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Abstract

The work presented in this thesis deals with the generation of prime im-
plicates in ground equational logic, i.e., of the most general consequences of
formulæ containing equations and disequations between ground terms. It is di-
vided into three parts. First, two calculi that generate implicates are defined.
Their deductive-completeness is proved, meaning they can both generate all
the implicates up to redundancy of equational formulæ. Second, a tree data
structure to store the generated implicates is proposed along with algorithms to
detect redundancies and prune the branches of the tree accordingly. This data
structure is adapted to the different kinds of clauses (with and without function
symbols, with and without constraints) and to the various formal definitions
of redundancy used in the calculi since each calculus uses different – although
similar – redundancy criteria. Termination and correction proofs are provided
with each algorithm. Finally, an experimental evaluation of the different prime
implicate generation methods based on research prototypes written in Ocaml
is conducted including a comparison with state-of-the-art prime implicate gen-
eration tools. This experimental study is used to identify the most efficient
variants of the proposed algorithms. These show promising results overstepping
the state of the art.





Résumé

Introduction. Ce mémoire présente le résultat de mon travail de thèse sur la
génération d’impliqués premiers en logique équationnelle. En logique formelle,
étant donné une formule logique S, un impliqué de S est une clause C telle que
S a pour conséquence logique C, ce qui est noté S |= C. Un impliqué C est dit
premier si tout autre impliqué C ′ tel que C ′ |= C est aussi tel que C |= C ′. Les
applications de la génération d’impliqués sont, entre autre, la minimisation de
circuits booléens et la maintenance de la cohérence des bases de données. Une
autre application importante est le raisonnement abductif qui, étant donné une
théorie T et une observation O non expliquée par la théorie (T 6|= O), génère
des hypothèses H telles que H satisfait la théorie (T ∪ H 6|= �) et H explique
O (T ∪ H |= O). Le calcul abductif présenté dans [23] est d’ailleurs à l’origine
des travaux exposés dans ce mémoire. Le calcul en question, qui produit des
explications construites à base de constantes abducibles, présente le défaut de
générer ses résultats sous forme d’impliqués quelconques d’une formule, ce qui
peut être inefficace si l’on considère la quantité de clauses équivalentes, quantité
qui tend à croître de façon exponentielle avec la taille des clauses en question.
Le calcul des impliqués premiers de ces résultats est une solution à ce problème,
suggérée dans [23], mais mise en place de façon inefficace. Les travaux présentés
dans ce mémoire vont même plus loin puisque le calcul d’impliqués premiers
est étendu aux formules incluant des symboles de fonction non-constantes. Ces
résultats ont été précédemment publiés dans les articles [24, 25, 26, 27, 28, 29].
La répartition du contenu des articles dans les différents chapitres de ce mémoire
est indiquée dans la table 1, page 12.



Chapitre i - État de l’art. Ce chapitre présente un état de l’art de la géné-
ration d’impliqués premiers en logique propositionnelle, en logique modale et en
logique du premier ordre. Historiquement la notion d’impliqué premier fut intro-
duite dans les années cinquante par Quine [57] pour la logique propositionnelle.
Les premières méthodes de calcul d’impliqués étaient basées sur le minterm des
formules, comme illustré dans l’exemple i.3, page 14. De manière générale, ces
méthodes sont trop inefficaces pour être d’une quelconque utilité. Deux nou-
veaux types de méthodes se sont développées à partir des années soixante-dix,
celles basées sur le calcul de résolution [4] et celles utilisant une méthode par
décomposition.

Parmi les méthodes se basant sur la résolution [17, 39, 41, 70, 76], celle
qui nous intéresse particulièrement, nommée CLTMS, est présentée dans [17].
Celle-ci organise les clauses générées dans une structure de données arborescente
appelée un trie (cf. figure 4, page 4) telle que :

— ses arêtes sont étiquetées par les littéraux des clauses considérées,
— les arêtes sœurs sortant d’un même nœud sont ordonnées selon leur éti-

quette,
— l’ensemble des littéraux étiquetant une branche entre la racine et une

feuille est la clause qui sert d’étiquette à la feuille terminant la branche.
L’intérêt de cette structure de données est qu’elle permet la détection efficace des
redondances. Comme l’ensemble des autres méthodes par résolution, CLTMS
utilise ce calcul pour générer les impliqués de la formule. L’usage des tries et
algorithmes correspondant lui permet d’accélérer la détection et la suppression
des impliqués non-premiers.

Le point commun des algorithmes n’utilisant pas la résolution [9, 15, 30, 33,
38, 40, 43, 47, 48, 52, 55, 56, 58, 59, 67, 71] est qu’ils construisent les impliqués
premiers en les décomposant d’une manière ou d’une autre et en fusionnant les
résultats obtenus. La plus récente de ces méthodes [56] décompose chaque lit-
téral en deux nouveaux littéraux, un pour les occurrences positives du littéral
d’origine et l’autre pour ses occurrences négatives. Cette décomposition est uti-
lisée pour générer une formule équivalente à la première et dont les modèles sont
les impliqués premiers de la formule initiale (cf. exemples i.8 et i.9, page 21).
Cette méthode est, à notre connaissance, la plus efficace existante actuellement.

Au-delà de la logique propositionnelle, un certain nombre de barrières théo-
riques, comme la semi-décidabilité du problème en logique du premier ordre,
rendent la génération d’impliqués premiers plus délicate. En logique du premier
ordre, nous n’avons trouvé que deux méthodes réalistes et comportant des ap-
plications pratiques [22, 36]. Cependant, celle de [36] n’est pas capable de gérer
efficacement les formules équationnelles pour des raisons intrinsèques. L’autre
méthode [22] est spécialisée dans la génération d’impliqués correspondant à des
instanciations partielles de variables. Bien qu’elle soit capable de manipuler des
formules équationnelles, elle ne peut donc pas générer l’ensemble des impliqués
premiers correspondant. En logique modale, le problème principal est de s’ac-
corder sur la définition même d’impliqué premier [8]. Une fois celle-ci fixée, la
plupart des méthodes utilisées en logique propositionnelle sont applicables.
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Chapitre ii - Logique équationnelle. Dans ce mémoire, deux formalismes
différents sont utilisés.

— La logique équationnelle E0 n’accepte que des formules plates (i.e. ne
contenant pas de symboles de fonctions d’arité supérieure ou égale à un)
et fermées (i.e. ne contenant pas de variables). Cette logique est donc
uniquement bâtie sur des littéraux de la forme a ' b et c 6' d.

— La logique équationnelle E1 étend E0 en autorisant des termes non-plats
à apparaître dans ses formules. Par exemple f(a) ' b et g(a, b) 6' c, qui
sont interdits dans E0, sont acceptés dans E1.

Les définitions usuelles de la logique équationnelle sont rappelées. Pour les be-
soins de ce résumé, notons en particulier qu’une clause unitaire est composée
d’un unique littéral et qu’une clause atomique est une clause unitaire positive,
c’est à dire que le littéral qui la compose est une équation.

Différents ordres sont définis.
— L’ordre ≺ est l’ordre usuel des clauses obtenu en étendant l’ordre ≺ des

termes (cf. définition ii.10, page 29)
— L’ordre <π est similaire à ≺mais considère que n’importe quelle équation

est plus grande que toutes les inéquations.
La notion de calcul formel, i.e. un ensemble de règles d’inférence, est présen-

tée ainsi que le calcul de paramodulation standard [4]. Les notions associées de
redondance, correction, complétude pour la déduction et saturation sont aussi
définies. Une procédure standard de saturation d’un ensemble de clauses par un
calcul est donnée. Il s’agit de l’algorithme Given Clause [68] (cf. algorithme 1,
page 34) dans lequel les clauses sont initialement stockées dans un ensemble de
clauses en attente puis extraites une par une de cet ensemble afin d’être utilisées
par les règles du calcul avant d’être stockées avec les clauses déjà examinées, les
nouvelles clauses générées étant ajoutées à l’ensemble des clauses en attente. Les
clauses redondantes sont éliminées au fur et à mesure de leur détection. Cette
procédure termine lorsqu’il ne reste plus de clauses en attente.

Partie I - Des calculs pour la génération d’impliqués.

Cette partie du mémoire regroupe les différents calculs de génération d’im-
pliqués qui ont été développés durant ma thèse.

Chapitre 1 - Implication logique et représentation des clauses équa-
tionnelles. En logique propositionnelle, la détection de redondances est facile
car elle s’apparente à un simple test d’inclusion et deux clauses sont équiva-
lentes si et seulement si elles sont identiques. Ce n’est pas le cas en logique
équationnelle. Dans ce contexte, même la détection de clauses équivalentes de
façon syntaxique est non-triviale, ainsi il n’est pas forcément clair que les clauses
a 6' b ∨ a ' c et b 6' a ∨ c ' b sont équivalentes. Pour cette raison, nous avons
défini les notions suivantes : soit C, D des clauses, s un terme et l un littéral.

— La C-classe d’équivalence de s, notée [s]C , est définie par {t | ¬C |= s ' t}.
La relation d’équivalence associée est ≡C .
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— Le C-représentant de s, l ou D, aussi appelé la projection de C sur cet
élément, est défini par :

s�C
def
= min

≺
([s]C),

l�C
def
= s�C ./ t�C , pour l = s ./ t, et

D�C
def
= {l�C | l ∈ D} .

— Dans E0 la forme normale de C, notée C↓, est telle que chaque littéral
de C↓ est unique et :

C↓
def
=

∨
a∈Σ0,a6=a�C

a 6' a�C ∨
∨

a'b∈C

a�C ' b�C

— Dans E1 les conditions suivantes décrivent une clause en forme normale :

1. chaque littéral négatif l de C est tel que l�C\l = l ;

2. chaque littéral t ' s ∈ C est tel que t = t�C et s = s�C ;

3. il n’existe pas deux littéraux positifs distincts l, m dans C tels que
m�lc∨C− est une tautologie ;

4. C ne contient aucun littéral de la forme t 6' t ou t ' t ;
5. les littéraux de C sont distinct deux à deux.

Ce sont les points 1 et 3 qui contraignent plus cette définition que celle
dans E0.

La preuve de l’unicité de la forme normale des clauses équivalentes est fournie
dans E0 et E1. Grâce à celle-ci, le problème de la multiplicité des représentations
des clauses équivalentes est résolu.

Dans E0, nous avons également défini des méthodes permettant de détermi-
ner de façon syntaxique qu’une clause en subsume une autre :

— la e-subsomption : étant donné deux clauses C et D, la clause D e-
subsume C, noté D ≤e C, si et seulement si les deux conditions suivantes
sont vérifiées,
— ≡D⊆≡C ,
— pour chaque littéral positif l ∈ D, il existe un littéral l′ ∈ C tel que

l ≡C l′.
Si S et S′ sont des ensembles de clauses, S ≤e C est vrai si ∃D ∈ S, tels
que D ≤e C et S ≤e S

′ est vrai si ∀C ∈ S′, S ≤e C.
— la i-subsomption : étant donné deux clauses C etD, la clauseD i-subsume

C, noté D ≤i C, si et seulement si les conditions suivantes sont vérifiées,
— ≡D⊆≡C ,
— il existe une fonction injective γ de D+ à C+ telle que pour chaque

littéral l ∈ D+, l ≡C γ(l).
Cette notion est étendue aux ensembles de clauses de la même façon que
pour la e-subsomption.
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Cette deuxième définition est plus contraignante. Elle impose la projection des
littéraux de D�C sur des littéraux distincts de C�C . La relation entre ces notions
de subsomption et celle de conséquence logique est la suivante :

si C ≤i D alors C ≤e D et C ≤e D est équivalent à C |= D.

Les deux notions de subsomption sont adaptées à E1 de façon à préserver les
propriétés décrites précédemment. Grâce à ces définitions, il est possible de
tester de façon syntaxique la redondance des clauses dans E0 et E1, comme
c’est le cas en logique propositionnelle grâce à l’équivalence de la redondance
avec l’inclusion.

Chapitre 2 - Le calcul de K-paramodulation et ses variantes. Ce cha-
pitre présente un calcul inspiré du calcul de paramodulation et deux variantes
de celui-ci dont le principe est de simplifier la formule initiale en réduisant
le nombre de constantes qu’elle comporte en utilisant ses impliqués atomiques
(clauses unitaires positives).

Les règles de la K-paramodulation, calcul défini uniquement dans E0, sont
les suivantes :

Paramodulation (P+) :
a ' b ∨ C a′ ' c ∨D
a 6' a′ ∨ b ' c ∨ C ∨D

Factorisation (F) :
a ' b ∨ a′ ' b′ ∨ C

a ' b ∨ a 6' a′ ∨ b 6' b′ ∨ C

Multi-Paramodulation Négative (M) :
∨n
i=1(ai 6' bi) ∨ C c ' d ∨D∨n
i=1(ai 6' c ∨ d 6' bi) ∨ C ∨D

Les clauses générées sont systématiquement normalisées. La règle P+ est simi-
laire à la règle de paramodulation standard, à la seule différence qu’au lieu de
ne l’appliquer que lorsque a et a′ sont identiques, cette règle est appliquée même
lorsque a et a′ sont différents et le littéral a 6' a′ est ajouté à la clause produite,
ce qui contraint les constantes a et a′ à être sémantiquement équivalentes dans
la clause générée. De la même manière, la règle F factorise les littéraux a ' b
et a′ ' b′ en assurant l’égalité sémantique entre a et a′, et entre b et b′. La
règle M est construite sur le même principe que la règle P+, mais autorise la
paramodulation simultanée dans différentes inéquations. Cette règle est définie
de la sorte pour préserver la complétude du calcul lorsqu’il est combiné à la dé-
létion systématique des clauses redondantes. Ce calcul est prouvé complet pour
la génération d’impliqués.

Les résultats expérimentaux présentés dans le chapitre 10 suggèrent qu’un
des points faibles de la K-paramodulation est la manipulation des impliqués
atomiques, i.e. qui sont des clauses unitaires positives. Une façon efficace de
gérer ces impliqués est de remplacer systématiquement l’une des deux constantes
par l’autre dans l’ensemble des clauses générées. Les deux variantes du calcul
de K-paramodulation présentées sont basées sur ce principe.
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La première variantes décompose le problème en trois étapes :
1. génération de l’ensemble des impliqués atomiques de la formule initiale

à l’aide du calcul de paramodulation non-ordonné et réécriture de la
formule ;

2. génération des impliqués premiers de la formule réécrite par le calcul de
K-paramodulation ;

3. reconstruction des impliqués premiers de la formule initiale à l’aide de
ceux de la formule réécrite et des impliqués atomiques.

La paramodulation non-ordonnée utilisée dans le premier point contient les
règles suivantes :

Résolution (R) :
u ' v ∨ C u 6' v ∨D

C ∨D ,

avec C une clause positive et u 6' v = sel(u 6' v ∨D) ;

Paramodulation Positive (P) :
u ' v ∨ C u ' v′ ∨D

v ' v′ ∨ C ∨D ,

avec C et D deux clauses positives.
La preuve de la complétude de ce calcul pour la génération des impliqués

atomiques d’une formule équationnelle est donnée dans le mémoire. Une fois les
impliqués atomiques calculés, la formule initiale est simplifiée grâce à la réécri-
ture des constantes apparaissant dans ceux-ci. Le calcul de K-paramodulation
est ensuite utilisé pour générer les impliqués premiers de la nouvelle formule
(deuxième point). Finalement, une restriction du calcul de K-paramodulation
présentée ci-dessous est utilisée pour reconstruire les impliqués premiers de la
formule initiale à l’aide des impliqués atomiques et des impliqués premiers de la
formule simplifiée.

Paramodulation (P+) :
a′ ' c ∨ C a ' b
a 6' a′ ∨ b ' c ∨D

Multi-Paramodulation Négative (M) :
∨n
i=1(ai 6' bi) ∨ C a ' b∨n
i=1(ai 6' a ∨ b 6' bi) ∨ C

L’intérêt de cette restriction est qu’elle autorise la génération d’impliqués uni-
quement lorsque ceux-ci ont pour parent un impliqué atomique. La complétude
de cette méthode est démontrée, ce qui signifie que cette restriction est suffi-
sante pour reconstruire l’ensemble des impliqués premiers de la formule initiale
en partant de la deuxième étape.

La deuxième variante de la K-paramodulation est basée sur le même prin-
cipe que la variante précédente, mais les deux premiers points de celle-ci sont
combinés. Ainsi la K-paramodulation est directement utilisée sur la formule ini-
tiale pour générer l’ensemble des impliqués premiers mais dès qu’un impliqué
atomique est généré, celui-ci est utilisé pour réécrire l’intégralité des clauses déjà
générées. L’application naïve de cette technique de réécriture ne permet pas de
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garantir sa complétude. Le problème vient de l’interférence entre la réécriture et
la procédure de saturation. Certaines clauses déjà utilisées doivent en effet l’être
à nouveau après réécriture pour garantir que toutes les conséquences sont bien
générées. Afin d’identifier un sur-ensemble de ces clauses, un critère de collision
syntaxique entre réécriture et saturation est défini. De cette façon, les clauses
nécessitant un nouvel examen après réécriture sont bien réexaminées, assurant
ainsi la complétude pour la génération d’impliqués de cette méthode.

Chapitre 3 - Calcul de superposition contraint. Dans ce chapitre, le
problème de la génération d’impliqués premiers est abordé différemment. Un
nouveau calcul est présenté, le calcul de superposition contraint, ou cSP. Ce
calcul manipule des clauses contraintes, notées [C |X ] avec C une clause et X la
contrainte associée, qui est une conjonction de littéraux. Une clause contrainte
[C | X ] est sémantiquement équivalente à la clause C ∨ ¬X . Le calcul cSP est
constitué des règles suivantes :

Superposition :
[l ' r ∨ C |X ] [l ./ u ∨D |Y]

[r ./ u ∨ C ∨D |X ∧ Y]
(1.),

Factorisation :
[t ' u ∨ t ' v ∨ C |X ]
[t ' v ∨ u 6' v ∨ C |X ]

(2.),

Assertion Positive :
[t ./ s ∨ C |X ]

[u ./ s ∨ C |X ∧ t ' u]
(3.),

Assertion Négative :
[t ' s ∨ C |X ]

[s 6' u ∨ C |X ∧ t 6' u]
(4.),

accomagnées des conditions suivantes :

1. l � r, l � u, et (l ' r) et (l ./ u) sont sélectionnés dans (l ' r ∨ C) et
(l ./ u ∨D) respectivement,

2. t � u, t � v et (t ' u) est sélectionné dans t ' u ∨ t ' v ∨ C,
3. t � s, t � u et t ./ s est sélectionné dans t ./ s ∨ C,
4. t � u, t � s et t ' s est sélectionné dans t ' s ∨ C.

Comme dans le cas de la K-paramodulation, l’assertion d’égalités est autorisée,
mais cette fois ces égalités sont associées sous formes de contraintes aux clauses
générées, comme indiqué dans les règles d’assertion. Les règles classiques du
calcul de superposition sont étendues aux clauses contraintes de façon intuitive.
Ce calcul est prouvé complet pour la génération d’impliqués.

D’un point de vue théorique, cette approche risque de fortement augmen-
ter l’espace de recherche car une clause de taille n est équivalente à 2n clauses
contraintes différentes. Cependant, ce calcul présente aussi les avantages sui-
vants :

— toutes les contraintes d’ordre usuelles et les stratégies de sélection du
calcul de superposition peuvent lui être appliqué, ce qui n’est pas le cas
pour la K-paramodulation,
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— d’autre part, cette approche offre un contrôle fin du type d’impliqués
engendrés, que ce soit en terme du nombre maximal de littéraux autorisés
dans les contraintes ou en ce qui concerne la nature de ces littéraux, des
termes qu’ils contiennent ou encore de leur profondeur.

Cette méthode présente aussi l’avantage d’être trivialement extensible de E0 à
E1, où ses règles sont les suivantes :

Superposition :
[r ' l ∨ C |X ] [u ./ v ∨D |Y]

[u[l] ./ v ∨ C ∨D |X ∧ Y]
(1.),

Factorisation :
[t ' u ∨ t ' v ∨ C |X ]
[t ' v ∨ u 6' v ∨ C |X ]

(2.),

Assertion Positive :
[u ./ v ∨ C |X ]

[u[s] ./ v ∨ C |X ∧ t ' s] (3.),

Assertion Négative :
[t ' s ∨ C |X ]

[u[s] ./ v ∨ C |X ∧ u ./ v]
(4.),

avec les conditions :

1. u|p = r, r � l, u � v, et (r ' l) et (u ./ v) sont sélectionnés dans
(r ' l ∨ C) et (u ./ v ∨D) respectivement,

2. t � u, t � v et (t ' u) est sélectionné dans t ' u ∨ t ' v ∨ C,

3. u|p = t, t � s, u � v et (u ./ v) est sélectionné dans (u ./ v ∨ C),

4. u|p = t, t � s, u � v et (t ' s) est sélectionné dans (t ' s ∨ C).

La correction et la complétude pour la génération d’impliqués de cSP sont
prouvées dans E0 et dans E1.

Partie II - Détection de redondances.

Cette partie du mémoire présente une structure de données inspirée des tries
de CLTMS qui permettent le stockage et la manipulation des clauses dans E0

et E1.

Chapitre 4 - Arbres de clauses. Dans E0 comme dans E1, un arbre de
clauses est défini inductivement soit par �, soit par un ensemble de couples
(l, T ′) avec l un littéral et T ′ un arbre de clauses. L’intuition derrière cette
définition est qu’un couple (l, T ′) représente une arrête reliant la racine de l’arbre
au sous-arbre T ′. Une illustration est donnée dans l’exemple 4.5, page 92. Un
arbre de clauses T tel que (l, T ′) ∈ T doit de plus respecter les conditions
suivantes :

— pour tout l′ apparaissant dans T ′, l <π l′,
— il n’existe pas d’arbres T ′′ tel que T ′′ 6= T ′ et (l, T ′′) ∈ T .
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L’ensemble des clauses représentées par un arbre de clauses T est noté C(T ) et
est défini inductivement par :

C(T ) =


{�} si T = �,⋃

(l,T ′)∈T

 ⋃
D∈C(T ′)

l ∨D

 dans tous les autres cas.

Dans E0 si un arbre de clauses respecte les conditions ci-dessous, alors il est
normal. Étant donné un couple (l, T ′) ∈ T , il faut que :

— l n’est ni de la forme a ' a, ni de la forme a 6' a,
— si l = a 6' b avec a ≺ b, alors b n’apparaît pas dans T ′,
— T ′ est un arbre de clauses normal.

Dans toute la suite de ce résumé, les arbres de clauses sont implicitement nor-
maux.

Il y a trois opérations fondamentales en ce qui concerne la manipulation
d’arbres de clauses. La première consiste à tester si une clause donnée est re-
dondante par rapport à l’une des clauses contenue dans un arbre. La deuxième
opération est la coupe des branches d’un arbre représentant des clauses redon-
dantes par rapport à une clause donnée. La troisième opération est l’insertion
d’une nouvelle clause dans un arbre de clauses. Des algorithmes effectuant les
deux premières opérations sur des tries en logique propositionnelle extrais de la
méthode CLTMS sont décrit page 94 (cf. algorithme 2 et 3).

Chapitre 5 - Subsomption par un arbre de clauses. Ce chapitre présente
les différents algorithmes capables de détecter si une clause est subsumée par
l’une des clauses stockées dans un arbre. Quelle que soit la logique dans laquelle
on se place (E0 ou E1), le critère de redondance utilisé (e-subsomption ou i-
subsomption) et le type de clauses manipulées (contraintes ou standard), le
même principe est appliqué. Pour tester si une clause donnée est subsumée par
une clause de C(T ), l’algorithme effectue un parcours en profondeur de T et tente
de projeter chaque littéral rencontré sur C. Si la projection échoue, l’exploration
du sous-arbre correspondant est inutile, aussi l’algorithme passe directement au
sous-arbre suivant. Dès qu’une clause qui subsume C est découverte, le parcours
de l’arbre s’arrête.

Cette méthode est tout d’abord appliquée à des clauses standards dans E0

en utilisant la i-subsomption. L’algorithme résultant est appelé isEntailedi0
(cf. algorithme 4 page 97). La spécificité de la i-subsomption, à savoir l’injecti-
vité entre les littéraux positifs des clauses subsumée et subsumante, y apparaît
à la ligne 14. En remplaçant dans cette ligne le terme C \ {l} par C, l’al-
gorithme isEntailede0, basé sur la e-subsomption, est défini. En raison des
réécritures dues aux projections effectuées dans les appels récursifs de l’algo-
rithme la notion d’arbre normal y est relâchée pour permettre les occurrences
multiples et désordonnées de littéraux positifs. Cet algorithme termine et est
prouvé correct. Cette méthode est ensuite présentée pour des clauses standards
dans E1 en utilisant la e-subsomption. En raison de la plus grande complexité
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des opérations de détection de redondance dans E1, l’algorithme isEntailede1
diffère de isEntailede0 par le fait qu’il lui est nécessaire de conserver tous
les littéraux de la branche en cours d’exploration. Les preuves de terminai-
son et de correction de isEntailede1 sont présentées. Les complexités dans le
pire des cas de isEntailedi0 et isEntailede1 sont estimées respectivement en
O(size(C(T )) + |C|× |C(T )|) et O(d×|C|× size(C(T )) + |C−|× |C(T )|) avec d la
profondeur maximale des termes apparaîssant dans C et T . Bien que cette esti-
mation soit légèrement meilleure pour isEntailede1en raison du remplacement
de |C| par |C−|, en pratique isEntailede1 est moins efficace car les opérations
de comparaison et de réécriture ont un coût bien plus élevés dans E1.

Chapitre 6 - Coupes dans un arbre de clauses. La deuxième opération
fondamentale à la manipulation des arbres de clauses est la suppression des
branches de T représentant des clauses subsumées par une clause C donnée, en
supposant que cette clause n’est elle-même pas subsumée par une des clauses de
T . Comme pour les algorithmes précédemment décris, cette opération s’effectue
à l’aide d’un parcours en profondeur de l’arbre durant lequel sont effectuées les
projections nécessaires à la détection de redondances. La différence principale de
ces algorithmes avec la famille d’algorithmes isEntailed est que les rôles de C
et T sont inversés. À cela s’ajoute le fait que lorsqu’une redondance est détectée,
au lieu de retourner ’Vrai’, l’algorithme coupe les branches correspondantes et
poursuit son parcours de T .

La structure de ce chapitre est semblable à celle du précédent. Tout d’abord,
l’algorithme pruneEntailedi0 est présenté, qui manipule des clauses stan-
dards de E0 et utilise la i-subsomption. Pour passer de la i-subsomption à
la e-subsomption, il suffit de modifier le comportement de l’algorithme en ce
qui concerne les littéraux positifs, pour que l’association entre ces littéraux
dans les clauses considérées ne soit pas injective. Cette fois, afin d’assurer la
correction de l’algorithme, ce n’est pas la notion d’arbre normal qui doit être
relâchée mais celle de clause normale. Dans un deuxième temps, l’algorithme
pruneEntailede1 est présenté qui manipule des clauses standards dans E1 et
utilise la e-subsomption. Comme précédemment, il est nécessaire de conserver
les littéraux déjà rencontrés dans la clause et dans la branche couramment ex-
plorée pour effectuer les tests de redondance dans E1. Les algorithmes de la
famille pruneEntailed ont une complexité en O(C(T )) dans le pire des cas.

Chapitre 7 - Manipulation d’arbres de clauses contraintes. Les algo-
rithmes considérés précédemment peuvent être étendus aux clauses contraintes.
Pour cela, les adaptations suivantes sont nécessaires.

— La détection de redondances utilise la c-subsomption définie par : [C |
X ] ≤c [D |Y] si et seulement si C ≤e D, C � D et X ⊆ Y.

— La définition des arbres de clauses est étendue aux arbres de clauses
contraintes. Pour cela, on défini tout d’abord les arbres de contraintes,
de la même façon que les arbres de clauses, mais avec l’interprétation
C′c(T ), de façon à ce que les formules stockées soient bien des contraintes
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et non des clauses.

C′c(T ) =


{>} si T = �,⋃

(l,T ′)∈T

 ⋃
X∈C′c(T ′)

X ∧ l

 dans le cas contraire.

Ces structures nous permettent de définir les arbres de clauses contraintes
inductivement par un ensemble de couples littéral-arbre de clause contraint
(l, T ′), qui sont éventuellement concaténés à un couple (�, T ′) avec T ′
un arbre de contraintes qui peut être vide. De plus, un arbre de clauses
contraint T doit respecter les conditions suivantes :
— l’étiquette � apparaît exactement une fois dans chaque branche de

T ,
— pour chaque couple (l, T ′) ∈ T ,
• chaque littéral l′ qui apparaît dans T ′ est tel que l <π l′,
• il n’existe pas d’arbres T ′′ tel que T ′′ 6= T ′ et (l, T ′′) ∈ T .

L’intuition derrière ces définitions d’arbres est que les arbres de contraintes
sont accrochés aux feuilles des arbres de clauses pour former les arbres
de clauses contraintes.

Les algorithmes de manipulation d’arbres sont adaptés aux arbres de clauses
contraintes. En ce qui concerne isEntailedcons (cf. algorithme 8, page 119),
l’algorithme isEntailede1 est utilisé pour tester la e-subsomption. Si celle-
ci est confirmée lors de l’exploration d’une branche, les autres critères de c-
subsomption sont testés. Le test sur l’ordre ≺ est réduit à une simple compa-
raison entre clauses standards, et le test d’inclusion des contraintes nécessite
le parcours en profondeur de l’arbre à contrainte correspondant à la branche
explorée. Ce dernier test est réalisé par une version simplifiée de l’algorithme
isEntailede1. La terminaison et la correction de ces tests est prouvée.

En ce qui concerne l’opération de coupe des branches redondantes, le pas-
sage aux arbres de clauses contraintes s’effectue suivant le même principe que
pour isEntailedcons. Ainsi, pruneEntailedcons commence par appliquer l’al-
gorithme pruneEntailede1 et dans le cas où celui-ci atteint le symbole � (et
n’a donc pas détecté de redondance et coupé la branche en cours d’exploration),
le test sur l’ordre ≺ est effectué, suivi, si celui-ci non plus n’a pas détecté de
redondances, par l’algorithme pruneIncluded (cf. algorithme 11, page 123)
qui détecte l’inclusion des contraintes et supprime celles qui sont redondantes,
suivant le même schéma que les algorithmes de la famille pruneEntailed en
plus simple. Des preuves de terminaison et de correction de isEntailedcons et
pruneEntailedcons sont données.

Dans ces chapitres sur la manipulation des arbres de clauses, les algorithmes
sont présentés de façon abstraite. Leur implémentation concrète peux bénéficier
d’améliorations techniques comme l’évaluation paresseuse de expressions. Si ces
améliorations n’ont pas d’impact sur la complexité théorique des algorithmes
dans le pire des cas, elles peuvent en revanche considérablement améliorer les
temps d’exécution en général.
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Partie III - Résultats expérimentaux.

Chapitre 8 - Détails d’implémentation. Durant cette thèse, deux proto-
types de générateurs d’impliqués premiers ont été réalisés.

— Kparam implémente le calcul de K-paramodulation, ses variantes et une
première version de cSP restreinte à E0.

— cSP implémente le calcul cSP dans E1.
Le code de ces programmes ainsi que les scripts et les jeux de tests utilisés pour
réaliser les expériences sont disponibles sur la page web http://lig-membres.
imag.fr/tourret/ dans l’onglet tools. Le format d’entrée de ces deux pro-
grammes est un sous-ensemble de la syntaxe TPTP v5.4.0.0 [75] décrit dans
l’archive contenant le code.

Les détails d’implémentation notables de Kparam sont les suivants.
— L’ordre ≺ des constantes est calculé automatiquement lorsque la formule

d’entrée est parsée. Il correspond à l’ordre d’apparition des constantes
dans le fichier d’entrée. La représentation interne des termes dans Kparam
est basée sur cet ordre. Chaque terme est représenté par un entier. Les
noms des constantes sont conservés dans un tableau et utilisés unique-
ment lors de la génération du fichier contenant les résultats. Cela permet
un gain de temps dans les (nombreuses) opérations qui nécessitent des
comparaisons de termes.

— La normalisation des clauses est réalisée par une implémentation en
Ocaml de l’algorithme Union-Find sur une structure de tableau persis-
tant [14] qui permet le calcul des classes d’équivalences associées aux
clauses.

— Le stockage des clauses utilise la structure d’arbre de clauses et les ma-
nipulations associées décrites dans les précédents chapitres.

— Les différentes options de Kparam couvrent les variantes du calcul de
K-paramodulation présentées dans le chapitre 2. En ce qui concerne la
deuxième variante, deux versions du critère de collision sont proposées.
La première concorde avec la définition fournie au chapitre 2 et la seconde
est une sur-approximation de ce critère, effectuant des opérations moins
coûteuses.

— En ce qui concerne la première version du calcul cSP restreinte à E0,
différentes méthodes de sélection des clauses contraintes dans l’ensemble
des clauses en attente sont disponibles ainsi qu’un index pour accélérer
l’identification des clauses compatibles pour l’application des règles de
calcul. De plus, deux options qui permettent de filtrer le type d’impliqués
générés sont proposées. Ces filtres assurent respectivement la génération
des impliqués qui ont pour conséquence l’une des clauses de la formule
initiale et qui ont une taille inférieure ou égale à une valeur donnée. Cette
dernière option est aussi proposée combinée avec l’index précédemment
décrit.

Deux outils qui transforment des formules TPTP pour les rendre compatibles
avec Kparam sont inclus dans l’archive. Equationalizer transforme les formules
contenant des bouléens en formules de E0 et Flattener_for_Kparam aplatit les
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termes fonctionnels des formules de E1 pour en faire des équivalents dans E0.
En ce qui concerne cSP les détails d’implémentation notables sont les sui-

vants.
— La bibliothèque LogTk [16] est utilisée pour tout ce qui a trait à la re-

présentation et à la manipulation des termes. Par exemple ceux-ci sont
ordonnés à l’aide de l’ordre KBO [2] implémenté dans LogTk. De même,
pour la normalisation, un algorithme de clôture de congruence inclus dans
LogTk est utilisé. Ces changements coûteux sont nécessaires pour gérer
la complexité des termes non-plat.

— Les différentes options de cSP sont des filtres sur la taille des impliqués gé-
nérés, le nombre de littéraux négatifs qu’ils sont autorisés à contenir et la
profondeur maximale de leurs termes. Comme dans la version restreinte à
E0, un filtre qui ne conserve que les impliqués impliquant eux-mêmes une
des clauses de la formule d’origine est aussi proposé. Enfin, une option
permettant la comparaison des clauses générées avec les clauses initiales
lorsque la limite de temps est atteinte avant la fin de l’exécution de l’al-
gorithme est disponible. Ces différentes options peuvent être combinées
les unes aux autres.

— Les termes introduits dans les contraintes par les règles d’assertion du cal-
cul cSP sont en nombre fini pour assurer la terminaison de l’algorithme.
Par défaut, il s’agit des termes apparaissant dans la formule initiale, mais
il est aussi possible de les spécifier dans un fichier à part.

Un outil pour traiter les formules fermées de la théorie des tableaux en les
convertissant en formules de E1, basé sur la méthode décrite dans [11] est fourni.
Les tables 2 et 3, page 134 récapitulent les options disponible dans Kparam et
cSP ainsi que leurs effets.

Chapitre 9 - Contexte expérimental. Contrairement à ce que pourrait
laisse supposer la littérature plutôt dense sur le sujet, il n’existe à notre connais-
sance que très peu d’outils de génération automatique d’impliqués premiers en
logique propositionnelle. À l’époque où les premières expériences ont été réali-
sées, nous n’en avions trouvé que deux : ritrie [47] and Zres [70]. Le second
étant clairement plus performant sur nos jeux de tests, ce fut lui qui fut re-
tenu pour servir de référence dans nos expériences. Depuis, un troisième outil
(primer [56]) est disponible. En logique du premier ordre, les outils existant à
notre connaissance sont SOLAR [50] et Mistral [22]. Ce dernier ne permettant
pas la génération de l’ensemble des impliqués premiers, SOLAR est le seul outil
qui puisse nous servir de référence, malgré le fait que la méthode sur laquelle il
se base, les tableaux sémantiques [32], est notoirement inefficace quand il s’agit
de gérer des formules équationnelles.

Les différents jeux de tests que nous avons utilisés sont les suivants.

Formules plates aléatoires. Ce jeu de tests contient un millier de for-
mules de E0 générées aléatoirement. Chaque formule est composée de
six clauses ayant entre un et cinq littéraux construits à partir de huit
constantes. Des formules équivalentes en logique propositionnelle sont

xiii



aussi générées en instanciant les axiomes de l’égalité lorsque c’est néces-
saire.

Formules non-plates aléatoires. Ce jeu de tests contient cent quatorze
formules de taille variable et construit sur des termes de profondeurs
variables.

SMT-LIB QF_AX. Ce jeu de tests est constitué d’un ensemble de for-
mules fermées sans quantificateurs de la théorie des tableaux avec exten-
sionalité, extrait de [1].

SMT-LIB QF_UF. Ce jeu de tests comporte huit formules extraites de la
famille QF_UF de SMT-LIB [5] parmi les formules plates et satisfiables,
contenant entre une centaine et un millier de clauses chacune.

Le premier jeu de tests présenté nous sert à évaluer les capacités de nos proto-
types dans E0 et le deuxième dans E1. Le troisième nous sert à tester les filtres
de cSP et le dernier à évaluer le passage à l’échelle.

Chapitre 10 - Analyse des résultats. Les trois premières expériences im-
pliquent Kparam et Zres. Elles sont effectuées sur le premier jeu de tests, qui
contient les formules plates aléatoires. La première expérience présentée compare
Kparam avec Zres en utilisant la version standard du calcul deK-paramodulation.
Les résultats de cette expérience sont présentés figure 12, page 141. Le graphe
de dispersion (12a) compare le nombre d’impliqués premiers générés par Zres
en logique propositionnelle avec celui généré par K-paramodulation dans E0.
Le second est exponentiellement plus petit à cause des nombreuses redondances
qui ne peuvent pas être détectées en logique propositionnelle en raison de l’en-
codage des clauses équationnelles. Le graphe suivant (12b) compare les temps
d’exécution de Kparam et Zres et indique que le premier est globalement plus
efficace, mais de peu. En particulier, il est observé que les tests comportant
des impliqués atomiques sont beaucoup moins bien gérés par Kparam que par
Zres, ce qui est la raison derrière le développement des variantes du calcul
de K-paramodulation. La deuxième expérience présentée compare les deux va-
riantes du calcul de K-paramodulation entre elles. Les résultats (cf. figure 13
page 142) sont sans équivoque en faveur de la seconde variante, celle qui n’uti-
lise que le calcul de K-paramodulation et réécrit les constantes des impliqués
atomiques dès que ceux-ci sont générés. La troisième expérience compare la
meilleure variante du calcul de K-paramodulation à sa version standard et à
Zres en mettant en évidence l’efficacité de celle-ci, qui, comme indiqué dans le
tableau 4 page 143, est deux fois plus rapide que Zres dans 77% du jeu de tests,
alors que la version standard ne l’est que pour 48% des formules.

Les expériences suivantes s’intéressent à l’implémentation du calcul cSP
dans E0. Ces expériences sont aussi réalisées en utilisant le premier jeu de tests.
Dans un premier temps, les différents critères de sélection des clauses contraintes
dans l’ensemble des clauses en attente sont comparés. Ces résultats sont pré-
sentés dans le tableau 5, page 145, et désignent l’ordre lexicographique, qui
considère d’abord la taille de la clause puis celle de la contrainte correspon-
dante, comme le plus efficace. C’est cet ordre qui est utilisé dans les autres
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expériences impliquant le calcul cSP. Dans un deuxième temps, l’impact de
l’index ajouté pour accélérer l’exécution des règles de calcul, est étudié. Comme
attendu, celui-ci améliore significativement les temps d’exécution, ce qui est vi-
sible sur la figure 15, page 145. Enfin, la version avec index est comparée à la
deuxième variante du calcul de K-paramodulation. Les résultats sont présentés
dans le tableau 6, page 146, et indiquent que le calcul cSP est globalement plus
efficace que celui de K-paramodulation (sur 68% du jeu de tests).

Le reste des expériences présentés dans ce mémoire concernent cSP. Tout
d’abord, l’impact du changement de représentation des termes est étudié en
faisant tourner cSP sur le premier jeu de tests. Comme l’indique la figure 16,
page 146, en moyenne cSP est dix fois plus lent que son prédécesseur sur les
formules de E0. Ces deux prototypes sont ensuite comparés sur le deuxième jeu
de tests, celui qui contient des formules non-plates aléatoires. Cette comparaison
inclut aussi Zres et SOLAR grâce à la conversion des formules d’un format à un
autre. Les résultats de cette comparaison sont présentés dans le tableau 7, page
147, et mettent clairement en évidence l’intérêt de cSP, qui est l’outil le mieux
adapté à la génération d’impliqués premiers des formules de E1. L’expérience
suivante est réalisée sur le jeu de tests QF_UF. Elle sert à évaluer le passage à
l’échelle de cSP. Comme le montrent les résultats (cf. tableaux 8, page 148), cSP
n’est pas capable de manipuler des formules d’une telle taille dans des temps
raisonnables, ce qui est le cas de tous les générateurs d’impliqués premier à notre
connaissance. Les deux dernières expériences utilisent le jeu de tests QF_AX
et le filtre de cSP qui permet de limiter la taille des impliqués générés. Tout
d’abord, cette taille maximale est limitée à zéro, ce qui transforme cSP en un
démonstrateur de théorèmes par réfutation. Le nombre de clauses générées pour
valider ou invalider les formules est comparé au nombre de clauses générées à
l’aide du démonstrateur E [69]. Cela met en évidence l’intérêt de la normalisation
et de la méthode de détection de redondances de cSP puisque dans un grand
nombre de cas, le nombre de clauses nécessaires à cSP est dix fois inférieur à celui
nécessaire à E. Sur le même jeu de tests, la dernière expérience utilise ce même
filtre, cette fois-ci en autorisant la génération d’impliqués unitaires. Le graphique
19, page 151, montre l’évolution des capacités de cSP avec l’augmentation de
la taille de la formule. Une fois encore, les limites de cSP sont apparentes et la
complexité du passage à l’échelle est mise en évidence.

Conclusion. Les principales contributions présentées dans ce mémoire sont
les suivantes.

— Deux calculs de génération d’impliqués sont définis : la K-paramodulation
et le calcul cSP.

— Une structure de données capable de stocker les clauses équationnelles de
façon efficace et permettant la suppression des clauses redondantes est
présentée.

— Différents prototypes de générateurs d’impliqués premiers basés sur les
méthodes ci-dessus sont étudiés expérimentalement.
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Ce travail peut être poursuivi en intégrant cSP à un démonstrateur mature
comme E afin de bénéficier des améliorations techniques que celui-ci comporte.
D’autre part, l’extension de la génération d’impliqués premiers à des logiques
plus expressives (par exemple avec variables) est à considérer.
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Introduction

“Socrates is a human, all humans are mortal, thus Socrates is mortal.” This
kind of reasoning, one of the most natural to human beings, is called deduction.
In formal logic, it is often used to find contradictions. For example, consider the
statements “Socrates is a human”, “all human are mortals” and “Socrates is a
hero”. If we add the statement “a hero never dies”, then it becomes possible to
deduce both “Socrates is mortal” and “Socrates never dies” from our set of state-
ments, which raises a contradiction. Although this might seem counterintuitive,
finding contradictions is generally used to prove that properties are true. This
is done by negating the statement under consideration before adding it to the
other propositions. In this way, the previous contradiction is a proof that “even
heroes can die”.

The problem that is of interest to us occurs when this sort of proof by
contradiction has failed, i.e. when the formula representing the statement admits
a model. We can get such a formula by modifying our previous example so that
the last statement is “a hero never dies except when he is a sidekick” instead
of “a hero never dies”. In such a case, where there is no contradiction in the
statements, the tools that specialize in theorem proving usually return a model
of the formula. Here, for example, it can be “Socrates is a human, a mortal, a hero
and a sidekick”. Observe that the interesting information is only that “Socrates is
a sidekick”. The rest of the model was already clear from the original sentences.
This sort of interesting consequence is called a prime implicate. Formally, an
implicate of a formula S is a clause that is a logical consequence of S. It is
prime if it is minimal w.r.t. logical entailment. In other words, prime implicates
are the most general consequences of a formula.

In propositional logic, the problem of generating all the prime implicates of
an input formula has been studied since the fifties. The original motivation was
formula simplification (also referred to as minimizing boolean circuits). In the
eighties, new applications like the truth maintenance of databases or abductive
reasoning (the computation of explanations to observed facts) increased the
interest toward prime implicate computation. In our previous example, if the
aim is to know how to prevent Socrates from being a dead hero, then “Socrates
is not a sidekick”, the negation of the prime implicate “Socrates is a sidekick”, is
an interesting statement. It means that if it is possible to prevent Socrates from
being a sidekich then it will be impossible for him to be a dead hero. Conversely,
if there is a way to prove “Socrates is a sidekick” then the fact that Socrates is
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a dead hero stands, no contradiction is raised. Indeed, by duality, any implicate
l1 ∨ . . .∨ ln of some formula S corresponds to a conjunction ¬l1 ∧ . . .∧¬ln that
logically entails ¬S.

Nowadays, there exist a lot of different methods to compute prime implicates.
In propositional logic, these methods can be sorted into two categories, those
based on resolution [4], a calculus that generates consequences of a formula, and
those that one way or another use decomposition to solve the problem. Although
a lot of directions were (and still are) explored in propositional logic, in more
expressive logics like modal or first order logic, to the best of our knowledge,
there are only few available methods. They are presented along with the promi-
nent propositional algorithms in Chapter i. This scarcity is particularly true in
the domain of equational reasoning where no efficient method to compute prime
implicates exists. The generation of prime implicates in equational logic is the
problem that was tackled during my PhD. thesis. Equational logic is the logic
in which the axioms of equality are implicit. These axioms are 1:

— reflexivity (x ' x),
— commutativity (x ' y is equivalent to y ' x),
— transitivity (if x ' y and y ' z then x ' z),
— substitutivity (if x ' y then f(x) ' f(y)).

Let us consider the following exchange between Achilles and the tortoise, that
I am borrowing from Douglas Hofstadter [35] to illustrate the deduction mech-
anism in equational logic.

Achilles: If I am the hero then you are the sidekick.
Tortoise: Really? I would rather say that either you or Zeno

is the sidekick!

This short discussion can be modeled in equational logic. There are five char-
acters: Achilles (a), the tortoise (t), Zeno of Elea (z), the hero (h) and the
sidekick (s). Achilles’ sentence amounts to the formula a ' h ⇒ t ' s, which
in clausal form gives a 6' h ∨ t ' s. The tortoise’s answer has the logical equiv-
alent a ' s ∨ z ' s. We can also add to this dialog information considered as
common knowledge, such as the fact that the hero and the sidekick cannot be
the same person (h 6' s) and that Achilles is the hero (a ' h). Thus we obtain
the formula:

a 6' h ∨ t ' s
a ' s ∨ z ' s
h 6' s
a ' h

An obvious implicate of this formula is t ' s. Since Achilles is the hero, the
tortoise is indeed its sidekick. A less obvious consequence is that Zeno is the

1. Note that we use the symbol ’'’ to denote semantic equality, while ’=’ is used for
syntactic equality, in other words ’'’ relates notions while ’=’ relates symbols with each
other.

8



tortoise (t ' z). It requires all four clauses of the formula plus the transitivity
axiom to be deduced.

Our interest toward the generation of prime implicates in equational logic
stems from a method to extract ground abducible implicants (i.e. explanations)
of first-order formulæ presented in [23] which was motivated by some applica-
tions in program verification. The method works by using a specifically tailored
superposition-based calculus [54] which is capable of generating, from a given
set of first-order clauses S with equality, a set of ground (i.e., with no variables)
and flat (i.e., with no function symbols) clauses S′ such that all abducible prime
implicates of S are implicates of S′. If the formula at hand is satisfiable, these
implicates can be seen as missing hypotheses explaining the “bad behavior”
of the program (if the formula is unsatisfiable then the program is of course
error-free). In [23], the running example is that of the successive insertion of
two elements b and c in an array, at positions i and j respectively. The desired
property of this insertion is that the order in which the elements are inserted
must not impact the final result. In the theory of arrays, this problem can be
formalized as:

select(store(x, z, v), z) ' v (1)
z ' w ∨ select(store(x, z, v), w) ' select(x,w) (2)
d1 ' store(a, i, b) (3)
d2 ' store(d1, j, c) (4)
d3 ' store(a, j, c) (5)
d4 ' store(d3, i, b) (6)
select(d2, k) ' select(d4, k) (7)

where select(a, i) returns the element stored in cell i of array a and store(a, i, e)
inserts the element e in cell i of array a and returns the resulting array. This
formula is satisfiable in the theory of arrays, thus the property (represented by
its negation, line 7) is not always verified. The calculus from [23] then generates
the ground implicates i ' j and i 6' j ∨ b 6' c. However, the proposed calculus
is not able to explicitly generate the implicates of S′. This task is performed
by a post-processing step which consists in translating the clause set S′ into a
propositional formula by adding relevant instances of the equality axioms, and
then using the unrestricted resolution calculus to generate the propositional
implicates. In the given example, the post-processing step produces the prime
implicates i ' j and b 6' c. These are the conditions in which the property is
not verified, and a solution to make it valid is to ensure that i 6' j ∨ b ' d is
always true, i.e. that the elements are inserted in different cells or that they are
the same. This approach is sound, complete and terminating, but it is also very
inefficient, in particular due to the fact that a given clause may have several (in
general, exponentially many) representatives, that are all equivalent modulo the
usual properties of the equality predicate. Computing and storing such a huge
set of clauses is time-consuming and of no practical use. The present work ad-
dresses this issue. It offers an efficient method for handling the post-processing

9



Introduction

1
2

1
2 1

Figure 1 – A mini-sudoku puzzle

step without translation of the problem into propositional logic and avoids the
multiple representatives of equivalent clauses, while providing a powerful re-
dundancy detection mechanism. This work also goes beyond this issue with an
extension of the presented method for prime implicate generation to non-flat
formulæ. The following example is a simple illustration of the kind of abductive
problems that can be solved using the present work.

