
Prediction of Forest Cover Type using Ensemble

Techniques with Decision Trees

Submitted by

CHANDANA T.L 11IT15
NAVAMI K 11IT48
NISHA K.K 11IT51
PRUTHVI H.R 11IT64

Under the Guidance of

Mr. Biju R Mohan

Dept. of Information Technology

NITK Surathkal, Mangalore

In partial fulfillment of the requirements for the award of the degree

of

Bachelor of Technology
in

Information Technology

Department Of Information Technology

National Institute of Technology Karnataka, Surathkal

Srinivasnagar – 575025, Mangalore, India

2014-2015

Department of Information Technology

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE

DECLARATION

We hereby declare that the Project Work Report entitled Prediction of Forest

Cover Type using Ensemble Techniques with Decision Trees which is being

submitted to the National Institute of Technology Karnataka, Surathkal for the

award of the Degree of Bachelor of Technology in Information Technology is a

bonafide report of the work carried out by us. The material contained in this

Project Work Report has not been submitted to any University or Institution for the

award of any degree.

Name of the Student Register No. Signature with Date

1. Chandana T.L 11IT15

2. Navami K 11IT48

3. Nisha K.K 11IT51

4. Pruthvi H.R 11IT64

Department of Information Technology, NITK

Place: NITK, Surathkal

Date:

Department of Information Technology

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE

CERTIFICATE

This is to certify that the B.Tech Project Report entitled Prediction of Forest

Cover Type using Ensemble Techniques with Decision Trees submitted by:

1. Chandana T.L 11IT15

2. Navami K 11IT48

3. Nisha K.K 11IT51

4. Pruthvi H.R 11IT64

as the record of the work carried out by them, is accepted as the B.Tech Project

work Report submission in partial fulfillment of the requirements for the award of

degree of Bachelor of Technology in Information Technology.

Mr. Biju R Mohan Prof. Ananthanarayana V.S
Project Guide, Dept. of IT Chairman – DUGC, Dept. of IT

NITK Surathkal, Mangalore NITK Surathkal, Mangalore

ACKNOWLEDGEMENTS

Throughout the course of this project, several people have helped directly and indirectly

the project, contributing to the successful finish of our final year in the Bachelor of

Technology course. Our guide, Mr. Biju R Mohan, was not only the guide, but also a

motivator who ensured that we stayed on track, provided help when necessary and played

an important role in making us overcome the deadlocks at various stages of our project.

Our project would be incomplete without the mention of our Head of Department, Prof.

Ananthanarayana V.S, who facilitated access to all the resources in the department. We

would also like to thank Dr. Nagamma Patil, who provided timely suggestions and

motivated us to think better with her valuable feedback during evaluations. Our faculty

advisor, Mrs. Sowmya Kamath was always there to guide us to the right path by

providing right suggestions through the major project evaluations. We also thank all the

teachers and friends in the Masters courses for their feedback during the evaluation

sessions, for providing insight when needed and guiding us out of deadlocks when we

faced many. It is also our duty to thank our classmates and other friends who directly or

indirectly played a part in the success of the project. Ultimately, thanks go to the

institution of which we are proud of the National Institute of Technology Karnataka,

Surathkal, and all the people associated, for being our haven and facilitating and inspiring

us during the course of the major project.

Chandana T.L, Navami K, Nisha K.K, Pruthvi H.R

Dept of IT, NITK Surathkal, Mangalore

Abstract

The project aims to determine the forest cover type of the dataset containing strictly car-

tographic variables. The study evaluated four wilderness areas in the Roosevelt National

Forest, located in northern Colorado. The source of cover type data was US Forest service

inventory while the cartographic variables like elevation, slope, soil type and other data

were derived from Geographic Information System(GIS). Dataset was analysed and fea-

ture engineering techniques were applied, which helped in getting more relevant features.

Comparative study of various decision tree algorithms such as C4.5, C5.0, CART was

conducted on the dataset. Random Forest and C5.0 gave better results compared to other

decision trees. As a further improvement, we intend to build better ensemble techniques for

decision trees.An ensemble technique which has simple brown boost implemented along

with C5.0 is used to build the model. This ensemble learning approach constructs a com-

posite hypothesis by rating individual hypothesis. The memory required to store these

hypothesis is high and can be reduced by selecting a set of hypothesis which gives nearly

the same performance. The package built includes Kappa Pruning in order to select the

boosted classifiers.

Keywords:Decision Tree, C5.0, Ensemble Techniqiues, Pruning

1

Contents

1 Introduction 6
1.1 Motivation for Work . 7

2 Literature Survey 8
2.1 Background . 8
2.2 Outcome Of Literature Survey . 11
2.3 Problem Statement . 12
2.4 Objective . 12

3 Methodology 13
3.1 Data Description . 13
3.2 Feature Engineering . 16

3.2.1 Feature Extraction . 16
3.2.2 Feature Selection . 16
3.2.3 Subset selection . 16
3.2.4 Optimality criteria . 17

3.3 Decision Trees . 17
3.3.1 ID3 . 18
3.3.2 CART . 18
3.3.3 C4.5 . 19
3.3.4 C4.5 . 19

3.4 Ensemble Learning . 20
3.4.1 C5.0 . 20
3.4.2 Random Forest . 23

3.5 Pruning Boosted Classifiers . 23

4 Work Done 25
4.1 Data Preprocessing . 25
4.2 Feature Engineering . 28
4.3 Feature selection . 32
4.4 Pruning Boosted Classifier(MC5.0) . 33

5 Results and Analysis 35
5.1 Decision Trees . 35
5.2 Feature engineering . 36
5.3 Feature selection . 38
5.4 Pruning . 39
5.5 Ensemble Learning . 39

2

5.6 MC5.0 . 40

6 Conclusions and Future Work 41

7 Project Plan 42

References 43

A Appendix I 45

B Appendix II 48

3

List of Figures

1.1 Roosevelt National Forest Wilderness Area 6
3.1 Flow Diagram . 15
4.1 Graph of Vertical Distance To Hydrology versus Elevation 29
4.2 Graph of Horizontal Distace to Hydrology versus Elevation 30
4.3 Plot of Vertical Distance To Hydrology . 30
4.4 Graph of Hillshade 3pm versus Hillshade Noon 31
4.5 Graph of Aspect versus Slope . 33
4.6 Horizontal Distance To Roadways vs Horizontal Distance To Fire Points . . . 33
4.7 C5.0 Package Framework . 34
4.8 MC5.0 Package Framework . 34
5.1 Relative performance of MC5.0 with various amounts of pruning 40
7.1 Gantt Chart . 42
B.1 Creating Package . 49
B.2 Buiding and Reloading Package . 49

4

List of Tables

2.1 Brief Description of the literature Survey Papers 10
3.1 Description of attributes for forest cover dataset 14
4.1 USFS Ecological Landtype Units of soil types 26
4.2 USFS Ecological Landtype Units of soil types 27
5.1 Performance Evaluation . 35
5.2 Data Pre-Processing and Feature Extraction 37
5.3 Description of the new additional features for Forest Cover Dataset 38
5.4 Comparison of Decision trees with feature Selection 39

5

1 Introduction

Classification is an important research topic in the field of data mining and knowl- edge dis-
covery. It finds the common properties among a set of objects in a dataset and classifies them
into different pre-identified classes. There have been many data classification methods includ-
ing decision trees methods, statistical methods, neural networks, rough sets etc. One of the
instances where classification techniques can be applied is for prediction of forest cover types.
The prediction of the forest cover type (the predominant kind of tree cover) can be determined
from strictly cartographic variables. The actual forest cover type for a given 30 x 30 meter cell
was determined from US Forest Service (USFS) Region 2 Resource Information System data.
Independent variables were then derived from data obtained from the US Geological Survey
and USFS. The data is in raw form (not scaled) and contains binary columns of data for quali-
tative independent variables such as wilderness areas and soil type[1].
The study area for the project consisted of the Rawah (29 628 hectares or 73 213 acres), Co-
manche Peak (27 389 hectares or 67 680 acres), Neota (3904 hectares or 9647 acres), and Cache
la Poudre (3817 hectares or 9433 acres) wilderness areas of the Roosevelt National Forest in
northern Colorado. As shown in Figure 1, these areas are located 70 miles northwest of Den-
ver, Colorado. These wilderness areas were selected because they contained forested lands that
have experienced relatively little direct human management disturbances. As a consequence,
the current composition of forest cover types within these areas are primarily a result of natural
ecological processes rather than the product of active forest management.

Figure 1.1: Roosevelt National Forest Wilderness Area

Some background information for the four wilderness areas: The Rawah (area 1) and Co-

6

manche Peak (area 3) areas would tend to be more typical of the overall dataset than either the
Neota (area 2) or Cache la Poudre (area 4), due to their assortment of tree species and range
of predictive variable values (elevation, etc.). Cache la Poudre would probably be more unique
than the others, due to its relatively low elevation range and species composition.

This is a classification problem, where the forest cover type are predicted. The forest cover
type is a predominant tree species which can take seven possible nominal values. The problem
of identifying the category to which the new observation belongs to based on the a model built
using a training set containing observations whose category membership is already known is
called as Classification.

1.1 Motivation for Work

Accurate natural resource inventory information is vital to any private, state, or federal land
management agency. Forest cover type is one of the most basic characteristics recorded in
such inventories. Generally, cover type data is either directly recorded by field personnel or
estimated from remotely sensed data. Both of these techniques may be prohibitively time
consuming and/or costly in some situations. Furthermore, an agency may find it useful to have
inventory information for adjoining lands that are not directly under its control, where it is
often economically or legally impossible to collect inventory data. Predictive models provide
an alternative method for obtaining such data.

7

2 Literature Survey

2.1 Background

Blackard et. al.[1] have compared two alternative techniques for predicting forest cover types.
The results of the comparison indicated that a feed-forward artificial neural network model(70.58%)
more accurately predicted forest cover type than a traditional statistical model based on Gaus-
sian discriminant analysis (58.38%). B. Chandra et. Al [2] used the same dataset to evaluate the
performance of the decision trees. The decision tree algorithm achieved a maximum classifica-
tion accuracy of 84% as compared to that of 70.58%. Ragini Jain et. Al. suggested a hybridized
rough set model that provides mechanism to trade-of between different performance parameters
like - accuracy, complexity, number of rules and number of attributes in the resulting classifier
for a large benchmarking dataset.

A number of supervised learning methods have been introduced in the last decade. Caruana
et.al [3] presents a large-scale empirical comparison of ten Supervised Learning algorithms
using eight performance criteria. They evaluate the performance of SVMs, neural network,
logistic regression, naive bayes, memory-based learning, random forests, decision trees, bagged
trees, boosted trees, and boosted stumps on eleven binary classification problems using a variety
of performance metrics: accuracy, F-score, Lift, ROC Area, etc. They have concluded that
learning methods such as boosting, random forests, bagging, decision tree and SVMs achieve
excellent performance over others.

Entezari- Malecki et al. [4] have compared different classification methods based on type
of attributes and sample size against performance criterion Area Under the Curve (AUC) of
ROC. Their analysis shows that decision tree and C4.5, as an implementation of that show an
effective performance in all datasets. Decision tree, C4.5 and SVM show excellent accuracies
when the number of continuous attributes is higher that are discrete.

Quinlan[5] experimented the effect of boosting on 27 datasets with C4.5 as base learner.
Boosting reduced the classification error by 15%, but improved the performance on 21 datasets.
And also explains that one of the reasons for higher error rate in classification is over fitting
of the tree. Works of Schapire[6] notes that the boosting technique fails if the weak learner
achieves less than 50% accuracy on its own. Zhu et.al [7] worked on extending the adaboost
technique to multiclass classification and has observed that the technique gives better results.
Freund et. al[8] propose that boosting maybe helpful on learning algorithms having either of
the two properties. The first property, which holds for many real-world problems, is that the
observed examples tend to have varying degrees of hardness. For such problems, the boosting
algorithm tends to generate distributions that concentrate on the harder examples, thus chal-
lenging the weak learning algorithm to perform well on these harder parts of the sample space.
The second property is that the learning algorithm be sensitive to changes in the training exam-
ples so that significantly different hypotheses are generated for different training sets.

Margineantu et al [9] addresses the problem that deploying ensemble methods require a

8

large amount of memory to store all of the classifiers and the question of whether all of the
decision trees constructed by AdaBoost are essential for its performance. He introduced the
concept of pruning the ensemble which deals with discarding some of the trees constructed but
still obtaining the same high level of performance. The paper introduces five different pruning
algorithms and compares their performance on a collection of ten domains. The five differ-
ent pruning algorithms used in this paper are: Early Stopping, KL-divergence Pruning, Kappa
Pruning, Kappa-Error Convex Hull Pruning, and Reduce-Error Pruning with Backfitting. These
five pruning techniques were tested on ten datasets using C4.5 as the weak learner. The exper-
iments performed concluded that the ensemble produced by AdaBoost can be radically pruned
in some domains and the best pruning methods were Kappa Pruning and Reduce-Error Pruning.

We propose to predict the forest cover type from strictly cartographic values. We intend to
do so by comparing the different decision tree - C4.5, C5.0, CART and Random Forest. We
have later on performed comparative study on different boosting techniques on decision trees
and finally try to model the best ensemble learning for decision trees.

