
Recall Them All: Retrieval-Augmented Language Models for
Long Object List Extraction from Long Documents

Sneha Singhania
MPI for Informatics

ssinghan@mpi-inf.mpg.de

Simon Razniewski
ScaDS.AI & TUD

simon.razniewski@tu-dresden.de

Gerhard Weikum
MPI for Informatics

weikum@mpi-inf.mpg.de

Abstract

Relation extraction methods from text often
prioritize high precision but at the expense
of recall. However, high recall is crucial for
populating long lists of object entities that
stand in a specific relation with a given sub-
ject. In long texts, cues for relevant objects
can be spread across many passages, pos-
ing a challenge for extracting long lists. We
present the L3X method which tackles this
problem in two stages: (1) recall-oriented
generation using a large language model with
judicious techniques for retrieval augmenta-
tion, and (2) precision-oriented scrutiniza-
tion to validate or prune candidates.

1 Introduction

Motivation and Problem. Information extrac-
tion (IE, for short) is the methodology for dis-
tilling structured information out of unstructured
texts. Specifically, relation extraction aims to yield
subject-predicate-object (SPO) triples where S and
O are named entities that stand in a certain rela-
tion P. State-of-the-art methods are based on neural
learning, and perform well in terms of precision
but with limited recall (Han et al., 2020). Recently,
large language models (LLM) have been studied for
this task, with emphasis on long-tail facts, yet they
exhibit similar deficits in recall (Kandpal et al.,
2023; Veseli et al., 2023; Sun et al., 2023). More-
over, most methods are designed to operate only on
single passages, as classifiers or sequence taggers.

This work addresses the underexplored and un-
solved problem that IE faces with two “longs”:
extracting a long list of object entities that stand
in a certain relation to a subject, appearing in long
text, such as entire books or websites with many
pages. Examples for this open challenge would be
extracting a complete list of (nearly) all acquisi-
tions and subsidiaries of Alphabet Inc., identifying
all artists who have covered Bob Dylan songs, or

Figure 1: Example for extracting long lists from long
texts. For the subject “Harry Potter”, we aim to extract
all 57 friends, appearing throughout the book series.

finding all friends of Harry Potter in the Harry Pot-
ter book series. Figure 1 illustrates this task.

The most challenging cases arise when a relation
is expressed merely by soft cues in a few passages,
scattered across an entire book. For instance, con-
sider Harry’s friend Neville: Figure 1 shows a weak
cue—very unwieldy for established IE methods.
Additional similar weak cues are spread through-
out the books, and only by aggregating all of them
can we confidently infer this friendship. This calls
for novel methods regarding (i) retrieving informa-
tive passages, and (ii) performing inference over
multiple passages.

Approach and Contributions. We devise a
novel methodology to address this challenging task.
Our method, called L3X (LM-based Long List
eXtraction), operates in two stages:
Stage 1: Recall-oriented Generation. An LLM
is prompted with the subject and relation at hand,
and tasked to generate a full list of objects through
various prompt formulations. In addition, we use
information retrieval (IR) methods to find promis-
ing candidate passages from long texts and feed

them into the LLM prompts. In contrast to prior
works on retrieval-augmented LLMs, we retrieve
a large number of such passages (e.g., 500 for a
given SP pair) and judiciously select the best ones
for prompting. Moreover, our method iteratively
re-ranks the passages and re-prompts the LLM, to
improve recall of initial generation of objects.

Stage 2: Precision-oriented Scrutinization.
Given a high-recall list of object candidates from
Stage 1, the second stage uses conservative tech-
niques to corroborate or prune objects. We employ
novel techniques to identify high-confidence ob-
jects and their best support passages, and use them
to re-assess lower-confidence candidates.

Since we are solving a new task, we curated
two datasets, covering fiction books and web doc-
uments, respectively. The books dataset, which is
our primary target, consists of 11 books or book
series, with a total of 16,000 pages. It addresses
8 relations of long-tailed nature (incl. friends, op-
ponents, placeHasPerson etc.). The second dataset
comprises ca. 10 million web documents sampled
from the C4 corpus (Dodge et al., 2021), focusing
on 3 long-tailed factual relations (hasCEO, has-
Subsidiary, and isMemberOf). Here, for each SP
pair, we need to tap into many thousands of pages,
which can be conceptualized as a single long text.

Due to the inherent trade-off between precision
and recall, neither metric alone is suitable for our
task, and F1 would merely be a generic compro-
mise. The task instead requires maximizing recall,
for an effect on knowledge graph (KG) population,
with sufficiently high precision to keep downstream
curation efforts manageable. Therefore, the met-
ric that we aim to optimize is Recall@PrecisionX
(R@Px), where x is the minimum precision tar-
get to be achieved (e.g., x being 50% or, ideally,
80%). In experiments with Llama3.1-instruct-70B
(Meta, 2024) as underlying LLM, we reach 80-85%
recall using our passage re-ranking and batching
technique and ca. 50% R@P50 and 37% R@P80
through our scrutinization process.

The salient contributions of this work are: (1)
the new task of extracting a long list of objects for
a given subject and relation from long documents;
(2) a methodology for this task, based on retrieval-
augmented LLMs and combining IR techniques
with LLM generation; (3) experiments with new
benchmarks, showing that L3X outperforms LLM-
only baselines that rely on parametric memory from
their pre-training, and providing an in-depth analy-

sis of strengths and limitations of different methods.
The new datasets, code, and additional experimen-
tal results, will be open-sourced upon publication.

2 Related Work

Relation Extraction. A common task in IE is
to extract the relation P that holds between two
given entities, subject (S) and object (O), where P
comes from a pre-specified set of possible predi-
cates. State-of-the-art methods (e.g., (Han et al.,
2020; Wang et al., 2020; Cabot and Navigli, 2021;
Xie et al., 2022; Josifoski et al., 2022; Ma et al.,
2023)) typically operate on single passages, as in-
put to a multi-label classifier or sequence tagger.

Recent works (Zhao et al., 2024; Xu et al., 2024)
have advanced the scope of the extractors’ inputs
under the theme of “long-distance IE”, going be-
yond single sentences/passages. However, tech-
niques like graph neural networks or LLM-powered
generative IE are geared for short news or chats,
and cannot cope with book-length texts. In the
popular document-level benchmark DocRED (Yao
et al., 2019), inputs are single paragraphs from
Wikipedia. Aggregating cues from many passages
(as required, e.g., for determining that Neville is
Harry’s friend) is out of scope. Moreover, these
prior works assume texts for extraction are given
upfront, or retrieved by matching S and O in prox-
imity. In contrast, our long-list task takes S and P as
input and seeks to generate previously unseen O as
output. This changes the goal from high-precision
classification to high-recall extraction.

OpenIE. OpenIE (Mausam, 2016; Stanovsky
et al., 2018; Kolluru et al., 2022) is a variant where
S, P and O are simply surface phrases without link-
age to a knowledge base. While OpenIE may pro-
vide broader coverage across different relations, it
is unsuitable for populating lists of crisp object en-
tities for a given relation. Even when powered by
distant supervision with (S,O) pairs, it remains lim-
ited to extraction from single sentences or short pas-
sages (e.g., (Smirnova and Cudré-Mauroux, 2019)).

LLMs as Knowledge Bases. Petroni et al. (2019)
showed that LLM prompts can generate facts of
knowledge-base style. The approach has been ex-
panded and refined in various ways (e.g., (Jiang
et al., 2020; Shin et al., 2020; Qin and Eisner, 2021;
Chen et al., 2022)). These aim at precision, disre-
garding recall and the long tail. Recent studies
indicate that LLMs have major problems in dealing

with long tail facts (Veseli et al., 2023; Sun et al.,
2023; Singhania et al., 2023; Kandpal et al., 2023).

Retrieval-Augmented Generation. For better
LLM generations, relevant text snippets can be re-
trieved and fed into in-context prompts, through
the popularly known RAG paradigm (Lewis et al.,
2020; Guu et al., 2020). The surveys (Cai et al.,
2022; Asai et al., 2023; Wang et al., 2023; Gao
et al., 2023) discuss RAG architectures for improv-
ing overall task accuracy.