Example .1 (Mini-sudoku) Let us consider a simplified version of the su-
doku puzzle where there are only 16 cells to fill with 4 numbers and the usual
constraints on lines, columns and sub-squares (of size 4) of the grid, as illustrated
with the puzzle from Figure 1.

This puzzle can be formalized in ground equational logic with uninterpreted
functions [34] by assigning a constant to each number (here n1, n2, n3 and n4)
and using a binary function cell to access the content of each cell by its line
and column number. For example, in Figure 1 the cell (2, 3) contains the value
2, which can be expressed using the literal cell(n2, n3) ' n2.

With this representation the puzzle’s constraints can be formalized in a
straightforward way. There are four different types of constraints:

— cell (or co-domain) constraints: a cell contains a number ranging from
1 to 4 (e.g. for cell (1, 1), cell(n1, n1) ' n1 ∨ cell(n1, n1) ' n2 ∨
cell(n1, n1) ' n3 ∨ cell(n1, n1) ' n4),

— line constraints: each number appears exactly once in each line (e.g. for
line 1, cell(n1, n1) 6' cell(n1, n2) ∧ · · · ∧ cell(n1, n3) 6' cell(n1, n4)),

— column constraints: each number appears exactly once in each column
(e.g. for column 1, cell(n1, n1) 6' cell(n2, n1) ∧ · · · ∧ cell(n3, n1) 6'
cell(n4, n1)),

— sub-square constraints: each number appears exactly once in each sub-
square (e.g. for the upper-left sub-square, cell(n1, n1) 6' cell(n1, n2) ∧
· · · ∧ cell(n2, n1) 6' cell(n2, n2)).

Each puzzle is then described by the known values of the original grid. The ex-
ample (Figure 1) corresponds to the formula cell(n1, n1) ' n1∧cell(n4, n1) '
n2 ∧ cell(n2, n3) ' n1 ∧ cell(n2, n3) ' n2 ∧ cell(n4, n3) ' n1. The TPTP
formalization of the mini-sudoku problem is given in Appendix A.

Using this formalism makes it possible to use tools like equational theorem
provers or prime implicate generators to solve this kind of puzzle. Feeding the
axiomatization of the constraints plus the description of the given puzzle into a
theorem prover allows to determine if there exists a solution to the puzzle. Since
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4 1 3 2
2 3 1 4

1 2 3 4
4 3 2 1
3 1 4 2
2 4 1 3

Figure 2 – Solutions of the puzzle

most solvers provide a model when the input is satisfiable, adding the predicate
grid(cell(n1, n1), cell(n1, n2), . . . , cell(n4, n4)), i.e. the representation of the
whole grid, to the formula allows the recovery of the puzzle’s solution where
the cell function calls have been replaced by appropriate values in the grid

predicate.
With a prime implicate generator, even without the grid predicate, it is

possible to recover all the clauses assigning a value to a cell (i.e. of the form
cell(x, y) ' z) that are a consequence of the input. This means that contrarily
to a theorem prover, a prime implicate generator will directly detect if a puzzle
has more than one solution. For sudokus, this is a desirable feature because
having several ones is a major source of annoyance to the player.

For example, let us consider the grid of Figure 1. This particular puzzle ad-
mits two solutions, that are presented in Figure 2. For a theorem prover to find
all solutions, it must be run three times. The first run is used to find the first
model, say the one on the left of Figure 2. Then the negation of the correspond-
ing solution, i.e. ¬grid(n1, n2, n4, n3, n3, n4, n2, n1, n4, n1, n3, n2, n2, n3, n1, n4)
is added to the input before the prover is run a second time, generating the
second solution. A final run with both negated models is the only way to ensure
that all solutions have been found. Note that it is then up to the user to find
the differences between models and how to modify the puzzle so that one be-
comes unreachable. On a mini-sudoku, this seems rather easy, but on a normal
sized sudoku or an extra-large one, with more than two solutions, this problem
rapidly turns into a headache.

In contrast, a prime implicate generator returns in one run all possible val-
ues for each cell (e.g. for cell (2, 2), cell(n2, n2) ' n3 ∨ cell(n2, n2) ' n4),
but also clearly identifies the dependencies between the values as in the clause
cell(n2, n2) 6' n4 ∨ cell(n2, n1) ' n3, which can be read as “if the cell (2, 2)
contains 4 then the cell (2, 3) must contain 3”. ♣

The results produced during my PhD. were published in several articles
[24, 25, 26, 27, 28, 29]. The present thesis covers all the results they present
(and more) as indicated in Table 1.

The article [28] is a special case, in that in addition to presenting some algo-
rithms from the chapters 5 and 6, it combines the work of [23] with the calculus
of Chapter 3, thus obtaining a calculus that performs abductive reasoning (this
result is not presented here).

This thesis is organized in three parts, preceded by two introductory chap-
ters. The first introductory chapter exposes a state of the art of prime implicate

11
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article calculus redundancy detection experiments
[24] Ch. 2 (1) Ch. 5 (2) and Ch. 6 (2)
[25] Ch. 2 (1) Ch. 5 (2) and Ch. 6 (2) Ch. 10 (1.1)
[27] Ch. 2 (3) Ch. 5 (1) and Ch. 6 (1) Ch. 10 (1.3)
[26] Ch. 3 (2) Ch. 10, (2.3)
[29] Ch. 3 (3, 4) Ch. 7 Ch. 10 (3,4)

Table 1 – Correspondence between the articles and the chapters.

generation. The second formalizes basic notions that are the background neces-
sary to understand the work presented. The first part introduces the different
calculi that we developed for the computation of implicates. Soundness and
deductive-completeness proofs are provided with each calculus. Chapter 1 is a
preliminary chapter introducing important notions used to describe the calculi
such as the normal form of clauses or the projection, an operation that allows
to syntactically detect redundancy between clauses. The two following chapters
present our two calculi, the K-paramodulation and cSP calculi, and their vari-
ants. The former uses transitivity rules to derive new clauses from premises.
It is based on a form of “conditional paramodulation”, meaning that equality
conditions are not checked statically, but asserted by adding new disequations
to the derived clause. For instance, given a clause C[a] and an equation a′ ' b,
the K-paramodulation calculus generates the clause a 6' a′ ∨ C[b], which can
be interpreted as a ' a′ ⇒ C[b] (the condition a ' a′ is asserted). In contrast,
in the latter, a distinction is drawn between the literals that are asserted and
the standard ones – the former being attached to the clauses as constraints.
For instance, given the same clause C[a], the cSP calculus produces C[b] along
with the constraint a ' b. Another difference between the K-paramodulation
and cSP calculi is that the former is based on unordered paramodulation [4]
while the second benefits from all the restrictions of the superposition calcu-
lus [4], which it extends. This second approach generates an important num-
ber of equivalent clause-constraint pairs, that have a single equivalent in the
K-paramodulation formalism. The second part of this thesis begins with Chap-
ter 4 that presents a clause storage data structure. To do so, we extend the
representation mechanism of [17] that uses a trie-based representation of propo-
sitional clause sets, in order to handle equational symbols. This extension is not
straightforward since we have to encode the axioms of equality in the represen-
tation. The two subsequent chapters define algorithms that use the redundancy
detection method in such a way to directly manipulate the clause storage data
structure. The last chapter of this part adapts these algorithms to constrained
clauses, a special kind of clause used in the cSP calculus. The final part of the
thesis presents an experimental evaluation of our different methods. In Chapter
8, the details of our implementations are described and in Chapter 9 we present
the other prime implicate generation tools that were used as reference, as well as
the benchmarks on which we conducted our experiments. The results are then
presented in Chapter 10.

12



Chapter i

State of the Art

The terminology used in this chapter is standard for propositional and equa-
tional logic. The reader who is unfamiliar with the notations and their meaning
may refer to any introductory course on formal logic, e.g. [13].

1 Algorithms for prime implicate computation in
propositional logic

This section contains a brief survey of existing algorithms for generating
prime implicates of propositional formulæ. Here, we do not formally define every
algorithm, but we provide some insights on how they work and discuss the main
ideas underlying them, emphasizing their common points and differences. We
use some simple but interesting examples to illustrate them. A comprehensive
survey of the existing algorithms and their applications is available in [46]. First,
let us introduce the notion of a prime implicate.

Definition i.1 In propositional logic, a clause C is an implicate of a formula
S iff S |= C and C is not a tautology. It is a prime implicate of S iff C is an
implicate of S and for every implicate C ′ of S, if C ′ |= C then C |= C ′. An
equivalent definition of a prime implicate is S |= C, C is not a tautology and
∀l ∈ C, S 6|= C \ {l}. ♦

Remark i.2 There exists a notion that is dual to that of a prime implicate,
namely a prime implicant. A clause C is a prime implicate of S iff ¬C is a
prime implicant of ¬S. In this way, any algorithm computing prime implicants
can be used to compute prime implicates and vice versa. Thus from this point on,
we will only consider prime implicates, even if some of the algorithms presented
were originally designed for prime implicant computation.



Chapter i. State of the Art

1.1 First approaches
Computing prime implicates is an NP-hard problem: a formula S is unsatis-

fiable iff � is a prime implicate of S and S is valid iff S has no prime implicate.
This shows that (unless P=NP) the complexity of computing prime implicates
is exponential. The notion of a prime implicate was first introduced in [57].
From that point on, a lot of algorithms to compute them were developed. Until
the early seventies, they were all based on the minterm representation of the
formulæ, which is the set of all the models of the formula. Each interpretation
in this set is represented as a tuple of truth values 0 (for F ) and 1 (for T ), giving
the value of every variables occurring in the formula, in a given order.

Example i.3 Using minterms, the formula SCNF = (x ∨ y ∨ z) ∧ (¬x ∨ y)
would be represented by the set {(0, 0, 1); (0, 1, 0); (0, 1, 1); (1, 1, 0); (1, 1, 1)} of
minterms, where the variables are considered in the alphabetic order. For in-
stance, the tuple (0, 0, 1) represents the interpretation {x 7→ ⊥, y 7→ ⊥, z 7→ >},
which is indeed a model of SCNF . ♣

As can be seen, this notation is very space consuming, so even though polynomial
algorithms (w.r.t. the minterm representation, which is exponential w.r.t. the
size of the input formula) were found to compute prime implicates (see [74]),
they were never efficient enough to be used in real-life problems. A detailed
listing of these early works can be found in [64].

At the beginning of the seventies, methods directly using the formulæ began
to appear. They can be roughly divided into two classes: the resolution-based
algorithms and the algorithms based on decomposition.

1.2 Resolution-based algorithms
The resolution calculus [4] is an inference method made of one rule, called

the resolution rule:

Definition i.4 Let C1 = l ∨α and C2 = lc ∨ β be two clauses 1. The resolution
rule is defined as:

C1 C2

α ∨ β
The clause α ∨ β generated (modulo associativity and commutativity of ∨) is
called a resolvent. ♦

All the methods computing prime implicates based on the resolution calculus
follow the same schema. The algorithm’s input is a formula in CNF, the two
steps below are applied recursively:

1. Produce the resolvent of two clauses.
2. Remove the clauses that are subsumed by another clause in the generated

clause set.
1. Note that often in propositional logic and particularly here, clauses are seen as sets of

literals. Outside of this section, clauses are defined as multisets of literals.
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1. Algorithms for prime implicate computation in propositional
logic

When the procedure leaves the resulting formula unchanged, the remaining set
of formulæ is exactly the set of prime implicates of the original formula. This
method was introduced by Tison in [76] and an incremental technique called
IPIA inspired from it was presented in [41]. IPIA and Tison’s method define
an order on the literals to limit the number of redundant resolution steps, as
illustrated in Figure 3 (taken from [17]). In this example, the chosen order is
x > y > z > t. All the resolutions that can be applied on one literal are done in
one go. Afterwards, even if the clauses generated allow for new resolutions on
this literal, these are not carried out since it can be shown that they would be
redundant. This is the case here, where the resolution number 2 on z allows
for a resolution on y which is not done since y was already used at resolution
number 1 .

x v y ¬y v z ¬z v t

x v z ¬y v t

x v t x v t

1 2

3

Figure 3 – Example of redundant resolution avoided by Tison’s method

Tison’s method was also adapted in [39] into an incremental algorithm called
PIGLET (incremental version of PIG: Prime Implicate Generator), able to han-
dle the addition of several clauses at a time. This algorithm is more efficient
that IPIA because of an additional strategy in the selection of clauses for the
resolutions. This strategy gives a higher priority to resolution steps between
clauses that have shared literals. This way, literals are merged in the resolvent,
which becomes smaller and so less likely to be subsumed later.

Another incremental algorithm inspired from IPIA is de Kleer’s CLTMS
(Complete Logic-based Truth Maintenance System), introduced in [17]. In ad-
dition to IPIA’s optimization on the resolution step, CLTMS optimizes the
subsumption step by using an efficient data structure to represent the gener-
ated prime implicates. This data structure is called a trie or discrimination tree
[31]. All the literals of the formula are ordered and the clauses are considered as
ordered sets of literals. The trie is then built with respect to this order. It has
the following properties:

— It’s edges are labelled by literals and its leaves by clauses.
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— The edges below each node are ordered by the rank of the literals labeling
them.

— The set of literals labeling the path from the root to a leaf is the clause
labeling this leaf.

Figure 4 is an example of trie:

y v t

t

x

t

y

y

z

x v t

x v y v z

Figure 4 – Trie representation of the set of clauses {x ∨ y ∨ z;x ∨ t; y ∨ t} with
order x > y > z > t

CLTMS builds the trie of all prime implicates of a formula in an incremental
way. The subsumption tests are performed directly on the trie which is modified
in accordance with the results of the tests 2. This method is a lot more efficient
than the original IPIA algorithm. It is the first prime implicate generator fast
enough to handle non-trivial problems.

The last algorithm based on Tison’s method that is presented here comes
from [70]. Zres-tison is an algorithm based on a compact representation of for-
mulæ called ZBDD (Zero-suppressed Binary Decision Diagram) illustrated in
Figure 5. A Zero-suppressed BDD represents a clause set. Each clause is repre-
sented by a path in the diagram from the root to the terminal node labeled by
1. On Figure 5, the dashed arrows mean that the literal labeling the parent node
does not belong to the clause and the full ones that this literal belongs to the
clause. Consequently, nodes for which the full arrow leads to 0 may be dismissed
(whence the name "Zero-suppressed"). This algorithm is also very efficient. It
uses a variant of resolution called multiresolution which may be applied directly
on the ZBDD-representation. This technique makes the algorithm’s complexity
independent of the number of real resolution steps performed, because it allows
to perform all the resolutions on the same variable at the same time. The output
of Zres-tison is the set of all prime implicates presented as a ZBDD.

2. The detail of the corresponding algorithms is given Chapter 4.
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x

¬x

1

0

y

z

Figure 5 – ZBDD of SCNF = (x ∨ y ∨ z) ∧ (¬x ∨ y)

1.3 Decomposition-based algorithms

The common point of all the algorithms that do not use an inference rule
is that they build the prime implicates of formulæ by recursively decomposing
them into smaller formulæ (be it literals, terms 3 or clauses) and merging the
results obtained on those formulæ. Contrarily to the resolution method, different
algorithms accept different kinds of input formulæ, CNF, DNF or NNF. The
oldest method of this kind (to the best of our knowledge) was introduced in [71]
and is called Tree Method (TM). It is based on a depth-first search of an ordered
semantic tree, but with a slightly different definition of a semantic tree. Here it
is a tree where each edge represents a literal and each node a formula in DNF
(instead of CNF like in the tries of CLTMS), a leaf being called failure node
if the term > belongs to the set of terms it represents, and success node if the
formula is empty. Starting from a formula in DNF, TM produces a semantic tree
where all the prime implicates of the formula appear as paths from the root to a
leaf, but the tree can also contain some implicates that are not prime. One of its
main advantages compared to previous techniques is that it does not generate
the same prime implicate more than once. An improvement of TM based on a
generalization of the notion of semantic trees (called Set Enumeration trees) is
presented in [67].

In [40], TM is compared with a new algorithm of the same type called MM
(for Matrix Method) that also takes DNF formulæ as input. The main differ-
ence between the two algorithms is that MM does a breadth-first search of the
tree. Another difference is that TM focuses on the literals (each node performs
a decomposition according to the maximal literal occurring in the considered

3. In this section only, the word ’term’ describe a conjunction of propositional literals.
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formula) while MM focuses on the terms (each node corresponds to the maximal
remaining term, and the decomposition is performed according to the literal oc-
curring in this term). Jackson and Pais show through an experimental procedure
that their new algorithm is more efficient than the previous one. The following
example will highlight the differences between the two algorithms.

Example i.5 Let SDNF = (x ∧ y) ∨ (¬x ∧ y) ∨ (¬x ∧ z) ∨ (y ∧ z). (SDNF
is equivalent to the formula SCNF previously used in Example i.3. Depending
on the algorithm’s requirements, we will use one or the other in all following
examples.) The outputs of TM and MM for SDNF are presented in Figure 6.
For both graphs, success nodes are the squares containing a ’o’ and failure nodes
are those with a ’×’ inside. For TM, the partial order of the literals is based on
their number of occurrences, hence in Figure (6a) we have y > z,¬x > x and
we arbitrarily decide that z > ¬x. The algorithm’s principle is for each literal
to generate a new formula by removing the terms that contain it and deleting
all the contrary occurences of this literal in the remaining terms. Starting from
T0 = {x ∧ y;¬x ∧ y;¬x ∧ z; y ∧ z}, deleting all the terms containing y allows
to generate T1 = {¬x ∧ z} and doing the same with terms containing z, plus
removing ¬z and the literals greater than z produces T2 = {x;¬x}. The same
principle is applied to produce the terminal nodes. If the set is empty after
removing terms then the node is a success node and if a term is empty after
removing literals then the node is a failure node. For MM the terms themselves
are ordered. In Figure (6b), the order used is ¬x ∧ z > x ∧ y > ¬x ∧ y > y ∧ z.
The extension of paths is done term by term in this order, and subsumption
checks are performed at each step to remove the implicates that are not prime
(like the first path in this example). ♣

T0

T1 T2 x x

xxoo

y z ¬x x

z ¬x ¬xx

(a) TM output for SDNF

T0

T1 T2

oo

x

y

z

y

¬x

x

T3

y

(b) MM output for SDNF

Figure 6 – TM and MM output for SDNF

All previous methods need the input formulæ to be in CNF or DNF. This
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can prove to be a major inconvenience for some families of formulæ (see [52, 58]).
Several techniques were developed to overcome this problem. In [52], the incre-
mental algorithm GEN-PI (for GENeration of Prime Implicates) is introduced.
It takes a conjunction of DNF formulæ as an input and generates the set of all
prime implicates by closure operations defined in an order-theoretic framework.
In fact, this technique stands at the boundary between decomposition-based
and resolution-based methods. The closure operation can also be seen as an ex-
tension of the resolution rule from clauses to DNFs. Its creator shows that this
algorithm is as efficient as CLTMS on most formulæ and a lot more powerful for
those that are being difficult to express in normal form. Another method devel-
oped with the same objective is the path-dissolution approach of [59, 58]. This
extension of MM to NNF formulæ nevertheless has the drawback of needing a
lot of subsumption tests. Simply put, it looks for paths (representing prime im-
plicates) through a graph representing a formula in NNF, after having simplified
the graph as much as possible.

In [15], the algorithm computing the prime implicates of DNF formulæ is
in fact building a BDD representing them, using a special representation of the
variables of the formula called meta-product. This representation consists in
replacing each variable xi by two new variables oi and si, respectively denoting
whether xi occurs in the considered term and indicating the sign of xi (taken
into account only if oi is true). For each variable of the formula, the algorithm
has to consider three recursive sub-cases:

— the case where the considered variable does not appear in the prime
implicate (oi is false);

— the case where the variable is positive in the prime implicate (oi and si
are both true);

— the case where the variable is negative in the prime implicate (oi is true
and si is false).

This encoding, combined with the BDD representation, presents the ad-
vantage that only standard BDD operations are needed to compute the prime
implicates of a formula. The biggest problem here is to consider the variables
in an order that makes the BDD as compact as possible. This is done through
the use of heuristics, like the dynamic weight assignment method in [43]. This
method orders the variables with regard to their number of occurrences in the
formula.

In [43] Coudert and Madre’s algorithm [15] is compared with a generally more
efficient technique that uses integer linear programming (ILP). This method is
introduced in [30]. Contrarily to previous algorithms, in addition to computing
all prime implicates, it can also compute one prime implicate at a time and even
establish preference criteria about which literals the prime implicate computed
first should contain. This algorithm computes the prime implicates of DNF
formulæ by converting them into ILP problems as shown in the example.

Example i.6 Let us consider SDNF as defined in Example i.5. Each variable of
this formula is associated with two new variables (one for the positive literal and
one for the negative literal). x becomes x1 and x2, y becomes y1 and y2 and z
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becomes z1 and z2. Then the problem is to solve min(x1 +x2 +y1 +y2 +z1 +z2)
under a set of constraints C which is obtained in the following way: Each term of
the formula is converted into an inequation. The literals are converted into the
corresponding variables and the ∧ become +. The sum obtained must be greater
or equal to one. Additional constraints ensuring that a literal and its complement
are not selected at the same time are also added, for example x1 + x2 ≤ 1. In
the case of SDNF the constraints are:

C =



x1 + y1 ≥ 1
x2 + y1 ≥ 1
x2 + z1 ≥ 1
y1 + z1 ≥ 1
x1 + x2 ≤ 1
y1 + y2 ≤ 1
z1 + z2 ≤ 1

Using ILP, we can successfully recover the two prime implicates y ∨ ¬x and
y ∨ z as the solutions where respectively the variables {x2, y1} and {y1, z1} are
evaluated to 1 and all others are evaluated to 0. ♣

The advantage of the conversion to ILP is that all the techniques used in ILP
solving become available. In fact, any kind of ILP algorithm can solve the prob-
lem, but to have an efficient prime implicate generator, it is better to use one
specifically tuned for such a problem. For example, in [43], the search algorithm
used is one that is inspired from an improvement of the DPLL algorithm called
GRASP [53, 44].

Besides the ILP techniques, nearly all the most recent new algorithms for
prime implicate generation use the idea of splitting the problem in three sub-
cases for each variable that was introduced in [15]. One of them, in [33], uses
a DPLL-like algorithm with three branches for each variable corresponding to
these cases. In this algorithm, DNFs are used as input and BDDs are used to
store the prime implicates that are found, which allows to deal with formulæ
having more than 1020 prime implicates. Another recent algorithm based on the
same principle but accepting CNF inputs comes from [47], where the notion of
trie is reused in the form of pi-trie (or prime implicate trie, meaning the trie of
all prime implicates of a formula). The pi-tries, like the BDDs, allow to store a
great number of prime implicates at the same time. Moreover, an improvement
of the prime implicate trie algorithm [48] allows it to run with a polynomial
memory-space occupation. Experiments have shown that this technique is at
least twice as fast as those based on resolution.

The penultimate technique presented here is based on [9]. It computes the
prime implicates of a DNF formula through a new representation called quantum
notation. This technique consists in annotating each literal with the identifiers
of each term it belongs to as seen in the following example:

Example i.7 Let us identify the terms of SDNF with numbers.
1. x ∧ y

20



1. Algorithms for prime implicate computation in propositional
logic

2. ¬x ∧ y
3. ¬x ∧ z
4. y ∧ z

It gives the set of quanta : {x{1},¬x{2,3}, y{1,2,4}, z{3,4}}. ♣

To obtain prime implicates of the formula, it suffices to select the smallest sets of
quanta that cover all terms. In the previous example, it would be {¬x{2,3}, y{1,2,4}}
and {y{1,2,4}, z{3,4}}.

Finally, the most recent technique for the computation of prime implicates
that we know of [56] relies on a decomposition similar to that of the ILP tech-
nique. It originates from the works presented in [38, 55], and transforms the
input formula such that the models of the new formula are the prime implicates
of the original input. In [38] the method is described for computing the prime
implicants of CNF formulæ. First, an input equisatisfiable formula is created
by replacing every literal with a propositional variable and ensuring that the
variable and its negation are not both evaluated to true.

Example i.8 Let P = (¬x ∨ ¬y) ∧ (x ∨ ¬y) ∧ (x ∨ ¬z) ∧ (¬y ∨ ¬z) be the
input formula. The method described here generates the equisatisfiable formula
P ′ ∪ Q where P ′ = (l¬x ∨ l¬y) ∧ (lx ∨ l¬y) ∧ (lx ∨ l¬z) ∧ (l¬y ∨ l¬z) and Q =
(¬lx ∨ ¬l¬x) ∧ (¬ly ∨ ¬l¬y) ∧ (¬lz ∨ ¬l¬z). ♣

The second step of the transformation is to concatenate the formula with encod-
ings of the following statement for each variable: “If the variable lp is evaluated
to true then the rest of the clause C where lp appears does not need to be
evaluated to true”, i.e. the formula lp ⇒ ¬C \ {lp}.

Example i.9 To complete the formula P ′∪Q of the previous example, it must
be concatenated with P ′′ = (¬l¬x ∨¬l¬y)∧ (¬lx ∨¬l¬y)∧ (¬lx ∨¬l¬z)∧ (¬l¬y ∨
¬l¬z) because it corresponds to the formulæ:

lx ⇒ ¬l¬y (= ¬lx ∨ ¬l¬y)

lx ⇒ ¬l¬z (= ¬lx ∨ ¬l¬z)
l¬x ⇒ ¬l¬y (= ¬l¬x ∨ ¬l¬y)

l¬y ⇒ ¬l¬x (= ¬l¬x ∨ ¬l¬y)

l¬y ⇒ ¬lx (= ¬lx ∨ ¬l¬y)

l¬y ⇒ ¬l¬z (= ¬l¬y ∨ ¬l¬z)
l¬z ⇒ ¬lx (= ¬lx ∨ ¬l¬z)
l¬z ⇒ ¬l¬y (= ¬l¬y ∨ ¬l¬z)

One model of P ′ ∪Q∪ P ′′ evaluates lx and l¬y to true and the other literals to
false, encoding the prime implicant y∧¬y of P . Another one evaluates only l¬y
and l¬z to true, thus encoding the prime implicant ¬y ∧ ¬z of P . ♣

By negating the formula, applying this method and negating again the results,
it is possible to compute the prime implicates of a DNF formula.
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Example i.10 Consider the DNF formula SDNF . The relation ¬SDNF = P
holds (with P defined in Example i.8), thus using the previously described
method, the clauses ¬x∨y and y∨z, prime implicates of SDNF are computed.♣

To compute all the prime implicates of a formula, the transformed formula is
fed to a SAT solver that enumerates its models. An improved version of this
method [56] is implemented in the software primer 4 where the input formula
is only required to be in NNF. Experimental results in [56] indicate that this
method is currently the most efficient one available.

2 Beyond propositional logic
Several lines of work have approached the problem of prime implicate gen-

eration beyond propositional logic [8, 22, 36, 42, 45, 49, 60, 61, 62, 63, 77]. A
first formalization of the notion of a prime implicate in first-order logic is intro-
duced in [45] and several obstacles to their computation, e.g. semi-decidability,
are identified. Sub-classes of first-order formulæ for which this computation is
possible are presented (e.g. clauses of bounded length, bounded depth). This
work does not explicitly provide a computation method for first-order prime
implicates. To the best of our knowledge, in first-order logic there are only two
works of practical use.

The first one is the SOL calculus [36], a prime implicate generation tool
for full first-order logic implemented in the JAVA program SOLAR [50]. This
calculus is based on the tableau resolution method for theorem refutation [32]
as illustrated in the following example.

Example i.11 Figure 7 is a refutation tableau for the following formula: S =
{p(X)∨s(X),¬s(Y ), q(Z)∨¬p(Z),¬p(T )∨¬q(T )}. These clauses appear as the
set of all the direct children of a node. In Figure 7 all the branches are closed,
i.e. they contain a literal and its negation, hence the formula is unsatisfiable.♣

To generate implicates, the SOL calculus uses a ’skip’ rule to stop develop-
ing branches of the tableau without refuting them. The leaves of the skipped
branches form an implicate of the original formula. A specificity of the SOL
calculus is that it is possible to impose conditions on the literals that can be
skipped, be it on their shape or their quantity. This allows the user to filter the
kind of implicates that are computed.

Example i.12 Figure 8 presents two complete SOL tableaux for the formula
S′ = {p(X) ∨ s(X),¬s(Y ), q(Z) ∨ ¬p(Z)} that is a subset of S from Example
i.11, respectively deriving the prime implicates p(X) and q(X). ♣

Through a modification method [37] inspired from [12], SOLAR can also directly
handle equational formulæ (without having to provide the axioms of equality in
the input). This method modifies the rules of the calculus so as to simulate the

4. http://logos.ucd.ie/web/doku.php?id=primer
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p(X) s(X)

¬s(X)

closed

¬p(X)q(X)

closed

¬q(X)¬p(X)

closedclosed

Figure 7 – A tableau refutation

p(X) s(X)

¬s(X)

closed

¬p(X)

closed

q(X)

skipped

s(X)

¬s(X)

closed

p(X)

skipped

Figure 8 – Two SOL tableaux

effects of the axioms of equality on the equational literals present in the formula.
It also associates to these literals ordering constraints that must be satisfied for
a tableau to be closed [18].

The second method of practical use that generated prime implicates of first-
order formulæ is a method incorporated into the MISTRAL SMT solver 5 that
applies to any first-order theory admitting quantifier elimination and a decision
procedure for testing the satisfiability of the formula (e.g. Presburger arithmetic)

5. http://www.cs.utexas.edu/~tdillig/mistral/index.html
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[22]. This method computes some specific prime implicates of DNF formulæ 6,
but it is not complete. These implicates are the negations of minimum partial
variable assignments falsifying the formula 7.

Example i.13 We consider the arithmetic formula S = x+y < 1∧x+y+z > 3.
The assignment x = 0 ∧ y = 1 falsifies the formula, hence x 6= 0 ∨ y 6= 1 is an
implicate of S. This is also true of z 6= 0. ♣

To ensure that the generated implicates are prime the assignments must mini-
mize a cost function.

Example i.14 Assume given the cost function c such that ∀x, c(x) = 1. Going
back to the formula S introduced in the previous example, the implicate x 6=
0 ∨ y 6= 1 has a cost of 2 while the cost of z 6= 0 is only one. Since there is no
partial assignment with a cost of 0 (the formula S is satisfiable), the implicate
z 6= 0 is prime, and so are z 6= 1, z 6= 2 and z 6= 3. ♣

In [22] a branch and bound algorithm is devised to compute such prime impli-
cates and several heuristics are presented to prune the search space. Practical
applications of this technique are introduced in [21, 19].

Other methods have been devised for generating prime implicates in first-
order logic, based mostly either on first-order resolution [45] or the sequent
calculus [49]. These methods can handle equational reasoning, the domain tar-
geted in this paper, by adding equality axioms. Different techniques also exist,
such as [42] which proposes a built-in method for handling equational reasoning
based on an analysis of unification failures. These approaches are very general
but not well-suited for real-world applications since termination is not ensured
(even for standard decidable classes); furthermore they include no technique for
removing equational redundancies, which is a major source of inefficiency. [77]
uses the superposition calculus [3] to generate positive and unit prime implicates
for specific theories. However, as shown in [25, 42], the superposition calculus is
not complete for non-positive or non-unit prime implicates. [72, 73] propose an
approach to synthesize prime implicate-like constraints ensuring that a system
satisfies some invariant or safety properties. This approach relies on external
provers to check satisfiability of first-order formulæ in some base theories. It
is very generic and modular, however no automated method is presented to
simplify the obtained constraints.

The generation of prime implicates has also been considered in the modal
logic K [10]. This logic is the simplest modal logic there is. It differs from propo-
sitional logic only by its use of the modal operators � and �, and their corre-
sponding possible world interpretations. In [8], different definitions of the prime
implicates of a modal formula are discussed and for the two best options, an
algorithm is proposed. This algorithm uses a decomposition method inspired
from propositional logic to compute all the prime implicates of the formula at
the same time. This work is extended in [61] into an incremental algorithm.

6. This method is originally presented to compute the prime implicants of CNF formulæ.
7. In the original method, the computed implicant are minimum partial assignments sat-

isfying the formula.
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3 Summary
We have seen different algorithms computing the prime implicates of formulæ

in propositional logic (PL), first-order logic (FOL) and modal logic (ML).
The methods in PL can be grouped in two families: the resolution-based

methods and the decomposition-based methods. One of the strong points of
the decomposition methods is that they can be applied to all kinds of formulæ
(not only to CNFs as the resolution-based methods). On the other hand, a
decomposition is possible only when the number of propositional variables is
finite, which impairs greatly the possibilities of extending these methods to first
order logic (FOL). However, extending resolution-based methods to FOL is not
an easy task either. Indeed, some properties are lost when going from PL to
FOL such as the finiteness of the set of all prime implicates and its equivalence
with the original formula. This loss can jeopardize criteria that are critical to the
smooth running of the algorithms (like termination). Thus, such an extension
must be done very carefully and restrictive measures must be taken to ensure
the termination of the algorithms. It is comparatively easier to extend the prime
implicate generation algorithms to ML since the decomposition methods from
PL can be adapted to this framework.

The work presented in this thesis builds on the propositional algorithm
CLTMS [17] to create the first practical prime implicate generation method
targeting specifically ground equational logic, a subset of first-order logic. As
in De Kleer’s algorithm, the input must be in CNF, and clauses are stored in
trie-like data structures. Different variants of the paramodulation calculus are
proposed as replacements for the resolution calculus used in CLTMS.
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Chapter ii

Generic Context - Ground
First-Order Logic with
Equality

1 Ground equational logic, with and without un-
interpreted function symbols

In this thesis, we work with two different logics. The first one, denoted by E0

represents ground flat first-order logic with equality, meaning that the formulas
under consideration contain no variables (they are ground) or function symbols
other than constants (they are flat), and admit a unique predicate, the equality
predicate. The second logic is denoted by E1. It is the extension of E0 to un-
interpreted functions. We quickly review standard definitions, more details can
be found in [6]

For n ≥ 0, Σn denotes a signature of function symbols of arity n, usually
denoted by f , g. Σ0 is the signature of constant symbols, usually denoted by

a,b,c, and we let Σ =
∞⋃
n=0

Σn. The notation T(Σ) stands for the set of well-formed

ground terms over Σ, defined as usual, and most often denoted by s, t, u, v, w.
The terms occurring in formulas of E0 are all elements of T(Σ0) = Σ0. We never
use the former notation and when in E0, we assimilate the symbols of Σ0 to the
constant terms. For any term s ∈ T(Σ), Pos(s) is the set of all positions in s, for
example Pos(f(a, g(b))) = {ε, 1, 2, 2.1}. The expression head(s) represents the
symbol of Σ appearing in s at position ε. Generally, the subterm occurring at
position p in a term t is represented by t|p. We assume that an ordering ≺ on
terms is given.

An atom is an expression of the form s ' t, where s, t ∈ T(Σ). Atoms
are considered modulo commutativity of ', i.e. s ' t and t ' s are viewed
as identical. A literal, usually denoted by l or m, is either an atom s ' t
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(positive literal) or the negation of an atom s 6' t (negative literal). A literal l
will sometimes be written s ./ t, where the symbol ./ stands for ' or 6'. The
literal lc denotes the complement of l, i.e., s 6' t (resp. s ' t) when l is s ' t
(resp. s 6' t). In general literals are always represented with the greater term on
the left-hand side, unless when the contrary is obvious, explicitly stated or when
the literal is defined from another one using operations that do not guarantee the
preservation of the ordering. A literal of the form s 6' s is called a contradictory
literal (or a contradiction) and a literal of the form s ' s is a tautological literal
(or a tautology).

A clause is a finite multiset of literals, usually written as a disjunction. As
usual � denotes the empty clause. A clause is unit if the underlying set of literals
is a singleton and atomic if it contains a single positive literal. For every clause C,
we define C+ def

= {l ∈ C | l is positive} and C− def
= {l ∈ C | l is negative}. A clause

C such that C = C+ is positive and it is negative when C = C−. In addition,
C\l def

= {m ∈ C |m 6= l} and |C| is the length of the clause, i.e. the number of
literals it contains. If C =

∨n
i=1 li then ¬C

def
=
∧n
i=1 l

c
i . We often identify sets

of unit clauses with conjunctions, e.g., considering a set of clauses S, we write
S ∪

∧n
i=1 li for S ∪ {li | i ∈ [1, n]}, and instead of {l1, . . . , ln} ⊆ {l′1, . . . , l′m}, we

write
∧n
i=1 li ⊆

∧m
i=1 l

′
i. Formulæ are collections of clauses, built on the terms

in T(Σ) for E1 and on the terms in Σ0 for E0.
In E1, an equational interpretation I is defined as a congruence relation on

T(Σ). In other words, I is an equivalence relation on T(Σ) satisfying the fol-
lowing property: ∀f ∈ Σn,

(
∀i ∈ {1..n} , si =I ti ⇒ f(s1, .., sn) =I f(t1, .., tn)

)
,

where s =I t means that the terms s and t belong to the same class in I. In E0,
an equational interpretation I is an equivalence relation on Σ0. In both logics,
a positive literal l = s ' t is evaluated to > (true) in I, written I |= l, if s =I t;
otherwise l is evaluated to ⊥ (false). A negative literal l = s 6' t is evaluated
to > in I if s 6=I t, and to ⊥ otherwise. A clause C is true in I if it contains
a literal l that is true in I. A clause set S is true in I if all clauses in S are
true in I. We write I |= E and we say that I is a model of E if the expression
(literal, clause or clause set) E is true in I. For all expressions E, E′, we write
E |= E′ if every model of E is a model of E′. A tautology is a clause of which all
equational interpretations are models and a contradiction is a clause that has
no model. For instance, f(a) 6' f(b)∨ b ' a is a tautology, whereas � and a 6' a
are contradictions.

We now introduce the central notion of a prime implicate.

Definition ii.1 In E0 and in E1, a clause C is an implicate of a clause set S if
S |= C. C is a prime implicate of S if, moreover, C is not a tautology, and for
every clause D such that S |= D, we have either D 6|= C or C |= D. ♦

Example ii.2 In E0, consider the clause set S:

1 a ' b ∨ d ' a 2 a ' c
3 c 6' b 4 c 6' e ∨ d ' e

The clause d ' a is an implicate of S, since Clauses 2 and 3 together entail
a 6' b and thus d ' a can be inferred from a 6' b and Clause 1. The clause
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Chapter ii. Generic Context

a 6' e∨ d ' e can be deduced from 4 and 2 and thus is also an implicate. But it
is not prime, since d ' a |= a 6' e ∨ d ' e (it is clear that d ' a, a ' e |= d ' e,
by transitivity) but a 6' e ∨ d ' e 6|= d ' a. ♣

Rewriting in E0

Let E be a literal, a clause or a formula. The notation E[a/b] represents this
same expression where all occurrences of the constant b have been replaced by
a. Similarly, the notation E[A], where A is a set of atomic clauses, denotes the
expression E where every constant a is replaced by min

≺
{a′ |A |= a ' a′}.

Proposition ii.3 Let C, D be two clauses and a, b be two constants. If D |= C
then D[a/b] |= C[a/b].

Proof. LetM be a model of D[a/b] and I be the interpretation that coincides
with M on all constants except on b which is such that b =I a. Since b does
not appear in D[a/b], I is also a model of D[a/b], thus I |= a 6' b ∨ D[a/b].
The clause D is logicaly equivalent to a 6' b ∨D[a/b] hence I |= D, and since
D |= C, I |= C. Thus since I |= a ' b, I |= C[a/b] and finally M |= C[a/b]
because b does not appear in C[a/b].

Proposition ii.4 Consider the clauses C,D and the constants a, b such that
a ≺ b. Assume that a 6' b ∨ C is a clause where b does not appear. Then
D |= a 6' b ∨ C if and only if D[a/b] |= C.

Proof. Assume D[a/b] |= C and let I be an interpretation such that I |= D.
If a 6=I b then I |= a 6' b∨C. Otherwise, we have I |= D[a/b] and by hypothesis
I |= C |= a 6' b ∨ C.

Assume D |= a 6' b ∨ C, let I |= D[a/b] and consider the interpretation J
identical to I, except that a =J b. Then by construction J |= D[a/b], hence
J |= D and J |= a 6' b∨C. From J |= a ' b we deduce that J |= C. Since the
constant b does not occur in C, we conclude that I |= C.

Orderings

An order � is a reflexive, transitive and anti-symmetric relation. An strict
order ≺ is an irreflexive, transitive and anti-symmetric relation induced by a
(non-strict) order in the following way: x ≺ y iff x � y and x 6= y. A strict order
on terms is total when, given any two terms s and t, either s ≺ t, or s = t, or
t ≺ s.

Definition ii.5 A strict order ≺ on terms is well-founded if every subset T ⊆
T(Σ) (or, in E0, T ⊆ Σ0) has a minimal element, i.e. ∃t ∈ T such that ∀t′ ∈
T, t 6� t′.

An order is well-founded if the corresponding strict order is well-founded.♦
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1. Ground equational logic

Definition ii.6 In E1 a strict order ≺ on T(Σ) is a rewrite order iff:
∀s1, s2 ∈ T(Σ),∀n ≥ 0,∀f ∈ Σn,∀i ∈ 1 . . . n, ∀t1, . . . ti−1, ti+1, . . . , tn ∈ T(Σ),

if s1 ≺ s2 then f(t1, . . . , ti−1, s1, ti+1, . . . , tn) ≺ f(t1, . . . , ti−1, s2, ti+1, . . . , tn)

♦

Definition ii.7 A strict order is a reduction order when it is a well-founded
rewrite order. ♦

Remark ii.8 The usual definition of a rewrite order include the need to be
closed under substitution, but since E1 does not include variables, this property
is ommited here. Note also that in E0 any strict order is well-founded and a
rewrite order since only Σ0 is used. Thus any strict order in E0 is a reduction
order.

In E1, an example of reduction order is the Knuth-Bendix order also called KBO.

Example ii.9 Let ≺sig be a strict order on Σ and w : Σ → R∗ be a weight
function. The weight function is extended to terms in the following way: ∀t ∈
T(Σ), w(t) =

∑
σ∈Σ

w(σ).|t|σ, where |t|σ is the number of occurences of the symbol

σ in t. The Knuth-Bendix order ≺kbo on T(Σ) induced by ≺sig and w is defined
as follows: for s, t ∈ T(Σ) we have s ≺kbo t iff

1. w(s) < w(t) or
2. w(s) = w(t) and one of the following properties holds:

(a) There exist function symbols f, g ∈ Σn × Σm such that f ≺Σ g and
s = f(s1, . . . , sm), t = g(t1, . . . , tm).

(b) There exist a function symbol f ∈ Σm and an index i, 1 ≤ i ≤ m such
that s = f(s1, . . . , sm), t = f(t1, . . . , tm) and s1 = t1, . . . , si−1 = ti−1

and si ≺kbo ti.
In [2], KBO is described in the following manner: “Thus, the Knuth-Bendix
order makes a lexicographic comparison, where first the weights of the terms are
considered, second their root symbols, and third recursively the collections of the
immediate subterms.” ♣

All the definitions above in this paragraph about order are extracted and, when
necessary, adapted from [2]. In the continuation of this thesis, the given order
≺ on terms is assumed to be a total strict reduction order.

Definition ii.10 The two following strict orders on literals are used throughout
this thesis, both in E0 and E1.

1. The order ≺ on terms is extended in the usual way to literals and then
to clauses using the multiset extension, by associating a negative literal
t 6' s to the set {{t, s}} and a positive literal t ' s to {{t} , {s}}.
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2. The total order <π on literals is defined as follows:
— equations are all greater than inequations;
— if l1 and l2 are literals with the same polarity then l1 <π l2 iff l1 ≺ l2.

Both strict orders are relaxed (into the non-strict orders � and ≤π resp.) by
also accepting equal literals or clauses. ♦

Example ii.11 Let C = g(a) 6' b ∨ c ' d and D = a 6' b ∨ f(c) ' d, with
a ≺ b ≺ c ≺ d ≺ f(c) ≺ g(a). We have D ≺ C and C <π D, because on
the one hand a 6' b ≺ c ' d ≺ f(c) ' d ≺ g(a) 6' b, and on the other hand
a 6' b <π g(a) 6' b <π c ' d <π f(c) ' d. ♣

The order ≺ is used to determine which implicates are prime and which are
redundant. The order <π is necessary for the clause storage and manipulation
methods presented in Part II, but is not used outside of this scope.

Proposition ii.12 In E0, any total ordering ≺ on constants is a reduction
ordering.

Example ii.13 Using the alphabetic order as the basis,
— b ' a ≺ b 6' a because {{a} , {b}} ≺ {{a, b}},
— c ' b∨c 6' a ≺ c ' a∨c 6' b because {{b} , {c} , {a, c}} ≺ {{a} , {c} , {b, c}}.

. ♣

2 Calculi and related notions

Definition ii.14 A calculus is a set of inference rules. There are two kinds of
rules:

Generation rules:
C1 . . . Cn

C

where the clauses C1, . . . , Cn are the premises of the rule (or parent clauses)
and the clause C is the consequent, i.e. the newly generated clause. The rule is
correct iff C is entailed by {C1, . . . , Cn}.

Deletion rules:
S ∪ {C}

S

where the clause C is removed from the formula S ∪ {C}. When the rule is
correct, we have S ∪ {C} ≡ S (or at least satisfiability should be preserved).
Both kinds of rules can have additional constraints specifying under what con-
ditions the rule can be applied. ♦

Notation ii.15 Let A be a calculus. We write S `A C if the clause C can be
generated from S in one inference of A. If there is no ambiguity, we may write
S ` C instead of S `A C. ♦
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Definition ii.16 A calculus is correct when all its rules are correct. ♦

The standard paramodulation calculus operates on the full first order logic with
equality [3]. Its restriction to E0 is defined as follows.

Definition ii.17 In E0, the paramodulation calculus consists of the following
rules:

Positive Paramodulation:
a ' b ∨ C a ' c ∨D

b ' c ∨ C ∨D

Negative Paramodulation:
a 6' b ∨ C a ' c ∨D

c 6' b ∨ C ∨D

Factorization:
a ' b ∨ a ' c ∨ C
a ' b ∨ b 6' c ∨ C

Reflexion:
a 6' a ∨ C

C

This calculus is refined into the superposition calculus by adding the following
constraints. Given the function sel that returns the greatest literal in a clause,
the rules are constrained by the following conditions: b, c ≺ a, sel(a ' b ∨C) =
a ' b, sel(a ' c ∨D) = a ' c and sel(a ' b ∨ a ' c ∨ C) = a ' b ♦

It is easy to verify that the paramodulation calculus is correct.

Definition ii.18 Let A be a calculus. The formula S is closed by A if it contains
all the clauses that can be generated using rules of A from premises in S. ♦

Example ii.19 With a ≺ b, the formula S = {b ' a, a ' a, b 6' a, a 6' a,�} is
closed by the superposition calculus. ♣

Saturation and redundancy

Often it is more practical to get rid of the clauses that are redundant with
respect to other clauses in a formula rather than keeping them. It results in a
simpler equivalent formula. There are different ways to define redundancy but
they must all verify the following property.

Requirement ii.20 If, according to a given definition of redundancy, a clause
C is redundant with respect to a formula S (or redundant in the formula S∪{C})
then S ∪ {C} ≡ S. ♦

The standard definition of redundancy associated to the superposition calculus
is the following.

Definition ii.21 A clause C is redundant with respect to a formula S if there
exist C1, . . . , Cn ∈ S such that C1, . . . , Cn |= C and the Ci are all smaller or
equal to C for a given reduction order. ♦
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This definition of redundancy preserves the completeness of the superposition
calculus (see [3]).

The redundancy criterion that is used for implicate generation is slightly
more restrictive. To distinguish the two notions, we empoy the expression clausal
redundancy.

Definition ii.22 A clause C is clause-redundant with respect to a formula S if
there exists a clause D ∈ S such that D |= C. ♦

Other notions of redundancy will be introduced in the upcoming chapters when
needed. It will always be clear from the context which notion of redundancy is
being used, thus the specific denomination introduced here will not necessarilly
be used.

The deletion of redundant clauses is integrated into a calculus through the
so-called redundancy elimination rule.

Definition ii.23 Let S be a formula and C be a clause. The redundancy elim-
ination rule is the deletion rule:

S ∪ {C}
S

if C is redundant in S.

Definition ii.24 Let S be a formula. We say that S is free of redundancy if the
redundancy elimination rule cannot be applied to S. ♦

By combining a calculus with the redundancy elimination rule, the notion of
saturation can be defined.

Definition ii.25 Let A be a calculus to which a notion of redundancy is asso-
ciated. The formula S is saturated up to redundancy (or simply saturated) if all
inferences by the rules of A generate clauses that are redundant with respect to
S. ♦

Example ii.26 The formula S of Example ii.19 is saturated up to redundancy.
The formula S′ = {a ' b, a 6' b}, equivalent to S, is not saturated up to redun-
dancy because S ` � by resolution, � |= a ' b and � |= a 6' b. The equivalent
formula {�} is saturated up to redundancy and redundancy free. ♣

Notation ii.27 Let A be a calculus, S be a set of clauses, and C be a clause.
The set S`i denotes all clauses obtained from S (up to redundancy) by exactly
i inferences of A and S`i,C is the set of all clauses obtained from S ∪ {C}
by exactly i inferences of A such that at least one parent of each inference is

C (including unary inferences). The set S`C is defined as
∞⋃
i=0

S`i,C . It can be

viewed as the saturation up to redundancy of S ∪ {C} by a restriction of A to
inferences with C as a parent. The saturation up to redundancy of S using the
full calculus is denoted by S`A or S`. ♦
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Definition ii.28 Given a calculus A and an associated notion of redundancy,
A is refutationaly complete if any formula that is saturated up to redundancy
by A and unsatisfiable necessarily contains �. ♦

Theorem ii.29 The superposition calculus with its corresponding notion of re-
dundancy is refutationaly complete [54].

When a calculus is correct and refutationaly complete, to know if a formula
is satisfiable or not, it is sufficient to compute its saturation up to redundancy
(provided it terminates). If a formula is unsatisfiable, the empty clause is guaran-
teed to be generated and the elimination of redundant clauses efficiently prunes
the search space.

