
faimGraph: High Performance Management of
Fully-Dynamic Graphs under tight Memory

Constraints on the GPU
Martin Winter∗, Daniel Mlakar∗, Rhaleb Zayer†, Hans-Peter Seidel† and Markus Steinberger∗†

∗Graz University of Technology, Austria
Email: {winter, mlakar, steinberger}@icg.tugraz.at
†Max Planck Institute for Informatics, Germany

Email: {rzayer, hpseidel}@mpi-inf.mpg.de

Abstract—In this paper, we present a fully-dynamic graph data
structure for the Graphics Processing Unit (GPU). It delivers
high update rates while keeping a low memory footprint using
autonomous memory management directly on the GPU. The
data structure is fully-dynamic, allowing not only for edge
but also vertex updates. Performing the memory management
on the GPU allows for fast initialization times and efficient
update procedures without additional intervention or reallocation
procedures from the host. Our optimized approach performs
initialization completely in parallel; up to 300x faster compared
to previous work. It achieves up to 200 million edge updates per
second for sorted and unsorted update batches; up to 30x faster
than previous work. Furthermore, it can perform more than
300 million adjacency queries and millions of vertex updates per
second. On account of efficient memory management techniques
like a queuing approach, currently unused memory is reused later
on by the framework, permitting the storage of tens of millions
of vertices and hundreds of millions of edges in GPU memory.
We evaluate algorithmic performance using a PageRank and a
Static Triangle Counting (STC) implementation, demonstrating
the suitability of the framework even for memory access intensive
algorithms.

Index Terms—Parallel programming, GPU, Massively parallel
algorithms, Dynamic graphs

I. INTRODUCTION

Dynamic graphs are commonly used to model and analyze
the large ever-changing data arising across multiple fields. This
includes communication networks, where vertices model mobile
devices with the connections between them or cell towers
represented by edges; social-media networks, where vertices
may represent people with edges indicating friend relationships;
and intelligence networks, where vertices model agents with
edges highlighting their interactions. In combination with the
rise of big data, there is an immanent need for highly efficient,
dynamic graph data structures that support millions of vertices
and edges, which can change constantly.

As the modern Graphics Processing Unit (GPU) becomes
ever more ubiquitous and comparatively inexpensive, the GPU
seems predestined to deal with this large-scale problem domain.
Leaving aside the cost factor, the turn to massively parallel
architectures like the GPU is also justified by limitations of
hardware manufacturing: In the past, it was expected that

every new hardware generation increases its clock speed and
transistor count. Although the transistor count keeps growing
exponentially, the clock speed has hit the so-called power
wall [1]. Consequently, a significant speed-up is only possible
by exploiting parallelism. This trend towards rapid increases
of core counts can especially be observed on the GPU, where
new generations increase core counts by multiple thousand.

In general, the GPU has gained a lot of traction as a
general purpose processor. Its Single Instruction - Multiple
Data (SIMD) processing model lends itself to problems with
high data parallelism, which is typical also in graphs, especially
as they increase in size. Furthermore, the throughput-oriented
architecture of the GPU also fits the graph domain well. Since
most graph algorithms are comprised of simple operations that
have to be performed on millions of objects, the GPU seems
like an ideal candidate. Thus, it is not surprising that various
static graph libraries target the GPU [2]–[6].

However, dynamic memory management for a large number
of entities—as required for dynamic graphs—is challenging on
the GPU. The GPU performs best, when memory requirements
and layout are known beforehand to allow appropriate optimiza-
tions. Especially changing memory requirements are difficult
to handle. Typically, memory allocation on the GPU is handled
by the Central Processing Unit (CPU), which disrupts parallel
execution on the GPU. While efficient memory allocation
already forms an issue for dynamic GPU execution, freeing
memory is an even bigger challenge: As many small memory
deallocations yield large overheads, freed memory is often
simply not returned to the system. Over time, such strategies
lead to memory fragmentation, reduce the available memory,
and ultimately lead to system failure as it runs out of memory.

Furthermore, unbalanced graphs lead to an unbalanced
work loads. As the structure of dynamic graphs continuously
changes, load balancing strategies also need to adapt to
achieve high performance. Thus, performing load balancing
with performance influencing factors in mind, like thread
divergence on the SIMD cores of the GPU and memory locality,
becomes an even more challenging task for dynamic graphs.
Probably due to these issues, the number of dynamic graph
frameworks for the GPU is very limited, namely, aimGraph [7],

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 c©2018 IEEE

cuSTINGER [8], GPMA [9] and the upcoming Hornet [10].
None of these support fully dynamic graphs, but consider
the graph’s vertices fixed and only support dynamic edge
data and/or updating individual properties of existing vertices.
Furthermore, their memory management strategies worsen over
time, leading to lavish use of memory or even system failure.

With our approach, faimGraph, we tackle these issues,
presenting a fully dynamic GPU framework for large dynamic
graphs, which is completely GPU-autonomous, reclaims and
reuses all freed memory, and reduces fragmentation to a
minimum for both vertex and edge data. To achieve these
goals, we introduce an advanced dynamic memory management
system for the GPU tailored to graphs, which uses efficient
queuing structures to reassign memory directly on the GPU
in O(1). Although more complex data management naturally
increases memory access times, our framework achieves equal
or better performance throughout both memory management
routines and algorithms executing on top of the graph structure.

II. RELATED WORK

Related work on graph data structures for the GPU can be
categorized into static graph libraries, dynamic graph libraries,
and GPU adapted implementations of graph algorithms.

A. Static Graph Frameworks on the GPU

There exists a variety of static graph data structures on the
GPU: nvGraph [2] (NVIDIA Graph Analytics library) offers
implementations of three widely-used algorithms, supporting
up to two billion edges (using an NVIDIA Tesla M40 with 24
GB). BlazeGraph [3] offers a high-performance graph database,
using its own domain-specific language, DASL, to implement
advanced analytics. BelRed [4] addresses the problem that
manual effort is often required to build graph application on
the GPU. They introduce a library of software building blocks
which can be combined to build graph applications. Gunrock [5]
is a Compute Unified Device Architecture (CUDA) library for
graph processing using highly optimized operators for graph
traversal while achieving a balance between performance and
applicability. GasCL [6], a vertex-centric graph model for
the GPU, written in Open Computing Language (OpenCL),
supports the “think-like-a-vertex” programming model.

While all these libraries achieve high performance for static
graph algorithms, they do not consider dynamic changes of
graphs. Thus, directly using any of these frameworks for
dynamic graphs, would require a complete reallocation of
the graph whenever any part of the graph changes. This is
obviously not sustainable as graphs are changing often and
therefore specialized solutions for dynamic graphs are required.

B. Dynamic Graph Frameworks on the GPU

At the time of writing, there exists only two published
(apart from aimGraph [7]) frameworks for dynamic graphs
on the GPU: cuSTINGER [8] and GPMA [9]. Furthermore,
Hornet [10], the successor of cuSTINGER, is currently in
development. GPMA [9] supports efficient stream updates on
graphs and is suitable for high-speed analytical processing. The

main feature of their approach is the implicit sorting of the
adjacency data, which results from the use of an adapted Packed
Memory Array (PMA) scheme. This is beneficial for algorithms
that can exploit shortcuts on sorted adjacency data. Their
downside is a significantly increased memory consumption
compared to straight-forward arrays and the additional effort
required during reallocation as the PMA is rebuilt.

cuSTINGER [8] is a GPU-adaptation of STINGER [11]
and its internal memory manager [12]. Although cuSTINGER
targets the GPU, many management tasks still require the CPU.
Foremost, when a vertex adjacency has no space left, the CPU
allocates new GPU memory and copies over the old data. To
reduce the probability of costly CPU operations, cuSTINGER
over-allocates all adjacency structures and does not free unused
adjacencies. This leads to high memory fragmentation and
memory waste, and over time potential system failure.

aimGraph [7] is similar to cuSTINGER as it also only sup-
ports static vertex data and can only grow adjacencies of each
vertex. Its advantage is an autonomous memory management on
the GPU, avoiding CPU round trips when adjacencies run out
of memory. Due to the increased performance during allocation,
it can get away with less overallocation while achieving similar
or better performance than cuSTINGER.