Evidence and Factuality. LLMs can be har-
nessed to assess the factuality of statements (e.g.,
(Manakul et al., 2023; Min et al., 2023; Chern et al.,
2023; Wang et al., 2023)). These techniques lever-
age external sources, such as Wikipedia articles,
which is infeasible in our setting, where the focus
is on long-tail entities within long (fictional) books.

IE from Books. Prior works by Bamman et al.
(2019); Stammbach et al. (2022); Chang et al.
(2023) pursue LLM-supported IE about characters
from fiction books. However, these methods focus
on generating a single name from a single passage.

3 Recall-oriented Generation

Our first, recall-oriented stage comprises several
steps; Figure 2 (left side) provides an overview of
the flow between the components.
1. Retrieval of a large pool of passages from the

long text, using a dense retriever by searching
with S and a set of paraphrases of P.

2. Re-ranking passages by various criteria. We
present two techniques to prioritize pas-
sages based on (i) num: number of named-
entity mentions in a passage, to leverage co-
occurrences of multiple O values for the same
predicate (e.g., a passage about several friends),
and (ii) amp: pseudo-relevance feedback (Zhai,
2008) to amplify signals from best passages to
refine the prompt for the next round.

3. Batching passages with (i) neo: similar enti-
ties (including their aliases) identified through
named entity overlap, and (ii) sim: similar nar-
ratives via embeddings, to provide semantically
coherent inputs to the LLM.

4. Prompting the LLM in retrieval-augmented
mode using the top-ranked passages. The
prompt explicitly includes the book title, S and
P. For recall, this is an ensemble over different
choices of retrieved passage (step 1.), and the

output of this stage is the union of all objects
generated by the LLM.

The first three steps are optional, enabling simpler
configurations. Running only step 4 (without re-
trieved passages) results in an LLM-only/no-RAG
variant, serving as a direct prompting baseline.
Running only steps 1 and 4 produces a simplified
variant of L3X, referred to as def (for default con-
figuration), where passages are ranked by retriever
scores and batched in the same order. Each of
these steps is elaborated below. As Figure 2 shows,
some of the steps can also be iterated; Section 3.2
discusses this for the amp technique.

3.1 Passage Retrieval
Long texts, like entire books, are chunked into short
passages of 15 sentences, totaling up to 1000 char-
acters. We construct all overlapping passages (i.e.,
sharing sentences), to ensure that sentences with co-
references stay implicitly connected to named en-
tities in their proximity. Since books contain long
pieces of direct speech, which may not mention all
speakers’ names explicitly, we further enrich each
passage with mentions of people and locations from
the preceding 10 passages by default. This meta-
data annotation ensures that useful named entity
information from prior chunks is available within
the current passage. All person-person relations
and the placeHasPerson relation can potentially
benefit from this form of contextualization.

On the large pool of enriched passages, indexed
for efficient retrieval, we experimented with sev-
eral retrieval models, including BM25 (Robertson
and Zaragoza, 2009), Contriever (Izacard et al.,
2022), and techniques based on OpenAI embed-
dings. Among the best-performing, we selected
Contriever, a BERT-based dense neural IR method
fine-tuned on MS-MARCO (Izacard et al., 2022),
with the added benefit of being open-source1 and
deployable under our full control. For brevity, we
report only experiments with Contriever.

3.2 Passage Ranking
The default passage ranking is directly derived
from retriever scores. Additionally, we propose
two re-ranking heuristics to enhance the richness
and aptness of top-k passages.

Default Ranking (def): For a given SP pair, for-
mulated as a natural language query, the dense

1https://github.com/facebookresearch/
contriever

https://github.com/facebookresearch/contriever
https://github.com/facebookresearch/contriever

book full text, S, P book full text, S, P, O
Pseudo-Relevance

Feedback

Prompting

{O}, scores

Retriever Ranking

passages

Direct Prompting (LLM-only)
book title, S, P

Stage 1: Generation Stage 2: Scrutinization

Batching

{O}, scores

Evidence
Retrieval

support
passages

Classifier

final
{O}

high
R@P

LLM

1 2 3

4

input for passage
re-ranking

best
passages

passages

Figure 2: Overview of the L3X methodology.

retriever ranks top-d passages based on cosine sim-
ilarity to the query vector.

Entity Mention Frequency (num): re-ordering
passages by frequency of named-entity mentions.
We detect mentions of entities (without disambigua-
tion) of the proper type (usually person, place, or
org) using spaCy and a hand-crafted dictionary of
alias names for S and O, and paraphrases for P (incl.
both nominal and verbal phrases). Top-m passages
with higher counts of mentions are prioritized, as
they could potentially yield multiple O candidates.

Amplification (amp): selecting support pas-
sages and re-ranking passages by pseudo-
relevance feedback. After extracting object lists
from the initially selected passages, we assess the
passage quality based on the no. of objects they
yield. The best passages, termed support passages,
are assumed to provide good cues about predicate P
in surface form. Following the rationale of pseudo-
relevance feedback (Zhai, 2008), these support pas-
sages are fed back to the retriever for refined scor-
ing, based on embedding similarity between the
candidate pool and the support passages.

The amp technique works in two steps and iter-
ates them as follows:
1. For each SP pair, we consider the previously

generated O values and the best s support pas-
sages: those from which the LLM could extract
the most objects (optionally weighted by ex-
traction scores).

2. All passages in the current pool are re-ranked
by the retriever’s scoring model based on com-
bining the original query (about S and P) with
the selected support passages. The now highest-

ranking passages are then used for the next
round of O extraction by prompting the LLM.

Steps 1 and 2 are iterated in an alternating man-
ner. For scoring by the embedding-based (dense)
retriever, the refined query is a convex combination
of the original query embedding and the sum of the
top-s support passages’ vectors:

E(Q′) = αE(Q) + (1− α)
∑s

i=1 E(Si)

with embedding function E() and hyper-parameter
α. Algorithm 1 gives pseudo-code for amp.

3.3 Passage Batching

To feed passages into the LLM, the default ap-
proach combines successive ranks into small
batches, as determined by the (re-)ranker. Alterna-
tively, we can group or batch passages (Fan et al.,
2024) based on coherent story structures to aid the
LLM in extracting O values. We devise two criteria
for this purpose and batch:

• Named Entity Overlap (neo): passages with
a large overlap in named entity mentions;
• Passage Similarity (sim): passages whose tex-

tual embeddings have a high cosine similarity.

For neo, we compute Jaccard similarity using min-
hash sketches of named entities, while sim uses the
OpenAI text-embedding model. Both techniques
process a priority queue of passages as follows: for
each rank r (starting with the highest rank, r=1),
find the b-1 most related passages from lower ranks
(r′>r) to form a batch and prompt the LLM. Mark
all the batch passages as “done” and proceed with
the next lower rank (r′>r), which is not yet “done”.

Algorithm 1: Iterative Extraction with Pseudo-Relevance Feedback (amp Method).
Input: C: candidate pool of retrieved passages; Q: retriever query in natural language with SP mentions; k:

max no. of passages for prompting LLM; b: batch size; s: no. of support passages; α: feedback
weight for query reformulation; E: retriever’s embedding function

Output: List of object values O
Initialize: O ← ∅ ; q ← E(Q) ; //embedding vector
for i← 1 to ⌈k/b⌉ do
K ← Retriever(C, q) ; //ranking C for top-k passages
pb ← Batching(K) ; //b passages by def or by neo/sim (Section 3.3)
Ob ← LLM(pb) ; //extracting objects by prompting LLM with passages pb
O ← O ∪Ob ;
Sb ← ∅ ;

foreach passage p ∈ pb do
if o ∈ Ob appears in p then
Sb ← Sb ∪ p ; //finding support passages from passages pb

S ← Top(Sb) ; //selecting top-s passages by #objects

q ← α · q + (1− α) · 1s
∑

p∈S E(p) ; //convex combination to rerank C
return O

3.4 Prompt-based Object Generation

The retrieved top-k passages mention the subject
in some form (e.g., first name, last name, or alias)
and may contain other named entities. We append
the passages into the prompt context for retrieval-
augmented list generation (Liu et al., 2023; Gao
et al., 2023; Zhao et al., 2023). As LLMs have
limits on input context (and GPU memory demands
increase with input length), we divide the top-k
passages (ranked by retriever scores) into batches
of b passages each (e.g., k=20, b=4 gives 5 batches).
The O values generated from batch-wise processing
are combined by their union for high recall.