However, this property is not enough for the generation of all prime im-
plicates, which is our aim. Indeed, only the empty clause is guaranteed to be
generated (if the formula is unsatisfiable). Thus we have to consider a stronger
notion of completeness.

Definition ii.30 A calculus A is deductive-complete if for all formulas S that
are saturated up to redundancy and clauses C such that S |= C, there exists a
clause D ∈ S such that D |= C. ♦

Example ii.31 The superposition calculus is not deductive-complete. For ex-
ample, it is not possible to derive a 6' c ∨ b ' d or a clause that entails it from
the formula {a ' b, c ' d}, even though {a ' b, c ' d} |= a 6' c ∨ b ' d. ♣

Note that a formula saturated up to redundancy by a deductive-complete cal-
culus is exactly its own set of prime implicates.

Saturation procedure

The most common procedure used to saturate a set of clauses consists in
storing all the input clauses in a waiting set W and pick each of them one at
a time to perform all possible inferences between the chosen clause and the
already processed set of clauses P . Once this is done, the clause is stored with
the other processed clauses in P and the consequents are added to the waiting
set W . We present two formalizations of this procedure, one in pseudo-code and
one as a set of rules.

Definition ii.32 The saturation of a formula S can be performed by applying
the following rules starting from the pair of sets 〈∅;S〉 until none can be applied.

Redundancy elimination (R) :
P ;W ∪ {C}

P ;W

if C is redundant with respect to P .

Inference generation (I) :
P ;W ∪ {C}

P ′ ∪ {C} ;W ∪ P ′`1,C \ {C}
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if no redundancy elimination applies on C and where

P ′ = {D ∈ P |D is not redundant in P ∪ {C}}. ♦

Note that the conditions associated with the rules are mutually exclusive and
that one of them always holds. Hence all the clauses in W can be processed and
the procedure is completed when W = ∅.

Example ii.33 The saturation of {b ' a, b 6' a} by the superposition calculus
can be done in the following way, where a ≺ b and the clause underlined in W
is the one on which a rule applies:

∅; {b ' a, b 6' a} `I {b ' a} ; {a ' a, b 6' a} `R {b ' a} ;
{
b 6' a

}
`I {b ' a, b 6' a} ;

{
a 6' a

}
`I {b ' a, b 6' a, a 6' a} ; {�} `I {�} ; ∅

The inside evolution of the sets P and W depends on the order in which
the clauses are selected. If the initial formula is satisfiable, the final result
also depends on this order (since the superposition calculus is not deductive-
complete). ♣

The whole procedure is synthesized into Algorithm 1. In the literature it is

Algorithm 1 Saturation of S

P := ∅
W := S
while W 6= ∅ do

Choose a clause C ∈W
if C is not redundant with respect to P then

P := P ∪ {C} \ {D ∈ P |D is redundant in P ∪ {C}}
W := (W ∪ P`1,C )\ {C}

else
W := W\ {C}

end if
end while
return P

known as the Given-clause algorithm [68]. Note that the rules of Definition ii.32
correspond exactly to the two cases of the algorithm’s while-loop. There exist
several variants of this algorithm, that differ mainly on the order in which the
clauses of W are picked and on the timing in which the redundancy elimination
rules are applied [65].
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Part I

Calculi for Implicate
Generation



This part of the thesis regroups the different calculi for prime implicate
generation that were considered during the thesis. In the first chapter, some
preliminary results as well as the techniques for representing equivalent clauses
and detecting redundancy are introduced. Their principles are common to all
the calculi, although adaptations are necessary depending on the circumstances.
The second chapter’s main theme is the K-paramodulation calculus, which is a
form of “conditional paramodulation” where equalities are asserted rather than
deduced. K-paramodulation is defined only for E0. Two improvements of this
calculus are also presented that have to do with the rewriting of atomic impli-
cates. The third and last chapter introduces a different calculus, the constrained
superposition calculus, where asserted equalities are “frozen” so as to prevent
further inferences on them.
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Chapter 1

Entailment and
Representation of Clauses
Modulo Equality

In propositional logic, detecting redundant clauses is an easy task, because a
clause C is a logical consequence of D iff either it is a tautology or every literal
in D also occurs in C. Furthermore, the only tautologies in propositional logic
are the clauses containing complementary literals, which is straightforward to
test. However, in E0 and E1, these properties do not hold anymore: for example
in E0 the clause a 6' b ∨ b ' c is a logical consequence of a ' c but obviously
a ' c is not a sub-clause of a 6' b ∨ b ' c. In E1, the clause e 6' b ∨ b 6'
c∨ f(a) ' f(b) is redundant w.r.t. the clause e 6' c∨ a ' c. Thus testing clause
inclusion is no longer sufficient. Testing whether two clauses are equivalent is
not straightforward either: for instance a 6' b ∨ b ' c and a 6' b ∨ a ' c do not
share the same literals although they are equivalent. In this chapter, we devise
a new redundancy criterion that generalizes subsumption. To this purpose we
show in Section 1 how to normalize clauses according to the total ordering ≺
on constant symbols, and in Section 2 we introduce new notions of subsumption
for testing redundancy.

1 Representation of clauses modulo equality and
entailment in E0 and E1

Definition 1.1 Let C be a clause in E1, we define for any term s ∈ T(Σ) the
C-equivalence class of s as:

[s]C = {t | ¬C |= s ' t} .

The corresponding equivalence relation is written ≡C . By definition, the follow-
ing equivalences hold: (s ≡C t)⇔ (s 6' t |= C)⇔ (¬C |= s ' t).
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The C-representative of a term s, a literal l and a clause D are respectively
defined by:

s�C
def
= min

≺
([s]C),

l�C
def
= s�C ./ t�C , for l = s ./ t, and

D�C
def
= {l�C | l ∈ D}

For any expression (constant, literal, clause) E, the expression E�C is called the
projection of E on C.

In E0, these definitions are the same, but restricted to the terms of Σ0. ♦

Note that every term s has a representative, since it is clear that ¬C |= s ' s.

Proposition 1.2 Let C be a clause in E0. If C is a tautology, then ≡C= Σ0 ×
Σ0, i.e. ∀a, b ∈ Σ0, a ≡C b. Otherwise ≡C is the reflexive and transitive closure
of the set {(a, b) | a 6' b ∈ C}.

Let C be a clause in E1. If C is a tautology, then ≡C= T(Σ) × T(Σ).
Otherwise ≡C is the (reflexive and transitive) congruence closure of the set
{(s, t) | s 6' t ∈ C}.

Proposition 1.3 Let s be a term, l be a literal and C and D be two clauses,
then:

¬C |= s ' s�C , ¬C |= l⇔ l�C , and ¬C |= D ⇔ D�C .

where ⇔ is the usual logical equivalence.

Example 1.4 Let C = a 6' b∨b 6' c∨d 6' e∨a ' e ∈ E0. We have ¬C |= a ' b
and ¬C |= b ' c since both a 6' b and b 6' c occur in C. By transitivity, this
implies that ¬C |= a ' c, and therefore we have a�C = b�C = c�C = a (recall
that constants are ordered alphabetically). Similarly, d�C = e�C = d. If f is a
constant distinct from a, b, c, e, d, then f�C = f . We have (b ' e ∨ a 6' b)�C =
a ' d ∨ a 6' a. ♣

Example 1.5 In E1, let C = a 6' b∨f(c) 6' d∨f(b) ' f(c). Since ¬C |= a ' b,
we have also ¬C |= f(a) ' f(b). Moreover ¬C |= f(c) ' d. Given the order
a ≺ b ≺ c ≺ d ≺ f(a) ≺ f(b) ≺ f(c), we obtain the relations a�C = b�C = a,
f(a)�C = f(b)�C = f(a) and f(c)�C = d�C = d. Thus (f(b) ' f(c))�C = f(a) '
d. ♣

Proposition 1.6 The following basic properties hold:

1. If C and D are two non-tautological clauses containing the same negative
literals then for every constant a we have a�C = a�D.

2. If a non-tautological clause C contains no negative literal then for any
constant a, a�C = a.
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1.1 Results specific to E0

The following proposition analyzes the effect on the relation ≡C of adding
a disequation a 6' b to C. It is clear that this addition can only affect the
equivalence classes of a and b:

Proposition 1.7 Let C be a clause and let a, b, c, d be constant symbols. If
c ≡a6'b∨C d and c 6≡C d, then a 6≡C b and {a�C , b�C} = {c�C , d�C}. Conversely,
if {a�C , b�C} = {c�C , d�C}, then c ≡a 6'b∨C d.

Proof. We begin by proving the first implication. Obviously we cannot have
a ≡C b, otherwise ≡C would be identical to ≡a 6'b∨C . By definition of ≡a6'b∨C
and Proposition 1.2 there exist a sequence of constant symbols e1, . . . , en such
that e1 = c, en = d and for all i ∈ [1, n − 1], ei 6' ei+1 occurs in a 6' b ∨ C.
W.l.o.g. we assume that this sequence is minimal, which implies that the ei’s
are pairwise distinct. Then there exists at most one i ∈ [1, n − 1] such that
ei 6' ei+1 is identical to a 6' b (up to commutativity). Notice that such an i
necessarily exists otherwise we would have c ≡C d. We have c = e1 ≡C ei and
ei+1 ≡C en = d. If ei 6' ei+1 is a 6' b, then we have c ≡C a and d ≡C b,
otherwise ei 6' ei+1 must be b 6' a, and we have c ≡C b and d ≡C a.

For the converse implication, a similar reasoning is used. Let us assume
w.l.o.g. that a�C = c�C and b�C = d�C (the other possibility being completely
symmetric). There exists two sequences of constant symbols a1, . . . , an and
b1, . . . , bm such that a1 = c, an = a, b1 = b, bn = d and for all i ∈ {1, . . . , n− 1}
and j ∈ {1, . . . ,m− 1}, the literals ai 6' ai+1 and bj 6' bj+1 all occur in C. By
concatenating these two sequences, we create the sequence e1(= a1), . . . , en(=
an), en+1(= b1), . . . , en+m(= bm) such that for all i ∈ {1, . . . , n+m− 1}, the
literals ei 6' ei+1 occur in a 6' b ∨ C, thus ensuring that c ≡a6'b∨C d.

The next proposition introduces the notion of a normal form for clauses in
E0, which in particular permits to test efficiently whether a clause is tautological.
The intuition behind this proposition is that the relation ≡C can be defined in
a canonical way by stating that each constant a is mapped to its normal form
a�C , which if a 6= a�C is expressed by the negative literal a 6' a�C . Then each
constant a can be replaced by its normal form in the positive part of the clause.

Proposition 1.8 Every clause C is equivalent to the clause:

C↓
def
=

∨
a∈Σ0,a 6=a�C

a 6' a�C ∨
∨

a'b∈C

a�C ' b�C .

Furthermore, C is a tautology iff C↓ contains a literal a ' a.

Proof. By definition of a�C , we have ¬C |= a ' a�C , for every constant a.
Furthermore, for every literal a ' b ∈ C, we have a ' a�C , b ' b�C , a�C '
b�C |= a ' b |= C and therefore C↓ |= C, i.e. ¬C |= ¬C↓. Conversely, for every
constant a, the relation ¬C↓ |= a ' a�C holds by definition of C↓. Let l be a
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literal in C. If l is a negative literal b 6' a then we have ¬C |= b ' a, hence
b�C = a�C , thus ¬C↓ |= lc. If l is a positive literal b ' a then C↓ contains a
literal a�C ' b�C and a�C 6' b�C , a ' a�C , b ' b�C |= lc, therefore we must have
¬C↓ |= lc. Consequently, ¬C |= lc.

By definition, if C↓ contains a ' a then C↓ is equivalent to >, and thus C
is a tautology. Conversely, if C↓ contains no such literal, then we have a 6≡C b,
for every literal a ' b ∈ C↓ (since a = a�C and b = b�C by definition of C↓) thus
the interpretation ≡C falsifies every literal in C↓ (since every negative literal in
C↓ is of the form a 6' a�C and thus must be false in ≡C). Thus C↓ cannot be
equivalent to > and C is not a tautology.

Definition 1.9 A non-tautological clause C is in normal form if C = C↓ and
if, moreover, all literals occur at most once in C. ♦

Unless stated otherwise 1, we assume that all literals occur at most once in all
non-projected clauses, allowing us to denote the normal form of a clause C
simply by C↓ without additional specifications.

Example 1.10 The clause C = a 6' b∨ b 6' c∨ d 6' e∨ a ' e of Example 1.4 is
equivalent to the clause in normal form C↓ = b 6' a∨ c 6' a∨ e 6' d∨ a ' d. Let
D = a 6' b ∨ b 6' c ∨ a ' c, then D↓ is b 6' a ∨ c 6' a ∨ a ' a, and therefore D is
a tautology. ♣

1.2 Results specific to E1

Some of the results of this subsection extend notions presented in the previ-
ous subsection from E0 to E1. We begin by extending to E1 the normal form of
clauses.

Definition 1.11 A non-tautological clause C is in normal form if:
1. every negative literal l in C is such that l�C\l = l;
2. every literal t ' s ∈ C is such that t = t�C and s = s�C ;
3. there are no two distinct positive literals l, m in C such that m�lc∨C− is

a tautology;
4. C contains no literal of the form t 6' t or t ' t;
5. the literals in C occur exactly once in C.

The normal form equivalent to C is denoted by C↓. ♦

Remark 1.12 The differences between this normal form and the one for clauses
in E0 lie with points 1 and 3 of Definition 1.11. They strengthen the requirements
on negative and positive literals resp. to cover the non-flat ones.

Example 1.13 Using the ordering a ≺ b ≺ c ≺ e ≺ f(a) ≺ f(b) on terms,
the clause c 6' b ∨ e 6' b ∨ f(b) ' f(a) is the normal form of the clauses
c 6' b∨e 6' b∨f(c) ' f(a), c 6' b∨e 6' b∨f(e) ' f(a), c 6' e∨e 6' b∨f(b) ' f(a),
etc... ♣

1. I.e. everywhere except in Part II for the clauses in relaxed normal form.
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1. Representation of clauses

To prove the uniqueness of the clausal normal form, a rewriting system [2]
is associated with each clause in normal form.

Definition 1.14 Let C be a clause in normal form. The rewriting system RC
associated to C is such that:

t→ s ∈ RC iff t 6' s ∈ C with t � s ♦

Due to the definition of a clausal normal form, the associated rewriting
systems are always convergent. We denote by t�RC the term t ∈ T(Σ) on which
all possible rewriting rules from a rewrite system RC have been applied. Note
that t�RC = t�C .

Proposition 1.15 Let C be a clause in normal form and t be a term in T(Σ).
The term t�RC is obtained from t by using only the rules of RC that have a
left-hand side smaller or equal to t.

Proof. To compute t�RC , rewriting rules can be applied only on t or its sub-
terms. All the sub-terms of t are smaller than t and by definition of RC a
rewriting always replaces a term by a smaller one.

Theorem 1.16 The normal form of a non-tautological clause C is the smallest
clause equivalent to C.

Proof. We first prove the uniqueness of the normal form by considering the
negative literals in a clause and then the positive ones. Consider two equivalent
clauses C1 and C2 that are in normal form, so that ≡C1

=≡C2
.

By Definition 1.14, C1 and C2 are associated to rewriting systems respec-
tively denoted by R1 and R2. If C−1 6= C−2 then R1 6= R2. Let us consider the
smallest rule t→ s with t � s that does not appear in both rewriting systems,
w.l.o.g. we assume t→ s ∈ R1 and t→ s 6∈ R2. Since C1 and C2 are equivalent
and t�R1 = s, we also have t�R2 = s. By Proposition 1.15, the left-hand side of
the rules used to rewrite t are smaller or equal to t. Note that since t is at least
rewritten into s in R1, there must be at least one rule in R2 that can be applied
to t.

— If in R2, the rules applicable to t are all smaller than t → s, then these
rules also appear in R1, making t → s redundant in R1 and t 6' s
redundant in C1, thus contradicting the definition of the normal form
(Definition 1.11, point 6).

— Otherwise there is a rule t→ v ∈ R2, with t � v � s, and t→ v 6∈ R1 by
definition of the normal form. This same definition ensures that v = s,
which is impossible under the current hypotheses.

We now consider the case of the positive literals. The equivalence of C1 and C2

allows us to invoke Theorem 1.27 in both directions. Let l1 be a positive literal
in C1. There exists a literal l2 in C2 such that l2�l1c∨C−2 is a tautology, hence
l1 |= C−2 ∨ l2. Similarly for l2, there is a positive literal m1 in C1 such that
m1�l2c∨C−1

, so that l2 |= C−1 ∨m1. By combining the two entailment relations,
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Chapter 1. Clauses modulo equality

given that C−1 ≡ C−2 , we deduce that l1 |= C−1 ∨m1, i.e. m1
c |= C−1 ∨ l1

c, thus
m1�C−1 ∨l1c

is a tautology. This contradicts point 5 of the normal form definition,
unless m1 = l1. Since this property is symmetric for C1 and C2, it follows that
C−1 ∨ l1 ≡ C−2 ∨ l2, hence l1�C1

≡ l2�C2
and so l1�C1

= l2�C2
. In addition C1

and C2 are in normal form, thus l1 = l2 and by symmetry this result can be
generalized to C+

1 = C+
2 .

As for the proof of minimality, it stems directly from the definition of the
normal form. Consider a clause C that is not in normal form. One of the points
of the definition must be contradicted.

— If C contains a negative literal t 6' s with s ≺ t and such that s 6= t�C ,
it is greater than the equivalent s 6' t�C ∨ t 6' t�C (which may not even
appear in the normal form of C if it is implied by other negative literals
of this clause).

— If C contains a positive literal u ' v such that u 6= u�C or v 6= v�C
(or both) then replacing this literal with u�C ' v�C yields a smaller
equivalent clause.

— No literal t ' t can be present in a non-tautological clause and removing
literals of the form t 6' t yields a smaller equivalent clause.

— The two last criteria guaranty the absence of redundant literals without
which a smaller equivalent clause is also generated.

2 Entailment and redundancy detection
We now introduce conditions that will permit us to design efficient methods

to test if a given clause is redundant w.r.t. another clause.

2.1 Results specific to E0

Definition 1.17 Let C,D be two clauses. The clause D e-subsumes C, written
D ≤e C, iff the two following conditions hold:

— ≡D⊆≡C ,
— for every positive literal l ∈ D, there exists a literal l′ ∈ C such that

l ≡C l′.
If S, S′ are sets of clauses, we write S ≤e C if ∃D ∈ S, such that D ≤e C and
we write S ≤e S

′ if ∀C ∈ S′, S ≤e C. ♦

Proposition 1.18 Let C and D be two clauses.

≡D⊆≡C iff every negative literal in D�C is a contradiction.

Intuitively, testing D |= C is performed by verifying that ¬C |= ¬D. To this
purpose, we first check that all equations in ¬D are logical consequences of those
in ¬C, which can be easily done by checking that the relation ≡D⊆≡C holds
using Proposition 1.18. Then, we consider the negative literals in ¬D. Such a
literal lc can only be entailed by ¬C iff ¬C contains a literal l′c that can be
reduced to lc by the relation ≡C .
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Example 1.19 Let C = a 6' b∨ b 6' c∨ d 6' e∨ a ' e be the clause of Example
1.4. C is e-subsumed by the clauses a 6' b ∨ a 6' c, a 6' b ∨ c ' e and c ' d.
However, it is not e-subsumed by the clause a 6' d, because a�C 6= d�C , or by
the clause a ' b, because there is no literal l ∈ C such that (a ' b)�C = l�C . ♣

Example 1.20 The clause d ' a e-subsumes the clause D = a 6' e ∨ d ' e,
because the clause d ' a contains no negative literal (and thus ≡d'a is the
identity) and theD-representatives of the literals d ' e and d ' a are identical.♣

Theorem 1.21 Let C and D be two clauses and assume that C is not a tau-
tology. Then D |= C iff D ≤e C.

Proof. Assume that D |= C, that C is not a tautology and that D 6≤e C. If
there is a negative literal b 6' a in D such that b�C 6= a�C , then a 6' b 6|= C,
hence we cannot have D |= C, since b 6' a ∈ D. Now, consider a positive literal
b ' a ∈ D and assume that b�C ' a�C does not occur in C�C . We consider the
interpretation I such that =I is the smallest reflexive, symmetric and transitive
relation satisfying b =I a and d =I c for every c, d ∈ Σ0 such that d 6' c ∈ C.
It is clear that I |= D, thus we must have I |= C. Furthermore, I falsifies all
the negative literals in C, by definition. Therefore, I must satisfy a positive
literal d ' c in C. By definition of =I this means that there exists a sequence of
constant symbols c1, . . . , cn such that c1 = d, cn = c and for every i ∈ [1, n− 1],
one of the following holds:

— ci 6' ci+1 ∈ C,
— ci = a and ci+1 = b,
— ci+1 = a and ci = b.

If for every i ∈ [1, n− 1] the first condition holds, then we have d 6' c |= C, and
therefore C must be a tautology (since d ' c occurs in C), which contradicts
our hypothesis. Otherwise, we can assume, without loss of generality, that the
sequence c1, . . . , cn is minimal, so that there is exactly one index i satisfying the
second condition. In this case we must have d 6' a |= C and b 6' c |= C (or
d 6' b |= C and a 6' c |= C), and thus d�C = a�C and b�C = c�C (or d�C = b�C
and b�C = a�C). But then, since d ' c ∈ C, this entails that a�C ' b�C occurs
in C which again contradicts our hypothesis.

Conversely, assume that D ≤e C. Let I be a model of D. By definition I
satisfies some literal l ∈ D. If l is a negative literal b 6' a then we have b�C = a�C ,
and thus b 6' a |= C. Consequently, I |= C. If l is a positive literal b ' a then
there exists a literal b′ ' a′ ∈ C such that b′�C = b�C and a′�C = a�C . If
I |= c 6' c�C for some constant symbol c ∈ Σ0 we have I |= C, since by
definition c 6' c�C |= C. Thus we can assume that I |= a ' a′, b ' b′, and since
I |= b ' a we deduce that I |= b′ ' a′, hence that I |= C.

Remark 1.22 Thanks to this theorem, it is possible to test entailment in E0 in
a syntactic way, using e-subsumption to verify that:

— every negative literal l ∈ D− is such that l�C is a contradiction,
— every positive literal l ∈ D+ is such that l�C ∈ C.
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We call this test the projection method since it relies heavily on the projection
of literals.

In the following, we will actually use a slightly more restrictive version of this
criterion for redundancy elimination: we impose that the positive literals in D�C

are mapped to pairwise distinct literals in C�C .

Definition 1.23 Let C and D be two clauses. The clause D i-subsumes C,
written D ≤i C, iff the following conditions hold:

— ≡D⊆≡C ,
— there exists an injective function γ from D+ to C+ such that for any

literal l ∈ D+, l ≡C γ(l).
This notion is extended to formulæ in the same fashion as for e-subsumption.♦

This additional restriction is necessary to prevent the factors of a clause from
being redundant w.r.t. the initial clause.

Example 1.24 Let C = a ' b ∨ c ' b and D = a ' b ∨ a 6' c. Then C ≤e D
but C 6≤i D. ♣

The following proposition details the relationship between clausal normal form,
e-subsumtion and i-subsumption.

Proposition 1.25 Let C and D be two clauses.
1. If C ≤i D then C ≤e D.
2. If C ≤i D then C |= D.
3. If C ≤i D then C ≤e D↓.
4. If C ≤i D then C↓ ≤i D.

Proof. Each point is proved separately.
1. This result is trivial by definition of e-subsumption and i-subsumption.
2. This point is a consequence of the previous point and Theorem 1.21.
3. This point is a consequence of the first point, and of the fact that D ≡ D↓
4. This point holds because ≡C↓=≡C and there exists an injective map from

the positive literals of C↓ to those of C by Proposition 1.8.

2.2 Results specific to E1

The following proposition and theorem extend the projection method intro-
duced in the previous subsection to E1. It is used for testing entailment in a
syntactic way.

Proposition 1.26 Let C be a clause, and s, t be two terms. If there is no
positive literal l in C such that l�C∨s6't is tautological, then C ∨ s 6' t is not a
tautology.
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Proof. Let D = C ∨ t 6' s. Let I =≡C and J =≡D. We show that J is a
counter-model of D. Note that in particular, if s =I t, then I = J . J 6|= s 6' t
since s =J t and for any negative literal u 6' v ∈ C, by definition u 6' v ∈ D,
thus u =J v and finally J 6|= u 6' v. For the positive literals of C, let u ' v ∈ C,
and assume J |= u ' v. Under this assumption, u 6' v |= D, hence u�D = v�D,
contradicting the hypothesis about the positive literals of C. Thus J 6|= u ' v.

Theorem 1.27 Let C and D be two non-tautological clauses. The relation D |=
C holds iff for every negative literal l in D, the literal l�C is a contradiction and
for every positive literal l in D, there exists a positive literal m in C such that
m�C∨lc is tautological.

Proof. First assume that D |= C. Consider a negative literal s 6' t ∈ D. Then
we must have s 6' t |= C, thus t�C = s�C , and the corresponding literal in D�C is
a contradiction. Now consider a positive literal s ' t ∈ D. If there is no positive
literal m in C such that m�C∨s6't is a tautology then C∨s 6' t is not a tautology
by Proposition 1.26. But D ∨ s 6' t |= C ∨ s 6' t, and D ∨ s 6' t is a tautology,
which yields a contradiction.

For the converse implication, we prove that every literal in D entails C. Let
s 6' t ∈ D, then by hypothesis we have s�C = t�C , thus [s]C = [t]C , and by
definition s 6' t |= C. Let s ' t ∈ D, then by hypothesis there is a literal
u ' v ∈ C such that u�C∨s 6't = v�C∨s6't. It follows that u 6' v |= C ∨ s 6' t,
which is equivalent to s ' t |= C ∨ u ' v. Since u ' v ∈ C, we conclude that
s ' t |= C.

Example 1.28 Given the order a ≺ b ≺ c ≺ e ≺ f(a) ≺ f(b) on terms, let
C = e 6' c ∨ a ' c and D = e 6' b ∨ b 6' c ∨ f(a) ' f(b) and let l = e 6' c
and m = a ' c be the literals of C. We have, l�D = b 6' b because [b]D =
{b, c, e} and min

≺
([b]D) = b. Moreover the literal f(a) ' f(b) ∈ D is such that

(f(a) ' f(b))�D∨mc = f(a) ' f(a), which, by Theorem 1.27, proves that D is
redundant w.r.t. C. ♣

Remark 1.29 Compared to the projection method for E0, the test on positive
literals is different. In fact, due to the presence of function symbols and the
substitutivity axiom of equality, the previous test is not enougth in E1. Going
back to the previous example, let us consider once again the literal l = a ' c ∈ C.
It is clear that l�D 6∈ D. The literal appearing in D is f(a) ' f(b), that is
implied by l�D. This is detected by the extended projection method defined in
this subsection.

The notion of e-subsumption is extended to E1 to correspond to the newly
defined projection method, thus preserving the result of Theorem 1.21, i.e. D |=
C iff D ≤e C for any two non-tautological clauses C and D.
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Chapter 2

Variations on the
K-paramodulation Calculus

In this chapter, we define a variant of the paramodulation calculus that
is deductive-complete. The deductive-completeness result is proved in the first
section. The second and third sections introduce two variants of this calculus
that use the atomic implicates of the input formula to simplify the considered
problem. In Section 2, this simplification is done as a preprocessing of the input
formula and in Section 3 we introduce a method to perform similar simplifica-
tions during the saturation process.

1 Main calculus

Our objective is to create a calculus operating on clauses in E0 that com-
putes all the prime implicates of a formula. To achieve this, we define the
K-paramodulation calculus in E0.

The principle underlying this calculus is to assert equations rather than
proving them, in contrast to the superposition calculus. For example, let us
consider the formula S = {a ' b, c ' d}. By superposition, nothing can be
generated from S since no constant occurs in both clauses. In contrast, with
K-paramodulation, we want to be able to generate clauses like a 6' c ∨ b ' d,
which is a prime implicate of S and can also be seen as the result of the paramod-
ulation of a ' b into c ' d under the assumption that a and c are equal. To do
so, we must allow the unification of constants that are not known to be equal,
like a and c in S, by adding to the generated clause the negation of a hypothesis
justifying this superposition, here, the literal a 6' c.

1.1 Definition of the K-paramodulation calculus

The principle presented in the introductory paragraph is formalized in the
following calculus.



1. Main calculus

Definition 2.1 The simple K-paramodulation calculus is defined in E0 by three
inference rules:

Positive Paramodulation (P+):
a ' b ∨ C a′ ' c ∨D
a 6' a′ ∨ b ' c ∨ C ∨D

Negative Paramodulation (P−):
a 6' b ∨ C a′ ' c ∨D
a 6' a′ ∨ c 6' b ∨ C ∨D

Factorization (F):
a ' b ∨ a′ ' b′ ∨ C

a ' b ∨ a 6' a′ ∨ b 6' b′ ∨ C

where the consequents are systematically normalized. ♦

Compared to the superposition calculus (see Definition ii.17),
— all the ordering constraints have been removed so that all prime impli-

cates can be generated,
— there is no use for a Reflection rule because the generated clauses are

systematically normalized.
The rules P+ and P− are similar to the standard paramodulation rule, except
that the unification of the terms a and a′ is omitted and replaced by the addition
of the literal a 6' a′ ensuring that these terms are semantically equivalent.
Similarly, F factorizes the literals a ' b and a′ ' b′ under the assumption that
a ' a′ and b ' b′.

Remark 2.2 The simple K-paramodulation calculus simulates the superposi-
tion calculus. For example, from a ' b ∨ C and a ' c ∨ D, the clause b '
c ∨ C ∨ D is generated by standard paramodulation if the ordering constraints
are respected. This clause is equivalent to (a 6' a ∨ b ' c ∨ C ∨D)↓, that is gen-
erated by K-paramodulation.

We shall prove (see Lemma 2.11) that this calculus is deductive-complete, in
the sense that it can generate all the prime implicates of a set of flat clauses.
However, this property does not hold in the presence of redundancy elimination
rules, as the following example shows:

Example 2.3 Consider the set: S = {c 6' a ∨ d 6' a, a ' b ∨ c 6' b ∨ d 6' b}
and let C = c 6' b ∨ d 6' b. It is clear that S |= C (e.g. by paramodulating
twice the second clause into the first one on literal a ' b) and that C is a prime
implicate of S. However, it can be verified that S is saturated up to redundancy,
i.e. all the clauses generated from S in one iteration are redundant in S. For
example, paramodulating the literal a ' b of the second clause into the literal
c 6' a of the first clause yields (a 6' a ∨ c 6' b ∨ d 6' a ∨ c 6' b ∨ d 6' b)↓ = c 6'
a∨d 6' a, which is i-subsumed by the first clause in S. Therefore, with the simple
K-paramodulation calculus augmented with eager redundancy elimination rules,
C cannot be generated. ♣

From a practical point of view, redundancy elimination is of course essential.
Thus we have to extend the calculus so that completeness still holds when redun-
dant clauses are deleted. A slight modification of the P− rule suffices to correct
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this defect: the modification permits to perform simultaneous paramodulations
into the negative literals of a clause. The result is the following calculus.

Definition 2.4 The K-paramodulation calculus is defined in E0 by three infer-
ence rules:

Paramodulation (P+):
a ' b ∨ C a′ ' c ∨D
a 6' a′ ∨ b ' c ∨ C ∨D

Factorization (F):
a ' b ∨ a′ ' b′ ∨ C

a ' b ∨ a 6' a′ ∨ b 6' b′ ∨ C

Negative Multi-Paramodulation (M):
∨n
i=1(ai 6' bi) ∨ C c ' d ∨D∨n
i=1(ai 6' c ∨ d 6' bi) ∨ C ∨D

We write S `K C if C is generated from premises in S by one application of
the rules P+, F or M. The premises are assumed to be in normal form and the
consequent is normalized before being stored. ♦

The rules P+ and F are the same as in the simple K-paramodulation calculus
and the rule M that replaces P− corresponds to the simultaneous unification of
c and the ai to paramodulate the second clause into the first one on each of the
ai 6' bi at the same time. Note that M is strictly more general than P− in the
sense that it allows one to infer strictly more clauses (the branching factor is
thus increased). In fact, for n = 1 this rule is the same as P−.

Remark 2.5 Note that the M rule is more general than what is known as si-
multaneous paramodulation in the literature [7] where simultaneous unifications
are only allowed with the different occurrences of the same term, like when all
the ai of the M rule are equal.

Example 2.6 The application of the rule P+ on d ' c∨ d ' b and d ' a yields
the following clauses (among others):

d 6' d ∨ a ' c ∨ d ' b (terms d and d)
c 6' a ∨ d ' d ∨ d ' b (terms c and a)
b 6' d ∨ d ' c ∨ d ' a (terms b and d)

The clauses are normalized afterwards: the first clause is replaced by a ' c∨d '
b, the second stays the same and the third one is replaced by d 6' b∨c ' b∨b ' a
(since b ≺ d). Note that the redundancy elimination rule deletes the second
clause since it is a tautology. ♣

Example 2.7 The rule F applies on the clause a ' b ∨ a ' c ∨ c ' d, yielding,
e.g., a ' b ∨ a 6' a ∨ b 6' c ∨ c ' d. The normal form of the latter is c 6' b ∨ a '
b ∨ b ' d. ♣

Example 2.8 Consider the clauses a 6' b ∨ a 6' c and a ' b. With n = 1, the
rule M applies on the couples of literals (a 6' b, a ' b) or (a 6' c, a ' c), the
first application yielding (among other, trivial results) a 6' a ∨ b 6' b ∨ a 6' c,
i.e., after normalization a 6' c. It also applies with n = 2, yielding a 6' a ∨ b 6'
b ∨ a 6' a ∨ b 6' c, or, in normalized form, b 6' c. ♣
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Example 2.9 Going back to the formula S = {c 6' a∨d 6' a, a ' b∨c 6' b∨d 6'
b} introduced in Example 2.3, the problem previously illustrated disappears by
using the newly defined K-paramodulation since C = c 6' b ∨ d 6' b can be
generated by a single inference of the rule M in S. ♣

The deletion of redundant clauses is done using i-subsumption instead of
entailment in the redundancy elimination rule. Note that i-subsumption is in-
comparable with the standard redundancy criterion (even if restricted to one-
to-one redundancy test) because on the one hand the existence of an injective
mapping between positive literals is assumed and on the other hand no ordering
condition is imposed. The standard redundancy criterion based on the use of
a reduction ordering (Definition ii.21) to compare clauses cannot be used here
because it does not ensure the completeness of the K-paramodulation calculus
(although no simple example can be given to illustrate this fact).

Definition 2.10 A set of clauses S is K-saturated iff for every non-tautological
clause C that can be derived from S using these rules, there exists a clause
C ′ ∈ S such that C ′ ≤i C. ♦

1.2 Completeness of the K-paramodulation calculus for
implicate generation

Since the K-paramodulation calculus simulates the superposition calculus 1,
it is refutationaly complete: if a set of clauses S is closed underK-paramodulation
and does not contain the empty clause, then S is satisfiable. But as mentioned
previously, refutational completeness is not enough to ensure that this calculus
can generate all the prime implicates of a set of clauses. We need to prove the
deductive completeness of the calculus: if S is K-saturated and normalized, C is
normalized and not a tautology and if S |= C then S ≤i C. The proof proceeds
in two steps. First, in Lemma 2.11, we prove the result without considering the
deletion of redundant clauses, i.e. if S is closed under simple K-paramodulation
and S |= C then there exists a clause D ∈ S such that D |= C. Second, in
Theorem 2.15, we build on the result from Lemma 2.11 to reach the desired
conclusion.

Simple deductive completeness

We prove that a K-saturated set S subsumes all its implicates. Thus, if more-
over S is free of redundancy then it contains exactly its set of prime implicates,
up to equivalence. We first state the following result, that is similar in essence,
but much weaker since it concerns the simple K-paramodulation calculus and
does not cope with redundancy elimination.

1. The normal form of a clause C is the smallest clause equivalent to C (see Theorem 1.16
page 41) and thus it subsumes C. For this reason, the normalization of consequents generated
by K-paramodulation is compatible with the usual superposition calculus.
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Lemma 2.11 Let S be a set of clauses such that S contains every clause that
can be derived from premises in S by simple K-paramodulation. For every im-
plicate C of S, there exists a clause D ∈ S such that D |= C.

Proof sketch. The proof proceeds as follows. Under the hypotheses of the
lemma, we assume that there exists an implicate C of S such that no D ∈ S
verifies D|=C and we construct an equational interpretation satisfying S ∪ ¬C
– thus contradicting the fact that S|=C. This construction is done in two steps.
First, we associate to the pair (C, S) a propositional interpretation I(C, S),
constructed by induction on a suitably chosen ordering <C . Then, we show that
I(C, S) is actually an equational model of S ∪¬C if S is closed and contains no
implicant of C.

Proof. Let C be a non-tautological clause such that for all D ∈ S, D 6|= C. We
begin by defining an ordering <C on literals that will permit to distinguish the
literals entailing C (by ensuring that these literals are smaller than the other
ones), and to order all the literals according to their projection on C. For all
literals l1, l2, l1 <C l2 iff one of the conditions below holds:

— l1|=C and l2 6|=C;
— l1�C = a1 ./ b1, with a1 � b1; l2�C = a2 ./ b2, with a2 � b2 and

— a1 ≺ a2, or
— a1 = a2 and b1 ≺ b2.

The relation <C is only a pre-ordering on atoms, but a total ordering on the
projection of the atoms on C. This order is extended into an ordering �C for
clauses using the standard multiset extension. We then define an interpretation
I that will satisfy S but not C, by induction on the ordering <C . Note that
I is constructed as a propositional interpretation, i.e., it maps atoms to truth
values. We shall prove later that I actually defines an equational interpretation,
i.e. an equivalence relation on Σ0.

Let p1 <C . . . <C pn be the set of all atoms projected on C. For all i ∈
{1 . . . n}, we define the propositional interpretation Ii as follows.

1. For any atom l such that l�C = pj with j < i, Ii|=l iff Ii−1|=l.
2. For any atom l such that l�C = pj with j > i, Ii 6|=l.
3. For any atom l such that l�C = pi, Ii|=l iff

(a) either pi is of the form a ' a,
(b) or pi 6∈ C↓ and there exists a clause D ∨ l′ ∈ S such that:

— l′�C = pi,
— ∀l′′ ∈ D, l′′ <C l′,
— Ii−1 6|=D.

We denote by I the interpretation In. For all i ∈ {1 . . . n}, I coincides with Ii
for all literals l such that l�C = pj or l�C = pj

c, where j ≤ i. In particular, given
two atoms l and l′ such that l�C = l′�C , necessarily, either I|=l and I|=l′, or
I6|=l and I6|=l′.

We now show that I is actually an equational interpretation (i.e. that it
satisfies the equality axioms), and that it satisfies the formula S∪¬C. We prove
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first that I 6|= C, assuming that I is an equational interpretation such that
I |= S, which will be proven later.

Assume that I|=C. In this case there is a literal l ∈ C such that I|=l.
— If l is a positive literal, then there exists an i ∈ {1 . . . n} such that l�C =

pi. By definition of I, either pi is of the form a ' a, in which case C↓ and
C are both tautologies by Proposition 1.8, a contradiction; or pi 6∈ C↓,
hence l /∈ C, again a contradiction.

— Otherwise l is a negative literal and there exists an i ∈ {1 . . . n} such
that l�C = pi

c. In this case, pi cannot be a tautology by Condition 3a of
the definition of I. But since l is of the form a 6' b and l|=C, necessarily
a�C = b�C and pi = a�C ' b�C is a tautology, a contradiction.

Now that I6|=C is established, we prove that I |= S, under the assumption
that I is an equational interpretation. For i = 1, . . . , n, we consider the set Li,C
of literals l such that pi 6<C l, and define Si,C = {D ∈ S | ∀l ∈ D, l ∈ Li,C}.
We prove by induction that Ii |= Si,C . Let D ∈ Si,C . If D ∈ Si−1,C then by
the induction hypothesis Ii−1 |= D, and since Ii coincides with Ii−1 on Li−1,C ,
Ii |= D. We now assume that there exists a literal l ∈ D such that l�C ∈ {pi, pic},
i.e. D ∈ Si,C \ Si−1,C .

1. If there are two literals l and l′ in D such that l�C = pi and l′�C = pi
c,

then by construction, if Ii 6|=l then Ii|=l′ and if Ii 6|=l′ then Ii|=l. Thus in
both cases Ii|=D.

2. If there is no literal l ∈ D such that l�C = pi, then there is at least one
literal l ∈ D such that l�C = pi

c, because D ∈ Si,C \Si−1,C . The clause D
is of the form l ∨D′. If Ii|=pic, then the result is immediate. Otherwise,
we distinguish the cases where pi is and is not a tautology.
— If pi is a tautology then l�C is a contradiction. By Theorem 1.21, l|=C,

which, by definition of <C , entails that l′|=C for every l′ ∈ D′. Thus
D|=C, a contradiction;

— If pi is not a tautology then we use an inductive reasoning by assuming
that all clauses E ∈ Si,C such that E �C D are such that Ii |= E.
Note that the base case, i.e. the clauses in Si−1,C , is already covered.
In the general case, by definition of Ii, pi 6∈ C↓ and there exists a
clause D′′ ∨ l′ ∈ S such that l′�C = pi, l′′ <C l′ for all l′′ ∈ D′′ and
Ii−1 6|=D′′. Assume l = a 6' b and l′ = a′ ' b′ where a�C = a′�C and
b�C = b′�C , and let E = a 6' a′ ∨ b 6' b′ ∨ D′ ∨ D′′. The clause E↓
is generated from of l ∨ D′ and l′ ∨ D′′ by inference rule P−, thus
E↓ ∈ Si,C . Note that E↓ �C E by definition of the normal form and
E �C D because a 6' a′|=C and b 6' b′|=C thus a 6' a′, b 6' b′ <C pi
by definition of <C , for all l′′ ∈ D′′, l′′ <C pi and D′ �C D because
D′ contains one less maximal literal, namely l. Thus by induction
Ii |= E↓, but Ii 6|= a 6' a′, b 6' b′, D′, D′′ by construction, so that
Ii 6|= E, a contradiction.

3. If there is no literal l ∈ D such that l�C = pi
c, then there is at least one

literal l ∈ D such that l�C = pi and D is of the form D′ ∨ l. If Ii−1|=D′,
then by definition Ii|=D. Otherwise, if pi ∈ C↓, then l|=C by Theorem
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1.21 and by definition of <C , for all literals l′ ∈ D′, necessarily l′|=C,
so that D|=C, which contradicts our hypothesis. Thus pi 6∈ C↓ and we
reason by induction on the order �C . If l is the only literal in D that is
projected onto pi in C, then l verifies Condition 3b of the definition of
Ii, hence Ii|=l and Ii |= D. Otherwise, there is at least a second literal
l′ ∈ D such that l′�C = pi and D is of the form l ∨ l′ ∨D′. By applying
the the rule F on l and l′ in D, the clause E↓ = (a 6' a′ ∨ b 6' b′ ∨ l ∨D′)↓
is generated. This clause is such that E↓ ∈ Si,C and E↓ �C E �C D.
By induction Ii |= E↓ but Ii 6|= a 6' a′, b 6' b′, D′, thus Ii |= l so Ii |= D.

This proves that Ii |= Si,C , there remains to prove that the restriction of
Ii to Li,C is an equational interpretation. Let l = a ' b be a literal such that
l�C = pi.

Reflexivity: if l is a tautology, then so is pi and by construction Ii|=l.
Commutativity: since a ' b and b ' a are assumed to be identical, com-

mutativity is naturally respected by Ii.
Transitivity: assume Ii |= a ' b and Ii|=a ' c, where a ' c ∈ Li,C ,

we prove that Ii|=b ' c, provided that b ' c ∈ Li,C . There are several
cases to consider, depending on whether one of (a ' b)�C or (a ' c)�C is
a tautology.

1. If b�C = a�C = c�C , then (b ' c)�C = pi is a tautology and by con-
struction, Ii|=b ' c.

2. Assume b�C = a�C and (a ' c)�C is not a tautology. Then there is a
j ≤ i such that (a ' c)�C = pj , and there exists a clause D∨a′ ' c′ ∈
S such that (a ' c)�C = (a′ ' c′)�C , D <C (a′ ' c′) and Ij−1 6|=D.
By construction Ij |= a ' c, and since Ii and Ij coincide on Lj,C ,
we deduce that Ii |= a ' c. But (b ' c)�C = (a ' c)�C , therefore
Ii|=b ' c.

3. The same reasoning proves the result if c�C = a�C and (a ' b)�C is
not a tautology.

4. Assume neither (a ' b)�C nor (a ' c)�C is a tautology. Then there
exists a clause D ∨ d ' e ∈ Si,C such that (a ' b)�C = (d ' e)�C , for
all l ∈ D, l <C (d ' e) and Ii−1 6|=D. W.l.o.g., we assume that a�C =
d�C and b�C = e�C . Similarly, for some j ≤ i, there exists a clause
D′ ∨ d′ ' f in Sj,C such that (a ' c)�C = (d′ ' f)�C , D

′ <C (d′ ' f)
and Ij−1 6|=D′. W.l.o.g., we assume that a�C = d′�C and c�C = f�C .
Let E = d 6' d′ ∨ e ' f ∨D ∨D′. The clause E↓ ∈ S by application
of the rule P+on D ∨ d ' e and D′ ∨ d′ ' f . If E↓ /∈ Si,C , then since
d 6' d′ |= C and for all l ∈ D∨D′, l <C pi, necessarily pi <C (e ' f)�C
and there is nothing to prove. Otherwise, since Ii |= Si,C , we deduce
that Ii |= E↓; and since Ii 6|= D,D′, d 6' d′, necessarily Ii |= e ' f ,
and thus Ii |= b ' c.
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Deductive completeness with redundancy elimination

Theorem 2.15 states a more powerful result than Lemma 2.11, namely that
any implicate of a K-saturated set S is i-subsumed by a clause in S. The proof
of Theorem 2.15 requires the handling of redundancy elimination. We start
by proving some preliminary results. The first one links e-subsumption and
i-subsumption through factorization.

Proposition 2.12 Let C,D be two clauses. Assume that C ≤e D. Then there
exists a clause C ′ derivable by factorization from C such that C ′ ≤i D.

Proof. We reason by induction on the number of positive literals appearing in
the clause C. By definition, for all negative literals a 6' b ∈ D, we have a ≡D b.
Moreover, there exists a function γ mapping the positive literals in C to positive
literals in D such that ∀l ∈ C, l ≡D γ(l). Note that if γ is injective, then C ≤i D
and the proof is complete. If γ is not injective, C is of the form a ' b∨c ' d∨C ′′,
where (a ' b) ≡D (c ' d). W.l.o.g., we may assume that a ≡D c and b ≡D d.
Then inference rule F applied to C generates (a 6' c ∨ b 6' d ∨ a ' b ∨ C ′′)↓. This
clause satisfies the same requirements as C and contains one less positive literal.
By induction, we deduce that there exists a clause C ′ derivable by factorization
from C such that C ′ ≤i D.

We also look into the details of a specific i-subsumption relation that appears
in the proof of Lemma 2.14

Proposition 2.13 Let C = a′ ' d′∨b′ 6' c′∨P ′1∨P ′2 and D = a ' d∨b 6' c∨P1∨
P2, where P ′1 ≤i P1, P ′2 ≤i P2, (a ' b) ≡P1 (a′ ' b′) and (c ' d) ≡P2 (c′ ' d′).
Then C ≤i D.

Proof. We verify each point of the definition of i-subsumption.
— Since ≡P ′1⊆≡P1

and ≡P ′2⊆≡P2
, we only need to prove that b′ ≡D c′. This

is the case because b ≡P1
b′ thus b ≡D b′; c ≡P2

c′ thus c ≡D c′ and
b 6' c ∈ D thus b ≡D c.

— Since P ′1 ≤i P1, there exists an injective function γ1 from P ′1
+ to P1

+ such
that for all l ∈ P ′1

+, l ≡D γ1(l). A similar injective map γ2 is associated
with P2 and P ′2. We define the function γ from C+ to D+ by:

∀l ∈ C+, γ(l) =


γ1(l) if l ∈ P ′1

+

γ2(l) if l ∈ P ′2
+

a ' d if l = a′ ' d′

Since γ1 and γ2 are both injective, γ is also injective. In addition, for
the last point of the definition, γ(a′ ' d′) ≡D a′ ' d′ because a ≡D a′

and d ≡D d′. Thus γ fits the requirements for the second point of the
i-subsumption definition.

The next lemma deals with inferences applied to positive literals only. It
shows that any sequence of such inferences on a set of clauses S′ can be simulated
by applying inference rules on any set S ≤i S

′.
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Lemma 2.14 Let S be a set of clauses that is K-saturated. If S ≤i S
′ and if C

is a clause deduced from clauses in S′ by a sequence of applications of the rules
F or P+, then S ≤i C.

Proof. The proof is done by induction on the number of inference steps. If
C occurs in S′ then the proof is immediate since S ≤i S

′. Otherwise, let D↓
be the first clause generated in the derivation leading to C. The clause D↓
must be deduced from clauses in S′ by applying either the rule P+ or the rule
F. We consider only the case of the rule P+, the case of the rule F is similar.
Assume that D↓ = (a ' d ∨ b 6' c ∨ P1 ∨ P2)↓ is generated by P+, from clauses
a ' b ∨ P1 and c ' d ∨ P2. We prove that S ≤i D↓. By definition, S contains a
clause E that i-subsumes a ' b ∨ P1. If E ≤i P1, then E ≤i D thus E ≤e D↓
and by Proposition 2.12 there exists a clause E′ ∈ S such that E′ ≤i D↓. The
case where S contains a clause i-subsuming P2 is symmetrical. Otherwise, S
contains a clause of the form a′ ' b′ ∨ P ′1, where (a ' b) ≡P1

(a′ ' b′) and
P ′1 ≤i P1 (since ≡P ′1 and ≡a′'b′∨P ′1 are identical and since no positive literal
in P ′1 can be mapped to a ' b); and S contains also a clause c′ ' d′ ∨ P ′2,
with (c′ ' d′) ≡P2 (c ' d) and P ′2 ≤i P2. The rule P+ applied to both clauses
yields E↓ = (a′ ' d′ ∨ b′ 6' c′ ∨ P ′1 ∨ P ′2)↓, and E ≤i a ' d ∨ b 6' c ∨ P1 ∨ P2

by Proposition 2.13. Since S is K-saturated, we have S ≤i E↓, hence S ≤i a '
d ∨ b 6' c ∨ P1 ∨ P2. Thus, S ≤i S

′ ∪ {a ' d ∨ b 6' c ∨ P1 ∨ P2} and by the
induction hypothesis, S ≤i C.

