Figure 1: Four interaction zones used for determining the best model. 1) Target is shoulder height and arm is bent. 2) Target is waist height and arm is bent. 3) Target is shoulder height and arm is straight. 4) Target is waist height and arm is bent.

ABSTRACT
The “Gorilla arm” effect is a common problem of mid-air interaction which appears during excessive arm fatigue. To predict and prevent such problems at a low cost, we investigate user testing without real users, utilizing biomechanically simulated AI agents trained with Reinforcement Learning using a cumulative fatigue function from biomechanical literature. We show that the simulated fatigue data matches human perceived fatigue ratings based on the Borg CR10 scale. Our work demonstrates that deep RL combined with the fatigue model provides a viable tool for predicting both interaction movements and user experience in silico, without users.

1 INTRODUCTION
Touch screens or extended reality goggles enable a more intuitive and natural user experience with the use of mid-air gestures as an interaction tool. As such, physical ergonomics is an important design factor for mid-air interaction. In particular, arm fatigue, also known as “Gorilla arm effect” [Hincapié-Ramos et al. 2014; Jang et al. 2017], is a common problem that negatively effects user experience. A rising trend in design and human-computer interaction is to utilize computational models of users to predict the user experience [Biswas et al. 2012; Fischer 2001; Guckelsberger et al. 2017; Oulasvirta et al. 2018]. If this can be done with sufficient accuracy, one can rapidly evaluate alternative solutions to design problems in silico, without users, or at least preselect the most likely solutions to be tested in real life.

In this regard, we have contributed the first user modeling experiment that combines deep reinforcement learning (RL) with a biomechanical arm simulation model that allows both synthesizing mid-air interaction movements and predicting the associated embodied user experience, with a focus on subjective fatigue, as well as a biomechanical fatigue reward for reinforcement learning for improved motion quality [Cheema et al. 2020].
We train 25 virtual agents consisting of shoulder, upper arm, and lower arm (5 for each interaction zone) to point at randomly highlighted targets in an ISO 9241-9 reciprocal pointing task with 7 targets (Fig. 1) using RL. The reward is based on the distance between hand and target. In addition we add a cumulative fatigue reward \(\rho(t) \) based on the Three-Compartment Controller-\(r \) (3CC-\(r \)) model by Looft et al. [2018], which is extension of their previous 3CC-model [Xia and Law 2008] with an additional rest recovery factor \(r \) for dynamic load conditions. The reward is calculated using the difference between the active motor units \(M_A \) that can be currently used and the target load \(TL \) conditions needed for the task [Cheema et al. 2020]:

\[
\rho(t)_F = \exp \left(-\frac{\| \tilde{M}_A - \tilde{L}(\tilde{T}) \|^2}{\tau_F^2} \right)
\]

With \(\tilde{L}(\tilde{T}) = \begin{bmatrix} \frac{t_1}{t_{\max}} \cdot \frac{1}{t_{\max}} & \frac{t_2}{t_{\max}} \cdot \frac{1}{t_{\max}} & \frac{t_3}{t_{\max}} \cdot \frac{1}{t_{\max}} & \frac{t_4}{t_{\max}} \cdot \frac{1}{t_{\max}} \end{bmatrix}^T \) and

\[
\tilde{M}_A = \begin{bmatrix} M^+_A, M^-_A, M^+_A, M^-_A, M^+_A, M^-_A \end{bmatrix}^T \] (two values for each dimension of the shoulder joint roughly corresponding to opposing muscle groups [Cheema et al. 2020]), \(\tilde{T} \) is the current joint torque at the shoulder and \(T_{\max} \) the maximum voluntary torque at a joint based on biomechanical literature [Hageman et al. 1989].

Additionally, the agents exhibit random pauses of varying length in between varying point periods and randomly switch their sex to generalize to different pointing conditions, as well as different maximum torque and weight conditions for each sex.

Figure 2: Results of predicting the Borg CR10 rating. Green: Upper/lower bound of ground truth. Yellow: Average of ground truth. Red: Average 3CC estimate of ground truth computed using motion capture data [Jang et al. 2017]. Black: Our simulation-based average 3CC-\(r \) estimate. Our simulation model yields similar modeling accuracy as [Jang et al. 2017], but does not require motion capture data.

Figure 3: Experiment protocol of relaxedness vs. accuracy measure (G1), as well as during comparison against ground truth human data (G1, G2).