9

Table 2.1: Brief Description of the literature Survey Papers
PaperTitle Authors Description Inference

Comparative accu-
racies of artificial
neural networks and
discriminant anal-
ysis in predicting
forest cover types
from cartographic
variables(2000)

Jock
A.Blackard
Denis J.Dean

*Feedforward artifi-
cial neural network
model
*Gaussian discrimi-
nant analysis
*UCI Forest Cover
Dataset

ANN model
(70.58%) pre-
dicted forest cover
type more accurately
than Gaussian dis-
criminant analysis
(58.38%)

Prediction of Forest
cover using Decision
Trees(2007)

B.Chandra,
Pallath Paul V.

*Improved SLIQ
*UCI Forest Cover
Dataset

Accuracy improve-
ment to 84%

Drawing conclusion
from Forest Cover
Type data - Hy-
bridised rough set
model(2008)

Ragini Jain,
Sonajhania
Minz

*Hybridised Rough
Set model(RS+DT)
*UCI Forest Cover
Dataset

Results comparable
with published re-
sults for the dataset

An Empirical
Comparison of
Supervised Learning
Algorithms(2006)

Rich Caruana,
Alexandru
Niculescu-
Mizil

*SVM, ANN, lo-
gistic regression,
NB, random forests,
DT, bagged trees,
boosted trees, and
boosted stumps.
*Multiple datasets
*Multiple perfor-
mance metrics

Boosting, Random
Forests, Bagging,
Decision Tree and
SVMs achieve ex-
cellent performance
over others.

Comparison of Clas-
sification Methods
Based on the type
of Attributes and
Sample Size(2009)

Reza Entezari-
Maleki,
Arash Rezaei,
Behrouz
Minaei- Bid-
goli

*DT, KNN, Logistic
Regression, NB,
C4.5, SVM
*Performance met-
ric: Area Under
Curve (AUC)
*Random generated
dataset

DT(C4.5) provided
higher AUC in the
most cases. (Con-
tinuous attributes ¿
Discrete attributes)

Continued on next page

10

Table 2.1 – Continued from previous page

Bagging, Boosting,
and C4.5(2006)

J. R Quinlan *Boosting and Bag-
ging on C4.5
*27 datasets

*Boosting reduced
classification error
by 15% for 21
datasets
*Bagging reduced
classification error
by 10% for 24
datasets

A Brief Introduction
to Boosting(1999)

Robert
E.Schapire

*Boosting and C4.5
*UCI benchmark
datasets

Boosting C4.5 im-
proved performance
significantly

Multi-class Ad-
aBoost(2009)

Ji Zhu, Hui
Zou, Saharon
Rosset, Trevor
Hastie

*Multi Class
Adaboost using
SAMME
*Seven benchmark
datasets

Adaboost can be
extended for Multi
Class classification
problems.

Experiments with a
New Boosting Algo-
rithm(1996)

Yoav Freund,
Robert E.
Schapire

*Comparison of
Bagging and Boost-
ing on C4.5

Boosting and bag-
ging improves per-
formance of C4.5

Pruning Adaptive
Boosting(1997)

Dragos D.
Margineantu,
Thomas G.
Dietterich

*Adaptive Boosting
algorithm AdaBoost
*Pruning the ensem-
ble
*Five different prun-
ing algorithms

Ensemble produced
by AdaBoost radi-
cally pruned in few
datasets and the best
pruning methods
were Kappa Pruning
and Reduce-Error
Pruning

2.2 Outcome Of Literature Survey

The extensive literature survey was done at every stage of the project which led to the following
outcomes. Table 2.1 summarizes the literature survey and the inferences drawn from them.

• The previous works done on this dataset used decision trees, Artificial Neural Networks,
Gaussian discriminant analysis and many other methods. However, the predictive models
developed so far on Forest Cover Type dataset gave highest accuracy of 84%. There is a
need to build a more accurate model.

11

• Many supervised learning methods have been proposed for prediction. A comparative
study of such methods showed that Decision Trees, Bagging and Boosting techniques
work well in general.

• Though the decision trees were known to give good results, literature survey indicated
that Boosting and Bagging on C4.5 would possibly yield better results compared to the
decision tree alone.

• Decision Trees(C4.5) showed the higher AUC value than others when the number of
continuous attributes is higher than discrete ones. And since our dataset contains higher
number of continuous attributes, Decision Tree algorithms can be employed for building
the predictive model.

• Kappa Pruning and Reduce-Error Pruning showed the best results on AdaBoost with
C4.5. Both the techniques reduced the number of classifiers chosen for prediction hence
reducing the memory used to store the classifiers.

2.3 Problem Statement

We propose to predict the forest cover type from strictly cartographic values. We intend to do
so by combining data analysis with decision tree models, further enhanced by boosting and
bagging.

2.4 Objective

In order to achieve our main goal of building a more accurate model, we put forth the following
objectives for the project.

• Build predictive models based on different decision trees like CART, C4.5, C5.0, Random
Forest and draw conclusions on which decision tree works best for our dataset.

• Feature Engineering to generate new features which help in better learning.

• Feature selection to get the best set of features to build the model.

• Test boosting techniques with the selected decision tree as base learner.

• Improve the performance of the boosting technique for the selected decision tree.

12

3 Methodology

3.1 Data Description

Forest cover type dataset contains only cartographic variables (no remotely sensed data). The
actual forest cover type for a given observation (30 X 30 meter cell) was determined from
US Forest Service (USFS) Region 2 Resource Information System (RIS) data. Independent
variables were derived from data originally obtained from US Geological Survey (USGS) and
USFS data. Data is in raw form (not scaled) and contains binary (0 or 1) columns of data for
qualitative independent variables (wilderness areas and soil types).
The dataset for forest cover type prediction includes 54 features. The study area includes four
wilderness areas located in the Roosevelt National Forest of northern Colorado. These areas
represent forests with minimal human-caused disturbances, so that existing forest cover types
are more a result of ecological processes rather than forest management practices. We intend
to predict an integer classification for the forest cover type. The seven types are:

• Spruce/Fir

• Lodgepole Pine

• Ponderosa Pine

• Willow

• Aspen

• Douglas/Fir

• Krummholz

The training set (15120 observations) contains both features and the cover type. The test set
contains only the features. We must predict the cover type for the test set (565892 observations).
The dataset contains continuous, binary and nominal data. Table 3.1 gives the description of
all the attributes in our dataset.

13

Table 3.1: Description of attributes for forest cover dataset

Attribute Name Data Type Measurement Description

Elevation Quantitative Meters Elevation in meters

Aspect Quantitative Azimuth Aspect in degrees az-
imuth

Slope Quantitative Degrees Slope in degrees

Horizontal Distance
To Hydrology

Quantitative Meters Horizontal distance to
nearest surface water
features

Vertical Distance
To Hydrology

Quantitative Meters Vertical distance to
nearest surface water
features

Horizontal Distance
To Roadways

Quantitative Meters Horizontal distance to
nearest roadways

Hillshade 9am Quantitative 0 to 255 index Hillshade index at
9am,summer solstice

Hillshade Noon Quantitative 0 to 255 index Hillshade index at
noon,summer solstice

Hillshade 3pm Quantitative 0 to 255 index Hillshade index at 3pm,
summer solstice

Horizontal Distance
To Fire Points

Quantitative Meters Horizontal distance to
nearest wildfire ignition
points

Wilderness Area(4 bi-
nary columns)

Qualitative 0 (absence) or 1
(presence)

Wilderness area desig-
nation

Soil Type(40 binary
columns)

Qualitative 0 (absence) or 1
(presence)

Soil type designation

Cover Type(7 types) Integer 1 to 7 Forest Cover Type des-
gination

14

Figure 3.1: Flow Diagram

Figure 3.1 shows the flow diagram of the steps followed in classification in data mining.
The first step of involves collecting data for classification. The dataset for this project is avail-
able in UCI machine learning repository. As mentioned earlier, the data is derived from USFS
Region 2 RIS data.

Data analysis and feature engineering involves studying the dataset. Feature engineering
involves understanding the properties of the task the user is trying to solve and how they might
interact with the strengths and limitations of the model the user is going to use. Feature engi-
neering consists of a cycle:

• Design a set of features.

• Run an experiment and analyze the results on a validation dataset.

• Change the feature set.

Feature engineering is followed by feature selection. Feature selection deals with identify-
ing features that are redundant or irrelevant. Basic approaches of feature selection are:

• Filter: use the most promising features according to ranking resulting from a proxy mea-
sure. E.g. from mutual information or correlation coefficient

• Wrapper: search through the space of subsets, train a model for current subset, evaluate
it on a held-out data, and then iterate. Simple greedy heuristics involve forward selection
and backward selection.

15

• Embedded: feature selection is a part of model construction and incorporates the proper-
ties of both filter and wrapper methods.

The classification algorithm chosen for prediction is applied to the dataset. The records of
the dataset are classified to one of the class labels.

3.2 Feature Engineering

3.2.1 Feature Extraction

Feature extraction derives more features from the initial set, which are intended to be more rel-
evant, non-redundant, improving the subsequent learning, in some scenarios leading to better
human interpretations.

When the data input to a model contains redundant features (e.g. length in feet and meters,
or age and date of birth both), then it can be transformed into a reduced set of features. Such
techniques used for transformation are feature extraction techniques. The extracted features
contain more relevant information, hence they can be used for model building instead of the
initial set of features.

The best results are obtained when domain knowledge is used to construct features. But, if
such knowledge is not available, general dimensionality reduction methods might still help.

3.2.2 Feature Selection

Feature selection is a process whereby a subset of relevant features are chosen for model build-
ing. The need for feature selection arises only when the dataset contains many redundant or
irrelevant features. The features which do not any more information than the currently subset
of features are called redundant, whereas features which do not provide any useful information
at all are called irrelevant.

Feature selection should not be confused with feature extraction. Feature extraction tech-
niques generate new features from functions of the original features, whereas feature selection
only selects a subset of the features. Feature selection techniques are highly useful for high-
dimensional data.

3.2.3 Subset selection

Subset selection checks for the suitability of feature subset. Three approaches to subset se-
lection are Wrappers, Filters and Embedded techniques. Wrappers search through all possible
subsets and evaluate each subset by running a model on the subset. Wrapper algorithms are
usually computationally expensive and might as well overfit to the selected model. Filters are

16

different from Wrappers as they evaluate against a simpler filter instead of a model. Embedded
techniques are combination of both.

Subset evaluation uses a scoring metric to grade subset of features[10].
Various search approaches are:

• greedy hill climbing

• Exhaustive

• Best first

• Genetic algorithm

• Greedy forward selection

• Greedy backward elimination

Two popular filter metrics for classification problems are correlation and mutual information.

3.2.4 Optimality criteria

The choice of optimality criteria is difficult since feature selection task has to meet many ob-
jectives. Many common criteria incorporate accuracy related measures, the number of features
selected (e.g. the Bayesian information criterion) etc...

3.3 Decision Trees

A decision tree is a simple model for classifying data objects. Decision tree learning is a
popular technique used for classification. A decision tree is a tree like structure in which each
internal node is represents a test on an attribute. The branches leading from the node represent
the outcome of this condition.

The leaves of the tree are labeled with class names. A tree is constructed by partitioning
the initial data set into subsets based on attribute test at the current node. This process is
repeated on every derived subset recursively and is called recursive partitioning. The recursion
get terminated when the subset at a node has pure parttions, or when partitioning no longer
adds value to the classifications.

A number of decision trees have been proposed in the literature and they mainly differ by
the measure used for attribute selection. In this section, we discuss these trees in the order of
their evolution.

17

3.3.1 ID3

Quinlan et al. [11] suggested information gain of an attribute as a measure for its selection.
The expected information (i.e Entropy) required to classify a sample in dataset D is given by

Info(D) = −
m∑
i=1

pilog2(pi) (1)

where pi is the probability of a sample to belong to class Ci among m classes. After this
partitioning, the information needed to reach exact classification is

InfoA(D) =
v∑

j=1

|Dj|
|D|
× Info(Dj) (2)

where attribute A takes v distinct values, ai, ai+1...av. Information Gain is the difference be-
tween initial information requirement and requirement after the split. That is,

Gain(A) = Info(D)− InfoA(D) (3)

The attribute with highest information gain value is chosen is chosen for splitting. Although
ID3 algorithm gave quite good results, it’s attribute selection criterion has a serious problem,
it has strong bias in favour of tests with many outcomes. Also, ID3 does not provide a way to
handle continuous and missing valued attributes.

3.3.2 CART

The CART methodology developed by Breiman et al.[12] is discussed in this section.

Tree growing procedure Let (X, Y) be an observation in the learning set L, where X is the
set of attributes in the dataset, both continuous and categorical and Y is the response variable
or the class label which takes values in the set C(1, 2. . . .J) with 1 to J being the class labels.

The starting point of the tree growing procedure is the root node which contains the entire
learning set L. The tree is grown by finding the best attribute to split on. The attribute which
is chosen for splitting is the one which has the largest value of gini diversity index over all the
other variables.