In summary, the aforementioned libraries all require signifi-
cant additional memory, potentially costly round-trips to the
CPU, and may run out of memory over time. Furthermore, no
framework supports dynamic vertices. Our work addresses all
of these points, forming a first GPU framework for completely
dynamic graphs that can run autonomously from the CPU
and is able to hold much larger graphs, especially considering
long-term use cases with highly volatile graph structures.

C. GPU Graph Algorithms

While a dynamic graph representation is certainly an impor-
tant goal, algorithmic performance on top of the representation
is as important. Among standard graph algorithms are graph
metrics, many of which have been implemented on the GPU.
These include triangle counting [13], [14], which can be used to
find key players in a network based on their local connectivity;
PageRank [15], which measures the importance of web pages
according to the links to a page, connected components [16],
single-source shortest path [17], the betweenness centrality [18],
[19], and community detection [20]. To display the suitability
of our framework for memory-intensive algorithms, we test
the performance for PageRank and triangle counting.

III. FAIMGRAPH

In the following section we discuss the design of faim-
Graph (fully-dynamic, autonomous, independent management
of graphs). We focus on the core contributions, which are
a tight memory model building on the reuse of memory by
utilizing queuing structures, dynamic changes of vertex and
edge data, as well as high performance update implementations
and algorithms running on top of the graph.

memory manager

vertex 01

vertex 02

page 01

page 02

stack

vertex queue

page queue

index

queue

edges

AOS

edges

SOA

vertex

data

index empty empty empty empty empty index index index

frontback

next page

destination weight

destination

weight

destination

weight

destination

weight

destination

weight

destination

weight

destination

weight

destination

weight

destination

weight

destination

weight

destination

weight

lock
page

index
neighbours capacity weight

host

identifier

next page

Fig. 1: Visualization of the device memory layout as managed by the memory manager for a weighted graph, displaying both
available edge data layout options.

A. Memory Management

The central idea of faimGraph is performing all memory
management directly on the GPU, requiring only a single
allocation of a large block of memory to avoid round-trips to
the CPU. This block serves all memory requirements for the
graph structure itself as well for algorithms running on top
of the graph. During initialization, faimGraph prepares this
memory, as shown in Figure 1, to support dynamic assignment
and reassignment using queuing structures to keep track of
unused memory. A memory manager is used to keep track of
individual memory sections and current graph properties, like
number of vertices/edges, free pages, and unused vertex indices.
The majority of the memory is used by dynamically allocated
vertex data and pages for edge data. Both regions grow from
opposite sides of the memory region, to not restrict the ratio
between vertices and edges. Temporary data (updates or helper
data structures) can be placed in a stack which is followed
by two queuing structures for reclaiming freed vertices and
edge pages. Since the complete addressing scheme uses relative
indices, the framework can also be started with conservative
memory bounds, as in most cases reinitialization is possible
directly from old faimGraph to new faimGraph just building on
just two memcpy’s on the device directly. If resources are even
more scarce, reinitialization also can be performed (at a higher
cost) from device CSR, host CSR or even host faimGraph.

B. Queues

The core entity for memory reclamation are the index queues
used to store freed vertex indices and pages. Whenever a vertex
is deleted or a page is freed, its index is pushed into the
respective index queue. During resource allocation, threads
at first attempt to pop a free element from the queue and
only if that fails, increase the vertex or page region. Using
this approach, changes in growth in the graph do not affect
the required memory as much as previous approaches would
have, as a graph can grow in specific areas and shrink back in
others. Furthermore this allows for O(1) allocation of vertices
as well as pages. For efficiency, we use array-based queues,
which operate on top of a ring buffer of indices. The queues
must support concurrent access from thousands of threads and

efficient queries for empty states. Thus, we use a front and
back pointer as well as a fill counter for each queue, similar to
the broker queue [21]. Threads at first test the fill counter to
determine whether there are elements in the queue. Only then,
they atomically move the pointers to retrieve a queue element.
As the entries in the queues are simple indices, we use atomic
compare-and-swap (CAS) to insert or remove elements from
the queue while using an empty flag to avoid read-before-write
and write-before-read hazards.

C. Graph Data
1) Vertex Data: Other approaches, such as aimGraph [7]

and cuSTINGER [8] consider vertex data as static. However,
dynamic graphs may require the ability to add or remove
vertices from the graph. While a static vertex management can
follow a Structure of Arrays (SOA) approach to enable efficient
memory access to this data on the GPU, such an approach
interferes with the concept of dynamic data distribution between
vertex and edge data (one would have to choose a fixed array
size to place the arrays after each other in memory). Thus, we
store vertex data as a dynamically growing Array of Structures
(AOS). Furthermore, individual structures in this array can be
freed and reclaimed through the vertex queue.

Depending on the graph type, vertices may require different
parameters. As the memory management is not bound to a
specific vertex size, each vertex can hold as many parameters
as the application requires. Allocation of new vertices can be
achieved in O(1), the procedure first queries the vertex queue,
thereby reusing freed indices from previous deallocations. If
the queue does not hold any available data, we simply increase
the dynamic array using an atomic fetch-and-add (ADD) on
the vertex array size. Deleting a vertex includes deleting all
edges referencing this vertex and returning its index to the
vertex queue for later reuse. Keeping all vertex data next to
another in memory has the advantage that simple indices can
be used to reference vertices. The vertex’ identifier used on the
CPU is not bound to the memory location the vertex is stored
at, we report a mapping between the host identifier and the
device identifier back to the CPU. Additionally, when storing
vertices sequentially, algorithms iterating over vertices show an
efficient memory access pattern and better caching behaviour.

2) Edge Data: Allocating individual vertices is reasonable
as there is usually no direct commonality between different
vertices and memory requirements can be kept as low as
possible. This strategy makes less sense for edges as there are
usually many edges originating from the same vertex, which
will often be iterated sequentially. Thus, edge data is placed
on pages of a fixed size and multiple pages form a linked list
of edges for every vertex, to dynamically adjust the size of the
adjacency. This approach can be seen as a combination of a
linked list and an adjacency array, yielding memory locality
for edges within a page. At the same time, this strategy avoids
reallocation of the whole adjacency if augmentation is required,
by simply adding/removing a page to/from the linked list.

Pages can also be deallocated by returning a free page index
to the page queue for later reuse. The page size forms a trade-off
between overallocation and efficiency. A smaller page allows
for a tighter bound closer to the actual number of adjacencies
of a vertex, while a larger page size allows for more efficient
traversal of the edges. At the same time, a too small page size
also increases the number of pointers to the next page (we
simply use the last four bytes on each page). Thus, the most
suitable page size is application dependent and can be chosen to
fit different scenarios. For all our experiments, we chose a page
size of 64 Bytes (which coincides with the memory alignment of
cuSTINGER and provides a good balance between performance
and overallocation per adjacency for simple graphs). For the
adjacency data itself, we support two memory layouts, of
which either may achieve better performance depending on the
traversal characteristics of the graph algorithms. If multiple
properties per edge are required, the AOS approach provides
better memory access characteristics. On the other hand, if
just a single property is queried, using SOA is advantageous.
Such properties include at least the destination vertex (simple
graphs), weights (weighted graphs) and a timestamp (semantic
graphs). For simple graphs, AOS and SOA are identical.

D. Vertex Updates

It is typical for graph structures to refer to vertices by their
indices in memory, which alleviates look up procedures to
locate vertices. This increases the cost of updates as a mapping
procedure is required that maps an arbitrary vertex identifier on
the CPU to an index on the GPU. Moreover, deleting vertices
also has to be reflected in the adjacency data by removing all
entries referencing said vertices. While edges are organized as
a linked list of pages which support locking, all vertices are
organized in the same pool of memory and need to be updated
in parallel to achieve high performance.