Theorem 2.15 Let S be a normalized clause set that is K-saturated. If S |= C
then S ≤i C.

Proof. Assume that S |= C and let S′ = {D′ | ∃D ∈ S,D ≤i D
′}. Note that

S ⊆ S′ and S ≤i S
′; thus S ≡ S′ and S |= C if and only if S′ |= C. We prove

that all the clauses that can be derived from S′ by simple K-paramodulation
are i-subsumed by S. If this is the case then S also i-subsumes the simple
K-paramodulation closure S′′ of S′, and since S′′ ≤e C by Lemma 2.11, we will
have the result by Proposition 2.12.

Since S ≤i S
′, by Lemma 2.14, we already know that S i-subsumes all clauses

that can be obtained from clauses in S′ by applying the rules F or P+. Thus we
only consider the case of the application of the rule M. Let a 6' b∨P1, c ' d∨P2 be
two clauses in S′, for which the rule M generatesQ↓ = (a 6' c ∨ b 6' d ∨ P1 ∨ P2)↓.
We prove that S ≤i Q↓. The same reasoning as in the proof of Lemma 2.14, can
be used to show that either S ≤i P2, in which case S ≤i Q↓, or S contains a
clause c′ ' d′ ∨ P ′2 such that c ≡P2

c′, d ≡P2
d′ and P ′2 ≤i P2. We distinguish

two cases involving a 6' b ∨ P1.
— Assume that S contains a clause P ′1 such that P ′1 ≤i a 6' b ∨ Q and
≡P ′1⊆≡Q. By definition, there exists an injective function γ mapping the
positive literals in P ′1 to the positive literals in a 6' b ∨ Q such that for
every positive literal l ∈ P ′1, l ≡a 6'b∨Q γ(l). Let D be the disjunction of
positive literals l ∈ P ′1 such that l 6≡Q γ(l), and let D′ be the disjunction
of the literals γ(l) for l ∈ D. Note that D′ ⊆ Q, since a 6' b is negative.
By definition, every negative literal in P ′1 i-subsumes Q↓, since ≡P ′1⊆≡Q
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by hypothesis, and for all positive literals l in P ′1 \D, we have l ≡Q γ(l).
Thus P ′1 is of the form Q′1 ∨D, where Q′1 ≤i Q↓.
By construction D ≡a6'b∨Q D′, thus for every constant symbol g occur-
ring in D, there exists a constant g′ occurring at the same position in D′
such that g ≡a 6'b∨Q g′. We consider the clause D′′ obtained from D by
replacing every constant symbol g by a constant g′′ chosen as follows:
— if g 6≡Q g′ and g ≡Q a then g′′ = d′,
— if g 6≡Q g′ and g ≡Q b then g′′ = c′,
— otherwise g′′ = g.
We show that g′′ ≡Q g′ for every constant g in D. Assume that this prop-
erty is falsified for some constant g. If g ≡Q g′ then g′′ = g by definition
of g′′, a contradiction. If g ≡Q a and g 6≡Q g′, then by Proposition 1.7,
g′ ≡Q b, since g ≡a6'b∨Q g′ by hypothesis. But then g′′ = d′, and since
d′ ≡P2

d, we deduce that d′ ≡Q d ≡Q b ≡Q g′, which contradicts our
initial assumption. The proof is similar if g ≡Q b and g 6≡Q g′. Other-
wise, we must have g 6≡Q a, g 6≡Q b and g = g′′, which is impossible by
Proposition 1.7, since otherwise we would have g 6≡a6'b∨Q g′. Therefore
g′′ ≡Q g′ for every constant g in D, and D′′ ≡Q D′. Since D′ ⊆ Q, this
entails that D′′ ≤i Q.
The paramodulation of c′ ' d′ ∨ P ′2 into Q′1 ∨ D generates a clause E↓
of the form (Q′1 ∨D′′ ∨ F ∨ P ′2 ∨ · · · ∨ P ′2)↓, where F is a disjunction of
disequations of one of the following forms:
— g 6' c′ with g ≡Q a and g 6≡Q g′,
— g 6' d′ with g ≡Q b and g 6≡Q g′.
Since c′ ≡Q c ≡Q a and d′ ≡Q d ≡Q b, it is clear that F ≤i Q. Since
P ′2 ≤i Q, Q′1 ≤i Q and D′′ ≤i Q, by Proposition 2.12 the clause E↓ can
be factorized into a clause F ′ ≤i Q↓, because E↓ ≤e Q↓. By Lemma 2.14
S ≤i F

′, hence S ≤i Q↓.
— Assume that S contains no clause P ′1 such that P ′1 ≤i a 6' b ∨ Q and
≡P ′1⊆≡Q. Since S ≤i S

′, the set S must contain a clause P ′1 ≤i a 6' b∨P1,
and we may assume that ≡P ′1 6⊆≡P1

(otherwise we would have ≡P ′1⊆≡Q
and P ′1 ≤i a 6' b ∨ Q, hence we would be back in the previous case).
P ′1 is of the form

∨n
i=1(ei 6' fi) ∨ P ′′1 , where ≡P ′′1 ⊆≡P1 , and for every

i ∈ [1, n], we have ei ≡a 6'b∨P1 fi but ei 6≡P1 fi. By Proposition 1.7, we
know that for every i ∈ [1, n], we have either ei ≡P1

a and fi ≡P1
b or

ei ≡P1
b and fi ≡P1

a. By commutativity, we may assume that we always
have ei ≡P1

a and fi ≡P1
b. The rule M applied to P ′1 and c′ ' d′ ∨ P ′2

generates R↓ = (
∨n
i=1(ei 6' c′∨d′ 6' fi)∨P ′′1 ∨P ′2)↓. We have c′ ≡P2 c and

c ≡a 6'c a hence, by Proposition 1.7, for all i ∈ [1, n], c′ ≡a 6'c∨P1∨P2 ei and
c′ ≡Q ei. Similarly, for every i ∈ [1, n], d′ ≡b6'd∨P1∨P2

fi hence d′ ≡Q fi.
Since P ′′1 ≤i a 6' b ∨ P1 and P ′2 ≤i P2 by definition, we deduce that
R ≤i a 6' b∨Q. Furthermore, since ≡P ′′1 ⊆≡P1

, we deduce that ≡R⊆≡Q.
Since S is K-saturated, S contains a clause R′ ≤i R↓. We have ≡R′⊆≡Q
and R′ ≤i a 6' b ∨Q as in the previous case, a contradiction.
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The completeness of the K-paramodulation calculus is thus proved. It can
be used in a saturation algorithm to generate all the prime implicates of an
equational formula.

2 Rewriting beforehand with unordered paramod-
ulation

As shown by the experiments (see Chapter 10), an analysis of the sets of
prime implicates generated by K-paramodulation suggests an opportunity of
improving this calculus through a better handling of atomic implicates. For
example the K-saturation of the formula S = {a ' b, a 6' c ∨ b ' d} results in
the set S′ = {a ' b, a 6' c ∨ a ' d, a 6' c ∨ b ' d, b 6' c ∨ a ' d, b 6' c ∨ b ' d}.
All the added implicates are variants of the original a 6' c ∨ b ' d where a and
b are replaced by each other. In particular the prime implicate b 6' c ∨ a ' d is
generated at least twice, a first time through the derivation S `K a 6' c ∨ a '
d `K b 6' c∨ a ' d and a second time with S `K b 6' c∨ b ' d `K b 6' c∨ a ' d.
These redundant computations are a major drawback of the K-paramodulation
calculus 2. Exploiting this observation, we devised an efficient way of handling
atomic implicates based on the rewriting of atomic implicates. Obviously, a most
natural and efficient way of handling an equation a ' b is to uniformly replace
one of the terms, say b, by the other, a, thus yielding a simpler problem. It is
clear that this operation preserves satisfiability, because a formula S ∧ a ' b
is satisfiable iff S[a/b] is. Moreover, since S ∧ a ' b ≡ S[a/b] ∧ a ' b, the
prime implicates of both sets are the same, and can be computed from the
prime implicates of S[a/b]. The proposed method extend this principle to all
the atomic prime implicates of S. It proceeds in three steps:

1. finding all the atomic prime implicates (set A) of the formula S and
use them to rewrite S into the simpler S′ such that S ≡ A ∪ S′ and no
constant b appears in S′ where there exists an atom b ' a ∈ A and b � a;

2. using the K-paramodulation calculus to generate all the prime implicates
of S′;

3. reconstructing the set of prime implicates of S from the K-saturation of
S′ (and A).

Section 2.1 presents the calculus that we devised to perform the first point of
the method and Section 2.2 exposes the principles underlying the third point.
The second point of this method is the subject of the previous chapter and we
do not go back to it in the current one.

2.1 Atomic implicate generation

Although the K-paramodulation calculus generates all atomic prime impli-
cates of a formula in E0, it cannot be used to perform the first step of this new

2. This is verified experimentally, as exposed in Part III.
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method, because there is no guarantee that the atomic prime implicates are
generated in priority. Hence with K-paramodulation, to ensure that all atomic
prime implicates are generated, it would be necessary to wait for the whole sat-
uration to be complete, rendering the whole approach irrelevant. Instead, we
chose to consider unordered paramodulation with the selection of negative liter-
als. This calculus is not fully deductive-complete, for example it is not possible
to deduce b 6' c ∨ a ' d from a ' b and c ' d using it, but we show in this
section that it does generate all atomic prime implicates of a formula, hence
fitting our requirements nicely.

Definition 2.16 The unordered paramodulation calculus is defined by the fol-
lowing rules, where the selection function sel is such that an arbitrary negative
literal is selected if there is one in the considered clause and otherwise selects
an arbitrary literal (necessarily positive), and where the parent clauses are in
normal form and the consequents are systematically normalized:

Resolution (R):
u ' v ∨ C u 6' v ∨D

C ∨D ,

where C is positive and u 6' v = sel(u 6' v ∨D);

Positive Paramodulation (P):
u ' v ∨ C u ' v′ ∨D

v ' v′ ∨ C ∨D ,

where C and D are positive. ♦

Definition 2.17 Let S be a formula. S is U-saturated if it is saturated by
unordered paramodulation up to redundancy ♦

Compared to the superposition calculus, described Section 2 of Chapter ii, nearly
all the constraints are lifted or relaxed to adapt to the specificities of the se-
lection function of unordered paramodulation. The two missing rules, namely
Factorization and Reflexion, are subsumed by the normalization of consequents.
This calculus is slightly more restrictive than what is commonly called unordered
paramodulation [66]. The Negative Paramodulation rule is replaced by the Res-
olution rule. This restriction is not possible outside of E0 because replacements
in subterms must be allowed in negative literals, e.g. in E1, to generate c ' d
from f(a) 6' f(b) ∨ c ' d and a ' b. However, in E0, the Resolution rule is
enough, given that the ordering constraints are indeed lifted.

Example 2.18 Let C = c 6' a ∨ d ' a and D = c ' a ∨ d ' a be two clauses,
where a ≺ b ≺ c ≺ d. From C and D, the rule R generates d ' a, one of
the atomic prime implicates of the formula S = {C,D}. Let us consider the
saturation of S by three different calculi:

1. superposition,
2. unordered paramodulation as defined here,
3. the usual definition of unordered paramodulation with Factorization and

Reflexion, and Negative Paramodulation instead of resolution.
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Let Si where i ∈ {1, 2, 3} denote the saturation of S by the ith calculus. Then
S1 = {C,D}, S2 = {C,D, d ' a} and S3 = {C,D, c 6' d ∨ d ' a ∨ c ' a, c 6'
d ∨ c ' a, d ' a, a 6' a ∨ d ' a, . . .}. The set S1 does not contain a ' d,
illustrating that superposition is not deductive complete for atomic implicates.
In contrast, S3 contains this atom, but it also contains numerous unneeded
clauses like c 6' d ∨ c ' a. This third calculus, although deductive-complete for
atomic prime implicates, is not as well fitted to the task of generating them as
the second calculus. ♣

Remark 2.19 Note that in [77] calculi are introduced with the equivalent pur-
pose of generating a set of atomic implicates that entail all atomic implicates
of a satisfiable formula. In particular, in Theorem 5 of [77], the superposition
calculus is shown to have this property. The major difference with the situation
described here is that this theorem focuses solely on Horn clauses (clauses con-
taining at most one positive literal). In fact, Superposition also does not fit our
needs as illustrated by the previous example (where D is non-Horn).

Deductive completeness restricted to atomic prime implicates

To show that all atomic prime implicates of a formula S are indeed gener-
ated by unordered paramodulation (Theorem 2.20), we focus the attention on
a nondescript atom a ' b.

Theorem 2.20 Let S be a satisfiable U-saturated formula. If b 6= a and S |=
b ' a then b ' a ∈ S.

To prove this theorem, several notions and preliminary results are introduced.
All of them are related to the atomic implicate a ' b considered in the theorem,
even though they do not always appear as parameters so as to lighten the
notations. The proof is done by contraposition. Thus until then we assume
given a formula S that is U-saturated and such that a ' b 6∈ S. We show that
S 6|= a ' b by exhibiting an interpretation I such that I |= S and I 6|= a ' b.
We use i-subsumption as the redundancy criterion, along with the associated
notion of projection.

We assume given a total ordering≺ab on terms such that for all t ∈ Σ0\{a, b},
a ≺ab b ≺ab t. The order ≺ab is extended to literals so that every negative literal
is greater than every atom and atoms are compared using the lexicographic
order. It is also extended to clauses as usual. For literals and clauses, it is
denoted by <ab. A partial order on clauses Cab is also defined:

Definition 2.21 Let C and D be two clauses. C Cab D iff
— |C−| < |D−|
— or |C−| = |D−| and C+ <ab D

+ ♦

Proposition 2.22 Let C and D be two clauses in normal form such that C 6=
D. If C ≤i D then C Cab D.
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Proof. If C ≤i D then ≡C⊆≡D thus |C−| ≤ |D−|. In the case when |C−| =
|D−|, ≡C=≡D, thus for all l ∈ C+, l = l�D ∈ D and since C 6= D, C+ <ab D

+

Let p0 <ab · · · <ab pn be an enumeration of all the atoms (thus p0 = a ' a,
p1 = b ' a, etc). We define a set of ground rewrite rules and the equational
interpretation that we use in the proof of Theorem 2.20 by induction on pk.

Definition 2.23 Let R1(S) = ∅ and IR1
= ∅. For all k ∈ {2 . . . n}, Rk(S) is

such that:
— Rk(S) = Rk−1(S) ∪ {u→ v} with pk = u ' v iff

— ∃D ∨ pk ∈ S with D <ab pk such that IRk−1
(S) 6|= D,

— and pk is irreducible by Rk−1(S),
— Rk(S) = Rk−1(S) otherwise,

and IRk is the reflexive, commutative and transitive closure of Rk(S). We de-
note by R(S) the final set Rn(S) and by IR(S) the reflexive, commutative and
transitive closure of R(S). IR(S)(= IRn(S)) is an equational interpretation. ♦

Definition 2.24 Let R be a set of ground rewrite rules and u1, . . . , un with
n ≥ 2 be constants. We call the tuple (u1, . . . , um) a chain in R iff for all
i ∈ {1 . . .m− 1}, either {ui → ui+1} ∈ R or {ui+1 → ui} ∈ R and the ui are
pairwise distinct. A link is a triplet of constants (ui, ui+1, ui+2) that belongs in
a chain of size m ≥ 3. We distinguish three types of link:

— local maximum, where {ui+1 → ui} ∈ R and {ui+1 → ui+2} ∈ R,
— local minimum, where {ui → ui+1} ∈ R and {ui+2 → ui+1} ∈ R,
— and monotone link for the two other configurations possible. ♦

Proposition 2.25 All the chains in R(S) have no links that are monotone or
local maxima.

Proof. If there is a local maximum in a chain of R(S), then there exists w ≺ab
v ≺ab u such that {u→ v} ∈ R and {u→ w} ∈ R. There exist i,j such that
pi = u ' w and pj = u ' v. Since pi <ab pj , {u→ w} ∈ Rj−1(S) thus
u ' v is reducible by Rj−1(S) hence {u→ v} 6∈ R, a contradiction. The same
reasoning applies for a monotone link because it implies that {u→ v} ∈ R and
{v → w} ∈ R with w ≺ab v ≺ab u.

Corollary 2.26 For all constants u, v such that v ≺ab u and there exists a
chain (u = u1, . . . , v = um) in R(S), one of the following propositions holds:

— m = 2,
— m = 3 and (u1, u2, u3) is a local minimum.

Proposition 2.27 ∀k ∈ {1 . . . n}, ∀C <ab pk, IRk−1
(S) |= C ⇔ IR(S) |= C

Proof. The direct implication is trivial because Rk−1 ⊆ R. The reverse im-
plication is proved by contradiction. If there is a clause C <ab pk such that
IRk−1

(S) 6|= C and IR(S) |= C then at least one of the literals of C has the
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same property. Let us consider one such literal l = u ' v with v ≺ab u (l can-
not be negative since l <ab pk). Since IR(S) |= l, there exists a chain in R(S)
from u to v. By Corollary 2.26, there are only two kinds of chains to consider
(u, v) or (u, x, v) with x ≺ab v. In the first case {u→ v} ∈ R(S), and since
u ' v <ab pk, {u→ v} ∈ Rk−1(S) thus IRk−1

(S) 6|= l, a contradiction. In the
second case {u→ x} , {v → x} ∈ R(S) and again u ' x, v ' x <ab pk thus the
same contradiction is reached.

We now have all the necessary elements to prove Theorem 2.20.

Proof. (of Theorem 2.20) Recall that we assume b ' a 6∈ S to show that
S 6|= b ' a. To do so, we use the equational interpretation IR(S), from Definition
2.23, that we rename I and show that I |= S and I 6|= b ' a.

— I 6|= b ' a.
If I |= b ' a then by Corollary 2.26:
— either {b→ a} ∈ R, which is impossible since b ' a = p1 and R1(S) =
∅ by construction,

— or there exists a constant x ≺ab a, b such that (a, x, b) is a chain in
R, which is also impossible since a is the minimal constant by ≺ab.

— I |= S.
Assume I 6|= S and let D be the smallest clause in S by Cab such that
I 6|= D. The satisfiability of S ensures that D 6= �, so let D = l ∨ D′
with l = sel(D).
— If l = u 6' v, then I |= u ' v since I 6|= D (and for the same reason

u ' v 6= b ' a). By Corollary 2.26, two cases must be considered.
— Either {u→ v} ∈ R, thus ∃C ∨ u ' v ∈ S such that C <ab u ' v

and by Proposition 2.27, I 6|= C. Then Rapplied on S generates
(D′ ∨C)↓ and since S is saturated up to redundancy, there exists
a clause E ∈ S such that E ≤i D

′ ∨ C. By Proposition 2.22,
E Eab D′ ∨ C and D′ ∨ C Cab D because C is a positive clause
and |D′−| = |D−| − 1. Thus I |= E leading to I |= D′ ∨ C, a
contradiction.

— Or there exists a constant x ≺ab v such that {u→ x} , {v → x} ∈
R. Thus ∃Cu ∨ u ' x,Cv ∨ v ' x ∈ S such that Cu <ab u ' x,
Cv <ab v ' x and I 6|= Cu, Cv. The rule P applied on S generates
(u ' v ∨ Cu ∨ Cv)↓ and as a consequence, there exists a clause
E ∈ S such that E ≤i u ' v ∨ Cu ∨ Cv. Since Cu and Cv are
positive, the clause E also verifies E ⊆ u ' v ∨ Cu ∨ Cv and
since E Cab D, I |= E. If E ⊆ Cu ∨ Cv then I |= Cu ∨ Cv which
contradicts their definition, thus E = u ' v ∨ E′ with I 6|= E′ for
the same reason. Applied on E and D in S, R generates (E′∨D′)↓,
thus there exists a clause F ∈ S such that F ≤i D

′ ∨ E′ and a
contradiction is reached by the same means as in the previous
point (since D′ ∨ E′ Cab D).

— If l = u ' v with v ≺ab u, then l > D′ and there exists k ∈ 2 . . . n
such that u ' v = pk (note that k 6= 1 because otherwise a ' b ∈ S).
Since I 6|= D′, necessarily u ' v is reducible by Rk−1(S) and thus
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by R. Hence {u→ w} ∈ R or {v → x} ∈ R with w, x ≺ab v. We
assume {u→ w} ∈ R but the reasoning is similar in the other case.
By definition of R, there exists a clause u ' w ∨ C ∈ S such that
C <ab u ' w and by Proposition 2.27, I 6|= C. Applied on S, P
generates (v ' w ∨ C ∨ D′)↓, thus there exists a clause E ∈ S such
that E ≤i v ' w ∨ C ∨ D′. Since v ' w ∨ C ∨ D′ Cab u ' v ∨ D′,
we have E Cab D, hence by minimality of D, I |= E and since I 6|=
C ∨D′, necessarily I |= v ' w. Because I |= u ' w, by transitivity
I |= u ' v, thus I |= D, a contradiction.

2.2 Recovery of the original solution
By applying the first two steps of this method, we have:
1. extracted the set of atomic prime implicates A of a formula S by un-

ordered paramodulation and rewritten S into the formula S′ such that
for all atoms a ' b ∈ A with b � a, b does not appear into S′ and
S ≡ A ∪ S′, and

2. generated the set T of prime implicates of S′ by K-paramodulation.
In the third step, we recover the set of prime implicates of the original for-

mula S from T and A. From a practical point of view, this step is arguably
needed. An application that requires the prime implicates of S could very well
be satisfied by simply recovering A and T , not being interested in all the ’vari-
ants’ added by this step. Nevertheless, for the sake of completing the method,
an efficient technique of prime implicate recovery was also investigated and we
found out that it is possible to recover the prime implicates of S by applying
K-paramodulation inferences on T and A. The key point, which ensures the
efficiency of this approach, is that it is not necessary to apply any inference
between the newly generated clauses: only the inferences involving A need to be
considered. Formally, what renders this method efficient is that all the implicates
of a set of clauses S ∪ {b ' a} (with a ≺ b) are i-subsumed by clauses recur-
sively obtained by K-paramodulation between a ' b and the prime implicates
of S[a/b].

Definition 2.28 Given two constants a and b, we denote byKa'b-paramodulation
the following restriction of the K-paramodulation calculus.

Paramodulation (P+):
a′ ' c ∨ C a ' b
a 6' a′ ∨ b ' c ∨D

Negative Multi-Paramodulation (M):
∨n
i=1(ai 6' bi) ∨ C a ' b∨n
i=1(ai 6' a ∨ b 6' bi) ∨ C

As in K-paramodulation, the premises are assumed to be in normal form and the
consequent is systematically normalized. The rule F does not appear because it
cannot be applied on a ' b. The saturation of a formula S byKa'b-paramodulation
is denoted S`a'b . ♦
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Proposition 2.29 Let S be a set of clauses. The set S`a'b has the following
properties:

— S ∪ {a ' b} |= S`a'b ,
— S`a'b ≤i S ∪ {a ' b},
— ∀D ∈ S`a'b , if D′ is deducible by one application of P+ or M on D and

a ' b, then S`a'b ≤i D
′.

To prove the consistency of this method (Lemma 2.33), some new definitions
and results need to be introduced. First we define a notion of distance to a clause.

Definition 2.30 We define ∆D(C), the distance of the clause C to the clause
D, both non-tautological, by ∆D(C) = (x, y) such that:

— x =

{
0 if C− ≤i D,

1 otherwise.
— y = | {u ' v ∈ C | u ' v 6≤i D} |

Distances are compared using the lexicographic order. ♦

The following results about the distance are used in the proof of Lemma 2.33
and emphasize that this distance measures how far from being in an entailment
relation two clauses are.

Proposition 2.31 Let C, C ′ and D be three clauses.

1. If ∆D(C) = (0, 0) then C |= D.

2. If C ′ ≤i C and ∆D(C) = (0, y) then ∆D(C ′) ≤ ∆D(C).

Proof. We prove the two properties separately.

1. The first point is a direct consequence of the definition of the distance.
2. To prove the second point, we write ∆D(C ′) = (x′, y′). If C ′ ≤i C then
C ′
− ≤i C

−. Since ∆D(C) = (0, y), by definition we have C− ≤i D, which
implies C ′− ≤i D, thus x′ = 0. To estimate the value of y′, let us consider
the literals u′ ' v′ ∈ C ′ such that u′ ' v′ 6≤i D. Since C ′ ≤i C, there
exists an injective mapping from all literals u′ ' v′ to literals u ' v ∈ C
such that (u′ ' v′)�C = u ' v. Moreover, since C− ≤i D, we also have
(u′ ' v′)�D = (u ' v)�D, thus u ' v 6≤i D. Therefore all literals l′ 6≤i D
of C ′ correspond to pairwise distinct literals l 6≤i D of C, and so y′ ≤ y.
Hence the relation ∆D(C ′) ≤ ∆D(C).

Proposition 2.32 Let D, D′ be two clauses and a, b be two constants with
a ≺ b such that a ' b 6|= D and D′ ≤i D0 = D ∨ a 6' b. If there exists a literal
u′ ' v′ ∈ D′ such that u′ ' v′ 6≤i D, then there exists u ' v ∈ D such that:{

u ≡D0
u′

v ≡D0 v
′ and necessarily one of the following holds:
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—

{
u 6≡D u′

v ≡D v′
and {u�D, u′�D} = {a�D, b�D} or,

—

{
u ≡D u′

v 6≡D v′
and {v�D, v′�D} = {a�D, b�D}.

Proof. Since D′ ≤i D0 and u′ ' v′ ∈ D′, there exists a literal u ' v ∈ D0

such that u ≡D0 u
′ and v ≡D0 v

′. Furthermore, by definition of D0, u ' v ∈ D.
By contradiction:

— If u ≡D u′ and v ≡D v′ then u′ ' v′ ≤i D which raises a contradiction.
— If u 6≡D u′ and v 6≡D v′ then, since u ≡D0

u′ and v ≡D0
v′, either{

u′ ≡D a

v′ ≡D b
or

{
u′ ≡D b

v′ ≡D a
and in both cases a ' b |= D (since u′ '

v′ |= D ∨ a 6= b), or u′ ≡D v′ ≡D x with x ∈ {a, b} and then D0 is a
tautology, meaning again that a ' b |= D. As in the previous case, a
contradiction is reached.

In addition, if any two constants x and x′ are such that x ≡D0
x′ and x 6≡D x′

then it can be deduced that {x�D, x′�D} = {a�D, b�D}.

Lemma 2.33 Let S be a set of clauses, a ' b be a literal such that a ≺ b and
S′ = (PI(S[a/b])`a'b where PI(S[a/b]) is the set of prime implicates of S[a/b].
Let D be a clause such that S ∪ {a ' b} |= D, then S′ ≤i D.

Proof. Let us consider D′ ∈ S′, a clause such that D′ ≤i D0 = D ∨ a 6' b and
∆D(D′) = min

{X∈S′ |X≤iD0}
∆D(X). Note that D[b/a] is an implicate of S[b/a],

thus PI(S[b/a]) necessarily contains a clause X i-subsuming D[b/a], hence i-
subsuming D∨a 6' b. Consequently, {X ∈ S′ |X ≤i D ∨ a 6' b} is not empty by
definition of S′, which ensures the existence of D′.

— If ∆D(D′) = (0, 0) then, by Proposition 2.31(1), D′ |= D and since
D′ ≤i D0 we have D′ ≤i D.

— If ∆D(D′) = (0, y), with y ≥ 1, then there exists a positive literal
u ' v ∈ D′ such that u ' v 6≤i D, and since u ' v ≤i D0, there exists a
positive literal u′ ' v′ ∈ D such that u ≡D0

u′ and v ≡D0
v′. Based on

Proposition 2.32, we assume w.l.o.g. that u 6≡D u′ and v ≡D v′, which en-
tails {u�D, u′�D} = {a�D, b�D}. We assume (u�D, u

′
�D) = (a�D, b�D), the

other possibility being completely symmetrical (indeed the only difference
between a and b, the fact that a ≺ b, plays no role in the proof). By rule
P+ with parents D′ and a ' b, we generate E↓ = (u 6' a ∨ b ' v ∨D′′)↓.
We know that E ≤i D0, since
— E− ≤i D

− ≤i D
′ ∨ a 6' b because u 6' a ≤i D

−(= D′′
−

),
— and E+ ≤i D0, because for every literal l′ ∈ E+ \ {b ' v} we have

l′ ∈ D′ hence the existence of distinct positive literals in D0 (and
thus in D) associated to these literals l′, and because b ' v can be
associated to u′ ' v′ since u′ ≡D b and v′ ≡D v.

Note that {o ' p ∈ E | o ' p 6≤i D} = {o ' p ∈ D′ | o ' p 6≤i D} \
{u ' v}, thus ∆D(E) < ∆D(D′). Moreover, by definition of S′, there
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exists a clause E′ ∈ S′ such that E′ ≤i E↓. Since ∆D(E) = (0, y′′), by
Proposition 2.31(2), ∆D(E′) ≤ ∆D(E↓) ≤ ∆D(E). We have E′ ∈ {X ∈
S′ | X ≤i D ∨ a 6' b} and ∆D(E′) < ∆D(D′). Consequently ∆D(D′) is
not minimal which contradicts the definition of D′, so this case cannot
happen.

— If ∆D(D′) = (1, y), we can write D′ as D′ =
n∨
i=1

ui 6' vi ∨ D′′, with

for all i ∈ {1..n}, ui 6≡D vi and for all u 6' v ∈ D′′, u ≡D v. Since
for every i ∈ {1..n}, ui ≡D∨a6'b vi, we assume w.l.o.g that ui ≡D a
and vi ≡D b (otherwise, a symmetrical result holds and we can simply
swap ui and vi to obtain the desired result). We generate using M the

clause E↓ = (
n∨
i=1

ui 6' a ∨ vi 6' b ∨ D′′)↓. The clause E is built such

that E− ≤i D
− and, since D′′ ≤i D, we have E ≤i D ∨ a 6' b, thus

E↓ ≤i D ∨ a 6' b. By definition, there exists E′ ∈ S′ such that E′ ≤i E↓,
hence E′− ≤i D and ∆D(E′) = (0, y′′). Since E′ ≤i D ∨ a 6' b and
∆D(E′) < ∆D(D′), there is also a contradiction in this case.

We have proven that the clause D′ necessarily i-subsumes D under our hypothe-
ses. Since D′ ∈ S′, Lemma 2.33 is proven.

Corollary 2.34 For S, S′ and a ' b as in Lemma 2.33, S′ ≡ S ∪ {a ' b} and
S′ is saturated up to redundancy.

Proof. Direct consequence of Lemma 2.33

3 Rewriting on the fly

The idea that led to the development of the rewriting method described in
the previous section — using atomic implicates to simplify the input problem
through rewriting — can be exploited in a different way, which is the subject of
this section. Instead of trying to first find all atomic implicates, then use them
to preprocess the input formula before saturating it with K-paramodulation, it
is possible to perform the rewriting on the fly during the K-saturation, as soon
as an atomic implicate is generated. This amounts to merging the first two steps
of the previous method:

1. using K-paramodulation and rewriting combined to generate A∪S′ from
the input formula S, where A is a set of atomic implicates of S entailing
all its atomic implicates, S′ is K-saturated and S′ ≡ S[A],

2. reconstructing the set of prime implicates of S from A and S′

Since the second step of this method is strictly identical to the third one of the
previous method, we do not reexplain it. See Section 2.2 for more details.
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3.1 High-level view
The first step of this method can be formalized simply by adding to the

K-paramodulation calculus the following rule:

Rewriting (RwHL) :
S ∪ {a ' b}
S[a/b]

where a ≺ b and a ' b is stored in a set A of atoms never used in further
inferences.

This seems simple enough, but considered as is, the rule RwHL interferes with
the usual saturation procedure presented in Definition ii.32. Indeed, clauses that
are in the proceeded set are affected by the rewriting of clauses, which can enable
inferences that could not be applied previously.

Example 2.35 Let v ≺ u ≺ s ≺ a ≺ b ≺ c ≺ e ≺ f be a set of ordered
constants. Let S = {C,D, a ' b} where C = u ' v∨e ' f andD = a 6' s∨b ' c.
Starting from 〈∅;S〉, we apply the inference generation rule of the saturation
procedure on C and then on D. We obtain 〈{C,D} ;W 〉, where {a ' b, E} ⊆W
and E = u 6' a ∨ v 6' s ∨ b ' c ∨ f ' e. The clause E belong to W because
it is generated by M with parents C and D (on u ' v and a 6' s respectively).
Assume the next chosen clause from W is a ' b. Then we apply the new rule
RwHL to the whole set:

— C is unchanged,
— D becomes D′ = a 6' s ∨ s ' c, (indeed, D is replaced by D[a/b] = a 6'

s ∨ a ' c, which normalizes into D′ — a is replaced by s in the positive
part since a�D[a/b] = s),

— W becomesW ′ = W [a/b]↓ and in particular E becomes E′ = u 6' a∨v 6'
s ∨ u ' c ∨ e ' f (after normalization).

The clauses C and D′ stay in the processed set.
The problem here is that the clause E′′ = u 6' a∨ v 6' s∨ v ' c∨ e ' f that

is the consequent of the inference rule M with parents C and D′ on the literals
u ' v and a 6' s will never be generated because C and D′ remain in P and
thus will not be processed again. Note in particular the difference between E′′
and E′ in the positive literals, even though the “same” inference and rewriting
steps were used to generate them, simply not in the same order. Because of this
phenomenon, the procedure cannot be applied as is. ♣

3.2 Adaptation of the saturation procedure
Intuitively, the incompleteness of the saturation procedure can be under-

stood in the following way. Due to the systematic normalization of clauses, the
replacement of a constant b by another constant a can enable new inferences
that were not applicable on the original clauses. Thus if this happens between
clauses that are both located in the processed set, the new inferences are never
performed. A straightforward way to recover completeness would be to transfer
all the (modified) processed clauses back to the waiting set after each rewriting.
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However, this would heavily impact the efficiency of the procedure. Neverthe-
less, some clauses need to be reprocessed and the problem is to determine which
ones.

The following definition introduces a criterion that identifies clauses that do
not need to be reprocessed.

Definition 2.36 A clause D is 〈a, b〉-neutral if D+[a/b] = (D[a/b]↓)
+. ♦

This property means that the replacement of b by a does not affect the repre-
sentatives of the equivalence classes occurring in the positive part of a clause,
even if it contains a and b. It is called the collision criterion.

Using this collision criterion, the saturation procedure can be adapted to
incorporate rewriting.

Definition 2.37 The saturation procedure with rewriting (denoted SatR−K
for the K-paramodulation calculus) is formalized by the following rules, where
〈P ;W ;A〉 is a triplet composed of the processed set, the waiting set and a set
of atoms.

Redundancy elimination (R):
P ;W ∪ {C} ;A

P ;W ;A
(1.),

Inference generation (I):
P ;W ∪ {C} ;A

P ′ ∪ {C} ;W ∪ P ′`1,C \ {C} ;A
(2.),

Atomic rewriting in W (RwW):
P ;W ∪ {b ' a} ;A

P ′; (W [a/b])↓ ∪ P ′′;A ∪ {b ' a}
(3.),

Atomic rewriting in P (RwP):
P ∪ {b ' a} ;W ;A

P ′; (W [a/b])↓ ∪ P ′′;A ∪ {b ' a}
(3.),

with the following conditions:

1. if C is redundant with respect to P ,

2. if P and W ∪ {C} contain no atomic clauses and if C is not redundant
with respect to P ; where P ′ = {D ∈ P |D is not redundant to C},

3. where a ≺ b and P ′ =
{
D[a/b]↓ |D ∈ P ∧D is 〈a, b〉-neutral

}
and P ′′ =

P [a/b]↓ \ P ′. ♦

The conditions of application of this procedure’s rules ensure that as soon as an
atom is generated (by inference generation or rewriting), it must be extracted
and used in a rewriting step before any further inference generation step. The
rule RwP is necessary because new atoms can appear in P after an inference by
the rule RwW (e.g., b 6' a∨ c ' d ∈ P is rewritten in c ' d if b ' a appears in W )

The key property ensuring the completeness of the whole procedure is its
rewrite-stability.
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Definition 2.38 A rule is rewrite-stable if its parent 〈P ;W ;A〉 and consequent
〈P ′;W ′;A′〉 verify the following property:

if (P ∪WF) ≤i P`1 then (P ′ ∪W ′F) ≤i P
′
`1 ,

where WF is the saturation of the set W up to redundancy by the rule F only
(i.e.WF contains all clauses deducible fromW by a finite number of applications
of the rule F, up to redundancy). A procedure is rewrite-stable if all its rules are
rewrite-stable. ♦

Intuitively, this property means that all clauses that can be inferred from P (in
one step) must be redundant w.r.t. P or W (or from a factor of W ).

Theorem 2.39 The saturation procedure with rewriting is rewrite-stable.

Proof. The rewrite-stability of the rules I and R is trivial. That of the rules
RwP and RwW is stated in a separate theorem, namely Theorem 2.54. Its proof is
the subject of the following subsection.

Remark 2.40 The standard saturation procedure where P is fully emptied into
W after each rewriting step is trivially rewrite-stable.

Theorem 2.41 To saturate and rewrite a formula S with SatR−K, the triplet
〈∅;S; ∅〉 is input to the procedure. It outputs 〈S′; ∅;A〉 where S′ contains no
atomic clause, S′ = S′[A], S ≡ S′ ∪A and S′ is saturated up to redundancy.

Proof. Let 〈P,W,A〉 be the result of a SatR−K rule. It is straightforward to
verify that if W 6= ∅ or if P contains an atomic clause, then the procedure is
not complete.

We show by induction on the derivation of SatR−K that S′ = S′[A] and
S ≡ S′∪A. Let 〈P,W,A〉 be a triplet in the derivation considered. Our induction
hypotheses are S ≡ P ∪W ∪A, P [A] = P and W [A] = W . These properties are
trivially true for 〈∅;S; ∅〉. Now let us consider the triplet 〈P ′;W ′;A′〉 that comes
in the derivation just after 〈P ;W ;A〉. Since the K-paramodulation calculus is
correct, all the rules of SatR−K are such that P ∪W ∪ A ≡ P ′ ∪W ′ ∪ A′. In
addition, since no rule of SatR−K introduces new constants to the sets and since
for atoms b ' a where a ≺ b added to A, the constant b is immediately deleted
from P ∪W , the results P ′[A′] = P and W ′[A′] = W ′ are clear.

Finally, to prove that S′ is saturated, it suffices to invoke the rewrite-stability
of SatR−K. Since all the rules of this procedure are rewrite-stable and since
∅ ∪ SF ≤i ∅`1 , we know that S′ ≤i S

′
`1 .

3.3 Rewrite-stability of SatR−K
The remainder of this section presents a proof of the rewrite-stability of the

rules RwP and RwW of SatR−K. In this proof, we construct for each clause in P ′`1
the corresponding clause of P ′ ∪ W ′F that i-subsumes it. We show how this
clause is built from a clause in P ∪WF. To do so, a precise decomposition of
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the concerned clauses is needed, different in each case. We start by defining and
proving these decompositions, then we consider the clauses in P ′`1 which are
consequents of an application of the rule F, then of the rule P+ and finally of
the rule M. In each case, we first exhibit a clause D ∈ P ′ ∪W ′F such that its
negative literals are equivalent after a rewriting step to the considered clause C
in P ′`1 . Then we use an 〈a, b〉-neutrality assumption to prove that D, after a
rewriting step and normalization, i-subsumes the clause C.

To lighten the notations, we assume from this point on in all this subsection
that a and b are constants such that a ≺ b, and we use the convention that
for i in {1, 2}, Di and Ci are clauses in normal form such that Di[a/b] ≡ Ci.
We consider a fresh constant λ, and extend ≺ in such a way that for all other
constants c, we have c ≺ λ. Let us define, for i ∈ {1, 2}:

rb(i) = b�Di , ra(i) = a�Di ,

r(i) = min {ra(i), rb(i)} , r(i) = max {ra(i), rb(i)} ,

r′b(i) =

{
min([b]Di \ {b}), when [b]Di 6= {b}
λ otherwise

r′(i) = min {r′b(i), ra(i)} , r′(i) = max {r′b(i), ra(i)} .

Although these constants all depend on Di, it will always be clear from the
context which of D1 and D2 they refer to, thus the “ (i) ” will always be omitted.
It can also be noted that the equality r = r′ is always true because either
r = ra and r′ = ra, or r = rb thus rb ≺ ra � a ≺ b, hence rb = r′b ≺ ra.
Nevertheless, the two notations will be kept to distinguish the clauses before
rewriting (containing r) and after rewriting (containing r′). Informally, ra and
rb are the representatives of the normal form of a and b. After b is replaced by
a, these normal forms are merged, thus the new representative of the normal
class is the minimum of ra and rb (b excluded), e.g., r′, while r′ denotes the
other representative.

In what follows, given a clause B =
∨n
i=1 ci 6' di, we will use the following

shorthand:

Bu,v
def
=

n∨
i=1

ci 6' u ∨ di 6' v

For instance if B = a 6' c ∨ b 6' c then Bu,v = a 6' u ∨ b 6' u ∨ c 6' v and if
B = � then we let Bu,v = �. We also use the following equivalence:

Proposition 2.42 Given constants a, b, c, d, with a ≺ b, and a clause D, we
have c[a/b] ≡D[a/b] d[a/b] if and only if c ≡D∨a 6'b d.

These many notations are introduced to build a generic decomposition of the
clauses Ci and Di where their relation (Di[a/b]↓ = Ci) is explicitly apparent.
This is done by isolating in Ci the negative literals belonging to the equivalence
class of a, which correspond in Di to the negative literals in the equivalence
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class of either a or b (or both if they already belong to the same class in Di).
An optional literal is also introduced. It is a negative literal containing b. No
such literal exists if the equivalent class of b is {b} (the case where r′b = λ).
If such a literal exists then its form depends on whether b is identical to rb. If
not, then the only literal containing b is of the form b ' rb by definition of the
normal form, otherwise it can be set to r′b ' b, where r′b is some element distinct
from b in the equivalence class of b. The definition of r′b has been tuned to cover
both cases simultaneously (indeed, if b 6= b�Di then necessarily r′b = rb). These
decompositions are exposed in Proposition 2.43 and used in the subsequent
propositions.

Proposition 2.43 For i = 1 and i = 2, Ci and Di can be decomposed in the
following way. There is an n ≥ 0, a negative clause C ′i and a positive clause C ′′i
such that Ci is of the form

Ci =

n∨
j=1

(cj 6' r′) ∨ C ′i ∨ C ′′i ∨

{
� if r′b = λ or r′b = ra,

r′b 6' ra otherwise,

and there exists a positive clause D′′i such that Di is of the form

Di =

n1∨
j=1

(cj 6' rb) ∨
n∨

j=n1+1

(cj 6' ra) ∨ C ′i ∨D′′i ∨

{
� if r′b = λ,

b 6' r′b otherwise,

where 0 ≤ n1 ≤ n. Furthermore, for all c′ ' d′ ∈ C ′′i , there exists a literal
c ' d ∈ D′′i such that c ' d ≡Ci∨a 6'b c′ ' d′, and for all c ' d ∈ D′′i , there exists
a literal c′ ' d′ ∈ C ′′i such that c′ ' d′ ≡Di∨a 6'b c ' d.

Proof. There are four cases to verify: If b = rb then ra(= r′) ≺ rb ≺ r′b
and if b 6= rb, the remaining cases are rb(= r′b = r′) ≺ ra, ra(= r′) ≺ rb and
ra = rb(= r′b = r′). In all these cases, c1, . . . , cn1

are the constants that belong to
[b]Di (r′b excepted) and cn1+1, . . . , cn are those belonging to [a]Di . In the cases
where r′b 6= λ, we have rb ∈ {b, r′b}, thus b 6' r′b belongs to Di by definition
of the normal form. Since [a]Ci = ([b]Di ∪ [a]Di)\ {b}, the constants c1, . . . , cn
also belong to [a]Ci . If r′b 6= λ and r′b 6= ra then, since Ci is in normal form,
depending on the case either r′ = ra or r′ = r′b which both mean that r′b 6' ra
belongs in Ci since one of these constant is the representative of the other.
Furthermore, if there exists a literal c′ ' d′ ∈ C ′′i such that for all c ' d ∈ D′′i ,
c ' d 6≡C∨a6'b c′ ' d′, thenDi[a/b] and Ci cannot be equivalent, a contradiction.
The same reasoning holds c ' d ∈ D′′i .

Proposition 2.44 Let C be a clause generated from C1 using the rule F, then
there exists a clause D generated by F from D1 such that D[a/b]

− ≡ C−.

Proof. Since C is generated from C1 using F, we can write C1 = u′ ' v′∨ s′ '
t′ ∨ C ′1 and C = (u′ 6' s′ ∨ v′ 6' t′ ∨ u′ ' v′ ∨ C ′1)↓. Moreover, D1[a/b]↓ = C1,
thus by Proposition 2.43, D1 can be written as u ' v ∨ s ' t ∨ D′1, with
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x ≡C′1∨a6'b x
′ ≡D1∨a6'b x, with x ∈ {u, v, s, t}. By applying F on D1, we generate

the clause D = (u 6' s ∨ v 6' t ∨ u ' v ∨D′1)↓. Now that D is defined, we only
have to ensure that D[a/b]

− ≡ C−. To simplify the reasoning, we prove instead
the equivalent result D′[a/b]− ≡ C ′

− where the clauses D′ = u 6' s ∨ v 6'
t ∨ u ' v ∨ D′1 and C ′ = u 6' s ∨ v 6' t ∨ u ' v ∨ C ′1 (not in normal form)
are respectively equivalent to D and C. Let us consider the negative literals
of D′1. By definition, we have D′1[a/b]

− ≡ C ′1
−. Since C ′1

− ≤i C
−, we have

u 6' s ≡C∨a6'b u′ 6' s′ and v 6' t ≡C∨a6'b v′ 6' t′. Similarly u 6' s ≡D∨a6'b u′ 6' s′
and v 6' t ≡D∨a6'b v′ 6' t′, because D′1

− ≤i D
′−. These arguments are enough

to conclude that D′[a/b]− ≡ C ′−, hence D[a/b]
− ≡ C−.

Corollary 2.45 If in addition D1 is 〈a, b〉-neutral, then D[a/b]↓ ≤i C.

Proof. By Proposition 2.44, we already know that D[a/b]
− ≡ C−, thus we

only need to consider the positive literals:
— By definition, u ' v ≡C∨a6'b u′ ' v′, thus (u ' v)[a/b] ≤i C.
— Let l be a positive literal in D′1[a/b]. By definition of the normal form

of clauses, there exists a positive literal l′ ∈ C1 such that l ≡C1
l′. If

l ≡C1
u ' v or l ≡C1

s ' t, then |C1
+| < |D1[a/b]

+|, because equivalent
literals are factorized in normal form. In this case D1 is not 〈a, b〉-neutral,
which raises a contradiction. The only remaining possibility is that l′ ∈
C ′1, thus l ≤i C.

We now know that D[a/b] |= C and if D[a/b] 6≤i C then any two positive
literals l1, l2 in D such that l1 ≡C∨a 6'b l2 verify also l1 ≡D∨a6'b l2, because
D[a/b]

− ≡ C−. Hence l1 and l2 are projected on a single literal in D[a/b]↓,
ensuring that D[a/b]↓ ≤i C.

Proposition 2.46 Let C be a clause generated from C1 and C2 using the rule
P+, then there exists a clause D generated by P+ from D1 and D2 such that
D[a/b]

− ≡ C−.

Proof. Since C is generated using P+, we can assume that the clauses are
decomposed in the following way: C1 = u′ ' v′ ∨ C ′1 and C2 = s′ ' t′ ∨ C ′2
generating C = (u′ 6' s′ ∨ v′ ' t′ ∨ C ′1 ∨ C ′2)↓ and by Proposition 2.43:

— D1 = u ' v ∨ D′1 where u and v verify u ≡C′1∨a 6'b u
′ ≡D′1∨a 6'b u and

v ≡C′1∨a6'b v
′ ≡D′1∨a6'b v;

— and D2 = s ' t ∨D′2 where s and t verify s ≡C′2∨a6'b s
′ ≡D′2∨a 6'b s and

t ≡C′2∨a6'b t
′ ≡D′2∨a6'b t.

By applying P+ on D1 and D2, we generate D = (u 6' s ∨ v ' t ∨D′1 ∨D′2)↓.
We writeD′ = u 6' s∨v ' t∨D′1∨D′2 and C ′ = u′ 6' s′∨v′ ' t′∨C ′1∨C ′2. Firstly,
we observe that u 6' s ≡C′∨a 6'b u′ 6' s′ ≡D′∨a6'b u 6' s, because C ′1 ∨ C ′2 ≤i C

′

and D′1∨D′2 ≤i D
′. In addition, we have immediately (D′1∨D′2)[a/b] ≡ C ′1∨C ′2,

thus the conclusion.

Corollary 2.47 If in addition D1 and D2 are 〈a, b〉-neutral, then D[a/b]↓ ≤i C.
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Proof. First, we prove that D′[a/b] |= C ′ (with C ′ and D′ defined as in the
proof of Proposition 2.46 just above). We know that (v ' t)[a/b] ≤i C

′, because
v ' t ≡C′∨a 6'b v′ ' t′. Moreover, for any positive literal l in D′1∨D′2, there exists
l′ ∈ C ′1 ∨ C ′2 such that l ≡C′1∨C′2∨a6'b l

′, because D1 and D2 are 〈a, b〉-neutral
(as seen in the proof of Corollary 2.45). Then we know that D[a/b] |= C and
since, by Proposition 2.46, D[a/b]

− ≡ C−, we reach the desired conclusion by
the same reasoning as in the proof of Corollary 2.45.