Let A1, A2. . . .Ak be the set consisting of observations belonging to the class C(1, 2. . . .k).
For node T , the gini diversity index is calculated as below:

i(T) =
n∑

k 6=k′

p(k/T)p(k′/T) = 1−
∑
k

p(k/T)2 (4)

Where p(k|T) is an estimate of P (XεΠk|Γ) the conditional probability that the observation X
is in Ak given that it belongs to node T .

18

While growing a tree, splitting of attributes starts at the root node. Using the gini diversity
index, the algorithm chooses the attribute which has the highest value as the splitting attribute.
Next is to progress to each of the daughter nodes and find the best split in the same way. The
computation of the gini diversity index is done for each daughter node on the observations that
are specific to the node. This procedure which is carried out in sequence to build a tree layer
by layer is called recursive partitioning.

The misclassification rate and pruning procedure In the initial stages of the tree growing
procedure, the predictive accuracy typically increases as more and more nodes are created and
the partitions get finer. But as the complexity of the tree increases, due to overfitting, the
misclassification rate for future cases will increase. In order to compare the predictive accuracy
of the different tree models, a measure called resubstitution estimate is used. Resubstitution
estimate of the misclassification rate is obtained by using the tree to classify the members of
the learning sample and observing the proportion that are misclassified. The resubstitution
estimate of the misclassification rate R(τ) of an observation at node τ is calculated as follows:

R(τ) = 1−maxkp(k/τ) (5)

Pruning procedure: In the pruning of tree, a specific node for which the corresponding
pruned nodes provide the smallest per node decrease in the resubstitution misclassification rate
is selected. If two or more choices in the pruning process produces the same decrease in the
resubstitution misclassification rate per node, pruning of the part which has larger number of
nodes is preferred.

3.3.3 C4.5

3.3.4 C4.5

Gain Ratio Criterion C4.5 proposed by Quinlan [13] uses an extension of information gain
called gain ratio which overcomes the bias towards multi valued attributes. It normalizes the
information gain by using a “split information“ value defined as

SplitInfoA(D) = −
v∑

j=1

|Dj|
|D|
× log2

|Dj|
|D|

(6)

This value tells the potential information generated by partitioning the training dataset, D,
into V partitions, corresponding to the V outcomes of attribute test on A whereas information
gain measures the information with respect to classification that is acquired based on the same

19

partitioning. The gain ratio is given by

SplitInfoA(D) = −
v∑

j=1

|Dj|
|D|
× log2

|Dj|
|D|

(7)

It gives the part of the information generated by the split which is useful for classification.
The attribute with highest gain ratio is chosen for splitting. However, as the split information
approaches 0, the GainRatio(A) becomes unstable. To avoid this, a constraint can be added
such that the information gain for the attribute selected must be at least equal to the average
gain of all the attributes examined.

Handling continuous and missing values In case of continuous valued attributes, the out-
come of the attribute test can be based on a threshold(called split-point) on A. A possible
split-point could be the average of adjacent values, when arranged in sorted order. Therefore,
given v values of A, then V-1 possible splits are evaluated. If the values of A are sorted in
advance, then determining the best split for A requires only one pass through the values. For
each possible split-point for A, InfoA(D) should be calculated with the number of partitions
being two, i.e. V=2(or j=1,2). The point with minimum InfoA(D) is selected as the split-point
for A. To handle missing values, only the values defined can be considered for evaluating the
gain ratio during tree construction. In using a decision tree for prediction, sample with missing
attribute values can be estimated as the probability of the various possible results.

Pruning Decision Trees Since the decision tree built using the training set, it gives accurate
results for most of tuples in the training set than unseen dataset. In order to get these accurate
results, decision tree built tends to be complex with long and uneven path. Also, the branches
that reflect anomalies in the training data may result in overfitting the data. Pruning of the deci-
sion tree, a solution to overfitting, is achieved by replacing a subtree by a leaf. The replacement
is done when expected error rate in the subtree is greater than in the single leaf.

3.4 Ensemble Learning

Ensemble learning is a machine learning paradigm where multiple learners are trained to solve
the same problem. In contrast to ordinary machine learning approaches which try to learn
one hypothesis from training data, ensemble methods try to construct a set of hypotheses and
combine them to use. In this section, the ensemble technique is discussed with decision trees
as the weak learners.

3.4.1 C5.0

C4.5 algorithm ensured better way of building a decision tree with the use of gain ratio has the
spitting factor but it lacked many non-functional requirements to popularize among the appli-

20

cations. Hence, C5.0 [14] was developed as an improvement over the existing C4.5 algorithm.
Many key aspects found in C5.0 makes it better than C4.5 Algorithm. Below are the list of its
extended features:

• Rules Formation - Building the decision trees and using then for every test set prediction
leads to high wastage of time. In order to overcome this, C5.0 has incorporated a ruleset
formation instead of trees to save significant amount of time and space.

• Winnowing technique - used in C5.0 helps in reduction of memory by using lesser sample
set, which was not available in C4.5.

• Smaller decision trees - C5.0 gets similar results to C4.5 with considerably smaller deci-
sion trees.

• Boosting - Support for boosting allows the creation of multiple decision trees . These
trees formation is improvement over time till no more misclassification. Then based on
the decision from all the classifiers a better prediction is made leading to better accuracy.

• Weighting - C5.0 allows you to vary the importance of different cases by giving different
weights. Minimizing the weighted predictive error rate is the way to handle weighting.

• Misclassification Costs - In C4.5, all errors are treated as equal, but in practical appli-
cations some classification errors are more serious than others. Hence, C5.0 allows a
separate cost to be defined for each predicted versus actual class pair ratio; if this op-
tion is used, C5.0 then constructs classifiers to minimize expected misclassification costs
rather than error rates.

• Data Types - C5.0 has several new data types in addition to those available in C4.5, in-
cluding dates, times, timestamps, ordered discrete attributes, and case labels. In addition
to missing values, C5.0 allows values to be noted as not applicable. Further, C5.0 pro-
vides facilities for defining new attributes as functions of other attributes.

Working of C5.0 Algorithm are explained below[15]:

• Input: Training set T with n attributes i.e,A1, A2, A3.....An and m tuples i.e, t1, t2, t3,tm

• Output: a single decision tree M

• Model Building Algorithm with training set:

* Check for the base case and exit if Base case is true.

* If Base case = true :

21

* Constructing a Decision Tree using training data:-

(a) Find the attribute with the highest gain ratio (A2 is the best, so A2 == Abest)

(b) ABest is assigned with Entropy minimization.

(c) Partition the T into T1, T2, T3, ... according to the value of ABest

* Repeat the steps for T1, T2, T3

Prediction: For each ti tuple belonging to D Test Set, apply the ti to the M model to
predict the required value.

Base cases are the following:

• All the examples from the training set belong to the same class (a tree leaf labeled with
that class is returned).

• The training set is empty (returns a tree leaf called failure).

• The attribute list is empty (returns a leaf labeled with the most frequent class of all the
classes).

Boosting in C5.0 can be explained as follows:

• Input: Training set T with tuples t1, t2, ...tn, Trials R

• Output: Boosted Decision trees M with DT1, DT2,DTr

• Algorithm:

* Every trial r <= R where r is initialized to 1

* Check if there is no improvement in the next DT formed or if the accuracy is lesser
than random prediction then exit or else continue.

* Every tuple ti is initialized to weight wi such that weight is indicative of the sam-
ple’s importance. The higher the weight is, the more the sample influence on the
decision tree.

* A new decision tree DTr is constructed.

* The weight of each sample is adjusted, such that the samples which are misclassified
by the DTr will be given higher weight in the next iteration.

* Repeat the process.

22

3.4.2 Random Forest

Random forests are an ensemble technique for classification, regression and other tasks. It
operates by constructing many decision trees at training time and then finding the mode of the
classes (classification) or mean prediction (regression) to output the final class. It improves the
stability and accuracy of the machine learning algorithms used in classification and regression.
It also reduces variance and helps to avoid overfitting.

The training algorithm for random forests applies the general technique of bagging to tree
learners. Given a training set X = x1, x2, ..., xn with responses Y = y1 through yn, bagging
repeatedly selects a bootstrap sample of the training set and fits trees to these samples:

For b = 1 through B:

1. Sample, with replacement, n training examples from X, Y ; call these Xb, Yb.

2. Train a decision or regression tree fb on Xb, Yb.

After training, predictions for unseen samples can be made by averaging the predictions from
all the individual regression trees on:

f̂ = 1/B

B∑
b=1

f̂b(x
′) (8)

or by taking the majority vote in the case of decision trees.
This bootstrapping procedure leads to a better model performance because it decreases the

variance of the model. This means that the average predictions of many trees is not sensitive
to noise even though the prediction of a single tree is in its training set. B is a free parameter
which corresponds to the number of trees. Typically depending on the size and nature of the
training set, a hundred thousand trees are used. Cross-validation can be used to find the optimal
number of trees, B. After a few trees have been fit, the training and test error comes down.

The above procedure describes the original bagging algorithm for trees. Random forests are
slightly different from this original procedure in terms of the feature bagging property which
selects a random subset of features at each candidate split in the learning process.This is done
because if one or a few features are a very strong predictors for the target output, these features
will be selected in the B trees, causing them to become correlated. Typically, for a dataset with
p features,

√
p features are used in each split.

3.5 Pruning Boosted Classifiers

Adaptive boosting algorithms in combination with C4.5 and C5.0 have shown to be learning
procedures which have high accuracy. The ensemble techniques work by generating set of clas-
sifiers and then having a voting measure to classify the data in the test set. However, one of the
disadvantage of ensemble techniques is that it requires a large amount of memory to store all

23

the classifiers that are generated. Hence, there is a need to reduce the memory consumption.
This can be achieved by selecting a subset of classifiers which would produce a performance
comparable to the performance got when all the boosted classifiers are considered. Several
algorithms like Early Stopping, KL-Divergence Pruning, Kappa Pruning, Reduced error prun-
ing with backfitting can be used to find the subset of classifiers. In the package that we have
developed, Kappa Pruning is used as an algorithm to find the subset of classifiers.

Kappa Pruning: The accuracy of the pruning method depends on constructing a diverse, yet
accuratecollection of classifiers. One of the ways of selecting diverse classifiers is to measure
how much the classification decisions differ. A measure of agreement between the classifiers
called Kappa statistics can be used and is defined as follows.

For a dataset containing m examples, consider two classifiers namely ha and hb, A contin-
gency table called C is constructed in which each cell Cij contains the number of examples for
which ha(x) = i and hb(x) = j where i and j are class labels. If ha and hb are similar, non-
zero values will appear along the diagonal of the table. If ha and hb are different, the non-zero
values would appear elsewhere other than the diagonal. The probability that two classifiers
agree with each other can be defined as,

θ1 =

L∑
i=1

Cii

m
(9)

In cases where one class is more common than the others, all the potential classifiers will
tend to agree with each other, just by chance and those set of classifiers will obtain high value
of θ1. The measure of agreement should be high only for those classifiers which tend to agree
with each other more than just random agreements. To correct this, we define,

θ2 =
L∑
i=1

(
L∑

j=1

Cij

m
.

L∑
j=1

Cij

m
) (10)

Where θ2 is the probability that the two classifiers agree by chance. K statistic is defined as

K =
θ1 − θ2
1− θ1

(11)

K = 0 when the agreement of the two classifiers equals that expected by chance, and K =
1,when the two classifiers agree on every example. Negative values occur when agreement is
weaker than expected by chance, but this rarely happens.

24

4 Work Done

4.1 Data Preprocessing

1. Wilderness Areas According to [16], the Rawah and Comanche Peak areas would tend to
be more typical of the overall dataset than either the Neota or Cache la Poudre, due to their
assortment of tree species and range of predictive variable values (elevation, etc.) Cache la
Poudre would probably be more unique than the others, due to its relatively low elevation
range and species composition.

2. Elevation with Wilderness Area Neota (area 2) probably has the highest mean elevational
value of the 4 wilderness areas. Rawah (area 1) and Comanche Peak (area 3) would have a
lower mean elevational value, while Cache la Poudre (area 4) would have the lowest mean
elevational value.

3. Cover type with wilderness area

As for primary major tree species in these areas, Neota would have spruce/fir (type 1), while
Rawah and Comanche Peak would probably have lodgepole pine (type 2) as their primary
species, followed by spruce/fir and aspen (type 5). Cache la Poudre would tend to have
Ponderosa pine (type 3), Douglas-fir (type 6), and cottonwood/willow (type 4).

4. Preprocessing based on Soil Type

Soil Types are numbered from 1 to 40 and are categorised based on the USFS Ecological
Landtype Units (ELUs) for this study area as follows:

25

Table 4.1: USFS Ecological Landtype Units of soil types

Study
Code

USFS ELU
Code

Description

1 2702 Cathedral family Rock outcrop complex, extremely stony.

2 2703 Vanet - Ratake families complex, very stony.

3 2704 Haploborolis - Rock outcrop complex, rubbly.

4 2705 Ratake family - Rock outcrop complex, rubbly.

5 2706 Vanet family - Rock outcrop complex complex, rubbly.

6 2717 Vanet - Wetmore families - Rock outcrop complex, stony.

7 3501 Gothic family.

8 3502 Supervisor - Limber families complex.

9 4201 Troutville family, very stony.