Prompts can optionally include a small set of
demonstration examples for in-context inference.
These examples explicitly mention SP appearing
in books disjoint from the dataset, along with their
complete O lists, aiding the instruction-tuned LLM
in object list generation. We refer to this mode as
few-shot prompting, while the basic mode without
examples is referred to as zero-shot. Table 1 shows
an example for the few-shot prompt formulations.

In single-prompt mode, the LLM uses only the
best of these formulations (i.e., considered most
natural by humans). In ensemble mode, for each re-
lation, we manually prepare five prompt templates
for direct prompting, and five retriever query tem-
plates for L3X-RAG, and repeat all LLM-based
extraction tasks with all templates. The final O is
the union of the O values generated across all runs.

Of the four configurations (zero-single, zero-
ensemble, few-single, few-ensemble), we report

System:- You are a knowledge base. Generate the com-
plete list of names (Objects) who are parents, including
step parents, of the specified person in the given book.
List the names one after the other, separated by commas.

Few-Shot examples:

Input: Book: A Promised Land, Subject: Barack Obama,
Relation: parent
Output: [Barack Obama Senior, Stanley Ann Dunham]

Input: Book: The Fellowship of the Ring, Subject: Frodo
Baggins, Relation: parent
Output: [Drogo Baggins, Primula Brandybuck]

User:- Use the attached passages from the book.
Book:{B}, Subject:{S}, Relation:{P}, Passages: {T}

Table 1: Example of prompt template for Parent relation
(placeholders in curly brackets).

main results for the few-ensemble setting, with the
other configurations evaluated in ablation studies.

4 Precision-oriented Scrutinization

To scrutinize the candidate objects O for a given
SP and eliminate false positives, we devise several
techniques. The key idea is to identify passages
that clearly reflect SPO triples, and use these sup-
port passages to rank and prune O values, and also
learn embeddings for the P predicates. Figure 2
(right side) gives a pictorial overview. From the
first stage, each batch of passages yields an LLM-
generated score for the output list of O values. The
total score for this O (for a given SP) can be com-
puted as a weighted occurrence frequency:

score(O) =
∑

batchi

exp (scoreLLM(Li))× Ii(O)

where Ii(O) is an indicator variable set to 1 if O
occurs in the output list Li for the ith batch of
passages, and zero otherwise. scoreLLM is the log
probability. This scoring serves as a simple base-
line for pruning doubtful O values.

4.1 Evidence Retrieval

While stage 1 needs to start the retrieval with S
and P only, stage 2 has O candidates at its disposal.
This allows us to search the entire book for textual
snippets that explicitly indicate SPO triples. For
each SPO candidate, we retrieve the top-s passages,
termed the support passages for SPO. Note that
these are different from the support passages used
by the amp method in stage 1, as we now retrieve
from scratch from the entire book.

To retrieve the support passages, we use the Ope-
nAI text-embedding model to generate passage em-
beddings. These are compared against embeddings
of the concatenated SPO strings, including SO alias
names and paraphrases of P, using cosine similarity.

4.2 Classifiers

We devise several classifiers to scrutinize O values.

Score-based Thresholding (thr): As a baseline
without support passages, the O candidates for a
given SP are ranked using score(O). We accept
those that fall within the tth quantile (e.g., t = 0.8)
of the cumulative score distribution.

Confidence Elicitation (conf): We prompt the
LLM again to assess its confidence in the generated
O values. For each SPO, top-p support passages in
their enriched form (with all named entities incl. S
and O) are included into the LLM prompt for in-
context inference: “Given this information, is SPO
a correct statement?”. The conf classifier accepts
an O candidate if the LLM gives a “yes” reply. This
approach differs from the passage-based extraction
of the recall-oriented stage, as the support passages
are retrieved individually for each O-candidate.

Predicate-specific Classifier (pred): The collec-
tion of support passages, for all SO with the same
predicate P, can be utilized to learn an embedding
for P cues, sort of a “mini-LM” for P. The intuition
is that support passages with indicative phrases,
such as “life-or-death combat with”, “deeply hates”
or “I will destroy you” (in direct speech), can col-
lectively encode a better signal for P. To construct
the classifier, we perform the following steps:

1. For each O, we retrieve top-p support passages,
and encode them into embedding vectors.

2. We identify the top-ranked O values with
score(O) above a threshold ω.

3. Using the top-ranked O, we combine the per-
O passage vectors by a weighted sum, with
score(O) as weights, to obtain a single P-
vector (classifier).

4. Each SO pair under scrutiny (O below the
threshold ω) is tested by comparing the vec-
tor of the top-p support passages for this SPO
candidate against the P-vector computed using
steps 1 to 3.

5. The classifier accepts a low-ranked SO if the
cosine similarity between the embeddings is
above a threshold θ.

We construct a pred classifier for each SP pair, in
a completely self-supervised manner. It has hyper-
parameters ω, p and θ, though; these are tuned via
withheld train/dev data with SPO ground-truth, but
without any supervised passage labels.

Discriminative Classifier (dis): Another way of
harnessing the SPO support passages is to train a
discriminative classifier, again in a self-supervised
manner. We consider the ranked list of O values
for a given SP and pick:
• the top-q high-scoring O candidates
• the bottom-r low-scoring O candidates

with q and r as hyper-parameters. For each top-
q and bottom-r candidate O, we retrieve top-p
support passages, forming one passage pool for
the high-scoring Os and another pool for the low-
scoring Os. In each of these pools, the passages are
cast into embeddings, and weighted averaged with
score(O) to form SPhigh and SPlow vectors.

Finally, each candidate O for a given SP is clas-
sified by whether its own support-passage vector is
closer to the SPhigh or the SPlow vector, in terms
of cosine distance, leading to acceptance or rejec-
tion, respectively.

5 Experimental Setup

5.1 Datasets
We make use of fiction books as a most repre-
sentative, primary target for experimental studies.
A second dataset, on web contents with business-
oriented relations, exhibits different characteristics,
and adds diversity to the experiments. The results
go into more depth and variety on the books data,
and are shorter on the complementary web data.

Books Data. The task of extracting long O lists
from long texts is novel, with no suitable bench-
mark datasets available. Therefore, we constructed
a new dataset of books and corresponding ground-
truth O lists associated with SP pairs.

We selected eleven popular novels and entire
book series2, enthusiastically discussed on com-
munity websites3. These fan communities feature
extensive lists and infoboxes from which we de-
rived SPO ground-truth with high confidence. As
detailed in Sec 3.1, the total no. of passages per
book varies, ranging from ca. 10,000 passages in
epic book series like A Song of Ice and Fire to ca.
700 passages in shorter books like Malibu Rising.

Since entities often appear under multiple sur-
face forms, we manually constructed an entity
name dictionary grouping alias names for each dis-
tinct entity. On a per-book basis, we ensured that
certain first names, last names, or nicknames were
uniquely identifiable. For example, “Daenerys” is
unique, whereas “Targaryen” is ambiguous. So
for this entity, aliases include “Daenerys”, “Dany”,
“Daenerys Targaryen”, “Daenerys Stormborn”, but
not “Targaryen”. LLM outputs like “Targaryen”
alone are thus counted as false. This construction
was aided by additional community sources4.

This dataset comprises 764 distinct SP pairs for
8 predicates. In total, it covers ca. 5300 entities that
appear under ca. 12,000 alias names. The S entities
are typically prominent characters in the books,
but they are associated with long O lists mostly
consisting of rarely mentioned long-tail entities.

Relation Difficulty. The chosen 8 predicates has
3 easier relations with a relatively limited no. of O
values (parent, child, and sibling) and 5 harder re-
lations with potentially long O lists (family, friend,
opponent, placeHasPerson—i.e., people being at a
place, and hasMember—i.e., members of org. or
events). Table 2 gives statistics for our dataset.