Proposition 2.48 Let C be a clause generated by M on C1 and C2. Then C1 =
u′ ' v′ ∨ C ′1 with u′ ' v′ the positive literal involved in M. Let c and d be
constants.

If

{
c ≡C2∨a 6'b d

c 6≡C∨a6'b d
, then either

{
c ≡C∨a6'b u′

d ≡C∨a6'b v′
or

{
c ≡C∨a6'b v′

d ≡C∨a6'b u′
.

Proof. Assume that c ≡C2∨a6'b d and first suppose that b /∈ {c, d}. Then since
b does not occur in C2, necessarily c ≡C2

d. Similarly, since c 6≡C∨a6'b d and
b does not occur in C, we have c 6≡C d. This is only possible 3 if c ≡C u′ and
d ≡C v′, or c ≡C v′ and d ≡C u′, hence the result by Proposition 1.7.

Now suppose that b = c, the case where b = d is symmetrical. Then from
b ≡C2∨a6'b d, we deduce that a ≡C2∨a 6'b d, and finally that a ≡C2 d. Similarly,
from a 6≡C∨a6'b d we deduce that b 6≡C d; hence, w.l.o.g., b ≡C u′ and d ≡C v′.
Therefore, c ≡C∨a6'b u′ and d ≡C∨a 6'b v′.

Proposition 2.49 Let C be a clause generated from C1 and C2 using the rule M,
then there exists a clause D generated by M from D1 and D2 such that D[a/b]

− ≡
C−.

Proof. Since C is generated by M from C1 and C2, a natural decomposition
of these clauses is C1 = u′ ' v′ ∨ C ′1 and C2 =

∨m
i=1 s

′
i 6' t′i ∨ C ′′2 (m ≥

1), with C = (
∨m
i=1(s′i 6' u′ ∨ v′ 6' t′i) ∨ C ′1 ∨ C ′′2 )↓. A different (but equivalent)

decomposition of C2 is more interesting because it enables us to exhibit the
desired clause D with a minimum of effort. This decomposition is the following:
C2 = R′ ∨ L′ ∨ I ∨ C ′2 ∨ g′ ∨ h′, with the clauses:

R′ =
∨j
i=1 s

′
i 6' r′ , L′ =

∨k
i=j+1 r

′ 6' t′i , I =
∨n
i=k+1 s

′
i 6' t′i ,

g′ =

{
� if r′ = λ or r′b = ra

r′ 6' r′ otherwise
, h′ =

{
� if a = ra

a 6' r′ otherwise
.

Note that here and in all this proof, the constants ra, rb, r, r, r′ and r′ are
defined based solely on D2 and r′ is always the C2-representative of a. The
link between this decomposition and the previous one is that L′ ∪ R′ ∪ I ⊆∨m
i=1 s

′
i 6' t′i and C ′2 ⊆ C ′′2 with g′ and h′ belonging to either one depending on

3. Indeed, by definition of M, the only negative literals occurring in C2 but not in C are of
the form e 6' f , with e ≡C u′, and f ≡C v′

71



Chapter 2. Variations on the K-paramodulation Calculus

C. Indeed, since C2 is obtained from D2 by replacing b by a and normalizing,
r�C2

must be equal to min([a]D2
∪ [b]D2

) = min(ra, r
′
b). If r�C2

= ra, then
ra � rb, and since we have rb � r′b we deduce that r′ = ra. Otherwise, we have
rb ≺ ra then (since b � a), [b]D2

6= {b} thus r′b = rb and r′ = rb. The sets
R′ and L′ represent the literals s′i 6' t′i in C2 containing r′ with the exception
of a 6' r′ and r′ 6' r′ which if they exist are treated separately (in h′ and g′

respectively). More precisely L′ contains those where r′(= a�C2) is associated
to u′ and R′ those where r′ is associated to v′. Then the clause C is of the form
C = (R′u′,v′ ∨ L′u′,v′ ∨ Iu′,v′ ∨ C ′1 ∨ C ′2 ∨G′ ∨H ′)↓, with G

′ ∈
{
g′, g′u′,v′ , g

′
v′,u′

}
and H ′ ∈

{
h′, h′u′,v′ , h

′
v′,u′

}
. According to Proposition 2.43, we write D1 =

u ' v ∨ D′1 where u ≡C′1∨a 6'b u
′ ≡D1∨a6'b u and v ≡C′1∨a6'b v

′ ≡D1∨a 6'b v, and
D2 = R ∨R ∨ L ∨ L ∨ I ∨N ∨N ∨D′2 ∨ g ∨ h where:

R =
∨j1
i=1 s

′
i 6' r, R =

∨j
i=j1+1 s

′
i 6' r, L =

∨k1
i=j+1 r 6' t′i,

L =
∨k
i=k1+1 r 6' t′i, N =

∨m1

i=n+1 di 6' r, N =
∨m2

i=m1+1 di 6' r,

g =

{
� if r′b = λ

b 6' r′b otherwise
h =

{
� if a = ra

a 6' ra otherwise

For each literal s′i 6' r′ from R′ (resp. r′ 6' t′i from L′) there exists a correspond-
ing literal si 6' ra or si 6' rb (resp. ra 6' ti or rb 6' ti) in D2. In R (resp. in L)
are such literals where r(= min(ra, rb)) appears and the others are in R (resp.
L). The same principle applies to the literals of N and N , which correspond to
the literals with constants in [a]C2 appearing in C ′2 (i.e. those not involved in
the application of M) 4.

Let C0 = C ∨a 6' b. We distinguish several cases, depending on the relation-
ships between a, r′, and r′. In each case, we define the clause D by specifying
the literals of D2 upon which the rule M is applied. Each such literal or set of
literals l is replaced by lu,v in the conclusion of the rule.

1. Assume that a ≡C0
r′ ≡C0

r′. Then we define D as (Ru,v ∨Ru,v ∨Lu,v ∨

Lu,v∨Iu,v∨N ∨N ∨D′1∨D′2∨G)↓ where G =

{
g ∨ h if u′ 6≡C0 v

′

gu,v ∨ hv,u otherwise
.

The value of G is explained as follows. If u′ 6≡C0 v
′ then G′ = g′ and

H ′ = h′ (in C), otherwise the assumption a ≡C0
r′ ≡C0

r′ is contra-
dicted, hence G = g ∨ h must appear in D. If u′ ≡C0

v′ then we need
{u, v} ≡C2∨b 6'a {a, b} to ensure u′ ≡D[a/b] v

′. This is guaranteed by
G = gu,v ∨ hv,u, no matter the values of g and h. By definition, D is
generated by M from D1 and D2. By looking at the decomposition given
for C and D (before normalization) it is straightforward to verify that
every negative literal in D entails C− ∨ a 6' b, thus D[a/b]

− |= C−. Let

4. Note that since these literals are not involved in M, we do not need another pair of
subclauses for literals of the form r 6' di and r 6' di. We can assume w.l.o.g. that there are
none.
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D0 = D ∨ a 6' b. By construction, a ≡D0 b ≡D0 r
′
b ≡D0 ra, and u 6≡D0 v

exactly when u′ 6≡C0
v′, hence it can be verified that every negative literal

in C entails D0. We conclude that D[a/b]
− ≡ C−.

2. Assume that a ≡C0
r′ 6≡C0

r′. Then either r′ = λ or, by Proposition 2.48,
since r′ ≡C2∨b6'a r

′, necessarily u′ ≡C0
r′ and v′ ≡C0

r′ (in this case and
the followings, we discard the symmetrical cases where u′ and v′ are
swapped). We can first note that R = R = � (because R′ = � otherwise
v′ 6' r′ |= C, thus v′ ≡C0 r

′, hence u′ ≡C0 v
′, a contradiction) 5. Two

cases must be distinguished:
— if b 6= rb, then r = r′ and r′b = rb thus r = r′. We define D as (Lu,v ∨

L∨Iu,v∨N∨Nu,v∨D′1∨D′2∨G)↓ where G =

{
g ∨ hu,v if r = rb

gu,v ∨ h otherwise
;

— if b = rb, then since a ≺ b, r = r′ = ra and r′ = r′b, in which case we
define D as (Lu,v ∨ Lu,v ∨ Iu,v ∨N ∨N ∨D′1 ∨D′2 ∨ gu,v ∨ h)↓.

In both cases, the clause D is generated by M from D1 and D2. By con-
struction, a ≡D0

b ≡D0
r ≡D0

u 6≡D0
v ≡D0

r and D[a/b]− ≡ C−.
3. Assume that u′ ≡C0

r′ 6≡C0
r′ ≡C0

a ≡C0
v′. Then R = R = � as in case

2, and D = (Lu,v ∨ L ∨ Iu,v ∨N ∨Nu,v ∨D′1 ∨D′2 ∨G)↓ where:

— if b 6= rb, then G = gv,u ∨

{
h if r′ = ra

hv,u otherwise
;

— if b = rb, then G = g ∨ hv,u.
Then we have D[b/a]− ≡ C−.

4. Assume that u′ ≡C0 r
′ ≡C0 r

′ 6≡C0 b ≡C0 v
′. Again we note that R =

R = � and:
— if b 6= rb then D = (Lu,v∨Lu,v∨Iu,v∨N ∨N ∨D′1∨D′2∨gv,u∨hv,u)↓;
— otherwiseD = (Lu,v ∨ L ∨ Iu,v ∨N ∨Nu,v ∨D′1 ∨D′2 ∨ gv,u ∨ hv,u)↓.
Once again it is straightforward to verify that D[a/b] ≡ C.

Since by Proposition 2.48, the case where r′ 6≡C0
r′, r′ 6≡C0

a and a 6≡C0
r′

cannot happen, all the possible cases have been examined.

Corollary 2.50 If in addition D1 and D2 are 〈a, b〉-neutral then (D[a/b])↓ ≤i
C.

Proof. We denote by C ′ the result of applying M between C1 and C2 with-
out normalization, and by D′ the same with D1 and D2. We prove first that
D′[a/b] |= C ′. By Proposition 2.49, D′[a/b]− ≡ C ′

−, thus we only need to con-
sider the positive literals in D′. If D1 and D2 are 〈a, b〉-neutral then for every
literal l in D′

+
= (D′1 ∨D′2)

+, we have l[a/b] ∈ (C ′1 ∨ C ′2)
+

= C ′
+. Hence

D′[a/b] |= C ′ and D[a/b] |= C. Then, as seen before, D[a/b]
− ≡ C− guarantees

that D[a/b]↓ ≤i C.

Before proving the rewrite-stability of the rules RwP and RwW, we still need
more results. We define a notion of measure and present some results associated

5. And in the discarded symmetrical cases, we always have L = L = �.
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Chapter 2. Variations on the K-paramodulation Calculus

to this notion. We consider a clause D such that b ' a 6|= D. This condition,
appearing in all the following propositions, ensures that D ∨ a 6' b is not a
tautology, which is (among other things) necessary to use projections and normal
form on this clause.

Definition 2.51 Let D be a clause such that a ' b 6|= D. For any clause X such
that X ≤i D∨a 6' b, the measure Γ[a/b],D(X) is the multiset containing the pro-
jections on D ∨ a 6' b of the positive literals of X. More formally, Γ[a/b],D(X) =

X+
�D∨a6'b. An equivalent definition is Γ[a/b],D(X) = (X[a/b]

+
)�D[a/b], the mul-

tiset containing the projections on D[a/b] of the positive literals of X[a/b]. This
measure is associated to the multiset order based on the one used for literals in
the usual way. ♦

Given this definition, the following facts can be inferred.

Proposition 2.52 Let X, X1 and X2 be clauses such that Xk ≤i D∨a 6' b for
k ∈ {ε, 1, 2}.

1. ∀l ∈ Γ[a/b],D(X), l ∈ D[a/b]↓.

2. If every literal of Γ[a/b],D(X) occurs at most once then X[a/b] ≤i D[a/b]↓.

3. If X1 ≤i X2 then Γ[a/b],D(X1) ≤ Γ[a/b],D(X2).

Proof. Let us be in the conditions described in Proposition 2.52. Each of the
following point is the demonstration of the corresponding property.

1. Direct consequence of the definition.

2. Let us assume that the literals of Γ[a/b],D(X) are pairwise distinct. Since
we assume that Γ[a/b],D(X) is defined, we necessarily have X ≤i D ∨
a 6' b. Thus by Proposition ii.3, X[a/b] |= D[a/b]. If X[a/b] 6≤i D[a/b]↓
then there are two distinct literals l1 and l2 in X[a/b] and a literal l ∈
D[a/b]↓ such that l1 ≡D[a/b] l2 ≡D[a/b] l. Hence {l, l} ⊆ Γ[a/b],D(X) and
a contradiction is reached, implying that X[a/b] ≤i D[a/b]↓

3. By definition, Γ[a/b],D(Xi), with i ∈ {1, 2}, is the multiset of literals
l�D∨a6'b where l ∈ Xi

+. There exists an injective function γ : X1
+ → X2

+

such that for every l ∈ X1
+, γ(l) = l�X2 , hence, since X2 ≤i D ∨ a 6' b,

l ≡D∨a 6'b γ(l). Thus Γ[a/b],D(X1) ≤ Γ[a/b],D(X2).

This notion of measure is used in the proof of the following proposition.

Proposition 2.53 Let P and W be sets of clauses such that P ∪WF ≤i P`1 .
Let D be a clause such that a ' b 6|= D. Let E be a clause in P ∪WF such that
E ≤i D ∨ a 6' b. Then there exists a clause G ∈ P ∪WF such that G[a/b]↓ ≤i
D[a/b]↓.

Proof. We reason by induction on Γ[a/b],D(E). If the literals of Γ[a/b],D(E)
are pairwise distinct then, by Proposition 2.52(2), E[a/b] ≤i D[a/b]↓, thus
E[a/b]↓ ≤i D[a/b]↓. This is our base case. In the remaining cases Γ[a/b],D(E) 6⊆

74



4. Summary

D[a/b]↓ (and E[a/b]↓ 6≤i D[a/b]↓, or the result is trivial). Since, by Propo-
sition ii.3, E[a/b] |= D[a/b], there exist at least two literals l1 and l2 in E
such that l1[a/b] ≡D[a/b] l2[a/b]. We use the rule F on E to factorize these
two literals, generating a new clause called E′, so that E′ ≤i D ∨ a 6' b
and Γ[a/b],D(E′) = Γ[a/b],D(E)/ {l} with l = l1[a/b]�D[a/b]. Moreover, we have
P ∪ WF ≤i E

′ because either E ∈ WF, entailing WF ≤i E
′, or E ∈ P , and

given the hypothesis P ∪WF ≤i P`1 , the result is verified. Therefore there exists
F ∈ P ∪WF such that F ≤i E

′. By transitivity, F also verifies F ≤i D ∨ a 6' b,
and since F ≤i E

′, by Proposition 2.52(3), Γ[a/b],D(F ) ≤ Γ[a/b],D(E′). Moreover,
we build E′ so that Γ[a/b],D(E′) ⊂ Γ[a/b],D(E), thus Γ[a/b],D(E′) < Γ[a/b],D(E).
We were able to find a clause F such that F ∈ P ∪WF, F ≤i D ∨ a 6' b and
Γ[a/b],D(F ) < Γ[a/b],D(E). Therefore, by the induction hypothesis, we conclude
that there exists a clause G ∈ P ∪WF such that G[a/b]↓ ≤i D[a/b]↓.

We have now all the tools necessary to prove the rewrite-stability of the two
atomic rewriting rules.

Theorem 2.54 The rules RwP and RwW are rewrite-stable.

Proof. Let 〈P ′;W ′;A′〉 be generated from 〈P ;W ;A〉 by applying either RwP or
RwW. We show that (P ∪WF) ≤i P`1 ⇒ (P ′∪W ′F) ≤i P

′
`1 . To prove it, the main

idea is to exhibit, for each considered case, the clause that fits our needs (i.e. the
clause in P ′ ∪W ′F that i-subsumes the considered clause of P ′`1). To do so, we
reason by induction on the number of inferences that occur during the execution
of the procedure. Our induction hypothesis is: P (i) ∪ W (i)

F ≤i P
(i)
`1 , where

P (i) and W (i) represent the set P and W respectively, after the ith inference of
the procedure. The base case is true because the procedure starts with input
〈∅;S; ∅〉, thus (P (0) ∪W (0)

F) ≤i P
(0)
`1 . For the recursive case, considering that

I and R are trivially rewrite-stable, only the rules RwP and RwW are of interest
to us. In both cases, given a clause C ∈ P (i)

`1 there are three possibilities to
consider:

1. C has been generated using F

2. C has been generated using P+

3. C has been generated using M

By applying respectively the corollaries 2.45, 2.47, 2.50 to the given situations,
we generate a clause D ∈ P (i−1)

`1 such that D[a/b]↓ ≤i C. By the induction
hypothesis, there exists a clause E ∈ P (i−1) ∪W (i−1)

F such that E ≤i D, hence
E ≤i D∨a 6' b and by Proposition 2.53 there exists a clauseG ∈ P (i−1)∪W (i−1)

F

such thatG[a/b]↓ ≤i D[a/b]↓. Therefore, this clauseG ∈ P (i−1)∪W (i−1)
F verifies

also G[a/b]↓ ≤i C and we can conclude that the rules RwP and RwW are rewrite-
stable.

4 Summary
This chapter presented the K-paramodulation calculus, a form of “condi-

tional paramodulation” where equality conditions are not checked statically but
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Chapter 2. Variations on the K-paramodulation Calculus

asserted by adding new disequations to the derived clause. For instance, given
a clause C[a] and an equation a′ ' b, K-paramodulation generates the clause
a 6' a′∨C[b], which can be interpreted as a ' a′ ⇒ C[b] (the condition a ' a′ is
asserted). We proved the soundness and deductive-completeness of this calculus
and then proceeded to expose an improvement on this calculus impacting the
number of inferences necessary to reach saturation. This improvement reduces
the number of constants occuring in the problem, replacing all those that appear
as the maximal term of an atomic implicate by the minimal one. A method to
efficiently recover the prime implicates of the original input from the atomic
implicates and the saturation of the simplified problem is also devised. This
improvement is realized in two different ways, first as a preprocessing method
relying on a different variant of the paramodulation calculus to generate all
atomic prime implicates for the simplification of the input formula and then as
a mechanism integrated to the K-paramodulation saturation process. In both
cases, the soundness and deductive-completeness of the methods were proved.
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Chapter 3

Constrained Superposition
Calculus

In this chapter we propose a different approach to the problem of prime
implicate generation. The principle of the presented calculus is to apply the
standard superposition calculus, enriched by new rules that allow the addition
of ground unit clauses as new axioms (or hypotheses) during the search. As
with K-paramodulation, we still allow the assertion of equations, but this time a
distinction is drawn between the literals that are asserted and the standard ones
– the former being attached to the clauses as constraints. These constraints are
taken into account when testing redundancy 1. Once an empty clause has been
generated, the negation of the conjunction of the hypotheses used to derive it
can be returned as an implicate of the considered clause set. It is clear that from
a theoretical point of view this approach can strongly increase the search space,
since any clause of size n can now have 2n distinct equivalent representatives,
depending on which literals are stored in the constraints. However, it also has
many advantages:

— First, all the usual ordering restrictions or selection strategies of the
superposition calculus can be carried over to the new procedure. This
was not the case for our previous calculus: their addition renders the
K-paramodulation calculus incomplete for consequence-finding.

— Second, this approach offers the possibility to control the literals that
can be asserted during the search, for instance to limit the number of
asserted literals, to impose additional syntactic restrictions on them, or
even to test semantic conditions. This is especially important in practice
since the number of implicates of a formula is typically huge, as soon as
equality axioms are considered.

This method also has the advantage that it can easily be extended from E0 to
E1. Such an extension is the subject of Section 3

1. For instance a clause p ∨ q with no assumed literals is not necessarily less general than
a unit clause p with constraint r.



Chapter 3. Constrained Superposition Calculus

1 Constrained clauses
Constraints and constrained clauses are notions that are used here and ap-

pear also in Part II.

Definition 3.1 A constraint is a (possibly empty) conjunction of literals. A
constrained clause (or c-clause) is a pair [C |X ] where C is a clause and X is a
constraint. The empty constraint is denoted by >. [C |>] is often written simply
as C and referred to as a standard clause. ♦

If X =
∧n
i=1 li then X c denotes the clause

∨n
i=1 l

c
i . The normal form of a con-

straint X is ¬(X c↓). Similarly to clauses, we use the notation X↓ to denote a
constraint in normal form.

Proposition 3.2 There exists a unique normalized constraint equivalent to each
non-contradictory constraint.

We also adapt the notion of projection to constraints.

Definition 3.3 Let C be a standard clause and X be a constraint, then C�X
denotes C�X c ♦

From a semantic point of view, a constrained clause [C | X ] is equivalent
to X c ∨ C. For example the c-clause [c ' b | a ' c ∧ c 6' d] is equivalent to
c ' b ∨ a 6' c ∨ c ' d. More specifically, the intended meaning of a c-clause
[C |X ] is that the clause C can be inferred provided the literals in X are added
as axioms to the considered clause set.

The definitions and results related to constrained clauses can be extended to
E1 from E0 without modifications (but using the extended notion of normaliza-
tion defined Chapter 1 Section 1.2).

2 Main calculus
In this section the superposition calculus is extended to sets of c-clauses (see

Definition 3.1). First, the standard inference rules are extended in a straight-
forward way by adding the constraints of the premises to the conclusion (see
Definition 3.4). As usual the calculus is parameterized by the ordering � on
terms and a selection function sel, where sel(C) contains all maximal literals
in C or (at least) one negative literal. A literal is selected in C if it occurs in
sel(C).

Definition 3.4 The following rules are the standard inference rules of the su-
perposition calculus (see Definition ii.17), adapted to c-clauses.

Superposition:
[l ' r ∨ C |X ] [l ./ u ∨D |Y]

[r ./ u ∨ C ∨D |X ∧ Y]
(1.),

Factoring:
[t ' u ∨ t ' v ∨ C |X ]
[t ' v ∨ u 6' v ∨ C |X ]

(2.),
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2. Main calculus

with the following conditions:
1. l � r, l � u, and (l ' r) and (l ./ u) are selected in (l ' r ∨ C) and

(l ./ u ∨D) respectively,
2. t � u, t � v and (t ' u) is selected in t ' u ∨ t ' v ∨ C.

The clausal part of the consequents are systematically normalized, but the con-
straint part is not. ♦

The Assertion rules (see Definition 3.5) allow for the addition of new hy-
potheses in the constraint part of a c-clause. To this purpose the most simple
solution would be to add to the clause set all tautological axioms of the form
[l | l] (meaning that l can be derived from l) where l is a ground literal, and
then to let the inference rules of Definition 3.4 derive all the consequences of
these axioms. However, this solution is not completely satisfactory since there
are numerous axioms of the previous form, and that not all of them are relevant
w.r.t. the considered clause set. It is preferable to avoid the blind enumeration
of axioms, which is why we add rules simulating all possible inferences from
these axioms and the already generated c-clauses 2.

Definition 3.5 The following rules are the Assertion rules of the constrained
calculus.

Positive Assertion:
[t ./ s ∨ C |X ]

[u ./ s ∨ C |X ∧ t ' u]
(1.),

Negative Assertion:
[t ' s ∨ C |X ]

[s 6' u ∨ C |X ∧ t 6' u]
(2.),

with the following conditions:
1. t � s, t � u and t ./ s is selected in t ./ s ∨ C,
2. t � u, t � s and t ' s is selected in t ' s ∨ C.

In these rules, the clausal part of the generated clauses is also normalized. ♦

The Positive Assertion rule asserts an equation t ' u as a new hypothesis in
the constraint part of a c-clause. This is done if the addition of such a hypothesis
enables the application of the superposition rule into the considered clause. Note
that the term u does not necessarily occur in C: the condition is only that it
must be strictly smaller than t. The negative assertion rule proceeds in a similar
way for disequations, which allow for an application of the superposition rule
into them. A literal t 6' u is added to the constraint part of a c-clause of the form
[t ' s∨C |X ] that is replaced by [s 6' u∨C |X ∧ t 6' u], only if this correspond
to a Superposition inference into this new constraint (again, the term u does
not necessarily occur in the premise).

Definition 3.6 The constrained superposition calculus in E0, denoted cSP0,
is composed of the rules of Definition 3.4 and 3.5. ♦

2. From a purely theoretical point of view the two solutions are of course equivalent.
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Example 3.7 The following example shows how to derive the implicate a 6'
c ∨ b ' d from {a ' b, c ' d}.

1 [a ' b |>] (hyp)
2 [c ' b |a ' c] (Pos. AR, 1)
3 [c 6' d |a ' c ∧ b 6' d] (Neg. AR, 2)
4 [c ' d |>] (hyp)
5 [d 6' d |a ' c ∧ b 6' d] (Sup. 3, 4)
6 [� |a ' c ∧ b 6' d] (Ref. 5)

The negation of a ' c ∧ b 6' d is the desired implicate. ♣

The usefulness of the c-clause representation becomes apparent when looking
at the inference rules (both standard and Assertion rules). It is a way to separate
the literals that can be used for inferences from the “frozen” ones stored in the
constraints, on which no inference should be applied.

Example 3.8 Let us consider the fifth step of the derivation in Example 3.7,
i.e. the superposition between [c 6' d | a ' c ∧ b 6' d] and [c ' d | >]. Due to
the freezing of a ' c and b 6' d, there are no standard inferences besides the
previous one between these two clauses, and only two assertion inferences that
generate the c-clauses [� | a ' c ∧ b 6' d ∧ c ' d] and [� | c 6' d]. In contrast,
using K-paramodulation on the equivalent clauses c 6' d ∨ a 6' c ∨ b ' d and
c ' d, all the following clauses are generated:

(c 6' c ∨ d 6' d ∨ a 6' c ∨ b ' d)↓ = a 6' c ∨ b ' d
(c 6' d ∨ c 6' d ∨ a 6' c ∨ b ' d)↓ = c 6' d ∨ a 6' c ∨ b ' d
(c 6' d ∨ a 6' c ∨ c 6' d ∨ b ' d)↓ = c 6' d ∨ a 6' c ∨ b ' d
(c 6' d ∨ a 6' d ∨ c 6' c ∨ b ' d)↓ = c 6' d ∨ a 6' c ∨ b ' d
(c 6' d ∨ a 6' c ∨ b 6' c ∨ d ' d)↓ = ∅ (tautology)
(c 6' d ∨ a 6' c ∨ b 6' d ∨ c ' c)↓ = ∅ (tautology)
As observed, the additional inferences are either redundant or tautological,

which makes cSP the more efficient calculus. ♣

Redundancy Elimination Rule

Redundancy testing is done as for the standard superposition calculus, ex-
cept that the constraints must be taken into account. In particular, it is neces-
sary to make sure that the constraints of the redundant c-clause include those
of the considered c-clauses.

Definition 3.9 A c-clause [C | X ] is redundant w.r.t. a set of c-clauses S if
either X is unsatisfiable or there exist c-clauses [Di | Yi] ∈ S (1 ≤ i ≤ n) such
that ∀i ∈ {1 . . . n}C � Di, ∀i ∈ {1 . . . n}Yi ⊆ X and X ′, D1, . . . , Dn |= C,
where X ′ denotes the set of literals in X that are smaller than C. ♦

The redundancy elimination rule is the same as for standard clauses. For ex-
ample, if X is unsatisfiable, then any clause [C |X ] is redundant in any set. In
practice, we extend the notion of e-subsumption to perform this test.
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Definition 3.10 A c-clause [C | X ] c-subsumes a clause [D | Y] (written [C |
X ] ≤c [D |Y]) iff C � D, C ≤e D and X ⊆ Y. ♦

Proposition 3.11 If [C |X ] ≤c [D |Y] then [D |Y] is redundant with respect to
{[C |X ]}.

Proof. It suffices to remark that if C ≤e D, then C |= D (Proposition 1.21).

Note that both parts of the c-clauses are handled in different ways: the in-
clusion relation ⊆ used to compare constraints is clearly stronger than the
e-subsumption relation ≤e used for clauses, even enriched with an ordering
constraint as here. For instance we have:

[a 6' b ∨ b ' d |>] ≤c [a 6' c ∨ b 6' c ∨ c ' d |>],

but
[� |a ' b ∧ b 6' d] 6≤c [� |a ' c ∧ b ' c ∧ c 6' d].

Remark 3.12 The definition of c-subsumption can be relaxed while preserving
the truth of Proposition 3.11, so as to detect more redundancies, by replacing the
condition C ≤e D with C ≤e D∨X ′ or C ≤e D∨Y ′ where X ′ = {l ∈ X | l � C}
and Y ′ = {l ∈ Y | l � C}. For example, let us consider the clauses [C | a ' b]
and [D |a ' b] where a ≺ b, a 6' b � C and C = D[a/b]. Clearly, [D |a ' b] is
redundant to [C |a ' b], but with our current definition [C |a ' b] 6≤c [D |a ' b]
because C 6≤e D. In contrast, C ≤e D ∨ a 6' b.

The impact of these modifications on the efficiency of the global method is
unclear. On the one hand, a gain is expected due to a better detection of re-
dundant clauses. On the other hand, their integration is not straightforward and
may result in a loss of efficiency. These approaches have not been studied during
the thesis and remain as future work.

In what follows we will prove the following result:

Theorem 3.13 cSP0 is sound and deductive-complete.

Soundness and completeness of cSP0

Lemma 3.14 Let [C | X ] be a c-clause derived from n premises [Di | Yi] with
i ∈ {1 . . . n}. Then C is a logical consequence of D1, . . . , Dn,X and for all i,
Yi ⊆ X .

Proof. It is easy to verify that this property holds for each inference rule, the
result follows by a straightforward induction on the length of the derivation.

Lemma 3.14 permits to deduce the following soundness result:

Corollary 3.15 For any c-clause [C | X ] deducible from a set of clauses S
(i.e. c-clauses with empty constraint), C is a logical consequence of S ∪ X . In
particular, if C = � then S |= X c.
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We now prove that the calculus is deductive-complete, i.e., that it permits
to generate every prime implicate of a given set of clauses. The proof relies on
the following definitions and proposition.

Definition 3.16 For every set of c-clauses S and for every constraint X , we
denote by S|X the set of clauses D (without constraint) such that [D | Y] ∈ S
and Y ⊆ X . ♦

The following proposition is an immediate consequence of the definition.

Proposition 3.17 Let S be a set of c-clauses in E0 and let X be a satisfiable
constraint. If a c-clause [C |Y] is redundant in S and Y ⊆ X then C is redundant
in S|X ∪ X .

Proof. By definition of the c-clause redundancy, there are two cases to con-
sider.

— The first condition leading to redundancy is that Y is unsatisfiable. In
this case, since Y is a conjunction of literals and Y ⊆ X , the constraint
X is also unsatisfiable which contradicts the hypotheses.

— In the second case, there exist n c-clauses [Di |Yi] ∈ S (1 ≤ i ≤ n) such
that ∀i ∈ [1, n]C � Di, ∀i ∈ [1, n]Yi ⊆ Y and Y ′, D1, . . . , Dn |= C, where
Y ′ denotes the set of literals in Y that are lower than C. Since Y ⊆ X
we deduce that ∀i ∈ [1, n]Yi ⊆ X , hence ∀i ∈ [1, n]Di ∈ S|X . Since
Y ′, D1, . . . , Dn |= C where Y ′, D1, . . . , Dn � C, and Y ′∪{D1, . . . , Dn} ⊆
S|X ∪ X then C is redundant in S|X ∪ X .

Definition 3.18 A set of c-clauses S is saturated w.r.t. a constraint X if every
c-clause [C |Y] such that Y ⊆ X that is deducible from S by applying once one
of the inference rules is redundant w.r.t. S. ♦

Theorem 3.19 Let X be a normalized satisfiable constraint. Let S be a set of
standard clauses and S? be a set obtained from S by cSP0. If S? is saturated
w.r.t. X and S |= X c, then there exists a constraint Y ⊆ X such that [� | Y] ∈
S?.

Proof. Let S′ = S?|X ∪ X . We first remark that S′ is unsatisfiable. Indeed,
S?|> |= S since by Proposition 3.17 all the standard clauses that are removed
from S during the saturation process must be redundant in S?|>; furthermore,
S?|> ⊆ S?|X , so that S′ |= S?|>∪X |= S∪X |= X c∪X . We now prove that S′ is
saturated (in the standard way, see Definition ii.25). We only consider the case
where the Superposition rule is applied, the proof for the other rules is similar.
Let l ' r ∨ P1 and l ./ u ∨ P2 be two clauses occurring in S′, where l � r, u,
and assume that l ' r and l ./ u are selected in l ' r ∨ P1 and l ./ u ∨ P2

respectively. Let r ./ u ∨ P1 ∨ P2 be the clause deduced by superposition from
the two previous clauses. We distinguish several cases.

82
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— If both l ' r ∨ P1 and l ./ u ∨ P2 occur in S?|X , then S contains two c-
clauses of the form [l ' r∨P1 |X1] and [l ./ u∨P2 |X2], where X1,X2 ⊆ X .
It is clear than the Superposition rule applies on these c-clauses, yielding
[(r ./ u ∨ P1 ∨ P2)↓ | X1 ∧ X2]. Since S? is saturated w.r.t. X , this c-
clause is redundant w.r.t. S?, and since X1 ∧ X2 ⊆ X we deduce by
Proposition 3.17 that (r ./ u ∨ P1 ∨ P2)↓ is redundant w.r.t. S′, hence
that r ./ u ∨ P1 ∨ P2 is also redundant.

— If l ' r∨P1 occurs in S?|X and l ./ u∨P2 occurs in X , then by definition
P2 must be empty, and S? contains a c-clause of the form [l ' r ∨ P1 |
X1] with X1 ⊆ X . Assume that ./= 6'. Then the Negative Assertion
rule applies on the latter clause, yielding [(r 6' u ∨ P1)↓ | X1 ∧ l 6' u].
Since l 6' u ∈ X , this c-clause must be redundant in S, and Proposition
3.17 permits to deduce that (r 6' u ∨ P1)↓ is redundant in S|X . If ./=',
then the Positive Assertion rule applies on [l ' r ∨ P1 | X1], yielding
[(r ' u ∨ P1)↓ |X1 ∧ l ' u] and the result follows as in the previous case.

— If l ' r ∨ P1 occurs in X and l ./ u ∨ P2 occurs in S?|X , then the proof
is similar to the previous case (using only the Positive Assertion rule).

— If both l ' r ∨ P1 and l ./ u ∨ P2 occur in X , then X is not normalized
since l occurs at least twice in X , and also occurs as the maximal term
of some equation, which contradicts the hypotheses of the theorem.

Since S′ is unsatisfiable and saturated, this set necessarily contains � by com-
pleteness of the standard superposition calculus, which entails that � ∈ S?|X
(since the constraints in X are unit and thus cannot be empty), hence the re-
sult.

Remark 3.20 Note that considering only normalized constraints is not restric-
tive since any constraint is equivalent to a normalized one. Moreover our goal
is to eventually generate implicates that are in normal form, thus all c-clauses
whose constraints are not in normal form can be discarded (since these con-
straints occur in all the descendants). This strategy strongly restricts the search
space. For instance no rule will apply on [a ' b |c ' d] and [a 6' b |c ' e] because
the obtained constraint c ' d ∧ c ' e is not in normal form. Note also that the
handling of clauses and constraints differ: we normalize the clausal part of the
c-clause, whereas we merely check that the constraint is in normal form.

3 Extension to uninterpreted functions

We now extend the calculus cSP0 to formulæ containing function symbols,
i.e. to E1. The rules are almost the same, except that the Assertion rules must
be adapted to allow superposition inferences at deep positions in asserted hy-
potheses. This entails that the branching factor of these rules is now infinite,
since there are infinitely many terms and clauses (and also infinitely many prime
implicate).
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Definition 3.21 The standard inference rules are adapted to c-clauses in E1.

Superposition
[r ' l ∨ C |X ] [u ./ v ∨D |Y]

[u[l] ./ v ∨ C ∨D |X ∧ Y]
(1.),

Factoring
[t ' u ∨ t ' v ∨ C |X ]
[t ' v ∨ u 6' v ∨ C |X ]

(2.),

with the following conditions:

1. u|p = r, r � l, u � v, and (r ' l) and (u ./ v) are selected in (r ' l ∨C)
and (u ./ v ∨D) respectively;

2. t � u, t � v and (t ' u) is selected in t ' u ∨ t ' v ∨ C.
Once again, the clausal part of the c-clauses generated is systematically normal-
ized, however, the constraint part is not. ♦

Definition 3.22 The Assertion rules of the constrained calculus are extended
to E1 in the following way:

Positive Assertion
[u ./ v ∨ C |X ]

[u[s] ./ v ∨ C |X ∧ t ' s] (1.),

Negative Assertion 3 [t ' s ∨ C |X ]
[u[s] ./ v ∨ C |X ∧ u ./ v]

(2.),

with the following conditions:

1. u|p = t, t � s, u � v and (u ./ v) is selected in (u ./ v ∨ C);

2. u|p = t, t � s, u � v, and (t ' s) is selected in (t ' s ∨ C).

In the same way as for the standard rules, the clausal part of the generated
c-clauses is systematically normalized. ♦

Note that the term u in the Negative Assertion rule is arbitrary, in particular
there are infinitely many possible terms. Let us consider for example the c-clause
[b ' a |X ] defined over a signature containing the unary function symbol f . In
this case, the terms b, f(b), f(f(b)) and more generaly fn(b) for n ∈ N can all
be used as the u of the Negative Assertion rule.

Definition 3.23 The constrained superposition calculus in E1, denoted cSP,
is composed of the rules of Definition 3.21 and 3.22. ♦

The principle of this calculus remains unchanged and the same definitions are
used for redundancy detection as in E0.

Example 3.24 The following example shows how to derive the implicate a 6'
d ∨ f(c) ' f(b) from {a ' b, f(c) ' f(d)}, given the term ordering a ≺ b ≺ c ≺

3. The term "Negative" is not really appropriate to describe this assertion rule but is kept
by analogy with cSP0
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3. Extension to uninterpreted functions

d ≺ f(a) ≺ f(b) ≺ f(c) ≺ f(d).

1 [f(c) ' f(d) |>] (hyp)
2 [f(c) ' f(a) |a ' d] (Pos. AR, 1)
3 [f(a) 6' f(b) |a ' d ∧ f(c) 6' f(b)] (Neg. AR, 2)
4 [a ' b |>] (hyp)
5 [f(a) 6' f(a) |a ' d ∧ f(c) 6' f(b)] (Sup. 3, 4)
6 [� |a ' d ∧ f(c) 6' f(b)] (Ref. 5)

The negation of a ' d ∧ f(c) 6' f(b) is the desired implicate. ♣

Theorem 3.25 cSP is sound and deductive complete.

Soundness and completeness of cSP

The soundness proof of cSP0 is exactly the same as that of cSP0 (detailed
in Lemma 3.14 and Corollary 3.15).

The schema of the deductive-completeness proof is the same as for cSP0. In
particular, we reuse Definition 3.16 and Proposition 3.17 but in the context of
E1. The notion of saturation w.r.t. a constraint is also unchanged (Definition
3.18).

Theorem 3.26 Let X be a normalized satisfiable constraint and let S be a set
of standard clauses in E1. Let S? be a set obtained from S by cSP. If S? is
saturated w.r.t. X and S |= X c, then there exists a constraint Y ⊆ X such that
[� |Y] ∈ S?.

Proof sketch. This proof has very few differences with that of Theorem 3.19
(deductive-completeness of cSP0). In the application of the Superposition rule,
we consider the clauses l ' r ∨ P1 and u ./ v ∨ P2 where l = u|p, r ≺ l, v ≺ u
and assume that r ' l and u ./ v are selected in l ' r ∨ P1 and u ./ v ∨ P2

respectively (instead of l ' r∨P1 and l ' u∨P2). The disjunction of cases that
follows is unchanged but for two details:

— In the second case, when assuming that ./=', the Negative Assertion
rule must be invoked to generate the desired result instead of the Positive
Assertion rule.

— For the last case, where both l ' r ∨ P1 and u ./ v ∨ P2 occur in X , a
contradiction to the hypothesis ’X is in normal form’ is raised using the
following arguments: by Definition 1.1, (u ./ v)

c
�X c\(u./v)c � (u[l] ./ v)

c

and (u[l] ./ v)
c 6= (u ./ v)

c, which contradicts point 6 of Definition 1.11
in the case ./=' and point 2 if ./=6'.

The rest of the proof is unchanged.

A seemingly natural idea is to relax the condition of Definition 3.10 by test-
ing logical entailment instead of set inclusion when comparing constraints (i.e.,
replacing Yi ⊆ X by Yi |= X . However, this makes the calculus incomplete.
More precisely, this relaxed notion of redundancy is not compatible with the
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Chapter 3. Constrained Superposition Calculus

previous restriction concerning the removal of clauses with non-normalized con-
straints. Experiments show that the restriction make the calculus more efficient,
even with a more restrictive version of the redundancy elimination rule.

4 Restricting the class of implicates generated 4

The number of implicates of a given formula is usually huge, and it is im-
portant in practice to be able to prune the search space by imposing additional
restrictions on the implicates that are searched for. They can be for instance
syntactic restrictions, e.g., if the user is interested only in positive implicates, or
in implicates of small size. They can also be of semantic nature, for instance, the
user may want to obtain all implicates that entail some formula. Using cSP, this
is possible if the considered class of implicates satisfies the following condition.

Definition 3.27 A set of constraints X is ⊆-closed (read “closed by inclusion”)
when for every X ∈ X and constraint Y, if Y ⊆ X then Y ∈ X. The set X is
normalized if every constraint X ∈ X is normalized. ♦

Definition 3.28 Let X be a set of constraints. A set of c-clauses S is X-saturated
if every c-clause [D |X ] such that X ∈ X that is deducible from S by applying
one of the inference rules is redundant w.r.t. S. ♦

Theorem 3.29 Let X be a normalized and ⊆-closed set of satisfiable constraints.
Let S be a set of standard clauses (i.e. c-clauses with empty constraint) and S?
be a set of clauses obtained from S by cSP. If S? is X-saturated and S |= X c
for some X ∈ X, then there exists Y ⊆ X such that [� |Y] ∈ S?.

Remark 3.30 The proof of Theorem 3.29 derives from that of Theorem 3.26
which is in essence a simplified variant of Theorem 3.29. Intuitively, the im-
portance of the ⊆-closed property can be understood by looking at the way new
c-clauses are generated and at the growth of the constraints through the inference
process. There are only two ways to modify a constraint. One is to use an asser-
tion rule, adding (at most) one literal to the considered constraint. The other is
to use the superposition rule which combines the constraints of the parents in the
consequent c-clause. Now let us consider the non ⊆-closed set made of the con-
straints of size exactly two literals. The generation of all such prime implicates
of a formula and only these is not possible using cSP (except when this set is
empty, like for contradictory formulæ). The reason is that the inference process
starts with c-clauses with empty constraints and at least two assumptions are
necessary to generate a first c-clause in the desired set. Thus these c-clauses are
never generated, because the “intermediary steps” are systematically discarded.
The ⊆-closed property ensures that all such intermediate steps also possess the
desired property, thus guaranteeing the completeness of the method.

4. The results of this section are direclty presented for E1 but they also hold for E0.
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5. Summary

Among others, interesting examples of ⊆-closed sets of constraints, also referred
to as filters, include positive constraints, negative constraints and constraints of
size at most some fixed k ∈ N. Moreover, since ⊆-closeness is stable by intersec-
tion, it is possible to combine all these different filters. Practical examples are
given in Section 4 of Chapter 10.

Another interesting filter relates to the simplification of formulæ. Contrarily
to the already presented examples, it is not based on a syntactic criteria but
rather on a semantic one. For any set of clauses S, the set of constraints S
such that X ∈ S if and only if there exists C ∈ S with X c |= C, is ⊆-closed.
This remark allows us to use the filtering mechanism to efficiently compute a
minimal (up to redundancy) equivalent representation of any set of clauses S.
This is done as follows. First, S is S-saturated, and the set I of clauses X c
such that [� | X ] occurs in the saturated set is constructed. By Theorem 3.29,
I is the set of prime implicates of S that occur in S, i.e., that entail at least
one clause in S. Then, for each clause C ∈ S, an implicate C ′ ∈ I such that
C ′ |= C is selected 5. The obtained clause set is equivalent to S and minimal in
the sense that all the clauses are minimal w.r.t. logical entailment (in particular
no literal can be deleted without affecting the semantics). This simplification
method departs from the one described in [20] in which formulæ are reduced by
removing literals occurring in them, provided they are useless in the context.
For instance the literal l can be removed in (l∨ψ)∧φ if φ,¬ψ |= l. Our technique
allows for finer simplifications, taking into account equational axioms.

Example 3.31 In E0, using the ordering a ≺ b ≺ c . . . , consider the clause
set S = {a 6' c ∨ b 6' c ∨ d ' e, a ' c ∨ a ' f, b ' c ∨ a ' f, f 6' b}.
It is easy to check that a 6' b ∨ d ' e is an implicate of S and this clause
e-subsumes a 6' c ∨ b 6' c ∨ d ' e. Our approach computes the clause set
S′ = {a 6' b ∨ d ' e, a ' c ∨ a ' f, b ' c ∨ a ' f, f 6' b} that is equivalent to
S and strictly smaller. In contrast, the approach in [20] cannot simplify S since
there is no useless literal. ♣

5 Summary

In this chapter we introduced the cSP calculus for generating the prime
implicates of a formula in E0 and E1. This calculus “freezes” the literals that
represent asserted equalities, preventing further inferences to modify them. Re-
stricted to E0, the strengths and weaknesses of cSP0 are very different from that
of K-paramodulation. On the one hand, the global search space of cSP0 is ex-
ponentially larger but on the other hand it is greatly reduced by the addition of
ordering constraints to the rules of cSP0, that cannot be applied to the rules of
K-paramodulation without loss of completeness. An experimental comparison of
the two calculi is presented Part III. The extension of cSP0 to E1 (namely cSP)
is completely straightforward and a great asset of this calculus. Another advan-

5. Such a clause necessarily exists since C itself is an implicate of S – albeit not necessarily
minimal.
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Chapter 3. Constrained Superposition Calculus

tage of cSP is the possibility to filter the implicates generated while preserving
a partial notion of completeness. Using such filters, all the prime implicates ver-
ifying some criteria and only these ones are generated, which is of major interest
in practice given the size of the targeted formulæ.
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Part II

Redundancy Detection



This part of the thesis introduces a method to efficiently store and manip-
ulate clauses and c-clauses in E0 and E1. The first chapter introduces clausal
trees, data structures that permits the storage of (c-)clauses with a partial shar-
ing of common literals, as well as efficient manipulations of the stored clauses.
These manipulations (testing if a clause is redundant to a clause in a tree and
removing redundant clauses from a tree) are formalized as algorithms respec-
tively in the second and third chapter. This method is adapted from de Kleer’s
CLTMS algorithm for propositional logic [17] that is briefly introduced in the
state of the art (Chapter i Section 1.2). The last chapter presents the extension
of these manipulations to c-clauses.
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Chapter 4

Clausal Trees

Prime implicate saturation methods will typically infer huge sets of clauses. It
is thus essential to devise good data-structures for storing and retrieving the gen-
erated clauses, in such a way that the redundancy criterion (i.e. i-subsumption
or e-subsumption) introduced in Part I, Chapter 1 (see Definitions 1.17 and
1.23) can be tested efficiently. We devise for this purpose a tree data structure,
called a clausal tree, specifically tailored to store sets of clauses while taking
into account the usual properties of the equality predicate. The goal is to share
common prefixes of stored clauses, in a way that allows redundancy elimination
algorithms to be applied simultaneously on all shared literals. Clausal trees are
similar to the tries presented Chapter i corresponding to the CLTMS algorithm
[17]. In such trees, the clauses are represented by the branches, i.e., by the
disjunction of the literals labeling the edges from root to leaf. To ensure that
operations on trees and clauses are as simple as possible, and that literals are
well shared, restrictions are added to the trees.

Definition 4.1 In E0 and in E1, a clausal tree is inductively defined as either
�, or a finite set of pairs of the form (l, T ′) where l is a literal and T ′ a clausal
tree. Intuitively, a pair (l, T ′) represents an edge from the root of the tree to T ′,
labeled by literal l. In addition, a clausal tree T with (l, T ′) ∈ T must respect
the following conditions:

— for all l′ appearing in T ′, l <π l′ 1,
— there is no clausal tree T ′′ such that T ′′ 6= T ′ and (l, T ′′) ∈ T .

The set of clauses represented by a clausal tree T is denoted by C(T ) and defined
inductively as follows:

C(T ) =


{�} if T = �,⋃

(l,T ′)∈T

 ⋃
D∈C(T ′)

l ∨D

 otherwise.
♦

1. For the definition of <π , see Definition ii.10



Chapter 4. Clausal Trees

Remark 4.2 By considering propositional literals instead of equational ones,
the definition of a clausal tree becomes that of a propositional trie.

Remark 4.3 Employing the ordering <π to constrain the order in which literals
occur along the branches of the trees has two uses

— it limits the number of repetitions of the same literal,
— it simplifies the application of the redundancy elimination algorithms pre-

sented in the subsequent chapters.
The first point can be enforced using any total ordering on literals, but to ensure
the second point, the use of <π is a necessity.

As the definition implies, leaves can be either � or ∅, but in practice if a leaf is ∅
then the corresponding branch is irrelevant because by definition the trees T and
T ′, where T ′ is T without the branches containing ∅, are such that C(T ) = C(T ′).
In other words, a pair (l, ∅) can be deleted from the tree without affecting C(T ).
The only exception is the empty tree, in which the root is labeled with ∅. Note
that by definition C(∅) = ∅.

A functions describing the size of a tree is defined.

Definition 4.4 Let T be a clausal tree.

size(T ) =


0 if T = �,∑

(l,T ′)∈T

1 + size(T ′) otherwise.
♦

Example 4.5 The structure T in Figure 9 is a clausal tree in E0 with the
constant ordering a ≺ b ≺ . . . . For readability the labels are associated with the
nodes rather than with the edges leading to them.

