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Abstract

Reconstructing the 3D shape of objects from multiple images is a fun-
damental problem in computer vision. It has been extensively stud-
ied for both rigid and deformable objects. While there are accurate
and stable solutions such as Structure-from-Motion (SfM) for recon-
structing rigid objects, the deformable case remains an open research
problem. Shape-from-Template (SfT) and Non-Rigid Structure-from-
Motion (NRSfM) and the more recent neural 3D mesh regression
methods address this problem by taking into account the effect of
deformation on the geometry of the object.

In particular, SfT methods estimate the deformations of an examined
surface from a single RGB camera while assuming one of its 3D states
(a template) is known in advance. This is an important yet challeng-
ing problem due to the under-constrained nature of monocular 3D re-
construction. Existing SfT approaches use approximate deformation
models rather than more sophisticated models of physical deformation
behavior; this limits their reconstruction abilities.

This work proposes a new SfT approach explaining the observations
through simulation of a physically-based surface deformation model
representing forces and material properties. In contrast to previous
works, we utilise a physics-based simulator to implicitly regularise the
surface evolution. This has been made possible with the advance of
differentiable physics simulators (for e.g., Liang et al. (2019)) that en-
able gradient-based optimisation for inverse problems. In addition to
geometry, we estimate the material properties of the deformable sur-
face such as its bending coefficients, elasticity, stiffness, and material
density. We use a differentiable renderer to minimise the dense repro-
jection error between the estimated 3D states and the input images,
and recover the deformation parameters using an adaptive gradient-
based optimisation. For the evaluation, we record with an RGB-D
camera challenging real surfaces with various material properties and
texture, exposed to physical forces. In addition, we generate a new
synthetic dataset of naturalistically deforming surfaces using physics-
based simulation. On both datasets, our approach reconstructs the
underlying deformations much more accurately than related state-of-
the-art methods. As our reconstruction method estimates the ma-
terial properties and forces that generate the deformations, we show
applications for intuitively controlling deformations by editing under-
lying surface material and acting forces.
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Chapter 1

Introduction

1.1 Motivation

Figure 1.1: We show several examples of non-rigid object sequences addressed
in literature, for e.g., face (Garg et al., 2013a), paper (Varol et al., 2012),
heart (Stoyanov, 2012) and cloth simple (Varol et al., 2012). Cloths belong to the
most challenging category due to higher degrees of freedom for movement. How-
ever, none of the existing methods reconstruct cloth sequences that include local
folds. cloth challenging shows a frame from one of our newly captured sequences.

Reconstructing general deformable, temporally-coherent surfaces in 3D from

monocular videos is a long-standing challenging and ill-posed problem. It was

studied under different assumptions, and methods addressing it can be roughly

classified into (template-free) non-rigid structure from motion (NRSfM) (Bre-

gler et al., 2000; Garg et al., 2013a), (template-based) shape-from-template (SfT)

(Ngo et al., 2015; Perriollat et al., 2011), and neural 3D mesh regression (Li

et al., 2020). The objective of SfT is: Given a known initial 3D state of an

observed deformable scene or an object, reconstruct all its later states observed

in a monocular image sequence (Salzmann et al., 2007). Recent SfT methods

are learning-based (Fuentes-Jimenez et al., 2021; Shimada et al., 2019), i.e., they

encode prior knowledge about the deformation models and templates in neural

network weights. This offers multiple advantages over a vast body of previous,

non-learning-based works (Ngo et al., 2015; Östlund et al., 2012; Parashar et al.,

1



1.2 ϕ-SfT

Figure 1.2: Our ϕ-SfT approach uses a physics simulator to reconstruct challeng-
ing deforming 3D surfaces observed in a monocular video. In contrast to existing
methods, our estimates are significantly more accurate and evince increased phys-
ical plausibility.

2015; Perriollat et al., 2011; Salzmann et al., 2007; Salzmann et al., 2009; Yu et al.,

2015), such as the ability to handle larger deformations, a broader spectrum of

supported types of motions and deformations (including highly non-linear ones),

and real-time operation.

Fig. 1.1 shows different types of non-rigid objects including the most challeng-

ing category of deforming clothes. Cloths deform freely and often form fine local

surface deformations such as folds and wrinkles. One of the pivotal limitations of

both classical and neural SfT methods is that they capture general 3D states well

but not fine local surface deformations. This is due to non-awareness of the phys-

ical fold formation process attributable to the elastic properties of the materials

and forces acting on them. As a result, existing methods can only reconstruct

predominantly global deformations.

1.2 ϕ-SfT

This paper proposes ϕ-SfT (from Greek ϕυσικη meaning physics): A new analysis-

by-synthesis SfT method which addresses several limitations of the current state

of the art and improves the accuracy of monocular non-rigid 3D reconstruction

by a significant margin, see Fig. 1.2 for comparison. Our approach explicitly

models the physical fold formation process, and its parameters are physically

meaningful. ϕ-SfT is a non-learning-based analysis-by-synthesis approach that

2



1. INTRODUCTION

does not require training data. We enable gradient-based optimisation by em-

ploying two components: a differentiable renderer and a differentiable physics

simulator. Our core idea is to use the latter as a regulariser during the optimi-

sation of our objective function. Furthermore, the differentiable renderer ensures

that the reprojections of the recovered 3D states accurately match the observed

images. In contrast to earlier photometric terms used for SfT (Yu et al., 2015),

using differentiable rendering allows us for the first time to define the reprojection

error densely per pixel and not only per vertex. We can thus exploit the infor-

mation present in the texture regardless of the mesh resolution. Our approach is

significantly more accurate than related methods and supports finer-scale local

folds, which is demonstrated on a wider spectrum of deformations in extensive

experiments (Sec. 6).

1.3 Scope

The scope of this thesis is restricted to reconstruction and tracking of deformable

3D surfaces from monocular RGB sequence and 3D template. We show that our

method, ϕ-SfT can accurately estimate the geometry including fine folds and it

outperforms related methods on the newly collected real and synthetic datasets.

Since we optimise for geometry in the classical SfT setting, note that accurate

estimation of material elasticity, or forces, etc., are out of scope for this project.

1.4 Outline

In the subsequent chapters, we first introduce related works in Chapter 2, followed

by a description of pre-requisites that form the main ingredients for our method in

Chapter 3. Next, we introduce the ϕ-SfT real and synthetic datasets in Chapter 4.

Then, we present the ϕ-SfT deformation model and the optimisation tech-

niques in Chapter 5, followed by evaluations of the model in Chapter 6, and

applications in Chapter 7. Finally, we present the limitations of our model and

discuss possible future work in Chapter 8, and conclude in Chapter 9.

3
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Chapter 2

Related Work

Related work on dense monocular non-rigid 3D reconstruction is vast. The meth-

ods in the literature differ in the assumptions they make about the input, available

prior knowledge and how they model the deformations. This chapter reviews

methods that can be classified into non-rigid structure from motion (NRSfM),

shape from template (SfT), monocular 3D mesh reconstruction and monocular

volume reconstruction. In Tab. 2.1, we provide a short summary of the related

methods that are later used for comparison with ϕ-SfT.

2.1 NRSfM

NRSfM operates on point tracks over the input monocular views. Earlier NRSfM

methods were designed for sparse 2D point tracks and modelled deformations

with linear subspaces along with various priors (Akhter et al., 2009; Bregler et al.,

2000; Dai et al., 2014; Paladini et al., 2009; Torresani et al., 2008). More recent

NRSfM techniques (Agudo & Moreno-Noguer, 2018; Garg et al., 2013a; Kumar

et al., 2018) allow reconstructing dense image points observed in a reference

frame. They impose constraints on spatial point locations to infer smooth and

continuous deforming surfaces. Agudo & Moreno-Noguer (2015) propose a sparse

Method Template Point tracks Supervision Deformation constraint

DDD Yu et al. (2015) ✓ ✗ per vertex isometry
Ngo2015 Ngo et al. (2015) ✓ ✗ per feature isometry

IsMo-GAN Shimada et al. (2019) ✓ ✗ pre trained isometry
N-NRSfM Sidhu et al. (2020) ✗ ✓ per pixel subspace constraint on point tracks

Diff-NRSfM Parashar et al. (2020) ✗ ✓ per feature/pixel differential structure preservation
ϕ-SfT (ours) ✓ ✗ per pixel anisotropic elastic model

Table 2.1: Comparison of our approach with other monocular non-rigid 3D
reconstruction methods. The methods in the literature differ in the assumptions
they make about the input, available prior knowledge (whether 2D point tracks
or 3D template is required), how they model the deformations and the source of
supervision signal. Note that all the NRSfM methods here are dense.

