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Preface

Abstract

Recent studies have shown that the loss of spatial acuity and permutations

(so called “crowding-effect”) in the visual periphery can be modelled using

local summary-statistics. These statistical measures are based on auto- and

cross-correlations, which operate on wavelet-like filter outputs. However, the

neurobiological plausibility of the multiplications which are required for these

correlations are debated. We investigate, whether a more biologically model

can be developed by using the filter outputs of a deep neural network and

neurobiologically realistic AND-like operations instead of a multiplication

operation. We show that our model yields a similar amount of information

about the image as the formal approach. Furthermore, we investigated which

level of of the visual system might provide the best statistical representations.

Common assumption about this suggests that the features to be statistically

pooled should be relatively low level and simple. However, it is unclear why

such low-level features should be best suited for such a representation. In

order to investigate which level of the visual system might be best suited,

we used a high-performing convolutional neural network to model the latter

and reconstructed statistical representations from solely one layer and found

an optimum in the intermediate layers.
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Chapter 1

Introduction

Our senses are confronted with more information than we can process. This

becomes apparent in the human peripheral field of view. Peripheral vision

gives us a worse representation of the visual input than the foveal vision

[1, 32], which is located in the center of the retina. Information seems to

appear coarser in the periphery and local permutation effects - the so-called

“crowding effect” - happen. Crowding is called the phenomena in which ob-

ject recognition is affected in the visual periphery, when neighbouring objects

(so-called “flankers”) coexist. It is hypothesized that the crowding effect is

a result of dealing with a bottleneck of visual sensory information.

There have been models introduced by Rosenholtz [32] and Freeman [9] which

simulate these effects using local summary statistics based on V1-like filter

outputs. Our model introduces a new variant of such models by using feature

maps generated by a high-performing convolutional neural network and by

introducing neurobiologically motived statistics, which make no use of spe-

cific multiplication operations. Furthermore, we investigate which layer of a

convolutional neural network provides the best statistical representation.

Convolutional neural networks have challenged the human visual system

5



CHAPTER 1. INTRODUCTION 6

when it comes to object classification and object recognition tasks [36]. We

thus examined whether the efficient coding of features in such hierarchical

networks can be used in order to model peripheral crowding.

This work is divided into two main parts. Chapter 2 to 4 deal with the-

oretical background of machine learning and peripheral vision and chapter 5

introduces our approach to this problem.



Chapter 2

Machine Learning

The following chapter explains the basics of Machine learning and the var-

ious types of classification models associated with it. It can be defined as

the ability of a program to learn from experience − that is, to modify its

execution on the basis of newly acquired information. This is often a very

attractive alternative to constructing them, and in the last decade the use

of machine learning has spread throughout computer science and beyond.

Machine learning is used in Web search, spam filters, recommender systems,

ad placement, credit storing, fraud detection, and many other applications.

There are several fine textbooks available to gain the insights in machine

learning (e.g [24]).

2.1 Unsupervised Learning

In Unsupervised learning, the goal is to have the computer learn how to do

something without explicitly telling it how to do it. There are two approaches

to unsupervised learning. First, is a form of reinforcement learning, where

the agent bases its actions on the previous rewards and punishments without

7



CHAPTER 2. MACHINE LEARNING 8

necessarily even learning any information about the exact ways that its ac-

tions affect the world. In a way, all of this information is unnecessary because

by learning a reward function, the agent simply knows what to do without

any processing because it knows the exact reward it expects to achieve for

each action it could take. This can be extremely beneficial in cases where

calculating every possibility is very time consuming (even if all of the tran-

sition probabilities between world states were known). On the other hand,

it can be very time consuming to learn by, essentially, trial and error [38].

And, a second type of unsupervised learning is called clustering. In this type

of learning, we assign a set of subsets(called clusters) so that observations in

the same cluster are similar in some sense.

Unsupervised learning differs from supervised learning in that the learner

is given only unlabeled samples.

2.2 Supervised Learning

Every instance in any dataset used by machine learning algorithms is repre-

sented using the same set of features. The features may be continuous, cate-

gorical or binary. If instances are given with known labels(the corresponding

correct output) then the learning is called supervised learning. Supervised

learning along with other classification techniques is well illustrated by Kot-

siantis.

A supervised learning algorithm analyses the training data and produces

an inferred function, which is called a classifier(if the output is discrete) or a

regression function(if the output is continuous). A classifier implements clas-

sification, which is an example of a general problem of pattern recognition
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that assigns some sort of output value to a given input value. A regression

function on the other hand implements regression, which assigns a real-valued

output to each input value. Examples of regression include part of speech

tagging, parsing etc.

There exists a large number of algorithms for classification which have a lin-

ear function that assigns a score to each possible category of input. One such

algorithm is a Support Vector Machine(SVM), which given a set of training

examples, each marked for belonging to one of two categories(Classification

and Regression), builds a model that assigns new examples into one category

or the other. Another common model are neural networks, which will be

described in the following chapter in more detail.



Chapter 3

Neural Networks

Artificial Neuronal Networks (ANNs) are subject of the field of Computa-

tional Neuroscience. Inspired by biological neuronal systems, primarily the

human brain, they are networks of multiple complex layers of non-linear

transformations to process information or for modelling [31].

In the recent years there has been a boom using ANNs for classification

tasks. This is due to the human-challenging performance in classification

and recognition tasks [36], which has been made possible due to large sets of

labelled data being publicly available and due to the recent development in

GPU-acceleration [34].

ANNs are not only used for classification purposes however. There have been

applications from making them “dream” [25], to generating image descrip-

tions [18], texts [19], music [16] or art [11]. Due to their high performing

qualities and wide range of possibilities to use them, it is no surprise why

they have become so popular.

10



CHAPTER 3. NEURAL NETWORKS 11

Figure 3.1: Left : Basic Artificial Neuronal Network with one hidden layer.
Right : Artificial Neuron (xi: Input, b: bias, wi: weights, f : activation func-
tion).

3.1 Basic Architecture

An ANN consists of multiple connected neuron layers. The layers between

the input neuron layer and the output layer are called hidden layers (Fig. 3.1

left). These neurons have an activation function, which receives a weighted

sum as input (Fig. 3.1 right) and forwards the “activated output” to the

next layer. This “activated output” could for example mean something like

“Thing X might be to 10% a fork and to 90% something else”. The process

of forwarding this output to the next layer of neurons is called Forward-

Propagation. Usually, at the end of the Forward-Propagation a classification

result is obtained. To keep the error in the classification result as low as

possible, the network must be trained with labelled data. In this process,

the data first gets forward-propagated. Afterwards, utilizing a loss function,

the difference between the classification result and the data’s original label is

examined. This loss function could be the mean squared error, for example.

Then, using Back-Propagation, the weights in the network get augmented in

such way that the loss function is minimized. This is usually done by using

gradient decent. Furthermore, the output of each layer is called a Featur-
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Map. [31]

3.2 Activation Functions

In neural networks the activation function is an abstract representation of

the rate of action potential firing in a neuron. In the simplest case this can

be a binary ON/OFF-function. Due to its non differentiable properties, the

most common activation function used is one of sigmoidal shape. A function

of sigmoidal shape is also biologically the most plausible one, since it has

some properties of biological neurons. The neuron’s firing frequency stays

zero until input current is received, then quickly increases at first, until it

gradually approaches an asymptote at maximum firing rate.

