Exploiting Structure, Annotation, and Ontological Knowledge for Automatic Classification of XML-Data

Martin Theobald, Ralf Schenkel, and Gerhard Weikum
Saarland University
Saarbrücken, Germany

Limitations of XPath & XQuery in an Environment with Diverse Schemes

...<inproceedings key="conf/icde/BargaLW02">
 <author>Roger S. Barga</author>
 <author>David B. Lomet</author>
 <author>Gerhard Weikum</author>
 <title>Recovery Guarantees for General Multi-Tier Applications.</title>
 <year>2002</year>
 <booktitle>ICDE</booktitle>
</inproceedings>...

DBLP

//proceedings[contains(., "icde")]/title[contains(., "Recovery")]/parent::*
 -> 0 Results.

//title[contains(., "Recovery")]/parent::*
 -> 7,859 Results.
Automatic Classification helps.

Challenges in XML Classification

- Exploit annotation and structure
- Exploit ontological knowledge on sparse and/or heterogeneous training data
- Mapping of tags (and text terms) to semantic concepts
- In-document word sense disambiguation
- Quantification of concept similarities
Using Structure and Ontological Knowledge for Classification

- XML Training Documents -> Structure-aware Document Analyzer
- XML Test Document
- Tags/Term Pairs, Element Paths & Twigs
- Ontology Database with Dice Similarities (based on WordNet)
- Ontology Service
- Feature Selection using MI
- Feature Vector
- SVM Classifier
- Tokens with Context Nodes
- Structural Features
- Disambiguation and Mapping onto Concepts
- Large Document Collection (Focused Crawling) as Basis for Concept Similarity Estimation wrt. Natural Term Correlations

Feature-Selection & Term Weighting

- Linear Support Vector Machines for binary classifications in the topic tree
- Topic-specific feature spaces to support binary classification steps
- Mutual Information (MI) yields ranking for the most discriminating features per topic (aka. Kullback-Leibler-Divergence)
 \[MI(X, C) = P(X \land C) \log_2 \frac{P(X \land C)}{P(X)P(C)} \]
- Term weights in classic TF*IDF
- IDF computed on element frequencies

TOPICS
- Linear Support Vector Machines
- Topic-specific feature spaces
- Mutual Information (MI)
- Term weights in classic TF*IDF
- IDF computed on element frequencies

Database Core
- yes
- no

Semistr. Data
- yes
- no

Web IR
- no

Data Mining
- no

XML
Exploiting Annotation: Tag-Term Pairs

- Structure-aware features for more precise document representation
- Interpret **(tag, term) pairs** as concept-value pairs in the spirit of a database schema

```
<car>
  <make>Audi</make>
  <type>A4</type>
  <year>98</year>
  <price>10.000</price>
</car>
```

make$Audi, type$A4, year$98, price$10.000

Exploiting Structure: Element Paths and Twigs

- Extension of the feature space by structural patterns → **Paths & Twigs**
- Preserve or disregard element ordering
- Different feature types (tag-term pairs & twigs) are mapped to distinct dimensions in the vector space
- **Scalability** and **noise reduction** through feature selection (MI) under an integrated SVM model
Exploiting Ontological Knowledge

- **WordNet**: Directed and weighted ontology graph capturing
 - Hypernyms
 - Hyponyms
 - Holonyms

- **Quantified relationships** based on estimated concept similarities:
 - Dice coefficient: \[\text{dice}(s_1, s_2) = \frac{2 \cdot \text{df}(\text{senses}(s_1) \cup \text{senses}(s_2))}{\text{df}(\text{senses}(s_1)) + \text{df}(\text{senses}(s_2))} \]

Word Sense Disambiguation

- Compare **term context** \(\text{con}(t_k) \) with **synset context** \(\text{con}(s_j) \) using cosine measure
- Synset context includes hypernyms, hyponyms, and holonyms plus WordNet descriptions

 \[\text{sim}(s_3, s_4) = \frac{1}{2} (0.8 + 0.7) \]

- Infer semantics from current context rather than stipulate it
Incremental Mapping for Classification

For any unknown concept \(s \) in a test document \(d \) do:
- Replace \(s \) with its closest match \(s' \) from the training data
- Adjust term weight of \(s \) in \(d \) by concept similarity \(\text{sim}(s, s') \)

- Problem:
 - Possible loss of feature correlations that the SVM has learned
 - No feature independency for SVM
 - Reconsider \(\text{dice}(s, s') \) with restrictive threshold
 - Replace concept \(s \) only if \(s' \) is strongly correlated to \(s \), otherwise skip \(s \)

Experimental Evaluation:
Internet Movie Database (IMDB)

- Training with very view features for Action vs. Western
- Homogenous, but rich structure with varying amounts of content
- Tag-term pairs (95%) plus twigs (5%) using MI
- Ontology lookups on tags only

\[
F = \frac{1}{1 + \frac{1}{\text{precision} + \text{recall}}}
\]
Summary

- **Concept-based classification boosts classification results**
 - Detection of synonyms
 - Incremental mapping of unknown concepts
- **Structure-aware features offer a more precise document representation for XML**

Application area:
- Training on small, user-specific topic directories, e.g., bookmarks
- Classification of heterogeneous data sources

Future Work

- **More robust term-to-sense mapping**
 - Improved disambiguation of word senses
 - Better awareness of feature correlations (in incremental term-to-concept mapping)
 - Topic-specific ontologies
 - Is-instance-of relationships
- **Integration into large web applications, e.g., focused crawling**
Questions?