5



2.2 SfT

NRSfM method relying on principles of continuum mechanics, i.e., it represents

a deformable object using an estimated (not a simulated) elastic model and a

low-rank force field acting on it. Even though the force prior has a direct phys-

ical interpretation, this model still shares most limitations with other NRSfM

methods. Diff-NRSfM (Parashar et al., 2020) assumes the observed structure

preserves its differentiable structure and infinitesimal planarity. This method

produces impressive results for smooth surfaces but struggles to reconstruct fine-

scale folds, unlike our ϕ-SfT. Recently, neural NRSfM approaches both for sparse

(Novotny et al., 2019; Wang & Lucey, 2021) and dense (Sahasrabudhe et al.,

2019; Sidhu et al., 2020) cases were proposed in the literature. Some of them

need to be trained for each object category (Novotny et al., 2019; Sahasrabudhe

et al., 2019), whereas N-NRSfM (Sidhu et al., 2020) and PAUL (Wang & Lucey,

2021) run on unknown data. Some 2D keypoint lifting approaches for 3D human

pose estimation, such as Chen et al. (2019), require only 2D data for supervision

and share similarities with neural sparse NRSfM.

2.2 SfT

SfT algorithms operate directly on images and assume a known 3D surface prior

as input (Ngo et al., 2015; Perriollat et al., 2011; Salzmann et al., 2007; Yu

et al., 2015). These methods minimise the 3D-2D reprojection error and impose

geometric constraints such as surface inextensibility (Perriollat et al., 2011; Salz-

mann et al., 2007) or isometry (Bartoli et al., 2015; Ngo et al., 2015; Yu et al.,

2015). Recent neural SfT methods (Fuentes-Jimenez et al., 2021; Pumarola et al.,

2018; Shimada et al., 2019) predict 3D surfaces from monocular images relying on

datasets with different template states. Our approach contrasts with other SfT

methods in that it uses temporal information and a differentiable physics simula-

tor as a regulariser for high-fidelity 3D surface tracking instead of approximating

the underlying physical properties via geometric constraints. Moreover, none of

these methods uses a per pixel differentiable photometric loss which ensures that

3D estimates accurately reproject into the 2D images.

2.3 Physics-Based Priors

Physics-based priors in 3D human performance capture is an emerging field, al-

though there is some early work on it (Stoll et al., 2010). Rempe et al. (2020)

method and PhysCap (Shimada et al., 2020) show that integrating physics laws

into an objective for sparse 3D human motion capture improves the accuracy and

quality of the 3D estimates. The proposed constraints reduce the artifacts arising

from the monocular setting, such as unnatural jitter of the recovered structure,

6



2. RELATED WORK

unnatural body leaning, foot sliding, and foot-floor penetration. Several meth-

ods for 3D human performance capture include clothes deformations, such as

Guo et al. (2021) and Li et al. (2021). The method of Guo et al. operates on

point clouds and optimises the states of the simulated clothes so that they match

the inputs. The cloth motion is expressed through a combination of skin fric-

tion, gravity and forces attributed to the material (elasticity). Thus, their focus

is cloth state recovery from sparse point cloud measurements, which provide a

strong 3D shape cue, whereas we assume a single provided 3D template and op-

erate on monocular videos; this is a much more ill-posed inverse problem. Li et

al. generate training data with a physics-based simulator on-the-fly and use it

to train a neural network for 3D human performance capture, including clothes

deformations. Thus, they do not impose hard physics-based constraints as we do

with the differentiable physics simulator. Work by Liang et al. (2019) uses 3D su-

pervision for physics-based cloth reconstruction. The work by Weiss et al. (2020)

recovers material parameters of a physics simulator in an analysis-by-synthesis

policy to solve an inverse elasticity problem. In contrast to our method, they

additionally require depth inputs for a strong 3D cue, and they do not recover

local surface deformations. The broad idea of using a combination of a differ-

entiable physics engine and a differentiable graphics engine has previously been

explored in the works of (Jaques et al., 2020; Kandukuri et al., 2020; Murthy

et al., 2021). However, these methods estimate physical parameters in controlled

setting and for rigid bodies whereas we aim to accurately reconstruct the surface

deformations of more challenging and high-dimensional (DoF) surfaces.

2.4 Monocular 3D Mesh Reconstruction

Monocular 3D mesh reconstruction approaches can be trained on extensive col-

lections of unstructured views in the desired object category. Some works (Choy

et al., 2016; Wang et al., 2018) require 3D supervision, while others, similar to

ours, do not: In an early work, Cashman & Fitzgibbon (2013) show that suf-

ficiently rigid object categories, like dolphins, can be reconstructed from image

collections. Kanazawa et al. (2018) relax the need for input annotations. Li et al.

(2020) extend Kanazawa et al. (2018) to video input and estimate a temporally

consistent coarse mesh reconstruction for weakly articulated objects. LASR (Wu

et al., 2021; Yang et al., 2021a) further relax the need for an initial coarse tem-

plate. ViSER (Yang et al., 2021b) extend LASR to reason about long-range cor-

respondences and is robust to moderate shape variations and appearance changes.

We differ from these by the usage of a physics-based deformation model, and we

focus on recovering local surface deformations.

7



2.5 Monocular Volume Reconstruction

2.5 Monocular Volume Reconstruction

Monocular Volume Reconstruction methods learn a continuous scene function for

novel view synthesis given a set of monocular images. Earlier works (Lombardi

et al., 2019; Mildenhall et al., 2020; Sitzmann et al., 2019) assume the scene is

rigid and the camera poses are accurately registered. To extend them to dynamic

scenes, recent works (Park et al., 2021; Tretschk et al., 2021) introduce addi-

tional functions to deform observed points to a canonical space over time. Yang

et al. (2021c) support deformable scenes when the motion between objects and

background is large and reconstruct animatable 3D models.

8



Chapter 3

Preliminaries

In this chapter, we introduce the important concepts needed to understand our

method described in Chapter 5.

3.1 Material Elastic Model

Figure 3.1: An elastic model defines the strain/displacement generated due to
stress/force for a given surface material. Surfaces with varying underlying mate-
rial (shown with different textures) deform differently when subjected to the same
external forces (contact forces with mannequin and gravity). Image credit Wang
et al. (2011)

ϕ-SfT models the deformation field as a function of forces acting on the given

surface as well underlying elastic properties of the surface material. In this sec-

tion, we provide a brief introduction to material elasticity. An elastic model

defines the strain/displacement generated due to stress/force for a given surface

material. As shown in Fig. 3.1, surfaces with varying underlying elasticity de-

form differently when subjected to identical external forces. Given ϕ-SfT’s aim to

recover time-varying surface deformations from monocular sequence, modelling

the elasticity enables to recover the distinctive fold and wrinkle patterns for a

range of different materials. In ϕ-SfT, we use the the elasticity measurements of

The Data-Driven Elastic Model (Wang et al., 2011) for describing the material

properties.

9



3.2 Physics Simulator

The Data-Driven Elastic Model by Wang et al. (2011) is a piecewise

linear elastic model that provides a good approximation to nonlinear, anisotropic

stretching and bending behaviors of various materials. This material model con-

sists of three parts: density d, stretching stiffness S, and bending stiffness B.