Since neural networks should be able to handle complex problems, the acti-

vation function should be a non-linear function. [31]

This is a collection of commonly used activation functions:

Binary Step

f(x) =

0 if x < 0

1 if x ≥ 0

Sigmoid
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f(x) =
1

1 + e−x

TanH

f(x) = tanh(x) =
2

1 + e−2x
− 1

Rectification Linear Unit (ReLU)

f(x) =

0 if x < 0

x if x ≥ 0

3.3 Forward-Pass

The forward-propagation or Forward-Pass is illustrated in figure 3.2. The

input x is visualized as the first activation a(1) in the figure. It then gets

weight with the weight matrix Θ(i) in layer i. Since every neuron has a

connection to every neuron in the next layer (except for the bias neuron

(+1)), one can write the weights as a matrix and make use of accelerated

matrix multiplications. The weight activation z(i) is then used as an input

for the activation function g in the next layer, which then produces another

activation a(i+1). This gets then forward propagated to the next layer and so

on, until you get to the classification result hθ(x). Forward-propagation can

be referred to as “testing” the network. [31]
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Figure 3.2: Forward-Pass in a Neural Network (x = input, a
(i)
j = activation,

Θ(i) = weight matrix), g(z) = activation function, hθ(x) = classified output)

3.4 Backward-Pass

Figure 3.3: Backward-Pass in a Neural Network (yj = original label, a
(i)
j =

activation, Θ(j) = weight matrix), g′(z) = derivative of activation function,

δ
(i)
j = error)

Fig. 3.3 illustrates the backward-propagation or Backward-Pass. In the

backward-pass the weights get adjusted, so that the difference between the

original label y and the computed label from the network hθ(x) is very small

or zero. In Fig. 3.3 the computed label is referred to as a
(3)
j , which just
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means hθ(x) is the resulting activation from the last layer. The error δ(i)

that is computed from the difference of y and a
(3)
j is then back-propagated

to the previous layer and is weight with the transpose of the weight ma-

trix Θ(i−1) and element-wise multiplied with the derivative of the activation

function g. You do this until you reach the first layer. In order to compute

the new weights, one can use gradient descent to find new parameters Θ(i),

which satisfy that the error δ is gradually shifted towards 0 or at least a

local minimum. Backward-propagation can be referred to as “training” the

network. [31]

3.5 Types of Neural Networks

This section describes briefly selected, commonly used neural networks.

3.5.1 Feed-forward Networks

Feed-forward networks are neural nets that only have connections to the next

layer and no connections to the previous layer or connections within the layer

itself. They are the simplest and most commonly used neural networks, since

they are easily trainable. Fig. 3.1 illustrates a feed-forward network.

3.5.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are networks that allow loops and connec-

tions towards prior layer or connection within the current layer in addition

to the connections to the next layers. They are commonly used in speech

recognition [14] but are significantly harder to train.
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Figure 3.4: Convolutional Neural Network

3.5.3 Convolutional Neural Networks

A classical ANN consists of fully-connected layers, where every single output

from the previous layer gets forwarded to every single neuron in the next

layer as input. The general definition of a Convolutional Neural Network

(CNN) on the other hand does not state that every single neuron needs

to forward its output to every single neuron in the next layer (Fig. 3.4).

Usually a discrete convolution, which gives the network model its name,

is implemented, however. A convolution calculates a weighted sum over a

specific window. The size, or the elements, of the window is defined by the

convolution kernel. Then the window is moved on by a specific distance

(Stride) until the whole input of the layer got covered. This type of neural

network is commonly used for image classification.
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Layer Catalogue

The layer catalogue explains briefly the most important layers in a CNN.

Convolutional Layer

The convolutional layer in a CNN convolves the activations of the previous

layer before the activation function is applied on them in the current layer.

Convolving means that a weighted sum over a specific window is calculated.

The weights are determined by the convolution kernel. In a convolutional

neural network this kernel is mostly a matrix of size N×N . The convolution

kernel then moves from pixel to pixel, with the distance given by the stride,

and weights every underlying pixels with its coefficients and sums over those.

This is continued until the whole image is convolved. These convolutions

calculated specific features such as edges or orientations.

Eq. 3.1 shows the formal definition of the discrete convolution. f is here the

feature map from the previous layer and g the convolution kernel.

(f ∗ g) =
∞∑

m=−∞

f [m]− g[n−m] (3.1)

The biological idea behind convolving the input from the prior layer is that

the convolution kernel can be seen as a receptive field of a neuron in the

brain, which perform basically the same actions. Interestingly, when train-

ing a CNN with an image data set, which is general enough, Gabor-filters

start to develop in the first layers. These Gabor-filters have also been found

in the primary visual cortex of the human brain. A CNN can thus be seen

as a simulation of the human visual system.

ReLU Layer

A ReLU (Rectified Linear Unit) layer performs an element-wise activation

function to its input, such that max(0, x). With this the problem of the
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vanishing gradient is counteracted. Since most networks use a sigmoidal ac-

tivation function which has the range [0, 1], the gradients tends to go towards

0 and less changes to the weights can be done, especially for deep neural net-

works. The ReLU layer allows activations with a range greater than 1.

Pooling Layer

The pooling layer subsamples the activations to its most significant features

by averaging or taking the maximum over a given windows size. This window

then moves with the distance given by its stride, similar to the convolution

kernel, to the next pixel until the whole picture has been pooled.

Convolution and pooling are usually applied in an alternating manner.

Fully-Connected Layer

A fully-connected layer is a layer where every neuron from the current layer

is connected to every neuron in the next layer, as seen in regular neural

networks. In convolutional neural networks this done at the end after all

convolution and pooling layers. It computes the class scores in the end.



Chapter 4

The Visual System

4.1 The Visual Cortex

The visual cortex, located at the back of the skull on both hemispheres, is the

region of the brain associated with analysing, interpreting, and memorizing

the information perceived by the neurons in the Retina. It can be divided

into six different Visual areas, V1 to V6, each area responsible for different

tasks in the processing and amplifying of the visual information perceived.

The model for the process of analysing and recognising visual input further

used here is the dorsal/ventral model, which describes the processing of visual

input in the brain as a two pathway system. The information reaches the V1

area unfiltered and is than split into two streams, the dorsal and the ventral

stream. In the early 1980’s, L.G. Ungerleider and M. Mishkin were the first

to describe the what vs. where account of those two pathways. That is

1. The dorsal stream starts from the V1 area, through the V2 area and

the V6 and V5 area and ends up in the posterior parietal cortex which

is responsible, among other tasks, for spatial reasoning and planned

movements. This path is referred to as the Where Pathway or the How

19
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Pathway.

2. The ventral stream starts from the V1 area, through the V2 and V4

area to the inferior temporal cortex. This path is referred to as the

What Pathway and associated with recognition of form and colour,

object representation, and the forming of long-term memory. [39]

M.A. Goodale and A.D. Milner, in the early 1990’s, again pointed out that

neuropsychological, electrophysiological and behavioural evidence suggests

that the neural substrates of visual perception may be quite distinct from

those underlying the visual control of actions, and proposed that the ventral

stream of projections from the striate cortex to the inferotemporal cortex

plays the major role in the perceptual identification of objects, while the

dorsal stream projecting from the striate cortex to the posterior parietal

region mediates the required sensorimotor transformations for visually guided

actions directed at such objects. [13]

4.1.1 The visual areas

Now we add some more information on the visual areas most relevant to this

thesis:

V1

The V1 area is the first, most primitive, and most studied area of the visual

cortex. It can be found in all mammals. All visual information first gets

progressed in the V1 area, mostly responsible for pattern recognition. All

visual information reaches the V1 area completely unfiltered, even including

the blind spots in the retinas. Besides processing visual information from

the retinas, the V1 area also processes feedback from the higher level visual
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areas. Especially the pattern recognition properties of the V1 area give it a

central roll in the computational work described further on. [9]

V2

Cells in V2 are tuned to simple operations as in V1, but also to more complex

properties as illusory contours, binocular disparity, and whether the stimulus

is part of the figure or the ground. The V2 area is strongly connected to the

higher level areas (V3 to V5) and sends strong feedback to V1 as well.