10 4703 Bullwark - Catamount families - Rock outcrop complex, rubbly.

11 4704 Bullwark - Catamount families - Rock land complex, rubbly.

12 4744 Legault family - Rock land complex, stony.

13 4758 Catamount family - Rock land - Bullwark family complex, rubbly.

14 5101 Pachic Argiborolis - Aquolis complex.

15 5151 unspecified in the USFS Soil and ELU Survey.

16 6101 Cryaquolis - Cryoborolis complex.

17 6102 Gateview family - Cryaquolis complex.

18 6731 Rogert family, very stony.

19 7101 Typic Cryaquolis - Borohemists complex.

20 7102 Typic Cryaquepts - Typic Cryaquolls complex.

21 7103 Typic Cryaquolls - Leighcan family, till substratum complex.

22 7201 Leighcan family, till substratum, extremely bouldery.

23 7202 Leighcan family, till substratum - Typic Cryaquolls complex.

24 7700 Leighcan family, extremely stony.

25 7701 Leighcan family, warm, extremely stony.

26 7702 Granile - Catamount families complex, very stony.

27 7709 Leighcan family, warm - Rock outcrop complex, extremely stony.

28 7710 Leighcan family - Rock outcrop complex, extremely stony.

29 7745 Como - Legault families complex, extremely stony.

30 7746 Como family - Rock land - Legault family complex, extremely stony.

31 7755 Leighcan - Catamount families complex, extremely stony.

32 7756 Catamount family - Rock outcrop - Leighcan family complex, ex-
tremely stony.

33 7757 Leighcan - Catamount families - Rock outcrop complex, extremely
stony.

26

Table 4.2: USFS Ecological Landtype Units of soil types

Study
Code

USFS ELU
Code

Description

34 7790 Cryorthents - Rock land complex, extremely stony.

35 8703 Cryumbrepts - Rock outcrop - Cryaquepts complex.

36 8707 Bross family - Rock land - Cryumbrepts complex, extremely stony.

37 8708 Rock outcrop - Cryumbrepts - Cryorthents complex, extremely stony.

38 8771 Leighcan - Moran families - Cryaquolls complex, extremely stony.

39 8772 Moran family - Cryorthents - Leighcan family complex, extremely
stony.

40 8776 Moran family - Cryorthents - Rock land complex, extremely stony.

The first digit of the ELU code refers to climatic zone:

1. lower montane dry

2. lower montane

3. montane dry

4. montane

5. montane dry and montane

6. montane and subalpine

7. subalpine

8. alpine

The second digit of the ELU code refers to geologic zone:

1. alluvium

2. glacial

3. shale

4. sandstone

5. mixed sedimentary

6. unspecified in the USFS ELU Survey

7. igneous and metamorphic

8. volcanic

The third and fourth ELU digits are unique to the mapping unit and have no special meaning
to the climatic or geologic zones.

27

The above categorical attribute Soil Type takes large number of distinct values, with no or-
dering among the values. We tried to group these values based on the ELU code for all
values of cover types. This generated a concept hierarchy for categorical attribute soil type.
Making use of the ELU values, we could generate 11 soil types.

The categorical attributes called climatic and geologic were created based on the first and
second digits of the ELU code.

4.2 Feature Engineering

After a thorough data analysis and understanding the relationship between the features, new
features were engineered from the existing ones. This section gives a detailed description of
the feature engineering done on the data set[17]

1. C50 with categorical columns for soil type and wilderness area

The dataset contained 44 binary columns for 40 soil types and 4 wilderness areas. This
representation was changed to a Soil Type attribute which included all distinct 40 soil type
values and Wilderness Area attribute which included all 4 distinct cover types.

2. Conversion of Aspect from Azimuth to 180 degrees. The aspect is in degree azimuthal (360
degrees) and can be shifted to 180 degrees. A new feature called Aspect2 is generated. The
python code to carry out this step is as below.

def r(x):
if x+180>360:
return x-180
else:
return x+180

train[’Aspect2’] = train.Aspect.map(r)
test[’Aspect2’] = test.Aspect.map(r)

3. Relationship between Vertical Distance to Hydrology and Elevation

Elevation and Vertical Distance To Hydrology are correlated to each other. A graph of Ver-
tical Distance To Hydrology versus Elevation was plotted using the code below.

import numpy as np from IPython.display import Image

28

def plotc(c1,c2):
fig = plt.figure(figsize=(16,8))
sel = np.array(list(train.Cover Type.values))
plt.scatter(c1, c2, c=sel, s=100)
plt.xlabel(c1.name)
plt.ylabel(c2.name)
plotc(train.Elevation, train.Vertical Distance To Hydrology)

Figure 4.1: Graph of Vertical Distance To Hydrology versus Elevation

In the above graph, coloring each cover type in different colors, seem to reveal a pattern of
the plotted points. Hence, we create a new feature called VDTH which gives a simpler re-
lation. Here, VdTH is given by subtracting Vertical Distance To Hydrology from Elevation.

The python code to do this is as below.

train[’EVDtH’] = train.Elevation-train.Vertical Distance To Hydrology
test[’EVDtH’] = test.Elevation-test.Vertical Distance To Hydrology

4. Relationship between Elevation and Horizontal Distace to Hydrology

29

Figure 4.2: Graph of Horizontal Distace to Hydrology versus Elevation

From the above graph, it has been observed that Elevation and Horizontal Distance to Hydrology
have a relationship between them, defined as a new attribute called EHDtH.

Where, EHDtH = Elevation - Horizontal Distace to Hydrology*0.2

The python code to do this is as below.
train[’EHDtH’] = train.Elevation-train.Horizontal Distance To Hydrology*0.2
test[’EHDtH’] = test.Elevation-test.Horizontal Distance To Hydrology*0.2

5. Negative values of Vertical Distance To Hydrology

Figure 4.3: Plot of Vertical Distance To Hydrology

Looking at the distribution of Vertical Distance To Hydrology, we found that it has some
negative values. We created another variable called ‘Highwater’, which indicates whether

30

this attribute has a positive or a negative value.

The python code to create the new feature Highwater is as below:
train[’Highwater’] = train.Vertical Distance To Hydrology ¡ 0
test[’Highwater’] = test.Vertical Distance To Hydrology ¡ 0

6. Missing values of Hillshade 3pm

Figure 4.4: Graph of Hillshade 3pm versus Hillshade Noon

When Hillshade 3pm was plotted against Hillshade Noon, it was found to have some miss-
ing values as shown in the above graph. The missing values were filled with the mean of the
values of Hillshade 3pm.

7. Other new features

A few features that were found to be important was given as input in building the predictive
model by increasing the feature space of these attributes. The new features were created as
follows.

train[’Distanse to Hydrolody’] = (train[’Horizontal Distance To Hydrology’] ** 2 +
train[’Vertical Distance To Hydrology’] ** 2) ** 0.5
test[’Distanse to Hydrolody’] = (test[’Horizontal Distance To Hydrology’] ** 2 +
test[’Vertical Distance To Hydrology’] ** 2) ** 0.5

train[’Hydro Fire 1’] = train[’Horizontal Distance To Hydrology’] +
train[’Horizontal Distance To Fire Points’]
test[’Hydro Fire 1’] = test[’Horizontal Distance To Hydrology’] +
test[’Horizontal Distance To Fire Points’]

31

train[’Hydro Fire 2’] = abs(train[’Horizontal Distance To Hydrology’] -
train[’Horizontal Distance To Fire Points’])
test[’Hydro Fire 2’] = abs(test[’Horizontal Distance To Hydrology’] -
test[’Horizontal Distance To Fire Points’])

train[’Hydro Road 1’] = abs(train[’Horizontal Distance To Hydrology’] +
train[’Horizontal Distance To Roadways’])
test[’Hydro Road 1’] = abs(test[’Horizontal Distance To Hydrology’] +
test[’Horizontal Distance To Roadways’])

train[’Hydro Road 2’] = abs(train[’Horizontal Distance To Hydrology’] -
train[’Horizontal Distance To Roadways’])
test[’Hydro Road 2’] = abs(test[’Horizontal Distance To Hydrology’] -
test[’Horizontal Distance To Roadways’])

train[’Fire Road 1’] = abs(train[’Horizontal Distance To Fire Points’] +
train[’Horizontal Distance To Roadways’])
test[’Fire Road 1’] = abs(test[’Horizontal Distance To Fire Points’] +
test[’Horizontal Distance To Roadways’])

train[’Fire Road 2’] = abs(train[’Horizontal Distance To Fire Points’] -
train[’Horizontal Distance To Roadways’])
test[’Fire Road 2’] = abs(test[’Horizontal Distance To Fire Points’] -
test[’Horizontal Distance To Roadways’])

8. Missing Soil Type

Soil Type 7 and Soil Type 15 have their value to be 0 in all the tuples of the training set.
Hence, we removed the tuples which had Soil Type 7 and Soil Type 15 value to be 1 in the
test set.

4.3 Feature selection

Feature selection aims to choose a small subset of the relevant features from the original ones
according to certain relevance evaluation criterion, which usually leads to better learning perfor-
mance (e.g., higher learning accuracy for classification), lower computational cost, and better
model interpretability[18]

32

Gain Ratio is a measure of information that is provided by an attribute. Decision tree uses Gain
Ratio as attribute selection measure for tree construction. Hence, the most relevant attributes
are taken for tree construction. This eliminates the need for using any other feature selection
technique.
Also, upon plotting graphs we observed that the attributes are independent of each other.

Figure 4.5: Graph of Aspect versus Slope

Figure 4.6: Horizontal Distance To Roadways vs Horizontal Distance To Fire Points

From Figure 4.5 and 4.6, the pair of attributes Aspect, Slope and Horizontal Distance To Hydrology,
Horizontal Distance To Fire Points are found to be independent of each other and hence are
included in the dataset.

4.4 Pruning Boosted Classifier(MC5.0)

The ‘C50’ package in R builds C5.0 decision trees and rule-based models for classification.
The model can take the form of a full decision tree or a collection of rules or boosted versions

33

of either. The framework of ‘C50’ package with highlighted boosting section is as shown in
Figure4.7:

Figure 4.7: C5.0 Package Framework

In the model building stage, C50 takes a parameter trials(T) to specify the number of boost-
ing iterations. A value of one indicates that a single model is used. Hence, T number of boosted
decision trees make up the ensemble used for predicting classes.

The kappa pruning algorithm has been implemented as follows. Kappa K on the training
set, for every pair of classifiers produced by adaboost. Once all kappas are caluculated, choose
pairs of classifiers starting with the pair that has the lowest K and considering them in increasing
order of K until M classifiers are obtained.

The source code of C50 package in R was modified to prune the boosted classifiers. Kappa
pruning algorithm was applied on T boosted classifiers to obtain M pruned boosted classifiers
(M <= T). The modified framework of the C50 model is shown as in Figure4.8:

Figure 4.8: MC5.0 Package Framework

34

5 Results and Analysis

This section shall give a detailed description and analysis of the results obtained from the work
done from the various experiments conducted as stated in the work done.

5.1 Decision Trees

The decision trees was selected has the classifier for our forest cover type prediction from the
literature survey. Experimental study for the selection of the right decision tree was conducted
using the existing packages in R.

Table 5.1 summarizes the comparison of decision trees under the selected metrics. The
classification metrics taken in to consideration include:

• Accuracy: Gives a measure of the number of the samples are correctly predicted.

• Tree size: Indicates the number of nodes that appear in the constructed decision tree.

• AUC: Area under Curve for Receiver Operating Characteristic

Table 5.1: Performance Evaluation

Performance
Metrics/Decision
trees

C4.5 C5.0 CART Random Forest

Accuracy in % 80.78 91.11 79.45 83.58

Size of the
Tree(nodes)

2111 772 951 NA*

AUC 0.92 0.88 0.94 0.97

NA* refers to the condition that Random Forest follows multiple iteration with k random
attributes each time to create decision tree. So, the nodes at every iteration is less when com-
pared to other trees but has a overhead of multiple decision tree creation.

Among the decision trees, C5.0 was found to give higher accuracy. The reason for im-
proved accuracy with C5.0 is because of boosting the predictive model. Boosting algorithm
sets weight for each sample, which presents its importance. This varies iteration, based on the
error rate of previous iteration, due to which the prediction ability is improved.

The size of the tree is found to be very high in C4.5 and the least in case of C5.0. As al-
ready mentioned the important additions to C5.0 were the in-built pruning that helps to reduce

35

the tree size and memory usage. This becomes very productive for the simple applications to
use the C5.0 classifier.

Based on all the measures mentioned above, important point is to note that techniques like
pruning, boosting and bagging improve tree performance and reduce the memory requirements
for building the model.

5.2 Feature engineering

As stated in the previous sections, our model needed pre-processing and feature extraction. Ta-
ble 5.2 gives the modifications made to the features and the improvements to the model when
compared to the base case.

Base case: Accuracy of the Model when tested on Test set with no changes made to the
Data set. This case gave an accuracy of 68.44%

36

Table 5.2: Data Pre-Processing and Feature Extraction

Expt
No.

Feature Descrip-
tion

Feature Modifica-
tions

Reason Results

1 Missing Soil
Types7 and Soil
Types15 in the
training set

Removal of s7 and
s15 from test set
(There were 105
samples with soil
type s7).