The stretching stiffness quantifies how large the reaction force will be when the

cloth is stretched out. The bending stiffness models how easily the cloth can

be bent and folded. Wang et al. (2011) record a real-world dataset consisting

of 10 different cloth materials, a few of them are visualised in Fig. 3.1. We use

these measurements in the physics simulator (see Sec. 3.2) to create natural and

realistic clothing folds and shapes, for a range of different materials. Specifically,

we initialise the material parameters in our optimisation to the average of these

ten measurements.

3.2 Physics Simulator

At the heart of ϕ-SfT deformation model lies differentiable physics simulation.

In this section, we provide background on physics simulation for clothes.

Suppose, we have a surface parameterised as a triangular mesh St = {Vt,E}
where the state of the i-th vertex in Vt comprises its 3D position xi

t ∈ R3 and

its velocity vi
t ∈ R3. In the continuous domain, physics-based simulation can

be formulated as a time-varying partial differential equation (Baraff & Witkin,

1998):
∂2x

∂t
= M−1f(x,v), (3.1)

where (x,v) is the vertex state, and M is a diagonal matrix of the mass distri-

bution derived from the material density d and surface area. f(·) are the forces,

i.e., internal forces which are a function of cloth elastic properties S and B as

well as external forces such as wind or gravity. We follow the elastic model of

cloth materials by Wang et al. (2011) for describing the effects of d, S and B (see

Sec. 3.1).

In practice, we are given the known position xt−1 and velocity vt−1 of the

system at time t−1. Our goal is to determine the new position xt = xt−1 + ∆x

and velocity vt = vt−1 + ∆v at time t with a time step size h=1. To that end,

Eq. (3.1) can be transformed into a first-order differential equation, and can then

be solved for ∆x and ∆v with the implicit, backward Euler method (Baraff &

Witkin, 1998): (
∆x
∆v

)
= h

(
vt

M−1f(xt,vt)

)
, (3.2)

which is non-linear due to f . For efficiently solving Eq. (3.2), f can be linearised

via first-order Taylor series approximation:

f(xt,vt) = ft−1 +
∂f

∂x
h(vt−1 +∆v) +

∂f

∂v
∆v, (3.3)
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3. PRELIMINARIES

where the Jacobians ∂f
∂x

and ∂f
∂v

are evaluated at ft−1. Thus, a simple cloth simula-

tion process involves solving for vt using Eq. (3.2) and Eq. (3.3), and computing

the subsequent simulation state as xt = xt−1 + hvt.

However, there can additionally be self-collisions and collisions with obstacles

during simulation. Harmon et al. (2008) determine the collision response at the

impact zones to update the vertex positions appropriately:

xt = xt + collision response(xt,vt,x
obs
t ,vobs

t ). (3.4)

Fig. 3.2 shows an overview of cloth simulation pipeline. Since we want to use end-

Figure 3.2: Cloth is parameterised as a surface mesh with vertex states comprising
of geometry xt and velocity vt. Then, cloth simulation involves determining
subsequent simulation states by computing the acceleration at due to acting forces
f and surface mass M. Image credit Liang et al. (2019)

to-end gradient-based optimisation, we need to backpropagate gradients through

these steps. Due to the high dimensionality of the dynamical system when mod-

elling cloth, a näıve gradient computation for the general system (Eq. (3.2)) and

the collision response (Eq. (3.4)) can become impractical. Liang et al. (2019)

propose a solution for this problem, and we proceed with their approach. Specif-

ically, they use implicit differentiation for Eq. (3.2) and Eq. (3.4), where the

gradient of the latter is approximated via QR decomposition of a much smaller

constraint matrix. For more details on the backward pass, please refer to Liang

et al. (2019).

3.3 Differentiable Renderer

Given ϕ-SfT’s goal to recover time-varying surface deformations from monocular

sequence, we aim to optimise for 3D geometry using analysis-by-synthesis. Dif-

ferentiable rendering enables such an end-to-end optimisation by obtaining useful

gradients of the image-based losses.

In computer graphics, rendering refers to the forward process of synthesising

images of 3D scenes defined by geometry, materials, scene lights and camera pa-

rameters. Rendering is a complex task consisting of many operations, however

11



3.3 Differentiable Renderer

Figure 3.3: A differentiable renderer provides gradients of 3D scene properties
with respect to rendered image. PyTorch3D comprises of a rasterizer and shader
components, with the former efficiently implemented in CUDA. Image credit Ravi
et al. (2020)

not all operations are analytically differentiable. Differentiable rendering (DR)

constitutes a family of techniques that enable optimisation of the 3D scene pa-

rameters by backpropagating the gradients with respect to the rendered image.

We refer the reader to a recent survey Kato et al. (2020) for further details on var-

ious DR methods. We use PyTorch3D (Ravi et al., 2020) as a layer for optimising

the objective function of ϕ-SfT.

PyTorch3D by Ravi et al. (2020) is a library for differentiable rendering of

meshes and pointclouds. It is an efficient and modular implementation of Soft

Rasterizer (Liu et al., 2019), which introduces useful gradients by composing

probability maps of rendered triangles into the final image. It performs fast

3D operations, supports batching of meshes and uses autograd functionality of

PyTorch for automatically computing the gradients. Fig. 3.3 shows overview of

the PyTorch3D architecture.
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Chapter 4

ϕ-SfT Dataset

In this chapter, we describe the datasets used for evaluating ϕ-SfT, including the

data acquisition setup and preprocessing.

Existing methods on monocular 3D reconstruction focus predominantly on

large and global deformations. Therefore, the community lacks datasets of freely

deforming clothes which are arguably the most challenging category of non-rigid

objects. As ϕ-SfT aims to recover fine local surface deformations such as folds,

we create new real and synthetic datasets to serve this need.

4.1 Real Sequences

Figure 4.1: We record a new real “ϕ-SfT dataset” of nine sequences with refer-
ence depth data to facilitate quantitative comparisons of monocular 3D surface
reconstruction methods. Our setup consists of a synchronised RGBD camera.
The depth camera is used to extract point clouds that serve as pseudo-ground-
truth for evaluation.

13



4.1 Real Sequences

Figure 4.2: Overview of the capture setup: We expose cloth surfaces to external
forces, such as gravity, wind, and hand contacts for generating challenging defor-
mations. Each sequence is simultaneously recorded using a monocular RGB and
depth camera (Azure Kinect). Then, pseudo-ground-truth deformations for each
frame are reconstructed as a point cloud through backprojection, using the depth
images and known camera intrinsics. We segment out the background from the
captured images and point clouds by depth thresholding.

14



4. ϕ-SFT DATASET

We have recorded a new dataset of deforming surfaces to allow quantitative

evaluations of reconstruction methods on real data against pseudo ground truth.

Fig. 4.1 shows an overview of the recorded sequences. The dataset has a total of

nine sequences of various surface shapes and textures, including differing material

properties due to differences in the cloths’ fabric and weaving. There are more

and less elastic, and more and less dense materials. The texture pattern varies

from fine-grained and regular to more global and irregular patterns. The cloth size

ranges from 55×55 to 95×95cm. Fig. 4.2 shows an overview of the capture setup

and preprocessing. The surfaces are exposed to external forces, i.e., gravity, wind,

and hand contacts. Each sequence is simultaneously recorded using a monocular

RGB and depth camera (Azure Kinect) and has a length of about 40 frames, such

that they focus on challenging folds. The images in our real scenes have resolution

1920×1080 pixels. We segment out the background from the captured images and

point clouds by depth thresholding. Then, pseudo-ground-truth deformations

for each frame are reconstructed as a point cloud through backprojection, using

the depth images and known camera intrinsics. Note that the correspondences

between ground-truth pointclouds across all frames is therefore not available. The

coordinate system of the point clouds is in meters.

4.2 Synthetic Sequences

Figure 4.3: We generate a new synthetic “ϕ-SfT dataset” of four sequences with
reference ground truth meshes to facilitate quantitative comparisons of monocular
3D surface reconstruction methods.