V3

This section is mainly part of the dorsal stream but also has some weak

connections to the other areas of the ventral stream.

V4

This area my be further seperated into four sub-areas. In general V4 neurons

are receptive to a number of properties, such as color, brightness, and texture.

It is also involved in processing shape, orientation, curvature, motion, and

depth. The V4 area was first found in macaque monkeys and later in humans

as well. It is still of interest in research. [30, 2]

V5

The V5 area is mainly concerned with a moving stimulis speed and its direc-

tion of movement. Since this is also carried out by the V1 area, there is still

some controversy about what influence the computations done in V5 have.

It is proposed that V5 neurons are tuned for more complex stimuli than their

V1 counterparts. [26]
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4.2 Peripheral Vision

Peripheral vision is non-central vision. It is achieved by light rays falling

on the retina outside the macula, which is situated in the center of the

retina. Peripheral vision is the result of these light rays stimulating the rods.

Therefore, as in night vision, the sharpness of peripheral vision is weak and

color perception is not strong. Weak sharpness can also be attributed to the

fact that most of the light sensors lie in the middle of the retina and they

decrease far from the center. [37]

4.2.1 Visual Crowding

Visual crowding is a property of peripheral vision. It means that the shape

of an object in the peripheral vision cannot be recognized as well when it

is flanked by other objects. The crowding effect depends on the distance

between the object and other nearby objects (flankers) and the arrangement

of those flankers with respect to the object. One theory to explain crowd-

ing is that it is a form of averaging between of the object and the flankers,

which can be understood as a form of blurring. Moreover, crowding can be

linked to texture perception. Since crowding depends greatly on the simi-

larity between the object and the flankers, making it harder to distinguish

the object when the flankers are similar to it, we can deduce that periph-

eral vision employs some kind of texture recognition technique. This texture

recognition technique results in the inability to distinguish similar objects

when they are next to one another, lumping them together in one texture.

The crowding-effect can be seen as a strategy of the visual system to deal

the information bottleneck in sensory processing. As such, it may also be of

interest for image compression, feature extraction and computer vision. [37]



Chapter 5

Modelling Peripheral Vision

with CNNs

The following chapter deals with implementing a model for simulating the

crowding effect in the visual periphery using convolutional neural networks.

The crowding effect shows that the reduction of information in the periphery

is not just a reduction of the resolution. One method of modelling such repre-

sentation was explained by Rosenholtz [32] by using local summary statistics

in order to simulate the local texture-like permutations to create images that

show the crowding effect on the sides of the image and a sharp central foveal

region in the center of fixation. The images were named Mongrels by her.

Freeman and Simoncelli used a variant of this in order to create similar im-

ages, which they called Metamers [9].

23
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Figure 5.1: Mongrels reconstructed from a model of Rosenholtz [32]

That statistical covariances are well suited for generating textures has

been already shown by Portilla and Simoncelli [29], which has been described

as one of the best performing parametric models for texture-synthesis so far

[12]. It is based on a set of carefully hand crafted summary statistics com-

puted on the responses of their linear filter bank called Steerable Pyramid

[35], which resembles the filters in the early visual system of primates.

In order to restrict the summary statistics to local regions and divide an

image in an foveal and a peripheral region, Rosenholtz used a Texture-Tiling

Model (TTM) [32]. It subdivides the image in local, overlapping pooling

regions. These pooling regions grow with eccentricity, the further they are

away from the center of fixation (Fovea) [32]. The summary statistics of

Simoncelli and Portilla are then computed within these pooling regions. The

TTM resembles, in a way, the receptive fields of the visual system [9].

Instead of using the small feature space of Portilla and Simoncelli, which

is based on the early visual system, this work uses the large feature space

provided by a high-performing convolutional neural network, which is a func-

tional model for the entire ventral stream, as non-linear filter banks to com-
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pute such summary statistics. A similar approach has been done by Gatys

et al. for generating textures [12] and transferring the style of one image to

another [11]. However, instead of using the feature space of every level up

to a specific one, we test which layer is best suited for such a statistical rep-

resentation and only model peripheral vision from this layer. Furthermore,

our model makes use AND-like non-linearities, instead of multiplication op-

erations, due to the debate within researchers, whether such operations are

neurobiologically plausible [20]. We show that these AND-like operations

deliver similar results to a formal multiplication [4].

5.1 Caffe

BLVC Caffe [15] is a C++ framework by the Berkeley Vision and Learning

Center to design, implement, train and test neural networks. It is widely

used within professional research and applications [11, 12, 25, 36], since it is

open-source, uses GPU-accelerated code for its default layers and has inter-

faces for Python and Matlab for high-level evaluations. Many trained neural

networks have been made publicly available as caffemodels which is another

great advantage for using this framework.

A trained caffemodel of the VGG-19 net [36] by Simonyan and Zisserman

has been used for this work.

5.2 VGG-19 Layer Net

The VGG-19 network was developed by Simonyan and Zisserman from the

Visual Geometry Group at the University of Oxford [36]. It is a on object

recognition trained convolutional neural network with 19 weight layers. The
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architecture of this network was inspired by Krizhevsky et al. [21] and Cire-

san et al. [6]. With their configuration they scored ranks 1 and 2 at the Im-

ageNet Large-Scale Visual Recognition Challenge (ILSVRC)

2014 in the categories Localisation and Classification.

5.2.1 Architecture

The net contains 16 convolutional, 3 fully-connected and 5 pooling layers.

The convolution kernels just had a size of 3 × 3 × k each, where k is the

number of input feature maps. Stride and padding were chosen to be 1,

so the output feature maps have the same spatial dimensions as the input

feature maps. For pooling the net uses max-pooling with non-overlapping

pooling regions of size 2× 2. Hence, the feature maps get down-sampled by

a factor of 4 to the most dominant features. Similar to AlexNet [21], the

VGG-19 net uses linear rectification units, instead of a sigmoid function, for

the activation function, in order to get a faster convergence time. [36]
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Layer Conv/Pool-Info Feature Maps Output Size Spatial Resolution

