TEXT-BASED MOTION SYNTHESIS WITH

A HIERARCHICAL TWO-STREAM RNN

PROBLEM OUR APPROACH

Mapping natural language text de- .| Weintroduce a hierarchical joint embedding space to learn embeddings of pose and language sim-
scriptions to 3D pose sequences for |-.-| ultaneously. We separate our intermediate pose embeddings hierarchically to limb embeddings
human motions, where the input .| suchthat our model learns features from the different components of the body. We have a two-
texts may describe single actions .| stream sequential network to separately learn the upper and the lower body movements and focus
with sequential information e.g., “a -] onthe endjoints of the body. Contextualized BERT embeddings [ 4] with handpicked word feature
person walks four steps forward“or | : : : | embeddings to improve text understanding. Lastly, we add a pose discriminator with adversarial
multiple superimposed actionse.g., | - | lossto furtherimprove the plausibility of the synthesized motions.

“a person walks forward for2steps, | . —+———77"7 7 7 757—¥—7F 7 7  —F——F7—F— """ """ | :
while spinning their arms”.
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translate long-range dependencies and
correlations in complex sentences and
do not generalize well to complex actions
involving synchronized limb movements,
e.g. dancing.
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In contrast, we propose an RNN based

hierarchical two-stream model to explore | - Input Sentences
. . . . . with Wwords

a finer joint-level mapping between L (50, ey St

language and 3D pose sequences. Our L |

model can generateanimated 3DPOSe | - - |

sequences depicting multiple sequential
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