In addition to the real dataset described in Sec. 4.1, we create a synthetic

dataset to enable more fair and thorough evaluation. Synthetic dataset provides

ground truth meshes and the vertex correspondence for the surface across all

15



4.2 Synthetic Sequences

frames, unlike the real data sequences. This facilities better quantitative com-

parison with other monocular 3D surface reconstruction methods.

We generate a new synthetic dataset of four monocular RGB sequences of

naturalistically deforming surfaces with different textures. We use the physics

simulator by Liang et al. (2019) as described in Sec. 3.2 for generating deforming

surface meshes. This is the same simulator used as part of our reconstruction

pipeline later (see Cha. 5). Note that using the same simulator for both data

generation and reconstruction can have small inductive bias. A flat square cloth

of dimensions 1×1m is provided in the form of a textured mesh to the simulator

at the beginning of the simulation. The deformations at subsequent time points

are caused by the varying gravity and wind forces acting on the cloth. Moreover,

we vary elastic material properties of the cloth across the sequences, following

Wang et al. (2011). Each sequence contains 50 frames, and the mesh contains

289 regularly-sampled vertices. Finally, the simulated cloth states are rendered as

virtual images using PyTorch3D (Ravi et al., 2020). The rendered images serve as

inputs to the evaluated methods, and the obtained meshes are 3D ground truth.

Fig. 4.3 shows an overview of the generated synthetic sequences.
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Chapter 5

Method: ϕ-SfT

Figure 5.1: High-level method overview: Given a sequence of monocular input images
{It}t, a template at the rest position S1 and the corresponding texture map T, our
technique solves for the unknown physical parameters ϕ that describe the deforming 3D
surface {St}t. We optimise for the per-sequence physical parameters of {d, S,B, w} as
well as the per-frame corrective forces {Ft}t in a gradient-based manner. We utilise (1)
a physics-based differentiable simulator PS for reconstructing meshes with a physical
deformation model and (2) a differentiable renderer R for projecting the reconstructions
into image space, which allows us to define a reprojection error over all pixels (instead of
vertices) during optimisation. The differentiable nature of both components enables us
to back-propagate the gradients of the total energy E all the way back to the unknown
physics parameters.

We propose ϕ-SfT: a new method for the 3D reconstruction of a deforming

surface (such as cloth) from a monocular RGB video {It}t∈[1,...,T ] with known

intrinsics. As is common for SfT methods (Ngo et al., 2015; Yu et al., 2015), we

assume that the camera is static and take as input a flat rest shape of the target

deformable surface S1 for t = 1 with a corresponding texture map T. We also

assume that a segmentation mask separating a foreground object and background

is available. To encourage physically plausible deformations, we use a full physical

model, described in Sec. 5.1, that explicitly models forces acting on the surface as
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5. METHOD: ϕ-SFT

well as the underlying elastic properties of the material. A brief introduction to

the basic concepts necessary to understand the ideas presented here can be found

in Chapter 3. Sec. 5.2 presents the objective function we employ to relate the 2D

observations to the estimated reconstructions. We describe how we optimise the

objective function for the physical parameters in Sec. 5.3. See Figs. 5.1 and 5.2

for a high-level and detailed overview of our method.

Physics-based simulators are widely used in computer graphics for 3D simula-

tions (Baraff &Witkin, 1998; Narain et al., 2012), and differentiable versions exist

(Liang et al., 2019). Our idea is to use a differentiable physics simulator as a reg-

ulariser (deformation model prior) in monocular non-rigid 3D reconstruction. Its

usage in SfT is, unfortunately, not straightforward. To integrate the physics-based

simulator into our framework, we have to make several crucial improvements to

it. First, the idealised assumptions of simulated environments cannot account for

the variety of forces and effects causing surface deformations in the real world,

such as wind turbulence. We take inspiration from the recent work on physically

plausible 3D human motion capture (Shimada et al., 2020), which uses a vir-

tual force acting on the root joint of a human skeleton to account for the effects

which are not explicitly considered by the physics model. We, therefore, intro-

duce corrective forces accounting for mismatched assumptions about the natural

scene (Sec. 5.1.1). Second, while most simulators used in computer graphics are

designed to create simulations following 3D reference motions, it now has to be

driven by the 2D input images, and the gradients need to be backpropagated

from the image-based losses. In particular, our energy function includes a dense

photometric loss and a silhouette loss (Sec. 5.2). Lastly, the optimisation strat-

egy suitable for 3D simulations is not the best choice for our analysis-by-synthesis

ϕ-SfT approach—optimising for deformed surface states, material properties and

forces—and we propose an adaptive training strategy instead (Sec. 5.3).

5.1 Deformation Model

We seek to reconstruct a sequence of deforming surfaces as 2D manifold meshes in

3D space with fixed topology (edges E), thereby providing temporal correspon-

dences. A surface in this sequence can be parameterised as a triangular mesh

St = {Vt,E} where the state of the i-th vertex in Vt comprises its 3D position

xi
t ∈ R3 and its velocity vi

t ∈ R3.

5.1.1 Surface Parametrisation

At the core of our method, we model deformations of the non-rigid surface as a

physical process, i.e., as elastic deformations resulting from internal stretching
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5.2 Objective Function

and bending forces as well as external forces acting on the surface. We thus do not

treat the mesh states St as parameters but instead, use a physical parametrisation.

We initialise the differentiable cloth simulator from the template S1 and gen-

erate St for t > 1 with physics simulation PS (Sec. 3.2) according to the material

parameters and external forces:

St = PS (St−1;ϕt−1), (5.1)

where ϕt−1 are the estimated physics parameters, i.e.,

ϕt−1 = {d, S,B, w,Ft−1}. (5.2)

Here, material density d ∈ R, stretching stiffness S ∈ R24 (resistance to stretch-

ing), and bending stiffness B ∈ R15 (resistance to bending and folding) all to-

gether describe the elastic properties of the material and, hence, determine the

cloth’s internal forces. We also optimise for the wind force w ∈ R3. How-

ever, the wind model is not sufficient to fully describe all the external forces

in the scene, such as hand contacts and wind turbulence. We seek to correct

for these model insufficiencies by additionally defining a set of corrective forces

F = {Ft ∈ R|V|×3}t∈[1,...,T−1]. Note that these vary across vertices and across time.

They can, in principle, account for any physical force that the simulator does not

explicitly model. In the following, we use the shorthand ϕ = {d, S,B, w,F}. We

next describe the objective function we use to optimise for the parameters ϕ of

the differentiable simulator.

5.2 Objective Function

We now have a physical deformation model that is parametrised by ϕ and that

outputs a 3D mesh St for time t. We solve for the optimal parameters ϕ∗ by

minimising the objective function E = Ep + λEs (with λ ∈ R):

ϕ∗ = argmin
ϕ

E(ϕ). (5.3)

Since we are only given RGB images for time t>1, we define a photometric

energy term Ep in the image space. Specifically, Ep is an ℓ1 RGB data term to

encourage photometric consistency between the reconstructed surface rendered

into 2D and the input frames:

Ep =
T∑
t=2

∥R(St,T)− It∥1, (5.4)

where R(·) is a differentiable renderer (Sec. 3.3) outputting a perspective pro-

jection of the input mesh (textured with T) onto the image plane with known
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5. METHOD: ϕ-SFT

intrinsics. We implement R with Soft Rasterizer (Liu et al., 2019), which intro-

duces useful gradients by composing probability maps of rendered triangles into

the final image. This allows us 1) to define Ep densely over all pixels, instead of

just the vertices; 2) use the information in the high-resolution T that would have

been ignored if we had used a photometric term only at the vertices.

While the photometric energy term works well for local corrections, it does

not provide a signal for mismatches that are farther apart in image space. To

get a signal even for larger, coarser errors, we add a silhouette energy term that

encourages consistency between the foreground segmentation mask of the input

frames and the rendered 2D surface:

Es =
T∑
t=2

∥G(Bt;σ)−G(B̂t;σ)∥1. (5.5)

Here, B and B̂ are the foreground binary segmentation masks of the reconstructed

and the input images, respectively. G(·, σ) represents a Gaussian filter of standard

deviation σ. The Gaussian filter smooths the binary masks, extending the spatial

area where informative gradients are obtainable. Without this Gaussian filter,

non-zero gradients would be obtained only at pixels located immediately next to

the silhouettes of both binary masks. Thus, if the silhouettes do not match almost

perfectly at a pixel, the gradient would be zero there, providing no signal to the

network as to the target direction to move the mesh’s triangles. Importantly,

both the ground-truth mask B and the rendered mask B̂ are processed in the

same way, ensuring that Es is well-behaved.