T

b ' a

c ' a

b 6' a

c ' ad 6' c

e ' cc ' a

The represented clauses C(T ) are:

b 6' a ∨ d 6' c ∨ c ' a
b 6' a ∨ d 6' c ∨ e ' c
b 6' a ∨ c ' a
b ' a ∨ c ' a

Figure 9 – A clausal tree in E0

Formally, this tree is defined as {(b 6' a, T ′′), (b ' a, T ′)}, with

T ′ = {(c ' a,�)}
T ′′ = {(d 6' c, {(c ' a,�), (e ' c,�)}), (c ' a,�)}. ♣
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T

b ' a

f(a) ' c

g(b) 6' a

f(d) 6' f(c)

g(e) ' cc ' a

f(a) ' c

The clauses in C(T ) are:

g(b) 6' a ∨ f(a) ' c
g(b) 6' a ∨ f(d) 6' f(c) ∨ c ' a
g(b) 6' a ∨ f(d) 6' f(c) ∨ g(e) ' c
b ' a ∨ f(a) ' c

♣

Figure 10 – A clausal tree in E1

Example 4.6 The structure T in Figure 10 is a clausal tree in E1 with the term
order a ≺ b ≺ c ≺ g(c) ≺ g(e) ≺ f(c) ≺ f(d). Again the labels are associated
with the nodes rather than with the edges leading to them.

Definition 4.7 In E0 and in E1, a clausal tree is in normal form (or simply
normal) if all the clauses in C(T ) are in normal form. ♦

In E0, it is possible to impose additional conditions on clausal trees in order to
ensure that the represented clauses are in normal form.

Proposition 4.8 In E0, a clausal tree T is a normal clausal tree iff for any
pair (l, T ′) in T , all the following conditions hold:

— l is not of the form a ' a or a 6' a,
— if l = a 6' b with a ≺ b then b does not occur in T ′,
— T ′ is a normal clausal tree.

It is easy to see that if T verifies the conditions of the previous proposition then
all the clauses in C(T ) are in normal form. The tree of Example 4.5 satisfies
these requirements. For example the constants b and d do not occur below the
literals b 6' a and d 6' c respectively. In E1, the more complex definition of
the clausal normal form prevents us from defining simple syntactic criteria for
normal clausal trees.

Notation 4.9 Let C be a clause in normal form in E0 or E1 and T be a normal
clausal tree such that ∀D ∈ C(T ), C ∨D is in normal form and ∀l ∈ D, C <π l.
In this case, C.T denotes the clausal tree such that: if C = � then C.T = T ,
otherwise C.T = {(l1, C ′.T )} where C = l1 ∨ C ′ and l1 = min

<π
{l ∈ C}. ♦

Notation 4.10 We extend the notation [a/b] to trees: For any tree T , T [a/b]
denotes the tree obtained from T by replacing all occurrences of b by a. Note
that this replacement may interfere with the ordering constraints imposed on
clausal trees, hence >[a/b] may not be a clausal tree even if T is one. ♦
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Chapter 4. Clausal Trees

No matter the logic or the nature of the clauses, there are three main opera-
tions on clausal trees. The first one consists in checking whether a new clause is
redundant w.r.t. an existing one already stored in a clausal tree. In propositional
logic, this operation corresponds to Algorithm 2

Algorithm 2 isEntailedProp(C, T )

Require: C is a propositional clause and T is a trie.
Ensure: isEntailedProp(C, T ) = > ⇔ ∃D ∈ C(T ), D subsumes C
1: if T = � then
2: return >
3: end if
4: if C = � then
5: return ⊥
6: end if
7: m1 ← min

<
{m ∈ C} // given <, an ordering on propositional literals

8: T1 ← {(p, T ′) ∈ T | p = m1}
9: T2 ← {(p, T ′) ∈ T |m1 < p}

10: return
∨

(p,T ′)∈T1

isEntailedProp(C \ {m1}, T ′)

∨
∨

(p,T ′)∈T2

isEntailedProp(C \ {m1}, (p.T ′))

The second one removes from a clausal tree all clauses that are redundant
w.r.t. a given clause. In propositional logic, this action is realized by Algorithm
3

Algorithm 3 pruneEntailedProp(C, T )

Require: C is a propositional clause, T is a trie and
isEntailedProp(C, T ) = ⊥.

Ensure: ∀D ∈ C(pruneEntailedi0(C, T )), C does not subsume D.
1: if C = � then
2: return ∅
3: end if
4: if T = � then
5: return T
6: end if
7: m1 ← min

<
{m ∈ C} // given <, an ordering on propositional literals

8: T1 ← {(p, T ′) ∈ T | p = m1}
9: Tout1 ← {(p,pruneEntailedProp(C \ {m1} , T ′))|(p, T ′) ∈ T1}

10: T2 ← {(p, T ′) ∈ T | p < m1}
11: Tout2 ← {(p,pruneEntailedProp(C, T ′))|(p, T ′) ∈ T2}
12: return Tout1 ∪ Tout2 ∪ (T \ (T1 ∪ T2))

The last one is the insertion of a new clause into a clausal tree. This last
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operation is straightforward and thus will not be described here. On the other
hand, the first two operations are not trivial and significantly more complex in
equational logic than in propositional logic. Thus they are carefully described
in the remaining chapters of this part of the thesis. So as to expose all the
variants of these manipulations, the algorithms are presented once for E0 and
i-subsumption, and a second time for E1 and e-subsumption. This choice is
justified by the fact that i-subsumption is the redundancy criterion associated
with the K-paramodulation calculus (presented in Part I, Chapter 2), that is
only defined in E0, while e-subsumption, associated to the cSP calculus (pre-
sented Part I Chapter 3) is useful both in E0 and E1. Although cSP manipulates
c-clauses, for simplicity we present the algorithms for standard clauses both in
E0 and in E1. The final chapter of this part is dedicated to the extension of the
standard algorithms presented to c-clauses.
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Chapter 5

Entailment by a clausal tree

This chapter presents the first manipulation expected of clausal trees, i.e.
a test, given a normal clause C and a normal clausal tree T , that detects if T
contains a clause D such that C is redundant with respect to D. This step is
essential to the generic saturation process (see Algorithm 1 page 34). No matter
the logic or the redundancy criterion considered, this test proceeds under a same
principle: a depth-first traversal of T and attempts to project every encountered
literal on C. If a literal cannot be projected, the exploration of the subtree
associated to this literal is useless, so the algorithm switches to the following
literal. As soon as a clause entailing C is found, the traversal halts and > is
returned.

1 Algorithm isEntailed for i-subsumption and
E0

We denote by isEntailedi0 the algorithm isEntailed for i-subsumption
and E0 (see Algorithm 4). In this algorithm, the specificity of i-subsumption,
namely the injectivity of the mapping between the positive literals of the sub-
suming and subsumed clauses, appears line 14. Replacing in this line’s recursive
call the clause C \{l} by C is enough to obtain isEntailede0, the same test for
e-subsumption. During the traversal of a tree T , the branches (l, T ′) are dealt
with differently depending on l and its relation to C.

— If, considering a branch (l, T ′), it is clear that l ∈ C then the exploration
of the branch continues on T ′. The sets T1 and T3 regroup such branches
depending on the circumstances.

— If the relation between l and C is not currently determined (this happens
only while |C−| is not empty), a literal is projected before restarting the
exploration of the branch. Such branches are grouped in T2.

— Lastly, if it is clear that l 6|= C, which is the case e.g. when l is ≤π-smaller
than all the literals in C, then the exploration of the branch is halted.



1. Algorithm isEntailed for i-subsumption and E0

The requirements of isEntailedi0 mention a relaxed notion of normal form for
clauses and trees. These are formaly introduced in Definition 5.3 and 5.4.

Algorithm 4 isEntailedi0(C, T )

Require: C is a clause in normal form and T is a relaxed normal clausal tree.
Ensure: isEntailedi0(C, T ) = > ⇔ ∃D ∈ C(T ), D ≤i C
1: if T = � then
2: return >
3: end if
4: if C = � then
5: return ⊥
6: end if
7: m1 ← min

<π
{m ∈ C}

8: if m1 is of the form b 6' a where a ≺ b then
9: T1 ← {(l, T ′) ∈ T | l = m1}

10: T2 ← {(l, T ′) ∈ T | (@c, l = b 6' c, where b � c) and m1 <π l}
11: return

∨
(l,T ′)∈T1

isEntailedi0(C \ {m1}, T ′)

∨
∨

(l,T ′)∈T2

isEntailedi0(C \ {m1}, (l.T ′)[a/b])

12: else
13: T3 ← {(l, T ′) ∈ T | l ∈ C}
14: return

∨
(l,T ′)∈T3

isEntailedi0(C \ {l} , T ′)

15: end if

Remark 5.1 To implement this algorithm, a different approach can be adopted.
Instead of going through the literals of C one by one begining with the <π-
smallest one as described in Algorithm 4, all the negative literals of C can be
recovered and projected onto T at the same time. Then it is possible to deal with
the positive literals of C as here. The advantage of using this approach lies in
a reduction of the number of comparisons between literals of C and T relatively
to Algorithm 4. Its drawback is that all the negative literals of C might not be
necessary to detect the absence of i- or e-subsumption between C and the clauses
of C(T ). In other words, the choice of one algorithm over the other should be
motivated by the relative cost of projecting literals and comparing them (which
was not done in our case since this possibility occured to us long after the devel-
oppement of our prototypes presented Part III). In addition, this procedure has
no interesting equivalent for the pruning of trees presented in the next chapter,
where the roles of C and T are reversed, and where projecting all the negative
literals of a branch of T at the same time would be a waste of the tree-like
structure of T .

The input trees in this algorithm may not be normal clausal trees because of
the rewriting step at line 11 which does not preserve normal forms as mentioned
in Notation 4.9. Example 5.2 illustrates this possibility.
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Chapter 5. Entailment by a clausal tree

Example 5.2 The following sequence of recursive calls shows how the con-
straints on the positive literals of a normal clausal tree may no longer hold after
a recursive call. Let T = {(b ' a, {(c ' a, {(c ' b,�)})})} and C = c 6' a where
a ≺ b ≺ c.

1 isEntailedi0(C, T )
2 isEntailedi0(�, {(b ' a, {(a ' a, {(b ' a,�)})})}) (called at line 11)
3 ⊥ (returned at line 5)

In the second call, the clausal tree {(b ' a, {(a ' a, {(b ' a,�)})})} is not in
normal form because the literal a ' a is a tautology, the literal b ' a appears
twice and the ordering <π is not respected. ♣

Hence, before proving that the algorithm is correct, we must verify that its
requirements are always respected, namely, that for all recursive calls, the input
clause is in normal form and the input tree is in relaxed normal form. For the
clauses, this is obvious because no rewriting operation is ever performed, and
literals are deleted from the smallest to the greatest, which is sufficient to ensure
that the resulting clause remains in normal form. For the clausal trees, the notion
of relaxation (formally introduced in the next definition) describes the kind of
tree that occurs inside recursive calls of the algorithm due to the rewriting at
line 11, that interferes with the requirements associated to normal clausal trees,
as illustrated in Example 5.2. In particular, the positive literals may not respect
the ordering constraints or may even become tautological after a rewriting.

Definition 5.3 A clausal tree in relaxed normal form is inductively defined as
either � or a set of pairs (l, T ′) where l is a literal and T ′ an relaxed normal
clausal tree such that:

— for any pair (l, T ′) ∈ T , if l is a negative literal then:
— l is not of the form a 6' a;
— for all literals l′ occuring in T ′, we have l <π l′;
— if l = b 6' a, with a ≺ b, then the constant b does not occur in T ′;

— for any pair (l, T ′) ∈ T , if l is a positive literal then all the literals labeling
T ′ are also positive. ♦

Note that a clausal tree in relaxed normal form is not formally a clausal
tree, although its definition is very similar. This is due to the relaxation of the
ordering constraints on the positive literals it contains.

The clauses represented by a relaxed normal clausal tree are not necessarily
in normal form because they can contain tautological literals, as well as multiple
occurrences of the same literal, hence the following definition:

Definition 5.4 A clause C is in relaxed normal form if C− = C↓
− and if,

moreover, for all positive literals l ∈ C+, either l ∈ C↓
+ or l is of the form

a ' a. ♦

We also need to introduce additional propositions, stating some basic prop-
erties of the clauses and clausal trees in relaxed normal form.
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Proposition 5.5 If T1, . . . , Tn are relaxed normal clausal trees distinct from �,

then
n⋃
i=1

Ti is also a relaxed normal clausal tree.

Proof. This is a direct consequence of the definition of a relaxed normal clausal
tree.

Proposition 5.6 Let C be a clause in relaxed normal form. For any constant
a, we have a�C = a iff for all literals l occurring in C, if l is of the form a 6' b
then b � a.

Proof. Let a be a constant and C be a clause in relaxed normal form; assume
a�C = a. If l ∈ C is of the form a 6' b with a � b, then by definition b = a�C = a
and l is a contradiction; but this is impossible since C is a clause in relaxed
normal form. Now assume that there exists an l ∈ C such that l is of the form
a 6' b with a � b, then by definition b = a�C , thus a � a�C .

Lemma 5.7 proves that the requirements of the isEntailedi0 algorithm are
met at every recursive call.

Lemma 5.7 Let C be a clause and T a relaxed normal clausal tree. All the trees
appearing in the recursive calls of isEntailedi0(C, T ) are also relaxed normal
clausal trees.

Proof. (Please refer to the algorithm for the notations.) For any (l, T ′) ∈
T1∪T3, T ′ is a relaxed normal clausal tree by definition. It is also straightforward
to see that for any (l, T ′) ∈ T2, l.T ′ is a relaxed normal clausal tree. We then
show that the trees of the form (l.T ′)[a/b] (that appear as arguments of some of
the recursive calls at line 11) are relaxed normal clausal trees. Since we consider
only trees in T2, we are in the case where m1 is of the form b 6' a with a ≺ b,
m1 <π l and l is not of the form b 6' c with b � c.

We suppose that: ∀(l′, T ′′) ∈ T ′, (l′.T ′′)[a/b] is a relaxed normal clausal tree.
Then by Proposition 5.5, T ′[a/b], as the union of relaxed normal clausal trees
is also a relaxed normal clausal tree. Moreover, if l is a positive literal then by
definition so is any literal l′ occurring in T ′ thus (l.T ′)[a/b] is also a relaxed
normal clausal tree. If l is of the form u 6' v with u � v, then necessarily u � b,
because b 6' a <π l and l 6= b 6' c with b � c, thus l[a/b] is not a contradiction.
Furthermore, for all literals l′ labeling an edge starting from the root of T ′, if
l′ is positive, then by definition of the order on literals, l[a/b] <π l′[a/b]. If l′ is
negative, then l′ = s 6' t with s � u (and s � t), so s � b, hence l[a/b] <π l′[a/b].
In addition, since u does not appear in T ′, it does not appear in T ′[a/b] either,
because u 6= a). Since all the properties are verified, we conclude that (l.T ′)[a/b]
is a relaxed normal clausal tree.

The following theorem states the main property of isEntailedi0.

Theorem 5.8 If C is a clause in normal form and T is a relaxed normal clausal
tree then isEntailedi0(C, T ) returns > iff C(T ) contains a clause D such that
D ≤i C.
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Proof. We first assume that isEntailedi0(C, T ) = > and show by induction
on size(T ) that there exists a clause D ∈ C(T ) such that D ≤i C. We examine
all the cases in which isEntailedi0(C, T ) returns > in their order of appearance
in the algorithm.

— If T = � then it represents the empty clause and since � ≤i C, the
property holds.

— Assume m1 = min
<π
{li ∈ C} is of the form b 6' a with a ≺ b.

— If there exists a (l, T ′) ∈ T1, i.e. such that l = m1, and if the call
isEntailedi0(C\{m1}, T ′) returns >, then by induction, there exists
a D ∈ C(T ′) such that D ≤i C \ {m1}. Therefore m1 ∨D ≤i C and
since m1 ∨D ∈ C(T ), we have the result.

— Suppose there exists a (l, T ′) ∈ T2, i.e. a pair (l, T ′) ∈ T such
that l is not of the form b 6' c with b � c and isEntailedi0(C \
{m1}, l.T ′[a/b]) = >. Then by induction there exists a clause D′ ∈
C(l.T ′[a/b]) such that D′ ≤i C \ {m1}, and therefore there exists a
D ∈ C(l.T ′) such that D[a/b] ≤i C\{m1}. Thus we must have D ≤i C
and since C(l.T ′) ⊆ C(T ), the property is verified.

— Now assume that m1 = b ' a where a ≺ b and that there exists a
pair (l, T ′) ∈ T3, i.e. where l ∈ C such that isEntailedi0(C \ {l}, T ′) is
true. By induction there exists a D ∈ T ′ such that D ≤i C \ {l}. Hence
l ∨D ≤i C, so the property is verified.

Suppose that there exists a clause D ∈ C(T ) such that D ≤i C, we prove by
induction on size(T ) that isEntailedi0(C, T ) = >. If T = � then the result is
clear; otherwise, D is of the form l ∨D′, for some (l, T ′) ∈ T and D′ ∈ C(T ′).
Let m1 = min<π {m ∈ C}, so that C = m1∨C ′. Note that necessarily, m1 ≤π l.
Indeed, assume this is not the case. If m1 is of the form b 6' a where a ≺ b,
then l must be of the form u 6' v, where u � v. Since b 6' a is minimal in C,
necessarily v�C = v and u�C 6= v because either u = b and u�C = a � v or u ≺ b
and u�C = u � v. Hence (u 6' v)�C cannot be a contradiction and D 6≤i C. If m1

is a positive literal then C must be a positive clause by definition of the ordering
<π, and by Proposition 1.6(2), l�C = l cannot belong to C (since all literals in
C are ≤π-greater than l if l <π m1 holds) and we cannot have D ≤i C.

If m1 is of the form b 6' a with a ≺ b, then there are two cases to consider.
If l = m1, then D is of the form m1 ∨ D′ and since T ′ is a relaxed normal
clausal tree, constant a cannot occur in D′ and it is straightforward to verify
that D′ ≤i C

′; hence (l, T ′) ∈ T1 and the call to isEntailedi0 on C ′ and T ′ at
line 11 returns >. If m1 <π l then, since l�C is a contradiction, l cannot be of
the form b 6' c with b � c because b�C = a and since b 6' a is minimal in C, we
cannot have c�C = a, thus (l, T ′) ∈ T2. By Proposition ii.4, D[a/b] ≤i C

′, and
since D[a/b] ∈ C(l.T ′[a/b]), the call to isEntailedi0 on C ′ and l.T ′[a/b] at line
11 returns >.

Ifm1 is a positive literal, then C must be a positive clause and by Proposition
1.6(2),D�C = D. Necessarily l ∈ C thus (l, T ′) ∈ T3 andD′ ⊆ C\{l}. Therefore,
the call to isEntailedi0 on C \ {l} and T ′ returns >.
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Theorem 5.9 The Algorithm isEntailedi0 terminates in O(size(C(T ))+|C|×
|C(T )|).

Proof. We assume that the replacement of the constant b by the constant a
performed in the recursive call isEntailedi0(C \ {m1}, l.T ′[a/b]) is not carried
out by going through the whole tree l.T ′, but simply taken into account in the
following recursive calls (with a constant cost 1). We can then estimate that
in the worst case, we have one recursive call per edge in the tree T , plus one
recursive call per literal in the clause C for each branch of T . Moreover, there
are at most as many edges in T than there are literals in the clauses of C(T ).
Thus, the complexity of isEntailedi0(C, T ) is in O(size(C(T )) + |C|× |C(T )|).

2 Algorithm isEntailed for e-subsumption and
E1

The algorithm isEntailede1 is the transposition of isEntailede0 for E1

(and e-subsumption). The handling of branches (l, T ′) during the exploration
of a tree T is roughly unchanged:

— T1 and T3 regroup those such that l |= C holds, on which the exploration
is pursued on T ′;

— T2 contains those of undetermined status relative to C, that need more
projections of the literals of C to be analyzed;

— the other branches are not explored further because l 6|= C is obvious.
However, due to the adaptation of the projection technique to E1, there are
several major differences between isEntailede0 and isEntailede1.

— It is necessary to keep the negative literals of C in recursive calls after
having used them a first time in a projection. They are stored in a clause
M that is empty in the main call and filled along the recursive calls. In
isEntailede0, these literals could be discarded after being used, but this
is no longer possible because they must also be used in the projections
of positive literals (in the constraint of the set T3 defined line 16), as in
Example 5.10. A consequence of this evolution is the simplification of the
proof of correctness that does not rely anymore on the notion of ’relaxed’
normal form.

— The removal of contradictory literals appearing due to the projections
cannot be anticipated as in isEntailede0 (line 9), where these literals
are isolated in T1 and omitted from the subsequent recursive calls even
before a rewriting step changes them into contradictory literals. Hence, in
the nested calls of isEntailede1, there can be literals that are projected
into contradictions just below the root of the tree, and they must be
considered before the case where C is empty to preserve the correctness
of the algorithm, as illustrated in Example 5.11.

1. Because necessarily b = b�C , thus each constant a is rewritten at most only once; and
assuming a constant access to each rewriting, stored for example in a hashtable

101
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Algorithm 5 isEntailede1(C, T, M)

Require: T is a clausal tree in normal form, M ∨C is a clause in normal form.
Ensure: isEntailede1(C, T, M) = > iff ∃D ∈ C(T ), D ≤e M ∨ C
1: if T = � then
2: return >
3: end if
4: T1 ← {(l, T ′) ∈ T | l�M is a contradiction}
5: if

∨
(l,T ′)∈T1

isEntailede1(C, T ′, M) then

6: return >
7: end if
8: if C = � then
9: return ⊥

10: end if
11: m1 ← min

<π
{m ∈ C}

12: if m1 is of the form u 6' v, with u � v then
13: T2 ← {(l, T ′) ∈ T | l�M 6<π m1 and @w, (l�M = u 6' w, with u � w)}
14: return

∨
(l,T ′)∈T2

isEntailede1(C \ {m1} , l.T ′, M ∨m1)

15: else
16: T3 ← {(l, T ′) ∈ T | C�M∨lc contains a tautological literal}
17: return

∨
(l,T ′)∈T3

isEntailede1(C, T ′, M)

18: end if

Example 5.10 We show a sequence of isEntailede1 recursive calls in which
the variableM is used in the projection of a positive literal. Let T = {(e ' b,�)}
and C = b 6' a ∨ f(e) ' f(a) where a ≺ b ≺ e ≺ f(a) ≺ f(e).

1 isEntailede1(C, T,�)
2 isEntailede1(f(e) ' f(a), T, b 6' a) (call line 14)
3 isEntailede1(f(e) ' f(a),�, b 6' a) (call line 17)
4 > (ret. line 2)

After the main call (1), T 6= � and T1 = ∅ because e ' b�M can never be a
contradiction since it is a positive literal, and C 6= ∅. Thus line 11 is reached and
m1 is set to b 6' a. The test at line 12 returns true and T2 is set to {(e ' b,�)},
hence the nested call (2) is reached at line 14. This time again T 6= � and T1 = ∅
and C 6= � thus line 11 is reached again and m1 is set to f(e) ' f(a). Then T3

is set to {(e ' b,�)} because (f(e) ' f(a))�M∨e 6'b = f(a) ' f(a), a tautology.
In the final call T = � thus > is returned. ♣

Example 5.11 We show a sequence of isEntailede1 recursive calls that illus-
trates the importance of the lines 4 to 6. Let T = {(d 6' c, {(f(b) 6' f(a),�)})}
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and C = b 6' a ∨ d 6' c where a ≺ b ≺ c ≺ d ≺ f(a) ≺ f(b).

1 isEntailede1(C, T,�)
2 isEntailede1(d 6' c, T, b 6' a) (call 14)
3 isEntailede1(�, T, b 6' a ∨ d 6' c) (call line 14)
4 isEntailede1(�, {(f(b) 6' f(a),�)} , b 6' a ∨ d 6' c) (call line 5)
5 isEntailede1(�,�, b 6' a ∨ d 6' c) (call line 5)
6 > (ret. line 2)

In the second call we have M = b 6' a thus (f(b) 6' f(a)�M is already a contra-
diction, but the literal f(b) 6' f(a) occurring in T is not accessible at the time,
therefore it cannot be removed before d 6' c. In the third callM = b 6' a∨d 6' c,
hence both (d 6' c)�M and (f(b) 6' f(a)�M are contradictions. Thus the entail-
ment test is successful. Since in this call C = � and T 6= �, these two contradic-
tions have to be removed without reaching line 8, rendering the presence of the
lines 4 to 6 necessary. The problem these lines solve is that it is possible to have
several successive literals labeling a branch projected into contradictions, even
when C = �. If there could only be one at a time, the method of isEntailede0
(anticipating the removal of such literals by one recursive call) would suffice. In
practice both methods can be combined, resulting in a slightly more efficient
algorithm. We chose not to develop this possibility further here because it is not
interesting from a theoretical point of view. ♣

The termination and correction of isEntailede1 are presented in Theorem
5.14. The two propositions below are steps of the proof of correctness. Proposi-
tion 5.12 shows that all the “interesting” branches starting with a negative literal
are necessarily in T1 ∪ T2, and for T2, Proposition 5.13 justifies the restriction
imposed on the form of the first literal of the selected branches.

Proposition 5.12 Let C be a non-empty clause such that M ∨C is in normal
form. Let l be a literal such that l�M |= M ∨ C. Let m1 = min

<π
{m ∈ C}. If l is

a negative literal, then either l�M is a contradiction or l�M 6<π m1.

Proof. Let l�M = u 6' v. Assuming that l�M <π m1, since m1 is minimal in
C, v�M∨C = v�M = v and by Theorem 1.27, u�M∨C = v�M∨C .

— If m1 is of the form u 6' v′ with v′ ≺ u, then u�C∨M = u�C = v′, because
C ∨M is in normal form and m1 ∈ C. But then v′ = v�C , thus v′ � v
and l�M 6<π m1, contradicting our assumption.

— Otherwisem1 = s 6' t with s � u and thus u�C = u (because the smallest
term to be rewritten, namely s, is greater than u) thus u = v.

Proposition 5.13 Let M ∨C be a clause in normal form with M negative. Let
m1 = min

<π
{m ∈ C} and assume m1 is a negative literal u 6' v with u � v. Let

l be a literal such that l�M 6<π m1 and l�M |= C ∨M . In these conditions, the
literal l�M cannot be of the form u 6' w with u � w � v
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Proof. Assume that l�M = u 6' w with u � w � v. Then because C ∨M is
in normal form u�C∨M = v. In addition, by Theorem 1.27, since l�M |= C ∨M ,
we know that w�C∨M = u�C∨M , thus w�C∨M = v. The fact that w ≺ u entails
w�C∨M = w�M = w (because the maximal terms in the disequations in C are all
greater than w, hence w cannot be rewritten by C, cf. Proposition 1.15). Thus
we have w = v which contradicts the hypothesis w � v.

Theorem 5.14 If T is a clausal tree in normal form, M ∨ C is a clause in
normal form and M is negative then the call isEntailede1(C, T,M) terminates
and isEntailede1(C, T,M) = > iff ∃D ∈ C(T ), D ≤e M ∨ C.

Proof. The termination proof is trivial, because for all recursive calls, the
positive value |C|+ depth(T ) strictly decreases.

The proof of correctness requires two inductions, one for each implication.
In the direct direction the proof consists in going through the different cases
enumerated by the algorithm to verify that the requirements of the recursive
calls are indeed met and that it is possible to derive the desired property in all
cases. In the converse direction the different cases that validate the right-hand
side of the equivalence are considered and matched with the different cases of
the algorithm.

Direct implication: assuming isEntailede1(C, T,M) = >, then one of the
“return” instructions (except that of line 9) has been triggered and returned
true. Let us consider each of them in their order of appearance.

1. Line 2, T = �. In this case C(T ) = {�} and the property � ≤e M ∨ C
is verified.

2. Line 5, T 6= � and
∨

(l,T ′)∈T1

isEntailede1(C, T ′,M) returns true, with

T1 = {(l, T ′) ∈ T | l�M is a contradiction}. Thus there must exist a pair
(l, T ′) ∈ T1 such that isEntailede1(C, T ′,M,N ∨ l) returns true and l�M
is a contradiction. The preconditions of the corresponding recursive call
are trivially met. By induction ∃D ∈ C(T ′) s.t. D ∨ l ∨ N ≤e M ∨ C.
Considering that l ∨D ∈ C(T ), the result is verified in this case.

3. Line 14, T 6= �, C 6= � and
∨

(l,T ′)∈T2

isEntailede1(C \ {m1} , l.T ′,M ∨

m1) where T2 is defined at the previous line and m1 = min
<π
{m ∈ C} is

of the form u 6' v, with u � v. Thus there is a pair (l, T ′) ∈ T such that
l 6= u 6' w with u � w, and m1 ≤π l�M for which isEntailede1(C \
{m1} , l.T ′,M ∨ m1) returns true. Since M ∨ C = M ∨ m1 ∨ C \ m1

and M ∨ m1 is negative, the pre-conditions of this recursive call are
verified. By induction, its returning true entails ∃D ∈ C(l.T ′) such that
D ≤e M ∨m1 ∨C \m1. Since C(l.T ′) ⊆ C(T ), the clause D also belongs
to C(T ), whence the result in this case.

4. Line 17, m1 = u ' v, l = s ' t and
∨

(l,T ′)∈T3

isEntailede1(C, T ′,M) re-

turns true, with T3 = {(l, T ′) ∈ T | C�M∨lc contains a tautological literal}.
In this case there exists a pair (l, T ′) ∈ T and m2 ∈ C s.t. m2

c
�M∨lc is a

104



2. Algorithm isEntailed for e-subsumption and E1

contradiction thus, by Theorem 1.27, l2c |= M ∨ lc which is equivalent to
l |= M ∨ l2. In addition the preconditions of the corresponding recursive
call are met. Thus by induction D ∨ l ≤e M ∨ C with D ∈ T ′. Since
l ∨D ∈ C(T ), we have the desired result for this case.

Converse implication: Assuming there exists a D in C(T ) such that D ≤e
M ∨ C (where C, T and M verifying the algorithm’s pre-conditions), there are
several cases to consider.

— If T = �, then line 2 is reached and > is returned.
— Otherwise, D = l ∨D′ with (l, T ′) ∈ T and D′ ∈ C(T ′). Some sub-cases

must be distinguished.
— If C = � then we have l ∨ D′ ≤e M , thus also l ∨ D′ |= M . Since

M is negative, Theorem 1.27 ensures that l�M is a contradiction
thus (l, T ′) ∈ T1. Moreover D′ ∨ l ≤e M and the pre-conditions of
isEntailede1(C, T ′,M), called line 5, are verified. Thus by induc-
tion this call returns true, ensuring that isEntailede1(C, T,M) also
returns true at line 6.

— If C = m1 ∨ C ′ with m1 = min
<π
{m ∈ C} and if l is a negative lit-

eral, then by Proposition 5.12 either 1) l�M is a contradiction or 2)
l�M 6<π m1. Indeed, the conditions of application of this proposi-
tion are verified, since l |= M ∨ C and Proposition 1.3 ensures that
l�M |= M ∨ C.
1. If l�M is a contradiction then (l, T ′) ∈ T2, thus the recursive call

isEntailede1(C \ {m1} , l.T ′,M ∨ m1), line 14, returns true by
induction.

2. If l�M 6<π m1 then m1 is a negative literal (since l is negative
and by definition of <π), and since l ∨ D′ ≤e M ∨ C, we have
l∨D′ ≤e M∨m1∨C\{m1}. Here, by Proposition 5.13, (l, T ′) ∈ T2

thus the recursive call isEntailede1(C\m1, l.T
′,M∨m1) reached

line 14 returns true by induction (the preconditions are verified
and D ≤e M ∨ C = M ∨m1 ∨ C \ {m1}).

— The last case is when C = m1 ∨ C ′ with m1 = min
<π
{m ∈ C} and

l = s ' t is a positive literal. Ifm1 is a negative literal then (l, T ′) ∈ T2

and line 14 is reached as in the previous case. It returns true for the
same reason. Otherwise by Theorem 1.27 there exists a positive literal
l2 in C such that l2�M∨C∨s6't is a tautology, thus (l, T ′) ∈ T3. Since
the preconditions of the call isEntailede1(C, T ′,M) reached line 17
are verified, by induction it returns true.

Remark 5.15 Using the same reasoning as for isEntailedi0, it is possible to
estimate the complexity upper-bound of isEntailede1 to O(size(C(T )) + |C−| ×
|C(T )|). Although this bound is slightly better than the one for isEntailedi0
because |C| is replaced by |C−| in the upper-bound, in practice isEntailede1 is
the less efficient algorithm because all the comparisons and projection operations
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are more costly (due to the possible involvement of nested terms in these opera-
tions). Instead of assuming these operations can be performed in constant time
(which was fully legitimate in E0), if we add as a parameter d the maximal term
depth encountered during the execution of isEntailede1, a better approxima-
tion of the upper-bound complexity of this algorithm is O(d× |C| × size(C(T )) +
|C−| × |C(T )|), taking the projections and comparisons into account.
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Chapter 6

Pruning of a clausal tree

The second operation on clausal trees necessary to any saturation procedure
(see Definition ii.32) is the removal from a tree T of all the clauses D ∈ C(T )
that are redundant with respect to a given clause C, under the assumption
that C itself is not redundant with respect to any of the clauses stored in T .
The principle of this algorithm is very similar to that of the isEntailed fam-
ily of algorithms, it is a depth-first traversal of T while projections of literals
are performed. The main difference is that the roles of C and T are reversed
(the literals of a branch of T are projected on the literals of C). In addition,
when a redundancy is detected instead of returning > the algorithm cuts the
corresponding branch of T and goes on to explore the remaining branches.

1 Algorithm pruneEntailed for i-subsumption
and E0

The algorithm pruneEntailedi0 (Algorithm 6) deletes from a tree T all
clauses that are i-subsumed by C. We handle every branch (l, T ′) separately
and distinguish several cases according to the form of the minimal literal m1

in the clause C. If m1 = l then it is clear that it suffices to call the algorithm
recursively on C \ {m1} and T ′. This is done at line 9. T1 corresponds to the
set of branches of the form (m1, T

′) and Tout1 is the result of the recursive call
on those branches. The other branches that are likely to be i-subsumed by C
are grouped according to the polarity of l: in T2 if l is negative and in T3 if l is
positive. The l’s from branches in T2 are used to rewrite C before recursive calls
pursue their exploration resulting in Tout2, while Tout3 results from the pur-
sued exploration of the branches stored in T3. In the output tree, Tout1, Tout2
and Tout3 respectively replace T1, T2 and T3 while the other branches are left
as before. Branches ending with ∅ are systematically deleted from the output
tree. In this algorithm, the specificities of i-subsumption manifest themselves
in the way positive literals l such that (l, T ′) ∈ T1 are handled. To implement
e-subsumption instead, these positive literals must be handled differently from
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the negative ones. In pruneEntailede0 we have to replace line 9 by the se-
quence of instruction ensuring that T1 = {(l, T ′) ∈ T1 | l = m1 ∧ l is negative}
and T1p = {(l, T ′) ∈ T1 | l = m1 ∧ l is positive} then compute the set Tout1p =⋃
(l,T ′)∈T1p

pruneEntailede0(C \ {m1} , l.T ′) so that the literals l from T1p can

be used again in other projections if necessary. The branches remaining in T1

can be handled as in pruneEntailedi0 and line 14 the pair (T1p, Tout1p) must
be handled as the other (Ti, Touti) pairs.

Algorithm 6 pruneEntailedi0(C, T )

Require: C is a clause in relaxed normal form, T is a normal clausal tree and
isEntailedi0(C, T ) = ⊥.

Ensure: ∀D ∈ C(pruneEntailedi0(C, T )), C 6≤i D.
1: if C = � then
2: return ∅
3: end if
4: if T = � then
5: return T
6: end if
7: m1 ← min

<π
{m ∈ C}

8: T1 ← {(l, T ′) ∈ T | l = m1}
9: Tout1 ← {(l,pruneEntailedi0(C \ {m1} , T ′))|(l, T ′) ∈ T1}

10: T2 ← {(l, T ′) ∈ T |l = b 6' a where a ≺ b
∧(@c ≺ b,m1 = b 6' c) ∧ l <π m1}

11: Tout2 ← {(l,pruneEntailedi0(C[a/b], T ′))|(l, T ′) ∈ T2}
12: T3 ← {(l, T ′) ∈ T | l is positive ∧ l <π m1}
13: Tout3 ← {(l,pruneEntailedi0(C, T ′))|(l, T ′) ∈ T3}
14: return Tout1 ∪ Tout2 ∪ Tout3 ∪ (T \ (T1 ∪ T2 ∪ T3))

As with the previous algorithm, before proving its soundness, we must ensure
that the requirements of the algorithm are met by all the recursive calls. Note
that pruneEntailedi0(C, T ) is necessarily a normal clausal tree. Indeed, it
is clear that pruneEntailedi0 does not add or modify nodes or labels in T :
the only operations performed by the algorithm are replacing subtrees with
empty sets and removing elements. Thus, all the conditions in Definition 4.7 are
preserved.

Lemma 6.1 Let C be a clause in relaxed normal form and T a normal clausal
tree. All the clauses arguments of a recursive call in pruneEntailedi0(C, T )
are in relaxed normal form.

Proof. Since C is in relaxed normal form, clearly C \ {m} is also in relaxed
normal form for all literals m in C. The only cases that must be detailed are the
recursive calls of the form pruneEntailedi0(C[a/b], T ′) which are invoked for
(l, T ′) ∈ T2, i.e. where l is of the form b 6' a with a ≺ b; m1 = min<π {m ∈ C}
is not of the form b 6' c with b � c; and l <π m1.
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By induction on |C−|, we prove that if C is in relaxed normal form then so
is C[a/b]. If |C−| = 0 then all the literals in C and C[a/b] are positive. Thus
by Proposition 1.6(2), for all m ∈ C[a/b], m = m�C[a/b], and so C[a/b] is in
relaxed normal form. Otherwise, C contains at least one negative literal and by
definition of <π, m1 is necessarily negative (of the form u 6' v with u � v). By
definition, C \ {m1} is in relaxed normal form and by the induction hypothesis,
so is (C \ {m1})[a/b]. The literal m1[a/b] (denoted by m′1 in the rest of the
proof) verifies the following properties:

m′1 = u′ 6' v′ is not a contradiction. Since m1 = u 6' v is not a contra-
diction and u � b by hypothesis, u 6= b, thus u′ = u and v′ ≤ v < u;
hence u′ 6= v′ and m′1 cannot be a contradiction.

m′1 is unique in C[a/b]. For any negative literal m′2 ∈ (C \{m1})[a/b], the
corresponding literal m2 ∈ C \ {m1} is of the form s 6' t (where s � t),
with s � u, so m′1 <π m′2 (since u = u′). Thus, m′1 is unique in C[a/b].

m′1 = u′ 6' v′ with u′�C[a/b] = v′. Let D = C[a/b] and assume v′�D = w,
where w 6= v′. Since D[a/b] = D = C[a/b], by Proposition ii.4, D |=
a 6' b ∨ C. Since v′ 6= w, this means that ¬C 6|= v′ ' w and ¬C ∪
{a ' b} |= v′ ' w. Thus by Proposition 1.7, either ¬C |= v′ ' a,w ' b,
or ¬C |= v′ ' b, w ' a. But since C is in relaxed normal form, this
means that C should contain either b 6' w or a 6' w, and both cases are
impossible since b 6' a is minimal in C.

In addition, since u does not appear in any literal in C\{m1} and since a 6= u, for
all literals li ∈ C \{m1}, li�C[a/b] = li�(C\{m1})[a/b]. Thus, the properties verified
by induction by the literals of (C \ {m1})[a/b] are also verified in C[a/b].

Theorem 6.2 Let C be a clause in relaxed normal form and T be a normal
clausal tree. Then pruneEntailedi0(C, T ) is a normal clausal tree that con-
tains exactly the clauses D ∈ C(T ) such that C 6≤i D.

Proof. If D occurs in pruneEntailedi0(C, T ), then it necessarily also oc-
curs in C(T ), because pruneEntailedi0(C, T ) is obtained by removing some
branches from T . If C = �, then we have C |= D for every clause D, thus
any clause in C(T ) must be removed and in this case, the algorithm ensures
that pruneEntailedi0(C, T ) = ∅. Now assume that C 6= �. We prove that
C(pruneEntailedi0(C, T )) = {D ∈ C(T ) | C 6≤i D} by proving both inclusions.

Let D ∈ C(T ) such that C ≤i D. We show D 6∈ C(pruneEntailedi0(C, T ))
by induction. If D = � (i.e. T = �), then C must be a contradiction and since
C is in relaxed normal form, C = �. From now on, we assume that D 6= � and
C 6= �. Let m1 = min<π {li ∈ C}, l = min<π {m ∈ D} and D′ = D \ {l}. Since
T is a normal clausal tree and D ∈ C(T ), by definition there exists a unique
normal clausal tree T ′ such that (l, T ′) ∈ T and D′ ∈ C(T ′). There are several
cases to consider:

1. m1 <π l, in which case (l, T ′) ∈ T \ (T1 ∪ T2 ∪ T3) and no recursive call
is done,
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2. l is negative and m1 = l, in which case (l, T ′) ∈ T1 and the recursive call
pruneEntailedi0(C \ {m1}, T ′) is invoked,

3. l = b 6' a and m1 = b 6' c, where b � a, c, in which case (l, T ′) ∈
T \ (T1 ∪ T2 ∪ T3) and no recursive call is done,

4. l = b 6' a, l <π m1 and m1 is not of the form b 6' c with b � a, c, in
which case (l, T ′) ∈ T2 and pruneEntailedi0(C[a/b], T ′) is invoked,

5. l is positive and m1 = l, in which case (l, T ′) ∈ T1 and the recursive call
pruneEntailedi0(C \ {m1}, T ′) is invoked,

6. l is positive and l <π m1, in which case (l, T ′) ∈ T3 and the recursive call
pruneEntailedi0(C, T ′) is invoked.

These cover all the possible relations between l and m1.

1. Assume m1 <π l. We distinguish two cases depending on the polarity of
m1:
— If m1 = c 6' d with c � d, then m1�D is a contradiction by Theorem

1.21, so c�D = d�D. But for all l′ ∈ D, m1 <π l
′, and d�D = d since

D which is in relaxed normal form cannot contain a literal d 6' d�D
which would be smaller than m1. Therefore c�D = d and by definition
of a clause in normal form, m1 ∈ D.

— If m1 is positive, then m1�D ∈ D�D by Theorem 1.21, and because
D is in normal form, m1�D ∈ D. But since m1 <π l

′ for all l′ ∈ D,
D must only contain positive literals. Hence by Proposition 1.6(2),
m1�D = m1, and m1 ∈ D.

Thus, in both cases, m1 ∈ D, which is impossible since for all l′ ∈ D,
m1 < l ≤ l′.

2. Assume l = b 6' a with a ≺ b and m1 = l. In this case, the recursive call
pruneEntailedi0(C \{m1}, T ′) is invoked. Since C ≤i D, for any literal
m ∈ C such that m 6= m1:
— If m is negative, then m�D is a contradiction. By definition of a clause

in relaxed normal form, the constant a cannot appear in any literal
other than m1 in C, hence C \ {m1}�D = C \ {m1}�D′ . Thus m�D′ is
also a contradiction.

— Ifm is positive thenm�D ∈ D�D. But by definition of a normal clausal
tree, the positive literals of D�D are the same as those of D, D′ and
D′�D′ . Hence m�D′ ∈ D′�D′ .

This means that C \ {m1} ≤i D
′ and D′ 6∈ C(pruneEntailedi0(C, T ′))

by the induction hypothesis, thus D 6∈ C(pruneEntailedi0(C, T )).

3. If l = b 6' a and m1 = b 6' c, where b � a, c, then m1�D = a 6' c is not
a contradiction. Thus by Theorem 1.21, C 6≤i D, which contradicts our
hypothesis.

4. If l = b 6' a where a ≺ b, l <π m1 and m1 is not of the form b 6' c
with b � c, then pruneEntailedi0(C[a/b], T ′) is invoked. By Propo-
sition ii.4, C[a/b] ≤i D[a/b], hence C[a/b] ≤i D

′. By induction D′ 6∈
C(pruneEntailedi0(C, T ′)), hence D 6∈ C(pruneEntailedi0(C, T )).
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5. Assume l is positive and m1 = l. In this case, both C and D con-
tain only positive literals, thus for any m ∈ C such that m 6= m1, by
Proposition 1.6(2), m�D = m�D′ = m and D�D = D. Furthermore,
m ∈ D�D, hence m ∈ D′, and C \ {m1} ≤i D

′, so by induction D′ 6∈
C(pruneEntailedi0(C\{m1} , T ′)) andD 6∈ C(pruneEntailedi0(C, T )).

6. If l is positive and l <π m1, then the same reasoning as for the previous
point holds for any m ∈ C, including m1, thus C ≤i D

′ and D′ 6∈
C(pruneEntailedi0(C, T ′)) by induction.

Now assume that D ∈ C(T ) is such that C 6≤i D (this necessarily entails that
C 6= �). We show by induction thatD ∈ C(pruneEntailedi0(C, T )). IfD = �,
then T = � and pruneEntailedi0(C, T ) = T , proving the result. Otherwise,
as before we write m1 = min<π {m ∈ C}, l = min<π {l′ ∈ D}, D′ = D \ {l}
and we consider the unique couple (l, T ′) ∈ T . According to the definition of
i-subsumption, there are two reasons that can explain why C 6≤i D, denoted
respectively by (r1) and (r2). The first one (r1) is when C 6|= D, i.e. C 6≤e D,
meaning that there exists a literal m ∈ C that cannot be projected on D. The
second one (r2) is when C |= D but the mapping from C+ to D+ is not injective.
We consider the same cases as before:

1. If m1 <π l then (l, T ′) ∈ T \ (T1 ∪ T2 ∪ T3) and no recursive call is
done on T ′. Moreover T ′ 6= ∅ because D′ ∈ C(T ′), and this implies that
D ∈ C(pruneEntailedi0(C, T )).

2. Assume m1 = l where l = b 6' a and a ≺ b, so that (l, T ′) ∈ T1. If our
hypothesis is due to (r1) then m 6= m1 since m1 ∈ D, thus m ∈ C \{m1}
and m also cannot be projected on D′, because D′�D′ = (D�D) \ {l�D}.
In the case (r2) the hypothesis originates from the positive literals of
C and D and thus, the same problem occurs between C \ {m1} and
D′. In both cases, C \ {m1} 6≤i D′ and by the induction hypothe-
sis D′ ∈ C(pruneEntailedi0(C, T ′)). By definition, D ∈ C(Tout1) ⊆
C(pruneEntailedi0(C, T )).

3. If l = b 6' a and m1 = b 6' c, with b � a, c, then (l, T ′) ∈ T \ (T1 ∪
T2 ∪ T3) and as seen above, C 6≤i D. No recursive call is done, so
pruneEntailedi0(C, T ′) = T ′, and D ∈ C(pruneEntailedi0(C, T )).

4. Assume l = b 6' a, where a ≺ b, l <π m1 and m1 is not of the
form b 6' c where b � c, i.e. (l, T ′) ∈ T2. If (r1) then by Proposition
ii.4, C 6|= b 6' a ∨ D′ thus C[a/b] 6|= D′. Hence C[a/b] 6≤e D′. Oth-
erwise our hypothesis originates from (r2). Let mk1 and mk2 be two
literals in C+ that are mapped to the same literal lk in D+. In this
case mk1 ≡D mk2, hence by Proposition 2.42 mk1[a/b] ≡D′ mk2[a/b].
This means that the same mapping problem of type (r2) occurs be-
tween C[a/b] and D′, ensuring that C[a/b] 6≤i D

′. Hence in both cases,
by the induction hypothesis D′ ∈ C(pruneEntailedi0(C, T ′)) and so
D ∈ C(Tout2) ⊆ C(pruneEntailedi0(C, T )).

5. Assume l is positive and m1 = l so that (l, T ′) ∈ T1. For (r1) as in Point
2, m 6= m1, hence m ∈ C \ {m1}. Furthermore, all the literals in D are
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positive, thus D′�D′ = D \ {l}. This implies that m cannot be projected
on D′ and by Theorem 1.21, C \{m1} 6≤i D

′. For (r2) the situation is the
same as in Point 2 with just one additional possibility: let m2 be a literal
in C \ {m1} such that m1 ≡D m2, i.e. m1 and m2 are both mapped to l
in D. In this case, assuming that C \ {m1} ≤i D

′, we could extend the
injective mapping existing between the literals of C \ {m1} and those of
D′ into an injective mapping of the literals of C to those of D simply by
associating m1 to l (because m2 cannot be mapped to l 6∈ D′), ensuring
C ≤i D, a contradiction. Thus in this case as in the others C\{m1} 6≤i D

′

and by the induction hypothesis D′ ∈ C(pruneEntailedi0(C, T ′)) and
so D ∈ C(Tout1) ⊆ C(pruneEntailedi0(C, T )).

6. If l is positive and l <π m1 then (l, T ′) ∈ T3. In this case, wether the main
hypothesis originates from (r1) or (r2), it is clear that l has no relation to
the problem: since D contains only positive literals, the projection of D
on any literal is the identity, thus no mapping of the literals of C to those
of D, injective or not, involves l, i.e. C is mapped to D′. For this reason
C 6≤i D

′. By the induction hypothesis D′ ∈ C(pruneEntailedi0(C, T ′))
hence D ∈ C(Tout3) ⊆ C(pruneEntailedi0(C, T ))

Theorem 6.3 The procedure pruneEntailedi0 terminates in O(size(C(T ))).

The two algorithms isEntailedi0 and pruneEntailedi0 have a similar
structure in terms of recursive calls, hence they also have a similar complexity.
However, even in the worst case the recursive calls to pruneEntailedi0 always
reduce the tree, which is not the case in isEntailedi0. Thus these recursive calls
are not influenced by the number of literals in C, which ensure a slightly better
theoretical complexity for pruneEntailedi0 than for isEntailedi0: O(C(T ))
in the worst case.

2 Algorithm pruneEntailed for e-subsumption
and E1

The algorithm pruneEntailede1 is the adaptation of pruneEntailede0 to
E1 and e-subsumption. It presents exactly the same differences with its parent
that isEntailede1 does with isEntailede0 with an inversion of the roles of the
clause and the tree.

— The clause N stores the already used negative literals of the branch of T
that is being explored.