Web Data. To demonstrate the generalizability
of L3X, we constructed a second dataset with partly
similar and partly complementary characteristics.
The data is derived from the large common crawl

2A Song of Ice and Fire Series, Godfather Series, Harry
Potter Series, Outlander Series, Little Women, Malibu Rising,
Pride and Prejudice, Steve Jobs, The Girl with the Dragon
Tattoo, Wuthering Heights, The Void Trilogy

3www.cliffsnotes.com, www.bookcompanion.com,
www.fandom.com

4incl. potterdb.com for Harry Potter, www.reddit.com/
r/asoiaf for Song of Ice and Fire, and others

Relation Type #S #O per S
range µ (σ)

parent pers→pers 85 1–4 1.9 (0.6)
child pers→pers 48 1–9 3.3 (2.4)
sibling pers→pers 65 1–8 3.0 (1.8)
family pers→pers 81 1–47 12.1 (9.8)
friend pers→pers 99 1–85 11.1 (16.5)
opponent pers→pers 88 1–60 8.9 (11.2)
placeHasPer loc→pers 189 1–92 6.7 (12.6)
hasMember org→pers 109 1–142 11.6 (20.5)

Table 2: Books Dataset Statistics. #S denotes the no. of
unique subjects and #O is the no. of objects per subject.

Relation Type #S #O per S
range µ (σ)

hasCEO org→pers 100 2-43 8.5 (5.2)
isMemberOf pers→org 100 3-74 20.1 (14.7)
hasSubsidiary org→org 100 2-308 71.8 (52.0)

Table 3: Web Dataset Statistics.

of web pages (C4 corpus) (Dodge et al., 2021),
and we aim to extract long object lists for three
business/biography relations: CEOs of companies
(incl. past ones), subsidiaries of companies, and
organizations that a famous person is part of (e.g.,
companies, societies, charities, schools at different
levels). The dataset has 100 subjects for each P, cov-
ering ca. 6400 entities appearing under ca. 24,000
alias names. Table 3 gives per-relation statistics.

5.2 System Configurations
The presented methodology comes with many op-
tions for its different components, with the most
important choices occurring for ranking, batching
and scrutinization. In our experiments, we focus
on configurations for these three components, la-
beling them accordingly, e.g., as num/sim/thr or
amp/neo/pred. The thr classifier with default set-
ting t = 80 is abbreviated as thr80.

Hyper-Parameters. The L3X framework comes
with tunable hyper-parameters; Table 4 lists the
default values for most experiments. We widely
varied these settings, reporting notable cases in
Section 6.4 on sensitivity studies.

The best settings were identified using withheld
train/dev data. To this end, we split the entire
dataset into two folds (50:50), through stratified
sampling on books and SP pairs, ensuring equal
representation of varying O-list lengths in both
folds. For each subject in train/dev, the complete
O list is taken from the ground truth, to prevent
information leakage into the test set.

www.cliffsnotes.com
www.bookcompanion.com
www.fandom.com
potterdb.com
www.reddit.com/r/asoiaf
www.reddit.com/r/asoiaf

The best hyper-parameter values are determined
through grid search, maximizing the recall metric
in Stage 1 and the R@P50 metric in Stage 2 (or
alternatively AUC). This is done for two modes: a
single global value for a hyper-parameter, or per-
predicate values, specific for each P.

Evaluation Metrics. To obtain insights into the
precision-recall trade-off and to assess the end-to-
end goal of populating a knowledge base with high-
quality SPO triples, the primary metric of interest
is Recall@Precision (R@P), focusing on the most
interesting cases of R@P50 and R@P80 (50% and
80% correctness). Additionally, we report preci-
sion and recall, both before and after scrutinization.
To further reflect on the inherent trade-off between
precision and recall, we also compute the area un-
der the curve (AUC) of the precision-recall curve.
All reported numbers are macro-averaged percent-
age scores, computed as follows:
1. For each SP pair, we consider the resulting O

list and compute the list’s precision and recall.
2. We average the numbers over SP pairs for P.
3. We average the numbers over predicates P.
Note that there is only a mild imbalance between
different predicates and our calculation is based on
the respective number of SP pairs rather than total
O counts. As a secondary metric we also compute
micro-averages over all SP pairs and their O lists,
regardless of the predicate, and report the findings.

Ground-Truth Variants. As detailed in Sec-
tion 5.1, the ground-truth O lists are derived from
online sources with high quality control. Inevitably,
such lists are often incomplete, particularly for
books with hundreds of minor characters. There-
fore, we also evaluate by pooling-based ground
truth, where the true positives within the union
of all O values returned by all the methods is the
complete ground truth.

6 Experimental Results

We first present our findings on the books dataset,
as this is the primary representative of our setting—
see Subsections 6.1 and 6.2. Results for the web
dataset are given in Subsection 6.3. Due to space
constraints, we restrict the presented experiments
to the most notable configurations, with additional
discussions on hyper-parameter sensitivity and er-
ror cases in Subsections 6.4 and 6.5. In all tables,
the best value for a metric is in boldface, and row-
wise best values are shaded.

Parameter Default
l: passage length (#char) 1000
passage overlap (#char) 200
d: # retrieved passages 500
k: top-k passages 40
b: # passages per batch 2
m: # passages in num 50
s: # support passages in amp 2
α: feedback weight for amp 0.7
t: percentile retained for thr 0.8
p: top-p support passages for conf 2
ω: cut-off score for O values in pred 50
p: top-p passages for pred and dis 5
θ: acceptance bound for pred 0.85
q: top-q O candidates for dis 50
r: bottom-r O candidates for dis 50

Table 4: Hyper-Parameters for L3X

6.1 Main Findings for Books Data

6.1.1 Stage 1: Recall-oriented Extractor.
Table 5 reports macro-averaged results for different
configs of LLM-only and L3X-RAG generations.
The table shows both Stage 1 and Stage 2 results,
but for Stage 2 all methods employ the basic thr
classifier with default hyper-parameter t=0.8.

The results clearly show the superiority of L3X
over LLM-only, with major gains in recall (by
Stage 1) and substantial improvements for R@P
in Stage 2, reaching almost 50% for R@P50. We
make the following key observations:

Baselines: LLM-only methods perform poorly,
even as a few-shot ensemble. Stage 1 recall sat-
urates near 50%, with AUC reaching ca. 20%.

L3X at Stage 1: All L3X configurations greatly im-
prove recall, up to almost 85%. To calibrate these
numbers, we also determined an oracle-based upper
bound: given all retrieved passages (top-d=500),
how many ground-truth objects do actually appear
in at least one of these passages. For the books
dataset, this oracle suggests a recall of 88%. So our
results are very close to what can be spotted at all,
with a reasonable retriever budget.

The default configuration def already achieves
competitive performance, and the best option for
recall is the num method with entity-count-based
re-ranking. However, in terms of AUC, the method
that shines most is the iterative amp, leading to an
AUC value of 27.5%.

Best L3X Config at Stage 2: The strong AUC of
amp is a strong starting point for the thr classifier
at Stage 2, where it achieves the best R@P values,
with almost 50% for R@P50—with a large margin
over the second-best method.

Method Stage 1 Stage 2 (thr80)
P R AUC P R AUC R@P50 R@P80

L
L

M
-o

nl
y zero-single 41.9 38.7 15.8 42.6 28.6 15.0 19.6 15.9

few-single 38.5 43.4 18.2 39.1 31.9 16.9 23.7 17.6
zero-ensemble 32.1 49.6 20.2 34.2 41.9 19.8 29.4 21.3
few-ensemble 34.1 47.7 20.5 37.0 39.5 20.5 31.4 21.9

L
3X

(f
ew

-e
ns

em
bl

e)

def 12.0 84.3 22.9 14.6 82.8 22.7 40.2 26.1
+num 11.8 85.2 21.8 14.8 83.1 22.7 39.7 24.8
+amp 13.7 83.6 27.5 16.0 81.0 27.4 48.6 35.9
+neo 12.6 83.8 22.4 15.5 81.6 23.0 39.1 25.1
+sim 12.5 84.2 22.2 15.3 82.5 23.2 39.4 23.5
+num +neo 12.9 85.0 22.3 15.2 81.9 22.8 38.0 25.0
+amp +neo 14.1 83.4 27.1 16.7 81.6 26.9 47.7 35.4
+num +sim 12.1 83.8 21.8 14.7 81.5 22.4 38.0 24.8
+amp +sim 14.1 83.4 27.1 16.0 80.5 26.3 47.0 33.8

Table 5: Results (%) for L3X Stage 1 Configurations on Books Data (ranking:{num, amp}; batching:{neo, sim};
top-k=40; default thresholding (t = 0.8) for Stage 2)

Influence of Batching: When combined with
batching via neo or sim, L3X improves in precision,
but loses recall, and eventually stays inferior to amp
alone. While unexpected, it is not counter-intuitive:
amp operates iteratively, and judiciously picks its
batch of passages in each round. So batching does
help, but the big mileage already comes from the
amplification of support passages.