Given our model and the objective function, we next look at how we solve the

optimisation problem.

5.3 Optimisation

Our goal is to obtain the optimal physical parameters ϕ∗ via Eq. (5.3). We

use iterative, gradient-based optimisation to that end. Since both the simulator

PS and the renderer R are differentiable, we can back-propagate gradients from

the objective function E through the rendering to the meshes St and from there

further through the physics simulation to the physical parameters ϕ (see Fig. 5.2).

5.3.1 Initialisation

To obtain a sufficiently accurate initial guess for the elastic properties d, S, and

B, we set them to the average values of ten different real fabrics from Wang et al.

(2011). The wind and corrective forces F are initialised to 0, i.e., a zero vector.

Note that this initialisation leads PS to initially generate surfaces {St}t that are
identical to the template S1.
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5.4 Implementation Details

Figure 5.3: We use an adaptive scheme that initially optimises for the first five
frames, then keeps the energy of frame 5 as the threshold b, and then incrementally
adds the next frame whenever the energy of the latest active frame ta decreases
below b (or a maximum number of steps is reached).

5.3.2 Adaptive Optimisation Scheme

Since simulation is a temporal process, the physics parameters for the early frames

directly influence the reconstructions of the later frames. In addition, later frames

are initially reconstructed at lower fidelity than earlier ones. Therefore, similar

to tracking a surface, we exploit the temporal order of the frames and do not

optimise for all t≥1 from the start. Instead, we adaptively grow the temporal

window that is active, i.e., the latest time ta up to which all earlier frames t ≤ ta
participate in the optimisation. We start with the first five frames as active and

optimise E for them. Once the energy of the latest frame decreases below a

threshold b, we add the next frame to the optimisation, see Fig. 5.3. b is set to

the energy that the fifth frame has when the sixth frame is added. We assume

the fifth frame to be well-reconstructed since it is early in the sequence. (In

case the optimisation cannot reach the threshold, we set a maximum number of

iterations, after which we progress regardless.) This adaptive scheme speeds up

optimisation by converging to a reasonable guess for ϕ before later frames become

active. Moreover, it allocates more iterations to frames with more challenging

deformations. We evaluate this scheme experimentally in Sec. 6.3.

5.4 Implementation Details

We implement our approach in Pytorch (Ravi et al., 2020). Eq. (5.3) is solved

with optimiser Adam (Kingma & Ba, 2017) with learning rate 10−3. The adaptive
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5. METHOD: ϕ-SFT

optimisation scheme leads to several hundred iterations in most cases, which takes

between 16 and 24 hours on an Nvidia RTX 8000 GPU. Due to the sequential

nature of the simulator, we compute the objective function for all active times t

for each optimisation iteration. We set σ = 7px for Es. We apply the corrective

forces F by modifying the velocity of vertex i at time t: vit = vit + Fi
t (which is

a valid implementation because both mass and time step size are constant). We

keep the wind air density fixed at 1kg/m3 and optimise only for the wind velocity.

The images in our real scenes have resolution 1920×1080 pixels. For real

scenes (recorded with an RGB-D camera), pre-processing is more involved: We

first segment out the background from the captured images and point clouds

by depth thresholding. We next use Poisson surface reconstruction (Kazhdan &

Hoppe, 2013) on the template point cloud (at t = 1), which yields ∼300 vertices

on average. We then determine the initial rigid pose relative to a flat sheet (which

is required by the simulator) using iterative closest point (ICP) (Cignoni et al.,

2008), and initialise the simulator with it. The first image I1 is used as texture

map T. We obtain the corresponding texture parameterisation by projecting the

vertices of the template mesh S1 onto image space with known camera intrinsics.
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Chapter 6

Evaluations

In this chapter, we present evaluations of our method in different settings.

We evaluate our technique on real and synthetic data qualitatively and quanti-

tatively. We recorded the dataset (Sec. 4.1) of natural sequences using a monoc-

ular RGB camera together with the depth camera Azure Kinect. The latter

is used to obtain pseudo-ground-truth segmentations and deformations. More-

over, we generated a synthetic dataset (Sec. 4.2) of challenging deformations with

physics-based simulator (Liang et al., 2019). As ground truth meshes are known

and vertex correspondences are available across all frames, per-vertex geometry

and normal errors can be evaluated for synthetic data sequences. Qualitative and

quantitative results on real dataset (Sec. 6.1) and synthetic dataset (Sec. 6.2) show

our technique clearly outperforms state of the art by capturing a wider variety of

deformations and local folds. We also perform an ablation study in Sec. 6.3 that

demonstrates the importance of corrective forces and other design choices.

6.1 Real Sequences

6.1.1 Compared Methods

We compare our technique to SfT methods, namely Yu et al. (2015)’s Direct,

Dense, Deformable (DDD), Ngo et al. (2015)’s Ngo2015 and Shimada et al.

(2019)’s IsMo-GAN, and NRSfMmethods, Sidhu et al. (2020)’sNeural NRSfM

(N-NRSfM) and Parashar et al. (2020)’s Diff-NRSfM. Since NRSfM methods

accept 2D point correspondences, we track 2D points densely across the input im-

ages with multi-frame subspace flow (Garg et al., 2013b; MFSF), as suggested in

Sidhu et al. (2020). The first frame of the sequence is selected as a keyframe for

tracking. We provide DDD with the required hierarchy of coarse-to-fine templates

and Ngo2015 with the same template used by ϕ-SfT. Additionally, to support

the need for the physical simulation based on the parameters {d, S,B, w}, we
show the result of a baseline (“Only F”) where the only optimisation parameters

are the corrective parameters {Ft}t. As other physics parameters are completely
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6.1 Real Sequences

omitted, we implement this baseline as an optimisation of per-vertex offsets over

time. Note that this does not use physics simulator PS and therefore not physics-

aware.

6.1.2 Metric

Due to the possible scale and depth ambiguity, we globally align reconstructions

of all methods to ground truth in a rigid body fashion. We first determine the

transformation matrix using Procrustes alignment, which is further refined with

per-frame ICP.

For quantitative evaluation, we compute the Chamfer distance between the

pseudo-ground-truth point cloud from Kinect G and points M sampled from the

reconstructed mesh:

ChG,M =
1

|G|
∑
g∈G

min
m∈M

∥g −m∥22 +
1

|M |
∑
m∈M

min
g∈G

∥m− g∥22, (6.1)

We perform quantitative comparison with two evaluation settings: (a) using

Procrustes alignment on the reference frame, and (b) using per-frame ICP after

Procrustes initialisation. While Procrustes-only evaluation is sufficient to globally

align reconstructions of all methods to the ground truth, per-frame ICP improves

this alignment. We also note that using per-frame alignment introduces temporal

noise to the reconstructed sequences.

6.1.3 Results

We show qualitative reconstruction results for arbitrary frames on all real se-

quences in Fig. 6.1. ϕ-SfT deformation model reconstructs challenging surface

deformations well by capturing both coarse shape and local folds. Our physics-

based approach provides a reasonable prior for self-occluded surface parts (S3

and S4 in Fig. 6.1). See Fig. 6.3 for depth maps reconstructed by our approach.

This alternative way to visualise the results allows us to study and perceive even

smaller details on the reconstructed surfaces.

Figs. 1.2 and 6.2 show that ϕ-SfT outperforms related methods qualitatively.

Quantitatively, the 3D reconstruction error ChG,M of ϕ-SfT is an order of mag-

nitude lower compared to the tested methods when using single global alignment

(Tab. 6.1) and on average lower when using per-frame global alignment (Tab. 6.2).

