Modeling the "Gorilla Arm" Effect with Reinforcement Learning
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Figure 1: Four interaction zones used for determining the best model. 1) Target is shoulder height and arm is bent. 2) Target
is waist height and arm is bent. 3) Target is shoulder height and arm is straight. 4) Target is waist height and arm is bent.

ABSTRACT

The “Gorilla arm” effect is a common problem of mid-air interaction
which appears during excessive arm fatigue. To predict and prevent
such problems at a low cost, we investigate user testing without
real users, utilizing biomechanically simulated Al agents trained
with Reinforcement Learning using a cumulative fatigue function
from biomechanical literature. We show that the simulated fatigue
data matches human perceived fatigue ratings based on the Borg
CR10 scale. Our work demonstrates that deep RL combined with the
fatigue model provides a viable tool for predicting both interaction
movements and user experience in silico, without users.
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1 INTRODUCTION

Touch screens or extended reality goggles enable a more intuitive
and natural user experience with the use of mid-air gestures as
an interaction tool. As such, physical ergonomics is an important
design factor for mid-air interaction. In particular, arm fatigue, also
known as “Gorilla arm effect" [Hincapié-Ramos et al. 2014; Jang
et al. 2017], is a common problem that negatively effects user expe-
rience. A rising trend in design and human-computer interaction is
to utilize computational models of users to predict the user expe-
rience [Biswas et al. 2012; Fischer 2001; Guckelsberger et al. 2017;
Oulasvirta et al. 2018]. If this can be done with sufficient accuracy,
one can rapidly evaluate alternative solutions to design problems in
silico, without users, or at least preselect the most likely solutions
to be tested in real life.

In this regard, we have contributed the first user modeling ex-
periment that combines deep reinforcement learning (RL) with a
biomechanical arm simulation model that allows both synthesizing
mid-air interaction movements and predicting the associated em-
bodied user experience, with a focus on subjective fatigue, as well
as a biomechanical fatigue reward for reinforcement learning for
improved motion quality [Cheema et al. 2020].
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Figure 2: Results of predicting the Borg CR10 rating. Green: Upper/lower bound of ground truth. Yellow: Average of ground
truth. Red: Average 3CC estimate of ground truth computed using motion capture data [Jang et al. 2017]. Black: Our simulation-
based average 3CC-r estimate. Our simulation model yields similar modeling accuracy as [Jang et al. 2017], but does not require

motion capture data.
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Figure 3: Experiment protocol of relaxedness vs. accuracy
measure (G1), as well as during comparison against ground
truth human data (G1, G2).

2 METHOD

We train 25 virtual agents consisting of shoulder, upper arm, and
lower arm (5 for each interaction zone) to point at randomly high-
lighted targets in an ISO 9241-9 reciprocal pointing task with 7
targets (Fig. 1) using RL. The reward is based on the distance be-
tween hand and target. In addition we add a cumulative fatigue
reward p(t)r based on the Three-Compartment Controller-r (3CC-
r) model by Looft et al. [2018], which is extension of their previous
3CC-model [Xia and Law 2008] with an additional rest recovery
factor r for dynamic load conditions. The reward is calculated us-
ing the difference between the active motor units My that can be
currently used and the target load TL conditions needed for the
task [Cheema et al. 2020]:
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with 7L = [ il i i ] and
MA = [MX], Mgl, MZZ, M;‘Z, MXS,Mgs]T (two values for each di-
mension of the shoulder joint roughly corresponding to opposing
muscle groups [Cheema et al. 2020]). T is the current joint torque
at the shoulder and Ty 4x the maximum voluntary torque at a joint
based on biomechanical literature [Hageman et al. 1989].

Additionally, the agents exhibit random pauses of varying length
in between varying point periods and randomly switch their sex
to generalize to different pointing conditions, as well as different
maximum torque and weight conditions for each sex.

3 EVALUATION & RESULTS

We compare our method against ground truth human data of per-
ceived fatigue ratings useing the Borg CR10 [Borg 1982] scale, which
ranges from “nothing at all" (rating 0) to “extremely strenuous" (rat-
ing 10) obtained from Jang et al. [2017]. We futhermore compare
our method against their method, which uses the 3CC [Xia and Law
2008] model to predict fatigue ratings based on torque measures
estimated from motion capture data obtained from a Kinect [Zhang
2012] sensor. To compare our model we replicate the four condi-
tions in [Jang et al. 2017]. For that we use the first two interaction
zones shown in Fig. 1, and two groups with different rest periods
in between the four 60 s pointing periods: [20s, 5s, 15s, 10s] for
group 1 and [5s, 10s, 20s, 15s] for group 2 (Fig. 3). In Fig. 2 we refer
to group 1 and 2 as G1 and G2, and the high and low interaction
zones as H and L. Jang et al. [2017] use 24 participants in their
study of which two were female. Since there was no ground truth
data published of each participant’s weight and their correspond-
ing maximum torque estimate, we gauge their subjects in a virtual
environment by using average torque and arm weight estimates
found in literature [De Leva 1996; Hageman et al. 1989]. Similar
to Jang et al. [2017] we assume a linear relationship between the
fatigued motor units obtained from the 3CC-r model and the Borg
CR10 scale with ¢(x) = 0.3 - x denoting the linear mapping. An
overview of our results is shown in Fig. 2. The average root mean
squared error (RMSE) between the fatigue estimates from [Jang
et al. 2017] (red) and the average Borg CR10 ground truth data
(yellow) is 0.58, while ours (black) to ground truth is 0.66. However,
despite using no ground truth human data for our calculations our
fatigue estimates using virtual agents follows mostly the trend of
Jang et al. [2017], as well as the ground truth average Borg CR10
data. In conclusion, we achieve a similar accuracy to Jang et al.
[2017] just by fitting a single scaling parameter ¢ without using
any human motion capture data.

Furthermore, we have shown that the cumulative fatigue func-
tion results in more relaxed and natural looking movements [Cheema
et al. 2020], compared to existing continuous control methods in
animation and RL which make use of instantaneous joint torques
[Al Borno et al. 2012; Brockman et al. 2016; Peng et al. 2018; Wang
et al. 2012] as a means to minimize effort.
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