— The detection of contradictory literals occurs one recursive call later than
in pruneEntailede0 and thus needs to be done before the case T = �.

In this algorithm, the cases distinguished also depend on the form of the mini-
mum literal m1 in C. If m1�N is a contradiction then m1 is removed from C and
the exploration restarts on all the branches. Among the branches (l, T ′) where
l is negative, the ones that can possibly be e-subsumed by C are grouped in T1
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and the exploration advances to T ′ on these branches. Of these, only the ones
not entailed by C are recovered in Tout1. If m1 is negative and line 18 is reached,
the other branches (where l is positive) can be left untouched because the pro-
jection m1�N is not a contradiction thus it is clear that for D ∈ C({(l, T ′)}),
C 6≤e D ∨N . On the contrary, if m1 is positive, these branches have to be ex-
plored further and thus are grouped in T2. Only the ones verifying the property
are recovered in Tout2. As in the algorithm pruneEntailedi0, the branches
ending with ∅ are systematically deleted from the output tree. An interesting
feature of pruneEntailede1 is that several positive literals of C can be deleted
at once in each recursive call that define Tout2, as illustrated in Example 6.4.

Algorithm 7 pruneEntailede1(C, T, N)

Require: T is a clausal-tree in normal form, C and N are clauses in normal
form.

Ensure: C(Tout) = {D ∈ C(T ) | C 6≤e D ∨N}, where
Tout = pruneEntailede1(C, T, N).

1: if C = � then
2: return ∅
3: end if
4: select m1 ∈ C s.t. m1�N = min

<π
{m�N |m ∈ C}

5: if m1�N is a contradiction then
6: return pruneEntailede1(C \ {m1} , T, N)
7: end if
8: if T = � then
9: return T

10: end if
11: T1 ←

{
(l, T ′) ∈ T | l = u 6' v ∧ l ≤π m1�N

}
12: Tout1 ← {(l,pruneEntailede1(C, T ′, N ∨ l)|

(l, T ′) ∈ T1}
13: if m1 is positive then
14: T2 ← T \ T1

15: Tout2 ← {(l,pruneEntailede1(C \ Ll, T ′, N))|
(l, T ′) ∈ T2 ∧ Ll = {m ∈ C | l�N∨mc is tautological}}

16: return Tout1 ∪ Tout2
17: else
18: return Tout1 ∪ (T \ T1)
19: end if

Example 6.4 The sequence of recursive calls of pruneEntailede1 presented
below illustrates the fact that several positive literals of C can be projected and
deleted from subsequent calls at the same time. Let C = c ' b ∨ f(c) ' f(a)
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and T = {(b 6' a, {(f(c) ' f(a),�)})} where a ≺ b ≺ c ≺ f(a) ≺ f(c).

1 pruneEntailede1(C, T,�)
2 pruneEntailede1(C, {(f(c) ' f(a),�)} , b 6' a) (called at line 12)
3 pruneEntailede1(�,�, b 6' a) (called at line 15)
4 ∅ (returned at line 2)

In the main call (1), C 6= � and at line 4 m1 is set to c ' b. Since m1�N

cannot be a contradiction (it is positive) and T 6= �, line 11 is reached and
T1 is set to {(b 6' a, {(f(c) ' f(a),�)})}, triggering the nested call (2) at line
12. In this call again C 6= �, m1 is positive and T 6= �, but this time T1 = ∅
and at line 14 T2 is set to {(f(c) ' f(a),�)}. For the third nested call, the
set Lf(c)'f(a) defined line 15 is computed. This set contains both literals of C,
because f(c) ' f(a)�b6'a∨c6'b = f(a) ' f(a) and f(c) ' f(a)�b6'a∨f(c) 6'f(b) =

f(a) ' f(a) are both tautologies. Finally ∅ is returned because C = �. ♣

Theorem 6.5 Let C and N be clauses in normal form and T be a clausal
tree in normal form verifying the preconditions of pruneEntailede1. Then
the call pruneEntailede1(C, T,N) always terminates. Moreover if we write
Tout = pruneEntailede1(C, T,N) then C(Tout) = {D ∈ C(T ) | C 6≤e D ∨N}.

Proof. The termination of this algorithm is ensured by the following argument:
for all recursive calls, the value of |C|+ depth(T ) strictly decreases.

The principle of the proof of correctness of pruneEntailede1 is identical to
that of Theorem 5.14. Let D be a clause in C(Tout).

— If C = � then line 2 was reached to generate Tout. Then Tout = ∅, whence
the result in this case.

— Otherwise, C is of the form m1 ∨ C ′, where m1 is such that m1�N =
min
<π
{m�N |m ∈ C}.

— Ifm1�N is a contradiction then Tout is returned at line 6. By induction
C \ {m1} 6≤e D ∨N thus C 6≤e D ∨N .

— Otherwise if T = � then Tout = T and m1 6|= N by Theorem 1.27,
hence C 6≤e N (and D = �).

— Else m1�N is not a contradiction and T 6= � thus D = l ∨D′, where
(l, T ′out) ∈ Tout and D′ ∈ C(T ′out) such that one of the following holds:
1. (l, T ′out) ∈ Tout1, in which case l = u 6' v, m1�N � l and T ′out =

pruneEntailede1(C, T ′, N ∨ l);
2. l and m1 are positive literals and (l, T ′out) ∈ Tout2 in which case
T ′out = pruneEntailede1(C \ Ll, T ′, N) with (l, T ′) ∈ T and
Ll ← {m ∈ C | l�N∨mc is tautological};

3. m1 is negative andm1�N ≺ l in which case T ′out = T ′ with (l, T ′) ∈
T \ T1.

In all cases m1 6|= N by Theorem 1.27. In the first case, the pre-
conditions of the recursive call of line 12 are respected, therefore
C 6≤e D′ ∨ l ∨ N . In the second case, the preconditions of the re-
cursive call line 15 (reached because m1 is positive) are verified and
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by induction C \ Ll 6≤e D′ ∨ N thus C 6≤e D′ ∨ l ∨ N . Finally in
the last case, by Proposition 1.15 and Theorem 1.27, m1 6|= D thus
C 6|= N ∨D.

For the second inclusion, let D be a clause in C(T ) such that C 6≤e D ∨N .
— If C = �, then C entails all clauses thus Tout must be empty, which is

the case at line 2.
— Otherwise C is of the form m1 ∨ C ′ where m1 is such that m1�N =

min
<π
{m�N |m ∈ C}.

— If m1�N is a contradiction then m1 |= N by Theorem 1.27 and Tout
is returned at line 6. Since C 6≤e D∨N , C \ {m1} 6≤e D∨N , thus by
induction D ∈ C(Tout).

— If m1�N is not a contradiction then either T = �, in which case
Tout = T and the result is straightforward, or the same three cases
as in the other direction of the proof can be studied separately (with
D = l ∨D′, (l, T ′) ∈ T and D′ ∈ C(T ′)).
1. If l is negative and m1�N � l, then (l, T ′) ∈ T1. Set T ′out1 =

pruneEntailede1(C, T ′, N ∨ l), as in line 12. By induction D′ ∈
C(T ′out1) thus D ∈ C(Tout1).

2. If l and m1 are both positive literals then the execution path goes
through line 15. The clause Ll = {m ∈ C | l�N∨mc is tautological}
is such that Ll |= N by Theorem 1.27. The preconditions of the
recursive call pruneEntailede1(C \ Ll, T ′, N) = T ′out2 are re-
spected and C \Ll 6≤e D

′∨N since C 6≤e D∨N , thus by induction
D′ ∈ C(T ′out2) and D ∈ C(Tout2).

3. Finally, if m1 is negative and m1�N ≺ l then (l, T ′) ∈ T \ T1 and
line 18 is triggered, thus D ∈ C(Tout).
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Chapter 7

Constrained clausal tree
manipulations

The algorithms considered in the last two chapters can be adapted to c-
clauses. This process is detailed in the current chapter for E1 only. The principle
is exactly the same in E0 thus we do not present this case here. The redundancy
detection associated to the cSP calculus (the one that manipulates c-clauses) is
c-subsumption, an extension of e-subsumption to c-clauses (see Definition 3.10)
that involves three comparisons. The test [C |X ] ≤c [D | Y] returns true iff the
following holds:

1. C ≤e D,

2. C � D,

3. X ⊆ Y.

Thus testing the c-subsumption of c-clauses in a c-tree (clausal tree for c-clauses,
defined Section 1 of this chapter) can begin by using one of the isEntailed
algorithms presented in the previous chapters and when it returns true the
second and third tests are checked. Similarly, the action of pruning a c-tree
according to a c-clause can begin with a pruneEntailed algorithm. Note that
in both cases (testing and pruning) although they compare the same clause, the
two first steps cannot be merged (at least in our setting) because the clauses
stored in c-trees have their literals sorted according to the ordering <π and not
≺. Thus, it is necessary to have recovered all the literals of such clauses before
performing the second comparison. This means also that these literals cannot
be discarded while going through a c-tree or a c-clause during the algorithms
execution. Since in c-trees the constraints are stored below the corresponding
clauses, the third step has to be performed last. These observations are applied
to isEntailed and pruneEntailed respectively in the two sections of this
chapter following the introduction of c-trees just below.



1. Constrained clausal trees

1 Constrained clausal trees
The storage of constrained clauses in E1 and E0 is similar to that of standard

clauses (see Chapter 4). A main normal clausal tree is used to store the clausal
part of constrained clauses and at each leaf of this tree, another tree is appended
to store the different constraints associated to the same clause.

Definition 7.1 A constraint tree is defined inductively in the same way as a
clausal tree, but it represents constraints instead of clauses. The set of con-
straints represented by a constraint tree T is denoted C′c(T ) and is inductively
defined by:

C′c(T ) =


{>} if T = �,⋃

(l,T ′)∈T

 ⋃
X∈C′c(T ′)

X ∧ l

 otherwise.
♦

Definition 7.2 A constrained clausal tree or c-tree is inductively defined as
either a set of pairs of the form (l, T ′) where T ′ is a c-tree, or the concatenation
of a single pair (�, T ′) where T ′ is a constraint tree with a (possibly empty) set
of pairs of the form (l, T ′) where T ′ is a c-tree. In addition, a c-tree T has to
respect the following conditions:

— the label � occurs exactly once in any path from the root of T to a leaf,
— for every (l, T ′) ∈ T ,

— for all l′ appearing in T ′, l <π l′,
— there is no clausal tree T ′′ such that T ′′ 6= T ′ and (l, T ′′) ∈ T ,

The set of clauses represented by a c-tree T is denoted by Cc(T ) and defined
inductively as follows:

Cc(T ) =


∅ if T = ∅

{[� |X ] | X ∈ C′c(T ′)} if T = {(�, T ′)},
{[l ∨ C |X ] | [C |X ] ∈ Cc(T ′)} if T = {(l, T ′)},

Cc(T1) ∪ Cc(T2) if T = T1 ∪ T2, T1 6= ∅ and T2 6= ∅.
♦

Example 7.3 The structure T in Figure 11 is a constrained clausal tree in E1

with the term order a ≺ b ≺ c ≺ g(c) ≺ g(e) ≺ f(c) ≺ f(d). Once more the
labels are associated with the nodes rather than with the edges leading to them.

Remark 7.4 As mentioned in the introduction, the order in which the tests are
performed is linked to the c-tree data structure: the tests on the clausal part are
performed first and only then the test on the constraints (stored in constraint
trees at the leaves of the c-tree) are performed. It is possible to reverse the storage
order of c-clauses (redefining c-trees by appending clausal trees at the leaves of
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T

b ' a

�

f(a) ' c

g(b) 6' a

�

f(d) 6' f(c)

g(e) ' cc ' a

f(a) ' c

�

The clauses in Cc(T ) are:

[g(b) 6' a ∨ f(a) ' c |>]
[g(b) 6' a |f(d) 6' f(c) ∧ c ' a]
[g(b) 6' a |f(d) 6' f(c) ∧ g(e) ' c]
[b ' a |f(a) ' c]

♣

Figure 11 – A constrained clausal tree in E1

constraint trees) with the effect that the third test has to be performed before the
two other tests.

Whether or not this modification generates a gain in efficiency has not been
experimentally tested and remains as future work. Nevertheless, the reason be-
hind our choice for the c-tree data structure is twofold. First, given the form of
the cSP rules, we intuitively expect a greater sharing of literals in the clausal
parts of the generated c-clauses than in the constraints. Second, once the sat-
uration process is completed, this structure renders the recovery of the prime
implicates easier. They are all stored in the sub-tree (�, T ′) from the root be-
cause they have an empty clausal part. With the converse ordering, it would be
necessary to go through all the constraints to test whether the appended clausal
tree is empty.

2 Algorithm isEntailed for c-trees

As explained in the introduction, the main modification necessary to turn
the algorithm isEntailede1 into isEntailedcons (Algorithm 8) for c-trees and
c-clauses, is to launch the steps two and three of c-subsumption as soon as the
e-subsumption of the clausal part of the c-clauses is confirmed, i.e. modify line
1 of isEntailede1, replacing it as in isEntailedcons. The rest of Algorithm 8
contains only the minor adaptations described in the introduction (especially
the storage of “used” literals in M for C and in N for T through the recursive
calls), thus we focus solely on the changes occurring in this first line. This part of
the algorithm addresses the case where the clausal part of the tree is empty (or
rather where the clausal part of a branch of the tree has already been explored
and is currently stored in the variable N). The two subsequent tests composing
c-subsumption are added at this line. Note that the �-test is reduced to a simple
comparison between standard clauses (since the corresponding tree branch has
already been explored), hence we do not detail the corresponding algorithm.
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In contrast, the ⊆-test requires going through the constraint tree associated to
the clausal branch that has just been explored. This test (detailed in Algorithm

Algorithm 8 isEntailedcons([C |X ], T, M, N)

Require: T is a c-tree in normal form, M ∨ C and N are clauses in normal
form such that N |= M ∨ C.

Ensure: isEntailedcons([C | X ], T, M, N) = > iff ∃[D | Y] ∈ Cc(T ), [D ∨N |
Y] ≤c [M ∨ C |X ].

1: if (�, T ′) ∈ T ∧ (N �M ∨ C) ∧ isIncluded(X , T ′) then
2: return >
3: end if
4: T1 ← {(l, T ′) ∈ T | l�M is a contradiction}
5: if

∨
(l,T ′)∈T1

isEntailedcons([C |X ], T ′, M, N ∨ l) then

6: return >
7: end if
8: if C = � then
9: return ⊥

10: end if
11: m1 ← min

<π
{m ∈ C}

12: if m1 is of the form u 6' v, with u � v then
13: T2 ← {(l, T ′) ∈ T | l�M 6<π m1 and @w, (l�M = u 6' w, with u � w)}
14: return

∨
(l,T ′)∈T2

isEntailedcons([C \ {m1}|X ], l.T ′, M ∨m1, N)

15: else
16: T3 ← {(l, T ′) ∈ T | C�M∨lc contains a tautological literal}
17: return

∨
(l,T ′)∈T3

isEntailedcons([C |X ], T ′, M, N ∨ l)

18: end if

9: isIncluded) is a lot simpler than isEntailedcons but its principle is the
same, a depth-first traversal of the tree with recursive calls deleting the literals
one after the other until the inclusion becomes obvious (or obviously false). In
isIncluded the branches (l, T ′) ∈ T are grouped and dealt with in accordance
with their relation to m1 = min

<π
{m ∈ X}. If l = m1, only the inclusion of a

branch of T ′ in X \ {m1} is tested (line 9). Otherwise if l <π m1 clearly no
branch of l.T ′ is included in X but if l <π m1 it is possible that one of these
branches is included in X \ {m1}, which is tested line 13.

The correctness of isEntailedcons is stated in Theorem 7.5. The correspond-
ing proof is not given due to its similarity with the proof of Theorem 5.14 stating
the correctness of isEntailede1.

Theorem 7.5 If T is a c-tree in normal form, M ∨ C and N are clauses in
normal form then the call isEntailedcons([C | X ], T, M, N) terminates and
isEntailedcons([C | X ], T, M, N) = > iff ∃[D | Y] ∈ Cc(T ), [D ∨ N | Y] ≤c
[M ∨ C |X ].
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Algorithm 9 isIncluded(X , T )

Require: T is a constraint tree, X is a constraint.
Ensure: isIncluded(X , T ) = > iff ∃Y ∈ C′c(T ), Y ⊆ X .
1: if T = � then
2: return >
3: end if
4: if X = > then
5: return ⊥
6: end if
7: m1 ← min

<π
{m ∈ X}

8: T1 ← {(l, T ′) ∈ T | l = m1} // T1 is of size 0 or 1
9: if

∨
(l,T ′)∈T1

isIncluded(X \ {m1} , T ′) then

10: return >
11: end if
12: T2 ← {(l, T ′) ∈ T |m1 <π l}
13: return

∨
(l,T ′)∈T2

isIncluded(X \ {m1} , l.T ′)

The correctness and termination of isIncluded are stated in the following
proposition.

Proposition 7.6 Let X be a constraint and T be a constraint tree. The call
to isIncluded(X , T ) terminates and isIncluded(X , T ) = > iff there exists a
constraint Y ∈ C′c(T ) such that Y ⊆ X .

Proof. The termination of isIncluded(X , T ) is due to the fact that |X | de-
creases at each recursive call. To prove the equivalence property, we consider
each implication by induction.

Let isIncluded(X , T ) = >. If T = � then C′c(T ) = {>} and the direct
implication is verified in this case because > ⊆ X . Otherwise, there exists a
literal m1 = min

<π
{m ∈ X} because X is not empty or line 5 would be triggered.

If the call terminates line 10 then there exists a pair (m1, T
′) ∈ T such that

isIncluded(X \ {m1} , T ′) returns true. By induction there exists Y ∈ C′c(T ′)
such that Y ⊆ X \{m1}, hence Y ∧m1 ⊆ X . Finally, it is also possible that line
13 returns >, in which case there exists a pair (l, T ′) ∈ T such that m1 <π l
(i.e. (l, T ′) ∈ T2) and isIncluded(X \{m1} , l.T ′) returns >. Then by induction
there exists a constraint Y ∈ C′c(l.T ′) such that Y ⊆ X \{m1}, hence Y ∈ C′c(T )
and Y ⊆ X .

For the converse implication, let us assume that T and X are such that
there exists a constraint Y ∈ C′c(T ) where Y ⊆ X . If X = > then Y = >, thus
T = � by definition of a constraint tree and line 2 is triggered. As expected,
> is returned. Otherwise X is not empty and we define m1 = min

<π
{m ∈ X}. If

Y is empty, line 2 is triggered again and we can conclude. Let us assume that
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Y contains at least a literal. We define l1 = min
<π
{l ∈ Y}. Given the ordering

constraints imposed on constraint trees, necessarily (l1, T
′) ∈ T where Y\{l1} ∈

C′c(T ′).
— If l1 = m1 then (l1, T

′) ∈ T1 and Y \ {l1} ⊆ X \ {m1}. Hence by induc-
tion isIncluded(X \ {m1} , T ′) returns >. Since this call is made line 9,
isIncluded(X , T ) also returns >.

— If l1 <π m1 then Y 6⊆ X , raising a contradiction with our hypothesis.
— Ifm1 <π l1 then (l1, T

′) ∈ T2 and Y ⊆ X\{m1}. By induction isIncluded(X\
{m1} , l1.T ′) returns >, thus if line 13 is triggered (the only alternative
being that line 10 has been reached, which is enough to validate the
converse implication), then isIncluded(X , T ) returns > as desired.

3 Algorithm pruneEntailed for c-trees
Converting the algorithm pruneEntailede1 into pruneEntailedcons (Al-

gorithm 10) involves the same mechanism as for isEntailedcons in the previous
section. The �- and ⊆-tests are concatenated to the one using e-subsumption
at line 2 and the rest of the algorithm is modified to recover used literals in
M and N through the recursive calls. However, in this case the �-comparison
involves a c-tree and a clause instead of two clauses, thus we detail its process in
pruneInf (Algorithm 11). The inclusion test (Algorithm 12: pruneIncluded)
is launched at line 5 of Algorithm 11.

The only role of the algorithm pruneInf is to complete the exploration of
each clausal branch of the c-tree so that the �-comparison between these and
C can be done (as explained in the previous section, the incompatibility of <π
and � prevents the �-test to be done directly on the tree). In practice, once the
test C 6� N fails, it also fails in all the subsequent recursive calls. Thus a sub-
procedure containing only the lines 1 and 5 is used from this point, producing
the same result more efficiently.

pruneIncluded can be seen as a simpler version of pruneEntailedcons,
where inclusion is tested instead of e-subsumption. It is the pendant of the
algorithm isIncluded used in isEntailedcons, and functions under the exact
same principle but with a swap in the roles of the constraint and the constraint
tree.

The correction of pruneEntailedcons is stated in Theorem 7.7.

Theorem 7.7 If T is a c-tree in normal form, M ∨ C and N are clauses
in normal form, M |= N and isEntailedcons([C ∨ M | X ], N.T , �, �) =
⊥ then Cc(Tout) = {[D |Y] ∈ Cc(T ) | [C ∨M |X ] 6≤c [D ∨N |Y]}, with Tout =
pruneEntailedcons([C |X ], T, M, N).

The corresponding proof is omitted due to its similarity with that of The-
orem 6.5. The termination and correction results concerning pruneInf and
pruneIncluded are stated respectively in Proposition 7.8 and Proposition 7.9.
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Algorithm 10 pruneEntailedcons([C |X ], T, M, N)

Require: T is a c-tree in normal form, M ∨ C and N are clauses in normal
form, M |= N and isEntailedcons([C ∨M |X ], N.T , �, �) = ⊥.

Ensure: Cc(Tout) = {[D |Y] ∈ Cc(T ) | [C ∨M |X ] 6≤c [D ∨N |Y]}, with Tout =
pruneEntailedcons([C |X ], T, M, N).

1: if C = � then
2: return pruneInf([M |X ], T, N)
3: end if
4: select m1 ∈ C s.t. m1�N = min

<π
{m�N |m ∈ C}

5: if m1�N is a contradiction then
6: return pruneEntailedcons(C \m1, T, M ∨m1, N)
7: end if
8: T� ← {(�, T ′) ∈ T}
9: T1 ←

{
(l, T ′) ∈ T \ T� | l = u 6' v ∧m1�N � l

}
10: Tout1 ← {(l,pruneEntailedcons(C, T ′, M, N ∨ l)|

(l, T ′) ∈ T1 ∧ pruneEntailedcons(C, T ′, M, N ∨ l) 6= ∅}
11: if m1 is positive then
12: T2 ← T \ (T1 ∪ T�)
13: Tout2 ← {(l,pruneEntailedcons(C \ Ll, T ′, M ∨ Ll, N ∨ l))|

(l, T ′) ∈ T2 ∧ Ll = {m ∈ C | l�N∨m is tautological}∧
pruneEntailedcons(C \ Ll, T ′, M ∨ Ll, N ∨ l) 6= ∅}

14: return Tout1 ∪ Tout2 ∪ T�
15: else
16: return Tout1 ∪ T \ T1

17: end if

Proposition 7.8 Let [C | X ] be a c-clause, N be clauses and T be a c-tree,
all three in normal form. The call pruneInf([C | X ], T,N) terminates and
the output c-tree Tout = pruneInf([C | X ], T,N) is such that Cc(Tout) =
{[DT |YT ] ∈ Cc(T ) | (C 6� DT ∨N) ∨ YT 6⊆ X}.

Proof. We proceed by double inclusion and induction. Let [D |Y] ∈ Cc(Tout).
If D = � then:

— if C 6� N then Tout is returned at line 3 and C 6� D ∨N ,
— otherwise Tout is generated at line 5 and (�,pruneIncluded(X , T ′)) ∈

Tout where (�, T ′) ∈ T and Y ∈ C′c(T ′); in this case, Proposition 7.9
ensures that X 6⊆ Y.

IfD = l∨D′ where l <π D′ then [D |Y] ∈ Tout1 and thusD′ ∈ Cc(pruneInf([C |
X ], T ′, N ∨ l)). By induction, either C 6<π D′ ∨ N ∨ l, i.e. C 6<π D ∨ N , or
X 6≤e Y justifying the direct inclusion. Let [D |Y] ∈ Cc(T ) such that C 6� D∨N
or Y 6⊆ X . If D = � then [D |Y] ∈ Cc((�, T ′)) ⊆ Cc(T ).

— If C � N then line 5 is reached and by hypothesis X 6⊆ Y thus Y ∈
pruneIncluded(X , T ′) ensuring that [D |Y] ∈ Cc(Tout).

— Otherwise line 3 is reached and again [D |Y] ∈ Cc(Tout).
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Algorithm 11 pruneInf([C |X ], T,N)

Require: T is a clausal-tree in normal form, C in a clause in normal form, N
is a clause in normal form.

Ensure: Cc(Tout) = {[D | Y] ∈ Cc(T )|(C 6� D ∨ N) ∨ X 6⊆ Y}, where Tout =
pruneInf([C |X ], T,N).

1: Tout1 ← {(l,pruneInf([C |X ], T ′, N ∨ l))|(l, T ′) ∈ T}
2: if C 6� N then
3: return Tout1 ∪ {(�, T ′) | (�, T ′) ∈ T}
4: else
5: return Tout1 ∪ {(�,pruneIncluded(X , T ′)) | (�, T ′) ∈ T}
6: end if

Algorithm 12 pruneIncluded(X , T )

Require: T is a constraint tree, X is a constraint.
Ensure: C′c(Tout) = {Y ∈ C′c(T )|X 6⊆ Y}, with Tout = pruneIncluded(X , T ).
1: if X = > then
2: return ∅
3: end if
4: if T = � then
5: return T
6: end if
7: m1 ← min

<π
{m ∈ X}

8: T1 ← {(l, T ′) ∈ T | l = m1}
9: Tout1 ← {(l,pruneIncluded(X \ {m1} , T ′) | (l, T ′) ∈ T1}

10: T2 ← {(l, T ′) ∈ T \ T1 | l <π m1}
11: Tout2 ← {isIncluded(X \ {m1} , l.T ′) | (l, T ′) ∈ T2}
12: return Tout1 ∪ Tout2 ∪ (T \ (T1 ∪ T2))

If D = D′ ∨ l where l <π D′ and (l, T ′) ∈ T then either C 6� D ∨ N thus
C 6� D′∨N∨l, or X 6⊆ Y. In both cases by induction [D′ |Y] ∈ Cc(pruneInf([C |
X ], T ′, N ∨ l)) thus [D |Y] ∈ Cc(Tout1) ⊆ Cc(Tout).

Proposition 7.9 Let T be a constraint tree and X be a constraint. The call
pruneIncluded(X , T ) terminate and C′c(Tout) = {Y ∈ Cc(T ) | X 6⊆ Y} where
Tout = pruneIncluded(X , T ).

Proof. Note that the termination of pruneIncluded is the consequence of
the strict decrease of |X | between each recursive call.

Let Tout = pruneIncluded(X , T ). We show by induction that C′c(Tout) ⊆
{Y ∈ Cc(T ) | X 6⊆ Y}. Let Y ∈ C′c(Tout). If X = > then Tout = ∅ thus Y does not
exists. Otherwise letm1 = min

<π
{m ∈ X} and let Y = l∧Y ′ where (l, T ′out) ∈ Tout

and Y ′ ∈ C′c(T ′out). There are three cases to examine:
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— If Y ∈ C′c(Tout1) then T ′out = pruneIncluded(X \ {m1} , T ′) where
(l, T ′) ∈ T1, hence l = m1 and Y = m1∧Y1. By the induction hypothesis
Y ′ ∈ C′c(T ′) and X \ {m1} 6⊆ Y ′ thus Y ∈ C′c(T1) ⊆ C′c(T ) and X 6⊆ Y.

— If Y ∈ C′c(Tout2) then Tout2 = pruneIncluded(X \ {m1} , l.T ′) where
(l, T ′) ∈ T2. By the induction hypothesis Y 6⊆ X \ {m1}, thus Y 6⊆ X .

— If Y ∈ C′c(T \ (T1 ∪ T2)) then Y ∈ C′c(l.T ′) ⊆ C′c(T ) where (l, T ′) ∈
(T \ (T1 ∪ T2)) and m1 <π l by definition of T1 and T2, ensuring that
X 6⊆ Y.

To prove the converse inclusion, let us consider a constraint Y ∈ {Y ∈
Cc(T ) | X 6⊆ Y}. As in the previous direction, if X = > then {Y ∈ Cc(T ) | X 6⊆
Y} = ∅ and in this case, Tout = ∅ is returned line 2. If X 6= > and Y = >
then by definition of a constraint tree T = � and Tout = T is returned line 5,
thus Y ∈ C′c(Tout). Otherwise, let m1 = min

<π
{m ∈ X} and (l, T ′) ∈ T such that

Y ∈ Cc(l.T ′). The same three cases as in the converse implication appear:
— If l = m1 then X \ {m1} ⊆ Y ′ where Y = l ∧ Y ′ and (l, T ′) ∈ T1 thus by

the induction hypothesis (l, T ′) ∈ Tout1.
— If l <π m1 then X 6⊆ Y ′ and (l, T ′) ∈ T2 hence by the induction hypoth-

esis (l, T ′) ∈ Tout2.
— If m1 <π l then Y ∈ T \ (T1 ∪ T2).

In the three cases Y ∈ C′c(Tout).

4 Summary
All the algorithms exposed in this part of the thesis present the same un-

derlying structure, allowing a depth-first traversal of the tree manipulated. The
isEntailed family of algorithms allows to detect the redundancy of a clause
to the ones stored in a clausal tree, while the pruneEntailed family, as its
name indicates, regroups the algorithms that cut branches of a tree if they are
redundant to a given clause. In E0 we used i-subsumption (and e-subsumption
succinctly) as redundancy criterion while we focused on e-subsumption in E1.
For c-clauses, c-subsumption was used. All the algorithms were presented in
an abstract way. Concrete implementations should benefit from technical im-
provements such as a lazy evaluation of expressions. Such details, although they
cannot improve the overall worst-case complexity of an algorithm, can make a
real difference in terms of execution time in many cases.
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Part III

Experimental results



This part of the thesis introduces the programs that were developed dur-
ing the Ph.D. to evaluate the performance of the algorithms described in the
first two parts. These programs are described in detail in Chapter 8. The tools
implementing other algorithms, used as reference in the experiments and the
benchmarks are presented Chapter 9. Finally, Chapter 10 exposes the different
experiments and their results.
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Chapter 8

Implementation details

Two programs have been realized in the OCaml language 1 during this PhD.
The first one, namely Kparam, implements the K-paramodulation calculus and
its variants, as well as a first version of cSP0, all of them restricted to E0. The
second one, cSP, implements cSP in E1. The code is in an archive available at
http://lig-membres.imag.fr/tourret/index.php?&tab=3&slt=tools.

Both programs accept a subset of the TPTP syntax v5.4.0.0 [75] in their
inputs, the restriction to purely equational flat ground CNF formulæ for Kparam
extended to non-flat formulæ for cSP. This subset is presented in the appendix B.
Every clause begins with the keyword ’cnf’ and ends with a point. In between are
parentheses, that contain three fields. The first one is the identifier of the clause.
The second one is its type (e.g. axiom, hypothesis, definition...). Both fields
have no impact on the execution of Kparam and cSP. The third field contains
the clause itself. The disjunctive operator is represented by ’|’, equations use
’=’ and disequations use ’!=’. Terms are represented in the natural way (e.g. ’a’,
’f(a)’) and, in Kparam, functional terms like ’f(a)’ are not accepted. Here is an
example of (non-flat) input.

Example 8.1 cnf(cl1,plain,f(a)!=b|a=c).
cnf(cl2,plain,g(c,a)=f(b)|g(c,b)=d).

It represents the formula (f(a) 6' b∨ a = c)∧ (g(c, a) ' f(b)∨ g(c, b) ' d).♣

1 Kparam

To distinguish between the different calculi implemented in Kparam, we use
the following notations:

— Kparam_s refers to the simple K-paramodulation calculus (see page 46).
It is invoked with the -b option.

— Kparam_u refers to the K-paramodulation calculus with rewriting before-
hand using unordered paramodulation (see page 56). It is invoked with

1. http://ocaml.org/

http://lig-membres.imag.fr/tourret/index.php?&tab=3&slt=tools
http://ocaml.org/
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the -up and -ur options.
— Kparam_r refers to the K-paramodulation calculus with rewriting on the

fly (see page 64). It is invoked with the -o2 and -o5 options.
— cSP_flat refers to the constrained Superposition calculus restricted to

E0, i.e. cSP0 (see page 78). It is invoked with all the -cs* options.

1.1 Implementation details

Kparam contains several features that are worth mentioning. Some of them
are common to all the variants.

Terms and ordering. The first notable feature of Kparam is the way it han-
dles terms. When an input file is parsed, terms are ordered as they appear. This
produces a strict order because all the terms in E0 are constants.

Example 8.2 The following TPTP input:

cnf(cl1,plain,b!=a|c=d).
cnf(cl2,plain,a=e).

induces the ordering b < a < c < d < e in Kparam. ♣

Due to this fact, it is possible to associate a unique integer with each term, in
such a way that comparing two terms amounts to comparing the corresponding
integers. Thanks to the use of the aforementioned ordering, the term-integer
association is done at parse time and Kparam can immediately forget the terms
original names. In Kparam the type of terms is thus:

type term = T of i n t

This lightens considerably the following operations. The terms’ original names
are stored in an array so that they can be recovered at the time of the output
file generation.

Normalization. Another interesting feature of Kparam is the normalization
of clauses. To realize this operation, a Union-Find data structure (implemented
in OCaml over a persistent array data structure [14]) is used to compute the
equivalence classes corresponding to the clause. First Kparam scans the literals
contained in the clause. If the literal under consideration is positive then Kparam

stores it in a list. Otherwise Kparam recovers the terms in the (negative) literal
and fuses them in the Union-Find data structure where this merge is propagated
appropriately. Once this is done, it is possible to query the Union-Find data
structure for the representative of any term in the clause. The negative literals
in normal form are directly extracted from this data structure and the positive
ones are rewritten using the term representatives. Then the Union-Find data
structure is discarded.
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Storage of clauses. Normal clausal tree data structures (see Definition 4.7)
are used to represent both the waiting and processed sets. This allows Kparam
to perform redundancy detection in both sets. A first version of Kparam had
been developed in which only the processed set was a normal clausal tree and
the memory was constantly overflowing due to redundancies in the waiting set.

Selection of clauses in the waiting set. The clause selected in the waiting
set is arbitrarily chosen among those with the smallest number of literals.

Options. In terms of options specific to a given variant of Kparam, we have:
— For Kparam_u, the option -up corresponds exactly to the method de-

scribed in Section 2 of Chapter 2, and the option -ur is similar except
that it intertwines the unordered paramodulation with the rewriting steps
(like the method described in Section 3 of the same chapter does with
K-paramodulation). Thus instead of computing the full set of atomic
prime implicates of a formula, this method computes only a fraction of
them that is enough to recover the whole set by transitivity, e.g. where
-up computes a ' b, b ' c and c ' a, the option -ur only computes
a ' b and b ' c. Then, in both cases, the rewritten formula is fed to
the K-paramodulation calculus that computes the remaining prime im-
plicates (atomic and non-atomic) as described in said section.

— For Kparam_r, the options -o2 and -o5 correspond to different imple-
mentations of the collision criterion of Chapter 2 Section 3 that decides
which clauses from the processed set need to return in the waiting set
after a rewriting. Using -o2, the collision criterion tests exactly the 〈a, b〉-
neutrality criterion, i.e. if D[a/b]

+ 6= D[a/b]↓
+ then a collision between

the saturation process and the rewriting is detected and D is trans-
ferred from the processed set to the waiting set. Since this operation
is costly (the positive literals must be compared one by one) an over-
approximation was created in -o5 where the collision criterion simply
tests if the maximal term of the unit prime implicate found appears in
the clause, i.e. if a ' b where a � b is used for rewriting and D con-
tains the term a, then a collision occurs. This criterion is (less costly
and) more general than 〈a, b〉-neutrality, thus it preserves the complete-
ness of the calculus. Other criteria where developed (-o1, -o3, -o4) but
they did not cover the 〈a, b〉-neutrality criterion and thus jeopardized the
completeness of the whole process, hence they are now deprecated.

— for cSP_flat, seven options controlling how a clause in the waiting set is
selected, one (-csi) that implements an additional index (it is presented
later) and three implementing filters:
— -cov that keeps only the clauses entailing one of the formula’s original

clauses,
— -csize k that keeps only the clauses that have a length smaller or

equal to k, and
— -isize that combines the -csize and -csi options.
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Index. The index introduced in cSP_flat by the -csi option is a hashtable
that stores the same clauses as the processed set but groups them according to
their maximal term, that appears in the literal selected for the cSP calculus.
This speeds up the generation of new clauses because only relevant clauses are
paired by the rules, e.g. the pair of clauses (a 6' b, c ' d) is never considered
by the cSP calculus, even if one is located in the processed set and one is the
selected clause.

1.2 Preprocessing tools

A number of tools were developed in parallel of Kparam to preprocess inputs.
They are available in the tool folder of the archive previously mentioned.

Equationalizer accepts flat ground cnf TPTP inputs containing booleans
and returns fully equational formulæ. To do so, it uses t as a constant standing
for ’true’ and converts propositional terms p and ¬p respectively into p ' t and
p 6' t.

Remark 8.3 The constraint t < x for any x ∈ \Σ0{t}, that permits to simulate
resolution can be artificially enforced in the program by adding the tautological
clause t ' t at the beginning of the file.

Flattener_for_kparam is a tool that flattens non-flat TPTP cnf inputs by
replacing non-flat terms with fresh constants and instantiating the substitutivity
axiom when necessary. For example, if c and d are introduced to replace f(a)
and f(b) then the clause a 6' b ∨ c ' d must also be added.

2 cSP

2.1 Implementation details

LogTk. The main difference between cSP and cSP_flat is the use of the LogTk
library [16]. In cSP its main use is to manage everything related to terms. Given
that cSP handles non-flat terms, the simple order implemented in Kparam is no
longer usable because it is not necessarily a reduction order in this case, as the
following example shows.

Example 8.4 The order of appearance in the following input file is a ≺ b ≺
c ≺ d ≺ f(b) ≺ f(a).

cnf(cl1,plain,a=b|c=d).
cnf(cl2,plain,f(b)!=f(a)).

In a reduction order, given a ≺ b necessarily f(a) ≺ f(b) because it is a rewrite
order (see page 29). Here instead a ≺ b and f(b) ≺ f(a), thus this order is not
a reduction order. ♣
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Fortunately, LogTk implements several reduction orders, e.g. the KBO (see Ex-
ample ii.9) and the RPO (Recursive Path Ordering [2]) in its multiset and
lexicographic variants. Among those, cSP relies (arbitrarily) on the KBO.

Normalization. For the normalization of clauses, a Union-Find data struc-
ture is no longer sufficient.

Example 8.5 In the following input, the equivalence classes associated with
cl are {a, b}, {f(a), f(b)}.

cnf(cl,plain,a!=b|f(a)=f(b)).

In a Union-Find data structure, the propagation of the identity a ≡cl b to
f(a) ≡cl f(b) is not automatically computed. ♣

Instead, a congruence closure algorithm [51], also implemented in LogTk, is
used. The advantage of such an algorithm is that the propagation of unification
from the subterms to the superterms is done automatically. Going back to the
previous example where a and b are unified, using a congruence closure algorithm
ensures that f(a) and f(b) are put in the same equivalence class as well. Any
such other terms, e.g. g(c, a) and g(c, b) are also unified.

Options. The options of cSP are:
— -max-size,-max-neg and -max-depth, three filters respectively limiting

the number of literals appearing in the prime implicates, their number of
negative literals and the depth of the terms.

— -cov, another filter accepting only prime implicates that entail one of the
clauses of the input formula (see Example 3.31 and preceding paragraph).

— -odiff, an option that, when a timeout is reached, compares the set
of processed implicates to the original input formula and counts how
many new implicates (not in the original input) have been processed.
This option also sets the function that selects clauses in the processed
set (see description below) to take into account only the clause part of
constrained clauses.

A difference with Kparam is that the options of cSP can be combined.

Example 8.6 A call to cSP with the options -max-depth 1 and -max-size 2
returns only the prime implicates of size 1 or 2 made of terms of depth 0 or 1.
If f(a) ' b, a ' c ∨ b ' d ∨ g(e) ' d and f(g(f(a))) ' d ∨ g(e) ' b are prime
implicates of a formula, only the first one is computed. ♣

Clause selection. The order in which the clauses are extracted from the
waiting set is controlled by the parameter cs_comp_func. It is easily modifiable
in the code and three orders are considered.

— a sort based only on the size of the clausal part of constrained clauses,
— a lexicographic sort based on the size of both parts of tree clauses starting

with the clausal parts,
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— the same as the previous one but starting with the constraints.
All three are used in increasing order, i.e. the smallest clause is the one selected.
By default, the third one is used so as to find the simplest prime implicates first.

Assertable terms. To ensure the termination of the calculus, cSP generates
only implicates built on a finite number of terms that are introduced by the
Assertion rules (see Chapter 3, Section 2). By default, these assertable terms
are the terms already occuring in the input formula. However it is possible to
specify additional assertable terms to cSP. To do so, a TPTP input file with the
extension ’.conf’ that contains a cnf formula containing all assertable terms can
be provided to cSP along with the input formula.

2.2 Preprocessing tools

A flattener has been developed in cSP but is not available as a standalone
tool (the Kparam flattener can be used in this case). Instead, it is used in the
full_array_preprocessing, a script that converts TPTP cnf files about the
array theory into TPTP (untyped) ground cnf files, based on the method de-
scribed in [11] to generate equisatisfiable problems free of the axioms of the
theory of arrays with extensionality. The conversion proceeds in three steps.
First the Array_preprocessing with option -arr1 flattens and decomposes
the input into an operational and a definitional part. The definitional part con-
tains all the clauses of the form ’store(a, i, e) ' b’ plus the axioms of the array
theory. The clauses allowed in the operational part are strictly flat clauses and
clauses of the form ’select(a, i) ' e’. Then the E theorem prover is used to
saturate the definitional part. Finally, the Array_preprocessing realizes the
necessary instantiations of the axioms of the array theory.

Example 8.7 (Example 66 in [11]) The following input:

cn f ( a1 , axiom , s e l e c t ( s t o r e (A, I ,E) , I )=E) .
cn f ( a2 , axiom , s e l e c t ( s t o r e (A, I ,E) , J)= s e l e c t (A, J ) |

I=J ) .
cn f ( c1 , p la in , s t o r e (b , i , d)=a ) .
cn f ( c2 , p la in , s e l e c t (b , i 2 )=e ) .
cn f ( c3 , p la in , s e l e c t ( c , i 2 )=e2 ) .
cn f ( c4 , p la in , a=c ) .
cn f ( c5 , p la in , i != i 2 ) .
cn f ( c6 , p la in , e !=e2 ) .

is first split in two. The operational part is:

cn f ( c2 , p la in , s e l e c t (b , i 2 )=e ) .
cn f ( c3 , p la in , s e l e c t ( c , i 2 )=e2 ) .
cn f ( c4 , p la in , a=c ) .
cn f ( c5 , p la in , i != i 2 ) .
cn f ( c6 , p la in , e !=e2 ) .
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Since the ground clauses of the original formula are flat, no flattening was nec-
essary to generate the operational part. The definitional part is:

cn f ( a1 , p la in , s e l e c t ( s t o r e (X0 ,X1 ,X2) ,X1)=X2 ) .
cn f ( a2 , p la in , s e l e c t ( s t o r e (X0 ,X1 ,X2) ,X3)= s e l e c t (X0 ,X3 ) |

X1=X3 ) .
cn f ( c1 , p la in , s t o r e (b , i , d)=a ) .

The renaming of the variables (in the definitional part) is an internal mechanism
of LogTk. Then E saturates the definitional part:

cn f ( i_0_2 , p la in , ( s e l e c t ( s t o r e (X1 ,X2 ,X3) ,X2)=X3 ) ) .
cn f ( i_0_1 , p la in , ( s e l e c t ( s t o r e (X1 ,X2 ,X3) ,X4)= s e l e c t (X1 ,X4 ) |

X2=X4 ) ) .
cn f ( i_0_3 , p la in , ( s t o r e (b , i , d)=a ) ) .
cn f ( i_0_4 , p la in , ( s e l e c t ( a , i )=d ) ) .
cn f ( i_0_5 , p la in , ( s e l e c t ( a ,X1)= s e l e c t (b ,X1 ) | i=X1 ) ) .

Again, the renaming of the clauses and variables is an internal process of E. In
this saturation two new clauses have been created. After the instantiation the
final result is:

cn f ( pi2 , p la in , s e l e c t (b , i 2 )=e ) .
cn f ( pi3 , p la in , s e l e c t ( c , i 2 )=e2 ) .
cn f ( pi4 , p la in , a=c ) .
cn f ( pi5 , p la in , i != i 2 ) .
cn f ( pi6 , p la in , e !=e2 ) .
cn f ( pi1 , p la in , s t o r e (b , i , d)=a ) .
cn f ( pi0 , p la in , s e l e c t ( a , i )=d ) .
cn f ( pi7 , p la in , s e l e c t ( a , i 2 )= s e l e c t (b , i 2 ) | i=i 2 ) .
cn f ( pi8 , p la in , s e l e c t ( a , i )= s e l e c t (b , i ) | i=i ) .

The non-ground clause i_0_5 from the previous step has been used to generate
the clauses pi7 and pi8. The other clauses are extracted unchanged from the
operational and saturated definitional part. ♣

3 Summary
Table 2 & Table 3 summarize the different options available in Kparam and

cSP.
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Kparam_s K-paramodulation cal-
culus (see Part I Chap-
ter 2 Section 1)

-b basic implementation

Kparam_u
K-paramodulation
calculus with atomic
implicate generated in
advance using
unordered
paramodulation (see
Part I Chapter 2
Section 2)

-up rewriting between the
unordered paramod-
ulation and the
K-paramodulation.

-ur rewriting propagated
during the unordered
paramodulation.

Kparam_r K-paramodulation cal-
culus with atom rewrit-
ing on the fly

-o2, -o5 different collision crite-
rion (see page 78)

cSP_flat cSP calculus in E0 (see
Chapter 3)

-cs1,... -cs7 different selection func-
tion used on the waiting
set

-csi cSP calculus with index
(see page 130)

-csize, -cov different filters (see
page 129)

-isize -csize filter plus index

Table 2 – Summary of the different options of Kparam and cSP

cSP cSP calculus in E1 (see
Chapter 3)

-max-size, -max-neg, different filters (see
page 131)-max-depth, -cov

-reg regression option
for comparison with
Kparamand cSP_flat

-odiff tells how many new
clauses have been gen-
erated if a timeout is
reached

Table 3 – Summary of the different options of Kparam and cSP
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Chapter 9

Experimental context

To assess the behavior of our algorithms, we searched for appropriate bench-
marks and programs with similar functionalities to compare ours with.

1 Reference tools

The difficulty in selecting programs of reference to conduct our experiments
lied in the small number of such programs that were available. In fact, we found
only two prime implicate generation tools on the web 1, namely ritrie 2 [47],
a prime implicate generator in propositional logic , and Mistral [19], an SMT
solver which "decides satisfiability of formulas in the theory of linear arithmetic
over integers and theory of equality with uninterpreted functions [...] which can
be used for performing abductive inference" 3.

It turns out that we did not use these tools in our experiments. For the first
one, the reason is that it is not efficient enough. This may be explained by the
fact that it was built to perform efficient querying of an already generated set
of prime implicates, rather than to compute efficiently the said set (which it can
nevertheless do). As for the Mistral SMT solver, it cannot be compared with
our work, because its prime implicate generation is not complete. More generally
the approach in [19] applies to any theory admitting quantifier-elimination. Thus
this property does not hold for the logic considered here since the elimination
of function symbols would require to handle second-order quantification.

Thanks to the kindness of their respective authors, we were also able to
obtain two other tools:

1. Since then, a third one has been added (summer 2015): the propositional prime implicate
generator primer [56], available at http://logos.ucd.ie/web/doku.php?id=primer . Since it
is posterior to the experiments presented in this thesis, results about this tool are not included.
They remain as future work.

2. http://www.cs.albany.edu/ritries/prototype.html
3. http://www.cs.utexas.edu/~tdillig/mistral/index.html

http://logos.ucd.ie/web/doku.php?id=primer
http://www.cs.albany.edu/ritries/prototype.html
http://www.cs.utexas.edu/~tdillig/mistral/index.html
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Zres is another prime implicate generator in propositional logic that clearly
outperformed ritrie on all of our benchmarks. Among the different options
available in Zres, the one we chose is the "Tison" strategy since it gives the
best results. Zres accepts input files in the DIMACS cnf format, which is a
standard for cnf propositional logic. It is a very simple text format originating
from the DIMACS challenges 4.

SOLAR, "(SOL for Advanced Reasoning) is a first-order clausal consequence
finding system based on the SOL (Skip Ordered Linear) tableau calculus." 5. It
can handle equational reasoning through the use of modification methods [37],
although it remains a very difficult problem for systems based on the connec-
tion tableau method. There are several experimental settings in which SOLAR
can deal with equational reasoning. Among those, we used the fastest for which
completion was guaranteed, i.e. the ’-eq snmt’ option without any simplifica-
tions (’c’, ’cc’ or ’ccc’). The SOLAR input format is inspired from an old version
of TPTP where the syntax of the clauses is slightly different from the current
one. They are represented between brackets with the literals separated by a
comma. Equations use the ’equal’ function preceded by ’+’ or ’-’ to indicate
the sign of the literal, e.g. ’-equal(a,b)’ stands for a 6' b. In addition, at the
end of the file, a line is added that controls which filters must be applied.

Example 9.1 A SOLAR input.

cnf(cl1,top_clause,[-equal(f(a),b),+equal(a,c)]).
cnf(cl2,top_clause,[+equal(g(c,a),f(b)),+equal(g(c,b),d)]).
pf([ALL]).