Moreover, the reduction in ChG,M is lower for ϕ-SfT when moving from global to

per-frame alignment in comparison to all other methods (compare Tabs. 6.1 and

6.2). This suggests that our method is the most temporally coherent.

The results confirm that SfT and NRSfM, both relying on simple geometric

prior assumptions (such as surface smoothness, isometry or small local defor-

mations), cannot cope with such elaborate fold patterns as those present in our

26



6. EVALUATIONS

Figure 6.1: We show qualitative results on all real sequences. For the given
RGB image, the reconstructed mesh is visualised in the input camera view as
well as novel camera view. ϕ-SfT accurately reconstructs the coarse shape and
local folds.
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6.1 Real Sequences

Figure 6.2: Qualitative comparisons of several tested methods Ngo et al. (2015);
Parashar et al. (2020); Shimada et al. (2019); Sidhu et al. (2020); Yu et al. (2015),
including ϕ-SfT, for an arbitrary frame of real S1, S2, S4 and S5 sequences. Our
results are significantly more accurate and, unlike the other methods, capture the
folds well.

Seq. IsMo-GAN N-NRSfM DDD Diff-NRSfM ϕ-SfT

S1 91.90 101.19 52.31 155.43 16.64
S2 32.93 310.62 3.76 9.84 11.54
S3 47.88 183.23 10.15 71.94 6.99
S4 283.47 177.29 64.29 139.51 7.80
S5 267.86 446.54 110.28 153.34 9.85
S6 137.03 103.76 12.95 28.78 11.00
S7 113.11 195.16 65.18 88.25 9.22
S8 68.96 111.19 24.21 21.67 3.31
S9 76.88 37.06 36.36 48.56 2.86

Average 124.45 185.12 42.17 79.70 8.80

Table 6.1: We quantitatively compare our method to the state of the art on the
ϕ-SfT real dataset after Procrustes alignment on the reference frame. We measure
the Chamfer distance between the Kinect point cloud and points sampled from
the reconstructed meshes (and multiply by 104 for readability). By an order of
magnitude on average, our technique significantly outperforms all related methods
on all sequences, except for S2.
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6. EVALUATIONS

Figure 6.3: We show qualitative results as colour-coded depth maps on all real
sequences. For the given RGB image, the ground-truth depth map exhibits similar
features as our reconstructed depth. Both the coarse shape and local folds are
well captured.
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6.1 Real Sequences

Seq. IsMo-GAN N-NRSfM DDD Diff-NRSfM Ngo2015 Only F ϕ-SfT

S1 19.69 8.25 2.95 17.14 2.19 2.59 0.89
S2 22.18 33.62 1.69 4.46 1.51 1.60 2.75
S3 33.54 104.60 3.80 4.40 2.17 3.23 3.54
S4 90.30 77.02 25.73 41.37 15.90 14.95 7.80
S5 92.78 72.66 10.46 26.92 10.72 21.32 7.53
S6 57.62 8.73 6.97 14.02 3.01 3.08 6.20
S7 49.27 129.44 15.64 12.49 7.95* 6.03 4.73
S8 24.45 38.06 7.61 9.91 fail 3.78 2.52
S9 53.12 19.81 11.77 5.29 fail 4.39 2.36

Avg. 49.22 54.69 10.87 15.11 5.92* 6.77 4.26

Table 6.2: We quantitatively compare our method to the state of the art on the
ϕ-SfT real dataset after per-frame ICP alignment. We measure the Chamfer dis-
tance between the Kinect point cloud and points sampled from the reconstructed
meshes (and multiply by 104 for readability). Our technique outperforms all re-
lated methods on average. ‘*’ indicates that the method failed on few challenging
frames. We exclude these frames during error computation.

dataset. The results of N-NRSfM follow the silhouettes of the input images better

than DDD and IsMO-GAN, thanks to 2D point tracking, even though its ChG,M

is the highest, due to bad shape initialisation obtained under rigidity assumption

using Tomasi-Kanade approach (Sidhu et al., 2020; Tomasi & Kanade, 1992). Its

3D surfaces are somewhat rugged, and the surface pattern allows to recognise

the observed texture (third row in Fig. 6.2), again, due to the specifics of dense

2D point tracking. Moreover, we see that, as expected, more fine-grained tex-

tures result in more accurate 2D point tracking by the MFSF approach. It is

known that DDD cannot follow large deformations, and we observe that it does

not manage to track the silhouettes in our tests. IsMo-GAN, trained on rather

smooth surfaces, cannot reproduce local folds and barely captures the contours.

Diff-NRSfM produces reasonable reconstructions in smooth regions owing to its

differentiable structure preserving formulation. However, the method is sensitive

to noise in point correspondences and leads to visual artifacts in the case of chal-

lenging folds. Ngo2015 failed fully on two scenes and partially on S7, we thus

exclude the last few (challenging) frames from Ngo2015’s error on S7 in Tab. 6.2.

Ngo2015 struggles to faithfully reconstruct surfaces and often leads to noisy and

physically implausible results. Ngo2015 and DDD has better numbers on a few

scenes (S2, S3 and S6), but even on these we obtain better qualitative results

(Figs. 1.2 and 6.2 compares S3 and S2 respectively). This suggests that an isom-

etry prior (as in Ngo et al. (2015)) is insufficient compared to our physics-based

elastic model, which can even express non-isometric deformations (depending on

the parameters). When removing all forces from the model except for correctives

(F), the results degrade in quality and average error increases >50%, see “Only
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6. EVALUATIONS

Seq. IsMo-GAN N-NRSfM DDD Diff-NRSfM Only F ϕ-SfT

e3D en e3D en e3D en e3D en e3D en e3D en
S1 0.066 34.27 0.167 34.34 0.043 33.86 0.053 11.30 0.054 12.73 0.042 11.86
S2 0.077 45.11 n/a n/a 0.036 25.20 0.055 11.35 0.069 14.92 0.023 10.62
S3 0.096 36.72 0.113 26.36 0.066 42.16 0.077 17.59 0.059 15.83 0.033 9.12
S4 0.078 41.16 0.077 24.36 0.023 19.86 0.063 5.69 0.043 9.33 0.005 2.61

Avg. 0.079 39.32 0.119 28.35 0.042 30.27 0.062 11.48 0.056 13.20 0.026 8.55

Table 6.3: e3D and en after rigid alignment with per-frame Procrustes on our
synthetic scenes. Ours gives most accurate results.

F” in Fig. 6.2 & Tab. 6.2. The failure of this baseline demonstrates that accu-

racy of the ϕ-SfT model, in the extreme case, does not lie solely on the corrective

forces. In contrast to other methods and the baseline, ϕ-SfT estimates tempo-

rally coherent surfaces and captures all significant folds while missing only small

nuances.

6.2 Synthetic Sequences

6.2.1 Compared Methods

Similar to ϕ-SfT’s real dataset, we compare our synthetic dataset results to SfT

methods, namely Yu et al. (2015)’s Direct, Dense, Deformable (DDD) and

Shimada et al. (2019)’s IsMo-GAN, and the NRSfM methods Sidhu et al.

(2020)’s Neural NRSfM (N-NRSfM) and Parashar et al. (2020)’s Diff-

NRSfM. Since ground truth meshes are available in the case of synthetic dataset,

we compute ground truth 2D point correspondences as input to Diff-NRSfM and

Neural NRSfM (N-NRSfM). We provide DDD with the required hierarchy of

coarse-to-fine templates and Ngo2015 with the same template used by ϕ-SfT.

Additionally, we show the result of a baseline (Only F) where the only optimisa-

tion parameters are the corrective parameters {Ft}t.

6.2.2 Metrics

Since vertex correspondences are known across all surface states in the synthetic

dataset, we align reconstructions of all methods to ground truth in a rigid body

fashion using per-frame Procrustes.