1) Vertex Insertion: Vertex insertion is based on a four step
approach to achieve parallel insertion, starting by sorting the
update data batch, as can be seen in Algorithm 1. The next two
steps are concerned with duplicate checking while the fourth
performs the insertion itself. Duplicates can occur within a
batch of to-be-inserted vertices and with vertices already present
in the graph. Duplicates with the graph are non-trivial to find
due to the mapping between CPU and GPU vertex identifiers.
It would be very inefficient to search the entire GPU vertex

structure for each to-be-inserted vertex. Thus, we propose a
reversed duplicate check with the graph vertices. Given that
the batch of to-be-inserted vertices is already sorted, searching
in the batch is rather efficient. Thus, we start one thread for
each graph vertex, which looks up its mapping from GPU to
CPU identifier and performs a binary search on the sorted to-
be-inserted vertices. If a duplicate is found, it is simply marked
in a helper data structure to not hinder the subsequent checking
step. Next, duplicate checking within the batch is performed
and one thread for each entry is started. Each thread checks
its batch successor and if a duplicate is found, simply marks it
as a duplicate directly in the batch and continues as long as it
finds duplicates in successive order. As the batch is sorted, this
leaves only the first element of multiple duplicates remaining.
After both steps, the helper data structure is synchronized with
the edge update batch, removing duplicates with the graph
from the batch as well. The actual vertex insertion process
is straightforward: The framework starts by acquiring a new
device index and a new page index for each valid vertex update.

Algorithm 1: Vertex Insertion
Data: Vertex Update Batch
Result: Vertices inserted into graph

1 Copy Vertex updates onto stack;
2 if sorting enabled then
3 thrust::sort(vertex updates);

4 d duplicateCheckingInBatch (vertex updates);
5 d reverseDuplicateCheckingInGraph (vertex updates, graph);
6 d vertexInsertion (vertex updates, graph);
7 Copy mapping back to host;
8 if sorting enabled then
9 Copy vertex updates back to host;

Both first contact the respective queues for previously deleted
indices. If a queue is empty, the memory manager supplies fresh
indices. Then, the vertex is set up using the update data and
the adjacency page is inserted. Finally, the new mapping from
host identifier to device identifier, i.e., each vertex’ position in
the vertex array, is reported back to the host.

2) Vertex Deletion: As each deletion procedure performs
a CAS on the host identifier, only one thread will retrieve a
valid identifier and continue the procedure, alleviating the need
for duplicate checking. Contrary to vertex insertion, deleting
a vertex not only alters vertex management data, but also has
implications on adjacencies. This results from the fact that other
vertices can reference said vertex by possessing an edge to it.
These references have to be deleted from the graph structure as
well and the holes left by these deletions have to be compacted
in a separate procedure, as can be seen in Algorithm 2.

In case of an undirected graph, these references can be
deleted directly in the deletion procedure, as each adjacency
element has a dual that can directly be found by simply
swapping source and destination of an edge. The procedure
iterates over the adjacency of the to-be-deleted vertex and for
each edge it removes the dual in the corresponding adjacencies.
As no duplicates are present in the adjacencies, this deletion
can even be performed without locking. If, on the other hand,

the graph is directed, the deletion procedure is not as straight
forward and we use a multi step approach. For a directed
graph arbitrary vertices may reference a to-be-deleted vertex.
Thus, in a first step, we only return the pages allocated for the
vertex to the page queue. The update data batch is once again
sorted to speed up the following step. Once again, we propose
a reversed deletion process similar to the reversed duplicate
check, starting a worker per adjacency and searching each edge
in the sorted update batch, which is once again rather efficient.

Algorithm 2: Vertex Deletion
Data: Vertex Update Batch
Result: Vertices deleted from graph

1 Copy Vertex updates onto stack;
2 if sorting enabled then
3 thrust::sort(vertex updates);

4 d vertexDeletion (vertex updates, graph);
5 if graph is directed then
6 d reverseDeleteVertexMentions (vertex updates, graph);

7 d compaction (graph);
8 Copy mapping back to host;

After the actual deletion, the framework still has to perform
compaction on the adjacencies. To avoid unnecessary locking
during this step, the actual clean up is performed in a separate
kernel by iteratively moving edges from the back to empty
positions in the adjacency (or moving edges to the front
consecutively to respect sort order). Again, using more than
a single thread for this operation can increase performance.
Finally, the now free vertex index is returned to the vertex
queue and the mapping change is reported back to the host.

E. Edge Updates

Edge updates are considered a common operation for
dynamic graphs. In faimGraph update information is considered
to be made available to the framework by either the CPU-side
and successively copied to the GPU or directly in a GPU buffer.
The update procedure runs independently on the GPU in either
case. A benefit of this methodology, in addition to alleviating
additional management interventions from the host, is the fact
that users do not need to care about memory management.
Similarly to aimGraph, vertex structures hold a lock and update
threads can lock each adjacency list before altering it to gain
exclusive access. However, faimGraph adds support for multiple
coordinated threads to alter adjacencies, which is preferable
when scanning larger adjacency size. As coordinated threads
need to communicate, we either use cooperative thread blocks
or warps (groups of threads executing on the same SIMD unit).
We call this kind of strategy an update-centric approach, as each
update is mapped to an individual worker (thread/warp/block).

Locking strategies work well if the update pressure is
not particularly high (updates are distributed over the graph
well), the average size of the adjacencies is rather small (less
than ≈ 25 according to our experiments), and the graph is
well balanced. If updates in a batch favour a smaller set
of vertices, the overhead introduced by locking as well as

1
src
dst

08
17

08
17

08
101

08
153

12
06

36
178

52
53

52
68

145
33

179
03

Sort Updates, setup offset scheme
2

Updates and Adjacency for Vertex 8

Updates Adjacency

17 17 101 153 06 22 106 x x x
page
index

17 17 101 153 06 22 106 x x x
page
index

x 22 101 153 06 17 106 x x x
page
index

x 101 106 153 06 17 22 x x x page
index

x x x x 06 17 22 101 106 153
page
index

3

Step 1 | Update larger, move along
4

Step 2 | Duplicate in Batch, move along, swap elements batch/adj
5

Step 3 | Swap elements batch/adj, locally re-sort batch
6

Step 4/5/6 | Insert remaining elements at the end

Fig. 2: Example for sorted insertion with duplicates in batch.

multiple adjacency traversals becomes a serious bottleneck.
Thus, we propose a new update strategy that avoids locking by
coordinating the update efforts beforehand: the vertex-centric
approach. It devises an offset scheme to start a worker per
vertex which is affected by updates. In this way, exclusive
access to each adjacency is guaranteed and waiting on locks is
avoided. Different update implementations can also be mixed
for consecutive update calls to deal with changing requirements.

1) Edge Insertion: Our vertex-centric edge insertion splits
the insertion process into three steps. First, an offset scheme
is constructed: We sort the insertion requests according to the
source vertex in-place. A following prefix sum determines the
offset of each specific source vertex in the sorted array and
the number of updates that will be performed for a specific
adjacency. Second, duplicate checking is performed, which—if
activated—makes sure that edges are only added to the graph
once. To this end, the insertion requests are compared to the
already existing graph and to the other requests in the sorted
array. Third, one worker per affected vertex is started, which
adds the edges to the end of the adjacency lists. If there is
still sufficient space on the last page of the adjacency list,
the edges are added to this page, otherwise additional pages
are queried first from the page queue, if empty a new page
index is supplied by the memory manager. This significantly
reduces the update time and inserting millions of edges can
be performed in a matter of milliseconds.