2 METHOD

We train 25 virtual agents consisting of shoulder, upper arm, and lower arm (5 for each interaction zone) to point at randomly highlighted targets in an ISO 9241-9 reciprocal pointing task with 7 targets (Fig. 1) using RL. The reward is based on the distance between hand and target. In addition we add a cumulative fatigue reward \(\rho(t) \) based on the Three-Compartment Controller-\(r \) (3CC-\(r \)) model by Looft et al. [2018], which is extension of their previous 3CC-model [Xia and Law 2008] with an additional rest recovery factor \(r \) for dynamic load conditions. The reward is calculated using the difference between the active motor units \(M_A \) that can be currently used and the target load \(TL \) conditions needed for the task [Cheema et al. 2020]:

\[
\rho(t)_F = \exp \left(-\frac{\| \tilde{M}_A - \tilde{L}(\tilde{T}) \|^2}{\tau_F^2} \right)
\]

With \(\tilde{L}(\tilde{T}) = \begin{bmatrix} \frac{t_1}{t_{\max}} \cdot \frac{1}{t_{\max}} & \frac{t_2}{t_{\max}} \cdot \frac{1}{t_{\max}} & \frac{t_3}{t_{\max}} \cdot \frac{1}{t_{\max}} & \frac{t_4}{t_{\max}} \cdot \frac{1}{t_{\max}} \end{bmatrix}^T \) and

\[
\tilde{M}_A = \begin{bmatrix} M^+_A, M^-_A, M^+_A, M^-_A, M^+_A, M^-_A \end{bmatrix}^T \] (two values for each dimension of the shoulder joint roughly corresponding to opposing muscle groups [Cheema et al. 2020]), \(\tilde{T} \) is the current joint torque at the shoulder and \(T_{\max} \) the maximum voluntary torque at a joint based on biomechanical literature [Hageman et al. 1989].

Additionally, the agents exhibit random pauses of varying length in between varying point periods and randomly switch their sex to generalize to different pointing conditions, as well as different maximum torque and weight conditions for each sex.

3 EVALUATION & RESULTS

We compare our method against ground truth human data of perceived fatigue ratings using the Borg CR10 [Borg 1982] scale, which ranges from "nothing at all" (rating 0) to "extremely strenuous" (rating 10) obtained from Jang et al. [2017]. We furthermore compare our method against their method, which uses the 3CC [Xia and Law 2008] model to predict fatigue ratings based on torque measures estimated from motion capture data obtained from a Kinect [Zhang 2012] sensor. To compare our model we replicate the four conditions in [Jang et al. 2017]. For that we use the first two interaction zones shown in Fig. 1, and two groups with different rest periods in between the four 60 s pointing periods: [20s, 5s, 15s, 10s] for group 1 and [5s, 10s, 20s, 15s] for group 2 (Fig. 3). In Fig. 2 we refer to group 1 and 2 as G1 and G2, and the high and low interaction zones as H and L. Jang et al. [2017] use 24 participants in their study of which two were female. Since there was no ground truth data published of each participant’s weight and their corresponding maximum torque estimate, we gauge their subjects in a virtual environment by using average torque and arm weight estimates found in literature [De Leva 1996; Hageman et al. 1989]. Similar to Jang et al. [2017] we assume a linear relationship between the fatigued motor units obtained from the 3CC-\(r \) model and the Borg CR10 scale with \(\varphi(x) = 0.3 \cdot x \) denoting the linear mapping. An overview of our results is shown in Fig. 2. The average root mean squared error (RMSE) between the fatigue estimates from [Jang et al. 2017] (red) and the average Borg CR10 ground truth data (yellow) is 0.58, while ours (black) to ground truth is 0.66. However, despite using no ground truth human data for our calculations our fatigue estimates using virtual agents follows mostly the trend of Jang et al. [2017], as well as the ground truth average Borg CR10 data. In conclusion, we achieve a similar accuracy to Jang et al. [2017] just by fitting a single scaling parameter \(\varphi \) without using any human motion capture data.

Furthermore, we have shown that the cumulative fatigue function results in more relaxed and natural looking movements [Cheema et al. 2020], compared to existing continuous control methods in animation and RL which make use of instantaneous joint torques [Al Borno et al. 2012; Brockman et al. 2016; Peng et al. 2018; Wang et al. 2012] as a means to minimize effort.
ACKNOWLEDGMENTS

This work was funded by the Horizon 2020 EIC Pathfinder project Carousel+ (grant no. 101017779), the Academy of Finland (grant no. 299358), and an IMPRS-CS doctoral fellowship. The calculations presented in the paper were performed with the computational resources provided by the Aalto Science-IT project.

REFERENCES