As in previous methods (Ngo et al., 2015; Parashar et al., 2020; Shimada et al.,

2019; Sidhu et al., 2020), we use 3D error assuming known correspondences to

express the reconstruction accuracy on the new dataset:

e3D =
1

|T |
∑

t∈[1,...,T ]

∥Gt −Mt∥F
∥Gt∥F

(6.2)
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6.2 Synthetic Sequences

where Gt and Mt are the vertices of ground truth and reconstructed mesh, re-

spectively, and ∥·∥F denotes the Frobenius norm. To better capture the error

in local deformations, we additionally compute the per-vertex angular error in

degrees as

en =
180

π|T ||N |
∑

t∈[1,...,T ]

∑
i∈[1,...,N ]

cos−1(gi
t ·mi

t) (6.3)

where gi
t and mi

t are the unit normals at the ith vertex in frame t of the ground

truth and reconstructed mesh, respectively.

6.2.3 Results

Figure 6.4: We show qualitative results on all synthetic sequences. For the given
RGB image, the ground truth mesh and reconstructed mesh are visualised in
the input camera view. ϕ-SfT accurately reconstructs physically plausible and
accurate surfaces.

Figure 6.5: Qualitative comparisons of several tested methods Parashar et al.
(2020); Shimada et al. (2019); Sidhu et al. (2020); Yu et al. (2015), including
ϕ-SfT, for an arbitrary frame of synthetic S1 and S4 sequences. Our results are
significantly more accurate and, unlike the other methods, is physically plausible.
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6. EVALUATIONS

In Fig. 6.4, we show qualitative results on all synthetic sequences. ϕ-SfT ac-

curately reconstructs physically plausible and accurate surfaces. Fig. 6.5 shows

that ϕ-SfT outperforms related methods qualitatively, similar to the observations

on real dataset. This demonstrates that SfT and NRSfM, both relying on simple

geometric prior assumptions, struggle to estimate physically plausible surfaces.

We also note that Diff-NRSfM performs better on our synthetic dataset as op-

posed to real sequences, as the deformations here are global and smooth (see

Fig. 6.5).

We refer to Tab. 6.3 for mean vertex error, e3D, and mean angular normal

error in degrees, en, on our synthetic data with per-frame Procrustes using ground

truth correspondences. We outperform others on all synthetic sequences, except

for Diff-NRSfM with en on S1. Since vertex correspondences are available in the

case of synthetic dataset, this allows for more faithful alignment as well as better

metric, i.e., per-frame Procrustes over per-frame ICP and e3D, en over ChG,M . As

shown in Tab. 6.3, our method has lowest average e3D suggesting it reconstructs

global deformations and lowest average en suggesting we also better capture local

folds.

6.3 Ablative Study

Figure 6.6: In the ablative study, we remove corrective forces, the adaptive
scheme, or the silhouette energy term. The corrective forces are the most crucial
component to make our method work.

We conduct an ablative study on the various design choices we made to in-

tegrate the physics simulator into the SfT setting and test the following modes:

1) Operation without corrective forces F, 2) Influence of the adaptive training

by considering all frames from the start (Sec. 5.3), and 3) Disabling the silhou-

ette term (5.5). We evaluate several sequences on the real dataset and report

the Chamfer distance against pseudo ground truth in Tab. 6.4. We observe that

omitting F always leads to a significant increase in the error, and abandoning our

adaptive training policy increases it by a factor of two. Fig. 6.6 shows qualitative

results. Qualitative visualisations confirm the statistics over all sequences, i.e.,
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6.3 Ablative Study

Sequence w/o Es w/o F w/o adaptive Full

S1 16.64 59.10 18.01 16.41
S2 11.54 27.76 22.08 12.93
S3 6.99 28.21 14.76 10.59
S4 9.05 84.30 16.75 7.80
S5 9.85 118.65 12.83 9.09
S6 11.00 26.30 13.58 11.00
S7 9.22 63.76 9.1 7.82
S8 4.74 13.92 4.11 3.31
S9 3.23 28.87 5.76 2.86

Average 9.14 50.10 15.12 9.09

Table 6.4: We evaluate the various design choices of our method by removing
the silhouette energy term, the external forces, and the adaptive optimisation
scheme. Here, we compute the Chamfer distance between the Kinect point clouds
and points sampled from the reconstructed meshes after Procrustes alignment on
the reference frame (and multiply by 104 for readability). We use sequences from
the new ϕ-SfT real dataset.

the largest errors are present in the colour-coded error maps when F is disabled.

The second most crucial component of ϕ-SfT is the adaptive training strategy

which is vital when addressing the inverse problem of SfT (but which might not

be as useful in 3D simulations, i.e., when solving a direct problem). Note that Es

helps when the structure deforms and changes its shape in the re-projection sig-

nificantly. This is the case for most sequences, however sequence S3 for instance,

(Fig. 6.2, Tab. 6.4) has less global deformations and significant local fold, in which

case Es isn’t very helpful. Also, Es is susceptible to error in input segmentation

whereas the photometric energy Ep is robust to the same. We note that our

method is not sensitive to initialisation of physical parameters. We empirically

find no issue with always initialising with our default material.
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Chapter 7

Applications

In this chapter, we show a few applications of our method, that highlight the

advantages of ϕ-SfT’s surface deformation formulation. We demonstrate that

the optimised physical parameters are meaningful and inferred well enough to

enable intuitive editing.

7.1 Semantic Material Editing

Figure 7.1: We show semantic controllability of surface material by scaling opti-
mised stretching stiffness S (top row) and bending stiffness B (bottom row). The
deformations introduced in coarse shape and local folds suggest that intuitive
editing is possible.

ϕ-SfT parameterises the material elasticity of non-rigidly deforming surface

with density d, stretching stiffness S (resistance to stretching) and bending stiff-

ness B (resistance to bending). These parameters describe the behaviors char-

acteristic of real cloth materials as explained in Sec. 3.1. Given a monocular

sequence of deforming surface, ϕ-SfT allows optimising for material {d, S,B}
which uniquely describes the deformations along with optimised forces {w,F}.
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7.2 Intuitive Surface Animation

Given optimised physical parameters ϕ∗, we aim to generate new deformations

at test-time by modifying the inferred material parameters. To this end, we

run physics simulation by scaling stretching stiffness S while re-using the other

physical parameters {d∗,B∗, w∗,F∗}. In Fig. 7.1, we visualise an example where

S is scaled by factors of 1
20
(most compliant), 1

10
, 1, 10 and 20 (most resistant).

Similarly, we scale bending stiffness B by factors of 1
10
(most compliant), 1

5
, 1, 5

and 10 (most resistant) as shown Fig. 7.1. The results demonstrate that ϕ-SfT’s

estimation of material parameters not only describes the underlying surface, it

additionally allows for semantic control over the reconstruction.

7.2 Intuitive Surface Animation

Figure 7.2: We generate new animation at test-time by modifying the inferred
corrective forces. By specifying external forces Fext on the top corner vertices, we
obtain an animated reconstruction (bottom row) that seamlessly integrates the
original deformation (middle row) with the new forces. The animation result is
physically plausible, smooth and intuitive.

Alongside elastic model for cloth, ϕ-SfT models the deformations using wind

and corrective forces {w,F}. Given optimised physical parameters ϕ∗, we can gen-

erate new deformations at test-time by modifying the inferred corrective forces.

As an example, we create an animated version of the reconstruction by applying

external forces on the two upper corners as shown in Fig. 7.2. This is achieved by

running a physics simulation with optimal physical parameters {d∗, S∗,B∗, w∗}
and F = F∗ + Fext where Fext is the force applied on the two upper corner ver-

tices over all frames. For instance, this could be the additional hand motion. The

animation result is physically plausible, smooth and intuitive.
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Chapter 8

Discussion and Future Work

In this chapter, we discuss the limitations of our method and possible ways to

mitigate them. We also briefly discuss the high-level observations across multiple

experiments and the possible future directions for this project.

8.1 Limitations

Figure 8.1: We find that few synthetic sequences incorrectly fold at surface cor-
ners due to the inherent problem of depth ambiguity in monocular reconstruction.
Notice that reconstructed mesh folds outwards in the lower left corner, whereas
the ground truth mesh folds inwards in the same region.