Note that this is the same formula as the one in Example 8.1 ♣

The keyword ’top_clause’ is specific to SOLAR. It indicates that the clause can
be used from the start to derive implicates. The last line starting with ’pf’ is
also a specificity of SOLAR input files. pf stands for production field. It acts as a
powerful filtering mechanism that allows for a precise control of the form of the
literals in the clauses generated and can also enforce conditions on said clauses.
For example ’pf([ALL]).’ generates all the possible prime implicates. Unfortu-
nately, using this production field introduces a bias in the comparisons with our
programs because the modification methods used introduce non-equational and
non-ground terms in the implicates generated. A filter better suited to our pur-
pose is ’pf([+-equal(_,_)])’, where ’+-’ means positive and negative terms. It
ensures that the terms generated are equational. This way, SOLAR produces out-
puts that are very close to cSP outputs, with the notable difference that SOLAR’s
may contain variables that are added during the transformation process. These
non-ground clauses may subsume several ground clauses. A solution to recover
directly the exact desired (ground) result could be obtained by computing be-
forehand all the literals that could appear in ground clauses and adding them
to the production field, e.g. replacing ’pf([ALL]).’ in the former example with:

4. http://dimacs.rutgers.edu/Challenges/
5. http://solar.nabelab.org/
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pf([+-equal(a,a),
+-equal(a,b),
...
+-equal(b,f(a)),
+-equal(b,f(b)),
...
+-equal(c,g(a,a)),
...
]).

We rejected this solution as too impractical. Besides, the size of the production
field would become roughly exponential with regard to the size of the formula.
The script tptp2solar (available in the tool folder of the archive) was created
to convert TPTP cnf formulæ to SOLAR inputs.

2 Benchmarks

Flat random benchmarks. In parallel with the development of Kparam, we
looked for benchmarks in ground flat equational logic and found none. Our at-
tempts with flattened ground problems from the TPTP library were failures,
because Kparam cannot generate all the prime implicates of such big formulæ
with reasonable time (and memory) constraints. Thus we decided to create our
own benchmark. It is made of a thousand randomly generated formulæ in TPTP
format. Their propositional equivalents (DIMACS) were obtained by instanti-
ating the transitivity axioms for all constant symbols appearing in them – the
reflexivity and commutativity axioms are encoded directly in the transformation
by orienting and simplifying the equations. These formulæ were generated using
gen.pl, a Prolog program developed by Nicolas Peltier. The command used
to generate the benchmark in the Prolog interpreter after loading gen.pl was
’multi-random(6,8,1,5,200).’ creating in one run 200 formulæ of 6 clauses
build on 8 constants and containing between 1 and 5 literals.

Non-flat random benchmarks. To evaluate the performances of cSP, we
created another benchmark by relying again on gen.pl. The formulæ of this
benchmark are non-flat and were generated using the following commands:

generate_random_signature(S,0,a,a*5,a*5),
multi_random_non_flat(c,c,S,d,1,l,n).

where
— a ∈ {1, 2}, is the maximal arity of the terms and a ∗ 5 is the size of the

signature 6,
— c ∈ {2, 3, 4} is the number of clauses in a formula,
— d ∈ {1, 2} is the maximal depth of the terms,

6. By design, the signature contains at least two literals of arity zero.
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— l ∈ {2, 3} is the maximal number of literals in a clause (the minimum
being 1),

— n = 6, is the number of formulæ generated with the given parameters.
The formulæ are stored in files that are named with the following convention:
sa_d_c_l (e.g. s1_2_4_2). In total, this benchmark contains 144 formulæ.

Other benchmarks. In the SMT-LIB database [5], we found families of for-
mulæ that, with some preprocessing, could be used in our experiments.

In the QF_UF logic, i.e. “unquantified formulas built over a signature of
uninterpreted (i.e., free) sort and function symbols” 7, we selected eight formulæ
that we converted into TPTP inputs using the SMTtoTPTP tool 8. They were
chosen for being ground and satisfiable. After clausification, the translated for-
mulæ contain from a few hundreds to more than a thousand clauses. The aim
of this benchmark is to help evaluate the behavior of cSP on large formulæ.

Another logic of interest was QF_AX, i.e. “closed quantifier-free formulas
over the theory of arrays with extensionality” 9. They are synthetic benchmarks
that model some properties in the SMT theory of arrays with extensionality,
namely:

— the order in which the elements are stored in an array do not matter
(storecomm benchmarks),

— some swapping of elements between cells of an array are commutative
(swap benchmarks),

— swapping elements between identical cells of equal arrays generate equal
arrays (storeinv benchmarks)

The benchmarks labeled with invalid have been tweaked to falsify the property
so that the problem becomes satisfiable (hence has prime implicates distinct
from the empty clause). Given that cSP cannot handle SMT-LIB inputs or the
theory of arrays, we preprocessed the benchmarks by first converting them to
TPTP and then applying full_array_preprocessing (see previous chapter,
Section 2.2). As shown in [1], these problems can be nontrivial to solve even for
state-of-the-art theorem provers like E [69] and one cannot expect the entire set
of prime implicates to be generated in reasonable time. We use them mainly
to evaluate the impact of our redundancy-pruning technique on the number of
superposition inferences carried out by blocking the Assertion rules inferences
(i.e. applying a filter blocking all implicates apart from the empty one), allowing
the comparison of cSP with the E theorem prover.

7. http://smtlib.cs.uiowa.edu/logics.shtml
8. http://users.cecs.anu.edu.au/~baumgart/systems/smttotptp/
9. http://smtlib.cs.uiowa.edu/logics.shtml
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Chapter 10

Results

In this chapter, we present the results of the different experiments that were
conducted during the PhD. In a first set of experiments, we established the supe-
riority of Kparam_r over Kparam_u, Kparam_s and Zres by performing system-
atic time comparisons on the random flat benchmark, along with other observa-
tions that explain the results. A second set of experiments concerns cSP_flat,
the impact of its selection function (the one that chooses the next clause to use
in the waiting set) as well as the impact of the index from the -csi option plus
a comparison with Kparam. The following experiments focus on cSP, compar-
ing it to cSP_flat and SOLAR. Finally we examine the possibilities offered by
the filtering mechanism of cSP. All of the experiments were run on a machine
equipped with an Intel core i5-3470 CPU and 4×2 GB of RAM running Ubuntu
14.04.

1 Kparam

The thousand formulæ of the random flat benchmark were used to evaluate
the performance of Kparam and its variants.

1.1 Kparam vs Zres

In this experiment, we first compare the performance of Kparam_s against
that of Zres. The results are shown in the graphs of Figure 12. Plot (12a)
is a comparison (using a logarithmic scale for the X axis) of the number of
prime implicates found by Zres for the propositional formulæ (X axis) with
those found by Kparam_s for the equivalent equational problems (Y axis). Our
results indicate that the number of prime implicates is exponentially smaller in
equational logic than in propositional logic. This observation is understandable
if we take into account the numerous instantiations of the transitivity axiom
that are necessary to translate equational formulæ to propositional logic, the
many instances of equivalent clauses that are generated in a purely propositional
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setting as well as those that are logically entailed by the equality axioms. This
means that the propositional output contains a lot of redundancy that has to
be deleted in a post-processing step, a problem that our method averts.

The results shown in Plot (12b) depict the compared run time (in seconds) of
Kparam_s (Y axis) and Zres (X axis) on our benchmark. Note that the run time
for Zres represented here does not include the aforementioned post-processing
step (not implemented). On Plot (12b) the results are only slightly in favor of
Kparam_s. In fact, Kparam_s is at least twice as fast as Zres 46% of the time,
and globally faster 55% of the time. In comparison Zres is twice as fast as
Kparam_s in 34% of the benchmark. Thus our method is globally more efficient.
By examining the worst case results where Zres outperforms Kparam_s, we
observe that these formulæ are mostly those where unit clauses are computed.
Kparam_s is not well-suited for this class of formulæ because it does not use
equational unit propagation techniques. If we focus only on formulæ with no
positive unit implicates, then Kparam_s is faster 80% of the time.

Plot (12c) represents the relative number of implicates (Y axis) and prime
implicates (X axis) generated by Kparam_s. The results show a quadratic growth
of the total number of implicates generated, hence the importance of the redun-
dancy elimination techniques from Part II. This suggests that a lot of time could
be gained by constraining the inference rules so as to generate less non-prime im-
plicates (which led to the creation of the cSP calculus described Part I Chapter
3).

1.2 Kparam_u and Kparam_r

The variants of the K-paramodulation calculus implemented in Kparam_u
and Kparam_r were developed to handle the formulæ with atomic prime im-
plicates more efficiently than Kparam_s. To select the best variant, we started
with the internal comparison of the options respectively available in Kparam_u
and Kparam_r, then we compared the best of both with each other in order to
determine the best setting of parameters (see Table 2 page 134 for a summary
of the options).

Plot (13a) shows the execution time of the -up (X axis) and -ur (Y axis)
options. As expected, when the formulæ have no atomic implicates (light gray
dots) the results are equivalent, because in this case both programs process
inputs the same way. In contrast, when atomic implicates are involved the results
vary a lot. Overall, 67% of the formulæ with atomic implicates are handled more
efficiently by the -ur option than by the -up option. Thus Kparam_u is more
efficient if rewriting is applied eagerly during the unordered paramodulation
step, rather than waiting until all unit positive implicates are generated.

Plot (13b) shows that there is next to no difference between the -o2 and
-o5 options. The expected improvement of the simplification implemented in
the -o5 option is not verified experimentally. This could indicate that the cost
of reexamining more clauses (in the waiting set) compensates the benefits of
relaxing the collision criterion, but in fact, there are less than ten cases in
which the numbers of processed clauses differ using -o2 and -o5. In these cases,
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Figure 12 – Kparam_s vs Zres, random flat benchmark

the difference is of just one clause thus the conclusion is that -o5 is a good
approximation of -o2. A first hint of the efficiency of Kparam_r is the fact that
all the formulæ with atomic implicates (dark gray dots) are processed in less
than fifty seconds. Since a finer analysis reveals that -o5 is more efficient than
-o2 (although not enough to make a real difference) on 68% of the benchmark,
we selected this option for the comparison with Kparam_u.

The results presented in Plot (13c) confirm the efficiency of Kparam_r com-
pared to Kparam_u. As with the other plots, the light gray dots represent the for-
mulæ with no atomic implicates, on which Kparam_u and Kparam_r are roughly
equivalent and the formulæ with atomic implicates are represented by dark
gray dots. Since Kparam_r is clearly more efficient on the latter formulæ than
Kparam_u, we select this variant for the comparison with Kparam_s.

1.3 Kparam_r vs Kparam_s

Before comparing Kparam_r and Kparam_s, a first result worth mentioning is
that in Kparam_r the execution time of the last processing step, i.e. the recovery
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Figure 13 – Kparam_u and Kparam_r time comparisons, random flat benchmark

of the original solution, is quasi-negligible no matter what the total execution
time is: the maximum is less than one second and the mean is 0.04 seconds. In
this benchmark, it always represents less that 1 percent of the total execution
time 1.

Another interesting indicator of the relative superiority of Kparam_r com-
pared to Kparam_s is the fact that while 7% of the benchmark reaches timeout
with Kparam_s, only 4% do so using Kparam_r. In our benchmark 49% of the
formulæ have no atomic implicates (the light gray dots in Figure 13) and, as
expected, Kparam_s and Kparam_r merely coincide on such problems. Results
concerning the remaining 47% of the benchmark are presented in Figure 14. On
Plot (14a) the gain of going from Kparam_s to Kparam_r with regards to the
execution time can be observed. A logarithmic scale is used for the X axis to
highlight that this graph empirically indicates an exponential gain for our bench-
mark. The results in Plot (14b) compare the number of implicates generated by

1. Note that this is a characteristic of randomly generated formulæ but it may not always
be true.
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Figure 14 – Kparam_r vs Kparam_s, random flat benchmark (formulæ with
atomic implicates only)

Number of Atomic implicates 0 1 > 1 > 0 Total
Kparam_s 69% 28% 25% 27% 48%
Kparam_r 69% 86% 84% 85% 77%

Table 4 – Percentage of Tests Executed Twice Faster than Zres

Kparam_s and Kparam_r. There are two kinds of dots represented on the graph:
dark gray and light gray ones, the latter represent tests for which Kparam_s
reaches the 5 minutes timeout before terminating. The difference of scale be-
tween the X and Y axes shows that some formulæ with atomic implicates, that
Kparam_s cannot solve by computing more than ten million implicates, can be
solved by Kparam_r with less than two million implicates generated.

Our original motivation was to improve Kparam_s on formulæ with atomic
implicates (denoted by f.a.i. in this paragraph) compared to Zres. We summa-
rize these improvements in Table 4. The observation that Zres is more efficient
on f.a.i. is apparent in the first line of the table, where only 27% of these for-
mulæ are executed at least twice faster with Kparam_s than with Zres, while
on 69% of the rest of the benchmark Kparam_s is twice faster than Zres. The
second line of Table 4 shows an additional 58% of the f.a.i. are executed twice
faster using Kparam_r than using Zres, validating this work as a real improve-
ment over Kparam_s. The results also distinguish between formulæ with a single
atomic implicate (71% of the f.a.i.) and several ones (29% of the f.a.i.). A slight
improvement of the performance is noted for the latter, but not as significant
as the gap between none and one atomic implicate.
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2 cSP_flat

We now assess the performance of cSP_flat that implements the cSP cal-
culus on flat clauses defined in Chapter 3, Section 2. We first determine the best
tuning of parameters for this calculus (especially concerning the choice of the
selection function) and we compare the obtained procedure with Kparam_r.

2.1 Choosing a selection function
In contrast to Kparam, which simply orders the clauses according to their

number of literals and selects the shortest one, there are several natural ways of
ordering the constrained clauses generated by cSP_flat depending on whether
we consider the length of the clause part, of the constraint part, or both, and it
is not clear which option is best.

In this experiment, we examine different selection functions that can be
used by the saturation loop on the waiting set to select clauses (see page 33),
the following options are implemented, where [C |X] is a constrained clause.

-cs1 order based on |C|+ |X|,
-cs2 lexicographic order based on (|C|+ |X|, |C|),
-cs3 lexicographic order based on (|C|+ |X|, |X|),
-cs4 order based on |C|,
-cs5 order based on |X|,
-cs6 lexicographic order based on (|C|, |X|),
-cs7 lexicographic order based on (|X|, |C|),

Based on this description it is clear that -cs2, -cs4 and -cs6 give a more
important role to the clausal part, while -cs3, -cs5 and -cs7 do the same with
the constraint. The first family of option prioritizes the fast generation of any
implicate by trying to get rid of the clausal part of c-clauses first. The other
family prioritizes the generation of the smallest implicates even if the derivations
that generate them are longer. In Table 5 the execution times of cSP_flat with
these options is compared. Each cell contains the percentage of the benchmark
on which the row option is faster than the column option. The rows and columns
are sorted by efficiency (the most efficient option first). This highlights that the
clausal part is the most important (on random formulæ) since the best option
is -cs6 followed by -cs4 and then -cs2

2.2 Impact of the index on cSP_flat

The -csi option implements an index to speed up the computation on
cSP_flat (see the index description page 130). In fact on 98% of the random
flat benchmark the index does indeed speed up the computation of cSP_flat.
The remaining 2% are formulæ that are executed by cSP_flat in less than 0.02
seconds. On average the execution time of cSP_flat is divided by two due to
the use of an index.
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-cs6 -cs4 -cs2 -cs3 -cs1 -cs5 -cs7
-cs6 68% 80% 88% 88% 89% 90%
-cs4 32% 68% 80% 80% 90% 84%
-cs2 20% 32% 87% 89% 82% 90%
-cs3 12% 20% 13% 57% 63% 83%
-cs1 12% 20% 11% 43% 60% 76%
-cs5 11% 10% 18% 37% 40% 67%
-cs7 10% 16% 10% 17% 24% 33%

Table 5 – cSP_flat: percentage of the random flat benchmark executed faster
using the row option than using the column option

2.3 Comparison of cSP_flat with Kparam
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Figure 15 – time comparison of cSP_flat without and with an index vs
Kparam_r on random flat benchmark

Figure 15 presents the execution time of cSP_flat without and with an index
relative to Kparam_r (resp. Plot (15a) and Plot (15b)). A logarithmic scale is
used on all axes for a better visibility on the fastest results. When comparing the
two plots, it is clear that the cloud of dots is lower in the second one, illustrating
the results of the previous paragraph. Globally, without an index, cSP_flat is
faster than Kparam_r on 54% of the benchmark and with an index on 68% of
them. In both plots, the uppermost diagonal line splits the diagram into two
parts, above it are the tests for which cSP_flat is at least 10 times slower than
Kparam_r. These formulæ represent only 9% of the results on Plot (15a) and
3% on Plot (15b). Below the other diagonal are the tests for which cSP_flat
is 10 times faster than Kparam_r. These formulæ represent roughly 17% of the
results on Plot (15a) and 36% on Plot (15b). These results are summarized in
Table 6. This analysis allows us to conclude that cSP_flat is more efficient on
the considered benchmark. Still depending on the chosen time limit, in case of
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failure by timeout from cSP_flat it is reasonable to try to solve the problem
using Kparam_r before extending the computation time or giving up 2.

10 times slower faster 10 times faster
cSP_flat 9% 54% 17%

cSP_flat with index 3% 68% 36%

Table 6 – Comparison of cSP_flat with/without index vs. Kparam_r

3 cSP

In this section, we analyze the performance of cSP, an implementation of
the cSP calculus in E1 introduced Chapter 3, Section 3. In a first experiment
we compare cSP with cSP_flat on the random flat benchmark to observe the
impact of the functional term representation (LogTk) of cSP (see Chapter 8
Section 2.1 for more details about the differences between cSP and cSP_flat).
Then we compare our tools to state-of-the-art solvers (described in Chapter 9,
Section 1).

3.1 Impact of handling functional terms

Changing the core of cSP_flat into one able to handle functional terms is
costly, as Figure 16 shows. On average, cSP is ten times slower than cSP_flat
on the random flat benchmark. This overhead induced by functional terms is
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Figure 16 – time comparison of cSP vs cSP_flat, random flat benchmark

easily explainable: the new term representation (see Chapter 8, Section 2.1) must
handle nested terms which prevent the use of a simple integer representation as

2. As future work, it could be interesting to develop a strategy running both cSP_flat and
Kparam_r (successively or in parallel) since their strengths and weaknesses differ, making them
most efficient on different kinds of formulæ.
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is done in cSP_flat 3. Moreover, the subsumption method is a bit more involved
(see Chapter 7) which no doubts plays a role in slowing down cSP compared to
cSP_flat.

3.2 Performance comparisons on random non-flat bench-
mark

The experiment presented here is a comparison of the prime implicate gen-
eration systems Zres and SOLAR presented Chapter 9 Section 1 with cSP_flat
and cSP on the random non-flat benchmark described Section 2 of the same
chapter. The input formulæ were flattened (see e.g. [11] for a definition) for
cSP_flat and Zres, and the substitutivity axiom instantiated when necessary.
Furthermore, for Zres, these flat equational formulæ were also converted to
propositional ones, by instantiating the transitivity of equality when necessary.

successes SOLAR successes Zres successes (flat-)cSP timeouts
time(s) inf. PIs time(s) inf. PIs time(s) inf. PIs inf. PIs?

SOLAR 15% 11.842 663190 506 X X X X X X 2452908 28152
Zres 52% 0.695 X 2986 12.474 X 13804 X X X X X

cSP_flat 63% 6.622 5157 74 2.334 3300 158 14.290 11005 348 68959 X
cSP 76% 0.042 110 21 3.436 1322 47 10.193 1834 79 14714 538

Table 7 – Random non-flat benchmark - test results summary

The results are summarized in Table 7. Each line corresponds to a system.
The column labeled ’successes’ indicates the percentage of tests that were com-
pleted before the 5 minute timeout. The three columns under the label ’SOLAR
successes’ summarize average results on those tests on which SOLAR terminated
before the timeout. The same goes for the columns under ’Zres successes’ and
’(flat-)cSP successes’. Finally, the ’timeout’ columns expose the mean results
on all interrupted tests. Columns labeled ’time’, ’inf.’ and ’PIs’ respectively give
the mean execution time, mean number of inferences and mean number of prime
implicates found for each set of tests. The last column is labeled ’PIs?’ because
due to the timeout, the implicates found are not guaranteed to be prime. Cells
labeled with an ’X’ indicate that the corresponding data is not available.

As shown in the ’successes’ column, cSP is the obvious winner in terms of
the number of tests handled before timeout. It should also be mentioned that
cSP solves all the problems that other systems solve, except for two that are
solved only by Zres. The 15% of problems solved by SOLAR are the simplest
of the random formulæ. The results show that SOLAR’s approach is very costly
both in terms of time and space, although methods to reduce these costs are
being investigated 4. The high number of prime implicates this tool generates

3. In fact, since cSP handles only closed terms, it should be possible to generate them
(statically or dynamically), assign an integer to each and manipulate only the integers during
the comparisons. However, the nested forms would still need to be used for the projections
and new clause computation so the benefits are unclear.

4. Personal communication of Prof. Nabeshima
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compared to those produced by cSP may seem surprising. In fact, SOLAR re-
turns an over-approximation of the result because it does not take into account
the equality axioms in its redundancy detection. Thus for example, any literal
t ' s also appears as s ' t and f(s) ' f(t) is not detected as redundant w.r.t.
s ' t. Comparatively, the huge number of prime implicates generated by Zres is
not surprising at all. It stems directly from the propositional translation of the
initial problems and the introduction of new propositional variables. Although
Zres is faster than cSP on the problems they both solve, it solves 52% of the
problems, while cSP solves 76% of them. The results in the ’(flat-)cSP’ column
are globally higher than those in the ’Zres successes’ columns, because the most
difficult formulæ are solved only by cSP and to a lesser extend by cSP_flat.
Since cSP solves more problems than cSP_flat and does so faster and with
fewer clauses processed, cSP is clearly better adapted to dealing with originally
non-flat formulæ. Incidentally, note that the overhead of cSP’s term handling
compared to that of cSP_flat’s (observed in the previous experiment Section
3.1) is more than compensated by the direct handling of non-flat formulæ since
on the random non-flat benchmark cSP is faster than cSP_flat. The number
of inferences and generated non-redundant implicates when the tool times out
illustrates the heavy cost of the cSP inferences and redundancy detection mech-
anism compared to that of SOLAR. It is a price that seems partly unavoidable to
eliminate all redundancies, since this requires complex algorithms.

3.3 (Non-)scalability

To have an idea of the scalability of cSP, we ran it on the QF-UF benchmark
(see Chapter 9, Section 2), which contains larger formulæ than the other bench-
marks. The aim of this experiment is not to compute all the prime implicates
of a formula 5 but simply to see how many implicates can be computed before
timeout or rather how many of them can be considered as new information, i.e.
how many are not subsumed by a clause from the input formula. Table 8 exposes
the results of this experiment. The eight formulæ of the QF-UF benchmark are
identified by their size in bytes (first line). The following lines present respec-
tively the number of clauses computed by cSP, the number of clauses selected
in the waiting set, the number of clauses stored in the processed set at timeout
and finally, among these, the ones not subsumed by an input clause. Clearly,

size of the formula (byte) 16K 20K 24K 32K 32K 56K 76K 112K
generated clauses 146169 86909 37901 39571 15141 16478 44592 49667
analyzed clauses 903 479 59 122 1223 105 36 17

potential prime implicates 84 29 3 1 2 1 5 4
non-redundant implicates 21 0 1 0 0 0 1 0

Table 8 – QF-UF benchmark - test results summary

5. That would be extremely ambitious considering that these formulæ were made to push
SMT solvers to their limits.

148



4. Tests with filters

the results show that these formulæ are too complex for cSP to handle, attesting
that our program does not scale well, as is the case of all prime implicate gen-
eration tools that we know of. To improve on the efficiency of cSP, apart from
improving the existing mechanisms (e.g. the inference system, the indexation,
etc.), an idea is to consider distributed strategies. For example, the recursive
entailment tests could be executed in parallel, and so could the different rules
of the cSP calculus. This direction has not been explored and remains as future
work.

4 Tests with filters

4.1 Impact of the normalization

In this experiment, we estimated the impact of the normalization mechanism
(see Chapter 1, Section 1.2) on the QF-AX benchmark. As mentioned in Chapter
9, Section 2 this benchmark was used to compare cSP with the E theorem prover.
To do so, cSP was run with a filtering option (-max-size 0) that blocks the
generation of any implicate beside the empty clause, effectively turning cSP into
a superposition theorem prover. This way the main differences between cSP and
E are the normalization of clauses and the redundancy pruning mechanism. On
the one hand, the redundancy pruning algorithm used by cSP is weaker because
it does not allow for equational simplification or other n-to-one redundancy
pruning rules. On the other hand one-to-one redundancy testing is stronger since
its uses logical entailment together with the usual ordering condition instead
of subsumption. The comparison of cSP with the E theorem prover on these
formulæ shows that the normalization approach can, in some nontrivial cases,
reduce the number of processed clauses by an order of magnitude.
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Figure 17 – Comparison of the number of processed clauses for E and cSP.

Figure 17 presents the positive results of this experiment, i.e., the results
of the storecomm and swap formulæ. Among these, only the formulæ on which
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both E and cSP (without Assertion rules) terminate before timeout and without
memory overflow were kept. Light gray squares represent the invalid formulæ,
i.e. the satisfiable ones, while dark gray crosses mark the unsatisfiable ones. The
line y = x occurs in both plots. An interesting observation is that for the largest
invalid formulæ, cSP needs to process a smaller number of clauses than E before
terminating, even 10 times less in the case of the invalid_swap formulæ. The
unsatisfiable swap formulæ were run with a timeout of 10 minutes (the triangles
in Plot (17b)) and the corresponding results hint that this phenomenon could
also be true for larger unsatisfiable problems. This suggests that the redundancy
pruning technique based on normalization and clausal trees could be profitably
integrated into state-of-the-art superposition-based theorem-provers, at least for
ground equational clause sets. However, it might not always be useful, e.g. Figure
18, plotting the storeinv formulæ where an opposite tendency is observed,
although the storeinv formulæ on which neither cSP or E timeout represent
only a ten of that of the other two families for which the results are positive.
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Figure 18 – storeinv formulæ - comparison of the number of processed clauses
for E and cSP.

4.2 Prime implicates of size one

The tests with the filter on the prime implicates length less or equal to 1
highlight the limits of cSP, which always reaches the 5 minute timeout (except
for one simple storeinv benchmark found unsatisfiable by cSP in less than one
second).

As shown in Figure 19 on the storeinv formulæ of the QF-AX benchmark,
the number of clauses that cSP can process in 5 minutes is highly dependent
on the size of the input formulæ (the size of the array modeled), i.e. on the
number of clauses and of different symbols it contains. This tendency is verified
also with the other families of formulæ. The more complex the formula, the
more generated clauses for each processed clause. With a 5 minute timeout, the
system cannot generate more than approximately 20000 clauses, which seems
rather small compared to the hundred million of inferences performed by SOLAR
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(not included in Figure 19). This rift is also observed in the implicates recovered
at timeout that are measured in tens for cSP and in hundreds for SOLAR. Putting
aside the aforementioned reserve about the redundant nature of these implicates
(see Section 3.2 of this chapter), hypotheses that could explain this difference
are:

— the maturity of SOLAR compared to cSP,
— the light cost of the tableau calculus compared to our method where

the many necessary comparisons and projections (see Chapter 7) may
significantly slow down the computations on large formulæ.

A proper investigation of this phenomena is a subject of future work.
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Figure 19 – Number of processed and generated clauses for storeinv formulæ
on cSP with filter (size ≤ 1) after 5 minutes.

5 Summary

The different experiments presented in this chapter allow us to draw the
following picture of our prime implicate generation algorithms:

1. It is always better to have a method tailored to the input formulæ rather
than to preprocess them by flattening and/or conversion to propositional
logic.

2. Our tools compare favorably with other state-of-the-art prime implicate
generation softwares, but do not scale better than them.

3. The best option to use for each tool is:
— for Kparam, the rewriting on the fly with the relaxed collision criterion

(-o5 option);
— for cSP_flat, the lexicographic selection function that considers the

clausal part of c-clauses first, plus the use of an index to speed up the
calculus (-csi option);

— for cSP, the same as for cSP_flat (implemented by default).
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4. On flat formulæ, cSP_flat is the best choice over Kparam and cSP, while
on non-flat ones cSP gives the best results as expected.

5. The normalization method used in our algorithms significantly reduces
the number of generated clauses and thus could be profitably integrated
in state-of-the-art equational theorem provers.
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Conclusion

The work on prime implicate generation in ground equational logic exposed
in this thesis comprises four main contributions:

— Two calculi that generate implicates are proposed.
— The K-paramodulation calculus, restricted to flat formulæ, is a relax-

ation of the unordered paramodulation calculus in which hypotheses
are added directly to the generated clauses to allow for superposition
inferences upon different constants.

— The cSP calculus augments the classical superposition calculus (full
with its ordering constraints) with two rules that allow the addition
of conditions to the generated clauses. It can handle non-flat formulæ.

— A clause storage data structure is defined, the normal clausal tree. It sig-
nificantly reduces the memory consumption of the algorithms and allows
the efficient detection and handling of redundant clauses.

— Several prototypes of prime implicate generation tools implement the
calculi, storage method and their variants.

The main results associated with these contributions are the following. On the
theoretical side, we proved the deductive-completeness of both calculi and their
variants and the termination and correctness of the clausal tree manipulation
algorithms. On the practical side we realized an experimental evaluation of our
prototypes. It show that they are on par with state-of-the-art prime implicate
generation tools. Precisely, our best prototype in flat ground logic (cSP_flat)
is faster than the reference tool (Zres) in 68% of the corresponding benchmark
and in non-flat ground logic, the best prototype (cSP) is able to handle 60%
more formulæ of the corresponding benchmark than the reference tool (SOLAR)
before timeout. We also created a clause-handling method that in some cases,
compared to the state-of-the-art E theorem prover, reduces significantly the
number of clauses to manipulate to check the satisfiability of a formula. The
limitations of our methods include their restriction to equational logic and the
cost of our clause-handling algorithms that render them non-scalable as is.

In a short term perspective, this work leaves several questions unanswered
that could lead to improvements of the performance of the algorithms. In Re-
mark 3.12 page 81, a relaxation of c-subsumption, i.e. the definition of redun-
dancy for constrained clauses, is suggested that would allow the detection of
more redundancies than the current definition. However, its implementation is
non-trivial and thus the gain in the search space might be mitigated by the



Conclusion

added cost to the redundancy detection algorithms of cSP. Another lead to ex-
plore is the inversion of clauses and constraints in constrained clausal trees, as is
proposed in Remark 7.4 page 117. The simpler inclusion test of the constraints
would be performed before the costly redundancy detection used for clauses,
which could globally improve the execution time of the redundancy detection
algorithms of cSP. As mentioned in Chapter 10 at the end of Section 3.3, the
parallelization of some specific parts of our algorithms is also an option. For
example, the application of the rules of the calculus on different clauses or the
recursive manipulations of a clausal tree on different subtrees seem well-suited to
parallel executions. Other directions in which this work can be pursued include
the improvement of the filtering mechanisms of cSP so as to block the gener-
ation of undesired clauses instead of removing them once they are generated.
On the experimental side, a replacement of Zres, a tool used as a reference in
our experiments, with the more recent primer 6 should be considered if new ex-
periments are performed. Finaly, an investigation of the cause behind the small
number of clauses generated compared to SOLAR in the experiment presented in
Section 3.3 of Chapter 10 could also provide insights on how to improve the cSP
prototype.

In a longer term perspective, the most promising direction in which to pursue
the work presented in this thesis would be to implement a version of cSP based
on a state-of-the-art equational theorem prover such as the E theorem prover so
as to benefit from all the clever improvements it contains. Once the scalability
issue has been solved (or at least significantly improved) the extension of the cSP
calculus to more expressive logics should be considered, e.g., from the simplest
extension to the most complex, logics including boolean terms, many-sorted
terms and variables. Once our algorithms are extended to handle variables, and
a way to go around the semi-decidability of prime implicate generation, e.g. the
systematic use of filters, has been devised, it could be interesting to compute the
prime implicates of SMT formulæ, e.g. formulæ in Presburger arithmetic or the
theory of arrays. Two approaches can be considered. One would simply consist
in giving the theory along with the input formula. The axioms would be used in
the calculus only with clauses from the input formula or their consequences, and
never with each other. Any direct consequence of the axioms would be deleted
from the set of implicates. The other approach applies to the best known theories
only, like Presburger arithmetic, bit-vectors, array with extensivity, etc. It would
consists in using an external SMT solver (e.g. Z3) to suggest simplifications for
the terms of the considered theory (for example, in arithmetic, x + 0 can be
simplified into x) and to assess the possible equivalence of these terms so as to
know where and under what conditions to apply the rules of an extended cSP
calculus.

6. Both tools are mentioned in Chapter i.
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Appendix A

Mini-sudoku formalization

For a better readability, the formalization of the mini-sudoku problem pre-
sented in the introduction is presented in the TPTP fof style that uses disjunc-
tions ’|’ and conjunctions ’&’. To shorten this appendix, some similar formulæ
are ommited and replaced by ’...’. The complete formalization of the problem
is included with the archive downloadable at http://lig-membres.imag.fr/
tourret/index.php?&tab=3&slt=tools.

% problem

fof(ax1,axiom,(ssA(n1,n1)=n1)).
fof(ax2,axiom,(ssA(n4,n1)=n2)).
fof(ax3,axiom,(ssA(n3,n2)=n1)).
fof(ax4,axiom,(ssA(n2,n3)=n2)).
fof(ax5,axiom,(ssA(n4,n3)=n1)).
fof(ax6,axiom,(ssA(n3,n1)=n4)).

% constraints

%----Lower cardinality bound
fof(ax1,axiom,

( n1 != n2
& n1 != n3
& n1 != n4
& n2 != n3
& n2 != n4
& n3 != n4 )).

%----Row constraints
fof(ax2,axiom,

( ssA(n1,n1) = n1
| ssA(n1,n2) = n1

http://lig-membres.imag.fr/tourret/index.php?&tab=3&slt=tools
http://lig-membres.imag.fr/tourret/index.php?&tab=3&slt=tools


| ssA(n1,n3) = n1
| ssA(n1,n4) = n1 )).

...

fof(ax5,axiom,
( ssA(n1,n1) = n4
| ssA(n1,n2) = n4
| ssA(n1,n3) = n4
| ssA(n1,n4) = n4 )).

fof(ax11,axiom,
( ssA(n1,n1) != ssA(n1,n2)
& ssA(n1,n1) != ssA(n1,n3)
& ssA(n1,n1) != ssA(n1,n4)
& ssA(n1,n2) != ssA(n1,n3)
& ssA(n1,n2) != ssA(n1,n4)
& ssA(n1,n3) != ssA(n1,n4) )).

fof(ax12,axiom,
( ssA(n2,n1) = n1
| ssA(n2,n2) = n1
| ssA(n2,n3) = n1
| ssA(n2,n4) = n1 )).

...

fof(ax15,axiom,
( ssA(n2,n1) = n4
| ssA(n2,n2) = n4
| ssA(n2,n3) = n4
| ssA(n2,n4) = n4 )).

fof(ax21,axiom,
( ssA(n2,n1) != ssA(n2,n2)
& ssA(n2,n1) != ssA(n2,n3)
& ssA(n2,n1) != ssA(n2,n4)
& ssA(n2,n2) != ssA(n2,n3)
& ssA(n2,n2) != ssA(n2,n4)
& ssA(n2,n3) != ssA(n2,n4) )).

fof(ax22,axiom,
( ssA(n3,n1) = n1
| ssA(n3,n2) = n1
| ssA(n3,n3) = n1
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| ssA(n3,n4) = n1 )).

...

fof(ax25,axiom,
( ssA(n3,n1) = n4
| ssA(n3,n2) = n4
| ssA(n3,n3) = n4
| ssA(n3,n4) = n4 )).

fof(ax31,axiom,
( ssA(n3,n1) != ssA(n3,n2)
& ssA(n3,n1) != ssA(n3,n3)
& ssA(n3,n1) != ssA(n3,n4)
& ssA(n3,n2) != ssA(n3,n3)
& ssA(n3,n2) != ssA(n3,n4)
& ssA(n3,n3) != ssA(n3,n4) )).

fof(ax32,axiom,
( ssA(n4,n1) = n1
| ssA(n4,n2) = n1
| ssA(n4,n3) = n1
| ssA(n4,n4) = n1 )).

...

fof(ax35,axiom,
( ssA(n4,n1) = n4
| ssA(n4,n2) = n4
| ssA(n4,n3) = n4
| ssA(n4,n4) = n4 )).

fof(ax41,axiom,
( ssA(n4,n1) != ssA(n4,n2)
& ssA(n4,n1) != ssA(n4,n3)
& ssA(n4,n1) != ssA(n4,n4)
& ssA(n4,n2) != ssA(n4,n3)
& ssA(n4,n2) != ssA(n4,n4)
& ssA(n4,n3) != ssA(n4,n4) )).

%----column constraints
fof(ax92,axiom,

( ssA(n1,n1) = n1
| ssA(n2,n1) = n1
| ssA(n3,n1) = n1
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| ssA(n4,n1) = n1 )).

...

fof(ax95,axiom,
( ssA(n1,n1) = n4
| ssA(n2,n1) = n4
| ssA(n3,n1) = n4
| ssA(n4,n1) = n4 )).

fof(ax101,axiom,
( ssA(n1,n1) != ssA(n2,n1)
& ssA(n1,n1) != ssA(n3,n1)
& ssA(n1,n1) != ssA(n4,n1)
& ssA(n2,n1) != ssA(n3,n1)
& ssA(n2,n1) != ssA(n4,n1)
& ssA(n3,n1) != ssA(n4,n1) )).

fof(ax102,axiom,
( ssA(n1,n2) = n1
| ssA(n2,n2) = n1
| ssA(n3,n2) = n1
| ssA(n4,n2) = n1 )).

...

fof(ax105,axiom,
( ssA(n1,n2) = n4
| ssA(n2,n2) = n4
| ssA(n3,n2) = n4
| ssA(n4,n2) = n4 )).

fof(ax111,axiom,
( ssA(n1,n2) != ssA(n2,n2)
& ssA(n1,n2) != ssA(n3,n2)
& ssA(n1,n2) != ssA(n4,n2)
& ssA(n2,n2) != ssA(n3,n2)
& ssA(n2,n2) != ssA(n4,n2)
& ssA(n3,n2) != ssA(n4,n2) )).

fof(ax112,axiom,
( ssA(n1,n3) = n1
| ssA(n2,n3) = n1
| ssA(n3,n3) = n1
| ssA(n4,n3) = n1 )).
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...

fof(ax115,axiom,
( ssA(n1,n3) = n4
| ssA(n2,n3) = n4
| ssA(n3,n3) = n4
| ssA(n4,n3) = n4 )).

fof(ax121,axiom,
( ssA(n1,n3) != ssA(n2,n3)
& ssA(n1,n3) != ssA(n3,n3)
& ssA(n1,n3) != ssA(n4,n3)
& ssA(n2,n3) != ssA(n3,n3)
& ssA(n2,n3) != ssA(n4,n3)
& ssA(n3,n3) != ssA(n4,n3) )).

fof(ax122,axiom,
( ssA(n1,n4) = n1
| ssA(n2,n4) = n1
| ssA(n3,n4) = n1
| ssA(n4,n4) = n1 )).

...

fof(ax125,axiom,
( ssA(n1,n4) = n4
| ssA(n2,n4) = n4
| ssA(n3,n4) = n4
| ssA(n4,n4) = n4 )).

fof(ax131,axiom,
( ssA(n1,n4) != ssA(n2,n4)
& ssA(n1,n4) != ssA(n3,n4)
& ssA(n1,n4) != ssA(n4,n4)
& ssA(n2,n4) != ssA(n3,n4)
& ssA(n2,n4) != ssA(n4,n4)
& ssA(n3,n4) != ssA(n4,n4) )).

%----Subsquare constraints
fof(ax182,axiom,

( ssA(n1,n1) = n1
| ssA(n1,n2) = n1
| ssA(n2,n1) = n1
| ssA(n2,n2) = n1 )).

...

160



fof(ax185,axiom,
( ssA(n1,n1) = n4
| ssA(n1,n2) = n4
| ssA(n2,n1) = n4
| ssA(n2,n2) = n4 )).

fof(ax191,axiom,
( ssA(n1,n1) != ssA(n1,n2)
& ssA(n1,n1) != ssA(n2,n1)
& ssA(n1,n1) != ssA(n2,n2)
& ssA(n1,n2) != ssA(n2,n1)
& ssA(n1,n2) != ssA(n2,n2)
& ssA(n2,n1) != ssA(n2,n2) )).

fof(ax182,axiom,
( ssA(n1,n3) = n1
| ssA(n1,n4) = n1
| ssA(n2,n3) = n1
| ssA(n2,n4) = n1 )).

...

fof(ax185,axiom,
( ssA(n1,n3) = n4
| ssA(n1,n4) = n4
| ssA(n2,n3) = n4
| ssA(n2,n4) = n4 )).

fof(ax191,axiom,
( ssA(n1,n3) != ssA(n1,n4)
& ssA(n1,n3) != ssA(n2,n3)
& ssA(n1,n3) != ssA(n2,n4)
& ssA(n1,n4) != ssA(n2,n3)
& ssA(n1,n4) != ssA(n2,n4)
& ssA(n2,n3) != ssA(n2,n4) )).

fof(ax182,axiom,
( ssA(n3,n1) = n1
| ssA(n3,n2) = n1
| ssA(n4,n1) = n1
| ssA(n4,n2) = n1 )).

...

fof(ax185,axiom,
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( ssA(n3,n1) = n4
| ssA(n3,n2) = n4
| ssA(n4,n1) = n4
| ssA(n4,n2) = n4 )).

fof(ax191,axiom,
( ssA(n3,n1) != ssA(n3,n2)
& ssA(n3,n1) != ssA(n4,n1)
& ssA(n3,n1) != ssA(n4,n2)
& ssA(n3,n2) != ssA(n4,n1)
& ssA(n3,n2) != ssA(n4,n2)
& ssA(n4,n1) != ssA(n4,n2) )).

fof(ax182,axiom,
( ssA(n3,n3) = n1
| ssA(n3,n4) = n1
| ssA(n4,n3) = n1
| ssA(n4,n4) = n1 )).

...

fof(ax185,axiom,
( ssA(n3,n3) = n4
| ssA(n3,n4) = n4
| ssA(n4,n3) = n4
| ssA(n4,n4) = n4 )).

fof(ax191,axiom,
( ssA(n3,n3) != ssA(n3,n4)
& ssA(n3,n3) != ssA(n4,n3)
& ssA(n3,n3) != ssA(n4,n4)
& ssA(n3,n4) != ssA(n4,n3)
& ssA(n3,n4) != ssA(n4,n4)
& ssA(n4,n3) != ssA(n4,n4) )).

%----Codomain
fof(ax272,axiom,

( ssA(n1,n1) = n1
| ssA(n1,n1) = n2
| ssA(n1,n1) = n3
| ssA(n1,n1) = n4 )).

...

fof(ax275,axiom,
( ssA(n1,n4) = n1
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| ssA(n1,n4) = n2
| ssA(n1,n4) = n3
| ssA(n1,n4) = n4 )).

fof(ax281,axiom,
( ssA(n2,n1) = n1
| ssA(n2,n1) = n2
| ssA(n2,n1) = n3
| ssA(n2,n1) = n4 )).

...

fof(ax284,axiom,
( ssA(n2,n4) = n1
| ssA(n2,n4) = n2
| ssA(n2,n4) = n3
| ssA(n2,n4) = n4 )).

fof(ax290,axiom,
( ssA(n3,n1) = n1
| ssA(n3,n1) = n2
| ssA(n3,n1) = n3
| ssA(n3,n1) = n4 )).

...

fof(ax293,axiom,
( ssA(n3,n4) = n1
| ssA(n3,n4) = n2
| ssA(n3,n4) = n3
| ssA(n3,n4) = n4 )).

fof(ax299,axiom,
( ssA(n4,n1) = n1
| ssA(n4,n1) = n2
| ssA(n4,n1) = n3
| ssA(n4,n1) = n4 )).

...

fof(ax302,axiom,
( ssA(n4,n4) = n1
| ssA(n4,n4) = n2
| ssA(n4,n4) = n3
| ssA(n4,n4) = n4 )).
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%----------------------------------------------------------------
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BNF syntax of the inputs

The BNF syntax below is extracted from the TPTP BNF syntax. This syn-
tax is that of Kparam and cSPṪhe parts highlighted in red are specific to cSP.
Original comments of the TPTP syntax are preceded by %---- and comments
specific to our syntax begin with %----*.

%----*Syntax for CNF on ground equational clauses for Kparam and cSP
%----*extracted from :
%----v5.4.0.0 (TPTP version.internal development number)
%------------------------------------------------------------------------------
%----README ... this header provides important meta- and usage information
%----
%----Intended uses of the various parts of the TPTP syntax are explained
%----in the TPTP technical manual, linked from www.tptp.org.
%----
%----Four kinds of separators are used, to indicate different types of rules:
%---- ::= is used for regular grammar rules, for syntactic parsing.
%---- :== is used for semantic grammar rules. These define specific values
%---- that make semantic sense when more general syntactic rules apply.
%---- ::- is used for rules that produce tokens.
%---- ::: is used for rules that define character classes used in the
%---- construction of tokens.
%----
%----White space may occur between any two tokens. White space is not specified
%----in the grammar, but there are some restrictions to ensure that the grammar
%----is compatible with standard Prolog: a <TPTP_file> should be readable with
%----read/1.
%----
%----The syntax of comments is defined by the <comment> rule. Comments may
%----occur between any two tokens, but do not act as white space. Comments
%----will normally be discarded at the lexical level, but may be processed
%----by systems that understand them (e.g., if the system comment convention
%----is followed).
%----
%------------------------------------------------------------------------------
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%----Files. Empty file is OK.
<TPTP_file> ::= <TPTP_input>*
<TPTP_input> ::= <annotated_formula>

%----*Formula records (restricted to cnf, without anotations)
<annotated_formula> ::= <cnf_annotated>
<cnf_annotated> ::= cnf(<name>,<formula_role>,<cnf_formula><annotations>).
<annotations> ::= <null>

%----Types for problems.
<formula_role> ::= <lower_word>
<formula_role> :== axiom | hypothesis | definition | assumption |

lemma | theorem | conjecture | negated_conjecture |
plain | unknown

%----*The different formula roles are kept for information but have no impact
%----*during execution
%------------------------------------------------------------------------------
%----CNF formulae (variables implicitly universally quantified)
%----*restricted to ground equational literals
<cnf_formula> ::= (<disjunction>) | <disjunction>
<disjunction> ::= <literal> | <disjunction> <vline> <literal>
<literal> ::= <atomic_formula> | <fol_infix_unary>
%------------------------------------------------------------------------------
%----Special formulae
<fol_infix_unary> ::= <term> <infix_inequality> <term>

%----First order atoms
<atomic_formula> ::= <defined_plain_formula> | <defined_atomic_formula>
<defined_plain_formula> ::= <defined_plain_term>
<defined_plain_formula> :== <defined_prop>
<defined_prop> :== <atomic_defined_word>
<defined_prop> :== $false
%----Pure CNF should use $false only at the roots of a refutation.

<defined_atomic_formula> ::= <defined_infix_formula>
<defined_infix_formula> ::= <term> <defined_infix_pred> <term>
<defined_infix_pred> ::= <infix_equality>
<infix_equality> ::= =
<infix_inequality> ::= !=

%----First order terms
<term> ::= <function_term>
<function_term> ::= <plain_term>
<plain_term> ::= <constant> | <functor>(<arguments>)
<constant> ::= <functor>
<functor> ::= <atomic_word>
%----Defined terms have TPTP specific interpretations
<defined_plain_term> ::= <defined_constant>
<defined_constant> ::= <defined_functor>
<defined_functor> ::= <atomic_defined_word>
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%----Arguments recurse back up to terms (this is the FOF world here)
<arguments> ::= <term> | <term>,<arguments>

%------------------------------------------------------------------------------

%----General purpose
<name> ::= <atomic_word> | <integer>
%----Integer names are expected to be unsigned
<atomic_word> ::= <lower_word>
<atomic_defined_word> ::= <dollar_word>
<null> ::=
%------------------------------------------------------------------------------
%----Rules from here on down are for defining tokens (terminal symbols) of the
%----grammar, assuming they will be recognized by a lexical scanner.
%----A ::- rule defines a token, a ::: rule defines a macro that is not a
%----token. Usual regexp notation is used. Single characters are always placed
%----in []s to disable any special meanings (for uniformity this is done to
%----all characters, not only those with special meanings).

%----These are tokens that appear in the syntax rules above. No rules
%----defined here because they appear explicitly in the syntax rules,
%----except that <vline>, <star>, <plus> denote "|", "*", "+", respectively.
%----Keywords: fof cnf thf tff include
%----Punctuation: ( ) , . [ ] :
%----Operators: ! ? ~ & | <=> => <= <~> ~| ~& * +
%----Predicates: = != $true $false

%----For lex/yacc there cannot be spaces on either side of the | here
<comment> ::- <comment_line>
<comment_line> ::- [%]<printable_char>*

<dollar_word> ::- <dollar><lower_word>
<lower_word> ::- <lower_alpha><alpha_numeric>*

%----Tokens used in syntax, and cannot be character classes
<vline> ::- [|]

%----Numbers. Signs are made part of the same token here.
<integer> ::- (<signed_integer>|<unsigned_integer>)
<signed_integer> ::- <sign><unsigned_integer>
<unsigned_integer> ::- <decimal>
<decimal> ::- (<zero_numeric>|<positive_decimal>)
<positive_decimal> ::- <non_zero_numeric><numeric>*

%---Space and visible characters upto ~, except ’ and <sign> ::: [+-]
<zero_numeric> ::: [0]
<non_zero_numeric> ::: [1-9]
<numeric> ::: [0-9]
<lower_alpha> ::: [a-z]
<upper_alpha> ::: [A-Z]
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<alpha_numeric> ::: (<lower_alpha>|<upper_alpha>|<numeric>|[_])
<dollar> ::: [$]
<printable_char> ::: .
%----<printable_char> is any printable ASCII character, codes 32 (space) to 126
%----(tilde). <printable_char> does not include tabs, newlines, bells, etc. The
%----use of . does not not exclude tab, so this is a bit loose.
%------------------------------------------------------------------------------
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