Index of /~pmiettin/nassau
Name Last modified Size Description
Parent Directory -
nassau.tar.gz 2015-03-10 13:02 474K
README.txt 2015-03-10 13:03 3.1K
% If you use this code, please cite
% Sanjar Karaev, Pauli Miettinen and Jilles Vreeken, "Getting to Know the Unknown Unknowns:
% Destructive-Noise Resistant Boolean Matrix Factorization". Proceedings of SIAM
% International Conference on Data Mining (SDM15). 2015.
% --------------------------------------------------------------------------
%
% To start please first run 'setpath' command.
% --------------------------------------------------------------------------
% For a given binary matrix A Nassau finds its Boolean decomposition into
% factors [B, C] by heuristically minimizing the description length.
%
% --------------------------------------------------------------------------
% Usage:
% [B, C] = Nassau(A)
% [B, C] = Nassau(A, param1, value1, ..., paramN, valueN)
% Optional parameters:
% verbose: 1 - on, 0 off
% n_full_cycles # full round robin updates of the blocks.
% cyclic_interval how often to run cyclic updates during block
% finding stage
% MAX_ITERS_WITHOUT_IMPROVEMENT how many blocks can we add without
% improving the objective
% DLmeasure encoding to use, options: DtMtypedXor,
% DtMnaiveXor, typedXor
% init_temp Initial temperature for the simulated
% annealing (0 <= init_temp <= 1)
% mult_factor multiplicative update to th temperature
% cand_gen how to generate candidates, options:
% orginal - use column of the input matrix,
% asso - use Asso candidates
% random_walks - generate from random walks
% file_id save intermediate results to
% ./results/file_id (no saving by default)
% tau thresholding parameter when using Asso
% candidates
% save_cand save candidates for this matrix, 1 - save,
% 0 - not (default)
% cyclic_updates periodically run cyclic updates during
% the block finding stage, 1 - yes
% (default), 0 - not
% expand_factors before cyclic updates, pad the factors
% with
% some empty blocks to allow room for
% improvement, 1 - yes (default), 0 - not
% error_nnz use 0-1 error as the score, 1 - yes,
% 0 - not (default)
% cand_ratio do not generate all candidates, but only
% fraction (0 < cand_ratio <= 1), 1 -default
% accept_all_cands do not remove candidates even if they
% have to many or to few 1s, 1 - yes,
% 0 - not (default)
% --------------------------------------------------------------------------
% The SYNTH command reruns all the synthetic experiments
%