
Neural Radiance Transfer Fields for Relightable
Novel-view Synthesis with Global Illumination

– Supplemental Document –

Linjie Lyu1, Ayush Tewari2, Thomas Leimkühler1, Marc Habermann1, and
Christian Theobalt1

1Max Planck Institute for Informatics, Saarland Informatics Campus
2MIT

RelightingView Synthesis

Ground TruthNeRFactor
Zhang et al. (2021)

Ours Ground TruthNeRFactor
Zhang et al. (2021)

Ours

Fig. 1. Comparison of our approach to NeRFactor [4] on the tasks of novel-view synthe-
sis and relighting. For view synthesis, white insets show estimated (first two columns)
and ground truth (third column) environment maps. For relighting, the white inset
shows the environment map used to illuminate the scene.

In the following, we compare our approach to NeRFactor [4] on their own
dataset (Sec. 1). Further, we provide more implementation details concerning
the network architecture, training, and the regularizers we use (Sec. 2).

1 Comparison with NeRFactor

In addition to the comparison in the main document,we provide a comparison
with NeRFactor [4] on their own dataset, i.e. the Drums and Hotdog scenes,
in Fig. 1 and in Tab. 1. For generating the results for NeRFactor, we used
trained models provided by the original authors. For view synthesis, we randomly
sampled 8 views from the 100 test views and computed the average for all metrics.
For relighting, we use the same views and chose the environment map number 3 of
their test set. Note that, visually, our approach synthesizes more detailed images
and is able to recover secondary light bounce effects such as the reflection on the



2 Lyu et al.

Table 1. Numerical evaluation for novel-view synthesis and relighting. We compare to
the recent state of the art NeRFactor [4] in terms of image-based metrics, i.e. PSNR
and SSIM, and perceptual metrics, i.e. LPIPS. PSNR and SSIM were determined on
foreground pixels only. For both tasks, novel-view synthesis and relighting, we achieve
the best performance.

Novel View Synthesis Novel View Synthesis & Relighting

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeRFactor [4] 18.67 0.684 0.13315 16.48 0.6439 0.0965

Ours 20.82 0.7577 0.0659 20.18 0.7556 0.0786

drums, which NeRFactor cannot reproduce at all. This observation is consistent
for both the view synthesis and the relighting task. Moreover, we also found that
our method outperforms NeRFactor quantitatively on their own dataset for all
metrics, which further confirms the improvement of our method compared to
the previous state-of-the-art.

2 Implementation Details

Next, we provide more details on the network architecture (Sec. 2.1), the training
procedure (Sec. 2.2), and our regularizers (Sec. 2.3).

2.1 Network Architecture

Fig. 2. The geometry of our setup (left) and our network architecture (right). Expres-
sions in brackets denote [output features, activation function]. To shade a pixel, we
iterate over all incoming directions ωi. Note that the transferred radiance ct takes
multiple light bounces into account. For details on H and F refer to the main text.

We model the radiance transfer function T using our neural radiance transfer
field

Tθ (H(x),n,F(ωi),F(ωo)) = ct, (1)

which is represented by a multi-layer perceptron (MLP). First, we encode po-
sition x using a multi-resolution hash function H as proposed by Müller et al.



Neural Radiance Transfer Fields 3

[2], with parameters L = 16, F = 16, Nmin = 16, and Nmax = 256. We only
create 1 : 1 hash mapping for the voxels near the mesh surface,thus avoiding a
hash collision. The directions ωi and ωo are positionally encoded using spherical
harmonics features F [3] with n = 4 frequencies, resulting in 16 features each.
The surface normal n is fed directly. To parameterize Tθ, we use an 8-layer MLP,
where each hidden layer has 512 features and a ReLU activation function. We
additionally use a skip connection between the input layer and the fourth layer.
θ denotes the trainable parameters of the network and the hash encoding. A
visualization is shown in Fig. 2.

2.2 Training

Our approach is implemented in Pytorch. For training, we use the Adam opti-
mizer [1]. For optimizing the environment map, the albedo map, and the material
coefficients, we optimize for 3000 iterations for each scene with a learning rate
of 1 for the environment map, 0.1 for the albedo map, and 0.001 for the material
coefficients. For training our NRTF, during pre-training on the OLAT dataset
only, we apply 150k iterations for each scene with a learning rate of 5e-4 and
a batch size of 20 OLAT images. For joint optimization, we apply 100k itera-
tions for each scene with a learning rate of 1e-4. Each batch contains five OLAT
images and one real image.

2.3 Regularizers

For the image-based regularizers, we approximate image gradients with backward
differencing. Further, the weights of the inidividual regularizers are λreg = 0.001,
λBSDF = 0.1, λOLAT = 0.1, λPRT = 1, λEnvC = 0.001.

References

1. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2015)

2. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with
a multiresolution hash encoding. arXiv:2201.05989 (Jan 2022)

3. Yu, A., Fridovich-Keil, S., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels:
Radiance fields without neural networks. arXiv preprint arXiv:2112.05131 (2021)

4. Zhang, X., Srinivasan, P.P., Deng, B., Debevec, P., Freeman, W.T., Barron, J.T.:
Nerfactor: Neural factorization of shape and reflectance under an unknown illumi-
nation. ACM Transactions on Graphics (TOG) 40(6), 1–18 (2021)