The relevance
of these features
seemed to be very
low according to
the attribute usage
obtained from C50
tree built from test
set.

Improved to
69.13%

2 Soil Type (Quali-
tative) with 40 bi-
nary columns

Generalization of
Soil Type to 11
Columns

Generalization is
based on the ELU
codes of soil types

Decreased to
67.32%

3 Soil Type (Quali-
tative) with 40 bi-
nary columns

Generalization
based on geologic
and climatic zones

Generalization is
based on the ELU
codes of soil types

Decreased
further to
66.95%

4 Wilderness Area
(Qualitative) with
4 binary columns

Generalization to
one categorical
feature

To lower this
features used
due to its lower
relevance.

Improvement
to 68.89%

5 Missing values in
Hillshade 3pm

Replaced those
values with the
mean of all Hill-
shade 3pm

To remove the out-
liers

Improvement
to 69.17%

6 Soil type (Qualita-
tive) with 40 bi-
nary columns

Generalized to one
categorical feature

To lower the fea-
tures used due to
its lower relevance

Improved to
69.13%

The experiments performed above showed only very slight improvements over the primary
data-set. Based on the accuracy changes, the features were selected for the new dataset.

The detailed data analysis with decision trees has showed the need for enhancing the feature
space with more relevant features. So, the further experimentations were performed in building
new features from the given feature set. Table 5.3 shows the lists of new features obtained from
the feature engineering:

37

Table 5.3: Description of the new additional features for Forest Cover Dataset

Attribute Name Data type Description

Wilderness Area Qualitative Wilderness area designation

Soil type Qualitative Soil type designation

Aspect2 Qualitative Aspect in degrees azimuth

Highwater Qualitative Indicative for positive or
negative values to Verti-
cal Distance To Hydrology

EVDtH Qualitative Elevation - Verti-
cal Distance To Hydrology

EHDtH Qualitative Elevation -
Horizontal Distance To Hydrology*0.2

Distance To Hydrology Qualitative (Horizontal Distance To Hydrology2

+ Vertical Distance
To Hydrology2)1/2

Hydro Fire 1 Qualitative Horizontal Distance To Hydrology +
Horizontal Distance To Fire Points

Hydro Fire 2 Qualitative Horizontal Distance To Hydrology -
Horizontal Distance To Fire Points

Hydro Road 1 Qualitative Horizontal Distance To Hydrology +
Horizontal Distance To Roadways

Hydro Road 2 Qualitative Horizontal Distance To Hydrology -
Horizontal Distance To Roadways

Fire Road 1 Qualitative Horizontal Distance To Fire Points +
Horizontal Distance To Roadways

Fire Road 2 Qualitative Horizontal Distance To Fire Points-
Horizontal Distance To Roadways

The new feature set when tested on the C5.0 decision tree with no boosting gave an im-
provement in accuracy to 69.22%.

5.3 Feature selection

Feature Selection is a technique to select the best subset of features from the given set in order
to maximize the accuracy. The decision trees are known to have the build in feature selection
based on the splitting parameter. These are in fact known as embedded feature selectors.

38

In order to prove the non-requirement of the feature selection, a correlation based attribute
selection was performed. Correlation based attribute selection evaluates the worth of a subset
of attributes by considering the individual predictive ability of each feature along with the de-
gree of redundancy between them. Subsets of features that are highly correlated with the class
while having low inter-correlation are preferred.

Table 5.4: Comparison of Decision trees with feature Selection

Classification Technique No. of. Features Accuracy

Random Forest 54 81.5%

Random Forest 27 82.552%

Random Forest 13 81.65%

The results of the test conducted with the original data-set with cross-validation can be seen
in Table 5.4. The results clearly stated that there can only be memory reduction with the feature
selection and no more accuracy improvement when used along with a decision tree classifier.

5.4 Pruning

Pruning is a way of reducing the size of the decision tree. This will reduce the accuracy on
the training data, but (in general) increase the accuracy on unseen data. It is used to mitigate
over fitting, where you would achieve perfect accuracy on training data, but the model (i.e. the
decision tree) you learn is so specific that it doesn’t apply to anything but that training data.
In our case, varying the confidence parameter from 0.25 to 0.15 for the C5.0 Decision tree is
found to improve the accuracy to 69.25%

5.5 Ensemble Learning

The new features obtained from the previous steps were found to contain the most relevant at-
tributes. But the improvement was only by 1%. Ensemble learning is the technique to enhance
the learning of weak base learners. In this direction, the Random forest and C5.0 was used
for further testing. Random forest gave an improvement in accuracy to 77.24% (81.54648%
in Scikit) which was found to be better than simple decision tree. While C5.0 with boosting
parameter set to 10 gave an improved accuracy to 76.02%.

The above boosting and bagging based ensemble techniques showed to increase the predic-
tion rate. The detailed study of these techniques in R may help in improving the over-all model

39

for better prediction.

5.6 MC5.0

The Modified C5.0 (MC5.0) was tested on ten data sets. All these data sets were taken from the
UCI Repository. The AdaBoost of MC5.0 was run on each data set to generate 100 classifiers.
Then the Kappa pruning technique was evaluated by generating a set of 20, 40, 60, 80 and
100 classifiers. This corresponds to 80%, 60%, 40%, 20% and 0% pruning. The MC5.0 was
also run on each data set in the figures and the resulting performance was plotted which was
evaluated by 10-fold cross-validation. The plot corresponds to 100% pruning.
In the plotted overall performance figures, the Gain is defined as the difference in percentage
points between the performance of full boosted MC5.0 and the performance of MC5.0 alone.
The Gain was always positive for all of our ten domains. The relative performance of the
method is defined as the difference between its performance and MC5.0 divided by the Gain.
Hence, a relative performance of 1.0 indicates that the alternative method obtains the same gain
as AdaBoost. A relative performance of 0.0 indicates that the alternative method obtains the
same performance as MC5.0 alone.

Figure 5.1: Relative performance of MC5.0 with various amounts of pruning

FigureB.2 shows the performance of Kappa Pruning on ten data sets. Pruning improves
performance over AdaBoost for Chess, Adult, Car, Letter, Wine and Forest-Cover. The only
data sets that show very bad behaviour are Adult and Breast-Cancer , which appears to be very
unstable. Hence, in many cases, significant pruning does not hurt performance very much.

40

6 Conclusions and Future Work

The purpose of this project is to use the decision tree classification algorithms for predicting
the forest cover type. The forest cover data of the Roosevelt National Forest of northern Col-
orado was used to evaluate the performance of various Decision Tree algorithms. Among the
decision trees, C5.0 was found to give higher accuracy. Various feature engineering techniques
performed on the dataset showed improvement over the primary data-set. The new feature
set when tested with C5.0 decision tree with no boosting gave an improvement in accuracy to
69.22%. Random forest and C5.0 gave an improvement in accuracy to 77.24% and 76.02%
respectively. These show that ensemble techniques can enhance the performance of decision
trees considerably.
The ensemble learning approach constructs a composite hypothesis by rating individual hypoth-
esis. The memory required to store these hypothesis is high and can be reduced by selecting a
set of hypothesis which gives nearly the same performance.The selection of the hypothesis was
implemented in the package using kappa pruning.

There are many more pruning techniques available for boosted classifiers, which seem to
work under different conditions. So, an experimentation with other pruning techniques like
back-fitting along with kappa pruning can be performed.

41

7 Project Plan

Figure 7.1: Gantt Chart

42

References

[1] J. A. Blackard and D. J. Dean, “Comparative accuracies of artificial neural networks and
discriminant analysis in predicting forest cover types from cartographic variables,” Com-

puters and electronics in agriculture, vol. 24, no. 3, pp. 131–151, 1999.

[2] B. Chandra and V. Pallath Paul, “Prediction of forest cover using decision trees,” J. Ind.

Soc. Agril. Statist, vol. 61, no. 2, pp. 192–198, 2007.

[3] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of supervised learning
algorithms,” in Proceedings of the 23rd international conference on Machine learning,
pp. 161–168, ACM, 2006.

[4] R. Entezari-Maleki, A. Rezaei, and B. Minaei-Bidgoli, “Comparison of classification
methods based on the type of attributes and sample size,” Journal of Convergence In-

formation Technology, vol. 4, no. 3, 2009.

[5] J. R. Quinlan, “Bagging, boosting, and c4. 5,” in AAAI/IAAI, Vol. 1, pp. 725–730, 1996.

[6] R. E. Schapire, “A brief introduction to boosting,” in Ijcai, vol. 99, pp. 1401–1406, 1999.

[7] J. Zhu, H. Zou, S. Rosset, and T. Hastie, “Multi-class adaboost,” Statistics and Its, 2009.

[8] Y. Freund, R. E. Schapire, et al., “Experiments with a new boosting algorithm,” in ICML,
vol. 96, pp. 148–156, 1996.

[9] D. D. Margineantu and T. G. Dietterich, “Pruning adaptive boosting,” in ICML, vol. 97,
pp. 211–218, Citeseer, 1997.

[10] J. Tang, S. Alelyani, and H. Liu, “Feature selection for classification: A review,” Data

Classification: Algorithms and Applications. Editor: Charu Aggarwal, CRC Press In

Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, 2014.

[11] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1, pp. 81–106,
1986.

[12] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and regression

trees. CRC press, 1984.

[13] J. R. Quinlan, C4. 5: programs for machine learning, vol. 1. Morgan kaufmann, 1993.

[14] S.-l. Pang and J.-z. Gong, “C5.0 Classification Algorithm and Application on Individual
Credit Evaluation of Banks,” Systems Engineering - Theory & Practice, vol. 29, pp. 94–
104, Dec. 2009.

43

[15] A. S. Galathiya, A. P. Ganatra, and C. K. Bhensdadia, “Improved Decision Tree Induction
Algorithm with Feature Selection , Cross Validation , Model Complexity and Reduced
Error Pruning,” vol. 3, no. 2, pp. 3427–3431, 2012.

[16] UCI, “Uci data,” 15-01-2015.

[17] Kaggle.com, “Description - forest cover type prediction forums — kaggle,” 13-02-2015.

[18] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” The Journal

of Machine Learning Research, vol. 3, pp. 1157–1182, 2003.

44

A Appendix I

1. Feature Engineering:

def p l o t c (c1 , c2) :

f i g = p l t . f i g u r e (f i g s i z e = (1 6 , 8))
s e l = np . a r r a y (l i s t (t r a i n . Cover Type . v a l u e s))

p l t . s c a t t e r (c1 , c2 , c= s e l , s =100)
p l t . x l a b e l (c1 . name)
p l t . y l a b e l (c2 . name)

p l o t c (t r a i n . E l e v a t i o n , 0 . 2 ∗ t r a i n .
H o r i z o n t a l D i s t a n c e T o H y d r o l o g y)

p l t . show ()

def r (x) :
i f x+180>360:

re turn x−180
e l s e :

re turn x+180

t r a i n [’ Aspec t2 ’] = t r a i n . Aspec t . map (r)
t e s t [’ Aspec t2 ’] = t e s t . Aspec t . map (r)

t r a i n [’ Highwate r ’] = t r a i n . V e r t i c a l D i s t a n c e T o H y d r o l o g y
< 0

t e s t [’ Highwate r ’] = t e s t . V e r t i c a l D i s t a n c e T o H y d r o l o g y <

0

t r a i n [’EVDtH ’] = t r a i n . E l e v a t i o n− t r a i n .
V e r t i c a l D i s t a n c e T o H y d r o l o g y

t e s t [’EVDtH ’] = t e s t . E l e v a t i o n− t e s t .
V e r t i c a l D i s t a n c e T o H y d r o l o g y

t r a i n [’EHDtH ’] = t r a i n . E l e v a t i o n− t r a i n .
H o r i z o n t a l D i s t a n c e T o H y d r o l o g y ∗0 . 2