conv1 1 K-size: 3, Pad: 1 64 64 ·N ·M N ·M

conv1 2 K-size: 3, Pad: 1 64 64 ·N ·M N ·M

pool1 K-size: 2, Stride: 2 64 16 ·N ·M 1
4
·N ·M

conv2 1 K-size: 3, Pad: 1 128 32 ·N ·M 1
4
·N ·M

conv2 2 K-size: 3, Pad: 1 128 32 ·N ·M 1
4
·N ·M

pool2 K-size: 2, Stride: 2 128 8 ·N ·M 1
16
·N ·M

conv3 1 K-size: 3, Pad: 1 256 16 ·N ·M 1
16
·N ·M

conv3 2 K-size: 3, Pad: 1 256 16 ·N ·M 1
16
·N ·M

conv3 3 K-size: 3, Pad: 1 256 16 ·N ·M 1
16
·N ·M

conv3 4 K-size: 3, Pad: 1 256 16 ·N ·M 1
16
·N ·M

pool3 K-size: 2, Stride: 2 256 4 ·N ·M 1
64
·N ·M

conv4 1 K-size: 3, Pad: 1 512 8 ·N ·M 1
64
·N ·M

conv4 2 K-size: 3, Pad: 1 512 8 ·N ·M 1
64
·N ·M

conv4 3 K-size: 3, Pad: 1 512 8 ·N ·M 1
64
·N ·M

conv4 4 K-size: 3, Pad: 1 512 8 ·N ·M 1
64
·N ·M

pool4 K-size: 2, Stride: 2 512 2 ·N ·M 1
256
·N ·M

conv5 1 K-size: 3, Pad: 1 512 N ·M 1
512
·N ·M

conv5 2 K-size: 3, Pad: 1 512 N ·M 1
512
·N ·M

conv5 3 K-size: 3, Pad: 1 512 N ·M 1
512
·N ·M

conv5 4 K-size: 3, Pad: 1 512 N ·M 1
512
·N ·M

pool5 K-size: 2, Stride: 2 512 1
2
·N ·M 1

1024
·N ·M

3× Fully-connected layer

Softmax

Table 5.1: VGG-19 Network Architecture
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The linearly rectified convolutions and the max-pooling are applied in

an altering manner as seen in Table 5.1. Until pool4 the feature maps are

doubled while the spatial resolution quarters (Table 5.1). N and M are the

input dimensions.

5.2.2 Normalization and Average Pooling

This implementation uses a different version of the VGG-19 net from Gatys et

al. [11, 12]. In contrast to the original VGG-19 net which uses max-pooling,

the pooling type here was changed to average-pooling, which improves the

gradient flow and one obtains slightly cleaner results. For practical reasons

the Gatys et al. version of the VGG-19 layer net has been normalized by

scaling the parameters such that the average activation of each filter is equal

to 1 [12]. Furthermore, the fully-connected and the softmax layers have been

removed.

The normalized version of the network can be downloaded from

bethgelab.org/media/uploads/deeptextures/vgg_normalised.caffemodel.

5.3 Summary Statistics Model

To model the texture-like permutations for the crowding-effect, this work

makes use of a summary statistics model, similar to Rosenholtz [32, 33] and

Freeman and Simoncelli [9]. These models make use of the formal definition of

statistics in mathematics. Thus, these models are called Mathematical Models

(in spite of its other neurobiology-related components) in the following pages.

Since such multiplication operations have been debated [20], this work makes

use of operations, which are more biologically plausible. Thus, this model is

bethgelab.org/media/uploads/deeptextures/vgg_normalised.caffemodel
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being referred to as the Neurobiological Model in the following.

The comparison between these two models is done in the section “Modelling

Peripheral Vision”, however.

5.3.1 Mathematical Models

Rosenholtz suggested that crowding can be modeled as statistical spatial

pooling of visual features computed in V1 [1, 33] and developed an appro-

priate model [1] by making use of an algorithm for texture synthesis [29].

Freeman and Simoncelli used a variant of this model to describe the compu-

tations in the ventral stream and the resulting perceptual Metamers [9].

These statistical representations are computed by directly replicating the

formal statistical definitions. For example, by making use of averages or cor-

relations of the feature maps.

An empirical cross-correlation of the feature maps A and B is computed as:

C[A(∆s), B(∆t)] =
∑
s,t

A(s+ ∆s)B(t+ ∆t) (5.1)

This makes explicit use of the multiplication operation.

However, researchers have long debated whether such operations are neurobi-

ologically possible [20]. The formal statistical correlations might not even be

necessary, since much of the functionality may be preserved if one replaced

the multiplication operation with one, which is more biologically plausible.

5.3.2 Neurobiolocal Model

A function that exhibits similar characteristics to the multiplication opera-

tion is an AND-like computation, as suggested by Zetzsche and Barth [40].

Since biological hardware can easily realize an ON/OFF rectification and
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non-linear transducer functions with sigmoid shape, one can make use of an

old Babylonian trick to derive a suitable AND-like computation:

AND(a, b) = N [a+ b]−N [a− b] (5.2)

where N is a suitable non-linear transducer function and a and b feature

maps.

These AND operations are characterized by the property that they attain a

kind of local “maximum” (for the sum a + b constrained) if a and b have the

same size. If a or b is decreased, the response is systematically reduced, until

it vanishes if either a or b equals zero. If N is a sigmoid non-linearity the

resulting AND will have a threshold-like behavior for small input values and

will go into saturation for large input values. Hence, a multiplication can be

considered as a special case of this generalized AND-function.

This type of AND-operation may be, neurobiologically, the most plausible

one.

5.4 Texture Tiling Model

Similar to prior models of generating images that are peripherally distorted

in a texture-like fashion [32, 33, 9], this work makes use of a Texture-Tiling

Model in order to model receptive fields.

This TTM consists of local regions (called pooling regions) in which the re-

quired statistical representations are computed. These pooling regions grow

from the center of fixation of the field of view, hence there are more per-

mutations in the peripheral field of view than in the center. For simplicity,

the pooling regions for the TTM were implemented as rectangular regions,

instead of elliptical or round ones. Similarly to prior methods [32, 9], these
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pooling regions, overlap each other, though.

5.4.1 Methods

(A) (B)

Figure 5.2: Texture-Tiling Model. Left : Non-overlapping pooling regions Right :
Overlapping pooling regions

First, non-overlapping pooling regions are computed over the image, which

become smaller from the edge to the center of the image by a factor of 0.5

in each direction (Fig. 5.2 (A)). Research in visual crowding suggests that

these pooling regions grow linearly with eccentricity from the center of fix-

ation of the sight, with a radius of a radius of approximately 0.4 to 0.5 the

eccentricity. This has been dubbed as “Bouma’s Law” [28, 37].

After that, for each size of a pooling region, an overlapping layer of pooling

regions is added to the Texture-Tiling Model (Fig. 5.2 (B)). This way we

allow a better flow between neighbouring pooling regions.

The neurobiological statistics are then computed within these pooling re-

gions.
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5.5 Optimum Layer

Another hyper-parameter that is worth considering, while making use of the

feature maps of a CNN, is from which layer(s) these feature maps should be

obtained in order to model a statistical representation.

The first layers of a convolutional neural network resemble the primary vi-

sual cortex with low-level features. Filter kernels that are computed within

these layers correspond to Gabor filters, which have also been found the in

the V1-area of the visual cortex [3].

Research on human vision has recognized such a statistical pooling to be a

crucial factor for the representation of information in the peripheral field of

view, which accounts about 98% of the field of view [1, 9].

The common assumption is that low-level features are best suited for such

a statistical pooling [29, 32]. Models that make use of statistical repre-

sentations of features, such as Histogram of Oriented Gradients (HOG) [7],

Scale-Invariant Feature Transform (SIFT) [23], Textons [17] or models that

represent crowding [1, 9, 32], make use of the feature space provided by V1-

like filters.

As convincing as these applications may appear, it is not clear why such

representation needs to be extracted from the early level of local oriented

features or − in neurobiological terms − why such pooling should act di-

rectly after the primary visual cortex [5].

Since the visual system itself consists of a multi-level hierarchy and visual

models that are based on hierarchical architectures, such as CNNs, have

proven to be human-challenging when it comes to classification and recogni-

tion tasks [36], it makes sense to assume that such hierarchical architectures

are crucial for obtaining an efficient representation. However, it is far from

obvious which level of such a hierarchical architecture is best suited for this
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task [5].