Furthermore, building on this approach it is also possible to
respect sort order when inserting new vertices. During insertion,
as can be seen in Figure 2, a combined sweep over the to-be-
inserted and already present edges is then sufficient to insert
the data: If an edge must be inserted before the end of the
adjacency list, we simply swap the edge currently in this slot

with the update edge and merge the replaced edge into the
insertion requests, hence the sorting effort is constrained to the
update data targeting this specific vertex. Thus, when the end
of the adjacency is reached, the remaining to-be-inserted edges
can be placed at the back. Note that a sorted adjacency does
not require a separate duplicate checking, as the entire existing
adjacency is scanned during insertion anyway. Nevertheless,
the determining factor for performance remains update pressure
and adjacency traversal. High update pressure and longer
traversal lend themselves to the vertex-centric approach, while,
otherwise, update-centric provides better performance.

2) Edge Deletion: Vertex-centric edge deletion starts with
the same sorting and prefix sum steps as vertex-centric edge
insertion. Duplicate removal is not necessary for edge deletion,
as edges can only be removed once. When a to-be-removed
edge is found, we simply copy the last edge from the adjacency
list over the edge to avoid holes in the list. To respect sort
order we iteratively shuffle all remaining edges to the front,
overwriting the to-be-deleted elements in the process. Again,
the entire operation is performed in a single sweep over the
edge data. If pages are left empty after the compaction step,
they are returned to the page queue.

IV. EVALUATION

In this section, we evaluate the performance of faimGraph
and compare it to aimGraph and the publicly available cu-
STINGER, as well as to Hornet and GPMA wherever possible.
The performance measurements were conducted on a NVIDIA
Geforce GTX Titan Xp (12 GB V-RAM), and an Intel Core
i7-7770. The graphs used are listed in Table I. They represent
a cross section of different problem domains and were taken
from the 10th DIMACS Graph Implementation Challenge [22].

A. Memory footprint

One of the biggest differences between faimGraph and previ-
ous approaches is memory consumption and memory footprint
over time. Although faimGraph starts with a larger allocation as
it manages memory directly on the device, the actual memory
footprint within the framework (especially over time) is lower
compared to previous approaches and all memory allocations
are facilitated directly through the framework without host
intervention. Since the cost of reinitialization is negligible in
most cases (due to the relative addressing within the pool which
allows the usage of just two memcpy’s to reinitialize), even
the initial allocation can be chosen conservatively. cuSTINGER
performs sequential allocation calls from the CPU to allocate
the management data and all individual edge blocks in the
initialization procedure. Especially for graphs with millions of
vertices, this is a significant overhead, compared to the single
allocation in faimGraph.

Furthermore, due to the overhead associated with reallo-
cation, cuSTINGER uses over-allocation to reduce the run-
time cost for edge updates. faimGraph locates all its data by
combining an efficient indexing scheme and reinterpreting
memory on the fly. This way, the same functionality can
be achieved with significantly less memory. Table I notes

the respective memory footprints within the framework for
faimGraph, cuSTINGER as well as GPMA. The difference is
most significant for high numbers of vertices (e.g., europe
(14) with 4GB vs 7GB) for cuSTINGER, but also for large
adjacencies due to overallocation (e.g., nlpkkt200 (12) with
2GB vs 4GB for cuSTINGER or audikw1 (4) with 250MB vs
420MB for GPMA) for both cuSTINGER and GPMA. GPMA
performs well for very sparse graphs as it stores no additional
vertex properties (e.g. number of edges per adjacency), but
experiences significant overhead for denser graphs as each edge
has to store both source and destination as part of the PMA.

B. Memory usage evaluation

faimGraph’s memory management scheme allows for reuse
of memory over time. This is especially crucial for long-
term use cases, where certain areas of the graph grow and
shrink significantly. Both aimGraph and cuSTINGER hold
the maximal allocation state in memory, meaning that once
allocated, memory stays with its vertex. Hence, after prolonged
usage the allocated memory resources do not reflect the actual
memory requirements and may even lead to system failure over
time. To test long term use, we use three different test cases:
The Uniform test case performs successive edge insertions and
deletions derived from a uniform distribution. Random performs
the same operations, whereas each round is randomly chosen to
be either insertion or deletion. The memory footprint for these
tests is shown in Table I. aimGraph is more efficient in all cases
compared to cuSTINGER, requiring between 12% to 45% less
memory. faimGraph reduces the memory consumption further
to 27% to 52% less memory compared to cuSTINGER. The
Sweep testcase highlights the behaviour for strongly volatile
graphs. Each update round targets a set of 100 vertices with a
batchsize of 1.000.000, where a set of edges is first inserted
and then deleted again. Each update targets a successive set
of source vertices. Performance is measured in rounds (how
long can this procedure be repeated before the system goes
out of memory). As shown in Table I, faimGraph can run
to completion for all graphs as the memory footprint after
each round is mostly equal to the initial state. aimGraph
and cuSTINGER fall significantly behind and only manage
to complete all rounds within the 12 GB of memory for graphs
that only require less than 100 MB by itself—the memory that
faimGraph returns to after every deletion step during the sweep
test. For these small graphs, our tests thus revealed a memory
increase of more than two orders of magnitude above the
necessary. This clearly underlines that fully dynamic memory
management is essential in highly volatile problem domains.
Using a large semi-continuous array, GPMA should able to re-
use freed memory in the Sweep testcase as well. Unfortunately,
since memory is localized, significant rebalancing might be
required and subsequently, performance would be penalized.
The current implementation does not handle duplicates within
the update batch, but even correcting for that unfortunately
still accumulates memory and we were not able to trace the
source of this issue. As there is only limited information
available about Hornet at this point, we are unsure of its

internal behaviour. In any case, it seems to be an improvement
over its predecessor cuSTINGER.

C. Initialization
The autonomous approach to memory management on the

GPU pays off during initialization. faimGraph distributes
memory to individual vertices fully in parallel and the single
GPU memory allocation drastically reduces allocation overhead.
cuSTINGER performs sequential iterations over all vertices to
allocate its adjacencies. In all tested scenarios (cf. Table I),
faimGraph is able to outperform all other approaches by a
significant margin. The same is true for reinitialization with
increased size, which is even faster than pure initialization due
to our favorable relative indexing setup. The discrepancy in
performance (up to two orders of magnitude) is greatest for
graphs with a large number of vertices, like germany (10) and
europe (14). But still in small dense graphs, e.g., ldoor (4),
the speed-up is one order of magnitude. Performance overhead
for reinitialization with 105% of the conservative allocation
size is displayed in Table I as well.

D. Edge Updates

Figure 3 and 4 show the insertion and deletion performance
for faimGraph as well as cuSTINGER, GPMA and Hornet for
uniform and focused update distributions. faimGraph utilizes
the conservative memory allocation with 50% additional pages
in these tests, due to efficient memory re-use none of the cases
experienced reinitialization.

1) Edge Insertion: The clearest performance difference for
edge insertion can be observed for graphs with small to medium
sized adjacencies, which can be attributed to two factors:
cuSTINGER performs an additional indirection step to follow
the data structure and employs overallocation to reduce the
need for reallocation. For larger graphs, the probability for
insertions to hit the same vertex is smaller and thus, reallocation
does not happen at all for cuSTINGER. For smaller graphs, on
the other hand, the performance numbers quite clearly reflect
the overhead introduced by reallocation procedures. faimGraph
on the other hand directly interprets memory as required and
does not employ overallocation. The vertex-centric approach is

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Type Road Citation Citation Matrix Matrix Triang. Geom. Simu. Triang. Road Matrix Matrix Matrix Road

—V— 115k 227k 299k 952k 943k 1.04M 1.04M 5.82M 8.38M 12M 3.5M 16.24M 27.99M 50.91M
—E— 239k 815k 1.95M 45.57M 76.71M 3.14M 6.89M 8.73M 25.16M 24.74M 93.3M 431.9M 746.4M 108.1M

faimGraph
Initialization (ms) 1.16 2.47 2.61 58.11 102.92 6.38 11.60 20.21 45.88 32.78 100.03 459.36 792.88 145.16
Initialization (MB) 9.18 20.41 26.44 244.66 355.53 84.0 99.98 466.59 672.01 925.16 494.62 2277.3 3929.8 4078.4
Reinit. 105% (ms) 0.36 0.58 0.613 6.10 8.90 1.41 2.38 5.18 9.21 9.42 10.49 27.23 36.04 26.75