Micro-averaging: With micro-averaging rather
than macro-averages, the relative gains/losses
across configs hardly change. The best results are
still with amp, reaching 84.7% recall and 24.9%
AUC in Stage 1, and 44.7% R@P50 and 31.6%
R@P80 in Stage 2.

Pooling-based Ground Truth: In this evaluation
mode, stage-1 recall by def and amp increases by
ca. 10 points, reaching 93% and 92%, respectively.
This is intuitive, as pooled ground truth is a subset
of the fully hand-crafted ground truth. The numer-
ical gains carry over to Stage 2: with thr80, amp
goes up to 56.5% R@P50 and 41.4% R@P80.

Influence of LLM Pre-Training Most books in
our data are well discussed in online media (incl.
movie/TV adaptations). The LLM implicitly taps
into this contents by its parametric memory. To as-
sess the influence of LLM pre-training, we evaluate
LLM-only vs. L3X amp for one of our books, the
Void Trilogy. This book series is barely covered
on the Web; we invested great effort for compiling
its ground truth. The results show that LLM-only
fails completely on this case: 12% recall with poor
precision of ca. 5%, whereas our RAG-based amp
gets 82% recall after Stage 1, and 34.1% R@P50
and 38.3% R@P80 with default thr80 in Stage 2.

6.1.2 Stage 2: Precision-oriented Scrutinizer.

In the following, the presentation is restricted to a
small subset of the best performing stage-1 configu-
rations, namely, amp and amp/neo, plus the default
L3X-RAG def for contrast. Table 6 shows the stage-
2 results with different classifiers for scrutinization.
We highlight the following key findings:

Best Configurations pred and dis: The basic thr
technique already works fairly well, especially with
tuning of its hyper-parameter t. The more sophis-
ticated classifiers pred and dis still have an added
benefit, improving the final R@P values by another
1%, going up to 49.7% for R@P50.

Hyper-parameter Tuning for pred: The pred
method has three hyper-parameters. Setting their
values by global grid search with train/dev data
leads to the best results, with ω=20, p=5, and
θ=0.75. As the various P exhibit different char-
acteristics, we would expected even further gains
with the per-predicate grid search. Indeed, this led
to rather different predicate-specifc values. For
example, for Sibling, the best values are ω=10,
p=2, θ=0.9, whereas for Friend we have ω=50,
p=1, θ=0.55. This makes sense, as Sibling lists
are much shorter, and long Friend lists have much
noisier support passages. So the setting is tighter
for Sibling, and has more liberal θ for Friend but
only 1 support passage per O to tame noise. Nev-
ertheless, the pred p and dis p techniques did not
achieve significant improvements over the globally
tuned variants pred g and dis g. We attribute this
result to the fact that the simpler configurations are
already close to the best possible outputs (due to
the difficulty of the task).

L3X P AUC R@P50 R@P80 R@P90

de
f

thr g 14.6 22.7 40.2 26.1 24.1
thr p 16.5 22.1 39.5 25.9 23.9
conf 43.6 18.2 28.4 18.4 17.8
pred g 18.9 23.4 41.3 26.6 24.8
pred p 21.5 22.9 40.7 26.5 24.7
dis g 20.2 23.1 41.2 26.6 24.8
dis p 21.4 21.8 40.1 26.2 24.7

am
p

thr g 16.4 27.3 48.5 35.8 32.9
thr p 17.5 27.2 48.5 35.8 32.9
conf 46.6 19.0 31.7 20.4 19.3
pred g 20.4 28.1 49.7 36.5 33.3
pred p 23.5 28.0 48.7 36.2 33.0
dis g 21.5 27.9 49.7 36.5 33.3
dis p 21.2 27.5 49.6 36.4 33.3

am
p/

ne
o

thr g 16.4 26.9 47.7 35.4 33.1
thr p 17.4 26.7 47.5 35.3 33.0
conf 45.4 18.7 30.7 20.1 19.6
pred g 19.8 27.6 48.7 35.7 33.1
pred p 22.1 27.4 48.0 35.4 32.9
dis g 20.7 27.4 48.7 35.7 33.1
dis p 20.9 26.2 48.0 35.4 32.8

Table 6: Results (%) for L3X Stage 2 Configurations
(classifiers: {thr, conf, pred, dis}, g refers to global grid
search and p is per-predicate grid search).

Confidence Elicitation from LLM: conf performs
poorly, as the LLM becomes rather conservative
when fed with support passages about SPO candi-
dates, rejecting too many valid entries.

Comparison to Relational IE. As Stage 2 pro-
cesses full SPO triples, we can apply relational
IE for classifying whether an SO pair satisfies P.
We considered two state-of-the-art methods, Ge-
nIE (Josifoski et al., 2022) and DREEAM (Ma
et al., 2023), and tuned them on our predicates with
the train/dev fold. Still, both performed very poorly,
reaching less than 5% recall and precision 10% at
best. Clearly, our task is outside their comfort zone,
as passages from fiction books are very different
from Wikipedia paragraphs for which these meth-
ods were originally designed. This underlines the
uniqueness and challenging nature of the proposed
long-lists-from-long-documents task.

6.2 Analysis by Drill-Down

The reported results are macro-averaged over all
relations. However, some relations P are easier to
deal with than others (see Sec 5). Table 7 shows
results with drill-down by P, comparing the best
configs. after Stage 1 and Stage 2, respectively.

For stage-1 recall, we achieve similar perfor-
mance across predicates, all between ca. 75% and
90% recall. For stage-2 R@P results, we clearly

see the big gap between "easy" relations with crips
lists of a few objects, and "hard" relations with
long lists and more loosely defined cues in the text
passages. Not surprisingly, the Opponent relation
is the hardest case, where even our best method
reaches only ca. 30% for R@P50. This calls for
more research on this challenging task.

Entity Popularity. For drill-down analysis, we
partition the test set ground-truth O entities into
head and tail groups. Based on the frequency of
each unique O in a book, we define the head as
entities appearing above the 75th percentile and
the tail as those below it. Table 8 shows these
results on four combinations (easy P, head), (easy P,
tail), (hard P, head), and (hard P, tail). We observe
that amp still outperforms def for all four cases.
However, for the most challenging case of hard P
and tail O, the absolute numbers degrade strongly.
This highlights the complexity of the task and the
need for further research.

6.3 Findings for Web Data

Table 9 shows results for the Web dataset, with dif-
ferent stage-1 configurations, and default thr80 for
scrutinization. By and large, the results reconfirm
our key findings with the Books data: LLM-only
methods are far inferior; all L3X-RAG methods
boost recall; the amp has the best AUC after Stage
1 and is the overall winner for R@P after Stage
2. The oracle-based upper bound here is 65% for
recall from top-d=500 passages.

A significant difference to the Books data, how-
ever, is that all absolute values are substantially
lower here (incl. the oracle). For example, the
best R@P50 values (by amp) are around 30%, com-
pared to almost 50% for the books experiment. The
explanation clearly is that the dataset itself is even
more challenging: the ground-truth lists of objects
are even longer, with even more long-tail entities,
and they are spread across a very large number of
web pages—a situation as if all pages (about the
same S) were concatenated into a very long, highly
incoherent document).

Table 10 compares stage-2 classifiers, along with
drill-down by the three predicates. The trends
align with those observed in the books dataset, with
amp/pred g achieving the highest scores. While per-
formance is strong on the relatively easier CEO re-
lation (ca. 65% R@P50), it struggles on the highly
challenging hasSubsidiary relation.