This chapter investigates this by comparing statistical representations recon-

structed from different levels of a hierarchical architecture which represents

the visual system, such as CNNs, and observe which level is best suited for

a texture-like or statistical representation. For the CNN we make use of the

VGG-19 net [36].

5.5.1 Methods

Input Gradient Descent

Figure 5.3: Schematic architecture of the deep network and reconstruction algo-
rithm. (Fik: feature i at position k; Sij : covariance of features Fi, Fj) [5]

The method that is used here for a statistical representation is much of

the spirit of Gatys et al. They used their statistical representation of the fea-

ture space of a neural network for generating textures [12]. With their model

they outperformed the texture-generation model by Portilla and Simoncelli

[29], which had been described as one of the best parametric models [12] for

15 years.

To generate a texture from a given source image ~x, different features a ex-

tracted from this image by using the forward pass of a CNN. To obtain a

stationary description of the image, summary statistics are computed on the

feature responses of the image. Next a new image with the same stationary

description, and thus with the same spatial summary statistics, is computed
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by performing gradient descent on random white-noise image (Fig. 5.3).

[12, 11]

However, instead of using all the layers up to a specific layer to compute the

feature responses like Gatys et al., this work makes use of the feature space

of just one layer.

Synthesis

At first, one needs to compute the feature responses of an image using a

CNN by forwarding it to the network. The filter kernels of the trained neural

network are then applied to the image and one obtains the feature responses

(so called feature maps) [31].

A layer with Nl kernels has Nl feature maps of the size Ml, if vectorized.

One can save these feature maps in a matrix F l ∈ RNl×Ml , where F l
jk is the

activation of the filter j at position k in layer l. To generate a texture from

this feature map matrix, the spatial information of the original image has to

be discarded. A statistic that has such a property, is given by the correlation

of two feature maps of a layer. [12]

These correlations are given by the Gramian matrix Sl ∈ RNl×Nl , where Slij

is the inner product between feature maps i and j in layer l [12]:

Slij =
∑
k

F l
ikFjk (5.3)

Note that this statistical representation also makes specific use of multiplica-

tion operations. However, since we just want to determine which layer is best

suited for any statistical representation, we can exploit the fast computation

time of an inner product, in order to generate quick results for comparison.

Furthermore, since we just want to use one layer for texture synthesis, l can
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be disregarded.

To generate a new texture on the basis of the original image, one can use gra-

dient descent on a white noise image to find a corresponding image with the

same (or similar) Gramian matrix − and thus the same statistical represen-

tation − as the original image’s Gramian matrix. For the loss function this

work uses the mean squared error between the statistical representation S of

the original and of the statistical representation Ŝ of the generated image:

L(~x, ~̂x) =
1

4N2
l M

2
l

∑
ij

(Slij − Ŝlij) (5.4)

~x is the vectorized original image and ~̂x the vectorized generated image.

The gradient of the function with respect to the activations F̂ l can then be

computed analytically:

∂L
∂F̂ l

ij

=


1

N2
l M

2
l

(
(F̂ l)T(S − Ŝ)

)
ji

if F̂ l
ij > 0

0 if F̂ l
ij < 0

(5.5)

The gradient ∂L
∂~̂x

with respect to the image ~̂x can then be computed via the

standard back propagation of the neural network [22], which can then be

used as an input for a numerical optimization strategy. This work uses the

L-BFGS-B solver [42], which seems to be a reasonable choice for such a high

optimization problem.

Since the whole procedure relies on the standard forward-backward pass of

the Caffe framework [15], whereby the advantages of the GPU acceleration

can be utilised, these operations could be computed in a reasonable time.

For comparison, this reconstruction procedure was also applied to the “raw”
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feature maps Fik of the corresponding layer, where we directly reconstruct

from the coefficients in a single layer of the hierarchy. Whereas, in the case

of the statistical representation, the new image is reconstructed from the

Gramian matrix of those feature maps.

The loss function for the raw feature reconstruction is as follows:

L(~x, ~̂x) =
1

2

(
F l
ij − F̂ l

ij

)2
(5.6)

The derivative of this loss with respect to the activations in layer l equals:

∂L
∂Fij

=


(
F l
ij − F̂ l

ij

)
if F l

ij > 0

0 if F l
ij < 0

(5.7)

5.5.2 Results

The results in Fig. 5.5 show that the first layers reconstruct the best results

for the “raw” features, which is not that surprising, due to the systemati-

cally decreased amount of information by the increasing abstraction towards

higher stages of the architecture (Fig. 5.4 upper and middle rows). The

reconstructions become more and more distorted towards higher levels. [5]

Interestingly, the same effect is not observed for the reconstruction from the

statistical representation (Fig. 5.4 bottom row). Rather, the reconstruc-

tion quality is low at the initial stage, then gradually increases up to the

intermediate layers, and finally deteriorates again for the higher layers in

the hierarchy. The optimum reconstruction level thus is not obtained at the

initial layer (in spite of the fact that this layer by itself provides the max-

imum amount of information, as seen in Tab. 5.1) but at an intermediate

level (layers pool2 and pool3 ), where already a certain information loss has
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taken place. Nevertheless, the features of intermediate complexity seem to

be better suited for a statistical pooling.[5]

This observation may be due to two counteracting factors. On the one hand,

the spatial resolution in the layers of the network is decreasing with hierar-

chical level (Tab. 5.1), on the other hand, the number of different features

and thereby the size of the statistical representation is increasing. Further-

more, the spatial pooling also causes destructive effects, especially to the

spatial information of the features in the image, in addition to its desir-

able property. However, the increased differentiation capabilities provided

by more features in increasing hierarchical levels, may provide a trade-off be-

tween these destructive effects and the increased differentiation capabilities

[5]. The detailed trade-off properties still have to be researched, however [5].

For example, it has been observed that with a different architecture, which

uses large convolution kernels − especially in the first layers − the optimum

gets shifted towards the early layers of the network. The true optimum for

a statistical representation across all possible architectures thus remains to

be determined [5].

Figure 5.4: Dimensionality reduction in different hierarchical architectures.
Spatial resolution is decreased and feature number (and thereby the size of
the statistical representation) is increased in both variants, but the trade-off
is different. [5]
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conv1_1 pool1 pool2 pool3 pool4 pool5

Figure 5.5: Reconstructions from the “raw” feature representation (upper
row, zoomed in middle row) and from the statistical representation (lower
row). Hierarchical level increases from left to right. Reconstructions are
obtained by using only one single layer from the VGG-19 net. [5]

5.6 Peripheral Image Synthesis

This section makes use of the knowledge gained from previous sections in

order to implement a model of visual crowding, which is neurobiologically

plausible and uses the optimum layer for its statistical representation for the

used convolutional network.

Input Gradient Descent

Figure 5.6: Model architecture and reconstruction algorithm. [4]
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Our model is illustrated in Fig. 5.6. It differs from the existing crowding

model [1, 9] in two aspects: In the use of a deep network architecture and

in the provision of neurobiologically plausible AND-like operations as basic

non-linearities.

We first apply a spatial tiling operation using the TTM shown in Fig. 5.2 to

an image x in which the tiles get larger with increasing eccentricity, roughly

similar to the assumed layout of the spatial overlapping pooling regions in

human vision, cf. [1, 9]. To aid visual inspection, no smoothing is applied to

the tiles, such that borders remain visible. We then compute the activations

in layer pool3 of each vectorized pooling region ~p with a normalized version

[11] of the VGG-19 net [36] with average pooling. We use the layer pool3 due

to the results obtained in section “Optimum Layer”. These feature maps are

then stored in a matrix F p ∈ RN×M , where F p
jk is the activation of the filter

j at k in pooling region p, N the number of filter kernels and M the size of

each vectorized feature map. In order to obtain a texture-like representation

within each pooling region, the spatial information needs to be discarded.

