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Figure 1: Reconstruction results for the mathematical and the neurobiological model. From left to right: original image, mathematical
correlation (Gram matrix), neurobiological AND-like interactions. Overall reconstruction quality is similar for both models. Detailed visual
comparisons can be made by zooming into the visible individual tiles. Image: c©Fantasy Landscape by Deevad
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1 Introduction

Our senses can process only a limited amount of the incoming sen-
sory information. In the human visual system this becomes appar-
ent in the reduced performance in the peripheral field of view, as
compared to the central fovea. Recent research shows that this loss
of information cannot solely be attributed to a spatially coarser res-
olution but is essentially caused by statistical pooling operations
which lead to a texture-like representation. This so called “crowd-
ing effect” can be seen as a strategy of the visual system to deal
with the information bottleneck in sensory processing. As such, it
may also be of interest for image compression, feature extraction
and computer vision. A recent approach towards modelling this ef-
fect makes direct use of formal statistical computations [Balas et al.
2009; Freeman and Simoncelli 2011], and thus is not completely
convincing with respect to its neurobiological plausibility. Here we
investigate whether a more plausible model can be developed and
whether it achieves the desirable properties.

2 Summary statistics model

Our model is illustrated in Fig. 2. It differs from the existing crowd-
ing model [Balas et al. 2009; Freeman and Simoncelli 2011] in two
aspects, in the use of a deep network architecture and in the pro-
vision of neurobiologically plausible AND-like operations as basic
nonlinearities. We first apply a spatial tiling operation to an image
x in which the tiles get larger with increasing eccentricity, roughly
similar to the assumed layout of the spatial overlapping pooling re-
gions in human vision, cf. [Balas et al. 2009; Freeman and Simon-
celli 2011]. To aid visual inspection, no smoothing is applied to the
tiles, such that borders remain visible. We then compute the acti-
vations in layer “pool3” of each vectorized pooling region ~p with
a normalized version [Gatys et al. 2015] of the VGG-19 net [Si-
monyan and Zisserman 2014] with average pooling. These feature
maps are then stored in a matrix F p ∈ IRNxM , where F p

jk is the
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activation of the filter j at k in pooling region p, N the number of
filter kernels and M the size of each vectorized feature map.

In order to obtain a texture-like representation within each pool-
ing region, the spatial information needs to be discarded. A sum-
mary statistic that does this, is given by the correlations Sp =∑

k F
p
ikF

p
jk based on the feature map matrix F of a pooling re-

gion p. Like the crowding model of [Balas et al. 2009; Freeman
and Simoncelli 2011] the present model version makes explicit use
of the multiplication of two variables. However, researchers have
long debated whether such multiplication operations are biologi-
cally plausible [Koch 2004]. Furthermore, computation of the for-
mal statistical correlations may not be necessary, as much of the
functionality may be preserved if multiplication is replaced by a
neurobiologically more plausible operation. We thus replace the
multiplications by neurophysiologically plausible AND-like opera-
tions [Zetzsche and Barth 1990] . It is well known that biological
hardware can easily realize an ON/OFF rectification and nonlinear
transducer functions with sigmoid shape. With these ingredients,
one can make use of an old Babylonian trick to derive the suitable
AND-like computations: AND(a, b) = N [a + b] − N [a − b]
where N is a suitable nonlinear transducer function. These AND
operations are characterized by the property that they attain their
maximum (for the sum a+ b constrained) if a and b have the same
size. If a or b is decreased, the response is systematically reduced,
until it vanishes if either a or b equals zero. If N is a sigmoid non-
linearity the resulting AND will have a threshold-like behavior for
small input values and will go into saturation for large input val-
ues. For simplicity, the model version which is based on the formal
statistical computations is henceforth designated as “mathematical
model” (in spite of its other neurobiology-related components) and
the model version with the AND operations is designated as “neu-
robiological model”.

The information provided by the different model representations
can be visualized and evaluated by reconstructed images, desig-
nated as mongrels [Balas et al. 2009; Rosenholtz et al. 2012] and as
metamers [Freeman and Simoncelli 2011]. They can provide im-
portant hints on which information is being preserved and which
is discarded by the representation. A reconstruction can be ob-
tained by using gradient descent to generate a new image that has
the same local summary statistics as the original one. In our work
we used the L-BFGS-B solver, which is a reasonable choice for
such a high dimensional optimization problem. The loss-function
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Figure 2: Model architecture and reconstruction algorithm.
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Figure 3: Comparisons between mathematical (red) and neurobi-
ological model (green). Upper figure: Similarity of reconstruction
results as measured in terms of root-mean-square distance. Lower
figure: Similarity of the mathematical and the neurobiological rep-
resentation as measured in terms of classification performance.
Left: place recognition. Right: object recognition. Classification
performance is measured in how many of the top-5 classification
results were the same as the top-5 results of the original 3 images.

that is used for this optimization strategy is defined by L(~x, ~̂x) =∑
p

∑
ij(Ŝ

p
ij − Sp

ij)
2.

3 Model Comparison

We compare the mathematical and the neurobiological with respect
to different criteria. First, we consider the reconstructed images
as such. The neurobiological model yields reconstruction results
which are at least as good, and in some aspects even superior to
those obtained with the mathematical correlation statistics (Fig. 1).
Further measures of the similarity between the reconstructions ob-
tained from the two types of models are the simple root-mean-
square deviation from the original image, and the classification per-
formance that can be obtained with the respective reconstruction
images. Fig. 3 shows that the root-mean-square distance betwwen
the reconstructed images and the original images is approximately
of the the same order for the mathematical models and the neurobi-
ological models and that the classification performance is also sim-
ilar. The images had been classified using the VGG16 net trained
on Places205 for scene recognition and the VGG19 net trained on
object recognition using the data from ImageNet2012. A more de-
tailed table can be found here.

In conclusion, our investigations indicate that the information con-
tent being represented in the neurobiological model is comparable
or even superior to that of the the mathematical model. This be-
comes evident in the reconstructed “Mongrel” images, in the dis-
tance measures, and in the classification performance. These results
may thus be considered as one further step towards a fully plausible
model of the neural information processing being performed in the
visual periphery.
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