Uniform (MB) 41.97 49.97 54.44 235.30 359.99 103.45 121.97 467.16 675.01 925.17 544.83 2349.1 3980.7 4078.4
Random (MB) 50.73 60.06 65.03 257.22 382.80 114.98 138.13 467.74 676.98 925.18 569.59 2372.6 3996.3 4078.4

Sweep (Rounds) all all all all all all all all all all all all all all
Queries (ms) 2.61 3.26 3.12 4.58 5.73 3.19 3.21 3.28 3.23 3.23 3.28 3.23 3.24 3.21

V. Insertion (ms) 1.99 2.09 2.15 2.82 2.80 2.85 2.87 6.75 9.42 11.33 4.87 15.19 25.63 45.68
V. Del. (UD) (ms) 1.49 2.29 2.82 12.31 29.63 2.90 4.01 7.07 10.42 11.54 22.31 52.98 74.27 43.94
V. Del. (D) (ms) 1.26 2.36 2.02 11.87 24.54 2.89 4.03 8.67 18.95 15.75 20.84 83.15 144.15 69.17

aimGraph
Uniform (MB) 49.13 59.82 65.68 267.66 392.69 122.17 149.99 467.83 678.40 925.18 608.64 2430.5 4038.4 4078.4
Random (MB) 61.14 72.35 78.11 284.52 411.06 136.88 163.31 468.22 678.88 925.19 625.33 2410.1 4014.8 4078.4

Sweep (Rounds) all all all 2547 2518 2584 2580 2481 2429 2367 2473 2033 1589 1523

cuSTINGER
Initialization (ms) 94.48 191.32 254.37 966.58 1013.4 982.69 944.55 6177.8 9286.9 12752 3848.9 20907 - 64124
Initialization (MB) 16.61 36.81 47.71 369.99 548.99 152.03 195.34 844.32 1216.1 1674.1 930.19 4292.8 - 7380.1

Uniform (MB) 66.86 87.97 100.02 381.70 553.93 216.32 247.44 855.76 1264.2 1675.6 948.15 4295.2 - 7380.1
Random (MB) 69.52 89.11 99.78 378.38 551.27 208.44 245.41 847.19 1236.7 1674.2 936.91 4293.6 - 7380.1

Sweep (Rounds) all 2060 2057 1999 1951 2049 2046 1898 1824 1732 1892 1262 - 593

GPMA
Initialization (ms) 34.27 55.24 52.92 224.81 387.50 50.61 86.08 121.14 308.22 181.23 467.94 - - 782.85
Initialization (MB) 4.68 26.92 30.87 422.51 702.64 70.25 137.68 232.92 562.04 372.78 885.78 - - 1634.84

Uniform (MB) 209.79 106.16 105.84 - 731.64 90.38 157.33 - 587.97 400.94 996.23 - - 1650.84
Random (MB) 282.73 299.92 257.89 - 1110.37 294.00 286.75 - 843.84 621.70 1133.00 - - 1915.54

Sweep (Rounds) 176 73 68 11 19 264 29 28 136 49 60 - - 38

Hornet
Initialization (ms) 4.20 10.73 13.18 168.59 207.06 45.99 61.72 300.87 468.20 434.94 755.97 53k 230k 4410.6
Sweep (Rounds) all all all 6504 3140 3998 2899 5862 3314 1641 5701 4715 3955 1447

TABLE I: Performance measurements for cuSTINGER, Hornet, GPMA, aimGraph and faimGraph, including initialization time
and overall timings for a complete test set as well as memory evaluation on three test cases on the graphs luxembourg (1),
coAuthorsCiteseer (2), coAuthorsDBLP (3), ldoor (4), audikw1 (5), delaunay 20 (6), rgg n 2 20 s0 (7), hugetric-00000 (8),
delaunay n23 (9), germany (10), nlpkkt120 (11), nlpkkt200 (12), nlpkkt240 (13) and europe (14)

0

1

10

100

m
s

Uniform Edge Inser!on | 100.000

faimGraph cuSTINGER Hornet GPMA

1

10

100

m
s

Uniform Edge Inser!on | 1.000.000

faimGraph cuSTINGER Hornet GPMA

0

1

10

m
s

Uniform Edge Dele!on | 100.000

faimGraph cuSTINGER Hornet GPMA

1

10

100

m
s

Uniform Edge Dele!on | 1.000.000

faimGraph cuSTINGER Hornet GPMA

Fig. 3: Update timings in ms on a log-scale for uniform edge updates, using batch sizes of 100.000 and 1.000.000, showing the
faimGraph implementation as well as cuSTINGER, Hornet and GPMA.

not particularly well suited to uniform updates with low update
pressure. This results from the excessive duplicate checking
needed in this case. The sorted approach performs exceptionally
well, especially for small to medium sized adjacencies, as the
benefits derived from sorted adjacencies and updates during the
procedure outweigh the re-sorting effort. Thus, keeping sorted
adjacencies actually introduces no to hardly any overhead. Only
for large adjacencies the performance scales negatively with
the increased memory access needed by the sorting procedure.
Increasing the update pressure (focusing the updates on a range
of 1000 vertices, which sweeps over the graph throughout the
test), as shown in Figure 4, yields consistently good results for
faimGraph, even with the update-centric approach. Although
the locking overhead is clearly visible in all cases, locking
still outperforms cuSTINGER in all cases as the reallocation
procedures are handled more efficiently. Both vertex-centric
approaches outperform the update-centric approach due to
reduced overhead while traversing the adjacency and the
removal of locking. faimGraph outperforms cuSTINGER by a
factor of 1.1× - 114× / 1.1× - 31× for both batch sizes with
uniform edge insertion; focussing updates on a smaller range
of vertices yields a speed-up between 25× - 185×. Similarly,
the speed-up of uniform updates compared to GPMA is 2.5× -
14× / 1.6× - 4.2×; with higher update pressure the difference
is 2.1× - 5.4×. Compared to Hornet, the speed-up achieved
for uniform updates is 1.6× - 16.5× / 1.1× - 17.6×, using
higher update pressure updates Hornet performs slightly better

in one case, the overall speed-up falls between 0.93× - 6.48×.
In summary, it can be noted that cuSTINGER performs

well when it works within its overallocation boundaries, but
otherwise drops significantly. GPMA performance is very
uniform independent of the sparsity of the graph, but is
slower overall. Hornet performs well if the source vertex range
modified is small, but falls behind significantly for large source
vertex ranges in sparse graphs. The best faimGraph strategy is
always faster than cuSTINGER, which can easily be selected
based on the update pressure. Higher update pressure clearly
favours our new vertex-centric approaches.

2) Edge Deletion: In case of deletions, the performance
difference is slightly less pronounced and much more consistent
compared to the insertion process. This is not surprising as
edge deletion is very straight forward in cuSTINGER, as
memory is not freed and duplicate checking is not necessary.
faimGraph on the other hand additionally performs compaction
and frees non-needed pages, which introduces additional
overhead. However, due to the smaller memory footprint and
more efficient implementation, faimGraph still outperforms
cuSTINGER in 10 of the 12 test cases for uniform deletion
(Figure 3) with a performance difference between 0.92× - 1.4×
/ 0.8× - 1.9×. Compared to GPMA, faimGraph is always faster
with a speed-up of 1.9× - 3.6× / 1.4× - 2.9×. The same is
true for Hornet, the difference here is 1.7× - 25× / 1.1× -
25.9×. Sorting again hardly reduces performance compared to
the vertex-centric approach unless large adjacencies need to be

1

10

100

m
s

Update Pressure Edge Inser!on | 1.000.000

faimGraph cuSTINGER Hornet GPMA

1

10

100

m
s

Update Pressure Edge Dele!on | 1.000.000

faimGraph cuSTINGER Hornet GPMA

Fig. 4: Update timings in ms on a log-scale for pressure edge updates, using a batch size of 1.000.000, half targeting a range
of 1000 vertices, sweeping over the graph, the other half uniformly distributed over the graph.

moved as in ldoor (4) and audikw1 (5). For larger graphs,
with few updates per vertex, the locking strategy performs
best. For high update pressure (Figure 4), both vertex-centric
approaches perform best in all test cases, clearly outperforming
both the update-centric approach as well as cuSTINGER, with
a performance difference between 3× - 6×, this difference is
1.3× - 2.6× compared to GPMA and 0.85× - 9.7× to Hornet.