45

t e s t [’EHDtH ’] = t e s t . E l e v a t i o n− t e s t .
H o r i z o n t a l D i s t a n c e T o H y d r o l o g y ∗0 . 2

t r a i n [’ D i s t a n s e t o H y d r o l o d y ’] = (t r a i n [’
H o r i z o n t a l D i s t a n c e T o H y d r o l o g y ’]∗∗2+ t r a i n [’
V e r t i c a l D i s t a n c e T o H y d r o l o g y ’]∗∗2) ∗∗0 .5

t e s t [’ D i s t a n s e t o H y d r o l o d y ’] = (t e s t [’
H o r i z o n t a l D i s t a n c e T o H y d r o l o g y ’]∗∗2+ t e s t [’
V e r t i c a l D i s t a n c e T o H y d r o l o g y ’]∗∗2) ∗∗0 .5

t r a i n [’ H y d r o F i r e 1 ’]= t r a i n [’
H o r i z o n t a l D i s t a n c e T o H y d r o l o g y ’]+ t r a i n [’
H o r i z o n t a l D i s t a n c e T o F i r e P o i n t s ’]

t e s t [’ H y d r o F i r e 1 ’]= t e s t [’
H o r i z o n t a l D i s t a n c e T o H y d r o l o g y ’]+ t e s t [’
H o r i z o n t a l D i s t a n c e T o F i r e P o i n t s ’]

t r a i n [’ H y d r o F i r e 2 ’]= abs (t r a i n [’
H o r i z o n t a l D i s t a n c e T o H y d r o l o g y ’]− t r a i n [’
H o r i z o n t a l D i s t a n c e T o F i r e P o i n t s ’])

t e s t [’ H y d r o F i r e 2 ’]= abs (t e s t [’
H o r i z o n t a l D i s t a n c e T o H y d r o l o g y ’]− t e s t [’
H o r i z o n t a l D i s t a n c e T o F i r e P o i n t s ’])

t r a i n [’ Hydro Road 1 ’]= abs (t r a i n [’
H o r i z o n t a l D i s t a n c e T o H y d r o l o g y ’]+ t r a i n [’
H o r i z o n t a l D i s t a n c e T o R o a d w a y s ’])

t e s t [’ Hydro Road 1 ’]= abs (t e s t [’
H o r i z o n t a l D i s t a n c e T o H y d r o l o g y ’]+ t e s t [’
H o r i z o n t a l D i s t a n c e T o R o a d w a y s ’])

t r a i n [’ Hydro Road 2 ’]= abs (t r a i n [’
H o r i z o n t a l D i s t a n c e T o H y d r o l o g y ’]− t r a i n [’
H o r i z o n t a l D i s t a n c e T o R o a d w a y s ’])

t e s t [’ Hydro Road 2 ’]= abs (t e s t [’
H o r i z o n t a l D i s t a n c e T o H y d r o l o g y ’]− t e s t [’
H o r i z o n t a l D i s t a n c e T o R o a d w a y s ’])

46

t r a i n [’ F i r e R o a d 1 ’]= abs (t r a i n [’
H o r i z o n t a l D i s t a n c e T o F i r e P o i n t s ’]+ t r a i n [’
H o r i z o n t a l D i s t a n c e T o R o a d w a y s ’])

t e s t [’ F i r e R o a d 1 ’]= abs (t e s t [’
H o r i z o n t a l D i s t a n c e T o F i r e P o i n t s ’]+ t e s t [’
H o r i z o n t a l D i s t a n c e T o R o a d w a y s ’])

t r a i n [’ F i r e R o a d 2 ’]= abs (t r a i n [’
H o r i z o n t a l D i s t a n c e T o F i r e P o i n t s ’]− t r a i n [’
H o r i z o n t a l D i s t a n c e T o R o a d w a y s ’])

t e s t [’ F i r e R o a d 2 ’]= abs (t e s t [’
H o r i z o n t a l D i s t a n c e T o F i r e P o i n t s ’]− t e s t [’
H o r i z o n t a l D i s t a n c e T o R o a d w a y s ’])

f e a t u r e c o l s = [c o l f o r c o l in t r a i n . columns i f c o l not in
[’ Cover Type ’ , ’ Id ’]]

X t r a i n = t r a i n [f e a t u r e c o l s]
X t e s t = t e s t [f e a t u r e c o l s]
y = t r a i n [’ Cover Type ’]
t e s t i d s = t e s t [’ Id ’]

2. Python code for Random Forest :

f o r e s t = ensemble . E x t r a T r e e s C l a s s i f i e r (n e s t i m a t o r s =400 ,
c r i t e r i o n = ’ g i n i ’ , max depth =None ,

m i n s a m p l e s s p l i t =2 , m i n s a m p l e s l e a f =1 , m a x f e a t u r e s =
’ a u t o ’ ,

b o o t s t r a p = F a l s e , o o b s c o r e = F a l s e , n j o b s =−1,
r a n d o m s t a t e =None , v e r b o s e =0 ,

m i n d e n s i t y =None)

f o r e s t . f i t (X t r a i n , y)

w i th open (’ f e a t u r e s e n g i n e e r i n g b e n c h m a r k . csv ’ , ”wb”) as
o u t f i l e :

o u t f i l e . w r i t e (” Id , Cover Type \n ”)
f o r e , v a l in enumerate (l i s t (f o r e s t . p r e d i c t (X t e s t))) :

o u t f i l e . w r i t e (”%s ,% s \n ”%(t e s t i d s [e] , v a l))

47

p r i n t pd . DataFrame (f o r e s t . f e a t u r e i m p o r t a n c e s , i n d e x =
X t r a i n . columns) . s o r t ([0] , a s c e n d i n g = F a l s e) [: 1 0]

3. R code for C5.0 and Random Forest :

l i b r a r y (C50)
l i b r a r y (c a r e t)
t r a i n = read . csv (” t r a i n sw c a t e g o r i c a l . c sv ”)
t e s t = read . csv (” t e s t sw c a t e g o r i c a l . c sv ”)

t r a i n $ W i l d e r n e s s Area1 = as . f a c t o r (t r a i n $ W i l d e r n e s s Area1)
W i l d e r n e s s area − nomina l

t r a i n $ S o i l Type1 = as . f a c t o r (t r a i n $ S o i l Type1) # S o i l t y p e

− nomina l

t r a i n $ Highwate r = as . f a c t o r (t r a i n $ Highwate r)

t e s t $ W i l d e r n e s s Area1 = as . f a c t o r (t e s t $ W i l d e r n e s s Area1)
t e s t $ S o i l Type1 = as . f a c t o r (t e s t $ S o i l Type1)
t e s t $ Highwate r = as . f a c t o r (t e s t $ Highwate r)

c 5 t r e e = C5 . 0 (t r a i n [, 2 : 2 3] , f a c t o r (t r a i n $ Cover Type) , t r i a l s
= 1 , c o n t r o l = C5 . 0 C o n t r o l (CF = 0 . 1 5 , winnow = TRUE)) #

sw c a t e g o r i c a l

p r e d i c t e d = p r e d i c t (c 5 t r e e , t e s t [, 2 : 2 3])

c o n f u s i o n M a t r i x (f a c t o r (t e s t $ Cover Type) , p r e d i c t e d)

B Appendix II

MC5.0 Package

1. Requirements:
There are two main prerequisites for building or modifying R packages:

• GNU software development tools including a C/C++ compiler; and

• LaTeX for building R manuals.

2. Adding Package:
To enable RStudio’s package development tools for an existing package, create a new
RStudio Project associated with the package’s (existing) directory.

48

Figure B.1: Creating Package

3. Building Package:
The Build pane includes a number of tools for building and testing packages. When
modifying or developing a package in RStudio, Build and Reload command can be used
to re-build the package and reload.

Figure B.2: Buiding and Reloading Package

The Build and Reload command performs several steps in sequence to ensure a clean and
correct result:

49

• Unloads any existing version of the package (including shared libraries if neces-
sary).

• Builds and installs the package using R CMD INSTALL.

• Restarts the underlying R session to ensure a clean environment for re-loading the
package.

• Reloads the package in the new R session by executing the library function.

4. Kappa Functions added to construct.c in C5.0:

i n t k a p p a n o t e x i s t s (i n t kappada ta , i n t m)
{

i n t i ;
ForEach (i , 0 ,m−1)
{

i f (p runed c l a s s i f i e r no [i]== k a p p a d a t a) {
re turn 0 ;

}
}
re turn 1 ;

}
f l o a t FindKappa (i n t ha , i n t hb)
{

i n t tupleNo , ClassNo , i , j ;
i n t C[MaxClass + 1] [MaxClass + 1] ;
f l o a t k , SigmaOne , SigmaTwo , ThetaTwo = 0 . 0 , ThetaOne

= 0 . 0 ;
ForEach (i , 1 , MaxClass)

ForEach (j , 1 , MaxClass)
C[i] [j] = 0 ;

ForEach (tupleNo , 0 , MaxCase)
{

i = (RULES ? R u l e C l a s s i f y (Case [tup l eNo] ,
R u l e S e t [ha]) :

T r e e C l a s s i f y (Case [tup l eNo] ,
Pruned [ha])) ;

j = (RULES ? R u l e C l a s s i f y (Case [tup l eNo] ,
R u l e S e t [hb]) :

50

T r e e C l a s s i f y (Case [tup l eNo] ,
Pruned [hb])) ;

C[i] [j] + = 1 ;
}

ForEach (ClassNo , 0 , MaxClass−1)
{

ThetaOne+=C[ClassNo] [ClassNo] ;
}

ThetaOne / =MaxCase ;

ForEach (i , 0 , MaxClass−1)
{

SigmaOne = 0 . 0 ;
SigmaTwo = 0 . 0 ;

ForEach (j , 0 , MaxClass−1)
{

SigmaOne +=((f l o a t)C[i] [j] / (MaxCase
+1)) ;

SigmaTwo +=((f l o a t)C[j] [i] / (MaxCase
+1)) ;

}
ThetaTwo +=(SigmaOne∗SigmaTwo) ;

}

k = (ThetaOne − ThetaTwo) / (1−ThetaTwo) ;
re turn k ;

}

f l o a t Prune B o o s t C l a s s i f i e r s ()
{

s t r u c t KappaData{
f l o a t kappa ;
i n t ha ;
i n t hb ;
} ;

51

s t r u c t KappaData∗ Kdata ;
i n t Maxkappa = TRIALS∗ (TRIALS−1) / 2 ;
p runed c l a s s i f i e r no = (i n t ∗) ma l l oc (Maxkappa∗

s i z e o f (i n t)) ;
Kdata = (s t r u c t KappaData∗) ma l l oc (Maxkappa∗ s i z e o f (

s t r u c t KappaData)) ;
f l o a t temp ; i n t count = 0 ;
i n t temp1 , t r i a l 1 , t r i a l 2 , k =0;
ForEach (t r i a l 1 , 0 , TRIALS−1)
{

ForEach (t r i a l 2 , t r i a l 1 +1 ,TRIALS−1)
{ count ++;

Kdata [k] . kappa = FindKappa (t r i a l 1 ,
t r i a l 2) ;

Kdata [k] . ha = t r i a l 1 ;
Kdata [k] . hb = t r i a l 2 ;
k ++;

}
}

f o r (i n t i =0 ; i<Maxkappa ; i ++)
{

f o r (i n t j = i +1 ; j<Maxkappa ; j ++)
{

i f (Kdata [i] . kappa>Kdata [j] . kappa)
{

temp=Kdata [i] . kappa ;
Kdata [i] . kappa=Kdata [j] .

kappa ;
Kdata [j] . kappa=temp ;
temp1=Kdata [i] . ha ;
Kdata [i] . ha=Kdata [j] . ha ;
Kdata [j] . ha=temp1 ;
temp1=Kdata [i] . hb ;
Kdata [i] . hb=Kdata [j] . hb ;
Kdata [j] . hb=temp1 ;

}
}

}

52

f o r (i n t maxkappa =0 ,m=0;m<M; maxkappa ++)
{

i f (k a p p a n o t e x i s t s (Kdata [maxkappa] . ha ,m))
p runed c l a s s i f i e r no [m++] = Kdata [

maxkappa] . ha ;

i f (k a p p a n o t e x i s t s (Kdata [maxkappa] . hb ,m))
p runed c l a s s i f i e r no [m++] = Kdata [

maxkappa] . hb ;
}

}

5. Adding a new parameter to the package:
A parameter called ’prunem’ which is specified by the user is used in the function call.
’prunem’ should always be less than or equal to ’TRAILS’. The prediction is done using
the pruned boosted classifiers, which are ’prunem’ in number.

6. Distributing R Package:
R packages can be distributed in a variety of ways:

• Source packages (requires that users build the project from source on their worksta-
tion)

• Binary packages (can be installed as-is but require building binaries for both Mac
and Windows)

• Contributing packages to CRAN

• Publishing on R-Forge or GitHub

53

01/05/2015 Turnitin Originality Report

https://turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=3&oid=536208273&sid=0&n=0&m=0&svr=02&r=3.0016742646694183&lang=en_us 1/26

Similarity Index

29%
Internet Sources: 23%
Publications: 17%
Student Papers: 16%

Similarity by Source

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

MJP Report_One more copy by Navami K

From Forest Cover (B.Tech Major Project)

Processed on 01May2015 08:05 IST
ID: 536208273
Word Count: 12169

 Turnitin Originality Report

sources:

5% match (Internet from 27Nov2012)
http://archive.ics.uci.edu/ml/machinelearningdatabases/covtype/covtype.info

2% match (publications)
Blackard, J.A.. "Comparative accuracies of artificial neural networks and discriminant analysis
in predicting forest cover types from cartographic variables", Computers and Electronics in

Agriculture, 199912

1% match (Internet from 15May2014)
http://www.docstoc.com/docs/10961467/DataMining

1% match (Internet from 19Aug2010)
http://homepages.cae.wisc.edu/~ece539/project/f01/leske.doc

1% match (student papers from 07Oct2014)
Submitted to Deakin University on 20141007

1% match (Internet from 12Dec2014)
http://openml.org/d/180

1% match (student papers from 09Mar2015)
Submitted to Tampereen teknillinen yliopisto on 20150309

1% match (Internet from 04Jul2009)
http://www.icml2006.org/icml_documents/cameraready/021_An_Empirical_Compari.pdf

1% match ()
http://www2.boosting.org/boosting/papers/FreSch96.pdf

1% match (Internet from 22Apr2015)
http://en.wikipedia.org/wiki/Random_forest

1% match (publications)
Izenman. "Recursive Partitioning and TreeBased Methods", Springer Texts in Statistics,
2008

1% match (Internet from 09Feb2015)
http://stackoverflow.com/questions/10865372/whydoesthec45algorithmusepruningin
ordertoreducethedecisiontreeand

1% match (Internet from 06Mar2015)
http://en.wikipedia.org/wiki/Feature_selection

1% match (Internet from 20Mar2010)
http://web.engr.oregonstate.edu/~tgd/publications/mljrandomizedc4.pdf

< 1% match (publications)
Srinivasa Prasad, Kalli and Ramakrishna, Seelam. "An Efficient Traffic Forecasting System
Based on Spatial Data and Decision Trees", International Arab Journal of Information

Technology (IAJIT), 2014.