Since the AND-like operation in Eq. 5.2 can be viewed as a generalized

multiplication [40, 4], we can define the following statistical representation

of a generated pooling region ~̂p as

Ŝpij =
∑
k

N(F̂ p
ik + F̂ p

jk)−N(F̂ p
ik − F̂

p
jk) (5.8)

where N is a non-linear transducer function. In our case the sigmoid

function.

The loss-function that can be used for the optimization strategy is then

defined by

L(~x, ~̂x) =
∑
p

∑
ij

(Ŝpij − S
p
ij)

2 (5.9)
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Deriving this equation with respect to the activations F̂ p yields

∂Lpij
∂F̂ p

= 2
∑
k

[(Ŝp − Sp)ik · (N ′(F̂ p
ij + F̂ p

kj)−N
′(F̂ p

ij − F̂
p
kj))+

(Ŝp − Sp)ki · (N ′(F̂ p
kj + F̂ p

ij)−N ′(F̂
p
kj − F̂

p
ij))]

(5.10)

for each pooling region. The loss and gradient for the whole feature

space of the image is then summed over the losses and gradients of the single

pooling regions.

The gradient ∂L
∂~̂x

with respect to the image ~̂x can then be computed via

the standard back propagation of the neural network [22], which can then

be used as an input for a numerical optimization strategy. Here the the L-

BFGS-B solver [42] was used again.

In order to compare the Neurobiological Model with the Mathematical one,

we then computed the mathematical statistics in Eq. 5.3 within each of the

pooling regions, as well, and compared both models. The derivative and loss

were built accordingly for the Mathematical Model.
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5.6.1 Results

Figure 5.7: Reconstruction results for the Mathematical and the Neurobiological
Model. From left to right: original image, mathematical correlation (Gramian
matrix), neurobiological AND-like interactions. Overall reconstruction quality is
similar for both models. Detailed visual comparisons can be made by zooming into
the visible individual tiles [4]. Image name from top to bottom: Animals, Boston,
Fantasy

Model comparison

We compare the Mathematical and the Neurobiological Model with respect

to different criteria.

First, we consider an informal measure by looking at the reconstructed im-

ages as such. The Neurobiological Model yields similar reconstruction results

to the Mathematical Model. In some aspects they even appear superior to

those obtained with the mathematical correlation statistics (Fig. 5.7).

Additionally, we computed the simple root-mean-square distance from the

reconstructed images to the original image (Fig. 5.7, top) and the classifi-
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cation performance that can be obtained with the respective reconstruction

images using two different classifiers (Fig. 5.7) for a formal measure.
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Figure 5.8: Comparisons between mathematical (red) and neurobiological model
(green). Upper figure: Similarity of reconstruction results as measured in terms of
root-mean-square distance. Lower figure: Similarity of the mathematical and the
neurobiological representation as measured in terms of classification performance.
Left: place recognition. Right: object recognition. Classification performance is
measured in how many of the top-5 classification results were the same as the top-5
results of the original 3 images.

Fig. 5.8 (top) shows that the root-mean-square distance between the

reconstructed images and the original images is approximately of the same

order for the mathematical models.

Classification performance is measured as the number of top-5 results that

were the same in the classification results obtained with the original image

and with the reconstructed images. Detailed information about this can be

seen in tables in Fig. 5.9 and Fig. 5.10. The images had been classified

using the VGG16 net [36] trained on Places205 [41] for scene recognition and
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the VGG19 net [36] trained on object recognition using the data from Ima-

geNet2012. Looking at Fig. 5.8 (bottom) also yields that the classification

results for both models are similar. Interestingly, the Neurobiological Model

performs better on the classification performance even though its distance to

the original image was always slightly more.

One must consider though, that here just three images were tested due to

limited computing resources. So the results may vary a lot from these when

using more images to test from but we are optimistic that the results will

not change drastically.

In conclusion, our investigations indicate that the information content be-

ing represented in the Neurobiological Model is comparable or even superior

to that of the Mathematical Model. This becomes evident in the reconstructed

“Mongrel” images, in the distance measures, and in the classification perfor-

mance. These results may thus be considered as one further step towards a

fully plausible model of the neural information processing being performed

in the visual periphery. [4]
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Scene Classifier (Places205 VGG16)  top5: 
 

  Original  Gram  Sigmoid 

Animals  Wild Field (23.03%) 
 
Aquarium (12.12%) 
 
Nursery (7.73%) 
 
Wheat Field (6.91%) 
 
Pasture (6.10%) 

Aquarium (41.92%) 
 
Fountain (6.26%) 
 
Underwater Coral Reef 
(4.75%) 
 
Outdoor Swimming Pool 
(4.45%) 
 
Amusement Park (4.30%) 

Aquarium (62.44%) 
 
Underwater Coral Reef 
(13.64%) 
 
Indoor Museum (2.66%) 
 
Shower (1.92%) 
 
Outdoor Swimming Pool 
(1.81%) 

Boston  Skyscraper (31.24%) 
 
Dock (15.47%) 
 
Harbor (13.29%) 
 
Boardwalk (10.96%) 
 
River (10.64%) 

Skyscraper (40.23%) 
 
Harbor (18.44%) 
 
Dock (10.31%) 
 
Boardwalk (6.13%) 
 
Tower (3.84%) 

Skyscraper (28.48%) 
 
Harbor (28.02%) 
 
Plaza (7.82%) 
 
Dock (7.12%) 
 
Office Building (3.41%) 

Fantasy  Fountain (25.50%) 
 
Botanical Garden (13.26%) 
 
Swamp (8.77%) 
 
Pond (6.37%) 
 
Marsh (4.97%) 

Corn Field (33.91%) 
 
Wheat Field (13.90%) 
 
Orchard (7.43%) 
 
Indoor Museum (6.31%) 
 
Aquarium (6.11%) 

Corn Field (51.27%) 
 
Aquarium (12.98%) 
 
Underwater Coral Reef 
(6.80%) 
 
Swamp (6.69%) 
 
Marsh (3.96%) 

Compared to Original   
 
 

Animals: 1/5 
Boston: 4/5 
Fantasy: 0/5 
 
Final: 5/15 

Animals: 1/5 
Boston: 3/5 
Fantasy: 2/5 
 
Final: 6/15 

Compared to Gram   
 

 

 
 

 

Animals: 3/5 
Boston: 3/5 
Fantasy: 2/5 
 
Final: 8/15 

 
 
 
 
 
   

Figure 5.9: Classification Performance of the original images, compared to
the reconstructed ones. The results were obtained from the Places205 CNN.
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Object Classifier (VGG19 ILSVRC)  top5: 
 

  Original  Gram  Sigmoid 

Animals 
 

Hamster (34.36%) 
 
Guinea Pig, Cavia Cobaya 
(22.25%) 
 
Marmoset (12.66%) 
 
Hare (9.48%) 
 
Hen (4.73%) 
 

Goose (15.75%) 
 
Hare (14.95%) 
 
King penguin, Aptenodytes 
Patagonica (14.40%) 
 
Fox Squirrel, Eastern Fox 
Squirrel, Sciurus Niger 
(8.81%) 

Fox Squirrel, Eastern Fox 
Squirrel, Sciurus Niger 
(50.32%) 
 
Hamster (17.37%) 
 