E. Vertex Updates

Previous dynamic graph frameworks, such as cuSTINGER
and aimGraph, are only partially-dynamic. Their SOA approach
for vertices makes it difficult to efficiently update vertices.
Contrary, faimGraph’s AOS approach and index queues allow
for fully dynamic vertex insertion as well as deletion.

1) Vertex Insertion: Table I shows the timings for vertex
insertion with a batch size of 100.000. The actual insertion
process for all tested graphs stays below 1ms, the overall timing
with duplicate checking stays below 50ms for all tested graphs.
Although our reverse duplicate checking increases performance
significantly, duplicate checking still forms the bottleneck for
larger graphs. As the duplicate checking involves all graph
vertices, the execution time is proportional to the number of
graph vertices. For the tested graphs, faimGraph can facilitate
2 - 50 million vertex insertions per second.

2) Vertex Deletion: Vertex deletion is more complicated
than vertex insertion, as all references to the vertex in the
graph must also be deleted. Table I shows the performance
numbers for vertex deletion in case of undirected graphs (UD)
as well as directed graphs (D). In both cases the same graphs
are used, i.e., undirected graphs can be treated as directed
graphs. The performance difference is only due to the different
deletion strategies that can be employed for the two cases. For
undirected graphs, the vertex mentions are deleted directly in
the deletion kernel, which prolongs the vertex deletion stage but
does not require an additional stage afterwards. For directed
graphs there is an extra step involved, as it is not directly
obvious where the directed edges might reside in memory. This

additional kernel once again profits from sorting the updates
to utilize the reverse search pattern used to detect now invalid
edges. The main difference can be observed for larger and
denser graphs, as the search for references to deleted vertices
is more costly as all vertices and their adjacencies have to be
checked. Overall, the framework is able to handle between
1− 50 million vertex deletions per second, performance scales
with both the number of vertices and edges present.

V. ALGORITHMS

To evaluate the impact of our memory management data
structure on algorithmic performance, we implemented triangle
counting and PageRank [15] as two challenging algorithms
on top of faimGraph. We compare our implementation to
cuSTINGER, which includes the fast triangle counting by Green
et al. [13] and a custom PageRank implementation as well
as to Hornet. Unfortunately, cuSTINGER’s implementations
did not run on recent hardware, thus we additionally include
performance measurements for an NVIDIA GTX 780.

A. Work-balancing

One of the issues for graph frameworks is varying sparsity
over the whole graph. Algorithms traversing these adjacencies
may show significant imbalances. Thus, in addition to naı̈ve
implementations of the two algorithms, we introduce a work
balancing scheme that, instead of launching a worker per
vertex, calculates an offset scheme to locate individual pages
in memory. This information is used to start one worker
(thread/warp/block) per page per vertex. There is a clear
correlation between the overhead introduced and the pages in
memory. However, according to our experiments, the overhead
stays small (between 0.3 - 1.5ms in our tests) and the benefits
drastically increase with more pages in memory.

B. Static Triangle Counting - STC

The fast triangle counting algorithm [13] employed by
cuSTINGER is based on a list intersection algorithm called

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Type Road Citation Citation Matrix Matrix Triang. Geom. Simu. Triang. Road Matrix Matrix Matrix Road

—V— 115k 227k 299k 952k 943k 1.04M 1.04M 5.82M 8.38M 12M 3.5M 16.24M 27.99M 50.91M
—E— 239k 815k 1.95M 45.57M 76.71M 3.14M 6.89M 8.73M 25.16M 24.74M 93.3M 431.9M 746.4M 108.1M

STC
faimG. naı̈ve (780) 0.077 21.36 35.56 258.4 1055.93 5.55 15.67 5.21 35.56 5.16 942.35 - - -
faimG. bal. (780) 0.70 9.08 11.79 280.02 1001.6 6.14 8.18 7.24 44.85 8.37 881.48 - - -
cuSTINGER (780) 9.71 35.83 45.72 379 1277.1 124.41 166.21 535.27 983.14 947.45 649.07 - - -

CSR (780) 7.42 20.94 26.86 260.03 635.8 98.59 140.75 390.43 771.06 698.38 327.43 - - -
faimG. naı̈ve (Xp) 0.03 9.19 14.56 152.41 742.23 1.37 6.92 1.53 10.18 1.74 307.89 1413.9 2490.4 7.60
faimG. bal. (Xp) 0.64 3.57 4.90 87.26 402.56 1.82 7.34 2.34 11.34 3.26 197.80 923.98 1484.71 14.04

Hornet (Xp) 1.63 15.61 13.36 235.33 479.63 24.78 44.26 65.26 170.66 99.52 308.63 1111.5 1812.3 344.30

PageRank
faimG. naı̈ve (780) 0.54 1.59 1.01 16.18 31.4 1.97 4.04 8.39 14.28 8.31 26.51 - - -
faimG. bal. (780) 1.09 1.22 1.36 11.98 18.90 2.38 4.03 7.99 16.42 16.16 16.02 - - -
cuSTINGER (780) 0.88 1.94 2.62 20.25 30.18 6.06 10.31 26.21 42.43 47.96 57.53 - - -
faimG. naı̈ve (Xp) 0.28 1.09 0.59 12.87 31.00 0.99 2.19 3.95 7.07 5.31 15.20 69.32 121.91 18.49
faimG. bal. (Xp) 0.30 0.32 0.31 2.67 5.07 0.65 0.84 3.10 4.79 4.74 4.21 18.94 32.67 17.63

Hornet (Xp) 0.48 0.28 0.32 3.58 5.83 0.80 5.26 3.76 5.63 5.86 5.54 25.08 43.29 23.60

TABLE II: Algorithmic performance measurements (average for one computation) in ms for cuSTINGER, Hornet and faimGraph
(graph numbering identical to Table I) with a NVIDIA GTX 780 and a NVIDIA GTX TITAN X(p).

Intersect Path. The algorithm operates on two stages of
parallelism. The first stage balances the vertices on the
multiprocessors and the second stage balances the adjacency
access using different block sizes. The key search strategy of
the algorithm is that a sorted adjacency allows for efficient
binary search to identify triangles. cuSTINGER includes this
implementation for its own data structure and for CSR.