< 1% match (Internet from 05Nov2014)
http://www.kaggle.com/c/forestcovertypeprediction/data

< 1% match (Internet from 04Oct2009)
http://www.cs.waikato.ac.nz/~abifet/MOA/StreamMining.pdf

< 1% match (Internet from 04Aug2014)

http://www.docstoc.com/docs/10961467/Data-Mining
http://en.wikipedia.org/wiki/Random_forest
https://turnitin.com/paperInfo.asp?r=82.5331625687884&svr=04&lang=en_us&oid=514227472&perc=1
http://www.kaggle.com/c/forest-cover-type-prediction/data
http://www2.boosting.org/boosting/papers/FreSch96.pdf
http://search.ebscohost.com/login.asp?r=82.5331625687884&svr=04&lang=en_us&x?direct=true&db=ECD&AN=95667009&site=ehost-live&EPSource=esi
http://dx.doi.org/10.1007/978-0-387-78189-1_9
http://openml.org/d/180
http://dx.doi.org/10.1016/S0168-1699(99)00046-0
http://lrd.yahooapis.com/_ylc=X3oDMTVnamR1M2NoBF9TAzIwMjMxNTI3MDIEYXBwaWQDTHJlazRUTFYzNEdRVjYwVDFRYVlHeC5xMDYuMHVja2pJb3dfYzJFV3NGejhWZzVHX2xkQjRPX1YweDZPdVNOME9zVjg2a0I2BGNsaWVudANib3NzBHNlcnZpY2UDQk9TUwRzbGsDdGl0bGUEc3JjcHZpZANVSmxybGtnZUF1M00wU1FpWU1VWFZoRjlKbS5UVGt4dEZlb0FCczJK/SIG=120g4m02k/**http%3A//homepages.cae.wisc.edu/~ece539/project/f01/leske.doc
http://lrd.yahooapis.com/_ylc=X3oDMTVndjh1NHFwBF9TAzIwMjMxNTI3MDIEYXBwaWQDTHJlazRUTFYzNEdRVjYwVDFRYVlHeC5xMDYuMHVja2pJb3dfYzJFV3NGejhWZzVHX2xkQjRPX1YweDZPdVNOME9zVjg2a0I2BGNsaWVudANib3NzBHNlcnZpY2UDQk9TUwRzbGsDdGl0bGUEc3JjcHZpZAM4aC51YUVnZUF1MW1sLmpFVG8wLmxOQWcwRG1lOGtySlRrd0FCcG1n/SIG=11t6c9n0h/**http%3A//www.cs.waikato.ac.nz/~abifet/MOA/StreamMining.pdf
http://stackoverflow.com/questions/10865372/why-does-the-c4-5-algorithm-use-pruning-in-order-to-reduce-the-decision-tree-and
http://lrd.yahooapis.com/_ylc=X3oDMTVnNnN0anZkBF9TAzIwMjMxNTI3MDIEYXBwaWQDTHJlazRUTFYzNEdRVjYwVDFRYVlHeC5xMDYuMHVja2pJb3dfYzJFV3NGejhWZzVHX2xkQjRPX1YweDZPdVNOME9zVjg2a0I2BGNsaWVudANib3NzBHNlcnZpY2UDQk9TUwRzbGsDdGl0bGUEc3JjcHZpZANuS0o3LkVnZUF1MkE4aWJ2T3VfN09VVFpKbS5UVGt1bGw2SUFBZU8u/SIG=12cv9198j/**http%3A//web.engr.oregonstate.edu/~tgd/publications/mlj-randomized-c4.pdf
http://www.icml2006.org/icml_documents/camera-ready/021_An_Empirical_Compari.pdf
http://en.wikipedia.org/wiki/Feature_selection
http://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.info
https://turnitin.com/paperInfo.asp?r=82.5331625687884&svr=04&lang=en_us&oid=461406830&perc=1

Feature Engineering on Forest Cover Type Data
with Ensemble of Decision Trees
Pruthvi H.R∗, Nisha K.K†, Chandana T.L‡, Navami K§ and Biju R M¶

¶Faculty, Department Of Information Technology
National Institute of Technology, Karnataka, India,

∗ phr.11it64@nitk.edu.in,†nishakk94@gmail.com,‡tlchandana@gmail.com,§knavami@gmail.com,¶bijurmohan@gmail.com

Abstract—The paper aims to determine the forest cover type
of the dataset containing strictly cartographic variables. The
study evaluated four wilderness areas in the Roosevelt National
Forest, located in northern Colorado. The source of cover type
data is US Forest service inventory while the cartographic
variables like elevation, slope, soil type and other data were
derived from Geographic Information System(GIS). Dataset was
analysed and feature engineering techniques were applied, which
helped in getting more relevant features. Comparative study of
various decision tree algorithms such as C4.5, C5.0, CART was
conducted on the dataset.With the new dataset built from feature
engineering, Random Forest and C5.0 improved the accuracy by
9% compared to the raw dataset.

I. INTRODUCTION

The area under the study consists of the Rawah (73 213
acres), Comanche Peak (67 680 acres), Neota (9647 acres),
and Cache la Poudre (9433 acres) wilderness areas of the
Roosevelt National Forest in northern Colorado. As shown in
Figure 1, these areas are located 70 miles northwest of Denver,
Colorado. These wilderness areas are selected because they
contain forested lands that have experienced relatively little
direct human management disturbances. As a consequence, the
current composition of forest cover types within these areas
are primarily a result of natural ecological processes rather
than the product of active forest management.

Blackard et al.[3] have compared two alternative techniques
for predicting forest cover types.The results of the compar-
ison indicated that a feedforward artificial neural network
model(70.58%) more accurately predicted forest cover type
than a traditional statistical model based on Gaussian dis-
criminant analysis (58.38%). B. Chandra et al. [5] used the
same dataset to evaluate the performance of the decision trees.
The decision tree algorithm achieved a maximum classification
accuracy of 88.143% as compared to that of 70.58%. Ragini
Jain et al. suggested a hybridized rough set model that provides
mechanism to trade-off between different performance param-
eters like - accuracy, complexity, number of rules and number
of attributes in the resulting classifier for a large benchmarking
dataset.

A number of supervised learning methods have been intro-
duced in the last decade. Caruana et al.[4] present a large-scale
empirical comparison of ten Supervised Learning algorithms
using eight performance criteria. They evaluate the perfor-
mance of SVMs, Neural Network, Logistic Regression, Naive
Bayes, Memory-based learning, Random Forests, Decision

Trees, Bagged Trees, Boosted Trees, and Boosted Stumps
on eleven binary classification problems using a variety of
performance metrics: accuracy, F-score,Lift, ROC Area, etc.
They have concluded that learning methods such as Boosting,
Random Forests, Bagging, Decision Tree and SVMs achieve
excellent performance over others.

Entezari - Malecki et al.[6] have compared different classi-
fication methods based on type of attributes and sample size
against performance criterion Area Under the Curve (AUC)
of ROC. Their analysis shows that decision tree and C4.5,
as an implementation of that show an effective performance
in all datasets. Decision tree, C4.5 and SVM show excellent
accuracies when the number of continuous attributes is higher
that are discrete.

We propose to predict the forest cover type from strictly
cartographic variables. We intend to do so by applying pre-
processing and feature engineering techniques on the dataset
followed by decision tree models. We also make a performance
comparison of different decision trees - C4.5, C5.0, and CART,
based on different metrics - accuracy, area under roc curve and
number of nodes on the current dataset.

The rest of the paper has been organized as follows: The
section II explains the proposed model in details, followed
by the section III, which gives the results of the various
experiments performed at every stage of the model on the
forest cover type dataset using decision tree for classification.
Section V concludes the paper.

II. PROPOSED WORK

This section shall give a detailed description of all the steps
followed in our model. Figure 2 shows all the steps undertaken
for the prediction of the forest cover type using decision tree
has a classifier.

A. Data Collection

In the data collection phase, data is collected from various
sources and integrated. The current dataset is available in
the UCI Machine Learning Repository and is derived from
US Forest Service (USFS) Region 2 Resource Information
System (RIS) data. Forest cover type dataset contains only
cartographic variables (no remotely sensed data). Data is in
raw form (not scaled) and contains binary (0 or 1) columns
of data for qualitative independent variables (wilderness areas
and soil types). The dataset for forest cover type prediction

Fig. 1: Roosevelt National Forest Wilderness Area

Fig. 2: Process followed in building our model.

includes 54 features. There are forty soil types and four wilder-
ness areas which are binary attributes and other attributes are
numeric in nature. We intend to predict an integer classification
for the forest cover type. The seven types are Spruce/Fir,
Lodgepole Pine, Ponderosa Pine, Willow, Aspen, Douglas/Fir
and Krummholz and are represented as integers. The dataset
contains continuous, binary and nominal data. Table I gives
the description of all the attributes in our dataset.

B. Data Analysis and preprocessing

After collecting the data, it is important to analyze the data
and understand the relationships between various attributes.
Such an analysis will help in data preprocessing to remove
the redundant and irrelevant attributes. The changes made to
the dataset after data analysis and preprocessing is as stated
below:

1) According to [2], the wilderness areas which are more
typical over the dataset are Rawah and Comanche Peak,

TABLE I: Description of attributes for forest cover dataset

Attribute Name Data Type Description
Elevation Quantitative Elevation in me-

ters
Aspect Quantitative Aspect in degrees

azimuth
Slope Quantitative Slope in degrees
Horizontal Distance
To Hydrology

Quantitative Horizontal
distance to
nearest surface
water features

Vertical Distance
To Hydrology

Quantitative Vertical distance
to nearest surface
water features

Horizontal Distance
To Roadways

Quantitative Horizontal
distance to
nearest roadways

Hillshade 9am Quantitative Hillshade index
at 9am,summer
solstice

Hillshade Noon Quantitative Hillshade index
at noon,summer
solstice

Hillshade 3pm Quantitative Hillshade index
at 3pm, summer
solstice

Horizontal Distance
To Fire Points

Quantitative Horizontal
distance to
nearest wildfire
ignition points

Wilderness Area(4
binary columns)

Qualitative Wilderness area
designation

Soil Type(40 binary
columns)

Qualitative Soil type desig-
nation

due to their assortment of tree species and range of pre-
dictive variable values (elevation, etc.) Cache la Poudre
has relatively low elevation range and species composi-
tion and hence would probably be more unique than the
others.

2) Elevation with Wilderness Area: Among the four wilder-
ness areas, Neota (area 2) probably has the highest mean
elevation value. The second highest mean elevation value
would be in the area of Rawah (area 1) and Comanche
Peak (area 3) followed by Cache la Poudre (area 4), where
it is found to have the lowest mean elevation value.

3) Cover type with wilderness area: Neota would have its
primary tree species to be spruce/fir (type 1), while
Rawah and Comanche Peak would probably have Lodge-
pole pine (type 2) as their primary species, followed by
spruce/fir and aspen (type 5). Cache la Poudre would tend
to have Ponderosa pine (type 3), Douglas-fir (type 6), and
cottonwood/willow (type 4).

4) Conversion of binary attributes into categorical attributes:
The 40 soil types and 4 wilderness areas which were
binary attributes were converted into corresponding cate-
gorical attributes. The categorical attribute corresponding
to soil types took values from s1 to s40, while the attribute
corresponding to wilderness areas took values from w1
to w4.

5) Missing values of Hillshade 3pm: When Hillshade 3pm
was plotted, it was found to have certain missing values,

which were filled with the median of the values.

Fig. 3: Hillshade 3pm Vs Hillshade Noon

C. Feature Engineering
1) Feature Extraction: Feature extraction starts from an

initial set of measured data and builds derived values (features)
intended to be informative, non-redundant, facilitating the
subsequent learning and generalization steps, in some cases
leading to better human interpretations.

After a thorough data analysis and understanding the rela-
tionship between the features, new features were engineered
from the existing ones. This section gives a detailed descrip-
tion of the feature engineering done on the data set.

1) Preprocessing based on Soil Type: Soil Types are num-
bered from 1 to 40 and are categorized based on the
USFS Ecological Landtype Units (ELUs). The ELU code
of each soil type is a four digit number, where the first
and second digits refer to the climatic and geologic zone
respectively. The third and the fourth digit refer to a
certain mapping unit and does not have any relationship
with the climatic or geologic zone. The two changes made
to the dataset using the ELU codes are as follows:
• Soil types which had same climatic(first digit) and

geologic zone(second digit) were found to have similar
characteristics and were grouped as one. There were 11
such groups and hence, 40 soil types were converted
into 11 soil types.