Guinea Pig, Cavia Cobaya 
(4.03%) 
 
Weasel (1.55%) 
 
Tiger, Panthera Tigris 
(1.53%) 

Boston  Dock, Dockage, Docking 
Facility (85.51%) 
 
Pier (5.81%) 
 
Lakeside, Lakeshore (2.75%) 
 
Breakwater, Groin, Groyne, 
Mole, Bulwark, Seawall, Jetty 
(1.43%) 
 
Seashore, Coast, Seacoast, 
SeaCoast 
(1.25%) 

Dock, Dockage, Docking 
Facility (50.92%) 
 
Fountain (18.34%) 
 
Church, Church Building 
(3.95%) 
 
Palace (3.32%) 
 
Castle (3.17%) 

Dock, Dockage, Docking 
Facility (77.34%) 
 
Seashore, Coast, Seacoast, 
SeaCoast (4.58%) 
 
Pier (2.42%) 
 
Breakwater, Groin, Groyne, 
Mole, Bulwark, Seawall, Jetty 
(1.95%) 
 
Fountain (1.88%) 

Fantasy  Fountain (51.93%) 
 
Shower Curtain (5.09%) 
 
Birdhouse (3.55%) 
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Figure 5.10: Classification Performance of the original images, compared to
the reconstructed ones. The results were obtained from the VGG19 CNN.



Chapter 6

Summary and Outlook

In recent years, biologically inspired texture-models have provided a fruitful

analysis tool for studying visual perception [12]. Especially, the texture-

model proposed by Portilla and Simoncelli [29] has sparked a great number

of studies in neuroscience and psychophysics [1, 33, 9, 10, 27].

We built a parametric model to synthesize “Mongrels” and simulate periph-

eral vision and visual crowding with such. This model is based on the local

summary statistics of the feature maps of a high-performing deep convolu-

tional neural network. These summary statistics were computed using a more

neurobiologically inspired approach by using AND-like operations instead of

formal multiplication operations. Furthermore, we determined which layer

of the CNN would have the best performing statistical representations. Sur-

prisingly to the common assumption that the first layers would provide the

best representation of such, we found an optimum in the intermediate layers

of the VGG network. More investigation on this still needs to be done, how-

ever.

These results could be of interest in areas like image compression or com-

puter vision. Especially, scene recognition is to be hypothesized to happen
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mostly in the visual periphery [8]. Further studies needs to be done on such,

as well.
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Neurobiologically realistic model of statistical pooling in peripheral vision
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Figure 1: Reconstruction results for the mathematical and the neurobiological model. From left to right: original image, mathematical
correlation (Gram matrix), neurobiological AND-like interactions. Overall reconstruction quality is similar for both models. Detailed visual
comparisons can be made by zooming into the visible individual tiles. Image: c©Fantasy Landscape by Deevad

Keywords: peripheral vision, visual crowding, neuro-biologically
motivated statistics, neural networks, image compression

Concepts: •Mathematics of computing → Probability and statis-
tics;

1 Introduction

Our senses can process only a limited amount of the incoming sen-
sory information. In the human visual system this becomes appar-
ent in the reduced performance in the peripheral field of view, as
compared to the central fovea. Recent research shows that this loss
of information cannot solely be attributed to a spatially coarser res-
olution but is essentially caused by statistical pooling operations
which lead to a texture-like representation. This so called “crowd-
ing effect” can be seen as a strategy of the visual system to deal
with the information bottleneck in sensory processing. As such, it
may also be of interest for image compression, feature extraction
and computer vision. A recent approach towards modelling this ef-
fect makes direct use of formal statistical computations [Balas et al.
2009; Freeman and Simoncelli 2011], and thus is not completely
convincing with respect to its neurobiological plausibility. Here we
investigate whether a more plausible model can be developed and
whether it achieves the desirable properties.

2 Summary statistics model

Our model is illustrated in Fig. 2. It differs from the existing crowd-
ing model [Balas et al. 2009; Freeman and Simoncelli 2011] in two
aspects, in the use of a deep network architecture and in the pro-
vision of neurobiologically plausible AND-like operations as basic
nonlinearities. We first apply a spatial tiling operation to an image
x in which the tiles get larger with increasing eccentricity, roughly
similar to the assumed layout of the spatial overlapping pooling re-
gions in human vision, cf. [Balas et al. 2009; Freeman and Simon-
celli 2011]. To aid visual inspection, no smoothing is applied to the
tiles, such that borders remain visible. We then compute the acti-
vations in layer “pool3” of each vectorized pooling region ~p with
a normalized version [Gatys et al. 2015] of the VGG-19 net [Si-
monyan and Zisserman 2014] with average pooling. These feature
maps are then stored in a matrix F p ∈ IRNxM , where F p

jk is the

∗e-mail:ncheema@stud.hs-bremen.de

activation of the filter j at k in pooling region p, N the number of
filter kernels and M the size of each vectorized feature map.

In order to obtain a texture-like representation within each pool-
ing region, the spatial information needs to be discarded. A sum-
mary statistic that does this, is given by the correlations Sp =∑

k F
p
ikF

p
jk based on the feature map matrix F of a pooling re-

gion p. Like the crowding model of [Balas et al. 2009; Freeman
and Simoncelli 2011] the present model version makes explicit use
of the multiplication of two variables. However, researchers have
long debated whether such multiplication operations are biologi-
cally plausible [Koch 2004]. Furthermore, computation of the for-
mal statistical correlations may not be necessary, as much of the
functionality may be preserved if multiplication is replaced by a
neurobiologically more plausible operation. We thus replace the
multiplications by neurophysiologically plausible AND-like opera-
tions [Zetzsche and Barth 1990] . It is well known that biological
hardware can easily realize an ON/OFF rectification and nonlinear
transducer functions with sigmoid shape. With these ingredients,
one can make use of an old Babylonian trick to derive the suitable
AND-like computations: AND(a, b) = N [a + b] − N [a − b]
where N is a suitable nonlinear transducer function. These AND
operations are characterized by the property that they attain their
maximum (for the sum a+ b constrained) if a and b have the same
size. If a or b is decreased, the response is systematically reduced,
until it vanishes if either a or b equals zero. If N is a sigmoid non-
linearity the resulting AND will have a threshold-like behavior for
small input values and will go into saturation for large input val-
ues. For simplicity, the model version which is based on the formal
statistical computations is henceforth designated as “mathematical
model” (in spite of its other neurobiology-related components) and
the model version with the AND operations is designated as “neu-
robiological model”.

The information provided by the different model representations
can be visualized and evaluated by reconstructed images, desig-
nated as mongrels [Balas et al. 2009; Rosenholtz et al. 2012] and as
metamers [Freeman and Simoncelli 2011]. They can provide im-
portant hints on which information is being preserved and which
is discarded by the representation. A reconstruction can be ob-
tained by using gradient descent to generate a new image that has
the same local summary statistics as the original one. In our work
we used the L-BFGS-B solver, which is a reasonable choice for
such a high dimensional optimization problem. The loss-function
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Figure 2: Model architecture and reconstruction algorithm.

Figure 3: Comparisons between mathematical (red) and neurobi-
ological model (green). Upper figure: Similarity of reconstruction
results as measured in terms of root-mean-square distance. Lower
figure: Similarity of the mathematical and the neurobiological rep-
resentation as measured in terms of classification performance.
Left: place recognition. Right: object recognition. Classification
performance is measured in how many of the top-5 classification
results were the same as the top-5 results of the original 3 images.

that is used for this optimization strategy is defined by L(~x, ~̂x) =∑
p

∑
ij(Ŝ

p
ij − Sp

ij)
2.