Our naı̈ve faimGraph implementation starts one worker for
each vertex and iterates over the respective adjacency. It then
checks for each pair of vertices in the adjacency, if this pair is
connected. This checking stage is only performed, if the vertex,
whose adjacency is examined, has the largest index in the triple
under investigation. If a triangle is found this way, the triangle
count is increased for all three vertices. By assuming a sorted
(in ascending order) adjacency, this approach can even halt
the procedure earlier, as soon as both vertices in the vertex
pair under investigation are larger than the source vertex (in
these cases a possible triangle will be entered by one of the
other vertices). The balanced faimGraph implementation works
similarly, but starts on worker per page per vertex, reducing
the workload per worker. Performance numbers are recorded in
Table II. Both cuSTINGER and faimGraph utilize the property
that the adjacency is sorted to make comparison possible. faim-
Graph is able to significantly outperform cuSTINGER in all but
nlpkkt120 (11), which shows very long adjacencies. faimGraph
can only partially derive an advantage from a sorted adjacency
as an efficient search within a sorted array is only possible
within page boundaries. Interestingly, our work balancing also
outperforms the highly compact CSR format (using the fast
triangle counting algorithm) in all but three cases. faimGraph
is not well suited for naı̈ve random adjacency access and thus
triangle counting is one of the most challenging use cases for
our data structure. Hence, a straight forward translation of the
Intersect Path algorithm to faimGraph would also not show
the same performance results as on a simple array structure.
faimGraph is well suited even for memory intensive algorithms,
if the average adjacency size does not grow incessantly, using
work balancing even unbalanced graphs can be handled well.
Overall, in 10 out of 11 cases, faimGraph has a performance
lead between 1.25× - 100× over cuSTINGER, only falling
behind in one test case. Compared to Hornet, faimGraph has
a performance lead between 1.19× - 57× in all cases.

C. PageRank

PageRank [15] is a fairly straightforward algorithm. The
algorithm has to traverse the adjacencies of all vertices and
compute the contributions of all relationships for each vertex,
similar to an SpMV. This means that every edge is touched
exactly once, the same is true for every vertex. The only point of
contention remains the PageRank vector itself. Table II shows
the direct comparison between cuSTINGER, Hornet and the
two (standard and balanced) faimGraph implementations. As
PageRank has moderate memory access requirements and does
not benefit from sorting, faimGraph is able to outperform cu-
STINGER in all cases due to the more efficient memory access
and footprint characteristics. Unbalanced and larger graphs

once again profit from work balancing. Overall, faimGraph is
able to outperform cuSTINGER by a factor of 1.5× - 5.5×.
The same is true compared to Hornet, but the performance
difference is smaller overall in a range between 0.88× - 6.2×.

VI. CONCLUSION & FUTURE WORK

faimGraph is a memory-efficient, fully dynamic graph
solution with autonomous memory management directly on
the GPU. Based on a queuing scheme, memory is fully
reused within the system, reducing memory requirements
by multiple orders of magnitude in the long run as well
as memory fragmentation, permitting edge insertions and
deletion according to arbitrary patterns. Thus, faimGraph can be
safely used in real-world scenarios without threatening system
failures due to out of memory. Furthermore, faimGraph is fully-
dynamic, allowing for efficient vertex insertion and deletion
at high rates, increasing access characteristics by efficiently
reusing free vertex indices. Our vertex-centric update scheme
allows lock-free edge updates, which increases performance
by one order of magnitude under high update pressure. Edge
updates can also respect sort order with little overhead.

faimGraph outperforms the previous state-of-the-art in all
tested graphs in terms of edge update rate (up to 150×
higher update rate) as well as initialization time (up to 300×
faster). The framework can hold tens of millions of vertices
and hundreds of millions of edges in memory. It is able to
process up to 200 million edge updates and more than 300
million adjacency queries per second for the tested graphs.
Vertex updates can also reach between 1− 50 million updates
per second. To validate algorithmic performance of our data
structure, we tested triangle counting and PageRank. Although
faimGraph uses a more complicated data structure to allow
for memory reclamation, it performs surprisingly well for
the random access heavy triangle counting, outperforming
cuSTINGER in all but one case. For PageRank, faimGraph
showed the best performance in all cases.

In the future, we will expand faimGraph to multi-GPU
systems, where challenging memory layout and balancing
issues need solving. Furthermore, work distribution is required
to go hand in hand with memory distribution, requiring fore-
sight into algorithmic behaviour to achieve good performance.
Another important topic is concurrent memory management and
algorithm execution. For the first time, it is possible to perform
both in parallel using autonomous memory management; we
even support algorithms to directly manipulate the graph.
However, both operations may still require communication
and appropriate synchronization, which poses new scheduling
challenges which we intend to solve in the future. Nevertheless,
we believe that faimGraph is a first big step towards using
GPUs for real-world, dynamic graph processing.

ACKNOWLEDGMENT

This research was supported by the German Research
Foundation (DFG) grant STE 2565/1-1, and the Austrian
Science Fund (FWF) grant I 3007. The GPU for this research
was donated by NVIDIA Corporation.

REFERENCES

[1] H. Sutter, “The free lunch is over: A fundamental turn toward concurrency
in software,” Dr. Dobb’s journal, pp. 202–210, 2005.

[2] NVIDIA, “nvGraph,” https://developer.nvidia.com/nvgraph, 2016, [On-
line; accessed 12-May-2017].

[3] L. SYSTAP, “BlazeGraph,” https://www.blazegraph.com/, 2017, [Online;
accessed 01-May-2017].

[4] S. Che, B. M. Beckmann, and S. K. Reinhardt, “Belred: Constructing
gpgpu graph applications with software building blocks,” in IEEE High
Performance Embedded Computing (HPEC), 2014.

[5] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the gpu,” in
ACM SIGPLAN Notices, vol. 50, 2015.

[6] S. Che, “Gascl: A vertex-centric graph model for gpus,” in IEEE High
Performance Embedded Computing Workshop (HPEC), 2014.

[7] M. Winter, R. Zayer, and M. Steinberger, “Autonomous, independent
management of dynamic graphs on gpus”,” in 2017 IEEE High Per-
formance Extreme Computing Conference (HPEC ’17). University of
Technology, Graz, 2017.

[8] O. Green and D. Bader, “custinger: Supporting dynamic graph algo-
rithms for gpus,” in 2016 IEEE High Performance Extreme Computing
Conference (HPEC ’16). Georgia Institute of Technology, 2016.

[9] M. Sha, Y. Li, B. He, and K. Tan, “Accelerating dynamic graph analytics
on gpus,” in International Conference on Very Large Data Bases 2018.
National University of Singapore, 2018.

[10] F. Busato, O. Green, N. Bombieri, and D. Bader, “Hornet: An efficient
data structure for dynamic sparse graphs and matrices on gpus,” in 2018
IEEE High Performance Extreme Computing Conference (HPEC ’18).
Georgia Institute of Technology, 2018.

[11] D. Bader, J. Berry, A. Amos-Binks, D. Chavarria-Miranda, C. Hastings,
K. Madduri, and S. Poulos, “Stinger: Spatio-temporal interaction networks
and graphs (sting) extensible representation,” in Tech. Rep. Georgia
Institute of Technology, 2009.

[12] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “Stinger: High
performance data structure for streaming graphs,” in IEEE High Perfor-
mance Extreme Computing Conference (HPEC). Georgia Institute of
Technology, 2012.

[13] O. Green, P. Yalamanchili, and L. Munguia, “Fast triangle counting on the
gpu,” in IEEE Fourth Workshop on Irregular Applications: Architectures
and Algorithms, 2014.

[14] A. Polak, “Counting triangles in large graphs on gpu,” in arXiv preprint,
2015.

[15] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” in Computer Networks and ISDN Systems. Stanford
University, 1998.

[16] J. Soman, K. Kishore, and P. Narayanan, “A fast gpu algorithm for graph
connectivity,” 2010.

[17] A. Davidson, S. Baxter, M. Garland, and J. D. Owens, “Work-efficient
parallel gpu methods for single-source shortest paths,” in 28th IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2014.

[18] A. E. Sariyce, K. Kaya, E. Saule, and . V. Catalyrek, “Betweenness
centrality on gpus and heterogeneous architectures,” in 6th Workshop on
General Purpose Processor Using Graphis Processing Units, 2013.

[19] A. McLaughlin and D. Bader, “Revisiting edge and node parallelism
for dynamic gpu graph analytics,” in IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2014.

[20] J. Soman and A. Narang, “Fast community detection algorithm with
gpus and multicore architectures,” in IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2011.

[21] B. Kerbel, M. Kenzel, J. H. Mueller, D. Schmalstieg, and M. Steinberger,
“The broker queue: A fast, linearizable fifo queue for fine-granular work
distribution on the gpu,” in International Conference on Supercomputing
2018. University of Technology, Graz, 2018.