L3X stage 1: recall def/pred-g amp/pred-g amp/neo/pred-g
def amp amp/neo AUC R@P50 R@P80 AUC R@P50 R@P80 AUC R@P50 R@P80

parent 75.6 76.2 73.8 27.3 57.7 47.0 27.9 61.3 52.4 27.9 61.3 53.6
children 86.5 82.5 84.6 28.1 60.9 43.8 36.5 72.3 61.0 34.4 66.1 55.2
sibling 87.2 86.2 89.3 38.0 65.4 50.4 47.7 79.4 67.7 46.3 77.9 66.0
avg. Easy P 83.1 81.6 82.6 31.1 61.3 47.1 37.3 71.0 60.3 36.2 68.4 58.3

family 79.8 79.8 78.5 25.2 34.0 15.0 33.1 44.8 33.2 32.9 46.2 32.1
friend 85.4 85.5 85.2 19.7 27.1 13.1 23.8 35.5 17.0 23.2 35.5 18.6
opponent 80.8 81.1 80.1 17.6 29.3 14.5 18.9 32.4 14.6 18.8 30.9 14.2
hasMember 89.0 86.6 86.1 16.5 25.7 14.0 20.7 32.5 20.9 21.1 36.5 20.9
placeHasPer 89.8 90.7 89.4 14.7 30.3 15.3 16.5 39.6 25.0 16.1 35.6 24.8
avg. Hard P 85.0 84.7 83.9 18.7 29.3 14.4 22.6 37.0 22.1 22.4 36.9 22.1

avg. All P 84.3 83.6 83.4 23.4 41.3 26.6 28.1 49.7 36.5 27.6 48.7 35.7

Table 7: Drill-Down Results by Predicate for Books Dataset

L3X Stage 1 Stage 2 (thr80)
P R AUC P R AUC R@50 R@80

de
f EH 18.0 90.3 26.3 22.2 89.3 26.4 65.9 46.1

ET 16.7 79.3 15.3 19.9 74.9 16.8 35.7 26.0

am
p EH 23.4 87.2 32.1 26.1 83.0 31.5 74.0 55.1

ET 17.3 75.9 18.9 21.1 73.1 20.2 45.5 35.0

de
f HH 2.4 92.1 17.3 3.0 91.6 17.4 32.4 16.6

HT 3.0 75.3 8.5 3.6 73.7 8.3 8.0 3.1

am
p HH 2.5 91.9 20.6 3.2 91.1 20.4 40.5 24.7

HT 3.1 74.9 10.4 3.5 72.1 10.4 13.1 4.1

Table 8: Results on Head-vs-Tail. EH: easy P+head, ET:
easy P+tail, HH: hard P+head and HT: head P+tail.

Method Stage 1 Stage 2 (thr80)
P R AUC P R AUC R@50 R@80

zero-ens 25.0 43.5 19.0 28.1 39.7 17.3 25.9 15.5
few-ens 28.3 41.9 18.5 31.8 37.8 16.9 25.2 15.2

def 4.1 70.6 18.0 4.9 67.9 17.8 21.5 7.2
num 4.4 70.3 17.9 5.2 67.9 17.4 20.8 8.3
amp 13.4 60.5 23.5 15.7 57.8 23.3 31.9 18.3
amp/neo 18.5 51.8 20.5 21.0 48.8 19.5 29.3 13.6

Table 9: Results on Web Data. Stage-1 with rank-
ing:{num, amp}; batching:{neo}; k=40; Stage-2: thr80.

6.4 Sensitivity of Hyper-Parameter Settings

We performed extensive experiments on varying
hyper-parameter settings. We report on the sensi-
tivity of the two most important Stage 1 choices: k
(no. top-k passages) and b (no. passages per batch).
Figure 3 shows R@P50 numbers for amp/neo by
varying k from 5 to 40 and b from 2 to 5. We
observe that increasing k is very useful, but has
diminishing returns beyond a certain value. Note
that larger k also increase the cost for invoking the
LLM more often. For small k, there is no benefit
from larger batches, but this changes for large k,
where bigger batches keep improving recall. Note
that this also increases LLM costs, as we pass more

0.38

0.4

0.42

0.44

0.46

0.48

0.5

k=5 k=10 k=20 k=40

R@
P5

0 b=2
b=3
b=4
b=5

Figure 3: Varying hyper-parameters k, b for amp/neo.

tokens into the inference.
All L3X-RAG configs use five reformulations

for retriever queries. Table 11 presents the change
in results with fewer query variants. Both recall
and R@P values drop with less queries, showing
the vital role of diversified formulations.

6.5 Error Discussion

We observed a variety of typical error cases, and
discuss three of the most notable ones.

Hallucinations. The LLM calls often return ex-
tremely long lists of objects, including names that
do not occur in the respective books at all. In
RAG mode, the LLM does not necessarily restrict
its outputs to names occurring in the input pas-
sages. These are unfaithful generations, but for
recall, our main target, producing names from para-
metric memory is an advantage. To quantify the
issue of hallucinated O values, we compute the no.
of generated objects that do not appear in the re-
spective book:
| ∪SP {generated O for SP | O /∈ book}|

normalized by the total no. of generated O values.
We observed the following hallucination rates af-
ter Stage 1: LLM-only: 55.3%, def: 51.7%, amp:

def/thr80 amp/thr80 amp/pred(g) amp/neo/pred(g)
AUC R@P50 R@P80 AUC R@P50 R@P80 AUC R@P50 R@P80 AUC R@P50 R@P80

hasCEO 33.5 51.0 19.5 41.1 62.0 42.6 44.7 64.7 44.4 42.9 63.2 42.9
isMemberOf 12.1 10.0 1.2 15.9 21.8 8.3 16.4 23.2 9.1 15.6 22.2 9.9
hasSubsidiary 7.8 3.4 0.9 12.8 12.0 4.1 13.1 13.0 5.9 12.9 12.3 4.0

macro-avg. 17.8 21.5 7.2 23.3 31.9 18.3 24.7 33.6 19.8 23.8 32.6 18.9

Table 10: Results (%) for Web Data with Drill-Down Results by Predicate.

L3X Stage 1 Stage 2 (thr80)
amp P R AUC P R AUC R@50 R@80

#q=5 13.7 83.6 27.5 16.0 81.0 27.4 48.6 35.9
#q=3 15.2 81.1 27.2 18.1 78.5 27.5 48.2 35.4
#q=1 20.5 76.2 26.1 23.4 71.1 26.5 44.0 31.5

Table 11: Varying no. queries for retriever with amp.

40.7%, amp/neo: 38.1%. Erroneous objects in-
clude made-up names and non-entity phrases, such
as “X’s sister”, where the LLM appends a phrase
related to the predicate instead of an O name. This
underlines that stage-2 scrutinizing is essential.

Confusing Predicates. Another common case is
that the LLM generates valid O values that are not
in the proper relation P with subject S. The most
interesting situation here is when that incorrect O
is in relation with S for another predicate Q (̸= P)
(e.g., Dumbledore appearing among Harry Potter’s
parents instead of being a friend).

To quantify, we compute a #P×#P confusion ma-
trix, with counts of generated O for P when ground
truth is Q. For our best method, amp/pred(g), we ob-
served a ratio of ca. 60:30:10 of accepted true posi-
tives (TP), predicate-confused TPs, and accepted
false positives (FP). This suggests that merely ex-
tracting the right SO pairs is not the problem (only
10% completely FPs), but getting the predicate cor-
rect is the big issue here. The most salient pred-
icate pairs of confusion are (Friend,Family) and
(Friend,Opponent). This may be surprising on first
glance, but it is the sophistication and subtlety of
fictional literature that makes this a daunting case.

Missing True Positives in the Low Ranks. Ma-
jority of TPs are in the higher ranks. These are
followed by a long tail, with mostly FPs but sprin-
kled with TPs at lower ranks. To assess how well
Stage 2 recovers low-ranked TPs, we identify the
ranking cut-off for R@P50 and count the missing
TPs below this threshold—i.e., those misclassified
as false negatives. Even with our best methods, ca.
16% of all the ground-truth O values fall into the
category of low-rank missing TPs.