Depth Ambiguity

Depth ambiguity is an inherent problem in monocular 4D surface reconstruction.

Our physics-aware model provides reasonable prior for plausible and accurate

reconstruction of deforming surface. However, in some cases, the method may

incorrectly reconstruct the bending corners/edges as shown in Fig. 8.1 when the

optimisation process gets stuck in local minima. We notice this limitation in the

case of synthetic data sequences as it uses perfectly flat template. In the case of
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8.1 Limitations

Figure 8.2: As the runtime of physical simulator is high (16 hours for optimising
a single sequence), we use lower resolution for reconstructed mesh. This limits
the reconstruction accuracy as we cannot capture very fine wrinkles (top region
of input RGB image) even though we capture local folds.

real dataset sequences, slight deformation in the template is already helpful in

convergence.

Longer Optimisation Times

The runtime of our approach is comparably high, for e.g., we require twice as long

compared to N-NRSfM (Sidhu et al., 2020). This is due to single-threading when

resolving collisions in the physics simulator; this can be improved with engineering

and parallelisation in the future. We use lower resolution template meshes for all

sequences, with 300 vertices as it is not feasible to optimise model parameters

with higher resolution meshes. This limits the reconstruction accuracy as we

cannot capture very fine wrinkles, as shown in 8.2. However, note that our

photometric energy is defined densely over all pixels, instead of just the vertices,

and thus uses the information in high-resolution texture map. Therefore, the

lower number of vertices do not hurt the ϕ-SfT’s ability to capture folds.

Missing Information about Environment Map/Light Sources

In the case of real dataset, the method has no prior knowledge of lights in the

recording environment. PyTorch3d only supports a single light source, which

differs from the environment where the cloths were recorded. We use the RGB

image of the first frame as texture map for rendering during optimisation. This

can neither account for shadows and nor the transparency of the real clothes.

There is, therefore, a systematic mismatch between the rendered images and

the input images during training. ϕ-SfT nevertheless achieves high accuracy,

as we empirically find our differentiable rendering loss is robust to moderate

photometric discrepancies.
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Modelling Limitation of the Physics Simulator

Moreover, in theory, even more sophisticated physics simulators could be imple-

mented, which could take into account more physical laws (e.g., wind turbulence

or electrostatic forces). Such requirements depend on downstream applications

such as game design, movie production or industrial quality control.

8.2 Discussion

Existing methods on monocular 3D reconstruction focus predominantly on large

and global deformations. As ϕ-SfT aims to recover fine local surface deformations

in the challenging non-rigid category of clothes, we create new real and synthetic

datasets to serve this need.

In the qualitative results on both the datasets, we observe that ϕ-SfT model

reconstructs challenging surface deformations and leads to physically plausible

results. Our approach is significantly more accurate than related methods (Ngo

et al., 2015; Parashar et al., 2020; Shimada et al., 2019; Sidhu et al., 2020; Yu

et al., 2015) and supports finer-scale local folds, which is demonstrated on a wider

spectrum of deformations in extensive experiments (see Sec. 6). Quantitatively on

real dataset, the 3D reconstruction error ChG,M of ϕ-SfT is an order of magnitude

lower compared to the tested methods when using single global alignment and

on average lower when using per-frame global alignment. We outperform others

on synthetic dataset as well, when evaluating mean vertex error, e3D, and mean

angular normal error in degrees, en, after per-frame Procrustes using ground truth

correspondences. We observe that our method has lowest average e3D suggesting

it reconstructs global deformations and lowest average en suggesting we also better

capture local folds. The results confirm that SfT and NRSfM, both relying on

simple geometric prior assumptions (such as surface smoothness, isometry or

small local deformations), cannot cope with such elaborate fold patterns as those

present in our dataset. When removing all forces from the model except for

correctives (F), the results degrade in quality and average error increases >50%.

The failure of this baseline demonstrates that accuracy of the ϕ-SfT model, does

not lie solely on the corrective forces, but rather on the internal forces due to

the material elastic modelling. In contrast to other methods and the baseline,

ϕ-SfT estimates temporally coherent surfaces and captures all significant folds

while missing only small nuances.

The reasons for the better performance of our method are manifold. First, our

approach explicitly models the physical fold formation process, and its parameters

are hence physically meaningful. Our differentable physics simulation approach

acts as a regulariser, provides a reasonable prior for self-occluded surface parts

and can even express non-isometric deformations. Second, differentiable renderer

ensures that the reprojections of the recovered 3D states accurately match the
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observed images. In contrast to earlier photometric terms used for SfT (Yu et al.,

2015), using differentiable rendering allows us for the first time to define the

reprojection error densely per pixel and not only per vertex. Thus, we exploit the

rich information present in the texture regardless of the mesh resolution.

Limitations We do not address accurate inference of deformation forces and

cloth materials due to the inherent force-elasticity ambiguity, however they are

inferred well enough to enable intuitive editing (see Sec. 7). Also, note that

our method takes significantly longer to optimise compared to the competing

methods, with differentiable physics simulation being the computation bottleneck.

8.3 Future Work

Given the novelty of our work and the demonstrated improvements over SOTA,

we see significant potential to provoke further research.

Physically-Aware 3D Reconstruction of Humans in Cloth-
ing

While we do not target complex objects or new scenarios, such as the separate field

of cloth simulations for virtual dresses, this can be an interesting future avenue.

As this being more challenging setup than ours, we can use for additional super-

vision from depth signals and/or optical flow estimated by off-the-shelf methods.

Owing to ϕ-SfT’s analysis-by-synthesis approach that uses differentiable render-

ing, incorporating these additional energies as soft constraint is straightforward.

Monocular 3D Reconstruction of Volumetric Non-Rigid Ob-
jects

In this work, we demonstrated using physics simulation as a regulariser for clas-

sical SfT. We can extend ϕ-SfT model to the reconstruction of deformable solids.

Similar to triangular mesh for surfaces, we can use tetrahedral parameterisation

for volumetric objects. It is possible to use physical models such as the Neo-

Hookean model of Smith et al. (2018) that provides parameters to control the

tetrahedral element’s resistance to shearing and volumetric strains. These may

be specified on a per-element basis, further allowing to represent heterogeneous

materials.

Supervised Learning

As we propose an end-to-end differentiable framework for optimising physical pa-

rameters, we can use this in supervised setting for learning-based tasks. Monoc-

ular 4D cloth reconstruction can be coupled with deep learning to solve problems
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8. DISCUSSION AND FUTURE WORK

such as detail refinement, garment retargeting, and material estimation. For in-

stance, in an extension to Li et al. (2021)’s human performance capture with

cloth deformation, hard physics-based constraints can be imposed to refine geo-

metric details at test time.
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Chapter 9

Conclusion

We introduced ϕ-SfT, a new optimisation-based SfT method that models de-

formations with a physical simulator and uses differentiable rendering to define

a reprojection energy term over all pixels, exploiting texture information inde-

pendent of the mesh resolution. As existing methods reconstruct predominantly

global deformations, there are no datasets of scenes with local folds. We therefore

create new real and synthetic datasets of the clothes, since they belong to the

most challenging class of non-rigid objects. Experiments on the new real and

synthetic datasets demonstrate that our approach improves the reconstructions

qualitatively and quantitatively by a significant margin over competing techniques

of several method classes. Especially remarkable is ϕ-SfT’s accuracy in folded

surface regions. This is due to awareness of the physical fold formation process

attributable to the elastic properties of the materials and forces acting on them.

Additionally, we showed that our physical modelling enables intuitive scene edit-

ing by modifying optimised material elasticity and acting forces. One of the

limitation of ϕ-SfT is it’s high runtime for optimisation attributable to the back-

propagation through physics simulation. We believe that the proposed technique

has a high potential for future research, and we hope to see more improvements on

physically principled methods for monocular non-rigid 3D reconstruction. More-

over, we plan to generalise our model to complex objects or new scenarios, such

as physically plausible and accurate reconstructions of humans in clothing.
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