• The first digit and the second digit of the ELU code
is used to create two categorical attributes called ‘Cli-
matic’ and ‘Geologic’, which take eight distinct values
[2]

2) Negative values of Vertical Distance To Hydrology
[1]: Looking at the distribution of Verti-
cal Distance To Hydrology in Figure 4, we found
that it has some negative values. We created another
variable called ‘Hg wter’, which indicates whether this
attribute has a positive or a negative value.

3) Relationship between Vertical Distance To Hydrology
and Elevation: Elevation and Verti-
cal Distance To Hydrology are correlated to each other.

In the Figure 5, coloring each cover type in different
colors, seem to reveal a pattern of the plotted points.
Hence, we create a new feature called EV DTH which
gives a simpler relation seen in Figure 6. Here, EV DTH
is given by subtracting Vertical Distance To Hydrology
from Elevation.

4) Relationship between Elevation and Horizon-
tal Distance To Hydrology: From a similar
graph, it has been observed that Elevation and
Horizontal Distance To Hydrology are correlated.
Hence, we define a new attribute called EH DTH.

5) Other new features: A new set features HyF 1, HyF 2,
HyR 1, HyR 2, FiR 1, FiR 2 were derived from com-
bining all distance based attributes. The final feature set
is shown in Table II.

Fig. 4: Plot of Vertical Distance To Hydrology

Fig. 5: Graph of Vertical Distance To Hydrology Vs Eleva-
tion

2) Feature selection: Feature selection aims to select a
subset of relevant features for use in model construction. The
central assumption when using a feature selection technique is
that the data contains many redundant or irrelevant features.
Redundant features are those which provide no more informa-
tion than the currently selected features, and irrelevant features
provide no useful information in any context.

On plotting features against each other, we observed that the
features are independent of each other as in Figure 7, hence

Fig. 6: Graph of EV DTH Vs Elevation

TABLE II: Description of the new additional features for
Forest Cover Dataset

Attribute
Name

Data type Description

Wilderness
Area

Qualitative Wilderness area designation

Soil type Qualitative Soil type designation
Aspect2 Qualitative Aspect in degrees azimuth
Hg wter Qualitative Indicative for positive or negative values to

Vertical Distance To Hydrology
EV DTH Qualitative Elevation - Verti-

cal Distance To Hydrology
EH DTH Qualitative Elevation -

Horizontal Distance To Hydrology*0.2
Dis To Hy Qualitative (Horizontal Distance To Hydrology2 +

Vertical Distance To Hydrology2)1/2

HyF 1 Qualitative Horizontal Distance To Hydrology + Hor-
izontal Distance To Fire Points

HyF 2 Qualitative Horizontal Distance To Hydrology - Hori-
zontal Distance To Fire Points

HyR 1 Qualitative Horizontal Distance To Hydrology + Hor-
izontal Distance To Roadways

HyR 2 Qualitative Horizontal Distance To Hydrology - Hori-
zontal Distance To Roadways

FiR 1 Qualitative Horizontal Distance To Fire Points +
Horizontal Distance To Roadways

FirR 2 Qualitative Horizontal Distance To Fire Points-
Horizontal Distance To Roadways

not redundant.

Fig. 7: Plot of Aspect vs Slope

Also, decision trees use attribute selection measures like
Gain Ratio during tree construction. Thus, only the relevant
attributes appear in the final model. This eliminates the need
for using any other feature selection technique.

D. Decision Trees

A decision tree is a simple representation for classifying
examples. Decision tree learning is one of the most successful
techniques for supervised classification learning. A decision
tree or a classification tree is a tree in which each internal
(non-leaf) node is labeled with an input feature. The arcs
coming from a node labeled with a feature are labeled with
each of the possible values of the feature. Each leaf of the
tree is labeled with a class or a probability distribution over
the classes.A tree can be “learned“ by splitting the source set
into subsets based on an attribute value test. This process is
repeated on each derived subset in a recursive manner called
recursive partitioning. The recursion is completed when the
subset at a node has all the same value of the target variable,
or when splitting no longer adds value to the predictions.

A number of decision trees have been proposed in the
literature and they mainly differ by the measure used for
attribute selection. For example, C4.5 and C5.0 use Gain
Ratio whereas CART uses Ginni as the attribute selection
measure, in the tree construction phase. One such important
Decision tree is C5.0.

1) C5.0: C4.5 algorithm ensured better way of building a
decision tree with the use of gain ratio has the spitting factor
but it lacked many non-functional requirements to popularize
among the applications. Hence, C5.0 [7] was developed as
an improvement over the existing C4.5 algorithm. Many key
aspects found in C5.0 makes it better than C4.5 Algorithm.
Below are the list of its extended features:

• Rules Formation - Building the decision trees and using
then for every test set prediction leads to high wastage
of time. In order to overcome this, C5.0 has incorporated
a ruleset formation instead of trees to save significant
amount of time and space.

• Winnowing technique - used in C5.0 helps in reduction
of memory by using lesser sample set, which was not
available in C4.5.

• Smaller decision trees - C5.0 gets similar results to C4.5
with considerably smaller decision trees.

• Boosting - Support for boosting allows the creation of
multiple decision trees . These trees formation is improve-
ment over time till no more misclassification. Then based
on the decision from all the classifiers a better prediction
is made leading to better accuracy.

• Weighting - C5.0 allows you to vary the importance of
different cases by giving different weights. Minimizing
the weighted predictive error rate is the way to handle
weighting.

• Misclassification Costs - In C4.5, all errors are treated
as equal, but in practical applications some classification

errors are more serious than others. Hence, C5.0 allows
a separate cost to be defined for each predicted versus
actual class pair ratio; if this option is used, C5.0 then
constructs classifiers to minimize expected misclassifica-
tion costs rather than error rates.

• Data Types - C5.0 has several new data types in addition
to those available in C4.5, including dates, times,
timestamps, ordered discrete attributes, and case labels.
In addition to missing values, C5.0 allows values to be
noted as not applicable. Further, C5.0 provides facilities
for defining new attributes as functions of other attributes.

III. RESULT AND ANALYSIS

This section shall give a detailed description and analysis of
the results obtained from the various experiments conducted
as stated in the proposed work.

All the experimentations were carried out in the R program-
ming using the CRAN built in packages and the python codes
were used for the feature engineering and data analysis.

A. Decision Trees

The decision trees was selected has the classifier for our
forest cover type prediction from the literature survey. Exper-
imental study for the selection of the right decision tree was
conducted using the existing packages in R.

The Table V summarizes the comparison of decision trees
under the selected metrics. The classification metrics taken in
to consideration include:

• Accuracy: Gives a measure of the number of the samples
are correctly predicted.

• Tree size: Indicates the number of nodes that appear in
the constructed decision tree.

• AUC: Area Under Curve for Receiver Operating Charac-
teristic

TABLE III: Performance Evaluation

Performance
Metrics/Decision trees

C4.5 C5.0(No
Boosting)

CART

Accuracy in % 80.78 91.11 79.45
Size of the Tree(nodes) 2111 772 951
AUC 0.92 0.88 0.94

Based on all the measures mentioned above, important point
is to note that C5.0 has higher accuracy and less tree size due
to the various built-in techniques like pruning, boosting and
winnowing to improve tree performance and possibly reduce
the memory requirements for building the model.

B. Feature engineering

As stated in the Section II, our dataset needed pre-
processing and feature extraction. Table IV gives the modi-
fications made to the features and the improvements to the
model when compared to the base case.

Base case: Accuracy of the model when tested on real test
set with no changes made to the raw data. This case gave an
accuracy of 68.44%.

TABLE IV: Data Pre-Processing and Feature Extraction

Expt
No.

Feature De-
scription

Feature
Modifications

Reason Results

1 Missing
Soil Types7
and Soil
Types15 in
the training
set

Removal of s7
and s15 from test
set (There were
105 samples with
soil type s7).

The relevance
of these features
seemed to
be very low
according to the
attribute usage
obtained from
C50 tree built
from test set.

Improved
to
69.13%

2 Soil Type
(Qualitative)
with 40
binary
columns

Generalization of
Soil Type to 11
Columns

Generalization
is based on the
ELU codes of
soil types

Decreased
to
67.32%

3 Soil Type
(Qualitative)
with 40
binary
columns

Generalization
based on
geologic and
climatic zones

Generalization
is based on the
ELU codes of
soil types

Decreased
further
to
66.95%

4 Wilderness
Area
(Qualitative)
with 4 binary
columns

Generalization to
one categorical
feature

To lower this fea-
tures used due
to its lower rele-
vance.

Improved
to
68.89%

5 Missing val-
ues in Hill-
shade 3pm

Replaced those
values with the
mean of all
Hillshade 3pm

To remove the
outliers

Improved
to
69.17%

6 Soil type
(Qualitative)
with 40
binary
columns

Generalized to
one categorical
feature

To lower the fea-
tures used due
to its lower rele-
vance

Improved
to
69.13%

The experiments performed above showed very slight im-
provements over the primary dataset. Based on the accuracy
improvement, the features were selected for the new dataset.

The detailed data analysis with decision trees also showed
the need for enhancing the feature space with more relevant
features. So, the further experimentations were performed
in building new features from the given feature set. Table
II shows the lists of new features obtained from the feature
engineering:

The new feature set when tested on the C5.0 decision tree
with no boosting gave an improvement in accuracy to 69.22%.

C. Feature selection

Feature Selection is a technique to select the best subset of
features from the given set in order to maximize the accuracy.
The decision trees are known to have the build in feature
selection based on the splitting parameter. These are in fact
known as embedded feature selectors.
Hence, no additional feature selection was performed.

D. Pruning

Pruning is a way of reducing the size of the decision tree.
This will reduce the accuracy on the training data, but (in
general) increase the accuracy on unseen data. It is used to
reduce over fitting, where you would achieve perfect accuracy
on training data, but the model (i.e. the decision tree) that is

learned is very specific that it doesn’t apply to anything but
that training data.
In our case, varying a parameter called confidence fac-
tor(which controls the amount of pruning) from 0.25 to 0.15
for the C5.0 Decision tree is found to improve the accuracy
to 69.25%

E. Ensemble Learning

The new features obtained from the previous steps were
found to be more relevant. Yet the model showed only 1%
improvement . Ensemble learning is a technique to enhance
the learning of weak base learners like decision trees. Hence,
ensemble techniques Random forest and C5.0 were used
for further testing. Random forest gave an improvement in
accuracy to 77.24% which was found to be better than that
of single decision tree. Whereas C5.0 with boosting iterations
set to 10 gave an improved accuracy to 76.02%.The Table V
gives the detailed comparison of both the techniques.

TABLE V: Performance Evaluation for Ensemble Techniques

Performance
Metrics/Ensemble
Learning with 10 trials

C5.0 Random
Forest

Accuracy in % 76.02 77.24
AUC 0.82 0.85

The above boosting and bagging techniques showed to
increase the prediction performance. The detailed study of
these ensemble techniques and their modification may help
in improving the overall model for better prediction.

IV. CONCLUSIONS

The purpose of this project is to use the decision tree clas-
sification algorithms for predicting the forest cover type. The
forest cover data of the Roosevelt National Forest of northern
Colorado was used to evaluate the performance of various
Decision Tree algorithms. Among the decision trees, C5.0
was found to give higher accuracy. Various feature engineering
techniques performed on the dataset showed improvement over
the primary data-set. The new feature set when tested with
C5.0 decision tree with no boosting gave an improvement in
accuracy to 69.22%. Random forest and C5.0 gave an improve-
ment in accuracy to 77.24% and 76.02% respectively. These
show that ensemble techniques can enhance the performance
of decision trees considerably. These ensemble techniques can
be improved further.

ACKNOWLEDGMENT

We would like to thank Mr. Biju R Mohan for guiding us
and giving his valuable insights throughout the project.

REFERENCES

[1] “Kaggle.” [Online]. Available: https://www.kaggle.com/c/forest-cover-
type-prediction/forums/t/10693/features-engineering-benchmark

[2] “Uci repository database.” [Online]. Avail-
able: https://archive.ics.uci.edu/ml/machine-learning-
databases/covtype/covtype.info

[3] J. A. Blackard and D. J. Dean, “Comparative accuracies of artificial neural
networks and discriminant analysis in predicting forest cover types from
cartographic variables,” Computers and electronics in agriculture, vol. 24,
no. 3, pp. 131–151, 1999.

[4] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of su-
pervised learning algorithms,” in Proceedings of the 23rd international
conference on Machine learning. ACM, 2006, pp. 161–168.

[5] B. Chandra and V. Pallath Paul, “Prediction of forest cover using decision
trees,” J. Ind. Soc. Agril. Statist, vol. 61, no. 2, pp. 192–198, 2007.

[6] R. Entezari-Maleki, A. Rezaei, and B. Minaei-Bidgoli, “Comparison of
classification methods based on the type of attributes and sample size,”
Journal of Convergence Information Technology, vol. 4, no. 3, 2009.

[7] S.-l. Pang and J.-z. Gong, “C5.0 Classification Algorithm and Application
on Individual Credit Evaluation of Banks,” Systems Engineering - Theory
& Practice, vol. 29, no. 12, pp. 94–104, Dec. 2009. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1874865110600920