7 Conclusion

We introduced the task of extracting long lists of
objects from long documents, and developed the
L3X methodology, comprising LLM prompting, re-
trieval augmentation, passage ranking and batching,
and classifiers to scrutinize candidates and prune
false positives. Extensive experiments with a range
of L3X configurations over two datasets provide
key insights. First, L3X greatly outperforms LLM-
only extraction in recall and R@P. Second, one of
our methods, amp/pred with pseudo-relevance feed-
back and a classifier with tuned hyper-parameters,
achieves remarkable performance of ca. 85% recall
and ca. 37% R@P80 on full-length books. How-
ever, drill-down analyses by predicate and head-vs-
tail entities show that for the hardest cases, there
is substantial room for improvement. Third, this
underlines the biggest challenge of our task: pas-
sages scattered across long books give cues to a
smart human, but are still very hard to pinpoint and
extract for AI systems (incl. LLMs).

8 Limitations

This work is based on Llama3.1-70B. We also ran
Stage 1 studies using other LLMs. With a 10x
smaller Llama-8B model, recall fell below 50%
(compared to ca. 80% with the 70B model). With
GPT-3.5, preliminary experiments showed results
similar to Llama-70B. Still, a broader comparison
of different LLMs for our task would be desirable.

In the absence of suitable datasets, we con-
structed a new benchmark resource—limited in
scale, though. Expanding the dataset would be use-
ful , however, scaling up the benchmark for books
poses a major challenge. On one hand, for pop-
ular books, data for ground truth construction is
readily available, but these books are likely well
captured in the model’s parametric memory from
pre-training. On the other hand, we could consider
books in the long tail of popularity or brand-new
books, but this incurs high cost to obtain ground
truth, requiring end-to-end reading and great dili-
gence for annotations.

References

Akari Asai, Sewon Min, Zexuan Zhong, and Danqi
Chen. 2023. Retrieval-based language models
and applications. In Proceedings of the 61st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 6: Tutorial Abstracts),
pages 41–46, Toronto, Canada. Association for
Computational Linguistics. Tutorial materials at
"http://acl2023-retrieval-lm.github.io/".

David Bamman, Sejal Popat, and Sheng Shen.
2019. An annotated dataset of literary entities.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 2138–2144, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Pere-Lluís Huguet Cabot and Roberto Navigli.
2021. REBEL: relation extraction by end-to-end
language generation. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP
2021, Virtual Event / Punta Cana, Dominican
Republic, 16-20 November, 2021, pages 2370–
2381. Association for Computational Linguis-
tics.

Deng Cai, Yan Wang, Lemao Liu, and Shum-
ing Shi. 2022. Recent advances in retrieval-
augmented text generation. In SIGIR ’22: The
45th International ACM SIGIR Conference on
Research and Development in Information Re-
trieval, Madrid, Spain, July 11 - 15, 2022,
pages 3417–3419. ACM. Tutorial materials at
"https://jcyk.github.io/RetGenTutorial/".

Kent Chang, Mackenzie Cramer, Sandeep Soni,
and David Bamman. 2023. Speak, memory: An
archaeology of books known to ChatGPT/GPT-
4. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Pro-
cessing, pages 7312–7327, Singapore. Associa-
tion for Computational Linguistics.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin
Deng, Yunzhi Yao, Chuanqi Tan, Fei Huang,
Luo Si, and Huajun Chen. 2022. Knowprompt:
Knowledge-aware prompt-tuning with synergis-
tic optimization for relation extraction. In WWW

’22: The ACM Web Conference 2022, Virtual
Event, Lyon, France, April 25 - 29, 2022, pages
2778–2788. ACM.

I-Chun Chern, Steffi Chern, Shiqi Chen, Weizhe
Yuan, Kehua Feng, Chunting Zhou, Junxian He,
Graham Neubig, and Pengfei Liu. 2023. Factool:
Factuality detection in generative AI - A tool
augmented framework for multi-task and multi-
domain scenarios. CoRR, abs/2307.13528.

Jesse Dodge, Maarten Sap, Ana Marasović,
William Agnew, Gabriel Ilharco, Dirk Groen-
eveld, Margaret Mitchell, and Matt Gardner.
2021. Documenting large webtext corpora: A
case study on the colossal clean crawled corpus.
In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Process-
ing, pages 1286–1305, Online and Punta Cana,
Dominican Republic. Association for Computa-
tional Linguistics.

Meihao Fan, Xiaoyue Han, Ju Fan, Chengliang
Chai, Nan Tang, Guoliang Li, and Xiaoyong Du.
2024. Cost-effective in-context learning for en-
tity resolution: A design space exploration. In
40th IEEE International Conference on Data En-
gineering, ICDE 2024, Utrecht, The Netherlands,
May 13-16, 2024, pages 3696–3709. IEEE.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxi-
ang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei
Sun, Qianyu Guo, Meng Wang, and Haofen
Wang. 2023. Retrieval-augmented generation
for large language models: A survey. CoRR,
abs/2312.10997.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong
Pasupat, and Ming-Wei Chang. 2020. Realm:
Retrieval-augmented language model pre-
training. In Proceedings of the 37th Inter-
national Conference on Machine Learning,
ICML’20. JMLR.org.

Xu Han, Tianyu Gao, Yankai Lin, Hao Peng, Yao-
liang Yang, Chaojun Xiao, Zhiyuan Liu, Peng Li,
Jie Zhou, and Maosong Sun. 2020. More data,
more relations, more context and more openness:
A review and outlook for relation extraction. In
Proceedings of the 1st Conference of the Asia-
Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International
Joint Conference on Natural Language Process-
ing, AACL/IJCNLP 2020, Suzhou, China, De-
cember 4-7, 2020, pages 745–758. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/2023.acl-tutorials.6
https://doi.org/10.18653/v1/2023.acl-tutorials.6
https://doi.org/10.18653/v1/N19-1220
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.204
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.204
https://doi.org/10.1145/3477495.3532682
https://doi.org/10.1145/3477495.3532682
https://doi.org/10.18653/v1/2023.emnlp-main.453
https://doi.org/10.18653/v1/2023.emnlp-main.453
https://doi.org/10.18653/v1/2023.emnlp-main.453
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.48550/ARXIV.2307.13528
https://doi.org/10.48550/ARXIV.2307.13528
https://doi.org/10.48550/ARXIV.2307.13528
https://doi.org/10.48550/ARXIV.2307.13528
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.1109/ICDE60146.2024.00284
https://doi.org/10.1109/ICDE60146.2024.00284
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
https://aclanthology.org/2020.aacl-main.75/
https://aclanthology.org/2020.aacl-main.75/
https://aclanthology.org/2020.aacl-main.75/

Gautier Izacard, Mathilde Caron, Lucas Hosseini,
Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. 2022. Unsupervised
dense information retrieval with contrastive
learning. Transactions on Machine Learning
Research.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Gra-
ham Neubig. 2020. How can we know what
language models know. Trans. Assoc. Comput.
Linguistics, 8:423–438.

Martin Josifoski, Nicola De Cao, Maxime Peyrard,
Fabio Petroni, and Robert West. 2022. GenIE:
Generative information extraction. In Proceed-
ings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies, pages 4626–4643, Seattle, United States.
Association for Computational Linguistics.

Nikhil Kandpal, Haikang Deng, Adam Roberts,
Eric Wallace, and Colin Raffel. 2023. Large lan-
guage models struggle to learn long-tail knowl-
edge. In International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Hon-
olulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 15696–
15707. PMLR.

Keshav Kolluru, Muqeeth Mohammed, Shubham
Mittal, Soumen Chakrabarti, and Mausam. 2022.
Alignment-augmented consistent translation for
multilingual open information extraction. In Pro-
ceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1:
Long Papers), ACL 2022, Dublin, Ireland, May
22-27, 2022, pages 2502–2517. Association for
Computational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus,
Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau
Yih, Tim Rocktäschel, Sebastian Riedel, and
Douwe Kiela. 2020. Retrieval-augmented gen-
eration for knowledge-intensive nlp tasks. In
Advances in Neural Information Processing Sys-
tems, volume 33, pages 9459–9474. Curran As-
sociates, Inc.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao
Jiang, Hiroaki Hayashi, and Graham Neubig.
2023. Pre-train, prompt, and predict: A sys-
tematic survey of prompting methods in natu-

ral language processing. ACM Comput. Surv.,
55(9):195:1–195:35.

