the future the overall robustness of our method can be further improved by jointly train-
ing on, both, in-studio multi-view data and in-the-wild monocular data. Moreover, tighter
integration of physics into the capture process could also be interesting, i.e. physically more
accurate skeletal pose estimation and surface deformations. For now, our method is a per-
frame approach and we mainly focused on the expressiveness of our output, i.e., capturing
all aspects of the human. However, there are many more directions to explore in this field,
one of them being the temporal aspect. Thus, future work could involve modeling the tem-
poral domain more explicitly in the neural network architecture. Finally, we believe that
our method has the potential to run in real-time, but for this, the foreground segmentation
and 2D keypoint detection have to be more tightly linked to the regression of the character
parameters, i.e. skeletal pose, surface deformations, hand gestures, and facial expressions.
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