3 Model Comparison

We compare the mathematical and the neurobiological with respect
to different criteria. First, we consider the reconstructed images
as such. The neurobiological model yields reconstruction results
which are at least as good, and in some aspects even superior to
those obtained with the mathematical correlation statistics (Fig. 1).
Further measures of the similarity between the reconstructions ob-
tained from the two types of models are the simple root-mean-
square deviation from the original image, and the classification per-
formance that can be obtained with the respective reconstruction
images. Fig. 3 shows that the root-mean-square distance betwwen
the reconstructed images and the original images is approximately
of the the same order for the mathematical models and the neurobi-
ological models and that the classification performance is also sim-
ilar. The images had been classified using the VGG16 net trained
on Places205 for scene recognition and the VGG19 net trained on
object recognition using the data from ImageNet2012. A more de-
tailed table can be found here.

In conclusion, our investigations indicate that the information con-
tent being represented in the neurobiological model is comparable
or even superior to that of the the mathematical model. This be-
comes evident in the reconstructed “Mongrel” images, in the dis-
tance measures, and in the classification performance. These results
may thus be considered as one further step towards a fully plausible
model of the neural information processing being performed in the
visual periphery.
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Abstract. Representations obtained from the statistical pooling of fea-
tures gain increasing popularity. The common assumption is that low-
level features are best suited for such a statistical pooling. Here we in-
vestigate which level of a visual feature hierarchy can actually produce
the optimal statistical representation. We make use of the award-winning
VGG 19 deep network which showed human-like performance in recent
visual recognition benchmarks. We demonstrate that the optimum sta-
tistical representation is not obtained with the early-level features, but
with those of intermediate complexity. This could provide a new perspec-
tive for models of human vision, and could be of general relevance for
statistical pooling approaches in computer vision and image processing.

1 Introduction

Representations that are based on a statistical pooling of features are of relevance
in variety of contexts, ranging from bag-of-words models in natural language
processing to texton approaches in computer vision [2, 5]. In research on human
vision, such a statistical pooling has recently been recognized as the crucial factor
for the representation of information in the periphery of the field of view, i.e. for
those 98% of total area being not represented by the high-performance central
fovea [1, 3]. A common assumption about statistical pooling is that the features
to be pooled should be relatively simple and low-level. In vision and image
processing, for example, local wavelet-like features with different orientations
and sizes are commonly utilised. However, convincing as this assumption may
appear on a first look, it is actually far from clear why low-level features should be
best suited for a statistical pooling. Multi-level feature hierarchies have proven
useful in a variety of contexts. The visual system, for example, consists of a
hierarchy of multiple subsequent processing stages in which the nature of the
visual features becomes systematically more abstract, invariant, and general.
The impressive success of recent state-of-the-art deep networks, which for the first

⋆ corresponding author: zetzsche@informatik.uni-bremen.de
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time challenged human performance in visual recognition benchmarks [6], seems
also to indicate that such hierarchical architectures are crucial for obtaining
efficient representations. However, which level in such hierarchy is best suited
for a statistical pooling is in our view far from obvious. Here we investigate this
question by making use of an award-winning deep architecture, the 19 layer VGG
19 net [6].

2 Methods

Input Gradient Descent

Fig. 1: Schematic architecture of the deep network and reconstruction algorithm.
(Fik : feature i at position k; Sij : covariance of features Fi, Fj)

The architecture of the model is shown in Fig. 1. The feature hierarchy is
provided by the 19 layer VGG-19 network, as schematically illustrated on the
left side. For the statistical pooling part we use a recent extension of this ar-
chitecture intended for texture synthesis [4]. This texture synthesis procedure
has the goal to generate a texture which has the same statistical properties as a
given example texture. Here we make use of this process with a somewhat dif-
ferent conceptual attitude. As suggested by Rosenholtz [1], we use this ability to
reconstruct a general image from its statistical representation [1, 3]. In the orig-
inal texture synthesis model, the statistical information is accumulated across
layers, starting from the first layer and comprising all subsequent layers up to
some specified maximum height in the hierarchy. We took a different approach
here, and selected out only one single layer of the VGG-19 net in each test, since
we wanted to know which layer of the hierarchy can provide the most valuable
information for a statistical representation. This is schematically illustrated for
the second layer in Fig. 1. We reconstruct the image from solely the statisti-
cal information S, which is provided by the covariance/spatial pooling of all
respective features Fik, Fjk of this layer (i.e, we reconstruct from the statistical
representation provided by the box S in Fig. 1). For comparison, we also ap-
plied the reconstruction procedure to the single “raw” features Fik of this layer
(feature representation, leftmost side of Fig. 1). In other words, in the case of
the “raw” feature representation we reconstruct directly from the coefficients in
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a single layer of the hierarchy, whereas in case of the statistical representation
we reconstruct from the covariance/spatial pooling of those coefficients.

3 Results

A prototypical result is shown in Fig. 2. As expected, the best reconstruction
from the “raw” feature representation is obtained from the initial, lowest level
of the network. The reconstructions then become gradually more and more dis-
torted if we proceed towards higher layers (from left to right in Fig. 2, upper two
rows). This is not surprising, since the amount of information is systematically
decreased by the increasing abstraction towards higher stages of the hierarchy.
The quality of reconstructions from the statistical representation is generally
lower, due to the statistical pooling. However, a monotonic decrease of recon-
struction quality is not observed here. Rather, the reconstruction quality is low
at the initial stage, then gradually increases up to the intermediate layers, and
finally deteriorates again for the higher layers in the hierarchy. The optimum
reconstruction thus is not obtained at the initial layer (in spite of the fact that
this layer by itself provides the maximum amount of information) but at an
intermediate level (layers pool2 and pool3 ) where already a certain information
loss has taken place. Nevertheless, the features of intermediate complexity seem
to be better suited for a statistical pooling.

conv1_1 pool1 pool2 pool3 pool4 pool5

Fig. 2: Reconstructions from the “raw” feature representation (upper row,
zoomed in middle row) and from the statistical representation (lower row). Hier-
archical level increases from left to right. Reconstructions are obtained by using
only one single layer from the VGG-19 net.
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Fig. 3: Dimensionality reduction in different hierarchical architectures. Spatial
resolution is decreased and feature number (and thereby the size of the statistical
representation) is increased in both variants, but the tradeoff is different.

4 Discussion

Why are the optimum features for a statistical representation those from an
intermediate level, and not the features of the initial processing stage which
provides the highest information content? This may be due to two counteracting
factors (Fig. 3, left). On the one hand, the total number of coefficients in the
layers of the network is decreasing with increasing hierarchical level. On the other
hand, the number of different features, and thereby the size of the statistical
representation is increasing. Since the statistical spatial pooling causes specific
destructive effects, in particular with respect to the exact position of features in
the image, the trade-off between these effects and the increased differentiation
capabilities provided by more different features may lead to an optimum at
an intermediate stage. The detailed trade-off, however, depends on the specific
architecture (cf. Fig. 3). For example, in preliminary tests with a network with
large convolution kernels and a higher number of different features in the early
layers, we observed a shift of the optimum towards the early stages. The true
optimum for a statistical representation across all possible architectures thus
remains to be determined. In any case our results suggest that the exploitation
of the mutual dependence between the abstraction effect in feature hierarchies
on the one hand, and the peculiarities of statistical measures and pooling effects
on the other hand, represents a promising topic for future research.
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