[22] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, “Graph
partitioning and graph clustering. 10th dimacs implementation challenge
workshop,” in ser. Contemporary Mathematics, no. 588, 2013.

https://developer.nvidia.com/nvgraph
https://www.blazegraph.com/

APPENDIX

A. Abstract

The following appendix describes the framework setup, how
it can be used and how individual tests can be run.

B. Description
1) Check-list (artifact meta information):
• Algorithm: Both STC and PageRank can be tested using the

executables STCaimGraph as well as PageRankaimGraph
• Compilation: CMake 3.2 to setup, CUDA 9.1 and C++14

compliant compiler (tested with gcc-6 and MSVC 19.00.24225.1)
• Data set: Use graphs from 10th DIMACS Implementation

Challenge
• Hardware: Reasonably recent GPU hardware from NVIDIA

(Kepler or onward, tested on an NVIDIA GTX 780 and an
NVIDIA GTX TITAN Xp)

• Execution: Call corresponding executable for each testcase
• Output: Output is produced in the output stream
• Experiment workflow: Provide the corresponding XML

configuration to the right executable
• Experiment customization: XML configuration files can be

adapted for different batchsizes, different update strategies,
different page sizes etc.

• Publicly available?: Available at BitBucket

2) How software can be obtained: The framework can be
downloaded from BitBucket.

3) Hardware dependencies: Recent GPU hardware from
NVIDIA (e.g. Kepler GPUs and onward), tested on an NVIDIA
GTX 780 as well as a NVIDIA GTX TITAN Xp. Remaining
system specifications should have a comparatively small impact
on performance, performance was tested on an Intel Core i7-
7770 paired with 16 GB RAM.

4) Software dependencies:
• CUDA 9.1
• C++14 compliant compiler, tested on:

– gcc-6
– MSVC (Visual Studio 2017)

• CMake 3.2 or higher
5) Datasets: The framework currently supports graphs in a

CSR format as provided by the 10th DIMACS Implementation
Challenge, all graphs used for performance evaluation where
downloaded from this website.

C. Installation

Project setup uses CMake to configure the project itself, on
Linux simply enter (the same can be accomplished on Windows
using a graphical user interface):

mkdir b u i l d
cd b u i l d
cmake . .
make −j 4

This should set up the framework itself and build the framework
and create executables for all the different testcases, this
includes

• mainaimGraph
– Can be used to test edge update performance

• reInitTC
– Can be used to test the reinitialization procedures of

the framework
• STCaimGraph

– Can be used to test triangle counting performance
for faimGraph

• PageRankaimGraph
– Can be used to test PageRank performance of faim-

Graph
• continuousTCaimGraph

– Can be used to query memory information for long
term use cases (includes uniform updates, random
updates as well as sweep updates)

• dynamicVerticesMain
– Can be used to test dynamic vertex updates (vertex

insertion & deletion for undirected and directed
graphs)

• concurrentTCaimGraph
– Can be used to test concurrent edge updates (edge

insertion/deletion either in the same kernel or in
separate streams)

• queryTCaimGraph
– Can be used to test the edge query ability of the

framework
Each testcase can be configured by an XML-File that is

passed to the executable, in this file the user can configure
which graphs to test, which device to use, how much memory
should be allocated as well as most parameters of faimGraph,
including

• pagesize (how large are individual pages in Bytes)
• memorylayout (Memorylayout on pages AOS vs SOA)
• updatevariant (update centric vs. vertex centric vs. vertex

centric sorted)
• rounds + updaterounds (10 · 10 in the standard config-

uration, rounds includes initialization of the framework,
updaterounds just one round of insertion/deletion)

• stack/queue sizes (in Bytes / in indices)
Different configuration files are already provided for the
different testcases, furthermore the user can inspect the Config-
urationparser class for all customizable parameters. To start a
testcase (e.g. to test edge update performance with the vertex
centric approach using a small test set), simply update the
paths to the graphs to test in the configuration XML file and
call

. / mainaimGraph v e r t e x c e n t r i c s m a l l t e s t . xml

D. Experiment workflow

The following section describes how to perform the different
experiments used to evaluate the performance of faimGraph.

1) Vertex Update Performance: Vertex update performance
can be tested using the dynamicVerticesMain executable,
performance influencing factors include the pagesize, batchsize
as well as the graph directionality.

https://www.cc.gatech.edu/dimacs10/downloads.shtml
https://www.cc.gatech.edu/dimacs10/downloads.shtml
https://bitbucket.org/mwinter92/faimgraph
https://bitbucket.org/mwinter92/faimgraph
https://www.cc.gatech.edu/dimacs10/downloads.shtml
https://www.cc.gatech.edu/dimacs10/downloads.shtml

2) Edge Update Performance: Edge update performance
can be tested using the mainaimGraph executable, it can be
started in the following modes

• Standard: Updates using locking, can be specified to use
Threads or Warps per update

• VertexCentric: Updates using preprocessing to start
Threads per affected vertex

• VertexCentricSorted: Similar to vertex centric, but re-
spects sort order in the adjacency when updating

Performance influencing factors include the pagesize, batchsize
as well as the update strategy.

3) Edge Query Performance: Connection queries can be
tested using the queryTCaimGraph executable, the only perfor-
mance relevant factors are the pagesize as well as the batchsize
for the queries.

4) Algorithmic Performance: Algorithmic performance can
be tested using the STCaimGraph and PageRankaimGraph
executables respectively, the performance relevant factors
include the pagesize and if work balancing should be used (this
is currently configured directly in the main file and requires a
recompile upon change).

5) Memory Performance: Memory performance can be
evaluated using the continuousTCaimGraph executable, the
different TCs can be selected by a compile flag up top the
main file, performance relevant factors once again include the
pagesize as well as the batchsize.

E. Evaluation and expected result

The project can be build both on Linux and windows, the
specific performance numbers were gather on Linux 16.04
Xenial LTS with CUDA 9.1 and gcc-6, using an NVIDIA
GTX TITAN Xp (as well as an NVIDIA GTX 780 for parts
of the algorithmic evaluation) and an Intel Core i7-7770 with
16GB RAM. The individual testcases and how to reproduce
the results is already described in Section D.

F. Experiment customization

Each experiment can be configured by altering the corre-
sponding XML file or the test setup, the individual main files
to the corresponding executables should give guidance on how
to individually construct different experiments.

G. Notes

As this is still a research project, the current state is still
prone to misconfiguration, hence it is possible to provide the
framework with invalid or ”bad” values without a warning(e.g.
setting the queue size to 0, hence loosing access to all returned
indices). The provided configuration files should provide a
guideline on how to set up the project to perform as intended,
if questions do arise, it would be highly appreciated to seek
contact with the authors for clarification.

	Introduction
	Related Work
	Static Graph Frameworks on the GPU
	Dynamic Graph Frameworks on the GPU
	GPU Graph Algorithms

	faimGraph
	Memory Management
	Queues
	Graph Data
	Vertex Data
	Edge Data

	Vertex Updates
	Vertex Insertion
	Vertex Deletion

	Edge Updates
	Edge Insertion
	Edge Deletion

	Evaluation
	Memory footprint
	Memory usage evaluation
	Initialization
	Edge Updates
	Edge Insertion
	Edge Deletion

	Vertex Updates
	Vertex Insertion
	Vertex Deletion

	Algorithms
	Work-balancing
	Static Triangle Counting - STC
	PageRank

	Conclusion & Future Work
	References
	Appendix
	Abstract
	Description
	Check-list (artifact meta information)
	How software can be obtained
	Hardware dependencies
	Software dependencies
	Datasets

	Installation
	Experiment workflow
	Vertex Update Performance
	Edge Update Performance
	Edge Query Performance
	Algorithmic Performance
	Memory Performance

	Evaluation and expected result
	Experiment customization
	Notes