Youmi Ma, An Wang, and Naoaki Okazaki. 2023.
DREEAM: Guiding attention with evidence for
improving document-level relation extraction.
In Proceedings of the 17th Conference of the Eu-
ropean Chapter of the Association for Computa-
tional Linguistics, pages 1971–1983, Dubrovnik,
Croatia. Association for Computational Linguis-
tics.

Potsawee Manakul, Adian Liusie, and Mark J. F.
Gales. 2023. Selfcheckgpt: Zero-resource black-
box hallucination detection for generative large
language models. In Proceedings of the 2023
Conference on Empirical Methods in Natural
Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 9004–9017. Asso-
ciation for Computational Linguistics.

Mausam. 2016. Open information extraction sys-
tems and downstream applications. In Proceed-
ings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016, pages 4074–
4077. IJCAI/AAAI Press.

Llama Team AI @ Meta. 2024. The llama 3 herd
of models. CoRR, abs/2407.21783.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike
Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi.
2023. Factscore: Fine-grained atomic evalua-
tion of factual precision in long form text gen-
eration. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2023, Singapore, December
6-10, 2023, pages 12076–12100. Association for
Computational Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as
knowledge bases? In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 2463–2473, Hong
Kong, China. Association for Computational
Linguistics.

Guanghui Qin and Jason Eisner. 2021. Learning
how to ask: Querying lms with mixtures of soft

https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://doi.org/10.1162/TACL_A_00324
https://doi.org/10.1162/TACL_A_00324
https://doi.org/10.18653/v1/2022.naacl-main.342
https://doi.org/10.18653/v1/2022.naacl-main.342
https://proceedings.mlr.press/v202/kandpal23a.html
https://proceedings.mlr.press/v202/kandpal23a.html
https://proceedings.mlr.press/v202/kandpal23a.html
https://doi.org/10.18653/V1/2022.ACL-LONG.179
https://doi.org/10.18653/V1/2022.ACL-LONG.179
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.18653/v1/2023.eacl-main.145
https://doi.org/10.18653/v1/2023.eacl-main.145
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.557
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.557
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.557
http://www.ijcai.org/Abstract/16/604
http://www.ijcai.org/Abstract/16/604
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.741
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.741
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.741
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/V1/2021.NAACL-MAIN.410
https://doi.org/10.18653/V1/2021.NAACL-MAIN.410

prompts. In Proceedings of the 2021 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, pages 5203–5212. Association
for Computational Linguistics.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and
beyond. Found. Trends Inf. Retr., 3(4):333–389.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. Auto-
Prompt: Eliciting Knowledge from Language
Models with Automatically Generated Prompts.
In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 4222–4235, Online. Associa-
tion for Computational Linguistics.

Sneha Singhania, Simon Razniewski, and Gerhard
Weikum. 2023. Extracting multi-valued rela-
tions from language models. In Proceedings
of the 8th Workshop on Representation Learn-
ing for NLP (RepL4NLP 2023), pages 139–154,
Toronto, Canada. Association for Computational
Linguistics.

Alisa Smirnova and Philippe Cudré-Mauroux.
2019. Relation extraction using distant su-
pervision: A survey. ACM Comput. Surv.,
51(5):106:1–106:35.

Dominik Stammbach, Maria Antoniak, and El-
liott Ash. 2022. Heroes, villains, and victims,
and GPT-3: Automated extraction of character
roles without training data. In Proceedings of
the 4th Workshop of Narrative Understanding
(WNU2022), pages 47–56, Seattle, United States.
Association for Computational Linguistics.

Gabriel Stanovsky, Julian Michael, Luke Zettle-
moyer, and Ido Dagan. 2018. Supervised open
information extraction. In Proceedings of the
2018 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT
2018, New Orleans, Louisiana, USA, June 1-6,
2018, Volume 1 (Long Papers), pages 885–895.
Association for Computational Linguistics.

Kai Sun, Yifan Ethan Xu, Hanwen Zha, Yue Liu,
and Xin Luna Dong. 2023. Head-to-tail: How
knowledgeable are large language models (llm)?

A.K.A. will llms replace knowledge graphs?
CoRR, abs/2308.10168.

Blerta Veseli, Simon Razniewski, Jan-Christoph
Kalo, and Gerhard Weikum. 2023. Evaluating
the knowledge base completion potential of GPT.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 6432–6443. Association
for Computational Linguistics.

Cunxiang Wang, Xiaoze Liu, Yuanhao Yue, Xi-
angru Tang, Tianhang Zhang, Jiayang Cheng,
Yunzhi Yao, Wenyang Gao, Xuming Hu, Zehan
Qi, Yidong Wang, Linyi Yang, Jindong Wang,
Xing Xie, Zheng Zhang, and Yue Zhang. 2023.
Survey on factuality in large language mod-
els: Knowledge, retrieval and domain-specificity.
CoRR, abs/2310.07521.

Difeng Wang, Wei Hu, Ermei Cao, and Weijian
Sun. 2020. Global-to-local neural networks for
document-level relation extraction. In Proceed-
ings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages
3711–3721. Association for Computational Lin-
guistics.

Yiqing Xie, Jiaming Shen, Sha Li, Yuning Mao,
and Jiawei Han. 2022. Eider: Empowering
document-level relation extraction with efficient
evidence extraction and inference-stage fusion.
In Findings of the Association for Computational
Linguistics: ACL 2022, Dublin, Ireland, May
22-27, 2022, pages 257–268. Association for
Computational Linguistics.

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang,
Tong Xu, Xiangyu Zhao, Xian Wu, Yefeng
Zheng, Yang Wang, and Enhong Chen. 2024.
Large language models for generative informa-
tion extraction: a survey. Frontiers Comput. Sci.,
18(6):186357.

Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai
Lin, Zhenghao Liu, Zhiyuan Liu, Lixin Huang,
Jie Zhou, and Maosong Sun. 2019. Docred: A
large-scale document-level relation extraction
dataset. In Proceedings of the 57th Conference
of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2,
2019, Volume 1: Long Papers, pages 764–777.
Association for Computational Linguistics.

https://doi.org/10.18653/V1/2021.NAACL-MAIN.410
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2023.repl4nlp-1.12
https://doi.org/10.18653/v1/2023.repl4nlp-1.12
https://doi.org/10.1145/3241741
https://doi.org/10.1145/3241741
https://doi.org/10.18653/v1/2022.wnu-1.6
https://doi.org/10.18653/v1/2022.wnu-1.6
https://doi.org/10.18653/v1/2022.wnu-1.6
https://doi.org/10.18653/V1/N18-1081
https://doi.org/10.18653/V1/N18-1081
https://doi.org/10.48550/ARXIV.2308.10168
https://doi.org/10.48550/ARXIV.2308.10168
https://doi.org/10.48550/ARXIV.2308.10168
https://aclanthology.org/2023.findings-emnlp.426
https://aclanthology.org/2023.findings-emnlp.426
https://doi.org/10.48550/ARXIV.2310.07521
https://doi.org/10.48550/ARXIV.2310.07521
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.303
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.303
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.23
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.23
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.23
https://doi.org/10.1007/S11704-024-40555-Y
https://doi.org/10.1007/S11704-024-40555-Y
https://doi.org/10.18653/V1/P19-1074
https://doi.org/10.18653/V1/P19-1074
https://doi.org/10.18653/V1/P19-1074

ChengXiang Zhai. 2008. Statistical language mod-
els for information retrieval: A critical review.
Found. Trends Inf. Retr., 2(3):137–213.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan
Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu
Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and

Ji-Rong Wen. 2023. A survey of large language
models. CoRR, abs/2303.18223.

Xiaoyan Zhao, Yang Deng, Min Yang, Lingzhi
Wang, Rui Zhang, Hong Cheng, Wai Lam, Ying
Shen, and Ruifeng Xu. 2024. A comprehen-
sive survey on relation extraction: Recent ad-
vances and new frontiers. ACM Comput. Surv.,
56(11):293:1–293:39.

https://doi.org/10.1561/1500000008
https://doi.org/10.1561/1500000008
https://doi.org/10.48550/ARXIV.2303.18223
https://doi.org/10.48550/ARXIV.2303.18223
https://doi.org/10.1145/3674501
https://doi.org/10.1145/3674501
https://doi.org/10.1145/3674501

